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Abstract
Context: The automotive industry is currently going through rapid change,
driven by new technology; for example, electrification, autonomous driving,
and connected cars. This new technology is largely based on electronics and
software, and vehicles are increasingly becoming software-intensive systems.
This affects how vehicles are developed, as automotive companies seek to adopt
processes used in development of software-only systems, to gain the benefits of
development speed and quick learning cycles possible in software development.
Where sequential processes were previously the norm, automotive companies
now aim to use agile methods at company-scale. Given the safety-critical
nature of vehicles, and the mix software, hardware, and mechanical parts, this
is challenging.

Objective: This thesis explores how system-level feedback capabilities can
be achieved in development of automotive systems.

Method: To investigate a real-world setting, empirical methods are a natural
choice. As an overarching research strategy, field studies are conducted at
automotive companies. Over four studies, qualitative data is collected through
semi-structured and structured interviews, focus groups, and workshops. The
data is analyzed using adaptable methods, such as thematic coding. These
qualitative approaches allow for open-ended questions, which are suitable for
exploratory research.

Findings: Transitioning towards agility changes the role of architecture,
requirements, and in general of system-level artifacts previously finalized during
early development phases. Nevertheless, what is covered by architecture and
requirements still needs to be handled. They contain accumulated expertise, and
fundamental concerns, such as safety, remain. However, automotive companies
need to handle an increased importance of software for new feature development.
Continuing business-as-usual is not an option.

Conclusion: To achieve feedback capabilities on the system-level, there is a
need for tools and methods allowing artifacts on higher levels of abstraction,
for example architecture descriptions and requirements, to be modified and
evolve over the entire course of development.
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Chapter 1

Introduction

The amount of software in automotive systems is growing at an increasing
rate [Hil17]. Modern vehicles can have over 100 Electronic Control Units
(ECUs), which are small computers, collectively executing gigabytes of software.
ECUs are connected through several networks within the car, and the car
is increasingly connected with the outside world. New capabilities such as
autonomous driving and connected cars bring the automotive domain closer to
the software industry. It is estimated that 80% to 90% of the innovation within
the automotive industry is based on electronics [Pet14]. This more prominent
role of software impacts not only the automotive systems but also how they
are developed.

For pure software systems, such as web applications, current ways of working
emphasize agility and continuous integration (CI) [Fow06]: Work is done in
small increments, which are integrated into the whole system frequently. An
automated build and test environment verifies each integration, which gives
developers fast feedback on their work. This quick learning-cycle can be seen
as a way to mitigate risk: by extending the software in small increments, if a
problem is introduced the potential causes are typically far fewer than when
large amounts of functionality are integrated at once [Fow06]. The learning-
cycle can also aim for short time between the inception of a new idea and
validating it with stakeholders.

Achieving comparable feedback capabilities in the development of automo-
tive systems, and for systems with a similar mix of software, hardware, and
mechanical parts, is considerably more challenging. Compared with software,
development of hardware and mechanical components has long lead-times. The
established practice for achieving quality is to use a stage-gate delivery process
(see Section 1.1.1) dictating when integration happens. Individual components
can be developed independently; however, on the whole system level, the longest
lead-times determine the pace of integrations [BE15]. Thus, fast feedback cycles
are confined to development isolated to single components. Shortening the
feedback time also on the system-level is nevertheless an important goal within
the automotive domain. The ambition is both to gain quality by resolving bugs
earlier and to increase competitiveness.

1



2 CHAPTER 1. INTRODUCTION

Contribution This thesis pursues system-level feedback capabilities in de-
velopment of automotive systems. The long-term software engineering goal
is being able to continuously validate during development. Rather than first
setting a fix system design, and then implementing with the assumption that
a resulting implementation will be fit for purpose, the intention is to derive
feedback on the system design – architecture and requirements – continuously
during development. Thus, to be able to both adjust in case of unfruitful design
choices, and respond to changes in external circumstances.

Outline The rest of this thesis is structured as follows. Section 1.1 describes
the general background of the work; Section 1.2 covers the research method
used. Section 1.3 summarizes the appended papers and Section 1.4 synthesizes
the research findings. Section 1.5 discusses the validity and limitations of the
research, while Section 1.6 discusses the implications of the research findings.
Section 1.7 concludes the thesis introduction. After that follow as separate
chapters (2 - 5) the papers constituting the thesis research. Finally, data-
collection instruments used are provided in appendices A and B.

1.1 Background

Software development processes and how to organize software development has
been studied since the inception of the software engineering field. To provide a
background to the evolution of software development in the automotive domain,
we first describe the evolution of software development processes in general, from
sequential processes, via the V-model, to current agile development approaches.
We then describe the specifics of automotive systems development, and the
increase of software in automotive systems.

1.1.1 Sequential Development Processes

Sequential development processes model software development as a number of
phases, arranged in sequence. Stage-gates between phases, where work in a
later phase can only be started once a preceding phase has reached some level
of completion, are common practice in sequential processes.

One early example of a sequential development process is the waterfall
process, often attributed to Royce [Roy87], although his paper never uses the
term. He observed that development projects tended to contain a set of typical
phases and suggested a model sequencing these. Each phase further limits
the scope of what can change. In this sense, there is a flow from abstract
system requirements, through levels of increasing concretion, down to operation
of the realized system, somewhat resembling the flow of a waterfall. System
requirements are decomposed to software requirements, informing the analysis,
in turn informing the program design, which is then implemented, tested, and
finally put in operation. Figure 1.1 shows Royce’s simplified model of a process
divided in sequential phases.

Royce, however, cautions against sticking strictly to sequentially executing
these phases, instead suggesting iterating between them. He considers it a
major risk that complete system behavior is not observable until the testing
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System
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Figure 1.1: Sequential development process, adapted from Royce [Roy87]
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Figure 1.2: The V-model

phase. As mitigation for this risk, he proposes five strategies: 1) Start with a
preliminary program design after the requirements phase, but before they have
been analyzed further. 2) Document extensively during each phase. 3 Do the
job twice, implement a prototype from the preliminary design. Royce primarily
suggests this for cases where similar programs have not been developed before.
He suggests that what eventually reaches the customer should be outcome of a
second development effort, drawing on experiences from a preceeding prototype
development. 4) Test extensively, with testers who have not been involved in
designing the program, and visually inspect code before testing. 5) Involve the
customer, before the final delivery. Standards, such as DOD-STD-2167A [oD88],
that prescribed a development life-cycle similar to Royce’s simplified model
may thus have misunderstood his intentions.

Another common sequential development process is the V-model, which
arranges the phases to visually resemble the letter V (Figure 1.2). The left
side of the V represents decomposition from abstract requirements to concrete
implementation, and the right side of the V integration to a validated system.
The arrangement of phases also represents a correspondence between phases,
where, for example in the validation phase, the system is validated against the
system requirements. The V-model is commonly used in automotive systems
development.

One issue with a sequential way of working is the ambition to do as much
work upfront as possible, at the development stage when the amount of knowl-
edge is the lowest. As part of this process, analyzing and and modeling the
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software to be developed was emphasized and supported by Computer-aided
Software Engineering (CASE) tools. Extensive models covering the full in-
tended system behavior was a way to create requirements with sufficient detail
and coverage to drive the subsequent development phases, and avoiding un-
certainty. The Rational Unified Process (RUP), marketed by IBM with an
accompanying tool suite, can be seen as a culmination of this type of process.
Supporting this extent of modeling and requirements engineering created a need
for organizational specialization, covering these early phase artifacts. These
specialist parts of the organization would deliver the requirements to the rest
of the development organization. Per the process, as anticipated by Royce,
the validation of these artifacts happened at a late development phase, quite
some time from when they were derived, and when it was already problematic
to change the built system. Sequential development process also work under
the assumption that requirements will largely be stable for the duration of
development. If customer expectations are volatile and change often, sequential
development processes can thus struggle to handled such changes. Addressing
the above problems called for new development processes.

1.1.2 Agile

Agile development was a counter reaction to processes perceived as heavyweight;
requiring much effort to use and producing extensive documentation seen as
waste. Agile development instead emphasized individuals and interactions
over processes and tools. The notion of agile software development was coined
with the publication of the agile manifesto [Hig01] in 2001, see Figure 1.3.
The manifesto was the outcome of a gathering of proponents of development
methods self-described as lightweight, such as Beck of eXtreme Programming
(XP) [Bec00] and Schwaber and Sutherland of Scrum [Sch97]. For a full
account of XP, see Beck [Bec00], for a full account of Scrum see Schwaber and
Sutherland [Sch97]. Several other methods fall under the umbrella of agile,
such as Kanban [And10], Lean [PP03], and Crystal [Coc04]. Lean and Kanban
notably originate from automotive production [Lik04]; however, for software
development in our context, the practices used are typically derived from XP
or Scrum. Here we describe select practices from these methods, to illustrate
how agile development intends to achieve responsiveness to change.

Continuous integration (CI) is the practice of integrating every code change
directly with the latest version of the software. CI originated in XP, where,
together with the practice of small releases – frequently delivering operational
versions of the software under development, before all functionality is in place –
they serve to get fast feedback on whether the software meets customer needs.
Frequent feedback is in agile methods intended to drive responses to change:
if the software is discovered to not provide utility as expected, replanning is
possible throughout the development timespan. XP also originated unit tests;
the idea that each piece of code, for example each method, should have an
associated automated test case.

Scrum organizes development in timeboxed iterations called sprints, with
typical duration of 2-4 weeks. The work to be done in a sprint is placed in a
sprint backlog, a collection of work items each small enough to be completed
within the sprint. During planning for a sprint, the sprint backlog is populated
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We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

Figure 1.3: Manifesto for Agile Software Development

from the product backlog: a prioritized list of all work items know for the
system under development. The highest priority items – the top of the backlog
– are the currently most important development tasks. These items are also
expected to be refined to the point where development can be finished during
a single sprint. Backlog refinement is done during sprints, however, Scrum
takes a very general approach to what a backlog item can contain. Thus,
investigations, pilot developments, and similar, can exist as backlog items, as
long as their scope allows finishing within one sprint. Prioritizing the backlog
is the responsibility of the product owner, which in Scrum serves the role as
proxy for the customer.

Although agile development as a software development process can be
interpreted in terms of concrete practices, the agile manifesto being stated as
principles, represented a shift in focus from the what to the why of software
development. In this view, delivering customer value after each iteration and
articulating the customer value of all activities are key properties of agile. A
crisp definition of agility is elusive, as Gren and Lenberg note [GL20]. Laanti
et al. [LSA13] list a multitude of definitions used in research literature, and
Kuhrmann et al. [KTH+21] observe that agility cannot be defined solely at the
process level. Gren and Lenberg propose the mitigation of operationalizing
agility as responsiveness to change.

The methods originating around the same time as the agile manifesto first
focused on development of systems that could be handled by single teams.
The emergence of web-based software services also enabled CI and an Agile
way of working. With software running on a server, not bound to a physical
product provided to a customer, changes could be deployed more frequently,
and with less need for planning. Where agile initially focused on a single team,
as companies adopted agile for entire product development efforts, proposed
methods for scaling agile arose. Examples include the Scaled Agile Framework
(SAFe) and Large-Scale Scrum (LeSS). For this thesis, we only consider SAFe,
as this framework in particular was considered by our case companies (see 1.2).

The Scaled Agile Framework was developed by the originators of Scrum.
SAFe takes concepts from Scum, notably sprints and backlogs, and adds
mechanisms for coordinating the pace between multiple teams. A number of
teams working in aligned cadence is termed an Agile Release Train (ART).
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The sprint duration and starting points are aligned for the ART. A set number
of sprints, typically five, are termed a Program Increment (PI). Between each
increment the ART simultaneously and collectively plans the next PI. Work
items spanning the ART are prioritized in a program backlog. During the
PI planning the program backlog items are broken down into smaller items,
which are then placed in prioritized team backlogs, representing the work a
team will deliver during the next PI. While work items covering architecture
and requirements are part of the program and team backlogs, the roles of
program management and systems architecture reside outside of an ART. This
particular aspect of integrating architecture and requirements in agility at scale
is revisited in the thesis results. The typical size intended for an ART is 50 to
125 people. For organizations larger than that, SAFe uses a similar concept of
aligned cadence to coordinate multiple ARTs

1.1.3 Automotive Systems Development

Historically, automotive manufacturers have used sequential development pro-
cesses, such as the V-model. Reliance on rigid requirements has been used
both as a way to ensure that the vehicles developed are safe, and as a way
to divide development among multiple tiers of suppliers. Original Equipment
Manufacturers (OEMs) – the companies behind automotive brands, and typi-
cally the owners of vehicle factories – have initiated development by contracting
suppliers to develop components in accordance with requirements specifications.
The OEMs have then focused on integrating deliverables, often in the form of
electronic or mechanical components.

With the increase of software in automotive systems, the integration of
software has increased, where integration of components was previously mainly
integration of mechanical or electrical interfaces. That innovative functionality,
such as autonomous driving and connectivity features, are driven by software
also push the automotive industry closer to consumer electronics, particularly
in terms of customer expectations. For OEMs, this drives a need to increase
responsiveness to market changes, and shorten the time for development of
new models. If a sequential development process is used, with requirements
being created in an early phase, and the full development time is several years,
as may be the case for a new vehicle model, a software-only function, such as a
voice assistant, developed against those requirements, will be obsolete already
once it reaches the market. This particular example was brought up during
the study in Paper D, see Section 5.4.1 for further detail.

In this circumstance, the responsiveness to change promised by agile meth-
ods is alluring. Automotive companies are also pursuing agile methods, however,
automotive systems have a number of properties that hinder straightforward
application of agile methods. The system scale itself means that some method
of scaling agile is needed. Coordinating the development also calls for systems
architecture work, which was originally down-prioritized in agile methods. Vehi-
cles fundamentally being physical products also means that development must
cover a mix of hardware and software. The fundamental vehicle functionality,
such as controlling the brakes and engine, is software intensive, but the software
implements control-loops close to the hardware; considerably different from
software for web services. Furthermore, autonomous driving, for example,
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utilizes other vehicle functions, as braking and environment sensing. Functions
combining other functions on the vehicle level adds not only more software but
also complexity to the entire vehicle. A large part of the software in a vehicle
is also safety-critical, which comes with legal requirements and adherence to
safety, which call for development processes to be precisely describe and possible
to inspect. Neither process descriptions, nor the ability to inspect process
adherence, where originally any focus of agile methods.

The research in this thesis studies the automotive domain as this shift
towards agile ways-of-working is underway. In particular, we focus on the
system-level challenges.

1.2 Method

As the context of this research is the real-world automotive domain, empirical
methods are a natural choice. Having access to a real-world context, and to
collect data from that context, is what primarily informs the choice of methods
for this thesis.

1.2.1 Research Context

The shared context of the research is the automotive domain; specifically,
the research has been carried out in the Vinnova FFI1 research project Next
Generation Electrical Architecture (NGEA). The overall purpose of the NGEA
project was to get scientific input for use in an ongoing effort at the project
lead partner to develop their next vehicle architecture generation. To this
end, the project investigated a broad number of topics, including: architecture
evaluation, architecture topologies, cars as constituents in a system-of-systems,
the automotive standard framework AUTOSAR Adaptive [FB16], transparency
between collaborating organizations, patterns and strategies for continuous
integration, and development speed and feedback. We participated across the
project activities. The research in this thesis falls specifically under the topics
of architecture evaluation, and development speed and feedback. Each paper
covers in further detail the specific context for that particular study. Here, we
cover the context shared between them.

Through the NGEA project, we had access to topic experts from automotive
OEMs, suppliers, and research institutes. The project consortium consisted of
a number of partners, with different roles in the automotive domain, Table 1.1
gives an overview. The project was led by key architects from OEM. Other
partners sent key people (architecture and representatives of business parts of
their organizations) to react to this. Via one of the project partners, we also
had access to one additional OEM.

The project was organized in the form of workshops and meetings held
on-site at the project partners. Sessions were frequent, on average one to two
sessions per week. Beyond the scheduled sessions, we also had access to visit
company premises of the project lead partner, allowing for informal discussions.
The project was thus situated in the everyday development work, rather than

1FFI (Fordonsstrategisk Forskning och Innovation – Vehicle-strategic Research and Inno-
vation) was a research program at Vinnova, the Swedish innovation agency.
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Table 1.1: Project Partners

Partner Id Role and expertise provided to the project

P1 One OEM, leading the project and providing key architects
and a vehicle-level perspective.

P2 – P4 Three suppliers of electronics and software, providing
knowledge on specific technologies, for example Adaptive
AUTOSAR and safety-certified components.

P5 – P10 Six technology consultant suppliers, providing knowledge
on specific topic areas, for example continuous integration,
testing, and agile methods.

P11 – P12 Two universities, providing a research perspective on soft-
ware development in general, and specifically on architec-
ture, requirements, and system-of-systems.

P13 – P16 Four research institutes, providing research perspectives on
specific topics, for example safety and system-of-systems.

performed in an isolated context. At the start of the project, there were no
established practices for feedback-loops for the full scale of automotive product
development; evolving such methods was a key concern of the project. We
entered at a point in time when the project partners were pursuing this, but
did not have it fully in place.

1.2.2 Research Strategy

Stol and Fitzgerald, citing McGrath [SF18,McG81], observe that all study
design involve tradeoffs between generalizing over actors (A), precisely mea-
suring their behavior (B), while maintaining a realistic context (C). Different
research methods optimize differently between the factors A, B, and C. Which
optimization, and consequently which method(s) to choose, depends on the
study goal. In their ABC framework, named for the aforementioned factors,
Stol and Fitzgerald categorize research methods in different research strate-
gies, positioned against the dimensions of obtrusiveness and generalizability.
Obtrusiveness refers to the extent to which the research (or the researcher)
manipulates or instruments the research setting. Generalizability refers to how
specific to the research context the results are.

Field studies are a research strategy offering maximum potential for context
realism. Studies, and their findings, are context specific, while the room for
affecting the context is limited. The realism gained thus come at the expense
of low precision in measurements of behaviors, and low generalizability of
the findings. In contrast, the laboratory experiment strategy offers precise
measurements at the expense of realism. A common method within the field
study strategy is the case study [RH09]. To fully utilize the real-world context,
this thesis uses the field study as the strategy for all included studies.

Stol and Fitzgerald distinguish between knowledge-seeking and solution-
seeking studies, where knowledge-seeking studies aim to learn something about
the world, whereas solution-seeking studies aim to solve practical problems.
The ABC framework focuses exclusively on knowledge-seeking studies, which is
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an aspect of all research included in this thesis. Two of the included studies also
include solution-seeking aspects. These aspects of the research is design-oriented,
as termed by Piirainen and Gonzalez [PG13]. Design-oriented research seeks to
solve practical problems by constructing artifacts. The scientific contribution
stems from the problem having academic relevance, the artifact providing a
novel or innovative solution to the problem, and the solution having practical
relevance. To this end, utility-based evaluation – that the constructed artifact
is deemed useful by practitioners – is a common form of validation.

1.2.3 Research Objective

The research in this thesis contributes to the following objective:

Achieving system-level feedback capabilities in development of auto-
motive systems.

The research was conducted as four separate studies, covering different
aspects of system-level feedback, and thus together contributing to the thesis
objective. The studies were published as independent papers. Section 1.3
describes the specific focus of each study.

Paper A Automotive Architecture Framework: The experience of Volvo Cars

Paper B The Impact of Requirements on Systems Development Speed: A
Multiple-Case Study in Automotive

Paper C Architecture Evaluation in Continuous Development

Paper D Agile Beyond Teams and Feedback Beyond Software in Automotive
Systems

1.2.4 Data Collection and Analysis

In line with the field study strategy, data was collected in the field, at partners
in the NGEA project. Respondents participated in our studies either as
focus group participants or as interviewees. We selected respondents from
technical specialist roles, for example architects, and manager role. This
complements the developer role perspective in previous studies [KLK+17,
ADW17, ISM+15,HDLP15,EHKP15] conducted in comparable contexts. The
respondent selection was thus purposive, that is, respondents were selected for
their specific perspective.

For Paper A, data collection and analysis were interleaved. Through a
number of focus groups, we drafted and refined the artifacts proposed in the
paper (architecture framework viewpoints). This thesis uses the term focus
group, rather than group interview or workshop, to denote a session where a
group (of one or more researchers and one or more respondents) collaboratively
discuss and refine a work item; an artifact of some sort. While the research
in Paper A was conducted in a field setting, it differs from the other papers
included in this thesis by being more solution-seeking than knowledge-seeking,
in the terms used by Stol and Fitzgerald [SF18].
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For Paper B, data collection was done in two stages. First, a series of semi-
structured interviews was conducted, with the interviews recorded, transcribed,
and analyzed. We used thematic coding [Sal15] to analyze the transcripts; to
focus the analysis, we used a lens of requirements engineering. The findings from
the first round of interviews were then validated through a second interview
series. Since we focused this round of interviews more on validation than
exploration, we used a structured form, primarily with Likert scale answers.

In Paper C, we did a post-hoc analysis of data collected throughout the
NGEA project. During the second half of the project, we pursued architecture
evaluation, with the Architecture Tradeoff Analysis Method (ATAM) as starting
point for the evaluation process. We took part in the evaluation as participant
observers. Work items, such as whiteboard sketches, notes, and slide decks,
created while conducting the evaluation, evaluation reports, and experience
notes taken, were analyzed after the evaluation efforts had concluded. The
data thus shares a trait with archive data, that it was created for a different
purpose than the study in which it was analyzed. We refined our draft findings
through a series of focus groups.

Paper D revisited the data collected in the first stage of Paper B. Where
Paper B used only those parts of the data that pertained to requirements;
approximately 15% of the data, in Paper D the whole data set was analyzed.
In contrast to the analysis in Paper B – which first extracted the parts of data,
and then coded only those – here we took a specific lens of three research
questions and analyzed the full data set, again using thematic coding [Sal15],
selectively coding fragments relating to our lens. The pervading concern in our
lens is an agile vehicle-level feedback loop beyond individual teams.

For the thesis in all, the data are thus qualitative, in the form of interview
transcripts, categorical data (Likert scale), notes and working materials from
workshops. For our purpose of exploration, such flexible form data is a good
fit, as it allows for open-ended questions. Given this open form of data, we
have also relied on adaptable analysis methods, as thematic coding.

Papers A and C are similar in regards to how an artifact – viewpoints for
an architecture framework or principles of continuous architecture evaluation –
was refined in focus groups. Data was collected using workshops, focus groups,
and interviews, both semi-structured and structured.

To further ensure grounding in the context, all studies are done in collabo-
ration with industry.

1.3 Paper Summaries

The study design and contribution of each included paper is summarized below.

1.3.1 Paper A: Automotive Architecture Framework: The
experience of Volvo Cars

The architecture is a key instrument for handling the complexity of automotive
systems development, and to balance the multiple, possibly conflicting, concerns
involved. When working on some specific aspect, it may be helpful to view the
system under development from a specific viewpoint; fitting every concern in one
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Figure 2.2: Overview of challenging scenarios (replicated here for convenience)

single representation may also be infeasible. Dividing architectural description
of a system into separate parts for different concerns leads to the need for
coordinating these, however. A state-of-the-art approach to coordinating
multiple architectural views is an architecture framework. The ISO/IEC/IEEE
42010:2011 standard defines an architecture framework as "a coordinated set of
viewpoints, conventions, principles, and practices for architecture description
within a specific domain of application or community of stakeholders" [ISO11].
A viewpoint, and the associated notion view, is defined by the standard as
"A viewpoint is a way of looking at systems; a view is the result of applying
a viewpoint to a particular system-of-interest". An architecture framework
viewpoint thus addresses particular stakeholder concerns.

In Paper A, we propose extensions to the state of the art on automotive
architecture frameworks in the form of three viewpoints: (i) Continuous In-
tegration and Deployment, (ii) Ecosystem and Transparency, and (iii) System
of Systems: vehicle point of view. The proposed viewpoints derive from stake-
holder concerns, captured in the form of challenging scenarios, elicited through
a a series of focus group sessions (see Figure 2.2).

Both the selection of these particular viewpoint, and the concerns they
address, stem from the full set of scenarios. For this thesis, however, relating
to the research objective, the focus is on the Continuous Integration and
Deployment viewpoint. Scenarios that particularly motivate this viewpoint
include The need for establishing short feedback cycles; developers need quick
feedback on how their contributions will work on each level of integration. Easy
and secure add-ons; to avoid a big-bang integration just before the start of
production, developers need the ability to add functions even after the vehicle
has been put into use.
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The CI viewpoint aims to address two questions: 1) How do continuous
integration and deployment practices in automotive engineering impact the
system architecture? and 2) How do architectural decisions in the system archi-
tecture impact continuous integration and deployment practices? The concerns
covered by the CI viewpoint – for example, quick response to market changes,
handling resulting architecture changes, and ensuring that an architecture is fit
for purpose – point towards a need for feedback capabilities on the architecture.
The concerns also point towards a need for continuous architecting, which is
explored further in Paper C.

1.3.2 Paper B: The Impact of Requirements on Systems
Development Speed: A Multiple-Case Study in Au-
tomotive

Given the stable, established, engineering practices of the automotive industry,
moving toward CI [KPH+16] and large-scale agile methods [Lef16] leads to
challenges in how to work with requirements [SKV10,KKNK17]. As described
above, increasing development speed is a key reason for why automotive
companies are seeking to change ways-of-working. At two automotive Original
Equipment Manufacturers (OEMs), both having agile transformation initiatives
ongoing to pursue such change, we investigated the following research questions:

RQ1: Which aspects of the current way of working with requirements impact
development speed?

RQ2: Which new aspects should be considered when defining a new way of
working with requirements to increase development speed?

RQ3: To what extent will either aspects be addressed through the ongoing
agile transformation?

We conducted a multiple-case study design organized in two steps, with
the two OEMs as cases. In the first step, our respondent selection focused
on manager roles, complemented with technical experts in processes and ar-
chitecture. As a complement to previous works covering a developer perspec-
tive [HDLP15, ISM+15], we thus acquire the perspective of managers, who
in their roles of dividing and leading work rely on requirements. For data
collection, we used semi-structured interviews, with 20 respondents; each in-
terview lasting approximately one hour. From a thematic coding of the data,
we derive six themes in answer to RQ1, and six in answer to RQ2, see Fig-
ure 3.1 In the second step, we validated our results from the first step, and
relate those findings to RQ3. We conducted 12 additional interviews, this time
structured interviews, using mainly Likert scale questions. Nine of the second
step respondents were new to the study.

Regarding RQ1, we discovered that what has historically been the way-
of-working still plays a crucial role. Emphasis is still on decomposition of
requirements and many levels of abstraction. Rather than pursuing development
speed, in the sense of enabling changes when feedback on decisions becomes
available, processes are forcing early design decision.
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Figure 3.1: Themes (replicated here for convenience)

Regarding RQ2, a number of technology-oriented improvements are pro-
posed: domain-specific requirements tooling, model-based rather than text-
based requirements, and test automation. In addition to these, organizational
improvements are also proposed. Separation, intended to achieve team auton-
omy and clear divisions of responsibilities, can instead lead to slow workflow,
extensively based on handovers. Instead of the extensive up-front specification
needed to support such organizational separation, respondents suggest com-
bining a lightweight pre-development requirements engineering approach with
precise specifications created post-development.

Regarding RQ3, our respondents provide diverse view (see also Figure 3.4).
Although, transforming the way-of-working to agility is regarded as addressing
many of the identified impacts on development speed, the responses indicate
that the transformations do not fully cover neither impacts of current ways-of-
working nor new aspects. One reason is that these issues are already getting
attention independently of the agile transformation. Pursuing agile ways-of-
working can thus not claim all the credit. Most aspects of the desired future
way-of-working with requirements have been reported to work well in isolation.
However, their interplay is not sufficiently clear (as for example safety concerns
and continuous integration or deployment at system level).

1.3.3 Paper C: Architecture Evaluation in Continuous
Development

In sequential development processes architecture is created mainly during an
early phase and then used to guide subsequent development phases. Agile
development methods, however, where the implementation evolves continuously,
changes the role of architecture. In Paper C we investigated how architecture
evaluation can provide useful feedback during development of continuously
evolving systems, operationalized as the following research questions:
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RQ1: How can architectural evaluation in a continuous setting provide timely
feedback on whether a specific capability is supported by the current
architecture?

RQ2: What information should be provided to support architectural evaluation
in a continuous setting?

RQ3: How in principle can existing frameworks for architectural evaluations
be made fit for continuous evaluation?

As the starting point for how to organize the evaluation, we used the Ar-
chitecture Tradeoff Analysis Method (ATAM); a scenario-based architecture
evaluation method. Scenario-based methods express quality attributes (for
example flexibility and maintainability) as scenarios, describing the response
of the studied system to a certain stimulus. Given the uncertainty inherent in
investigating future architecture needs, a scenario-based method was promis-
ing, as these "estimating risks and uncertainty associated with the systems’
requirements" [IHO02, p. 11]. A brief description of scenario-based methods
and a summary of ATAM is given in Section 4.2.

The architecture evaluation efforts took place both in the NGEA project
and at the OEM leading the project (partner P1, see Table 1.1). In the NGEA
project, one of the workgroups was tasked with bringing together the output
from the rest of the project. The goal was to evaluate proposals from the other
workgroups, analyze tradeoffs between them, and from this derive recommen-
dations for future electrical architecture. This prompted the initial question of
how to provide feedback on what capabilities a particular architecture supports.
The architecture evaluation efforts spawned work throughout the NGEA project
and at P1, resulting in documents and other work items, such as whiteboard
sketches. Through a post-hoc analysis of these, we derived an initial set of
principles for continuous architecture evaluation. We then refined and validated
these through a series of focus group sessions, arriving at four principles, see
Table 4.4.

Table 4.4: Principles of Continuous Architecture Evaluation (replicated here
for convenience)

CAP I Evaluate decisions on demand, in response to a clear
stakeholder question

CAP II Evaluate architectural decisions incrementally to
manage evaluation scope

CAP III Evaluate in the context of the full integrated product
to support incremental architecture evaluation

CAP IV Apply concepts of evaluation constructively to
articulate the rationale for an architectural decision

The research questions are answered by the interplay of the principles.
For RQ1, the principles combined support incremental evaluations of narrow
scope that fits into the tight schedule of continuous development practices.
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Figure 5.1: Themes with respect to the three research questions (replicated
here for convenience)

With respect to RQ2, we found quality attribute scenarios to provide a way
to constructively articulate the value an architectural decision provides, and
to connect architectural decisions to business goals. For RQ3, based on our
principles, we give recommendations for what to consider when conducting
architecture evaluation in continuous settings.

1.3.4 Paper D: Agile Beyond Teams and Feedback Be-
yond Software in Automotive Systems

Although Agile ways-of-working initially focused on small software development
teams, the success of agile approaches has led to adoption in different contexts,
such as automotive. In Paper D, we investigate scaling agility beyond single
teams. In particular, we focus on the aspect of fast and early feedback on the
product level during development. We investigate what companies are seeking
to achieve, how they envision doing it, and what implications they foresee from
such drastic organizational change. As a lens for analysis, we operationalize
this as three research questions.

RQ1 What abilities are automotive OEMs seeking to achieve through an agile
vehicle-level feedback loop beyond individual teams?

RQ2 How are automotive OEMs proposing that an agile vehicle-level feedback
loop beyond individual teams can be established?

RQ3 What implications do automotive OEMs foresee from the proposed ways
of introducing an agile vehicle-level feedback loop beyond individual
teams?

This paper is based on the same data set used in Paper B, but where Paper
B uses only those parts of the data that pertain to requirements; approximately
15% of the data, in Paper D the whole data set is analyzed. Our sampling
strategy is described above for the first step of the study in Paper B. We use
thematic coding to analyze the data, and derive a number of themes for each
research question, see Figure 5.1.
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For RQ1, our respondents suggest that working in an agile way also at the
organizational scope that involves the entire vehicle could mean establishing
a short feedback loop, where teams deliver small increments, increments are
integrated with the vehicle, and the team receives feedback fast enough to
match the typical pace of agile sprints of a few weeks. The intention being
that increments can be both delivered and integrated independently, keeping a
consistent flow out from each team. The ability to validate or refute assumptions
close in time to when they were made is also seen as way to reduce dependency
on specifications, and allow for exploration during development.

For RQ2, a common thread in respondents’ suggestions is to establish
a platform or notion of vehicle-level software. Teams would integrate small
increments into this throughout development, rather than providing large
deliverables for full vehicle integration only at a few occasions.

Lastly, for RQ3, respondents note that introducing the sought feedback
loop may necessitate changes to currently well-performing ways-of-working.
Although a feedback-driven way-of-working may increase throughput and team
autonomy, it can also also increase ambiguity of where in the organization
responsibility resides, and decrease the emphasis on precise specification and
documentation. Additionally, the complexity of interdependent parts in the ve-
hicle is not automatically handled any different because a vehicle-level feedback
loop is introduced. A further example is that going from a focus on projects to
a focus on sustaining development of a shared platform impacts when returns
on investments can be observed and where in the organization prioritization
between different possible features happens.

1.4 Synthesis

Throughout the research, the topics in focus shifted, from architecture to the
implications of architecting. Architecture and requirements are not topics
prominently treated in agile canon, while in the automotive domain they have
key roles. When the domain transitions towards agility, what is covered by these
key concepts still needs to be handled; throwing away expertise or neglecting
fundamental concerns such as safety is not an option. However, the shifts
instigating agile transformations also preclude business as usual. Automotive
companies need to handle an increased importance of software for new feature
development.

The work in Paper A, extending an architecture framework with viewpoints,
served as a starting point. The concerns addressed by the viewpoints spurred
further investigations. Van der Valk et al. continued research in the direction
of the ecosystem and transparency viewpoint [vdVPL+18]. Works continuing
in line of the system-of-systems viewpoint include Johansson et al. [JLA+16],
Pelliccione et al. [PKL+16], and Pelliccione et al. [PKÅ+20]. This thesis
continues from the continuous integration viewpoint. The main contribution of
Paper A to this thesis is thus the concerns framed by the CI viewpoint, rather
than the viewpoint as an instrument for software development. Among these
concerns were quickly responding to change. Prompted by this, we investigated
the impact of responsiveness, in terms of development speed, on architecture
and requirements.
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Development speed as considered in Paper B mainly deals with how re-
quirements work impacts the system development speed, but also contains the
speed of feedback on requirements. For reasoning about system capabilities,
requirements are key for safety and legal aspects. Requirements as basis for
contracts, however, can be a hindrance to collaborative development setups.
We find that the factors inhibiting speed, and hence hampering responsiveness,
are among what our respondents consider addressed, although not unanimously,
by a move to agile methods (see Figure 3.4), but more than ways-of-working
are involved. Technical solutions, such as supplementing textual requirements
with model-based ones, need to be combined with organizational solutions.

Paper C then investigated responsiveness on architecture. Specifically, how
to make feedback on an architecture manageable in an agile setting. During
continuous development, the readily available feedback needs to cover the
capabilities of an architecture in use. This makes evaluation methods with
extensive scope unwieldy. We propose principles to guide architecture evaluation
in continuous settings. In addition to limiting the scope, demand from the
organization, and constructive use of evaluation concepts, are organizational
aspects we identified. On the technical side, we see the need for a representation
of the entire product, which partial evaluation results can be integrated to.

In Paper D, we then look broadly on responsiveness in terms of feedback-
cycles beyond individual teams. Taking the findings from the four papers
together, suggest that achieving system-level feedback capabilities, as a basis
for responsiveness, involves dependencies between organizational and technical
solutions. One approach to making system-level feedback continuously available,
that is, possible during the daily development at any time, would be to pursue
system-level understanding in terms of the lower level implementation. In
other words, how the implementation affects and realizes the properties and
capabilities of the system. To this end, evaluating representations of the system-
level – the architecture description – is one mechanism. A platform approach
is a technical strategy in the implementation for enabling this. Platform work,
however, may require dedicated staffing; and how work and responsibilities are
distributed across the organization may also need to change.

1.5 Analysis of Validity and Limitations
This section discusses the validity and limitations of the thesis research as a
whole. To structure the validity analysis, we follow the scheme proposed by
Runeson and Höst [RH09].

1.5.1 Construct Validity
Construct validity reflects to what extent the operational measures that are
studied really represent what the researcher have in mind [RH09]. To achieve
this, we have immersed ourselves in the domain, through the NGEA project,
to enable a shared, common, understanding of concepts, terms, problems, and
constructs, with respondents. We also had industry collaborators participating
as co-authors throughout study design and execution.

We leveraged this knowledge when constructing study instruments. Discus-
sions in the project informed the choice of questions and topics. Refinement
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was then done through multiple iterations, with input from senior industry
experts. When collecting data, through NGEA we had access to collaborators
working at the case companies We could thus contact respondents in a context
already part of their work, which allowed for informal interactions, for example
during interviews, and openly sharing information. With industry co-authors,
we also got input during the data analysis. Furthermore, preliminary results
were presented and discussed in the project consortium.

1.5.2 Internal Validity

Internal validity is of concern when causal relations are examined. When the
researcher is investigating whether one factor affects an investigated factor there
is a risk that the investigated factor is also affected by a third factor [RH09]. In
other words, internal validity concerns whether study results can be explained
by the claimed factors, or if other mechanisms are at play.

With agile transformations underway, respondents may react to the change
process, rather than then contents of the pursued ways-of-working. This could
give a positive inclination towards agile as forward-looking and implicitly better,
or a negative reaction to change. Despite making an effort to ask questions
neutrally, respondents might be biased with respect to their current ways-of-
working. More broadly, when researching a forward-looking topic, such as
proposed improvements to ways-of-working, ideas of potential improvements
may receive prominence over practices that currently work well.

Much agile literature originates from proponents of agile ways-of-working.
That material on agile largely paints a positive picture of agility could influence
perceptions of both researchers and respondents. As mitigation, we spent time
refining interview and focus group instruments, considering the phrasing of the
questions and types of questions to avoid altogether. For example, when asking
about potential improvements to development speed, we controlled for whether
respondents considered the proposed improvement worthwhile to spend time
on. Notably, respondents were not universally, uncritically positive towards
agile. Sections 3.8, 4.7, and 5.5 discuss interpretations of the results and their
implications specific to each study.

1.5.3 External Validity

External validity concerns to what extent it is possible to generalize the findings
[RH09]. For qualitative studies, generalizability is inherently confined to
being analytical, as there is no statistical generalization to a population. All
research in this thesis was conducted within the context of the NGEA project.
Participants thus had a shared frame of reference, which influences the results.
The results are also specific to the automotive domain, in one country, and to
one software lifespan. Furthermore, by the overall field study research strategy
of this thesis, realism of context comes at the expense of the possibility for
generalization [SF18].

The closest analytical generalizations would be automotive companies in
general. For example, if studying adoption of agile ways-of-working at other
automotive companies, the factors we identify are plausible hypotheses for what
might be in play also in a largely similar context. Additionally, the pursuit of
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development speed and fast feedback is not exclusive to the automotive domain.
The obstacles and circumstances are particular to the studied case, however.

1.5.4 Reliability

Reliability concerns to what extent the data and the analysis are dependent
on the specific researchers [RH09]. As discussed for construct validity, we
were fortunate to have access to practitioners in the domain, having frequent
interactions over several years. This a resource with can be difficult for re-
searchers to acquire. The OEM driving the project also has long-standing
collaboration with academia. Hence, they are familiar with the difference
between industry and academia, and have experience in choosing what can
be shared. Fundamentally, this happens at project creation, when assessing if
the topic is one where collaboration is deemed possible. Hence the research
has access to the current front of the domain. However, it’s not clear whether
selective omissions have influenced the results; each respondent judges what
can, or cannot, be shared. While the topics this thesis researches are directly
involved in the development work at our case companies, the results are not
in themselves product content, and thus not an immediate aspect where the
companies compete. Altogether, the results are thus more particular to the
specific case than the specific researchers.

Throughout the studies, we involved several researchers for each aspect.
During interviews, we used multiple interviewers. During focus group sessions
and meetings, we also had more than one researcher participating in each session.
This allowed for subsequent discussions and combining different perspectives.
Data analysis and subsequent writing was also done as a collaborative effort.

1.5.5 Limitations

As noted in the validity analysis, the results are specific to the automotive
domain, which is a limitation of this thesis. Studies also focus on software-
intensive parts of automotive systems development. As vehicles contain ex-
tensive amounts of software, although the domain is shared, there is room
for variation within. For example, development of graphical interfaces for an
infotainment system, processing of map data for navigation, and implementing
engine control loops each have their respective uniqueness. The domain reliance
on sequential development process, and emphasis on requirements nevertheless
permeates the development. As does the ongoing transformation to achieve
more effective feedback loops.

Studies were conducted at a given point in time, and at particular point
of transformation in the automotive domain. Whether automotive-specific
factors dominate, or if increased software-intensity in another domain would
be dominated by similar factors is an open question.

Respondents of specific roles were selected for their particular perspective.
This approach has inherent limitations of generalizability similar to those of
case studies, that something specific is investigated, here that specific persons
participate as representatives of their roles. Their perspective may hold for their
role more broadly, but this analytical generalization is speculative, and would
need to be validated in each specific other case. Our focus on management
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roles also means that developer-focused aspects of agility are less prominent in
our findings. The goals for pursing agility center around time-to-market and
being able to quickly adapt a product, rather than team well-being. This might
be a side-effect of which questions we asked and how we framed the research,
but it is not an aspect we explored further.

1.6 Discussion
Although specific to automotive domain, our research raises discussion points
with possible implications also for software development in general.

1.6.1 Critique of Software Engineering
Transitioning to agile ways-of-working in automotive development has not
lead to large and frequent changes in development scope becoming the norm.
Vehicle development is still product development where lead-times of hardware
and mechanical components call for pre-planning. Working in an agile way
might, however, over time change the expectation of how thoroughly software
development can be planned in advance. Responsiveness to change is one
ability our case companies are seeking to gain from agility. Achieving this
may require expecting less certainty beforehand from software development.
More certainty requires more planning, which limits the flexibility. Gren and
Lenberg [GL20] frame agility as responsiveness to change. Contrasting agile
with lean, they describe the latter as efficiency (doing things right), and the
former as effectiveness (doing the right thing). In other terminology, this could
be seen as verification and validation. Agile methods, in this sense, focus on
the validation of the software developed; trading precise planning of the scope
of work for frequent feedback on whether the work done provides utility to
the stakeholders. Plan-driven methods focus on verification, that the software
developed meets its specification, irrespective of how well the specification
captures stakeholder utility.

Perhaps there’s reason to be critical about the perceived nature of software
development, for example how possible it is to go from prescriptive high-level
abstractions to implementation. Since its inception, the notion of software
engineering has been subject to criticism. Could it be that the software crisis
– the problem of writing useful and efficient programs in a required time – is
rather a management crisis? This critique seems to recur with some regularity
in software engineering. Ensmenger [Ens12], in “The computer boys take over”,
gives a historical view of how the software profession was codified during
the 1950s and 60s, and how management felt ousted by these computer boys.
Management would here be interpreted as a quest for controllability of software
development, rather than validity (i.e. utility) of the resulting software.

Mahoney [Mah04] also gives a historical account of the field of software
engineering and how the reasoning has stuck close to traditional manufacturing.
Dijkstra [Dij88a,Dij88b] wrote about the radical novelty of software; arguing
that the digital (discrete) nature of software, unlike the analog (continuous)
nature of mechanical components, is unsuitable to tackle with traditional
engineering. Garman [Gar81] in 1981, writing about a bug in the space shuttle,
notes that
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[T]he project is assumed to know what it wants out of the software in
the beginning! Software development from my perspective is almost never
that way. It should be, and we should try hard to make it so – but it is
always iterative and incremental instead.

He called for more research on how to reliably modify software, with minimum
impact on time and cost. Our findings provide guidance on evolving an
architecture continuously during development. However, how to influence the
architecture of a large-scale system from the level of its implementation needs
further research.

1.6.2 Meta-level Process and Empiricism

Sequential development processes might be precisely prescribed ways-of-working.
Agility might instead be a meta-level approach, where how to work is reg-
ularly reconsidered. One interpretation of the twelfth principle of the agile
manifesto [Hig01] – At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior accordingly – is that, in
order to respond to change, the team regularly reflects on, modifies, and adapts
its way of working. This could imply a need to reconsider what architecture
and development of continuously evolving systems is. Ralph [Ral18] contrasts
empiricism against rationality. Arguing in favor of the former, he proposes
that there is no “the problem”. Instead of a clear problem for which developers
create a solution, he argues that developers and stakeholders collaboratively
construct a desired system.

Each project presents unique sequences of events, which do not neces-
sarily resemble known methods or process models. Unexpected events
are common. Plans and software development methods and consequently
weak resources for informing behavior, so people improvise.

He also challenges lifecycle process models and instead favors teleological mod-
els, where agents choose actions to achieve goals. In line with his proposal, our
findings also broadly suggest taking an empirical approach to software devel-
opment. Hence, there is a need for feedback mechanisms during development,
which validate an implementation against stakeholder preferences. The agile
manifesto states “We are uncovering better ways of developing software”. Better
here could be interpreted as truer, in the sense more valid; better satisfying
stakeholder needs. How to conduct validation remains unanswered, however.
Consequently, it is also unclear when software development is successful, and
what software engineering should take as success criteria.

1.6.3 Interdependent Solution Parts

For achieving system-level feedback, our findings indicate dependencies between
organizational and technical solutions. Practices within an agile way-of-working
– for example the practices in Scrum or XP – both organizational and technical,
may be tightly interconnected. For example, for a team to complete the
backlog content for a sprint (and to populate a sprint backlog in the first place)
requires dividing the implementation in small stories. Delivering work in these
increments requires a platform into which change deltas can be integrated.
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Sustaining confidence that system quality does not degrade over increments
requires testing, likely automated (unit) tests. Success thus depends on the
parts of the solution working in concert. This implies a challenge for agile
adoption, that the anticipated benefits might only come about if all parts are
in place; if an agile way-of-working is completely realized. This also poses a
challenge for research on the fruitfulness of agile approaches. One the one hand,
successful outcomes are not a sensible criteria for evaluating agile approaches;
it cannot be agile only when it works. One the other hand, even an approach
difficulty to adopt may ultimately turn out to be worthwhile; although it may
be hard to find representative cases to study.

Similar interdependencies are present also in our findings. For example, in
the principles we propose for continuous architecture evaluation, managing scope
by evaluating incrementally depends on integrating the evaluation outcomes
with a representation of the entire product. In the strategies our case companies
are considering for scaling agile ways-of-working, product development through
shared platform rather than project-specific work, the branch strategies used to
achieve platform stability, and the division of responsibility by feature rather
than physical component, all reinforce each other. Implementing products as a
platform with a shared main branch could also help evaluation by clarify the
architecture of the full integrated product.

1.6.4 Architecting

An architecture framework, as studied in Paper A, approaches architecting
from a top-down perspective. Our further studies, however, shows the need
for evolving the problem statement bottom-up. Nevertheless, different ar-
chitecture views and knowing stakeholder concerns are useful regardless of
whether evolving an architecture top-down or bottom-up. For changes where
the impact becomes noticeable only after integration, for example API changes,
frequent integration becomes desirable, irrespective of the overall development
process used. Prior literature offers some alternative perspectives to up-front
architecting. although how to evolve an architecture based on insights during
implementation – in other words feedback from implementation to architecture
– remains largely unexplored. Woods proposes a decision-centric view on archi-
tecture [Woo19], where architecture is a stream of decisions created as-needed,
rather than a one-time activity. The architecture of a system is then a set of
key decisions about that system, rather than an extensive model produced at
a single point in time. This view aligns well with our proposal to articulate
architecture decisions for evaluation. Waterman, Noble, and Allan [WNA15]
provide a grounded theory of agile architecture that describing how agile teams
decide how much up-front architecture is sufficient. Their model consists of five
strategies – for example preparing the architecture for modification – that a
team may choose, dependent on the context of the team and the system being
built; context being characterized by six forces – for example how unstable the
requirements are, and the presence of technical risk – that a team must consider
when designing an agile architecture. The Twin Peaks model [Nus01] elaborates
on alternating refinement between requirements and architecture. The model
proposes developing progressively more detailed requirements and architectural
specifications concurrently, which is intended to create architectural stability
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also when requirements change. The model does not, however, cover feedback
towards the initial objectives; that is, how to evolve the system goals. For this,
Kasauli et al. [KKNK17] suggest that continuous requirements engineering
approaches, in particular adding value in each development iteration, may
bridge the distance between implementation and system goals.

1.7 Concluding Remarks
As the centrality of software increases in automotive systems, the quick cycles
possible in development of pure software systems become an alluring possibility
also in this mechatronic domain. Based on practitioner perspectives, our results
suggest approaches for leveraging the software aspect of automotive systems
during their development.

We investigate how to achieve system-level feedback capabilities in develop-
ment of automotive systems. Paper A proposes an instrument for reasoning
about CI at the architecture level. We find that the concerns framed by this
instrument need to be addressed during the entire development; that handling
these only at the start of development is insufficient. Among these concerns are
quickly responding to change. Paper B shows that current ways of working with
requirements are insufficient for quickly responding to change, and suggests
ways forward. Paper C investigates making feedback on an architecture man-
ageable in an agile setting, hence responding to change on architecture. Lastly,
Paper D looks broadly on responsiveness in terms of feedback-cycles beyond
individual teams. Together, the findings indicate that to achieve feedback
capabilities on the system-level, there is a need for tools and methods allowing
artifacts on higher levels of abstraction, such as architecture descriptions and
requirements, to be modified and evolve over the entire course of development.

This thesis makes three kinds of knowledge contributions regarding contin-
uously evolving automotive systems.

1. What happens during software development for such systems.

2. How to develop software for such systems.

3. Perspectives on architecture and architecting for such systems.

Knowledge contributions 2 and 3 also serve as contributions to practice, in
that they could be used for guidance in circumstances comparable to our case.

1.7.1 Future Work
Considered together, the future research directions suggested in the included
papers indicate an overarching challenge. The strategies proposed for estab-
lishing system-level feedback cycles all entail organizational change. How to
successfully introduce these in an organization is thus a thus a topic for change
management. Changing long-established ways-of-working can in itself be diffi-
cult, and the approaches seeking to leverage the specifics of software also need
to contend with approaches – for example stage-gate processes – that continue
to work well for mechanical development in isolation. Achieving the quick cycle
possible in software development also in system development with a mix of
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software, hardware, and mechanical parts is thus still a challenge for further
research. As treated in the discussion, to the extent agility is the approach,
further research is also needed on how to assess to which degree agility has
been achieved.

Also touched on in the discussion is the need to understand the architecture
of a system in terms of its implementation. In particular, more research is
needed on how to bring insights from implementation back to the system level.

Lastly, in light of the criticism that software is constructed through col-
laboration between developers and stakeholders, rather than by developers
executing a set plan, the field is open for new ways of validating software; that
is, ways to assess whether developed software meets stakeholder goals. Such val-
idation shares similarities with validation in empirical research. Consequently,
one direction for future research could be empirical methods as an approach to
software engineering itself.
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