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A B S T R A C T   

To support a safe application of graphene-related materials (GRMs) it is necessary to understand the potential 
negative impacts they could have on human health, in particular on the lung - one of the most sensitive exposure 
routes. Machine learning (ML) approaches can help analyse the results of multiple toxicity studies to understand 
the structure-activity relationship and the effect of experimental conditions, thus supporting predictive nano-
toxicology. In this work we collected in vitro cytotoxicity data obtained from studies using lung cells; we then 
fitted multiple regression models to predict this endpoint based on the material properties and experimental 
conditions. Moreover, the data set was used to calculate the Benchmark Dose Lower Confidence Interval (BMDL), 
a dose descriptor widely used in risk assessment. Regression and classification models were applied for the 
prediction of the BMDL value and BMDL range. The analyses show that both cytotoxicity and the BMDL range 
can be predicted well (Q2 = 0.77 and accuracy = 0.71, respectively). Both physico-chemical characteristics such 
as the lateral size, number of layers, and functionalization, and experimental conditions such as the assay and 
media used were important predicting features, confirming the need for thorough characterization and reporting 
of these parameters.   

1. Introduction 

Graphene-related materials (GRMs), which include graphene and its 
derivatives such as graphene oxide (GO) and reduced graphene oxide 
(rGO), are 2D carbon-based nanomaterials consisting of one or more 
carbon layers with a honeycomb lattice structure, which can be 
oxidized, reduced, or functionalized (Karaca et al., 2021). Due to their 
mechanical, electrical, and thermal properties GRMs have shown 
promising applications in many different sectors, such as electronics, 
biomedicine, sensors, and environmental decontamination (Mohan 
et al., 2018). While the use of GRMs results in improved product per-
formances and innovative applications (Reiss et al., 2019), it also raises 
concerns about the potential risk for the health of workers, consumers, 
and the general population that may be exposed to these materials (Pelin 
et al., 2018). Therefore, to reduce the uncertainties related to the 
product safety and increase the chances of market success, it is impor-
tant to verify whether a GRM could cause negative impacts on human 
health (Park et al., 2017a). 

Many toxicological studies addressed the health effects of GRMs on 

animals and human cells, with sometimes consistent and sometimes 
contradictory results (Ema et al., 2017; Fadeel et al., 2018). Systemati-
cally evaluating the pool of toxicological data in its entirety is an 
important step to identify common trends and formulate general con-
clusions that are independent of the specific conditions of each single 
study. Understanding the Structure Activity Relationships (SARs), i.e. 
the link between the material properties and a hazard profile, is a 
fundamental step for the Safe-by-design approach, which aims at inte-
grating safety considerations along the design of new nano materials, 
products, and applications (Lin et al., 2018; Yan et al., 2019). 

Especially with the more abundant in vitro data, computational 
models can be used to predict the effects of nanomaterials and under-
stand how the physico-chemical properties and the experimental con-
ditions affect the results, ideally identifying structure-activity 
relationships (Murugadoss et al., 2021; Forest et al., 2019). Specifically, 
powerful Machine Learning (ML) based tools have gained tremendous 
attention in recent years due to their capacity to learn from the available 
data without being directly programmed; one of their applications is to 
build data-driven predictive analytics that help decision making (Sarker, 
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2021). 
ML tools can be used to develop Quantitative Structure-Activity 

Relationship (QSAR) models, which link a quantitative description of 
the material properties (called descriptors) to a measured response; 
while these models have been widely used for chemicals, for example in 
drug discovery, there are efforts to extend these methods to nano-
materials as well (Davis, 2017; Burello and Worth, 2011). Compared to 
QSAR for chemicals, nano-QSAR face the challenge of defining and 
describing the material descriptors, as nanomaterials are characterized 
not only by their chemical composition but also by other physico- 
chemical properties such as shape, size, and coating, and by the fact 
that these properties can be affected by external conditions, such as the 
biological environment (Moore et al., 2015; Villaverde et al., 2018; Choi 
et al., 2019). Therefore, (Toropova and Toropov, 2015) proposed the 
development of quasi-QSAR models, which include not only the physico- 
chemical material properties, but also other (experimental) conditions 
as relevant descriptors affecting the investigated endpoint. 

QSAR and ML models have been developed/used in nanotoxicology 
principally for nanoparticles and fibers. In a few cases, in vivo data were 
used to predict endpoints such as mitotoxicity and cellular influx in lung, 
while in the majority of cases in vitro data were used with the goal of 
predicting endpoints such as cellular uptake, viability, oxidative stress, 
or GRMs agglomeration (Furxhi et al., 2020a; Furxhi et al., 2020b). 

For GRMs, Bussy et al. (Bussy et al., 2015) collected and analyzed the 
available literature about in vivo effects (without applying ML 
methods): the lung was found to be the organ with the highest risk, and 
the lateral size, the quality of the suspension, and the GRM functional-
ization were identified as key factors for the development of adverse 
effects. For in vitro data, only a recent work has applied ML models to 
predict the in vitro viability and half maximal inhibitory concentration 
(IC50) of GRMs, based on data on different cell lines from multiple or-
gans, and not targeted to a specific exposure route. In the study the 
lateral size, cell morphology and organ of origin, assay, exposure dose, 
and time were identified as important predictive features (Ma et al., 
2021). 

The structure-activity relationship of GRMs is under study, but the 
lack of public predictive models prevents the progress of the field via a 
collective effort in which the models are updated and validated along 
with the production of new data, thus continuously refining the un-
derstanding of GRM toxicity. 

In our work, we conducted a meta-analysis of GRM in vitro toxicity 
data. We focused on lung cells as the lung was identified as main organ 
of concern (Bussy et al., 2015). Our goal was to verify whether the 
available literature data is enough and of good-enough quality to build 
predictive models, but also to verify whether the experimental condi-
tions are relevant predictors, thus indicating a better suitability of quasi- 
QSAR models for GRM. 

In addition to building ML models to predict cell viability, we also 
evaluated models for the prediction of the Benchmark Dose Lower 
Confidence Interval (BMDL). The BMDL is a toxicological dose 
descriptor used in human health risk assessment to characterize the 
hazard of a substance (Committee et al., 2017). It is calculated via a 
statistical procedure considering the dose-response relationship and its 
uncertainty, and represents therefore a step further in the application of 
toxicological data for the evaluation of GRM risk. 

Both the data and the models are released under the MIT Licence 
(free to use and modify) to allow the verification, application, extension, 
and improvement of our results. 

2. Methods 

The study was conducted following the steps summarized in Fig. 1. 
Data about the in vitro toxicity of GRMs were collected from the liter-
ature, including information about the responses observed, the doses 
used, the material properties, and the experimental conditions. Then, 
the data were pre-processed to obtain a data-set fit for further analyses. 

A first set of analyses focused on the prediction of the viability of lung 
cells after the exposure to GRMs. The pre-processed data was also used 
to estimate the Benchmark Dose Lower Confidence Interval (BMDL20), 
which is a toxicological dose descriptor widely used e.g. in Risk 
Assessment. A statistical analysis was conducted on the new data set to 
identify outliers and significant variables. After the removal of outliers, 
multiple models were fit on the data to predict either the BMDL20 value 
or the BMDL20 range. 

In this work three different approaches were considered: Viability 
prediction, BMDL prediction and BMDL classification. Each one of them 
represent a way to characterize toxicity based on the meta information 
described in the Data Collection Section. For each approach different ML 
models were trained and evaluated. The details about specific pre- 
processing parts, model training, and re-sampling method used are re-
ported in the following sections. All data pre-processing and analyses 
were done using Python 3 (Van Rossum and Drake, 2009) and the ma-
chine learning library scikit-learn (Pedregosa et al., 2011). 

2.1. Data collection 

Published articles about the in vitro cytotoxicity of GRMs on lung 
and immune cells were identified via a literature search using PubMed 
and Google Scholar. The following keywords were used: “in vitro lung 
graphene”, “in vitro lungs immune cells graphene”, “immune cells gra-
phene”, “in vitro lung toxicity graphene”, “in vitro lung toxicity immune 
cells”, “in vitro graphene toxicity”, “graphene inflammation lungs” and 
“graphene macrophages”. The search was limited to the time frame 
2015–2021, as we assumed that restricting the selection to recent 
studies would result in a better quality in terms of material purity, 
characterization, and endpoints. The following selection criteria were 
set: a) the material was either graphene, graphene oxide, or reduced 
graphene oxide, functionalized or not; b) the cells used were either lung 
epithelial cells or macrophages; c) the cells had either human, rat, or 
mouse origin; d) a submerged in vitro system was used e) at least two 
doses plus control were tested. 

In addition to the dose-response data, the following information 
were extracted from the publications: physico-chemical characterization 
of the material in terms of GRM type, functionalization, number of 
layers, thickness, lateral size (measured via DLS or TEM), and zeta po-
tential; cell characteristics in terms of type (epithelial or macrophages), 
cell line (e.g. A549, RAW264.7), and species (human or rodent); 
experimental conditions in terms of media, exposure time, and assay 
used. 

Web Plot Digitizer 4.3 (https://automeris.io/WebPlotDigitizer) was 
used to extract graphed data. The percentage of viable cells was chosen 
as common endpoint to compare studies that applied different cyto-
toxicity assays. When cell death was reported, the cell viability was 
calculated as 100 minus the percentage of dead cells; when the LDH 
release was indicated as a proxy for cytotoxicity, the viability was 
calculated according to the formula: 

Fig. 1. A schematic of the analysis strategy: data are collected and pre- 
processed; then, on one side models are fit on the data to predict the 
viability, on the other the data are used to calculate BMDL values, and the new 
data set is analyzed statistically, followed by fitting regression and classification 
models for the prediction of the BMDL or the BMDL range. 
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%viability = 100 −
(

LDH released − LDH negative control
LDH positive control − LDH negative control

⋅100
)

116 dose-response data sets, for a total of 693 samples, were 
extracted from 25 publications. 

2.2. Pre-processing 

The goal of pre-processing is to obtain a codified data set of as 
consistent and complete as possible. The following steps were 
conducted: 

1. When the reported response (i.e. viability) was bigger than 100, 
it was substituted with 100 (indicating no change from the control); 

2. If the number of layers or the lateral sizes was reported as a 
range, we considered the average value; 

3. If the number of layers was not reported, it was estimated from 
the material thickness (if available) based on the average thickness of 
single-layered graphene, which is 1 nm (range 0.4–1.7 nm) (Shearer 
et al., 2016), i.e. considering one layer = 1 nm; 

4. A new feature called “size class” classifying the lateral size as 
small “S” (<500 nm), medium “M” (500≤size<1000 nm), or large “L” 
(≤1000 nm) was created to overcome the heterogeneity in the mea-
surement and reporting of this property. In facts, the lateral size was not 
reported consistently in the studies: either TEM or DLS were used, and 
the size was reported as a single value, a range, or a boundary (e.g. 
lateral size <5000nm). The measurements from the two different in-
struments were considered comparable, as according to Lin et al. (Lin 
et al., 2017), the dimensions measured by DLS overestimate the size 
measured via TEM by less than 22%; 

5. Depending on the model and analysis, we selected which fea-
tures to consider; 

6. Based on the selected features, the samples with missing values 
were removed; 

7. Categories with less than 4 elements for features “assay” and 
“media” were eliminated; 

8. Categorical variables were encoded either as ordered variables 
(in the “size class” feature “S”, “M”, and “L” were encoded as 0, 1, 2) or 
as dummy variables via One-Hot Encoding; 

9. The features considered as independent variables (i.e. all 
excluding the viability and the BMDL variables) were normalized to be 
between 0 and 1 using MinMaxScaler. 

A list and description of the variables is presented in Table 1 and 
Table S1 in the SI file. Table S1 also defines the Applicability Domain 
(AD) of the models, according to the bounding box approach based on 
the ranges in the descriptors space; according to this approach, the AD is 
defined as the “n-dimensional hyper-rectangle developed on the basis of 
the highest and lowest values of individual descriptors” (Roy et al., 
2015; Jaworska et al., 2005). For the categorical descriptors, the AD is 
not defined by the range but by the list of values of each descriptor. 

2.2.1. Viability prediction 
For the viability prediction the models a) Bayesian Ridge Regressor, 

b) Random Forest Regressor, c) Extreme Gradient Boosting (XGB) Re-
gressor, d) Gradient Boosting Regressor, e) Multi-layer Perceptron 
(MLP) Regressor, and f) Regression Voting Ensemble were tested. 

In Bayesian Ridge (BR) regression a linear regression model is fitted 
to the data, based on Bayesian statistics: a statistical model is fitted to 
maximize posterior probability, and priors can be used for regularization 
(Pedregosa et al., 2011). 

In Random forest (RF) regression, a number of decision trees are fit 
on sub-samples of the data set obtained via a bootstrapping procedure. 
The performance of the model is then obtained by averaging the pre-
dictions of the single trees (Pedregosa et al., 2011). 

Gradient Boosting (GB) Regressor belongs to a family of ensemble 
algorithms that are able to combine multiple weak models into forming 
a single larger model with strong performance (Zhou, 2012; Friedman, 

2001). During training, starting with a single weak model, the output is 
“boosted” by iteratively adding more models which contribute to the 
output of the aggregated model by decreasing a loss function. The pro-
cess of fitting new weak models and minimizing the loss function is 
based on a gradient descent algorithm. 

Extreme Gradient Boosting (XGBoost) is a software library which 
provides an optimized implementation of the Gradient Boosting algo-
rithm. The library supports an objective function which includes regu-
larization in order to reduce over-fitting during the training process. The 
training of subtrees can be parallelized across clusters, to reduce the 
processing time (Chen and Guestrin, 2016). 

A Multilayer Perceptron (MLP) Regressor is a fully connected 
multilayer feedforward artificial neural network (Haykin, 1994). An 
MLP consists of at least three layers: the input layer, one or more hidden 
layers and an output layer. All layers, except for the first, consists of 
“neurons” which are connected to the outputs of the previous layer. 
Their function is to sum the outputs from the previous layer, multiplying 
each by a unique weight coefficient, and pass the sum through a 
nonlinear activation function. In this way the MPL propagates and 
processes information presented at the input layer, forward through all 
the layers, finally generating an output. During training of the MLP, the 
weights in the network are optimized to minimize a cost function - a 
measure of the error between the generated output and a desired output. 

A Regression Voting Ensemble (RVE) is an ensemble meta-estimator 
that averages the predictions from multiple contributing regressor 
models (Pedregosa et al., 2011). The regressor models are previously 
trained on the complete data set and their contribution to the average is 
weighted by coefficients, which are optimized by the RVE. 

For these models the viability was the dependent variable, and all the 
independent variables in Table 1 were considered except Z_pot and 
Cell_species. 

Table 1 
The name and description of the variables considered in our analyses.  

Variable name Description 

Dependent variables (the outputs of the ML models) 
Viability The percentage of viability of the cells, measured at a set 

dose. 
BMDL The lower confidence interval of the dose corresponding to 

80% viability calculated via the BMD approach (see section 
2.3).  

Independent variables (the features of the ML models) 
Dose The GMB concentration in μg/mL, used only in the 

prediction of the viability. 
Substance Indicates the GRM type between graphene, graphene 

oxide, and reduced graphene oxide (rGO). It is encoded as 
dummy variables. 

Functionalization 
(“func”) 

The functionalization of the GRM (including no 
functionalization). It is encoded as dummy variables. 

Size_class The size range of the GRM between “S” (<500nm), “M” 
(500-1000 nm) and “L” (>1000nm). 

Layer The number of layers of the GRM. 
Z_pot The zeta potential of the GRM material. 
Time The exposure time. 
Media The media used in the cytotoxicity test, indicating the main 

media (e.g. RPMI, DMEM) and the percentage of fetal 
bovine serum (FBS). It is encoded as dummy variables. 

Assay The type of assay used to measure the cytotoxicity/ 
viability of the cells (e.g. MTT assay, WST-1 assay). 
Encoded as dummy variables. 

Cell_type_general The type of cells between macrophages and epithelial cells. 
Encoded as dummy variables. 

Cell_type The specific cell line used in the experiment (e.g. A549, 
THP-1 cell lines). Encoded as dummy variables. 

Species Refers to the species of the cells used, either human or 
rodent. Encoded as dummy variables. 

Cell_species It’s the combination of the Cell_type_general and Species 
features (e.g. human macrophages). It is encoded as 
dummy variables.  
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It was observed that for each in vitro cytotoxicity experiment, the 
number of samples and the sampling for the feature Dose were not the 
same: the number of samples varied between 2 and 8, and the sampling 
did not show the same increasing step. This lack of uniformity in the 
methodology of each experiment could represent a problem for a ma-
chine learning model, since the experiments with more samples could 
have a stronger influence on the behaviour of the model, diminishing the 
importance of the experiments with less samples. To avoid this unbal-
ance, for each experiment with at least 3 samples the Dose and response 
(viability) were fitted in a model (see example in Fig. 2), which was then 
used to calculate an equal and equally-spaced number of samples. As 
shown in Table 2, multiple models were evaluated and the best per-
forming one was chosen based on the Mean Absolute Error (MAE), i.e. 
the quadratic model. Then, ten doses equally distributed in the range 
10–100 μg/mL, which was the most common range for all experiments, 
were considered to calculate the corresponding viability value, obtain-
ing in this way ten samples for each experiment. 

2.3. Benchmark dose calculation 

The Benchmark Dose approach is a statistical method used in risk 
assessment to analyse dose-response curves and estimate Reference 
Points (RF) to use as descriptors of substances’ hazard (Committee et al., 
2017). A Benchmark Dose (BMD) is the dose causing a predefined in-
crease in response (Benchmark Response - BMR) compared to the con-
trol. By fitting a curve on the dose-response data (Fig. 3) it is possible to 
calculate the BMD and the 95% confidence intervals - the BMDL (lower) 
and BMDU (upper). The BMDL is then used as RP. 

The BMDL was calculated using PROAST (Slob, 2018); a BMR of 20% 
was chosen as it represents a threshold for cytotoxicity (ISO 10993- 
5:2009, 2009). 

From the 116 dose-response data sets we obtained 99 BMDL values, 
meaning that in 17 cases there was no clear dose-response relationship 
and the BMDL could not be calculated. 

2.4. Statistical analysis 

The statistical analyses of the BMDL data set were conducted using 
IBM’s SPSS Statistics. (IBM Corp, 2020) First, the outliers were removed 
according to the 1.5⋅IQR rule, according to which are outliers all those 

points that are respectively larger and smaller than the (3rd quantile 
+1.5⋅interquantile range) and the (1st quantile - 1.5⋅interquantile range) 
(Upton and Cook, 1996). According to the rule, five data points for 
which the BMDL was larger than 296.425 μg/mL were eliminated, 
obtaining a data set with 94 samples. 

Then, the effect of multiple variables on the BMDL was tested via the 

Fig. 2. Example of dose-response curve fitting in a quadratic model for one of the experiments.  

Table 2 
The Mean Absolute Error (MAE) of the models 
tested for curve-fitting.  

Model MAE 

ax + b 3.34 
ax2 + bx + c 1.45 
ae(bx) 2.12e+92 
a(e(bx))d 3.98e+91  

Fig. 3. In the BMD approach a curve is fit to the toxicological data and the dose 
(BMD) corresponding to a defined increase in response (BMR) over control is 
identified. The BMDL represents the lower 95% confidence interval of the BMD. 
Reprinted from (Committee et al., 2017). 
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Kruskal-Wallis H test (McKight and Najab, 2010) and Dunn-Bonferroni 
post hoc test, (Dinno, 2015) as the data were not normally distributed, 
as highlighted by the Shapiro-Wilk normality test (Ghasemi and Zahe-
diasl, 2012). Inequality of variance was confirmed via Levene’s test 
(Brown and Forsythe, 1974). The variables tested one at a time were: 
size, substance, assay, cell_type_general, cell_type, species, and 
cell_species. 

2.4.1. BMDL prediction 
Multiple regression models were tested to predict the BMDL value: a) 

Linear Regressor, b) Bayesian Ridge Regressor, c) Multi-layer Perceptron 
(MLP) Regressor, d) Gradient Boosting (GB) Regressor, e) Random 
Forest (RF) Regressor, and Extreme Gradient Boosting (XGB) Regressor. 
The features considered were: substance, functionalization, size_class, 
layer, time, media, assay, cell_type_general, cell_type, and species, 
obtaining a data set with 61 samples. 

2.4.2. BMDL classification 
Classifiers are a class of supervised machine learning models that, 

based on the features provided, separate the data set into a defined 
number of classes (Tan et al., 2016). For the classification of the BMDL 
values, three classes were defined so as to have approximately the same 
number of data points in each class. Another option would have been to 
divide the range of BMDL values into three equally spaced classes; 
however, this would have resulted in an unbalanced data set, in which 
around 70% of the data points fall in the first class, resulting in a bad 
representativity of the other classes given the small size of the data set. 
The classes were: BMDL <15μg/mL, 15μg/mL ≤BMDL < 60μg/mL, and 
BMDL≥60μg/mL. Four classes (split at 15, 35, and 100 μg/mL) were 
tested as well, but discarded due to the low performances obtained with 
this subdivision. 

Before the pre-processing step, three data sets were selected from the 
original data set; since during the pre-processing step the samples with 
missing values are removed, selecting a different number of features 
before pre-processing affects the number of samples available for the 
models. Data set 1 (N = 51) considered all the features potentially 
relevant to the BMDL prediction, i.e. substance, functionalization, 
size_class, layer, z_pot, time, media, assay, cell_type_general, cell_type, 
species, and cell_species. In data set 2 (N = 76) the layer and z_pot 
features were excluded to increase the number of samples of the data set. 
Last, data set 3 (N = 61) excluded only the z_pot to balance the number 
of features included and the size of the data set. All data sets were used in 
the three models described below. 

Three classification models where tested using all three data sets: a) 
Support Vector Machine classifier (SVM), b) Decision Tree Classifier 
(DT), and c) Random Forest Classifier (RF). The choice fell on these 
supervised classification algorithms due to their wide use and their 
relative simplicity (Sen et al., 2020). Since the data sets are small, 
avoiding complex models reduced the risk of overfitting (Ying, n.d.). 
These models also allow to identify the features important for the clas-
sification, thus helping with the interpretation of the results. 

To tune the parameters of the models, a nested cross validation 
procedure was applied, in which the data set was iteratively split in 
training and testing set according to Leave One Out Cross Validation 
(LOOCV), and then each training set was used for parameter tuning via 
GridSearchCV algorithm and LOOCV. The parameters that maximized 
the model accuracy were then applied when fitting the models on the 
training set and testing on the test set (Fig. 4). 

SVM classifiers are a popular choice for classification due to their 
theoretical foundations and generalization potential; they work by 
identifying the hyperplane in the multidimensional feature space that 
maximizes the distance between the different groups (Cervantes et al., 
2020). We used a linear kernel as it provides the importance of the 
features for the classification, and applied balanced weights. The regu-
larization parameter “C” was tuned via nested cross validation. 

DT classifiers utilize a multistage approach in which the 

classification decision is split in multiple simpler binary decision steps 
which ultimately ideally bring to a correct classification (Safavian and 
Landgrebe, 1991). A DT classifier generates a tree-like structure where 
the final nodes (called leaves) represent the assigned class, while the 
branches represent the conjunction of features that leads to each final 
classification. A balanced weighting was used to account for different 
sample frequencies in the different classes, and the nested cross vali-
dation procedure was used to fine-tune the max depth parameter (be-
tween 3 and 6) and the minimum sample split parameter (between 2 and 
6, indicates the minimum number of samples required to split an in-
ternal node). 

RF classifiers are particularly fitted for small data sets with a large 
number of variables. After fitting multiple decision trees on sub-samples 
of the data set the performance of the RF is given by the mean accuracy 
of the decision trees. Ten trees were fit per forest, and the max depth and 
minimum sample split parameters were tuned in the same way as for the 
other classifiers. 

2.5. Metrics 

Several metrics were used to evaluate the performance of the ML 
models. For the regression models: R-Squared (R2), Root Mean Square 
Error (RMSE), and predictive squared correlation coefficient (Q2). R2 

and Q2 are statistical measures to describe how closely the data are to a 
fitted regression line. R2 is calculated as 1 - residual sum of squares(RSS) 
and the total sum of squares(TSS): 

R2 = 1 −

(
RSS
TSS

)

RSS =
∑

(y − ŷ)2

TSS =
∑

(y − y)2  

where 

y = observed dependent variable
ŷ = predicted dependent variable

y = mean value of the dependent variable 

Fig. 4. The nested cross validation procedure applied to tune the parameters of 
the classification algorithms: 1) the data set is split into train and test set 
through a LOOCV approach; 2) each training set is used as new data set in the 
inner parameter tuning procedure: the data set is split again in training and test 
sets via LOOCV, which are used by GridSearchCV to find the parameters that 
optimize the model accuracy; 3) the tuned parameters are used to train the 
model on the outer training set, which is evaluated thought the outer test set; 4) 
the performance of the model is obtained from the LOOCV on the outer data set. 
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On the other side, Q2 is calculated as 1 - Predictive residual Error sum 
of squares(PRESS)/ TSS: 

Q2 = 1 −

(
PRESS

TSS

)

PRESS =
∑(

y − ŷi/i

)2  

where 

ŷi/i= is thepredictionof theithvalueusingamodeltrainedwithoutusingithvalue 

The calculation for both R2 and Q2 are almost identical with the only 
difference that R2 is calculated from the data on which the algorithm 
was trained and Q2 is calculated from held out data, for this work is 
following the approach LOOCV. RMSE represents the square error of the 
sum of differences between the predicted and the observed value 
divided by the total of samples; it aggregates the prediction errors into a 
single measure (Gramatica, 2013). 

For the classification models, the model performance was reported 
using the Classification Accuracy, which is defined as the fraction be-
tween the number of correct predictions and the total number of pre-
dictions (Fawcett, 2006). Moreover, we calculated additional 
performance metrics that describe the relationship between True Posi-
tives (TP), True Negatives (TN), False Positives (FP), and False Negatives 
(FN): 

• Precision: TP/(TP + FP), measures the rate of false positives; 
• Sensitivity/Recall: TP/(TP + FN), measures false negatives 

against true positives; 
• Specificity: TN/(TN + FP), measures the false positive rate; 
• Area Under the Curve AUC: represents the trade off between 

sensitivity and specificity. 
In order to estimate how well the models will perform in practice, 

both metrics were computed following the cross-validation scheme 
Leave-One-Out Cross-Validation (LOOCV). In cross validation the data is 
separated into training and testing data sets. After training using only 
the training data set, the model performance is validated on the test data 
set with the chosen metrics. In LOOCV, which is a version of K-Fold cross 
validation where K equals the number of samples, the model is trained 
and evaluated iteratively K times (Chandrashekar and Sahin, 2014). In 
each iteration, a singular sample is used for the purpose of validation, 
while the rest of the (K-1) samples are used for training. After comple-
tion the metrics R2 and accuracy are calculated as averages from all 
iterations. 

3. Results and discussion 

3.1. Viability prediction 

Table 3 shows the results for the Viability prediction. Three values 
are reported: R2, Q2, and RMSE. Different regression models were 
trained, the ones with better results were Gradient Boosting Regressor 
model with Q2 = 0.73 and RMSE = 10.97, and MLP Regressor model 
with Q2 = 0.76 and RMSE = 10.35. A third voting model based on the 
previous two was trained as well, this last one exhibited a Q2 = 0.77 and 
a RMSE = 10.17, which is considered good, even though not excellent 

(Q2 > 0.9) (Eriksson et al., 2003). 
The comparison of R2 and Q2 provides some insights on whether the 

models are overfitted. Overfitting is characterized by a good fitting of 
the model on the training data (represented by R2), but poor general-
izability and thus consistently lower performance with the test data 
(represented by Q2) (Subramanian and Simon, 2013). While we could 
observe overfitting for some of the regression models (e.g. XGB regres-
sor), the best performing models had very similar R2 and Q2, indicating 
that the models were not overfitted as they managed to capture the 
relationship between the features and the viability and exclude the noise 
of the data set. 

One of the advantages of the Gradient Boosting Regressor model is 
the possibility to provide estimates of the feature importance over the 
trained model. Fig. 5 shows the most 11 valuable independent variables; 
the top ones to perform key decisions in the model are: Dose, Size_class, 
Func_poly Acrylamide (PAM) and Media_DMEM F12 + 10%FBS. As 
described in the methods section, before training the Gradient Boosting 
Regressor model, the independent variable Viability was recomputed by 
fitting the Dose and Response data in a quadratic function. It is therefore 
logic that Dose is an important feature for the Gradient Boosting model, 
which may also raise the question of whether the other features are 
needed at all for a good prediction of the viability. To verify this point, 
the Gradient Boosting model was trained using only Dose as input var-
iable, which resulted in a Q2 = 0.11. If we compare this performance 
with the one of the model trained with all independent variables (Q2 =

0.73) we can conclude that while Dose is an important contribution to 
the model, the rest of the independent variables significantly contribute 
to the model performance, and should therefore not be disregarded. 

For the viability prediction, our results seem to generally be in 
agreement with the work from Ma et al. (Ma et al., 2021) (accuracy =
0.80 with a Random Forest Regressor model), even though in their case 
cells from multiple organs were included. As in this work, they identified 
the GRM size, dose, exposure time, and assay as relevant features, while 
the number of layers and the media used was an important feature for 
our models which was not considered previously. Unfortunately, we 
could not directly compare our results since their data set was not 
available. 

Choi et al. (Choi et al., 2019) developed a quasi-QSAR for the pre-
diction of the in vitro cytotoxicity caused by metal oxide nanoparticles, 
obtaining accuracies between 0.54 and 0.75 (depending on the pre- 
processing of the features). For carbon nanotubes, accuracies between 
0.60 and 0.88 (depending on the validation set) were obtained (Trinh 
et al., 2018). In both studies, experimental conditions such as the assay, 
cell line, and the exposure dose were relevant descriptors, confirming 
our findings about the importance of this type of features. While in our 
study the media used was more relevant than the cell line, it should be 
noted that these two features are partially correlated since different 
media are used for different cell lines. Therefore, the information gain 
from having the cell type feature in addition to the media might be 
limited, reason why the cell type is not among the top important 
features. 

Table 3 
The performance of the regression models for the prediction of viability.  

Model R2 Q2 RMSE 

Bayesian Ridge Regressor 0.61 0.58 13.68 
MLP Regressor 0.76 0.76 10.35 
Gradient Boosting Regressor 0.79 0.73 10.97 
Random Forest Regressor 0.85 0.60 13.47 
XGB Regressor 0.85 0.50 15.32 
Voting Regressor (MLP and Gradient Boosting) 0.79 0.77 10.17  Fig. 5. Feature importance.  
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3.2. BMDL statistical analysis 

The Kruskal-Wallis H test showed that there was a statistically sig-
nificant difference in BMDL between the different GRM types (substance 
parameter), 2(2) = 7.14, p = 0.028, with a mean rank BMDL of 30.30μg/ 
mL for graphene, 51.23μg/mL for graphene oxide, and 49.87μg/mL for 
rGO. The post-hoc test indicated a significant difference between gra-
phene and the other two GRM (Fig. 6). The assay was also a significant 
parameter (2(8) = 17.44, p = 0.026), even though the assay types that 
were significantly different were the ones for which few data points were 
available: 5 data points for the CFA assay and 2 data points for the 
neutral red assay. The significantly different pairs were CFA-WST1 (p =
0.008), CFA-LDH (p = 0.006), CFA-MTT (p = 0.001), CFA-PI (p =
0.000), neutral red-PI (p = 0.021). 

No significant different was observed for size_class (2(2) = 2.934, p =
0.231), cell_type_general (2(1) = 1.898, p = 0.168), species (2(1) =
0.007, p = 0.932), cell_species (2(2) = 3.04, p = 0.219), and cell_type 
(2(8) = 6.388, p = 0.604). 

Multiple factors can contribute to the different toxicity of the GRM; 
for example, graphene has been shown to be more hydrophobic than 
graphene oxide, which affects the dispersability of the material and 
therefore the dose reaching the cells (Park et al., 2017b). The presence of 
impurities on the material and the interference with the assay are further 
conditions that can affect the measured cellular response (Park et al., 
2017b). This explains why the BMDL spanned orders of magnitude, with 
no clear distinction between group. Therefore the trends that we do/do 
not observe should not be intended as a definitive rule but rather as a 
description of the distribution of the available toxicity data. 

3.3. BMDL prediction 

The performance of the regression models for the prediction of the 
BMDL was poor, with the best predicted R2 = 0.26 for the Linear Re-
gressor (see Table S2 for details). This can be explained by the fact that, 
contrary to the viability, the BMDL is not a measured value but a toxi-
cological dose descriptor obtained by fitting a dose-response curve on 
the data and computing the lower confidence interval of the BMD value. 
Therefore important aspects such as the shape of the dose-response 
curve and the goodness of fit of the curve on the data are not repre-
sented by the features used. 

3.4. BMDL classification 

The accuracy range of the SVM models was between 22% and 71% 

depending on the data set selected (see Table S3). The best performing 
model was obtained using the third data set, which excluded the zeta 
potential feature and consisted of 61 data points. Table 4 shows the 
performance of the model considering multiple measures; its confusion 
matrix is presented in Fig. 7. The SVM model bases its multi-class clas-
sification on a set of binary classifiers (one-vs-rest approach), which 
determine whether the data belongs to a specific class or not; therefore, 
we can know which features are more important for the classification in 
each class (Fig. S1, S2, and S3). For the first class, i.e. BMDL <15μg/mL, 
the graphene oxide and macrophage cell type are the most important 
features to classify as”not belonging to the first class”, while the F12 +
10%FBS media, the MTT assay, the time, and layer are the most 
important features to classify the data in the first class (Fig. S1). For the 
second class (15μg/mL ≤BMDL < 60μg/mL), the RPMI+10%FBS media, 
the F12 + 10%FBS, the MTT assay, and the rGO type are the most 
important features (Fig. S2). Last, the MTT assay, RPMI+10%FBS media, 
and the rGO type are the most important features for the third class 
(BMDL≥60μg/mL), but the cell type and species are also relevant fea-
tures (Fig. S3). 

The DT classifiers showed a lower accuracy, but more consistent 
between the data sets, ranging between 53% and 64% (Table S4). The 
best performance was obtained with data set number 3 (N = 61) 
(Table 5); as shown in the simplified representation of the DT in Fig. 8, 
and in the complete tree in Fig. S4, the features used for the classification 
were: the RPMI+10%FBS media, the time, the WST1 and MTT assays, 
the number of layers, the time, and the size_class. 

The RF models performed similarly for all data sets, with an accuracy 
of 55% using data set 1 and 54% with data set 2 and data set 3 
(Table S5). 

While the prediction of the BMDL was unsuccessful, it was possible to 
predict the range of the BMDL with a good accuracy using the SVM 
classifier. The performance of the classifiers using different training data 
sets show that the zeta potential can be excluded without reducing the 
model accuracy, while the other features representing the material 
properties and the experimental conditions (e.g. GRM type and media 
used) are all relevant for the prediction of the BMDL range. 

4. Conclusions 

In this paper we conducted a meta-analysis of GRM toxicity on lung 
cells in vitro using a ML approach. The results show that it is possible to 
predict the viability of lung cells exposed to GRMs, but that both the 
material properties and the experimental conditions are important fac-
tors that determine the intensity of the response. This supports the hy-
pothesis that a semi-QSAR approach is more fit to nanomaterials due to 
their peculiarities. The lateral size was an important predictive param-
eter, as well as the number of layers, the material functionalization, and 
obviously the dose; instead, the inclusion of the Zeta potential did not 
improve the performance of the models. This indicates that even though 
the cytotoxicity was the result of a combination of factors, not all of 
them are equally relevant. 

We could not identify clear structure-activity relationships or 
toxicity thresholds, since there were no explicit, distinct toxicity levels 
associated with different GRM types, sizes, etc., but rather the effects 
would overlap based on the combination of properties and experimental 

Fig. 6. The distribution of the BMDL data for each GRM type (substance 
parameter) indicated a significant difference between graphene and graphene 
oxide and graphene and rGO, according to the Dunn-Bonferroni post hoc test. 
The white dots indicate the average BMDL for each group, the colored boxes the 
interquartile range, and the whiskers 1.5 times the interquartile range. 

Table 4 
The performance of the SVM model built on the third data set, calculated via 
cross-validation. Class 1: BMDL <15μg/mL; Class 2: 15μg/mL ≤BMDL < 60μg/ 
mL; Class 3: BMDL≥60μg/mL.   

Precision Sensitivity Specificity AUC 

Class 1 0.69 0.95 0.78 0.64 
Class 2 0.75 0.55 0.90 0.63 
Class 3 0.69 0.61 0.88 0.65 
Accuracy 0.71  
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conditions. An important implication of this is that the comparison of 
results from studies using different experimental conditions should be 
done with care if not avoided; the differences observed may in facts be 
caused by those extrinsic factors instead of by the difference in material 
properties or cell type. 

More advanced measures like the BMDL are determined by addi-
tional factors with respect to the ones we considered, such as the un-
certainty in the fitting of the dose-response curve on the toxicity data. 
This is why we could predict the BMDL range with good accuracy, but 
not its precise value. A two-step approach should therefore be preferred, 
where a dose-response data set is predicted via ML and subsequently the 
BMDL is calculated with the traditional procedure. 

It must be noted that our data sets (especially the BMDL one) were 
not big enough to build truly robust models given the number of inde-
pendent variables we considered and the distribution of the samples 
(some variable values were represented only by few samples). Further 
expanding the data sets with high-quality data will for sure improve the 
models and reduce the impact of possible outliers. To do so, 

experimental studies should consistently measure and report the mate-
rial properties and experimental conditions, guaranteeing in this way a 
higher transparency and reproducibility, in line with the FAIR principles 
(Jeliazkova et al., 2021). 

Overall, this work confirms the goodness of ML approaches both to 
study the relationship between cellular responses and the material 
properties and experimental conditions, and as a tool to reduce the need 
for toxicity testing. Building on this work as the field progresses and new 
and better data become available will improve the understanding of the 
structure-activity relationship of GRMs. 
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