THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Stability and complexity of ecosystems

Global interaction constraints, landscape, and extinctions

SUSANNE PETTERSSON

Department of Space, Earth and Environment
Division of Physical Resource Theory
CHALMERS UNIVERSITY OF TECHNOLOGY

Goteborg, Sweden 2023



Stability and complexity of ecosystems
Global interaction constraints, landscape, and extinctions
SUSANNE PETTERSSON

ISBN 978-91-7905-795-4

ISSN 0346-718X

Department of Space, Earth and Environment
Division of Physical Resource Theory
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31-772 1000

©2023 Susanne Pettersson

Typeset using BIEX.

Printed by Chalmers Reproservice
Goteborg, Sweden 2023



ABSTRACT

Human society’s expansion and demand for both biotic and abiotic natural
resources exert a large pressure on ecosystems around the globe. Ecosys-
tems are complex networks of species interacting with each other and their
physical surroundings. Although they are in constant change due to fortu-
itous fluctuations as well as migration, climate, and evolution, in a human
time-frame ecosystems are relatively stable. Stability of an ecosystem can
refer to many different aspects but in general denotes an ability to uphold
perceived qualities and functions in the face of external disturbances.

This thesis builds on the long heritage of trying to understand stability of
ecosystems, and the more recent use of dynamical modelling and specifi-
cally General Lotka-Volterra equations for this purpose. A contested issue
in ecosystem research is the role of complexity in facilitating stability. Com-
plexity being an intuitive but not strictly defined concept including among
others number of species, amount of interactions, and structure of interac-
tions. Irrespective of the role of complexity for ecosystem stability there is
general agreement that there are limits to stability, in terms of some prop-
erty, at which point an ecosystem if pressured beyond it will transition to a
qualitative different state.

This thesis shows that, contrary to previous conception, there are more
limits of stability than one. The new limits revise the important transition
points of an ecosystem and differentiate between different types of stability,
which in turn have differing responses to disturbances of equal magnitude.
Species extinctions are found as a mechanism to prevent collapse of an entire
community and collapse is found to be divided into two types. Further,
these stability aspects are found to hold when spatial extension is modelled
explicitly. With spatial extension homogeneous landscapes are shown to
enhance robustness by a larger spectrum of dynamics and in the limit of high
dispersal heterogeneous landscapes can facilitate much higher complexity.
The thesis also exposes certain types of constraints on the structures of
interactions among species that have a large influence on the stability limits.
Together these results give indication of important local and global features of
ecosystems which determine response behaviour and stabilising dynamics
to a high degree, important when analysing systems and assessing their
vulnerability in face of environmental pressures.

Keywords: Ecosystems, Complexity, Stability, Extinctions, Collapse,
Dynamical systems, Population dynamics, spatial heterogeneity, dispersal
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CHAPTER 1

Introduction

The world of living organisms, their interrelations, rhythms and harmonies
have interested humans since time immemorial. We have sought to learn
of our natural surroundings both to survive and utilise it, as well as under-
stand ourselves as humans in relation to it. Today, our enormous capacity to
harness natural resources, shaping our surroundings in the process, adds
inquiries into how living nature sustains itself and acts under changing cir-
cumstances as important goals. Important that is, if we wish to keep natures
harmonies while continuing to utilise its products.

Ecosystem is the word we use today for the living nature around us, coined
by Arthur Tansly in 1935 [1]. It is defined as the complex of living organisms,
their physical environment, and all their interrelationships in a particular
unit of space. Despite our long history of interest in living nature Ecology
as a discipline is rather young. It transitioned from a more descriptive sci-
ence to its modern form, in terms of a search for mechanisms of synthesis,
functioning and, degradation during the late 19th and 20th centuries. Partly
because humanity’s influence on ecosystems was already quite apparent in
the wake of the industrial revolution.

With humanity’s increasing impact in mind, a focus in modern ecology is
on ecosystem stability and biodiversity, and specifically their conditions and
mechanisms. The early paradigm view was that complex ecosystems with a
large number of species and interactions among them, are more stable than
less complex ones. This was theorised to be because of less reliance on spe-
cific keystone species [2] and functional redundancies [3] - the more species
and interactions the more room for the system to manoeuvre if perturbed or
pressured. Observations also seemed in favour of this view, complex ecosys-
tems were not seen to fluctuate in species abundances as radically as less
diverse systems. For example, agricultural mono-cultures appeared more
prone to pest invasions than complex tropical forests like the Amazon [4]. In
addition, mathematics was entering ecology and arguments based on the
stability of interaction modules including a few species extrapolated to larger
systems and information theory, were used to posit a positive relationship
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between stability and complexity [5].

The introduction of mathematics into ecology was pioneered by MacArthur
and Wilson. In their "Theory of Island biogeography" for example, they
used curves of emigration and immigration and argued that ecosystems will
equilibrate at the intersection, which can then be used to predict biodiver-
sity [6]. Another influential mathematical approach was the application
of dynamical systems theory and differential equations to model species
populations. Alfred J. Lotka and Vito Volterra separately and simultaneously
found cycles of fluctuating predator and prey populations in a two species
model [7, 8], made famous under the epithet the Lotka-Volterra model.
Although useful to illuminate possible dynamical behaviours of interactions
between a few species, the dynamical models become intractable when
systems grow to the size of entire ecosystems.

In 1972 Robert May expanded population dynamics beyond a few species,
while retaining a means of analysis by the use of random matrix theory
[9]. He posited a random network of interactions among species, where
the strengths of the interactions and which species were to interact, were
randomly chosen [10]. With this model he showed that complexity, in terms
of species diversity, amount of interaction and strength of interactions will
destabilise a system. This was in opposition to the ruling paradigm of positive
stability-complexity connection and spurred a still ongoing debate of the
role of complexity in ecosystem stability.

One of the blatant departures from real ecosystems in May’s model is also
the feature giving it strength in terms of analysis, the random interaction
structure. Since we do in fact observe highly diverse stable ecosystems we
might speculate that a key to stability is the structure of interactions lack-
ing in May’s model. Thus comparing specific structures of interaction to
the random model has been a fruitful way to test their stabilising effects
[11, 12]. Many features conducive to ecosystems stability have been found
by such comparisons, examples include trophic structures [13], compart-
mentalisation [14], large number of weak interactions [15], and allometric
species properties [16, 17]. Some features are contested such as nestedness
sometimes shown to be stabilising [18], sometimes not [19]. In other studies
features are shown to be either stabilising or destabilising depending on pa-
rameter choices [20]. However, despite the stabilising effects of such features,
complexity as destabilising rather than stabilising in most cases still remain.

Another rather blatant departure from real ecosystems present in May'’s
model but also in the dynamical models including more realistic species
interaction structures and functions, is the lack of space. Ecosystem fea-
tures such as species interaction strengths and abundances are thought of
as averages of an ecosystem spread out in space, with the assumption that
intrinsic differences in such features are not operative for system behaviour.
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In contrast to this assumption meta-community studies modelling a species
community as local populations connected by dispersal, have found asyn-
chronous species abundances within the system to prevent extinctions [21].
The local populations act as buffers. With the same reasoning, high dispersal
leading to synchronisation of local populations have been found to increase
the risk of extinction [22]. Although such studies include either single or
few species they do highlight a possible stabilising effect unaccounted for in
ecosystem models without spatial dimension.

An active research area is now combining the insights from these two
strands of modelling and filling the gap between high diversity spaceless
models and low diversity spatial models. We now know that intermediate
dispersal rates promotes higher diversity, mirroring its conduciveness to
prevent extinctions in single species models [23, 24]. It has also been found
that chaotic dynamics supported only in spatial extension can allow an
ecosystem as a whole to have higher complexity than predicted possible by
May [23].

1.1 Motivation, aim and contribution

With humanities increasing ability and propensity to utilise and affect the
worlds ecosystems the instrumental value of knowledge of ecosystem func-
tioning is increasing. In order to for example manage our fishing without
depleting the stocks [25] or make informed judgements on boundaries of
nature reserves [26], and an abundance of other issues, knowledge of func-
tioning, response behaviours, transition points, and conditions for stability
and biodiversity of ecosystems is desirable. On top of this enormous instru-
mental value tough, I believe gaining knowledge of the conditions and ways
of our fellow life has intrinsic value. It is simply fascinating to know about
the world around.

May’s paper has been hugely influential in the field of theoretical ecology.
Since it’s conception to this day May’s work has functioned as a reference
point either expanding the model [26-30] comparing against it [31-34], con-
firming its conclusions [35-37], refuting them [38-40], discussing it [41-43],
or highlighting it’s shortcomings as a model for real ecosystems [13]. But
May'’s framework used a specific way of defining stability. In reality there
are multitude of ways an ecosystem can be said to be stable, some stability
concepts enhancing, some decreasing for the same ecosystem features [44].

The aim of this thesis is to add to the knowledge of ecosystem response
behaviours by expanding the stability analysis of two of the most influential
models in theoretical ecology, May and General Lotka Volterra.

The issue of stability concepts is raised in Papers A and B, where we show
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that including several stability concepts in the analysis of May’s model leads
to a new mechanism of stability and consequences for ecosystem behaviour
and diversity. Specifically, in paper A we find that single species extinctions
always occur at lower complexities than May predicted which introduces
an additional phase of novel ecosystem response behaviour. Paper B in
addition locates global species interaction structures with a large effect on
the new phase of single species extinctions. In Paper C and D we extend
the model to space and bring the insights from Paper A and B to a spatial
setting. We investigate homogeneous space in paper C which is found to
widen the response behaviour of an ecosystem leading to additional ways to
stay stable. In paper D we have heterogeneous space with high dispersal of
species making it possible for an ecosystem to sustain both higher local and
global complexity.

1.2 Disposition of thesis

The thesis consists of three content chapters and four appended papers.
Chapter 2 gives the necessary background for the papers, in terms of theory,
concepts and research context. Chapter 3 contains motivation for the four
papers as well as summaries of results and discussions. In chapter 4 the
results of the entire thesis is discussed together with conclusions and an
outlook for future research.



CHAPTER 2

Background

In this chapter I present concepts, definitions and dynamical models used
in my research, starting with the most common stability concepts in section
2.1. In section 2.2 I introduce dynamical models of ecosystems and technical
definitions of the stability concepts from section 2.1. In section 2.3 I present
the interactions of ecosystem represented as matrices and the representation
of interaction structures. Section 2.4 is dedicated to May’s framework and
it’s relation to the research field of theoretical ecology. In the final section
2.5 1 show how we introduce spatial dimensions and dispersal in the model.

2.1 Stability

The complexity of ecosystems makes the concept of stability an impossi-
ble phenomena to capture in a single definition. All would agree that an
ecosystem returning to the same state after a disturbance is stable, likewise
a devastating loss of all species after a disturbance would render it unstable.
But there are countless ways a complex system can react between these two
extremes. For example, would an ecosystem that recovers from a distur-
bance such as a drought but with the abundance of some species drastically
reduced while others increased be said to be stable? How about returning
to the former abundances but after several years? Or, all species returning
to almost the same abundances while one goes extinct? All such different
ecosystem responses and behaviours have led to a multitude of stability
classifications such as resilient and robust. Although, even with stability
broken down in this way what is regarded as stable is not always apparent. In
the examples above, the two first scenarios are generally said to be stable, the
first system robust the second resilient. The third on the other hand would
by some be labelled robust, keeping its general appearance, while others
would classify the loss of a species as a mark of instability.

Out of the many stability concepts the most commonly used are robust-
ness, resilience, invasibility and variability. Robustness is the ability of a
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Stability concept Definition

Ability to uphold characteristic/important fea-
tures when perturbed

Return/return time to equilibrium state after

Robustness

Resilience -
perturbation

Invasibility A new species ability to invade

Variability The variation of species abundances over time
Change in any system characteristic except ex-

Permanence . .g ¥ Sy p
tinctions

Table 2.1: The table lists the most common concepts of stability in ecology.

system to uphold characteristic features of interest when perturbed or pres-
sured. Because of the unspecific definition robustness can be measured in
different ways, one example is a system’s propensity for cascading secondary
extinctions after a species removal [40]. Resilience is the ability of a system
to return to the same state after a perturbation [45], sometimes including the
time of return [46]. An ecosystem is termed invasible if it is susceptible to
successful establishment of foreign species [47] and variability is a measure
of fluctuations in species abundances [41]. In table 2.1 stability concepts are
listed with short descriptions.

A subtlety when employing stability concepts is that they in turn refer to
concepts of state. Ecosystems are not static, species abundances and interac-
tions fluctuate, because of fortuitous reasons or more ordered, for example
seasonal ones. A usual way to handle this is to think of some equilibrium
"normal" state, whether it be oscillating dynamics or fixed abundances, and
fluctuations around it. In this thesis an ecosystem state will refer to such an
equilibrium state.

2.2 Dynamical models

A common way to investigate ecosystem stability, and the approach used in
this thesis, is dynamical modelling (population dynamics), using differential
equations to model species abundances over time. The most general form
can be stated as

dx;

N
=R+ DGy xw), 2.1)
j=1

where x; are species abundances, R; and G;; are functions for intrinsic
growth rate and the interactions among species respectively for each species
i =1,2..N. R; and G;; are in some cases split up, for example dividing R;
into separate breeding and mortality functions. Similarly G;; is sometimes
split up when treating food-webs (only including predator and prey interac-
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tions) with differing functions for when a species acts as prey or predator [48,
49]. For example, using a function for predation which takes the predators
limited capacity of processing food into account called Holling type II, or
Holling type III adding extra difficulty of finding prey when their abundance
is low [50]. Making each interaction type explicit with a specific function
can capture dynamics more realistically, although the cost is in analytical
tractability.

One of the most widely used dynamical models is the Generalized Lotka
Volterra (GLV) set of differential equations

da X;

W :xl-fi(x) (22)

where f =r+Ax. Here r is avector of intrinsic growth rates (assuming R;(x;)
to be linear) and A is an adjacency matrix coding the interactions among
species, discussed in more detail in section 2.3. This general dynamical
model thus assumes static interactions among species which do not depend
on abundances, such as a predator’s shifting of preferred prey if prey abun-
dances change or as in Holling type II predators not being able to reap the
benefits of a large increase in prey because of food processing limitations.

In terms of presentation it can be useful to explicitly separate the intraspe-
cific interactions (diagonal of A), which is competition within a species, from
the other interaction terms in the matrix. Giving the equation in its usual
appearance

dx,- ( xi) al
—— =TI X; 1—— +Xi Z Aijxj, (23)
a Ki J=Lj#

where the diagonal of A is set to zero. The intraspecific interaction term
—1/K; makes a species self-stabilising by inhibiting exponential growth in
the absence of interactions with other species (in case of positive r;). K; is
called the carrying capacity, setting the limit for a species abundance.

The GLV equations allow for different types of dynamics, including limit
cycles (patterns of oscillating species abundances), chaotic dynamics and
fixed-points where the species abundances do not change over time. The
focus for larger systems has for the most part been on the stability of fixed
points, because of the connection to May ’s stability analysis discussed in
section 2.4 and for analytical tractability.

The equilibrium state of an ecosystem in theoretical ecology often refers
to fixed points of a dynamical model. For the GLV equations the fixed points
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are

© N (2.4)
i
x;= . (ri +ZlAijx;'.‘).

]:

As can be seen from these solutions different extinction patterns, where xf=
0 means a species i is extinct, leads to 2V fixed-point solutions for a system of
with N species (since the linear systems of non-extinct species have unique
solutions). These fixed points can be either stable or unstable. A natural
assumption often made when the system is interpreted as an ecosystem is
that all species are extant (non-extinct) x; > 0 for all i. Such a fixed point is
called feasible. Regions of feasibility have now been rigorously mapped [51-
53] and in paper I we will show that dropping the assumption of feasibility
changes the behaviour of the ecosystem, radically transforming the stability
analysis.

All papers in this thesis makes use of three stability concepts when
analysing the GLV model, local stability, structural stability and persistence.
The first two are technically defined versions of resilience and robustness
respectively, while the third is mainly a technical measure not corresponding
to any of the stability concepts listed in table 2.1. The three stability concepts
are presented below.

2.2.1 Local stability

The most common type of stability for a fixed-point of a dynamical model
is local stability, which is the return to the exact same state (species abun-
dances) after a perturbation. Local stability is based on a linearisation around
the fixed-point, therefore the epithet "local", which leads to a differential
equation for a small perturbation 6 x from the fixed-point

0x=Jox, (2.5)

dx;j
where ] is the Jacobian of the system, J;; = ;. The Jacobian for the system
i)

X
in3.1is

14

N
r.
fz'j=5ij(ri—Z%xi+ZAikxk)+xiAij, (2.6)
k=1

where 6 is the Kronecker delta (equal to one when i = j and zero otherwise).
Assuming we are in a fixed point where all x;* # 0 the Jacobian can be reduced
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to the more common form
J=X*(A-D), 2.7)

where X* and D are diagonal matrices with x; and r;/K; on the diagonal
respectively.

The solutions of equation 2.5 for perturbations around a fixed point
are 6z; ~ e’i' in the diagonal basis, giving the perturbations as 6x; =
Z;V:l a;;0z;, where a; are eigenvectors of the Jacobian and columns in the
matrix a; ; and, A j are the eigenvalues. From these solutions we see that
the real part of the eigenvalues need to be negative for a fixed point to be
locally stable. If any of the real parts are positive, perturbations will increase
exponentially in time and the fixed-point will not return to the same state.

As mentioned in the section 2.1, in some studies resilience refers to the
time for a system to return to its initial state after a perturbation. In such
cases resilience is measured by the magnitude of the least negative real part
of the eigenvalues. Less negative eigenvalues lead to longer times for the
perturbations to die out. If the return time is not measured but rather the
ability to return is thought of as resilient, a stable fixed-point is a resilient
state.

2.2.2 Structural stability

Structural stability is one way of representing robustness. In theoretical
ecology it is defined as the size of the parameter region of a system where
the fixed points are qualitatively similar [51, 54]. Qualitatively similar is not
strictly defined but in general means not too large changes in species abun-
dances, moving from fixed point to another type of dynamics (cycles, chaos
etc.) or switching to a fixed point with extinct species. The parameters in this
case refer to intrinsic growth rates, carrying capacities, average interaction
strengths, increase in amount of interactions between species or shift in
interaction structure. Structural stability thus measures how likely a system
is to change radically in response external perturbations. An example could
be how likely it is that an ecosystem will change qualitatively if experiencing
aflood or, a permanent shift in some external factor such as currents lead-
ing to more nutrients (all intrinsic growth rates increase). For example in
[51] the size of a region without extinction in the space of intrinsic growth
rates r is used to measure structural stability. In papers A, B and C, but
specifically in paper A we define structural stability in terms of an interaction
strength parameter, but also generalise the findings to structural parameters
in general.
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Stability concept Definition

System returns to fixed-point after small pertur-
bations in species abundances

Fraction of species out of an initial number of
species present at the fixed-point

size of parameter region which leave the system
fixed-point qualitatively unchanged

Local stability

Persistence

Structural stability

Table 2.2: The table lists the three stability concepts we utilise in papers A and
B.

2.2.3 Persistence

The third stability concept we use is persistence. Persistence is measured as
the fraction of extant species at a fixed-point for a specific choice of model
parameters (73, ¢, K; etc.) compared to an initial starting amount, N. This
measure has mainly been used in simulation studies, although in some cases
in comparison with empirical systems. In the latter context if a stability
analysis of an actual system has a persistence smaller than 1, something is
missing in the analysis or representation of the system since obviously all
species in the measured ecosystem are extant. Or, an empirical system is
said to be more stable if it has a larger persistence when parametrised and
represented as a dynamical system.

2.3 Networks and topology

The structure of the network of species interactions has a large influence on
the stability of a system modelled as a dynamical system. The interaction
network is represented by the matrix A in equation 3.1. Each species in
the ecosystem has a row in A and the columns are the possible interaction
partners (usually all species, making A an N x N matrix, where N is the
number of species). An interaction between two species is represented by a
non-zero entry in the intersecting rows and columns of the two species, see
figure 2.1.

There are different types of interactions between two species, either the
interaction can benefit both species (mutualistic), be detrimental to both
species (competitive), benefiting one but detrimental to the other (predator-
prey, parasitism), having negative effect on one but none on the other (am-
mensalism), or positive effect on one but none on the other (commensalism).
The effect on a species is coded for by the sign and magnitude of the entries
inits row in the interaction matrix, see figure 2.1. Since the interaction matrix
can code for interactions of any type, flower-pollinator, competition for light,
symbiosis of bacteria and plant (although assuming all are fixed averages
with the same functional form), the interaction matrix does not inherently

10
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have a unit. The entries of A can represent for example magnitudes and
directions of biomass, or energy (which are the usual ones).

In addition to type of interaction between any two species the network
matrix as a whole can have a range of topologies, meaning structures of the
interactions. For example a food-web is generally not flat, where anyone
species can prey on any other, but structured into hierarchies [13]. Plants, ab-
sorbing energy from the sun are classified as primary producers. Herbivores,
eating the primary producers classified as primary consumers, predators eat-
ing primary consumers are called secondary consumers and so on. Predators
also tend to prey on animals in a range around their own size and more often
on prey smaller than themselves, adding to the structure of the network.
Other types of topologies include modular, which means species having
more and stronger interactions within subgroups of the whole system [20]. A
typical feature in pollination networks is nestedness [18], meaning specialist
pollinators tend to interact with flowers that are subsets of the interaction
partners of less specialist pollinators. Schematics of network topologies in
matrix form are shown in figure2.1.

Ay 0 Ay Ay Ay 00 Interaction types
Species 2 is affected by —3 | Ay Ay 0 Ay Asz Asg Aoy Species i=1,2...7
0 A 32 ‘433 ‘431 A 35 Af![i 1437 - O - O O O
_ - .- -
A — Ap A Ay Ay A Ag 0 - 0 0
il + + — - 0 0 +
A5 Asz Asy Ass Ass Ass Ast ? 0 + - - 0 "
0 As O 0 0 Ag O wl - + 0 + - = 4+
3
An A A 0 Ap Ay Arx g0 + + + + - O
@ + 0 0 - + -
Nested Hierarchical Modular
Flowers f Decreasing body size —p Species i=1,2...7
An Ap A Au Ais A Ay ) [An 0 0 Ay Ay 0 0 (An A, 0O 0 0 0 0}
@
An A Ay Ay Ay Ay O E 0 Ay» O 2 Ay O Ay Ay 0 Ay A O 0
Ap Ap Aw Ay 0 0 0 Z | 00 0 Ay Ay _o|_ o S0 0 Ay Ay As 0 O
p|An A As 0 0 0 0 2| An An Aw A A5 O 0 Nl 0 0 Ay Aw A5 0 O
S|4 Az 0 0 0 0 0 S| A An A Au 0 0 Ay Lo 0 Ay Ay 4s 0 O
; @
E|4n 4z 0 0 0 0 0 8§10 4 0 0 0 Ay O § 0 Ap 0 0 0 Ag Ag
g
£l4n 0 0o 0o 0o o 0 Elo 0o 0 0 4 0 An) Slo 0o 0o 0 0 Ay An|

Figure 2.1: Matrix representations of interaction networks of species. The
top right panel displays the sign structure of the five different interaction types
mutualism (blue), competitive (yellow), predator/prey (purple), ammensal-
ism (pink) and, commensalism (green). Bottom matrices are visualised with
columns and rows organised to best show their different topological interaction
structures: nested, hierarchical and modular.
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2.4 May’s framework

The contributions of papers A and B mean to elucidate and reevaluate some
aspects of the "point of reference"-paper of May and in this way theoretically
expand the response behaviour of a system when perturbed. A visualisation
of the research context (mainly for paper A and B) and the influence of May’s
paper on the field of theoretical ecology can be seen in figure 2.3.

May’s model in its original formulation is based in dynamical systems
theory, uses the concept of linearisation around a fixed point and local sta-
bility, but does not specify a system (any dynamics). Instead the form of the
Jacobian was proposed directly as

Ju=0A—1. (2.8)

The ingenious step in May’s analysis was to assume the interaction matrix
A is arandom matrix, meaning interaction partners are randomly chosen
and the non-zero entries are drawn from some distribution with mean zero.
This is ingenious since the spectrum (all eigenvalues) of a random matrix
is known from random matrix theory [9]. This spectrum only depends on
aggregated knowledge such as the mean and variance of the distribution of
the entries of A and its connectance c, which is the fraction of all possible
links in the network which are realised. In May’s framework an entry is drawn
with probability ¢ from a distribution with mean y = 0 and variance 1. The
variance is set to one so that the parameter o in equation 2.8 can be used for
tuning the variance of A.

The spectrum of an N x N random matrix (with mean y =0 and variance
o) is a uniform disc in the complex plane centred at zero with radius o+/cN.
For local stability all real parts of eigenvalues have to be negative. With a
shift in the spectrum from the identity matrix in Eq. 2.8 together with the
radius o v/ ¢ N this means a stability boundary can be located at ¢ =1/+/cN.

From the model the conclusion can thus be drawn that there is a limit
to how complex a system can be (in terms of the parameters o, ¢ and N)
and still retain stability. Since we do see highly diverse and stable systems in
nature, and random structure of A is not a very plausible biological structure
of an ecosystem, May remarked, it must be some extra structure that acts to
stabilise a system. He therefore proposed that random interaction matrices
be used as null models to compare to matrices with specific structures in
order to evaluate their stability impact. In the years since many such studies
have been done and indeed some features, such as predator/pray structure
have been found to be stabilising [27], in the sense that it increases the limit of
complexity before loss of stability. It is still intrinsic in the model though, that
complexity at some point leads to loss of stability. The fact that complexity
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could play a destabilising role was the main point that ignited the ongoing
stability-complexity debate in ecological research.

The Jacobian proposed by May, ], has a close resemblance to the Jaco-
bian from the GLV equations, /, in Eq. 2.6 (when setting r; = K;) under the
assumption that all species are extant. With the obvious difference that J
includes fixed-point abundances while J; does not. Since it is from the
Jacobian J; that the complexity debate started, and was used as a general
argument that complexity can lead to instability, it is interesting to evaluate
which kind of systems /), can be a Jacobian of.

A first aspect is the randomness referred to earlier and treated in more
detail in chapter 4. A second aspect is the lack of anything referring to the
state of a system e.i species abundances, which is one reason why the con-
clusions can be said to be a representative of all systems. A first approach is
to consider dynamics that would lead to such a Jacobian, devoid of species
abundances. The Jacobian being derivatives (with respect to x;) of Eq. 3.1,
the only way to not end up with x; in the solution is if the differential equa-
tions of the dynamical model are linear in x; or constant. Such dynamics
has been used to model quasi-species [55], but are in general considered too
simple to model species, for example there would be no limiting carrying
capacities which would allow for infinite growth.

If no reasonable model of species growth and interactions can lead to a
Jacobian as in equation 2.7, a second approach is to assume that the inclusion
of species abundances does not affect the stability, i.e that the real part of the
spectrum stays negative. It is quite interesting that such an analysis was not
done until rather recently[53, 56]. They found that indeed the stability almost
never changes (the risk of instability if J; is stable decreases exponentially
with diversity), even though the spectra of the two Jacobians J, and J are
radically different as seen in figure 2.2. A third approach would be to change
perspective and interpret the random matrix A as already including fixed
point abundances. Although, inclusion of fixed-point abundances generally
introduces structure. Yet another structure not accounted for in a random A.

Why more attention was not given to these points in the debate, with their
possibility to undermine the model, is hard to tell. There is one remaining
issue even after the establishment of the stability with and without the inclu-
sion of x}, which is the assumption that all species are extant (also assumed
in [56]). This gap has now been filled [51-53] and is the issue investigated
from different angles in papers A and B. Insights from these papers then
build the basic framework for papers C and D.
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Figure 2.2: The difference between the two spectra of J (including species
abundances) and J,, (excluding species abundances) at May’s stability boundary
oy, is clearly visible. Note though, that all the real parts of the eigenvalues are
negative for both spectra.

2.5 Spatial extension and dispersal

A crucial assumption in modelling an ecosystem as a dynamical system
described by the GLV equations regardless of interaction matrix topology
and feasibility, is the lack of heterogeneity within the system. All ecosystems
have spatial extension making local heterogeneity possible in for example
abiotic conditions, which can lead to differences in local interaction and/or
abundances. The interaction strengths in the interaction matrix in the GLV
as well as the resulting abundances are usually interpreted as averages of a
spatially extended ecosystem.

A way of taking head to internal heterogeneity is extending the GLV model
by adding spatial dimensions and diffusion. Diffusion in such a model is
then meant to model dispersal and migration of species within the system.
The most general form of the GLV equations extended to continuous flat
space with diffusion are

ox;(v, t) W, t)(l— x;(v, t))

ot K;(v)
N
+xi(v, 1) DA (V)x;(v, 1) 2.9)
j=1
d d
2 8x,(v, 1)
+ZZW|: lpq(xiyv)a—v]y
p=lg=1""P q
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where the species abundances x;(v, t), now depend on both time and space,
v. Intrinsic growth rates, carrying capacities and interaction matrix are r;(v),
K;(v)and A; j(v) for species i respectively as in the regular GLV model but also
dependent on space. D; ,,(x;, V) is the diffusion rate which can vary between
species and is a function of species abundances and spatial location. The
number of spatial dimensions is d.

The model in Eq. 2.9 is general and most studies simplify it in different
ways, for example assuming constant diffusion rates in space and indepen-
dence of abundances D; ,,,(x;,v) — D; and using discrete space instead of
continuous. In a discrete space setting the system has patches/sites with
diffusion in between. The species abundances are then averages for each
patch, but can differ between patches. There are many ways to discretise
the Laplace operator, af m , which is diffusion with constant diffusion rates.
One way is shown below for one and two spatial dimensions, (d =1,2)

%xi(v, 1) Xias1p + Xia—1p + Xiap+1+ Xiap1—4%iap

ov,0v, h?

Yp9 Y 2.10)
0%x;(v, 1)  Xian1 + Xig1 —2Xiq

ov? h ’

where £ is the distance between patches. With the above mentioned simpli-
fications Eq.2.9 in two dimensions simplifies to

6xiaﬁ

, B
ot = Ti,apXi,ap (1 I(ll‘Zﬂ)+XlaﬁZAl]aﬁx]aﬂ

(2.11)
+D; (Xi gr1p + Xigm1p + Xiyapar

+xi,a/571 _4xi,aﬁ)/h2;

where a and 3 are indices for the spatial dimensions.

By varying the parameters of the model in Eq.2.11 it can represent a variety
of different natural settings. For example low diffusion rates but constant r;,
K;,and A; j isahomogeneous ecosystem with local communities with limited
exchange. This scenario is used in paper C to investigate stability aspects
when allowing abundances to differ within a system. With high diffusion
rates but different interaction matrices for different spatial locations we can
simulate a well connected ecosystem including different types of habitats,
this scenario is used in paper D.

Diffusion is of course not the only way of modelling dispersal and migra-
tion. Drift is another way which can account for asymmetric movement
[57].
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Figure 2.3: This table gives an overview of the research field of theoretical ecology, including the
influence of May’s 1972 paper [10]. The colours of the columns in the row "Type of interaction" clas-
sifies the studies in their respective columns. Absence of colour indicates either a mixture or that
several types were used. The "Structure" refers to additional topological structure such as modular-
ity, nestedness, hierarchy etc. explicitly included in the interaction matrices. Note that the category
"Other functions", denoting other type of functional responses than the GLV model, also introduces
structure to the interactions but not in the same manner. The column "Topology" refers to studies
only looking at the interaction network, for example studying change in connectance due to species
deletions. Blue citations are studies that in some way discuss May'’s stability limit, in which way spec-
ified by the different letters C (Compare), A (Agree), R (Refute) and E (Explicitly extending). As a last
comment, this table is necessarily skewed, with more detail closer to my own work and incomplete
since the field is broad and diverse, and categorisation tend to lead to some overlap between cate-
gories.



CHAPTER 3

Present work

In modern science no model or method so far can capture all aspects of
systems as complex as ecosystems. To handle such systems instead many
different models and simplifications are used. Out of the myriad of results re-
garding ecosystem behaviour and properties gained in this manner a greater
understanding of the full complex system will hopefully emerge. The pa-
pers I present in this thesis I hope contributes to this myriad, building our
understanding of ecosystem stability, response behaviour and diversity.

There is no doubt that May’s paper has had a major impact on ecological
research, both by elucidating aspects of complexity other than revealed by
empirical observation [2, 4], as well as effects when increasing the size of a
system in theoretical investigations [5]. Many simplifications are utilised in
May’s exposition to obtain his stability limit, some previously mentioned
such as random structure and the lack of spatial extension. Another more
subtle simplification is that stability concepts are lumped together due to
the assumption that all species are extant.

The sections on paper A and B in this chapter presents our work outlining
response behaviours, stability limits and measures when the assumption of
feasibility is relaxed and the three stability concepts (local stability, structural
stability and persistence) are separately taken into account. In paper A this is
done with the basic interaction structures known in the literature. In paper
B with structures we hypothesise to be conducive to structural stability.

Our work in paper C and D presented in the following sections uses the
findings from the previous papers as background knowledge while expand-
ing the model with spatial dimensions and diffusion. In paper C we use a
homogeneous landscape with varying diffusion rates while in paper D the
landscape is heterogeneous and the diffusion is high.
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3.1 PaperA

Motivation

In preliminary investigations of the GLV model we found that the assump-
tion of all species to be extant was routinely violated within the supposed
stable range, implying the systems were not structurally stable as previously
believed. This was substantiated by the existence of studies using persis-
tence as a stability measure [14, 58], since persistence is based on extinctions
and measures the fraction of extant species at a fixed-point for a certain set
of parameters. Although, no comparison to the stability range was done
in these studies. Other studies were using May’s stability limit to compare
with empirical systems [32] and expanding the limit to cover more cases
[27], all under the assumption that a feasible system can always be found.
These inconsistencies were becoming apparent in the literature with a call
for rigorous investigations into feasibility [52, 53, 59, 60].

Research questions and method

The research questions in paper A are, what types of behaviours can a system
exhibit in response to external perturbations in species abundances and
structural parameters? What are the parameter ranges for the different types
of responses? and how can we relate these parameter ranges to real systems?
To address these questions we use the GLV dynamical model and include all
three mentioned concepts of stability (structural stability, local stability and,
persistence) in the analysis. The GLV model that we use

dxi X; N
W—rixi(l—z)-i-axi;f\ijxj, (31)

where x; are the species abundances, r; the intrinsic growth rates, K; carrying
capacities, and A an N x N interaction matrix. The off-diagonal entries of A
are drawn from a normal distribution with mean zero and variance of one,
with probability c. The intraspecific interactions are not included in A (its
diagonal is zero) but represented by the quadratic x; term. The standard
deviation of the interaction strengths can be varied with the parameter o.
Setting r; = K; = 1 we obtain the dynamical system with a Jacobian closest
in form to the Jacobian proposed by May. With this model we can both
theoretically (using linear algebra and order statistics) and with simulations
map regions in parameter space with varying system stability characteristics
and relate the findings to May’s results.
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Results

The first thing established was the generality of extinctions in the GLV model
with random interaction matrices in the previously designated "stable" pa-
rameter region. The extinctions were found to occur in successive single
species events when increasing the parameter o, rather than mass extinc-
tions at some parameter values, as shown for an example simulation in figure
3.1

(Fixed-point abundances)

*

X

T

0.00 0.05 = 0.10 015" 0.20 0.25
o (Standard deviation of interaction strength)

2 2 z 2
1 LTI 1 1
< N * < =<
E i@ EO EO
Sl T -1 -1
252 1 0 1 252 1 0 1 252 1 0
Re A Re A Re A

Figure 3.1: Effects on stability of increasing interaction strength in a complex
system. Example simulation of a system with initial number of species, N =100,
connectance (fraction of realised species interactions), c =0.5, r; = K; =1, and
u = 0 for the mean of the distribution of inter-specific interaction. The plot
shows the species abundances (top) and the spectrum (bottom panels) at locally
stable fixed-points for increasing values of the standard deviation of interaction
strength, o. The first extinction event and collapse are indicated by the blue
lines, and the dashed blue line indicates o ;. Up to the first extinction the system
is in the Strict Stability (SS) phase, where the system is locally and structurally
stable with all N = 100 species extant, x; > 0. Between the first extinction and
collapse the system is in the Extinction Continuum (EC), with successive single
species extinctions preventing collapse. The last phase is Collapse (C), where no
nearby similar stable fixed-points exist. The bottom panels show the spectrum
of the general Jacobian used by May jy, at three the points of interest first o,
oy and o ., with the circle indicating the radius of stability. Note how the o,
both overestimates the first extinction event and underestimates collapse.
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The abundances of the remaining species after an extinction (after a per-
turbation) only adjusts slightly and the community remains locally stable.

We derived the parameter boundary at which the first extinction event
occurs 0 ;. In the derivation we treat the species abundances as stochastic
variables, X;, and find and use their probability density function, fx(x), and
cumulative distribution function, Fx(x). With f(x), F(x) and order statistics
(supplementary material paper A) we obtain the distribution of the minimum
of the set of abundances,

Frin(x)=N(1—F () fx(x)
X—py N-1
Ne—x—u?/208 [ 1 oiv2 ) (3.2)
= -—— e dt ,
o.V2n 2 Jm ),

where the standard deviation and mean of fx(x) are found to be o, =
o/ cN(1—(1—c)u?) and u, = ¢ N u respectively. The first extinction event
o ¢ is located at the o for which the mean of f,,;,(x) is zero.

We also located a second boundary, o.,where the system loses stability
altogether. We did this by predicting the persistence, based on the reduced
interaction matrix (only including interactions for extant species) and com-
bining it with May’s boundary for the reduced system

1
\/chC'

where p, is the persistence at the collapse boundary. The predictions of o ¢
and o are shown in figure 3.2 together with simulation averages.

None of the two boundaries derived coincide with the boundary o, =
1/+/¢ N previously thought to mark the loss of stability. Thus we uncovered
a phase between the two boundaries, the Extinction Continuum (EC), where
a system is locally stable but not structurally stable, or stated in the general
stability terms resilient but not robust.

Since determining the parameter-distance to the collapse boundary is
not possible solely based on macro properties such as number of species
n, standard deviation of interaction strength o, and connectance c, we
constructed a metric, y €[0, 1], from the reduced interaction matrix to place
a system in the Extinction Continuum. The metric in addition to indicating
the parameter-distance to collapse captures the level of structural instability
(figure 3.3), interpreted as the size of o perturbation that would lead to an
extinction.

g,= (3.3)
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Figure 3.2: Stability predictions for complex systems. In the parameter-space
of the standard deviation of interaction strength, there are three phases of
behaviour: Strict Stability (SS), Extinction Continuum (EC), and Collapse (C).
Here we demonstrate that these phases hold across a large range of system
sizes N. The plot shows simulation averages of first extinction events (orange
dots) with one standard deviation error bars, our theoretical prediction of first
extinction (orange dashed line), the complexity limit introduced by May (brown
line), simulation averages of collapse (black dots) with one standard deviation
error bars, and our theoretical collapse prediction (black dashed line). The
width of the Extinction Continuum is indicated by the arrow, note the increase
in width for larger systems. All simulations shown were run with, r; = K; =1,
u =0 for the distribution of inter-specific interactions and a value of ¢ = 0.5 for
connectance in the interaction matrix A.

Discussion

A noteworthy aspect of the collapse boundary, o, is its location approxi-
mately at o, = 1/+/cn (with a slight upward bias), where »n is the number
of viable species in the remaining community. This is because the entries
in the interaction matrix of the reduced community with rn species, are still
distributed according to the normal distribution with a variance of one and
a small but now positive mean. Random matrix theory relying only on ag-
gregate statistics is not incorrect. However, correlations are formed by the
non-random extinction events [61]. Thus, the interaction matrices of com-
munities in the Extinction Continuum are no longer completely random.
The new collapse boundary o, in addition expels some of the previ-
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Figure 3.3: Predicting collapse. The plot shows in the top panel the fraction of
systems for a certain y that found a locally stable fixed point after perturbations.
The systems with varying y values were generated from random systems with
N =70 and N =100, connectance ¢ = 0.5, intrinsic growth rates and carrying
capacities r; = K; = 1, and interaction strengths from a Normal distribution with
u =0, by specifying their standard deviation of interaction strength o. Note that
y reaches values larger than one, this is because it is inferred from the reduced
interaction matrix. The bottom panel shows the fraction of extant species at
the new fixed-point for systems that found a stable state after perturbation.
Here even for small perturbations in the Extinction Continuum some species go
extinct for the system to find a new locally stable fixed-point. Together the plots
demonstrate that a larger y indicates collapse both in terms of a substantial loss
of species (more structurally unstable) and a higher probability of loss of local
stability.
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ous vagueness of a system’s behaviour if pushed beyond it. As mentioned,
oy = 1/V/cN was seen as a boundary to any type of qualitative change,
including single species extinctions. From our analysis we established that
systems crossing o . = 1/+/cn will experience more radical change and ei-
ther transition to limit cycles, chaos or lose a substantial number of species,
thereby living up to its name of collapse boundary.

Thelocation of two boundaries adds an extra phase to the picture of ecosys-
tem stability, where a system is locally stable but not structurally stable. This
phase, the Extinction Continuum (EC), reveals a new stabilising mechanism
where systems can use extinctions to avoid collapse. Since extinctions are far
more common than collapse in real ecosystems, this phase might be more
ecologically realistic than the previous binary phases.

A system’s approach to collapse is radically changed by the existence of
the EC. This also means the behaviour of the eigenvalue with least negative
real part is radically different. The standard way of predicting collapse is
by critical slowdown [62-64], which means a system takes longer to return
to its equilibrium state after a perturbation, when approaching collapse.
This corresponds to the eigenvalue with least negative real part approaching
zero. In the light of this, the behaviour in the Extinction Continuum is very
interesting, since the least negative real part of the eigenvalues fluctuates
just below zero, implying critical slowdown in the entire phase [65]. Thus,
the extra information of y locating a system in the EC is needed to measure
the closeness to collapse. Although, the approach to zero only involves one
eigenvalue at a time in the EC, while at the actual collapse a collection of
eigenvalues have real parts approaching zero. This means, in the approach
to collapse the critical slowing down must be present in many directions in
the n-dimensional space of species abundances.

The fluctuating just below zero of the real part of the least negative eigen-
value in the Extinction Continuum is curious in another aspect than extend-
ing critical slow down. Since the spectrum is the same regardless of which
vector basis is chosen for the Jacobian, this behaviour is carried over to all
other choices of basis (linear combinations of X}, gf= Z]].V:l Qij x;‘f, with 8!
for example representing a vector of functional traits and «;; a transition
matrix). This is curious since the fluctuations will appear to come out of
thin air in other bases, since they do not correlate with magnitudes of the
new variables g* as with species extinctions in x}. This is of course due to us
enforcing a "sticky" boundary, keeping species with abundance zero at zero.
Species extinctions might be an obvious sticky-boundary, but it is an interest-
ing phenomena that could be present in other less obvious but ecologically
important partitionings of a system, for example trait based representations,
leading to seemingly abrupt stability changes in real systems.
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3.2 PaperB

Motivation, research questions and method

The stabilising mechanism found in paper A in terms of single species extinc-
tions, was also found to apply to systems with additional biological structure
found in the literature, such as predator-prey. This naturally spurred the
question if there does exist interaction structures that could impact the pa-
rameter range of the Extinction Continuum or erase it altogether. This is the
main research question of paper B: Are there ecologically relevant interac-
tion structures that significantly change the size or eliminate the Extinction
Continuum? We continue in the same framework as paper A, using the GLV
dynamical model in Eq. 3.1 and locate boundaries in parameter space using
dynamical systems theory, linear algebra and order statistics.
From the fixed-point expression for the species abundances,

oo
X" = ZUPAP 1, (3.4)
p=0

we could hypothesise which kind of constraints/structures in the interac-
tion matrix that would likely lead to significant changes in the range of the
Extinction Continuum. Specifically we hypothesised that constraining the
variance of the row-sums, since the abundances are partly row-sums, in
the interaction matrix would have a large impact. Thus we constructed an
interaction matrix according to A =(1—&)A. + £ Ay, to investigate the change
in Extinction Continuum. Here, A, is a matrix with connectance ¢ and and
entries distributed according to .4(0, 1) where each row has been shifted so
that it sums to zero. A, is a random matrix with entries in the exact positions
as A. and distributed according to .40, 1) and, & is a parameter regulating
the amount of variance in the row sums of A.

Results

As we expected, by increasing the row-sum constraint, (1 —¢), the first ex-
tinction boundary, o, is shifted to larger values. With our construction of
A, and an improved derivation of the first extinction boundary from a first
order approximation in paper A to an exact expression for the variance (o’i)
of the distribution of the species abundances, the stability analysis could
be extended to account for the row-sum constraint and predict the first ex-
tinction and collapse boundaries for systems constrained to any degree. The
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exact expression for the variance derived in paper B is

o.(c,N,0)= EOO (eNo?)’ = _ceNo®_ (3.5)
+ ’ ’ - - ) .
= 1—cNo?

whereas in paper A the first order approximation o (¢, N,0)? = c No? was
used. The extended expression for the variance in systems with row sum
constraints we found to be,

o] p—1
0,(c,N,0, &P =" (cNaZ)’”Z(p_l)u—g)quzwm
=t =k 1 (3.6)
cNo?&?

T 1-cNo?(1—-&p+2)

which can be seen to reduce to the variance for systems without constraint
(Eq. 3.5) when & = 1. Our analytical prediction together with simulation
averages are shown in figure 3.4.

When increasing the constraint on the row-sums the Extinction Contin-
uum is decreased. Although the first extinction boundary never crosses o,
but instead converges to it when £ — 0. This leads to two types of collapse
behaviour in the region of small £. The first being when the system collapses
before any extinction has occurred, a situation without an Extinction Contin-
uum. The second collapse type displays a rapid (unexpected) plummeting of
some species abundances to extinction at o, a short and intense Extinction
Continuum and eventual collapse at o, ~1/+/cn.

Discussion

We show examples in paper B of systems with more structure in their interac-
tions, such as predator-prey, for which the Extinction Continuum is seen to
remain and the first extinction boundary is almost unchanged. The structure
we introduce, in terms of row-sum constraint, has a larger impact because
the entries in the expression for the species abundances, stemming from the
interaction matrix, can no longer be approximated as independent. It is a
constraint of a more global character.

The row-sum constraint is a type of global constraint since it requires a
balance of a species negative and positive interactions with other species.
Other such global constraints are thought to exist in nature, such as energy
[66] or allometric [67] constraints. The effects on extinctions and collapse
of row-sum constrained systems is maybe extra intriguing because of its
resemblance to Damuth’s law, stating that species energy consumption is
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Figure 3.4: Decreasing the Extinction Continuum. The top plot shows aver-
ages from simulations of standard deviation of interaction strengths for first
extinction o 7, with one standard deviation errorbars, for increasing row sum
constraint (1—¢&). Theoretical predictions of first extinction are shown as full
lines and o, as striped lines for systems of size N = 100 and N = 160. The
decreasing width for small & and convergence to o, is clearly seen for both
system sizes. The bottom panels show species fixed point abundances (above)
and the eigenvalue with smallest negative real part (below) for J (blue line)
and Jy, (blue striped line) for example simulations of the two collapse types for
highly constrained systems (£ =0.01). The behavioural phases are marked by
different shades of grey: Strict Stability (SS) before the first extinction boundary,
Extinction Continuum (EC) and, Collapse (C) where no stable nearby fixed-
point exists. Note that Collapse type 1 does not have an Extinction Continuum.
Collapse type 2 abruptly enters the Extinction Continuum at o, and can uphold
stability by single species extinctions until eventual collapse.
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approximately equal for all species, smaller species making up for their
smaller energy consumption/individual by larger numbers [68]. This con-
nection has not been fully explored (interpreting x; as energy use) and is
left for future study, but it does point to the ecological plausibility of such
global constraint which we have shown to have a large impact on a systems
dynamical behaviour and approach to collapse.

An additional interesting aspect of the row-sum constraint is that it does
not give itself away in the spectrum, in contrast to for example predator-
prey structures which stretches the spectrum in the imaginary direction and
compresses in the real [28]. This is why it is an interaction structure that
affects the first extinction boundary but not ;. Systems with a small &
also have a spectrum that does not change when including species abun-
dances in the Jacobian- except when the standard deviation diverges at o ;.
This is in contrast to un-constrained system where the spectrum is trans-
formed by the abundances, as shown in paper A and 2.2. This means that
a sign of system vulnerability to species extinctions demonstrated in [53]
as Re(A,,,,,) & min(x;), no longer holds for systems with global constraints
such as the row-sum constraint.

3.3 PaperC

Motivation

One of the more dramatic simplifications of the GLV model is the exclusion
of spatial extension. Spatial extension is of course always present in real
ecosystems and allow for differentiation in both abiotic factors and popula-
tions within an ecosystem. The usual interpretation of parameters such as
interaction strengths, intrinsic growth rates, carrying capacities and abun-
dances of species in the GLV model are that they are averages of a spatially
extended ecosystem. The assumption is then that fluctuations or differences
within a system in these parameters do not qualitatively affect stability as-
pects of the system. This is a large assumption. It has long been known for
example that the stability of a meta-community is greatly enhanced when
abundances in local populations are not synchronised [21, 22]. This because
alocal decline or extinction in a population can be reversed with the help of
migration/dispersal from other local populations where the abundance is
higher.

Meta-community studies are primary examples where local differences
in abundances have a large role to play and stability evaluation would be
significantly altered if average abundances are used. Meta-community stud-
ies have mostly been performed on single or few species communities [21,
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22, 69, 70] but they point to a mechanism that most likely has an impact in
high diversity ecosystems. With all the knowledge gained from spatially un-
resolved systems, an investigation into the stability aspects of high diversity
ecosystems with spatial extension relating to those results therefore seems
vital.

In the realm of high diversity spatially extended ecosystems it has been
noted in recent studies that chaotic dynamics can be sustained over long
periods of time promoting higher diversity [23, 24]. Mechanism for this
were found both to be the buffering effect of local populations as with the
meta-communities and the impact of different habitats within the ecosystem
where some act as sources of higher diversity for the entire system. Chaotic
dynamics is one piece of the puzzle, remaining to be investigated are the
effects of spatial extension on robustness, resilience, stability limits, and
biodiversity with other types of dynamics.

Research question and method

The research questions for paper C were: How does spatial extension affect
robustness, diversity, and stability limits of an ecosystem in a homogeneous
landscape connected by dispersal compared to spatially unresolved models?
How does the rate of dispersal affect the same aspects? Do different dispersal
rates for different species affect stability?

To answer these questions we use a spatially extended GLV model with
diffusion in discrete space. To look at the bare impact of spatial extension
and its effect on stability we investigate a homogeneous landscape, in effect
we use the same intrinsic growth rates r;, carrying capacities K; for each
species, and use the same interaction matrix 4;;, in all discrete patches.
This means we are still using averages of the whole ecosystem for these
parameters. Species abundances and dynamics on the other hand, we allow
to vary across the landscape. The equations representing this set-up are

aX',aﬂ x',aﬂ N
alt =TiXjap (1——}< )"‘O'Xi'a/jZAijx]"aﬁ
i = (3.7)
+D; (xi,a+1ﬁ + Xig-1p + Xiap+1

+xi,a/y’—1 _4xi,aﬂ)/h2;

where a and 8 are indices for the spatial dimensions. The distance between
patches was set to one, i = 1. The interaction strengths in A; ; were non-zero
with probability ¢ = 0.5 and when non-zero drawn from a normal distribu-
tion with mean —0.5 and variance 1. As in paper A and B the interaction
strength variance (complexity) is regulated by the parameter 2. The diffu-
sion rates D; for each species were drawn from a uniform distribution with a
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mean which we varied from 10~° (low diffusion) to 1 (high diffusion), with
standard deviations in the same order of magnitude. Although we varied the
diffusion rates between species (within the same magnitude) to simulate
different dispersal rates, we kept them constant in space for each species.

We performed a sweep over o and diffusion rates D;, while gathering statis-
tics over four system aspects relating to stability, and cataloguing dynamical
behaviour. The four aspects were A) number of system patches with oscil-
lating dynamics, B) level of synchronisation between patches if oscillating
dynamics, C) amplitude if oscillations, and D) diversity. In contrast to paper
A an B we expanded the dynamics to include oscillations in abundances.
In these cases we do not look specifically at resilience (local stability), al-
though oscillatory dynamics found had large basins of attraction making
the oscillatory "state" resilient, however this was not systematically tested.
All fixed-points are locally stable as in paper A and B. With the inclusion of
oscillations, focus in Paper C was instead on robustness (structural stability),
that is keeping ecosystem properties after perturbations, diversity, and the
upholding or not of stability limits.

Results

The repertoire of dynamical behaviour increases dramatically when adding
the possibility of different dynamics in patches connected by dispersal. This
effect is most dramatic at low and intermediate dispersal rates. Not sur-
prisingly, and as many previous studies have mentioned, at high dispersal
the dynamics in the patches synchronise thereby lowering the amount of
available dynamics. At low and intermediate dispersal the system can have
combinations of different fixed-points, different oscillation patterns, and
combinations of fixed-points and oscillations. In addition, the same oscilla-
tory pattern can be phase-shifted and vary in amplitude across space. Spatial
extension is also seen to promote oscillatory dynamics at all dispersal rates.

We found the increase in possibilities to be a source of robustness. For
example, a perturbation in o for a spatially unresolved GLV in the Extinc-
tion Continuum would lead to extinctions. In a spatially resolved systems
local patches might experience extinctions but be in different fixed points,
preserving global biodiversity. A prominent feature enhancing robustness
and thereby diversity is the ability for the system to experience local oscil-
lations if perturbed instead of switching to a fixed point with lower species
richness as in the EC. If such oscillations are out of phase the global system
effectively stays in the same state. A state which would have bifurcated into
an unstable fixed point in the non-spatial GLV. An example of this is shown
in Fig. 3.5. Diversity can likewise be preserved with a switch to synchronised
oscillations when the diffusion rate i higher, albeit very high diffusion rates
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can synchronise the dynamics to a highly volatile oscillation pattern also
found in the non-spatial GLV. The overall increase in robustness is most
easily visualised with the four aspects of systems stability mentioned earlier
oscillations, synchronisation, amplitude and diversity. These properties are
visualised in o and D parameter-space in Fig. 3.6.

From figure 3.6 we see directly in the diversity diagram that diversity is
higher with dispersal across the whole o span, with a small extra increase at
low and medium dispersal rates. Oscillations are present throughout the o
span, albeit more prevalent atlarge o. Synchronisation is as expected present
athigh dispersal rates, making low to intermediate dispersal better at keeping
global species abundances in a "fixed-point" state due to asynchronous local
oscillations. An additional feature is seen in the amplitude diagram, if there
are oscillations not only are systems more likely to oscillate out of phase
at low and intermediate dispersal rates, they also have lower amplitudes.
This makes such systems more stable in the "variability" stability measure
mentioned in table 2.1 in section 2.1. Together these diagrams show the
increase in robustness and diversity for spatially extended systems.

The enhanced robustness accompanying oscillations make it possible
for a system to cross previous collapse boundary without much change in
species abundances. Fig. 3.5 is also an example of this.

Discussion

In paper C we show the change in stability aspects due to spatial extension
of an ecosystem in a homogeneous landscape. It is clear that aspects of
stability are missed when looking at an average of the species abundances
of a spatially extended ecosystem. We find an increase in robustness, higher
diversity and the ability to traverse previous collapse boundaries.

In light of the results for spatially resolved systems from paper C one might
rightly ask if the insights gained from spatially unresolved systems are now
obliterated. Despite the stability differences between them there are proper-
ties that still remain. For example even though robustness is enhanced such
that a system perturbed can remain in a similar state by local oscillations, if
pressured sufficiently single species extinctions will eventually occur. The
Extinction Continuum still exists as seen from the diversity diagram in Fig.
3.6. For small o prior to the first extinction boundary the behaviour of the
spatially extended and regular GLV are identical (there exists only a unique
fixed point). The effect of spatial extension becomes more pronounced the
higher the complexity (larger y from paper A).
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Figure 3.5: Unsynchronised local oscillations stabilise. The figure shows an
example of a system of N =20 maximum number of species with out-of-phase
oscillations when o is larger than the feasibility limit and diffusion rates are
small (up =1072, o, =0.4up). On the left side on top we show global average
fixed point or oscillation species abundances for a system with small diffusion.
On the bottom we show fixed point abundances for a system with the same
interaction matrix but with no spatial dimension (non-spatial GLV). Both the
global average abundances for the spatial system and the non-spatial are shown
for o ranging from zero to collapse values with an enlargement of the latter part
in the red box. The Green shading in the plots indicate a region where the only
stable fixed point for the non-spatial GLV is with 3 species going extinct. On
the other hand the global average abundances show no change at all (green
area in top left plots). With higher o in the orange region of the non-spatial
GLV (bottom left plot) the system is seen to be structurally unstable, while the
spatial system on top shows little if any structural instability. These systems
behave almost the same with and without a connected space until o is large
enough approaching collapse values. To the right on the green background are
shown example dynamics (for o in the green marked area in the left plots), in
different grid-points for the spatial system (top) and for a oscillatory solution
for the non-spatial system (bottom). We see in the spatial system oscillatory dy-
namics in each grid-point example with the same Fourier spectra, but differing
phases (the panels to the right). Together the different phases and amplitudes
but same frequencies of the local abundance oscillations average to the val-
ues corresponding to an unstable fixed point of the non-spatial GLV. For the
non-spatial system there is a oscillatory pattern, note however the increase
in sharpness in both frequency and amplitude as well as some species going
extinct and reappearing, which is not a biologically realistic or stable solution
for a ecological system.
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The conundrum of natural complex diverse ecosystems that remains re-
gardless of the interaction structure in the interaction network of the non-
spatial GLV also remains in the spatially extended GLV in a homogeneous
landscape. Although, since spatial extension comes into effect at high com-
plexity, with the addition of spatial habitat heterogeneity or external con-
nectedness spatial extension might still be a resolution to the long held
complexity paradox.
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Figure 3.6: Parameter-space Diffusion magnitude vs. s.d. of interaction
strength. The figure shows statistics for 70 systems in diffusion magnitude
vs. standard deviation parameter-space for panel A) Number of grid-points
with oscillatory patterns, panel B) Average maximum phase shift for a species
between grid-points if oscillations (degree of synchronisation), panel C) Aver-
age amplitude if oscillations, and panel D) Average diversity (n). The lowest
diffusion in the diagrams is zero, corresponding to completely disconnected
space (non-spatial GLV) and the largest D; ~1 (up =1,0p =bup,0.3< b <0.4).
Worthy of noting is the lower degree of oscillations and the lower diversity in
the non-spatial systems. It is also clear that oscillations are present in almost
the entire non-feasible region.
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3.4 PaperD

Motivation

From paper C and other similar studies using GLV with diffusion we find that
the possibility of internal dynamical and abundance heterogeneity has a
positive effect on many aspects of stability and diversity [24]. Expanding spa-
tial heterogeneity to include heterogeneity in habitat types (affecting species
interactions) within an ecosystem is another property purported to influence
diversity. According to the Area Heterogeneity Trade-Off (AHTO), for a given
area spatial heterogeneity has a positive influence on diversity except for
very high heterogeneity which correspond to very small areas per habitat.
In contrast to this hypothesis however, an empirical study show a positive
influence on diversity also for the highest levels of heterogeneity [71]. Other
GLV studies including spatial heterogeneity in interactions have found, an
increase in diversity for chaotic dynamics at intermediate diffusion rates [23],
and in the context of stability of communities indicate that high dispersal can
shift May’s complexity limit (assuming feasibility) to higher complexities [26].
However, the link between dispersal effects in heterogeneous landscapes
and species richness/diversity remains unexplored.

Intermediate diffusion has been shown to promote stability and diversity
in a number of studies [21, 72], while high diffusion despite it’s positive shift
of May’s limit, leads to synchronisation (coherence) of species abundances
across the ecosystem which has been thought of as detrimental for diversity
because of a higher risk of extinctions [22]. The high dispersal limit is there-
fore much less explored than spatial models with low and intermediate dis-
persal. Nevertheless, habitat heterogeneity with high dispersal represents a
scenario akin to for example tropical lowland forests like the Amazon. For ex-
ample a recent phylogenetic study suggested that on evolutionary timescales,
the entire Amazon basin should be considered as the meta-community for
local or regional tree communities [73]. A rigorous investigation of diversity
in the high dispersal limit of heterogeneous landscapes is therefore needed.

Research question and method

The main research question of paper D is: what is the relationship between
spatial heterogeneity and diversity in landscapes with high dispersal?

The type of spatial heterogeneity we use in paper D is heterogeneity in in-
teraction structures and/or interaction strengths of interspecies interactions.
Interaction heterogeneity can be thought of as a consequence of abiotic
factors, as for example soil depth or humidity. It is known that interspecies
interactions can have highly non-linear dependencies on abiotic factors
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such as temperature and humidity [74, 75], they have also been found to
better explain biodiversity responses along climate gradients than the abiotic
factors themselves [75].

To model spatially heterogeneous landscapes with high dispersal we use
the GLV equations on a lattice with diffusion as in equation 2.11, with the
difference that we now vary the interaction matrices in space A;; — A;;j op-
This gives the following equations

axi,aﬁ Xi,ap &
a;  itiap 1- K, + Xiap ZAij,aﬁ Xjap

= (3.8)
+D (Xi g1 + Xiam1p + Xiap1

+xi,aﬁ—1 _4xi,aﬂ)/h2,

where we again set i = 1. The diffusion constants are kept equal for all species
and across the grid and high enough to ensure coherence (synchronisation)
in space. Intrinsic growth rates and carrying capacities are set to one for all
species and across space. The interaction matrices are either completely
independent, with random matrices at each patch or have the same non-
zero elements and with correlated interaction strengths with correlations
p €1[0,1]. We also implemented two types of correlations either all patches
had correlated interaction strengths or patches were only correlated with
nearest neighbour.

Results

The first result was that a spatially extended system with spatial interaction
heterogeneity modelled by Eq. 3.8 can in the high dispersal limit be rep-
resented by a regular non-spatial GLV. Regardless of the type or amount of
correlation, from completely random interaction matrices between patches
to all correlated with p = 0.95, the non-spatial GLV with an effective interac-
tion matrix (average over all patches, A;; = Zs Zg A;jqp/G with G number
of patches), captured the entire system’s dynamics

dxi X s 1
W=’fxi(1‘z)+Xi;Aijxj' Y

This creates a bridge between the spatially extended and spatially unresolved
systems’ properties, valid in the high dispersal limit where dynamics across
space is coherent. The interesting part is then the properties of the effective
interaction matrix for the system as a whole A; j- The variance and mean
of the effective matrix determines the stability aspects of the ecosystem, in
effect whether it resides in the EC or not, or where in the EC (its 7). Important
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to note however, is that the effective interaction matrix is only a represen-
tation and does not realistically portray the interactions among species in
the ecosystem, which are better captured by the local interaction matrices
Ajjqp- This is especially important in ecosystems with high heterogeneity.
The variance of the effective interaction matrix for all cases of heterogeneity
are found using the formulas in supplementary material paper D. For the
case of random interaction matrices with connectance c, variance o2, and
mean ¢ in G number of patches we get

E[A;;]=cpu
=[
(3.10)

Varld;)= (0" +u¥(1—c)

=g2.

From this we see that in the limit of a large G the variance of the effective
matrix effectively goes to zero. This is a quite unrealistic but illustrative
example that can harbour infinite local complexity and diversity.

For the case of interaction matrices with connectance ¢, variance o, mean
u and correlation p between all G patches we find

_ o?
Var[Aijp]:E(l-i-(G—l)p) G

Qi
'D. N

With correlations between all patches we find that in the limit of large G the
variance instead saturates at o2 p. How this affects the maximum possible
biodiversity for different values of p is shown in Fig 3.7.

For the case of nearest neighbour correlated, p,, € [0,1], interaction
strengths we get

i aZ(G +22§=_11p”(G—77))
VarlAijp,, 1= G? (3.12)
_ &2
=%

The correlation between neighbours falls off exponentially resulting in a
correlation of p,,, = p? for the next nearest neighbours, ps,, = p3  for
the third nearest neighbours and so on. At a certain number of habitats, the
variance saturates at a level below the p,,,,, with an effective dynamics that
corresponds to the fully correlated case with some correlation p. In the limit
of a large number of habitats G — oo, we get 7, | 0.
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Figure 3.7: Maximum species richness increases with number of habitats
and decreasing correlation. For given values of p, the plot shows the maxi-
mum species richness at May’s limit, o), = 1/+/c N, as the number of habitats
is increased. Starting with a species pool of N;,,;, = 100 for one habitat, the
maximum species richness as habitats increase is N = N;,;; /('7;. Thus, the
function for maximum species richness in terms of number of habitats, G, is
N = N;,;;G (1 +(G— l)p)/o'z. For all systems with nonzero correlations the
maximum species richness will saturate at some level. However, the uncorre-
lated habitats can harbour indefinitely large species richness as the number of
habitats goes to infinity.

In all cases we find that more spatial heterogeneity leads to a smaller
variance in the effective interaction matrix which in turn makes the system
more stable or allows for a larger diversity. Results from simulations for
different values of p for interaction matrices with interaction strength means
u=0and y=—0.5 are shown in Fig. 3.8.

Discussion

In paper D we find clear indications of a positive effect of spatial heterogene-
ity on diversity. The more heterogeneity the higher the diversity the system
can sustain. This might seem like a trivial insight for global diversity in a
heterogeneous landscape, one can easily imagine different species residing
in different areas resulting in low local diversity but high global diversity. Our
systems on the other hand are in the high dispersal limit where global and
local diversity are equal, meaning high diversity in every part of the system.
This maybe able to shed some light on the debate around how forests such
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Figure 3.8: Relationship between habitat heterogeneity and species richness.
For a given value of p, the plots show the mean species richness (with one
standard deviation error bars) resulting from different number of habitats dis-
tributed over nine spatial patches. A given number of habitats corresponds to
an equivalent number of correlated random interaction matrices such that the
means are computed over 50 realizations of these matrices. The two panels
correspond to (A) Mean interaction strength = 0. (B) Mean interaction strength
=-0.5.

as the amazon can support high local diversity of species such as trees [76,
77].

In paper C we found that spatial heterogeneity in abundances and dynam-
ics in a homogeneous landscape increases system robustness, diversity and
ability to cross previous stability limits. This effect was highest at low to
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intermediate levels of dispersal. Although our systems in the high dispersal
limit can have astounding local diversity due to spatial interaction hetero-
geneity the system is less robust because of the coherent dynamics. Spatial
interaction heterogeneity together with intermediate dispersal we might
speculate will lead to robust systems with high global diversity. However,
there seems to be a trade-off between robustness and local diversity.

Our results also reveal a possible solution to the complexity-diversity para-
dox highlighted by May. Including more biologically realistic structures in the
interaction matrices together with realistic spatial heterogeneity might well
lead to a model able to sustain the high diversity we find in real ecosystems.
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CHAPTER 4

Discussion, conclusions and outlook

In this thesis I present work adding to the understanding of ecosystem sta-
bility, response behaviours and diversity using both non-spatial and spatial
dynamical models. The choice to work with a non-spatial model in paper
A and B was almost given by the research question itself. We observed phe-
nomena when simply implementing May’s non-spatial model, that has been
extensively used and referenced for over 50 years, which were not visible
in published studies using it. Because May’s model has functioned as a
reference point for stability of ecosystems and their behaviour in response
to perturbations, a thorough investigation of the discrepancies we found
seemed vital. These discrepancies were also becoming visible in studies at
the time [52, 53, 59].

In paper C and D we added a spatial dimension, inspired by meta-
community studies showing stabilising effects of spatial heterogeneity in
abundances [21, 22] and intriguing preliminary results when combining
interaction matrices. Although additional stabilising mechanisms were
found in the spatial setting the insights from the non-spatial representation
in paper A and B were not overridden but rather extended and complexi-
fied. Together the papers and my thesis main contributions to the field of
theoretical ecology are

¢ It shows that a naive implementation of May’s stability limit, only in-
cluding one type of stability, leads to incorrect predictions of ecosystem
transition points

¢ It expands the theoretical repertoire of ecosystem behaviour in re-
sponse to perturbations, introducing single species extinctions as a
stabilising mechanism to avoid collapse, the stabilising effect of het-
erogeneous local dynamics including local oscillations and, different
types of collapse behaviours.

¢ It provides a metric of parameter-distance to collapse and structural
stability.
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¢ Itshows which interaction structures lead to contraction or elimination
of the phase of resilience and structural instability by mapping all
transition points.

¢ It shows that in the high dispersal limit a heterogeneous system’s dy-
namics can be found by a non-spatial GLV with an effective interaction
matrix

¢ It provides an analytical expression in the high dispersal limit that
shows that higher interaction heterogeneity within a system leads to
higher global and local diversity

¢ It shows that the mechanism of single species extinctions to avoid
collapse does not vanish with spatial extension

The results from this thesis are added to the vast knowledge now gained on
stability by a large array of ecosystem models. The GLV model and GLV with
spatial extension used in this thesis are insightful tools due to their simplicity
and generality in analysis. Simplifications have to be done when modelling
complex systems, but GLV dynamics have many times been accused of be-
ing too simple to capture the complex dynamics of a real ecosystem. Both
quantitative and qualitative. Not without warrant, as mentioned earlier the
interactions are averages over time and space. Space is included to an extent
in our spatial GLV but for example seasonal changes are assumed to have
no impact. The constant interactions exclude prey switching and handling
time as well as predator learning (Holling type II and III), known phenomena
in natural ecosystems. Besides these issues in the model itself, generally all
species are given positive intrinsic growth rates and the intraspecific interac-
tions are assumed negative. Positive growth rates are a natural assumption
for primary producers but a quite precarious one for consumers. Negative
intraspecific interactions are needed in the GLV for stability [78] but their
existence in nature a contested issue [46, 79] and recent models suggest that
age-structure of species might render them unnecessary for stability [80].

Despite the issues raised in the previous paragraph the GLV model has
shown promise both qualitatively and quantitatively. In [81] abundances of
an observed system could be predicted by GLV dynamics, with an interaction
network based on empirical data of pairwise interaction experiments; It has
been shown that more comprehensive models can be mapped onto the GLV
with the right parameter calibration [82], making it possible to use the simple
GLV model for analysis and prediction [25]; Comparisons to data of theoreti-
cal predictions from the GLV can inform where natural communities differ
the most from model interaction networks and thereby hint at evolutionary
selected properties [54].

Comprehensive or not, ecological models and their predictions should
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be handled in the context of the field of theoretical ecology which includes
simplifications of many variations. The risk for model specific results
must be held in mind. For example allowing for adaptive foraging, so that
interactions among species can change have been shown to reverse the
stability-complexity relationship [83, 84], or sometimes reverse it depending
on timescale or modularity [85] in comparison to the GLV. Although shown
for models without spatial extension it is likely that an effect of for example
variable interaction strengths will appear also in spatial models. Another
example of reversal is expanding to higher order interactions including
multiple species [86], although experiments on small microbial communities
have found no stabilising effect from higher order interactions [87]. It is
not an easy solvable problem to evaluate which features can be simplified
without losing the connection to real systems or how to model if most
simplifications have a large impact on results.

The problem of evaluation of all ecosystem models, but especially models
with interaction networks, lies in the limited capacity to compare against
data. Such a comparison is limited in at least two ways, first by the difficulties
in measuring the interactions among species [88], especially non-trophic
interactions. Despite trophic interactions being the "easiest" to measure
with the help of gut-contents, there are examples where gut contents and
observations do not agree [89]. One of the difficulties of measuring regarding
all types of interactions is that it is very time consuming, an aspect making it
even more troublesome validating models with spatial heterogeneity. Then,
either an average over an entire ecosystem is needed, not just data from
alocal area. Or, the spatial heterogeneity (interaction correlations) within
the ecosystem need to be estimated. The intraspecific interactions, which
as mentioned have a large stabilising role in the GLV models (spatial and
otherwise), are notoriously hard to observe/measure [78]. On the bright side
both experimental and natural data looking at single or few species dispersal
and synchronisation of local abundances have been collected for a number
of species [21, 69, 70, 72, 90]. Although generalising these results to high
diversity systems is not given, and similar data for high diversity systems are
naturally harder to gather.

The second reason comparison to data is limited is shared with many
complex systems. It is hard to do controlled experiments to validate theory.
Even if we find the means to track natural diverse ecosystem abundances
and interactions, it is rather unethical to disturb such a system in a controlled
manner to for example see if species go extinct. Another way is of course an
experimental set-up. Such experiments have been done, including the classic
removal experiment [3], which lead to the concept of keystone predator.
Another demonstrated the role of interspecific competition [91], we also find
experiments on single species synchronisation and colonisation [69, 72] as
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well as the role of spatial heterogeneity [71] and how diversity affects stability
in microcosms [92], among others. These are very important contributions
but as of yet they are too few and particular for accurate generalisations to
high diversity ecosystems to be drawn.

A way of getting around experimental set-up and controlled disturbances
to natural systems are "natural experiments". Such experiments are "per-
formed" when a system tracked and measured goes through a change. Sadly,
because of environmental changes and human impacts, many such exam-
ples exist [93-97]. Some of these cases can even be regarded as ecosystem
collapses, in effect irreversible changes in species, biomass, structure or
functioning. Although a great source of "experiments", causes for ecosys-
tem disruptions are usually many and interconnected, effects are diverse
and full coverage of all species and their interactions are often lacking. This
data is indeed invaluable to inform ecosystem management [93], but as for
validation of high diversity population models are seldom comprehensive or
specific enough.

Thus, it is not an easy task to validate or invalidate many of the theoret-
ical predictions. But the game is not lost, large efforts are being made to
collect data from different ecosystems around the globe as well as locating
where those efforts are best placed for largest impact [98]. In addition new
techniques such as remote sensing of biomass can open new avenues of
validation. Remote sensing can for example be used to approximate vege-
tation biomass [99, 100] together with knowledge of faunal biomass linked
to the vegetation [101, 102] or by other means [103] total biomass can be
approximated. Although biomass is not species resolved data it might help
to cover large areas with less manpower.

It is also encouraging to see large amounts of experimental and natural
data gathered in nearby fields such as biodiversity and ecosystem functioning
(BEF) and biodiversity and ecosystem services (BES) [104]. From this we now
know that for example biodiversity is conducive to ecosystem functioning.
Studies looking at species abundance distributions, species area distribu-
tions and related concepts, also commonly compare against data. Despite
some criticism for not spanning large enough areas or enough scales to test
theory properly [56, 105], there are some datasets that are comprehensive
enough for rigorous theory testing [105].

Besides advancing data gathering, advances in modelling are enabling the
use of different types of data to fill some data-gaps. Examples are integrated
population models [106] and state space models [107] to predict future abun-
dances and biologically relevant parameters of single species. Spreading the
data-intake even further to take advantage of the knowledge of life-histories,
phylogenetics and leakage of data between similar species has been shown
to improve predictions of abundances drastically [108]. Such models do
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incorporate dynamics but no network of interacting species. They might
therefore be unable to account for structural instability of communities
which can mean drastic changes due to small disturbances. A combination
of such models and network models could lead to interesting results both
for theorists and practitioners.

The issue of prediction and trusting model results is of course put to a head
in conservation ecology. Conservationist should be careful and perhaps con-
sult several models for indicators of for example collapse and vulnerability,
such as y from paper A, feasibility domain [109], increase in autocorrelation
time and abundance fluctuations [62], analyzing covariation and frequency
distribution of relevant response and effect traits [110] among many others.
Or, justifying the use of simple working models by calibrating against more
intricate ones [25]. Choosing and using all these models is not an easy task
for conservationists and more collaboration between network theorists and
practitioners to inform one another and identify suitable "easy" to measure
proxies would be desirable [98].

I believe we should also try to "theoretically" increase the belief in theo-
retical ecological models. One way would be to construct individual based
agent-based models to confirm aggregated ones such as the GLV. In the same
line of thinking performing a rigorous comparison of stability results be-
tween all types of models simple and comprehensive would also be valuable
in guiding interpretation of all results. An example connected to this thesis
could be adding to the spatial model the possibility of species to switch or
regulate their interactions with other species depending on circumstance,
as for example in prey-switching in accordance with prey abundance. This
could be compared to results from the spatial GLV with uncorrelated local
random interaction matrices, which can be seen as a crude version of this
phenomena (although constant interactions within a local area). In addition
the spatial model where interactions are chosen in a more biologically in-
formed manner would add another version to compare and evaluate against
as well as producing novel stability results.

There is, as usually concluded, much left for future investigations. But, in
the midst of all that can and remains to be done in understanding ecosystem
stability I am glad to have with thesis contributed an eddy to the river of
knowledge.
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