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Abstract
Mobility-on-demand (MoD) services offer a convenient and efficient trans-
portation option, using technology to replace traditional modes. However,
the flexibility of MoD services also presents challenges in controlling the sys-
tem. One of the major issues is supply-demand imbalance, caused by uneven
stochastic travel demand. To address this, it is crucial to predict the network
behavior and proactively adapt to future travel demand.

In this thesis, we present a stochastic model predictive controller (SMPC)
that accounts for uncertainties in travel demand predictions. Our method
make use of Gaussian Process Regression (GPR) to estimate passenger travel
demand and predict time patterns with uncertainty bounds. The SMPC in-
tegrates these demand predictions into a receding horizon MoD optimization
and uses a probabilistic constraining method with a user-defined confidence
interval to guarantee constraint satisfaction. This result in a Chance Con-
strained Model Predictive Control (CCMPC) solution. Our approach has two
benefits: incorporating travel demand uncertainty into the MoD optimization
and the ability to relax the solution into a simpler Mixed-Integer Linear Pro-
gram (MILP). Our simulation results demonstrate that this method reduces
median customer wait time by 4% compared to using only the mean prediction
from GPR. By adjusting the confidence bound, near-optimal performance can
be achieved.

Keywords: Mobility-on-Demand, Travel Demand Uncertainty, Fleet Opti-
mization, Gaussian Process Regression, Stochastic Model Predictive Control,
Chance Constraint Optimization, Energy Efficiency
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CHAPTER 1

Introduction

1.1 Motivation

Transportation is an essential aspect of society that significantly impacts the
quality of life. Over the past century, advancements in transportation have
significantly improved connectivity between different societies and facilitated
the growth of cities. Today, access to reliable transportation is essential for
many individuals to lead fulfilling lives. However, many challenges still need
to be addressed to reduce the negative effect of transportation and meet the
needs of growing societies and cities.

One of the key challenges in transportation today is the reduction of green-
house gas emissions. Road transport was responsible for approximately one-
fifth of EU greenhouse gas emissions, with passenger cars being the most
significant contributor at 61% [1]. To decrease the environmental impact of
vehicles, it is necessary to consider the vehicle’s entire lifecycle, from pro-
duction to recycling. The question is, how can we design, manufacture, and
operate vehicles in a way that is the most energy and resource efficient? Volvo
cars is taking the lead as a car manufacturer by setting a goal to be a climate-
neutral company by 2040 and that every new Volvo model will be pure electric
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Chapter 1 Introduction

by 2030.
Another challenge is the rapid growth of population and urbanization. This

has led to longer commuting times and increased congestion, resulting in in-
creased pollution and strain on transportation infrastructure [2]–[4]. In re-
sponse, many cities have implemented policies aimed at reducing the use of
private cars, such as limiting parking spots, increasing parking fees, and im-
plementing congestion charges [5], [6]. To address these challenges, there is a
need for continued technological advancements and innovation in the trans-
portation industry. This includes the development of more efficient and sus-
tainable vehicles, integrating new technologies such as autonomous vehicles,
and exploring new modes of transportation such as shared mobility services.

In recent years, the development of connectivity has led to the emergence of
new forms of transportation, particularly in mobility-on-demand (MoD) ser-
vices. MoD is a service in which shared vehicles are used for passenger travel.
According to the US Department of Transportation, MoD is defined as a com-
modity that enables users to access transportation services as needed rather
than owning a vehicle [7]. MoD services are adaptable and convenient and are
not fixed to a schedule and route like traditional public transportation services
such as trains, buses, trams, and metros, which make MoD popular to use.
In 2019 the shared mobility market accounted for approximately 150 billion
dollars in global consumer spending and more than 40 million daily users [8].
Today, MoD mainly consists of car-sharing (Volvo-on-Demand, Miles, Kinto)
and ride-sharing (Uber, Didi). The increasing use of ride-sharing has caused
a negative impact on congestion. Erhardt et al. showed in a study that ride-
sharing increased the weekday vehicle hours of delay with 66% between 2010
and 2016 in San Francisco compared to a 22% increase without ride-sharing
[9].

Another negative effect is the percentage of milages without customers,
called empty distance. A study of ride-hailing data from Austin, Texas, from
December 31, 2016, to March 31, 2017, showed that between 51.4% and 66.3%
of the total mileages were without customers. This is related to one of the sig-
nificant challenges with mobility-on-demand systems, which is that the pickup
and dropoff locations are unevenly spread causing a supply-demand imbalance
if left unattended. Vehicles hence accumulate in one part of the city where
few ride-requests are causing long pickup times and a higher percentage of
empty mileage. It is therefore important to have a fleet management that
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1.1 Motivation

considers these imbalances and proactively sends vehicles to areas with high
demand-supply imbalance, called rebalancing, to decrease ride-sharing’s neg-
ative impacts.

The development of self-driving vehicles is expected to greatly impact MoD.
The benefits of autonomous cars are that they can rebalance themselves, are
cost-effective and can be centrally controlled without uncontrollable behaviour
from drivers. Hence, it is possible to use new centralized control algorithms
that minimize both demand-supply imbalance and operational cost. So-called
autonomous MoD (AMoD) can be a part of public transportation in cities
and rural areas. Unlike traditional public transportation, the operation of
AMoD is much more adaptable: it is not restricted to a timetable or specific
line. It hence can improve the public transportation network where it is
less effective. As an example, the automation and electrification of MoD is
predicted to reduce the operational cost by as much as 84% in Berlin and 70%
in Austin compared to the operational cost of taxis today [10]. Robotaxis has
gained much interest in the US, with several actors operating test fleets of
automated vehicles in California, Nevada and Arizona. For example, Waymo
is now operating robotaxis in San Francisco and Phoenix, with over 20 million
miles driven in Phoenix from 2019 to 2020 [11].

Many questions still need to be answered related to how AMoD should be
operated and what impact these services will have on different cities. How can
we use new technologies to reduce the negative aspects of MoD services while
keeping and improving their positive effects? It is necessary to compare differ-
ent mobility alternatives, what features are essential for operating vehicles and
what infrastructure is needed. Furthermore, it is important to consider factors
such as sustainability, accessibility, affordability, and the potential to reduce
congestion and emissions. To be able to access future technology requires the
development of new methodologies, models and simulation environments. To
test these scenarios in real cities is neither cost-effective nor practical. One
important aspect to consider when evaluating these systems is that they are
stochastic dynamical systems. In this thesis, the focus has been on develop-
ing models and methods for operational aspects of ride-hailing services that
consider uncertainty in stochastic travel demand predictions. The thesis in-
vestigates the following research questions:

1. What kind of models can we use to describe ride-hailing systems?
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Chapter 1 Introduction

2. Shall we optimize AMoD for passenger wait time or overall service cost
minimization?

3. How to handle travel demand prediction and embed them into the
model?

4. What results can we have with high fidelity traffic simulator (sensitivity,
robustness)?

1.2 Contributions
In order to answer the research questions above we focus the thesis to:

• Gaussian process regression is utilized to predict complex, non-linear
travel demand.

• A stochastic model predictive controller is formulated using chance con-
straint optimization. The proposed chance-constrained model predictive
controller (CCMPC) incorporates data-driven travel demand prediction
using Gaussian process regression (GPR) and accounts for uncertainty
in travel demand.

• The chance constraint is relaxed using a separable model, resulting in
a Totally Unimodular MILP. This guarantees that the optimal solution
of the integer-relaxed LP is always an integer and the MILP can be
efficiently solved in polynomial time.

• A realistic case study is tested with the high-fidelity transportation sim-
ulator AMoDeus ([12]) to quantify the impact of the proposed model
and controller on ride-hailing services in San Francisco (SF).

• A method to evaluate the minimal fleet size for different probabilistic
guarantees on the service level and empirical results for the SF case
study.

1.3 Thesis outline
The thesis starts with an introduction to the concept of Mobility-on-Demand
(MoD) and an overview of control models and methods in Chapter 2. The
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1.3 Thesis outline

study’s model, which includes the application of Gaussian Process Regression,
is presented in Chapter 3, followed by the introduction of the CCMPC con-
trol method. Chapter 4 provides a summary of the paper’s key points. Lastly,
Chapter 5 concludes the thesis and highlights potential areas for future re-
search.
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CHAPTER 2

Mobility-on-Demand simulation

This chapter covers the concept of Mobility-on-Demand services and key fac-
tors to consider in simulating these services. It provides an overview of trans-
portation network models, a literature review of fleet control and travel de-
mand prediction methods. The chapter concludes with a brief review of vari-
ous transportation simulation tools.

2.1 Mobility-on-Demand
Mobility-on-demand services (Mod) offer a wide range of options for individ-
uals to access transportation. Autonomous Mobility on Demand (AMoD) is a
mobility service utilizing autonomous vehicles. The operation of a traditional
MoD service and AMoD are equivalent if it is assumed that drivers in MoD
services follow instructions. There exist many different definitions of MoD but
in this thesis, we consider that MoD can be divided into three subcategories:
ride-hailing, ride-pooling, and car-sharing.

Ride-hailing is a service where an individual can request a vehicle to pick
them up and take them to their desired destination. Uber, Bolt and Didi are
example of ride-hailing services that exist today.
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Chapter 2 Mobility-on-Demand simulation

Ride-pooling is similar to ride-hailing, but instead of having a vehicle ex-
clusively for an individual, multiple individuals share the same vehicle. Ride-
pooling may have a lower service level with longer wait and travel times than
traditional ride-hailing, but it is often more affordable. One study on ride-
pooling, where at most two passengers can share the same ride, showed that
the pickup time is similar to ride-hailing but with an 18% shorter total dis-
tance driven and 27% longer drive time [13].

Car-sharing is a service where an individual can book a vehicle to drive, of-
ten with the requirement that the vehicle is collected and returned to the same
location. Car-sharing services, such as Volvo-on-Demand, allow customers to
rent cars for short periods of time, by the hour or by the day.

It’s important to notice that this text is limited to on-demand ride-hailing
services, which have become the most popular among the subcategories.

Simulating mobility scenarios involves considering six key aspects to achieve
an accurate representation, as shown in Fig. 2.1, which are:

• Fleet Control Strategies: Mobility-on-Demand services require real-
time control of the vehicle fleet. This includes both rebalancing and
dispatching of vehicles, charging strategies for battery electric vehicles
(BEVs), and how vehicles should be routed.

• Infrastructure: Information about the service critical infrastructure,
including where charging stations should be built and what power should
they be able to deliver and possible expansion of power grid network due
to increased electricity demand.

• Fleet Specifications: Determining the necessary fleet size to offer a
good service and keep operating costs low is essential. This includes
considering properties such as battery size, charging capacity, vehicle
size, and vehicle-to-grid capability when selecting the types of vehicles
to use in the fleet.

• Road Network Properties: The properties of the street network,
such as travel times (deterministic or stochastic), travel distance, and
static or dynamic traffic, should be taken into account.

• Travel Demand Model: A model that considers spatio-temporal stochas-
ticity, mode choice, and decision-making processes.
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2.1 Mobility-on-Demand

• Service Attributes: Important service attributes, such as pricing and
pick-up time constraints, should also be considered.

The focus of this thesis is on fleet control strategies, fleet specifications, and
travel demand models, while acknowledging the importance of incorporating
all relevant factors for a complete simulation of mobility scenarios. To achieve
this, high-fidelity transportation simulators are utilized to account for various
aspects."

Deployment and
Simulation of

Mobility Scenarios

Fleet control
strategiesInfrastructure

Fleet
specifications

Street network Demand models

Service
attributes

Figure 2.1: Six aspects that are important to consider when simulating mobility
scenarios [14].

Operational Policies
When developing operational policies for MoD there are four different aspects
that need to be considered: routing, dispatching, rebalancing, and constraints
such as charging and limited driving range. While dispatching and rebalanc-
ing determine the destinations for the vehicles, routing involves finding the
optimal route to reach those destinations.
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Chapter 2 Mobility-on-Demand simulation

Routing is the process of determining the most efficient and optimized
route for a vehicle to travel from its current position to its destination. It is
a necessary step after deciding on dispatching and rebalancing, as it ensures
that the vehicle arrives at its destination in a timely and efficient manner.
There are various methods and algorithms that can be used to optimize the
routing of vehicles, depending on the specific needs of the transportation ser-
vice. These methods take into account various metrics such as distance, travel
time, and fuel consumption. Some routing algorithms also consider more com-
plex factors such as traffic conditions, weather, and road closures to provide
the most efficient routes. Additionally, many routing algorithms also incor-
porate real-time data and machine learning techniques to adapt to changing
traffic conditions and provide dynamic routing. This helps to reduce travel
time, increase the availability of vehicles, and improve the overall customer
experience.

Dispatching of vehicles is a vital process in the transportation industry. It
involves assigning vehicles to customers in real time. The goal of dispatching
is to match the right vehicle with the right customer at the right time while
also considering cost, distance and time factors. Dispatching can be viewed
as an assignment problem, where the supply is the vehicles and the demand
is the customer. Various methods can be used to find an optimal dispatching
solution, given a set of vehicles and requests. One such method is the Hungar-
ian method [15]. This method is known as a reactive method, meaning that
it can only consider the current state of the system and not future predictions
or trends.
Charging scheduling refers to the process of planning and coordinating the
charging of electric vehicles in a fleet. It is an essential aspect of fleet manage-
ment for electric vehicles since it ensures that the vehicles have enough energy
to meet the transportation needs of customers. The charging scheduling can
either be incorporated as a constraint in the rebalancing optimization or as
a separate optimization problem. When charging scheduling is incorporated
as a constraint in the rebalancing optimization, it ensures that the vehicles
are charged and ready for their next trip. On the other hand, when charging
scheduling is treated as a separate optimization problem, it involves determin-
ing the most efficient and cost-effective way to charge the vehicles, taking into
account factors such as the availability of charging stations, electricity prices,
and the energy needs of the vehicles.
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2.1 Mobility-on-Demand

Rebalancing is the proactive process of repositioning vehicles to areas of
predicted high demand, to ensure that vehicles are always available to meet
customer needs. It complements the dispatching process by being proactive
rather than reactive, see Fig. 2.2. Typically, the rebalancing process consists
of two steps:

1. Prediction of future demand: This step involves using data analysis, ma-
chine learning, and other techniques to predict the areas of high demand
for vehicles in the future.

2. Optimization of rebalancing: Based on the demand prediction, this step
involves determining the most efficient and cost-effective way to reposi-
tion vehicles to meet that predicted demand. This may involve optimiz-
ing routes, identifying the most suitable vehicles for a particular area,
and scheduling the movement of vehicles in advance. Rebalancing can
help to reduce empty mileage, wait times for customers, and overall op-
erational costs. It also helps to improve the overall customer experience
and the efficiency of the transportation service.

An example of why proactive rebalancing is beneficial can be seen in Fig.
2.2. The figure compares a reactive controller (left figures) and a predictive
controller (right figures) using a simple example. The city or rural area has
been divided into 9 stations, labeled A through I. At the initial state of the
system, there is one customer at station A and two vehicles at stations C
and D, respectively. The reactive controller finds the optimal static solution,
which is to send the vehicle at station D to pick up the customer at station A.
However, in the next time step, a customer at station G appears and the only
available taxi is at station C. The predictive controller, on the other hand,
first predicts future travel demand and then makes an optimal decision based
on that prediction. As a result, the vehicle at station D is sent to pick up the
customer at station G, while the vehicle at station C is sent to the customer
at station A.
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Chapter 2 Mobility-on-Demand simulation

Reactive
Algorithm

Predictive
Algorithm

Initial
State

Empty distance = 5 Empty distance = 3

Figure 2.2: A comparison between a reactive (left figure) and a predictive con-
troller (right figure) provides a simple illustration of the benefits of the
latter. The predictive controller considers future states, enabling it to
effectively minimize empty distance travel and overall pickup time.14



2.2 Performance Metrics

2.2 Performance Metrics
Improving the efficiency of MoD fleets necessitates evaluating multiple crucial
metrics, including waiting and travel time, costs and revenues, travel distance,
demand satisfaction, fleet size, and societal factors. From an operator’s per-
spective, it’s essential to minimize the total cost of the fleet by optimizing
utilization and reducing empty distance travel. From the customer’s stand-
point, wait time is a critical factor, but travel time, traffic congestion, and
pollution levels should also be taken into account. These metrics are inter-
dependent, and striking the right balance can be challenging. For example,
reducing wait time might require a larger fleet or increased empty distance
travel, while minimizing travel time and reducing pollution might result in
higher costs. The optimal is to consider all aspects and tune the weighting of
the different aspects to reach a equilibrium, see Fig. 2.3.

Service Level

Energy Efficiency Societal Aspects

Figure 2.3: Performance metrics that are important to consider when operating
MoD services.

2.3 Mathematical models for transportation
networks

To plan the service ahead we need a model that models the dynamics of the
transportation network. Three main models have been used to model trans-
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Chapter 2 Mobility-on-Demand simulation

Figure 2.4: Graph model of MoD services.

portation networks for fleet control: graph models, queueing-based models
and continuous models.

Graph model
The road network can be represented by a directed graph G⟨V, E⟩, where V is
a set of vertices and E is a set of edges, see Fig. 2.4. The granularity of the
graph model can vary depending on the level of detail required.

At the most detailed level, each node vi ∈ V represents a specific road
section, and edges eij ∈ E represent the connections between these sections,
represented by eij = ⟨vi, vj⟩. However, in some cases, nodes may represent an
area of the city and edges represent the connections between these areas.

Additionally, each edge eij has an associated travel time and distance, which
can be used to model the dynamics of transportation on the network. This
information can be used to optimize the transportation network, such as find-
ing the shortest route between two locations or determining how to allocate
resources to improve network performance. An advantage with graph models
is that they can be used in MPC formulations, [16]. One disadvantage with
graph models is that often individual vehicles are not modeled.

Closed queueing network models
Queuing theory is a way of modeling operational systems with waiting lines.
For AMoD systems, the operational area is partitioned into N areas. All of the
areas are assumed to be indirectly connected, and the network is assumed to

16



2.4 Travel demand prediction methods

be closed. In a closed queueing network, the number of vehicles in the system
remains constant as no vehicles can enter or exit, creating a closed system. In
each area, there is a queue of vehicles waiting to serve customers. Customers
arrive at each station according to a stochastic process, such as a Poisson
process, and their destinations are determined by a probability distribution.
If there are available vehicles in the queue, they are assigned to customers.
If not, unserved customers can either disappear (passenger loss model) or
accumulate in a queue (passenger queue model). So far, only passenger loss
models have been implemented ([17]–[22]), which is a disadvantage compared
to graph models. The travel time between areas is also modeled as a stochastic
variable, often exponentially distributed. To improve performance, vehicles
can be proactively sent between different queues to prevent passenger loss.
The key performance metric for queuing models is the availability of at least
one vehicle in each queue. An advantage of closed queueing network models
is that individual vehicles can easily be modeled.

Continuum model
In a continuum model the vehicles move freely in a bounded operational area
of the real plane, Ω ∈ R2. Where roads are located and how they are connected
are neglected, which simplifies the control with such systems. The request in
such systems is often modeled as a stochastic process. A continuum model
was used in [23] where a solution to the Stacker Crane Problem, which is
the problem of routing vehicles to a set of one-to-one travel requests, was
proposed.

2.4 Travel demand prediction methods
An important aspect when controlling MoD is the travel demand predictions
and several different prediction methods have been proposed in the litera-
ture. The different methods can be split into parametric and non-parametric
models.

Parametric models
Parametric models assume that the underlying probability distribution is
known [24]. One of the most widely used parametric travel demand mod-
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Chapter 2 Mobility-on-Demand simulation

els is the Poisson Process model. It has been used in several papers which use
closed queueing network models [17]–[22]. This model is based on the Pois-
son distribution, a statistical tool commonly used to describe the probability
of a certain number of events occurring within a given time period. In the
context of travel demand modeling, the Poisson Process model represents the
number of trips individuals make within a given time period, such as a day
or an hour. Parametric models are effective for long time windows where the
travel demand is averaged out but less effective for short time windows due
to increased randomness in travel patterns.

Non-Parametric models
The travel demand often follows an unknown spatio-temporal probability dis-
tribution that can be very complex. Therefore, the parametric models might
not model the travel demand correctly. This is one of the reasons why the
research has shifted towards non-parametric models. Non-parametric mod-
els, unlike parametric models, do not rely on any specific assumptions about
the underlying probability distribution of the data. Instead, non-parametric
models use techniques such as machine learning and data mining to learn pat-
terns and relationships in the data. This makes non-parametric models more
flexible and better suited for data that may not follow a specific probability
distribution.

One example of a non-parametric travel demand model that has been used
is Long Short-Term Memory (LSTM) neural network [25], [26]. An LSTM
neural network is a type of recurrent neural network that is able to process
and predict time series data [27]. Other neural networks, such as Multi-Graph
Convolution Networks, have also been proposed for travel demand prediction
[28]. An advantaged of neural networks is that factors such as weather and
other events can be included in the training.
Another example is Gaussian Process Regression (GPR) which is a type of
Bayesian non-parametric model [24]. GPR has been shown to be an accu-
rate model for time-series prediction [29]. One of the key advantages of GPR
is that it can provide not only a point estimate of the function but also a
measure of uncertainty in the form of a probability distribution over the func-
tion. This can be useful in applications where it is important to have a good
understanding of the model’s uncertainty, such as in control systems.

One challenge with non-parametric models is that their interpretation can
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2.5 Fleet Control Strategies

be difficult, and their performance relies heavily on careful hyperparameter
tuning.

2.5 Fleet Control Strategies
There has been extensive research on various algorithms for modelling and
controlling Mobility-on-Demand (MoD) and Automated Mobility-on-Demand
(AMoD) systems. Several review papers have been written on topics related
to AMoD, ranging from routing ([30]–[32],) to control of AMoD ([33]–[37]).
This section will summarise what has been done in the field of AMoD control
and identify research gaps.

Early research focused on reactive control methods, such as the Hungar-
ian method [15], which aimed to solve static assignment problems. Later, re-
search shifted to solving dynamic assignment problems using Markov Decision
Processes, and adaptive learning algorithms [38]. Model Predictive Control
(MPC) was subsequently proposed for dispatching and rebalancing vehicles
[16], but initial implementations assumed known travel demand and were not
scalable for large fleet sizes. To deal with the scalability issues queuing mod-
els were proposed, [17]–[22]. Queueing models necessitate simplification of the
operation map through partitioning into smaller neighborhoods, as employed
in many subsequent papers. The queueing models are suitable for real-time
control, but these models relied on parametric demand models, and only pas-
senger loss models were considered. At the same time as the first queue model
was proposed a model-free adaptive controller was suggested [39]. The idea
behind the controller is to send one extra vehicle to recent service request
locations. The controller performs well in terms of service quality but is ex-
pensive to operate because of high percentages of rebalancing. More recent
research has focused on MPC and developing better travel demand predic-
tion methods, using techniques such as Long Short-Term Memory (LSTM)
neural networks and Sample Average Approximation (SAA) [25], [26]. The
importance of accounting for uncertainty in demand predictions has also been
recognized, with methods such as robust optimization [40], [41] and distribu-
tionally robust optimization [42] proposed. However, these methods require
large datasets and neglect demand predictions. In recent years, several dif-
ferent reinforcement learning (RL) methods have been proposed [43]. Each
taxi is considered an agent, and the reward function can be trip fare ([44]), or
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total operational costs ([45]). There have been different ways of representing
the transportation network in RL. The most common representation is using
a grid system of the network, using hexagonal or squares ([46], [47]), but also
graph models of the entire transportation network have been used ([48]). All
of the mentioned RL articles use value-based learning algorithms, which use
a value function to estimate the expected future reward of a given action in
a specific state. The benefit of the RL algorithms is that they can operate in
real-time, but one drawback is that they require large datasets for training.
Missing in the existing literature are algorithms that include uncertainty in
travel demand predictions that do not require large datasets.

2.6 Transportation simulators
Transportation simulators are tools used to model and analyze the behavior
of transportation systems. They can be classified into three main categories:
microscopic, macroscopic, and mesoscopic simulators.

Microscopic simulators focus on the individual behavior of vehicles and
pedestrians in a transportation system. These simulators model the interac-
tions between vehicles, including lane changes, merging, and overtaking, as
well as the interactions between vehicles and pedestrians. Microscopic simu-
lators are typically used to study traffic flow at intersections, on-ramps, and
other areas of congestion, [12], [49]–[51].

Macroscopic simulators, on the other hand, focus on the overall behavior
of a transportation system. These simulators model the flow of traffic on a
large scale, rather than individual vehicles. They use aggregate measures such
as traffic volume and density to represent the transportation system. Macro-
scopic simulators are typically used to study the impacts of new infrastructure
or policy changes on traffic flow.

Mesoscopic simulators fall between microscopic and macroscopic simula-
tors. They model the behavior of groups of vehicles, rather than individual
vehicles. Mesoscopic simulators use a combination of aggregate measures and
individual vehicle interactions to represent the transportation system. They
are commonly used to study the impacts of intelligent transportation systems
(ITS) such as traffic signal control and variable message signs.

Mesoscopic transportation simulators can be used for a wide range of trans-
portation planning and research applications, including traffic engineering,
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transportation policy analysis, and the evaluation of new transportation tech-
nologies.

In this thesis we have chosen to work with AMoDeus (Autonomous Mobil-
ity on Demand Simulator) which is an open-source simulation platform that
is specifically designed to model and analyze AMoD systems, [12]. One of
the key strengths of AMoDeus is its ability to simulate large-scale, realistic
AMoD systems in a highly accurate and detailed manner. It can be used to
model various components of an AMoD system, such as the vehicles, charg-
ing infrastructure, and the transportation network. Additionally, it allows to
simulate different scenarios, such as changes in land use, population growth,
and technological advancements on AMoD systems.

AMoDeus can be used for a wide range of transportation planning and
research applications, including evaluating the impacts of transportation poli-
cies, testing the performance of different AMoD systems, and assessing the
feasibility of new autonomous technologies. It can also be used to compare
different mobility alternatives, what features are important for operating ve-
hicles and what infrastructure is needed.
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CHAPTER 3

Modelling, prediction, and control

In this chapter, we first introduce the modelling framework for control of MoD.
The model represents the dynamics of movement of vehicles and passengers in
the transportation network. Second, we present Gaussian process regression
(GPR), which is used for travel demand prediction. Lastly, we formulate a
Chance Constrained Model Predictive Control (CCMPC) which gives proba-
bilistic guarantees on the service level.

3.1 Graph Network Model
A graph model of a city consist of hundred of thousands of edges and ver-
tices. This makes the model very complex and earlier studies have shown
that considering individual vehicles in these types of models are not scalable
[16]. Therefore, simplification of the transportation graph model have been
proposed where the urban/rural area is split into larger areas, which we will
call stations. The stations are represented by vertices vi and the connection
between the different stations are represented by edges eij . The graph is com-
plete, meaning that all stations are connected to each other, see Fig. 3.1.
Instead of modeling the position of every vehicle and passengers we model
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v1

v2v3

v4

v5 v6

Figure 3.1: A city partitioned into N = 6 smaller areas, where the vertices are
stations and edges are paths between stations.

the number of vehicles and passengers in each station. This is an important
property because the number of states doesn’t depend on the fleet size nor
the number of passenger which makes it suitable for control of large fleets.
The driving time and the energy consumption in-between stations i and j are
denoted by κij and σij , respectively. The model is discrete-time model with
time intervals ∆t. T denotes the set of periods, T = [1, .., T ], where T is the
number of periods.

Vehicle Conservation and Imbalance Dynamics
We first introduce the state and decision variables in the MoD model and then
the MoD system dynamics. All states and decision variables are non-negative
integer values and are presented in the list below:

• λij(t) - the number of passengers that wants to go from origin i to
destination j.

• xc
ijb(t) - the number of vehicles that are driving passengers from station

i to station j at time t.

• xr
ij(t) - the number of rebalancing vehicles in-between station i and

station j at time t.

• sij(t) - A decision variable for the imbalance, which describes how many
customers to not pick-up at time t that wants to go from station i to
station j.
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3.1 Graph Network Model

Vehicle conservation

The total number of vehicles in the model should be conserved at every time
instance. This is enforced with a vehicle conservation constraint for each
station,∑

j∈N

xc
ij(t) + xr

ij(t) = ϕi(t) +
∑
j∈N

xc
ji(t− κji) + xr

ji(t− κji),

∀i ∈ N, t ∈ T ,

(3.1)

which force the the vehicles departing station i at time t,
∑

j∈N xc
ij(t)+xr

ij(t),
to be equal to the initial number of vehicles in station i,ϕ(t), plus vehicles
entering the station in time interval t,

∑
j∈N xc

ji(t − κji) + xr
ji(t − κji). The

constraint keeps track of where vehicles are in the model and travel times in
between stations, κij . In the model presented in this thesis the travel times
are assumed to be constant.

Imbalance

The imbalance dynamics models the difference between passenger requests
and vehicles in each station. Ideally, the imbalance is zero at all times, i.e.
there is a perfect match between the number of travel demand and vehicles,

λij(t)− xc
ij(t) = 0,∀i, j ∈ N, t ∈ T . (3.2)

However, if there are more customers than vehicles, constraint Eq. (3.2) is
violated. Therefore this constraint needs to be relaxed to ensure feasibility,
which is done by introducing the slack variable sij(t),

sij(t) = λij(t)− xc
ij(t) ∀i, j ∈ N, t ∈ T . (3.3)

If sij(t) > 0, i.e. there are more request then available vehicles, the remaining
request should be served at a later time step. Hence, we carry on sij(t) to the
next time step if t > t0,

sij(t + 1) = sij(t) + λij(t + 1)− xc
ij(t + 1)

∀i, j ∈ N, t ∈ [t0 + 1, T + t0],
(3.4a)

sij(t0) = λij(t0)− xc
ij(t0) ∀i, j ∈ N, (3.4b)
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The state xc
ij(t) cannot be larger then the number of travel request since

it represent only vehicles that drives customer, i.e. the imbalance should be
greater or equal to zero,

sij(t) ≥ 0, ∀i, j ∈ N, t ∈ [t0, T + t0]. (3.5)

The combination of constraint Eq. (3.5) and that sij(t) is a integer decision
variable, gives that

sij(t) ∈ N, ∀i, j ∈ N, t ∈ [t0, T + t0].

3.2 Gaussian Process regression
Gaussian Process Regression (GPR) is a type of machine learning algorithm
used for regression and probabilistic classification. It models the relationship
between input features and output targets as a Gaussian distribution, allow-
ing for the prediction of output values and estimation of uncertainty. GPR
can be used for time series prediction by modeling the temporal dependencies
between consecutive time steps as a covariance function. The covariance func-
tion captures the similarity between time steps, allowing for the prediction of
future time steps based on the observed historical data. GPR can provide
not only point estimates for the future values but also a probabilistic estimate
of the uncertainty around the predictions. This makes GPR a powerful tool
for time series prediction, especially in cases where the underlying process is
complex and non-linear [29].

The concept of GPR can be understood from a functions perspective, also
known as the function-space view, as discussed in [24]. Imagine a black box
system with input t and output λ = f(t), where f(t) is an unknown func-
tion. We have a collection of past input and output data, called the training
data set D = (ti, λi)|i = 1, ..., n. There are many functions that could fit this
data. GPR utilizes a probabilistic approach to find the best fit among these
functions. This is achieved by assigning a multivariate probability distribu-
tion to the entire function-space. This distribution allows us to predict with
confidence.

The goal of GPR is to find the underlying multivariate distribution based
on prior knowledge and a training data set. This distribution is assumed
to be a multivariate normal distribution, so the estimated output follows a
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3.2 Gaussian Process regression

normal distribution λ1, ..., λn ∼ N (µ(t)i,..,n, Σ), where Σi,j = Cov(λi, λj) =
k(ti, tj) is the covariance function (kernel) and µ(t) is the mean function.
Thus, the Gaussian process is defined by its mean and covariance functions
f(t) ∼ GP(µ(t), k(t, t′)). Kernels are selected based on prior knowledge of
the data, such as smoothness (e.g. radial basis function kernel) or periodicity
(e.g. periodic kernel). If we assume a smooth function the radial basis function
kernel (RBF) can be used

kRBF(t, t′) = exp
(
− ∥t− t′∥2

2l2

)
, (3.6)

where l is the lengthscale hyperparameter. If the data is periodic a periodic
kernel is proposed

kPeriodic(t, t′) = exp
(
− 2

sin2 ( π
p (t− t′))
l2

)
, (3.7)

where p is the period and l the lengthscale hyperparameter. The sum and
multiplication of two kernels are also kernels [24].

When the kernels have been selected the hyperparameters are trained on
the dataset by maximizing the log-marginal likelihood [24]. The log marginal
likelihood is given by

log p(y|X, θ) = −1
2y⊤Σ−1y− 1

2 log |Σ| − n

2 log(2π), (3.8)

where Σ is the covariance matrix,

Σn,n =


k1,1 k1,2 · · · k1,n

k2,1 k2,2 · · · k2,n

...
...

. . .
...

kn,1 kn,2 · · · kn,n

 . (3.9)

A gradient method is used to find the hyperparameters that maximizes the
log marginal likelihood, i.e. the partial derivatives of Eq. (3.8) with respect
to the hyperparameters are computed:

∂

∂θi
log p(y|X, θ) = −1

2y⊤Σ−1 ∂Σ
∂θi

Σ−1y− 1
2 tr(Σ−1 ∂Σ

∂θi
) (3.10)

27



Chapter 3 Modelling, prediction, and control

The computational complexity of GPR training mainly arises from the need
to invert the covariance matrix Σ, which has a computational complexity of
O(n3). Once the kernels and mean function have been tuned, future predic-
tions can be made using the conditional probability of the posterior distribu-
tion.

µ̂(t∗) = k∗
⊤Σ−1y, (3.11)

σ̂2(t∗) = k(t∗, t∗)− k∗
⊤Σ−1k∗, (3.12)

where Σ is the covariance matrix for the training data, k∗ is the vector of
covariances between t∗ and the n training points, where Σn is the noise ma-
trix. The predictive mean is used as the estimated output and the predictive
covariance provides a measure of uncertainty in the prediction.

0 2 4 6 8 10
t
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Figure 3.2: Samples from prior distribution of the locally periodic kernel.

Locally periodic kernels (which are considered in Paper 1) are a combination
of RBF and periodic kernels. The periodic kernel assumes perfect correlation
between data points separated by Np units, i.e. t − t′ = Np, where N is an
integer. However, this strict periodicity assumption is not applicable to most
stochastic functions, including travel demand data, which exhibit some peri-
odicity but not in a strict manner, such as daily commuter patterns that vary
in time and extent. The locally periodic kernel allows the periodic component
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to change over time, making it a more appropriate choice for travel demand
prediction. Fig. 3.2 illustrates samples from the locally periodic kernel’s prior,
highlighting local periodicity with variability over time.

3.3 Chance Constrained Optimization
Recent advancements in convex optimization and improvements in computing
power have made it possible to efficiently solve large optimization problems.
This, along with the ability to collect and store large amounts of data, has led
to a shift from traditional to data-driven optimization methods.

Different methods exist for solving convex optimization problems with un-
certainty, including robust optimization, which can be formulated as follows:

minimize
x∈X

f(x)

subject to g(x, ξ) ≤ 0 ∀ξ ∈ Ξ
(3.13)

where ξ is a random variable. In robust optimization, all possible cases are
considered, which may result in a conservative solution. Chance constraint
optimization is a method that only considers a certain percentage of the ran-
dom variable ξ by providing a probability guarantee to the constraint. This
is formulated as:

minimize
x∈X

c⊺x

subject to P(h(x, ξ) ≤ 0) ≥ 1− ϵ
(3.14)

where the probability of the constraint being fulfilled is greater than 1 − ϵ.
The concept of chance constraint optimization was introduced by Charnes
and Cooper in 1959 [52]. However, computing the probability of uniformly
distributed variables is an NP-hard problem, making CCO programs compu-
tationally intractable and in need of approximation [53].

Distributional robust optimization is a method that reforms the chance
constraint into a tractable form. By using known information about the dis-
tribution P, the goal is to minimize the set of possible distributions, called the
ambiguity set P,

minimize
x∈X

c⊺x

subject to P(h(x, δ) ≤ 0) ≥ 1− ϵ,∀P ∈P.
(3.15)
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If the mean and variance of a distribution are known, there are ways to es-
timate the probability distribution. The most popular of these is Chebyshev
inequality, which was first presented in [54]:

Theorem 1 (Chebyshev inequality[54]): Let X ∈ R be a random variable
with finite mean µ and finite non-zero variance σ2. Then for any real number
k > 0,

P(|X − µ| > kσ) ≤
{

1
k2 k > 1
1 otherwise

(3.16)

Chebyshev inequality states that for any probability distribution, no more
than 1

k2 of the values can be more than k standard deviations from the mean.
This gives a conservative estimate of the distribution, considering all possible
distributions in the ambiguity set.

If the stochastic variables enters the chance constraint in an affine way, it
is a special case of the chance constraint and is referred to as a separable
chance constraint [55]. A separable chance constraint with known probability
distribution can be reformulated as a deterministic constraint. The separable
chance constraint can be formulates as,

P(h(x) ≥ Aξ) ≥ 1− ϵ, (3.17)

where h(x) is a deterministic function and A is a constant matrix describing
how the stochastic variable ξ enters the constraint. By using the cumulative
distribution function of ξ, Fξ(z) := Pδ(ϵ ≤ z), the separable constraint (Eq.
(3.17)) can be simplified to the following deterministic constraint,

Fξ(h(x)) ≥ 1− ϵ (3.18)

Chance Constraint Model Predictive Control

In this thesis we use GPR to predict stochastic and non-linear travel demand.
The uncertainty bounds on the travel demand prediction are used to formulate
a chance constraint of constraint Eq. (3.4),

Pij

(
sij(t + 1) = sij(t) + λij(t + 1)− xc

ij(t + 1) ≤ k
)
≥ 1− ϵ

∀i, j ∈ N, t ∈ [t0, T + t0],
(3.19)
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where the constant k is an upper bound on the imbalance. The GPR gives a
mean prediction, µ, and a confidence bound on the prediction, σ, where the
confidence is assumed to follow a Gaussian distribution. We can therefore
use the cumulative distribution function for a Gaussian distribution, which is
defined as

F (1− ϵ; µ, σ) = 1
σ
√

2π

∫ 1−ϵ

−∞
e− (z−µ)2

2σ2 dz. (3.20)

We can therefore formulate the chance constraint (Eq. (3.19)) as a determin-
istic constraint,

sij(t + 1) + k + xc
ij(t + 1)− sij(t) ≥ F −1

λij(t+1) (1− ϵ; µ̂, σ̂) ,

∀i, j ∈ N, t ∈ [t0, T + t0],
(3.21)

To optimize the dispatching and rebalancing of vehicles we formulate the
following chance constrained model predictive control (CCMPC),

minimize
xr

ij
,sij

T +t0∑
t=t0

N∑
j,i=1

cr
ij(t)xr

ij(t) + cλ(t)sij(t) (3.22a)

subject to
Eqs.(3.4b), (3.19), (3.21) (3.22b)
xr

ij , sij , xc
ij(t) ∈ N ∀i, j ∈ N, t ∈ [t0, T + t0], (3.22c)

where cr
ij(t) and cλ(t) are the cost of rebalancing respectively of the cost of

imbalance. The objective of the CCMPC is to find the optimal rebalancing
strategy that minimizes the rebalance distance (empty milages) and the im-
balance (service quality). If the imbalance is kept at zero the pickup time will
depend on the size of the stations. More and smaller station will lead to a
shorter pickup time.

Mixed Integer Linear Program
The CCMPC Eq. (3.22) is a Mixed-Integer Linear Programming (MILP),
which is a type of optimization problem that involves both continuous and dis-
crete variables. The objective function and constraints are linear, but some/all
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of the variables are restricted to be integers. This makes MILP a more com-
plex problem than Linear Programming (LP), which only involves continuous
variables. MILP can be used to model a wide range of real-world problems,
including scheduling, resource allocation, and logistics. MILP problems can
be solved using specialized algorithms such as branch-and-bound and branch-
and-cut, which can be implemented in software such as CPLEX ([56]) and
Gurobi ([57]). MILPs can be challanging to solve due to there combinatorial
nature. Some specific challenges include:

• Complexity: The number of possible solutions grows exponentially with
the number of integer variables, making the problem intractable for large
instances.

• NP-hardness: Many MILP problems are known to be NP-hard, which
means that no algorithm can solve them in polynomial time, in the worst
case.

• Local optima: MILP solvers can get stuck in locally optimal solutions,
which may not be the global optimal solution.

• Symmetry: MILP problems often have a large number of symmetric
solutions, which can make it difficult for the solver to find the optimal
one.

Totally Unimodular Problems
There are certain cases where the optimal solution of the LP relaxation of an
MILP is guaranteed to be integral. Consider the following MILP,

minimize
x

c⊤x

subject to
Ax ≤ b

x ∈ N.

If the A matrix is totally unimodular (TU) then the LP relaxation will always
have one integral solution [58]. The following theorem and proposition can be
used to check if a matrix A is TU,
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Theorem 2: A matrix A is TU if det(B) ∈ {0, +1,−1} for every square
submatrix B of A [59]

Proposition 1. Let A ∈ {−1, 0, 1}n×m. If every column of A has at most
one 1 and at most one -1, then A is totally unimodular [60].

The following proposition states that if matrix A is Totally Unimodular
(TU), then the basic solution is integral:

Proposition 2. Let A ∈ Zn×m be totally unimodular having rank m and
b ∈ Zm. Then every basic solution of Ax = b is integral (i.e. in Zn) [61].

We will now prove that Eq. (3.22) is Totally Unimodular. Let x be the
vector of all decision variables sij(t), xcij(t) and xcij(t). Since the decision
variables in Eqs. (3.21),(3.4),(3.1) appear as additions or subtractions, all
entries in matrix A will either be 1, -1, or 0. Since xc

ij(t) is the only decision
variable that appears both in Eq. (3.21) and Eq. (3.1), but with different
signs, each column of A will contain at most one 1 and one -1, making the A
matrix Totally Unimodular. As a result, the Mixed Integer Linear Program
(MILP) in Eq. (3.22) can be solved as a Linear Program (LP).
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Sten Elling Tingstad Jacobsen, Anders Lindman, Balázs Kulcsár
A Predictive Chance Constraint Rebalancing Approach to Mobility-on-
Demand Services
Submitted to Elsevier Communication in Transportation Research
in Jan. 2023 https://arxiv.org/abs/2209.03214.

This paper considers the problem of supply-demand imbalances in Mobility-
on-Demand (MoD) services. These imbalances occur due to uneven stochastic
travel demand and can be mitigated by proactively rebalancing empty vehicles
to areas where the demand is high. To achieve this, we propose a method that
takes into account uncertainties of predicted travel demand while minimizing
pick-up time and rebalance mileage for autonomous MoD ride-hailing. More
precisely, first travel demand is predicted using Gaussian Process Regression
(GPR) which provides uncertainty bounds on the prediction. We then for-
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mulate a stochastic model predictive control (MPC) for the autonomous ride-
hailing service and integrate the demand predictions with uncertainty bounds.
In order to guarantee constraint satisfaction in the optimization under esti-
mated stochastic demand prediction, we employ a probabilistic constraining
method with user-defined confidence interval, using Chance Constrained MPC
(CCMPC). The benefits of the proposed method are twofold. First, travel
demand uncertainty prediction from data can naturally be embedded into
the MoD optimization framework, allowing us to keep the imbalance at each
station below a certain threshold with a user-defined probability. Second,
CCMPC can be relaxed into a Mixed-Integer-Linear-Program (MILP) and
the MILP can be solved as a corresponding Linear-Program, which always
admits an integral solution. Our transportation simulations show that by
tuning the confidence bound on the chance constraint, close to optimal oracle
performance can be achieved, with a median customer wait time reduction of
4% compared to using only the mean prediction of the GPR.
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CHAPTER 5

Concluding Remarks and Future Work

5.1 Concluding Remarks

Transportation is an essential brick stone in the building and running of mod-
ern societies. However, the increased demand for transportation due to ur-
banization and a shift in the vehicle industry towards carbon-neutral vehicles
and production implies several challenges. To solve these challenges, the use
of technological advancement and the development of new transportation ser-
vices are essential. In this thesis, we have argued that Autonomous Mobility-
on-Demand (AMoD) services have the potential to transform the transporta-
tion sector by offering affordable and convenient transportation services. The
potential lies in the fact that these services are very flexible regarding how and
where they can operate and that they can be centrally controlled. The flexi-
bility of AMoD makes these systems more dynamic and stochastic compared
to traditional public transportation services. Hence, several new challenges
need to be investigated, such as the problem of stochastic supply-demand
imbalance in AMoD services. This thesis has provided a methodology that
addresses these challenges. The methodology developed in this thesis can be
used for simulating the potential of AMoD for future transportation systems.
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In more detail, we have proposed a predictive chance constraint rebalancing
approach for autonomous mobility-on-demand (AMoD) services, which is ap-
plied to the use case of ride-hailing. We first introduce a commonly used
model for this service where the service area is discretized into smaller areas
called stations. The model consists of constraints for the imbalance and vehicle
conservation. Based on the model, a model predictive controller (MPC) is for-
mulated with the multi-objective to minimize vehicle rebalance distance and
the imbalance in each station. The travel demand is predicted using Gaussian
Process regression (GPR). In contrast to other proposed prediction methods,
GPR is superior for small data sets and provides a confidence bound on the
prediction. We account for uncertainties in the travel demand prediction by
formulating a chance constraint MPC (CCMPC). The CCMPC is relaxed us-
ing the GPR prediction and the separable model. The proposed algorithm
was benchmarked using the high-fidelity transport simulator AMoDeus and
real taxi data from San Francisco [12]. Our results show the importance of
incorporating the confidence bound of the demand prediction. By tuning the
confidence bound, the median wait time is reduced by 4% compared to using
only the mean prediction of the GPR. We showed that the CCMPC performs
close to optimal performance and is significantly better than a reactive con-
troller. The performance and computational efficiency of the proposed method
imply that it would be helpful for real-time control.

5.2 Future Work
In this section, we would like to discuss possible future directions of this PhD
project.

Charging and state of charge constraints

A natural future direction of this PhD project is to include charging and range
limitation constraint into the proposed model. Since most future vehicles are
predicted to be battery electric it is important to consider such constraints.
There are several papers on the topic but simplified energy consumption mod-
els have been used and to the best of our knowledge no research have been
done on using stochastic model predictive control (SMPC) that are scalable.
Questions that are important to answer are,

38



5.2 Future Work

• What car features are optimal for electric AMoD? Such as battery size,
charging speed and energy efficiency.

• Where should charging station be placed and how many?

• How can a SMPC be formulized for real-time control?

• How can the electricity price be considered in the objective function?

Ride-pooling

In this thesis, it is assumed that each vehicle can only pick up and drop off one
passenger at a time. However, the potential for pooling passengers together
remains an area of investigation. Previous studies have shown that empty
vehicle mileages can be reduced through ride-pooling with two passengers
[13]. The feasibility of pooling more than two passengers, however, is an open
question.

Endogenous congestion models

Most existing papers on control of AMoD services, including this paper, does
not consider endogenous congestion models. There are a few papers that
have looked at endogeneous congestion models and how AMoD could affect
congestion [62]. However, there are still a few unanswered research questions:

1. Methods to reduce congestion, for example ride-pooling or integration
of AMoD with public transportation.

2. Algorithms that can be operated in real-time and that can model con-
gestion.

Competing AMoD service providers

In this thesis, we have assumed that there is only one AMoD operator in the
city. However, it is most likely that there will be several AMoD operators
competing for the same customers. What is the optimal dispatching and
rebalancing strategy when there is competition? One important aspect here
would be different pricing strategies and being able to offer a reliable service.
Game theory models could be important to consider for such systems.
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