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Abstract
Purpose – The purpose of this study is to develop an optimization method for charging plans with the implementation of time-of-day (TOD)
electricity tariff, to reduce electricity bill.
Design/methodology/approach – Two optimization models for charging plans respectively with fixed and stochastic trip travel times are
developed, to minimize the electricity costs of daily operation of an electric bus. The charging time is taken as the optimization variable. The TOD
electricity tariff is considered, and the energy consumption model is developed based on real operation data. An optimal charging plan provides
charging times at bus idle times in operation hours during the whole day (charging time is 0 if the bus is not get charged at idle time) which ensure
the regular operation of every trip served by this bus.
Findings – The electricity costs of the bus route can be reduced by applying the optimal charging plans.
Originality/value – This paper produces a viable option for transit agencies to reduce their operation costs.
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1. Introduction

The energy crisis and environment pollution caused by
transportation has exacerbated in the past few decades (Guo
et al., 2019), and the importance of developing clean
transportation options has become the general awareness of
governments around the world. As an advanced clean
transportation alternative, electric buses (EBs) have the
features of zero-emissions, low noise level and high driving
stability. They can reduce the urban air pollution emissions
while also contributing to the energy structure diversity,
alleviating the urban environmental pressure and energy crisis
accordingly (Li et al., 2009). Therefore, the deployment of EBs
has been expanded quickly in recent years, leading to the rapid
increase in the numbers of the global EB sales. With China as
an example, the numbers of EBs have been over 10 thousand in
Beijing, Guangzhou, Shenzhen and some other cities. Until the
end of 2020, total 400 thousand EBs operate in China,

accounting for 60% of all urban buses, which makes electric
bus the type with the largest scale among all bus types.
Electric buses need to get charged during daily operation due

to the limitation of short driving range caused by the hurdle of
onboard battery capacity, which makes the electricity costs an
important component of the operation costs of transit agencies.
Hence, creating favorable charging plans to reduce the electricity
costs is an effective way to decrease the operation costs. The
nonlinear increase of electricity consumption rates observed from
the statistical analysis of the real data should be considered when
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transit agencies make bus scheduling and charge plans. This
feature refers to the lower electricity consumption rates per unit
of miles at relatively high state of charge (SOC) level and the
higher consumption rates per unit ofmiles at low SOC level.
Besides, Time-of-Day (TOD) electricity tariff is applicable

to corporations in some cities. Specifically, 24hours per day are
divided into several periods, and electricity consumption will be
billed differently with the periods, being higher in on-peak load
periods which are usually daylight hours and lower in off-peak
load periods which are usually night hours. It is implemented to
incentivize corporations to shift loads to off-peak periods,
reducing the operation costs of the electricity system.
Under the TOD electricity tariff, charging buses only at night in

nonoperation hours (i.e. 22:00pm–04:00 a.m.) would lead to the
reduction on electricity costs due to the lower electricity rate.
However, the battery SOCmight not be enough to support all trips
per day, causing the service interrupt. In addition, without charging
in operation hours, an electric bus has to run at low SOC levels for
some later trips with a higher energy consumption rate due to its
nonlinear increasing feature, increasing the total electricity
consumption and costing more on electricity bills. On the other
side, charging buses in daylight operation hourswouldmaintain the
SOC around a high level, so the bus would run with a low energy
consumption rate, but the electricity rate is higher in the daytime.
Therefore, several factors should be considered comprehensively
including the varying of battery SOC during the bus operation, the
corresponding energy consumption rates and the different
electricity rates, so as to generate the optimal charging plans.
More studies of electric buses have been conducted recently,

mainly on the optimization of charging infrastructure/electric
bus infrastructure planning (He et al., 2019; An, 2020),
lifecycle costs evaluation (Lajunen, 2018; Ritari et al., 2020;
Ma et al., 2021), the electric bus fleet transition problem
(Pelletier et al., 2019; Logan et al., 2020) and the energy
management system (Zhang and Yao, 2015; Du et al., 2016;
Yang et al., 2017; Liu et al., 2017; Du et al., 2018; Vepsäläinen
et al., 2018). Little research effort has been put on the
optimization of charging plans. Qin et al. (2016) simulated
daily charging patterns and demand charges of a fleet of electric
buses in Tallahassee, FL, and identified an optimal charging
strategy to minimize demand charges. Chen et al. (2018)
proposed an optimal real-time coordinated charging and
discharging strategy for a Plug-in electric bus fast charging
station with an energy storage system to achieve maximum
economic benefits. Chen et al. (2020) proposed a
configuration-control integrated strategy to optimize the
number of second-used electric bus batteries to minimize the
overall equivalent annual cost of EBCS (electric bus charging
station). The coordinated charging-discharging power of the
echelon battery system and EBBs (electric bus batteries) was
optimized tominimize the daily electricity cost of EBCS. Rogge
et al. (2018) pointed out that the transition process from
conventional diesel to electric buses faces major hurdles caused
by range limitations and required charging times of battery
buses. They addressed these constraints and provided a
methodology for the cost-optimized planning of depot charging
battery bus fleets and their corresponding charging
infrastructure. Considering TOD electricity tariff, Li et al.
(2017) established the load model of the bus FCS (fast
charging station), took maximize the net income of the bus

FCS system as the objective and then established the economic
model of the FCS. Rupp et al. (2020) presented a new
methodology for optimizing the vehicles’ charging time as a
function of the parameters CO2eq emissions and electricity
costs. Different charging scenarios were defined to analyze the
influence of the temporal variability of CO2eq intensity and
electricity price on the environmental impact and economy of
the bus.
Two issues from previous studies can be summarized as

follows:
1 In most studies, the energy consumption rate of bus

batteries during electric bus operation is assumed as a
constant, which is determined by electricity consumption
models obtained from fitting the laboratory data. Those
data, however, have significant differences from real
operation data. From the analysis of real collected data,
the authors notice the nonlinear discharge characteristic
of electric bus batteries, which indicates the nonlinear
increase of energy consumption rate with the decrease of
battery SOC. This characteristic has an important impact
on the optimization of charging plans.

2 The influence of the stochastic trip travel times on
charging plans has not been considered in previous
studies. Actual bus operation is affected by multiple
stochastic factors including traffic flow conditions,
queuing of vehicles at intersections and passenger flows at
bus stations, which cause the stochastic volatility in trip
travel times. This volatility directly affects bus electricity
consumption and the formulation of charging plans.

To address the above issues, this paper develops two
optimization models for charging plans respectively with fixed
and stochastic trip travel times, tominimize the electricity costs of
daily operation of an electric bus. The charging time at each bus
idle time is taken as the optimization variable. The TOD
electricity tariff is considered, and the energy consumptionmodel
is developed based on real operation data. An optimal charging
plan provides charging times at bus idle times in operation hours
during the whole day (charging time is 0 if the bus is not get
charged at idle time) which ensure the regular operation of every
trip served by this bus. This paper produces a viable option for
transit agencies to reduce their operation costs.
The remainder of this paper is organized as follows. Section 2

introduces the formulation and solving algorithm of the
charging plan optimization model with fixed trip travel times.
Section 3 articulates the formulation and solving algorithm of
the charging plan optimization model considering the
stochastic volatility in trip travel times. Section 4 presents
the verification of the proposed optimization models based on
the case of a real bus route and the results of the sensitivity
analysis. Section 5 provides some concluding comments and
future directions.

2. Model development with fixed trip travel times

2.1 Problem statement
The notations and descriptions of all parameters and variables
used in this section are listed in Table 1.
An electric bus is arranged to serve I trips per day according

to the transit schedules. Here, one trip is defined as a bus
running from the starting station to the terminal station or
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inversely along the one-way route and the schedule departure
time and travel time of each trip are known. Charging stations
are deployed at both starting station and terminal station of the
bus route and an electric bus can choose to get charged there or
not at idle time after each trip. The duration of idle time after
trip i is equal to the departure time of trip i1 1minus the arrival
time of trip i, denoted by ti11 � (ti 1 Ti). The bus can get
charged in nonoperation hours after finishing all trips to get
prepared for the operation of the next day. An integer variable
u i (min) represents the charging time after trip i and u i = 0
when no charging is arranged.
Twenty-four hours per day are divided into J time periods for

the implementation of the TOD electricity tariff, and the
electricity rates between adjacent time periods are different.
The division moment between the j-th period and the j 1 1-th
period is tcj;j1 1 (j = 1, 2, . . ., J-1) and the boundary of the j-th
period tcj�1;j ; t

c
j;j1 1

� �
is denoted by l j. The electricity rate for the

charging arrangement after trip i is determined by the period
where idle time between the arrival time of trip i and the
departure time of trip i1 1 falls into. The bus may idle after trip

i crossing two time periods with various electricity rates. Under
this circumstance, u i equals to the summation of u F

i and u S
i ,

which are the charging times respectively in the former and
latter period within idle time after trip i.

2.2Model formulation
To formulate the optimizationmodel of charging plans, we take
it as the objective to minimize the total electricity costs v total of
daily operation of an electric bus and utilize the charging time at
each idle time u i or u F

i ; u S
i

� �
as the optimization variable.

No matter the battery gets charged or not after each trip, the
requirement of remaining SOC to complete the next trip
should be satisfied and manifested by the constraints of the
model. To be specific, SOCi should be sufficient to ensure the
whole operation of trip i. Besides, if the charging strategy is
taken that a bus gets charged using idle time in operation hours,
it is better to maintain the SOC of its on-board battery within a
judicious range [SOCmin, SOCmax] to keep the battery in the
half-charge/half-discharge status and avoid over-charge and
over-discharge, so as to extend the battery life (Jana et al.,

Table 1 Parameter and variable descriptions

Notations Descriptions Unit

I the number of trips running in one-day operation
i the serial number of trips, 1� i� I
ti the scheduled departure time of trip i
SOCi the battery SOC at the start of trip i %
SOCEi the battery SOC at the end of trip i %
Ti the travel time of trip i min
Qi the electricity consumption of trip i kWh
li the average ambient temperature during trip i °F
P charge power kW
hi the charging time at idle time after trip i without crossing various tariff time periods min
hFi the charging time at idle time after trip i in the former period when crossing various tariff time periods min
hSi the charging time at idle time after trip i in the latter period when crossing various tariff time periods min
J the total number of electrical tariff time periods per day
j the serial number of electrical tariff time periods
Mj the electricity rate in the j-th tariff time period CNY/

(kWh)
Mn the electricity rate in nonoperation hours CNY/

(kWh)
tcj;j1 1 the division moment between the j-th period and the j1 1-th period
kj the time boundary of the j-th period
Tmin the minimum charging time min
SOCmin the lower bound of SOC %
SOCmax the upper bound of SOC %
xtotal electricity costs for charging per day CNY
x1 electricity costs for charging at idle time in operation hours per day CNY
x2 electricity costs for charging in nonoperation hours per day CNY
B battery capacity kWh
tEi the time needed for the battery being charged from SOCEi to SOCmax without crossing various tariff time periods min
tLi the duration of idle time between trip i and trip i1 1 without crossing various tariff time periods min
tEFi the time needed for the battery being charged from SOCEi to SOCmax in the former period when crossing various tariff time periods min
tLFi the duration of idle time in the former period when crossing various tariff time periods, which equals tcj;j1 1 � ti 1 Tið Þ min
tESi the time needed for the battery being charged from the SOC at tcj;j11 to SOCmax in the latter period when crossing various tariff time

periods
min

tLSi the duration of idle time in the latter period when crossing various tariff time periods, which equals ti1 1 � tcj;j1 1 min
Ci the electricity cost for charging after trip i CNY

Optimal charging plan for electric bus

Yuhan Liu et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 2 · 2022 · 123–137

125



2019). Usually, SOCmin takes a value of 20%–30% and
SOCmax of 70%–80%.
Derived from the above description, the optimization model

of charging plans (Model 1) is established as follows:
Model 1:

minv total ¼ v1 1v2 (1)

s: t: SOCmin 1
Qi

B
� SOCi � SOCmax; i ¼ 1; 2; 3; . . . ; I

(2)

The constraints denoted by equation (2) ensure that the SOC
after completing each trip is within the range [SOCmin,
SOCmax].
(1) Calculation ofv1:

v1 ¼
XI�1

i¼1

Ci (3)

Ci ¼ u i � P �Mj=60; ti 1Tið Þ 2 l j and ti1 1 2 l j

u F
i � P �Mj=601 u S

i � P �Mj1 1=60; ti 1Tið Þ 2 l j and ti1 1 62 l j

�
(4)

where (ti1Ti) is the arrival time of trip i, ti11 is the departure
time of trip i 1 1, i = 1,2,3,. . ., I � 1, j = 1,2,3,. . ., J. The
piecewise function illustrated by equation (4) indicates the
calculation of the electricity cost for charging after trip i based
on the judgement whether (ti1Ti) and ti11 fall into the same
period. If they fall into the same period, the energy cost is
calculated using one electricity rate (Mj) as shown in the first
case of equation (4). Otherwise, the costs in two periods need
to be calculated independently with different rates (Mj and
Mj11) and summed together as shown in the second case of
equation (4).
The maximum charging time can be either the time needed

for the battery to be charged to SOCmax or the duration of the

whole idle time. A minimum charging time Tmin is set to
guarantee the effectiveness of each charging arrangement.
Specifically, when the idle time is shorter than Tmin, namely,
ti11� (ti1Ti)� Tmin, the bus will not get charged, which means
that u i (or u F

i , u
S
i ) is 0. Therefore, with regard to the feasibility

of charging plans, the charging time variables u i, u F
i and u S

i can
take only nonnegative integers and their value intervals each are
u i [{0}U[Tmin,min{tEi, tLi}], u F

i 2 0f g [ Tmin;min tEFi; tLFif g� �
and u S

i 2 0f g [ Tmin;min tESi ; tLSif g� �
. Since the bus stops

operating after completing trip I and get charged then in
nonoperation hours during off-peak period, i only takes up to
I� 1 for u i (or u F

i , u
S
i ). The calculations of tEi, tLi, tEFi, tLFi, tESi

and tLSi are expressed as equations (5) – (10):

tEi ¼ SOCmax � SOCEið ÞB
P

� 60 (5)

tLi ¼ ti1 1 � ti 1Tið Þ (6)

tEFi ¼ SOCmax � SOCEið ÞB
P

� 60 (7)

tLFi ¼ tcj;j1 1 � ti 1Tið Þ (8)

tESi ¼ SOCmax � SOCEið ÞB
P

� 60� u F
i (9)

tLSi ¼ ti1 1 � tcj;j1 1 (10)

(2)Calculation ofv2

v2 ¼ SOC1 � SOCEIð Þ � B �Mn (11)

(3)Calculation of SOCi andSOCEi

SOCi and SOCEi are calculated as follows:

SOC1 ¼ SOCmax (12)

SOCi ¼
SOCi�1 1

u i�1 � P=60�Qi-1
B

� 100%; ti�1 1Ti�1ð Þ 2 l j and ti 2 l j

SOCi�1 1
u F
i�1 1 u S

i�1

� � � P=60�Qi-1
B

� 100%; ti�1 1Ti�1ð Þ 2 l j and ti 62 l j

;2 � i � I

8>>><
>>>:

(13)

SOCEi ¼ SOCi �Qi

B
� 100%1 � i � I (14)

SOCEI is expressed as equation (15), deriving from equations
(13) – (14):

SOCEI ¼ SOC1 1

XI�1

i¼1

u i � P=60�
XI
i¼1

Qi

B
� 100%

(15)

where u i is replaced by u F
i 1 u S

i if (ti1Ti)[l j and ti1162l j,
1� i� I� 1.
The electricity consumption of trip i (Qi), which is requisite in

the above calculation, is affected bymultiple factors. TomodelQi,
we analyzed the collected data and selected three independent
variables SOCi, Ti and m i which have the strongest correlation to
the consumption. Accordingly, the electricity consumption of trip i
is estimated as follows:

Qi ¼ b̂ 1SOCi 1 b̂ 2Ti 1 b̂ 3m i 1 b̂ 0i ¼ 1; 2; . . . ; I
(16)
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where b̂ 1; b̂ 2; b̂ 3 andb̂ 0 are regression coefficients from fitting
the actual collected data. Due to limitations of space, the data
collection and the regression of equation (16) are not presented
in this paper and the details will be demonstrated in other papers.

2.3 Solving algorithm
Since Model 1 is a constraint nonlinear optimization model, its
accurate optimal solution cannot be obtained from the normal
derivation. Therefore, we propose an ant colony optimization
algorithmwithmutation to solve themodel.
Ant colony optimization (ACO) is the simulation of the food-

searching behaviors of ant colonies in the natural world. Ants in
a colony initially walk through all paths to search for the food
and deposit pheromones on the paths after finding the
food source. It takes less time for ants to walk between the food
source and their nest through the shorter paths, leading to
higher frequency and then more travels of ants within a unit of
time. Consequently, more pheromones are deposited on shorter
paths, on which more subsequent ants are attracted to search.
Mapping the abstraction of this process into the ACO
algorithm, each path refers to the corresponding feasible
solution of the optimization problem and the pheromone on
each path represents the assessment of the quality of the
corresponding solution, which indicates the degree of optimality
of this solution. The higher pheromone on the path, the higher
quality of the corresponding solution will be demonstrated. The
optimal solution can be achieved by locating the feasible
solution related to the path with the highest pheromone. ACO
has features of high efficiency and robustness as other parallel
optimization approaches (Dorigo andGambardella, 1997).
To apply ACO to solve Model 1, the feasible solutions from

Model 1 are represented by the decision paths of ants, and the
solution space is formed by the set of decision paths of the ant
colony. Specifically, the decision vectors consisted of u i (or
u F
i ; u

S
i ) representing charging times are the decision paths of

ants, denoted byDu . Since the departure times and travel times
of trips are scheduled and known, it is elementary to determine
whether each charging time at idle time takes u i or the
summation of u F

i and u S
i , which is represented by an auxiliary

variable w i expressed by equation (17). When w i = 1, the
charging time is u i, and when w i = 2, the charging time consists

of u F
i and u S

i . The dimension of Du is
XI�1

i¼1

w i. Each ant

constructs one Du and all Du from ants in the colony comprise
the solution space. Since the objective is to minimize v total, the
lower objective value calculated with the Du satisfying all
constraints indicates the higher quality of the associated
solution, which is closer to the optimal solution. A greater
amount of pheromone accumulates on those Du associated
with high-quality solutions. The decision path with the highest
pheromone value will be identified with a positive feedback
effect, in turn achieving the optimal solution with the minimal
v total.

w i¼ 1; ti 1Tið Þ 2 l j and ti1 1 2 l j

2; ti 1Tið Þ 2 l j and ti1 1 62 l j

�
(17)

However, when the number of decision stages and the number
of alternative states in each stage are large, it is difficult to

determine the solutions both satisfying constraints and having
high quality from a large number of decision paths, since it
takes long time to accumulate pheromones and show the
divergence on pheromone values among decision paths. To
increase the computational efficiency and reduce the searching
time, we adapt the mutation procedure from Genetic
Algorithm (GA) to the basic ACO and form a new ACO
algorithm with mutation. The steps of utilizing the
new algorithm are listed as follows:
Step 1: Randomly generate multiple qualified decision

vectors Du . A decision vector which satisfies all constraints of
the optimization model is defined as a qualified decision vector.
In this step, no less than (N1N�G) qualified decision vectors
Du are generated. Here N is the number of ants in the colony
(20�N � 50 usually) and G denotes the maximum number of
iterations. Among all generated Du , N vectors are provided for
all ants in the colony as initial paths and N �G vectors to
ensure sufficient solutions in the global search for searching
during iterations.
For instance, if I = 10 and w i(i = 1,2,3. . ., I � 1) are all

assumed to be 1, then the dimension of a decision vector Du

like [0, 0, 0, 5, 0, 10, 0, 6, 0] is nine. When each u i of it satisfies
SOCmin 1

Qi
B � SOCi � SOCmax, this vector is a qualifiedDu .

Step 2: Initialize decision paths for the ant colony. N vectors
from generated Du are taken as the initial decision paths,
denoted as Dn

u 1ð Þ, 1� n �N. The values of v total associated
with Dn

u 1ð Þ are set as initial pheromone values, denoted by
Rn
u 1ð Þ, 1� n �N. Since the optimization in this paper is

minimization problem, the lower the value of Rn
u 1ð Þ is, the

higher quality of the corresponding solution has.
For example, whenN = 20, 20Du (e.g. [0, 0, 0, 5, 0, 10, 0, 6,

0]) are taken as the initial decision paths for all 20 ants, and the
values of v total associated with Dn

u 1ð Þ are defined as their initial
pheromone values Rn

u 1ð Þ, consisting of the initialization of
ACO (here 1� n� 20).
Step 3: Calculating the state transition probability. The

Dn
u gð Þ; 1 � g � G with the minimum value of Rn

u gð Þ is selected
as the baseline, of which the pheromone value is denoted by R
(g), 1� g �G. The state transition probability of each Dn

u gð Þ
can be obtained by comparing Rn

u gð Þ with R(g), as expressed in
equation (18):

Pn gð Þ ¼
Rn
u gð Þ � R gð Þ
Rn
u gð Þ ;1 � n � N (18)

Step 4: Conducting the local and global search. To avoid the
local optimization, two search algorithms are essential to be
utilized simultaneously including local search to find a better
solution within a small neighborhood of the current solution of
high quality, and global search to restart the search in the global
scope when it is of less potential to find a better solution within
current neighborhood. Here we set a threshold of the state
transition probability P0 to determine whether to conduct local
or global search. Specifically, when Pn(g) � P0, the local search
is carried out since Rn

u gð Þ of the solution is close to R(g), and it
is of great potential to find a better solution. When Pn(g) > P0,
the global search is carried out since Rn

u gð Þ of the solution is too
large and it is not necessary to search in its neighborhood.
Under this circumstance, another qualified vector among Du
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generated in Step 1 is selected for update. The updated Dn
u gð Þ

after the local or global search is denoted asDn
u gð Þ0.

In the local search, a mutation procedure is applied and the
basic logic is explained for the following cases with a randomly
generated value rand within [0,1]. When the value of u i (or
u F
i ; u

S
i ) of the original vector D

n
u gð Þ is 0, the threshold is set as

pm1 where the value of u i mutates to Tmin. To be specific, if
rand � pm1, the value of u i (or u F

i ; u
S
i ) will mutate to Tmin;

otherwise, it remains consistent. When the value of u i (or
u F
i ; u

S
i ) of the original vector Dn

u gð Þ is Tmin, the thresholds are
set respectively as pm2 and pm3 where the value of u i drops to 0
and where the value rises to (Tmin11). If rand � pm2, the value
of u i drops to 0; if pm2 < rand � pm3, the value rises to
(Tmin11); otherwise, the value remains the same. When the
value of u i (or u F

i ; u
S
i ) of the original vector Dn

u gð Þ is greater
than Tmin, the thresholds are set respectively as pm4 and pm5

where the value of u i rises to (u i11) and where the value drops
to (u i�1). Similarly, if rand � pm4, the value of u i rises to
(u i11); if pm4 < rand � pm5, the value drops to (u i�1);
otherwise, the value remains the same. The value of every
variable u i (or u F

i ; u
S
i ) will mutate according to the above logic

and update Dn
u gð Þ with Dn

u gð Þ0. The mutation logic is
summarized in Table 2.
In addition, the values after mutation should be checked by

the boundary conditions of corresponding variables. If the
value of u i (or u F

i ; u
S
i ) after mutation surpasses its upper

boundary, its value will restore to the original one.
In the global search, a new vector Du is randomly selected

from all (N 1N �G) qualified decision vectors generated in
Step 1 and this selected vector is denoted byDn

u gð Þ0.
Step 5: Determining whether ants move. After the local and

global search, the value of v total associated with every Dn
u gð Þ0,

denoted by Rn
u gð Þ0, is calculated and compared with Rn

u gð Þ of
the corresponding original solutionDn

u gð Þ. If the new solution is
better than the original one (Rn

u gð Þ0< Rn
u gð Þ), then

Dn
u g1 1ð Þ ¼ Dn

u gð Þ0, indicating that the ant moves to a new
path; if the new solution is worse than the original one
(Rn

u gð Þ0� Rn
u gð Þ), then Dn

u g11ð Þ ¼ Dn
u gð Þ and Rn

u gð Þ0 restores
toRn

u gð Þ, indicating nomovement of the ant.
Step 6: Updating the pheromone values. The pheromone

evaporation rate is denoted by r . (1�r) in turn represents the
residue of the pheromone. The updated pheromone value is
achieved by decreasing the pheromone value of the original
solution through evaporation and increasing the value associated
with the updated solution, as expressed as equation (19):

Rn
u g1 1ð Þ ¼ 1� rð Þ � Rn

u gð Þ1Rn
u gð Þ01 � g � G (19)

Step 7: Conducting the iteration. A threshold for iteration
numbers is set as G0. When g does not reach to the
maximum number of iteration G or the optimum varies within
the consecutive G0 times of iteration, go back to Step 3 and let
g = g 1 1. When g reaches to G or the optimum remains
consistent for the consecutive G0 times of iteration, stop the
iteration and go to Step 8.
Step 8: In the last iteration, theDn

u gð Þ of the minimum Rn
u gð Þ

is the solution with the highest quality, namely, the optimal
solution. The corresponding v total value is the minimum
electricity costs for charging.

3. Model development with stochastic trip travel
times

3.1Model formulation
In the real transit operation, due to the interference from
multiple stochastic factors such as road traffic flow states,
queuing status at intersections and passenger flows at stations,
instead of fixed travel times, the actual travel times are usually
reflected by the fluctuations around scheduled travel times.
Therefore, the stochasticity of the actual travel time Ti of trip i
should be considered and Ti is assumed to follow a normal
distribution of which the mean is b i and the variance is s2

i ,
denoted byTi�N b i ;s

2
i Þ

�
.

With the account of the stochasticity of travel times, the
objective function and constraints will contain a random
variable representing travel times, which leads to the
formulation of a typical Stochastic Chance-constrained
Programming Model (SCCPM) (Charnes and Cooper, 1959)
in this paper. In SCCPM, the solution is allowed to break the
constraints to some extent, but the probability that the solution
satisfies the constraints should not be lower than a certain
confidence level. Thus, Model 2 is achieved by modifying
Model 1 according to the above description:
Model 2:

minv total (20)

s: t: Pr v total � v totalf g � b (21)

Pr SOCmin 1
Qi

B
� SOCi � SOCmax

� �
� a; i ¼ 1; 2; 3; . . . ; I

(22)

where a and b are the preset confidence levels, v total is the
objective function, v total is the minimum value of v total when the
confidence level is greater than or equal to b ; Pr v total � v totalf g
represents the probability measure for the condition v total �
v total and Pr SOCmin 1

Qi
B � SOCi � SOCmax

n o
represents the

probability measure for the condition SOCmin 1
Qi
B � SOCi �

SOCmax.

3.2 Solving algorithm
There are two main ways to solve the SCCPM problems. One
is to transfer the stochastic programming to the deterministic
programming before solving the problems; the other way is to
directly utilize intelligent optimization algorithms, such as

Table 2 The mutation logic of the solving algorithm

Original value of
u i (or u F

i ; u
S
i ) Value of rand

Value of u i

(or u F
i ; u

S
i ) after mutation

0 rand� pm1 Tmin
Tmin rand� pm2 0
Tmin pm2 < rand� pm3 Tmin11
>Tmin rand� pm4 u i11
>Tmin pm4 < rand� pm5 u i�1
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genetic algorithm, simulated annealing algorithm and neural
network algorithm. We choose the second way in terms of the
flexibility of intelligent optimization algorithms. A mixed
intelligent optimization algorithm incorporating stochastic
simulation and immune algorithm (IA) are applied in particular
to solveModel 2.
IA is an artificial intelligent optimization algorithm inspired by

the principles and processes of biological immune systems as well
as those of genetic evolution. With the characteristics of self-
adaptation, global convergence and population diversity, IA keeps
the diversity of the population and inhibits precocity phenomena
comparing to other algorithms, ensuring the achievement of the
global optimum and robust solution (Lin et al., 2016; Souza et al.,
2016). How to deal with the random variables and random
functions is the crucial issue in solving SCCPM problems. To
address this issue, stochastic simulation provides an alternative to
generate random variables satisfying the constraints and conduct
the valuation of random functions. Therefore, we propose amixed
intelligent optimization algorithm incorporating stochastic
simulation and immune algorithm. The former is used to control
the probability that the solutions satisfy all constraints and the
latter to search for the optimal solution.

3.2.1 Stochastic simulation
Based on the requirement of solving Model 2, the estimation
algorithm of stochastic simulation is displayed below:
Step 1: Randomly generate values of Ti which follows the

distribution N b i ;s
2
i Þ

�
. Generated values of Ti for total I trips

per day form a I-dimension vector of trip travel times by the trip
sequence. Generate sT such vectors and comprise a sT � I
matrix of random travel times. It is advised to set sT as 100,
which is generally sufficient to describe the stochasticity of trip
travel times.
To illustrate, consider the case where I = 10 and sT = 100.

[30, 36, 32, 34, 30, 35, 29, 31, 40, 35] is an example of total
100 trip travel time vectors in this case, consisting of a 100� 10
trip travel timematrix.
Step 2: Randomly generate values of charging time variable

u i (or u F
i ; u

S
i ) satisfying constraints based on how long the bus

idles after trip i, consisting of sX samples for decision vectors

Du of charging times. The dimension of Du is
XI�1

i¼1

w i, as

illustrated in Section 2.4. sX vectors form a sX �
XI�1

i¼1

w i matrix

of charging times. It is advised to set sT from 50,000 to 90,000,
to ensure that the number of qualified decision vectors Du

meets the requirement for the number of Du in the following
immune algorithm implementation. The value of sT can also be
modified based on real cases.
Step 3: Calculate the probability a0 that SOCmin 1

Qi
B � SOCi � SOCmax is satisfied under the stochastic trip travel
time matrix for each Du . If a0 > a, Du is qualified and will be
saved.
Step 4: Calculate v total under the stochastic trip travel time

matrix for every qualified Du and obtain sT values of v total for
every Du . For each Du , sort its v total values in ascending order
and take the b�sT-th value as its value of v total, so as to make it
satisfy the constraint Pr v total � v totalf g � b under all random
generated trip travel times.

Step 5: Deliver no less than NP1NP � H
2

� �
qualifiedDu , the

values of a0 and v total under each Du for seeking the optimal
solution via immune algorithm later. Here, NP is the
population size in the algorithm (50 � NP �500 usually), H is
the maximum number of iterations in the IA. Among all
qualified Du , NP of them are to satisfy the demand of initial
population on the number of Du and NP � H

2 are to satisfy the
need of the following population mutation on the number of
Du . Besides, it is an option to adjust the value of sX in Step 2 to
control the number of delivered qualifiedDu .

3.2.2 Immune algorithm
In IA, the objective problem to be solved is indicated by antigen,
the feasible solution of the objective problem is indicated by
antibody and the quality of the feasible solution is indicated by
affinity. Cloning, mutation and selection are conducted on
individuals with higher affinity to form new populations. The
optimal solution will be achieved by repeating this process. In
our optimization problem, the antigen indicates minimizing the
total electricity costs for a whole day while antibodies indicate
the decision vectors Du consisting of variables u i (or u F

i ; u
S
i )

which represent charging times at idle times in the whole day.
The detailed process of implementing immune algorithm is
listed as follows (Hong et al., 2000):
Step 1: Generate an initial population of antibodies based

on the qualified vectors Du output through the stochastic
simulation. Specifically, NP vectors are recruited from the
total NP1NP � H

2

� �
samples of Du to form the initial

population, denoted by Dnp
u ;1; 1 � np � NP. The v total value

of each antibody is the affinity which measures the matching
between the antibody and the antigen, denoted by
v np

total;1;1 � np � NP.
Step 2: Calculate similarity between all antibodies. The affinity

between antibodies should be obtained first by calculating the
Hamming distance as illustrated in equations (23)–(24), since
the charging times u i (or u F

i ; u
S
i ) are discrete variables:

HMhðDnp
u ;h;D

j
u ;hÞ¼

X
XI�1

i¼1

w i

k¼1

@k;1 � np � NP; 1 � j � NP;

1 � h � H (23)

@k ¼ 1; ifDnp;k
u ;h ¼ Dj;k

u ;h
0; otherwise

(
(24)

whereDnp
u ;h andDj

u ;h represent antibody np and antibody j of the

h-th generation, HMh Dnp
u ;h;D

j
u ;h

� 	
is the affinity between

antibody np and antibody j of the h-th generation andDnp;k
u ;h and

Dj;k
u ;h are, respectively, the k-th dimension of antibody np and

antibody j. @k is a binary variable specifying whether the k-th
element of antibody np and antibody j are equal to each other.
The similarity between antibodies is then determined by

comparing the affinity and a predefined similarity threshold, as
demonstrated in equation (25):
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Sh Dnp
u ;h;D

j
u ;h

� 	
¼

1;HMh Dnp
u ;h;D

j
u ;h

� 	
� z

0;HMh Dnp
u ;h;D

j
u ;h

� 	
< z

8><
>: (25)

where ShðDnp
u ;h;D

j
u ;hÞ is a binary variable representing the

similarity between Dnp
u ;h and Dj

u ;h, and z is the predefined
similarity threshold. Two antibodies are determined to
be similar (ShðDnp

u ;h; Dj
u ;hÞ¼ 1) if the number of identical

elements of two antibodies is higher than or level with the
threshold, as stated by the first clause of equation (25). This
means, in the perspective of our problem, that if the number of
charging time variables which take the identical values by the
two decision vectors is large enough, then these two vectors are
determined to be similar.
Step 3: Calculate the antibody density denh Dnp

u ;h

� 	
by

equation (26):

denh Dnp
u ;h

� 	
¼ 1

NP

XNP

j¼1

Sh Dnp
u ;h;D

j
u ;h

� 	
(26)

Step 4: Calculate the antibody incentive simh Dnp
u ;h

� 	
. In this

algorithm, the antibody incentive is defined to measure
the antibody quality. Better incentive is achieved with higher
affinity with the antigen and lower antibody density. In our
problem, a lower v np

total;h value indicates the higher affinity
with the antigen. Low incentive reflects the high quality of
antibodies, which should be motivated to get cloned and
mutated. Thus, the incentive can be calculated by
equation (27):

simh Dnp
u ;h

� 	
¼ a� v np

total;h 1 b� denh Dnp
u ;h

� 	
(27)

where a and b are the positive coefficients of the incentive.
Step 5: Select antibodies based on antibody incentive and

clone. Select the first NP/2 antibodies among the population

sorted by the antibody incentive in the descending order and
get each of them cloned for the number ofNc1.
Step 6: Mutate the cloned antibodies except the parent ones.

The identical mutation procedure is implemented in this step
with the one used in solving Model 1, which will not be
repeated here.
Step 7: Reselect antibodies from the mutated cloned ones.

Calculatev np
total;h,HMh Dnp

u ;h;D
j
u ;h

� 	
,Sh Dnp

u ;h;D
j
u ;h

� 	
, denh Dnp

u ;h

� 	
and simh Dnp

u ;h

� 	
of the cloned antibodies after mutation. Based on

the simh Dnp
u ;h

� 	
values, the antibody with the highest quality

among the cloned antibodies and the parent antibody is selected to
remain. That is, totallyNP/2 antibodies remain.
Step 8: Recruit new antibodies. Recruit anotherNP/2 antibodies

from NP1NP � H
2

� �
qualified samples via stochastic simulation.

Step 9: Form a new population. Combine the NP/2
antibodies remaining after cloning, mutation and selection and
the other NP/2 antibodies newly recruited to form a new
population of which size isNP.
Step 10: Repeat the iterative process. A threshold for iteration

numbers is set as H0. When h does not reach to the maximum
number of iterationH or the optimumvaries within the consecutive
H0 times of iteration, go back to Step 2 and let h =h11. When h
reaches toH or the optimum remains consistent for the consecutive
H0 times of iteration, stop the iteration and go to Step 11.
Step 11: In the last iteration, the solution with the minimal

simh Dnp
u ;h

� 	
is the one with highest quality, which is the optimal

solution for the charging plans. The correspondingv np
total;h value

is theminimal electricity costs for charging.

4. Case study

4.1 Data investigation
We collected actual operation data of a bus route in a city and
conducted the numerical analysis of one electric bus in this route

Table 3 Departure timetable of the electric bus

Trip Scheduled departure time Scheduled travel time/min Scheduled idle time/min Ambient temperature/°F Coefficient b Coefficient s

1 5:00 35 15 32.0 35 1.4
2 5:50 35 20 35.6 35 1.4
3 6:45 45 10 35.6 45 1.7
4 7:40 50 5 35.6 50 1.4
5 8:35 45 20 33.8 45 2.1
6 9:40 40 20 37.4 40 1.5
7 10:40 40 20 46.4 40 1.4
8 11:40 40 40 51.8 40 1.6
9 13:00 40 15 53.6 40 1.3
10 13:55 40 15 51.8 40 1.7
11 14:50 45 15 50.0 45 1.9
12 15:50 50 10 50.0 50 2.3
13 16:50 50 5 44.6 50 1.6
14 17:45 50 15 44.6 50 2.0
15 18:50 40 15 42.8 40 1.5
16 19:45 35 15 42.8 35 1.4
17 20:35 35 20 39.2 35 1.4
18 21:30 35 20 39.2 35 1.3
19 22:25 35 — 37.4 35 1.3
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to verify the effectiveness of the proposed models. Basic
information of bus operation is displayed here. The operation time
of this route is 5:00–23:00 and the bus runs a total of 19 trips per
day (I = 19). The travel length of the route is 14km per direction.
The battery capacity (B) of the bus is 162kWh. The charging
power (P) of a charging station is 120kW.The departure timetable
is illustrated in Table 3, which also provides the average ambient
temperatures of each trip on November 2nd, 2020, as well as the
coefficients of the distribution function that the actual trip travel
times Ti follow obtained by fitting the collected data. Table 4 lists
the three electricity rates of four periods per day. Periods are,
namely, based on their electricity rates as off-peak, mid-peak and
on-peak periods from low to high rate.
With the collected operation data, the energy consumption

model of trip i run by the bus is obtained using the weighted
least squares method, which is expressed as follows:

Qi ¼ �3:0SOCi 10:27Ti 1 0:09m i 1 0:85i ¼ 1; 2; . . . ; I
(28)

4.2 Result analysis and assessment
4.2.1 Verification of model 1
To prolong the battery lifespan, the SOCmin is set as 30% and
the SOCmax as 80%, which means that the battery SOC should

always be maintained within 30%–80%. The minimum
charging time (Tmin) is set to be 5min.
The ant colony optimization algorithm with mutation is

applied to solving Model 1. In this numerical case, the
dimension of qualified decision vectors Du is 18, namely,PI�1

i¼1
w i¼18. Other parameters are taken as follows: the number

of antsN= 50, themaximumnumber of iterationsG= 500, the
threshold for iteration numbers G0 = 15, the threshold of state
transition probability p0 = 0.2, thresholds used in the mutation
procedure in the local search pm1 = 0.5, pm2 = pm4 = 0.4, pm3 =
pm5 = 0.8 and the pheromone evaporation rate r = 0.9. The
optimal charging plan was achieved after 212 times of iteration
with the minimal v total for the whole-day bus charging, which is
demonstrated in Table 5. SOCi, SOCEi and the electricity cost
of every trip are also provided byTable 5.
It is observed from Table 5 that the bus gets charged four

times in the operation during 5:00–23:00, which are 8-min
charging after trip 3, 9-min charging after trip 8, 20-min
charging after trip 17 and 20-min charging after trip 18.
Besides, the bus is arranged to charge for another 6min after
completing all trips of the day, so as to increase the SOC to
SOCmax for the operation of the next day.
In this case, the scheduled arrival time of trip 17 is 21:10

and the off-peak period is from 21:00 to 8:00 of the next day,
which indicates that the charging after trip 17, trip 18 and
that in the nonoperation hours are arranged in the off-peak
period. It is particularly noted here that the optimal solution
is not unique when the charging time after trip 17 (u 17),
the charging time after trip 18 (u 18) and the charging time
in the nonoperation hours (u f) are only allowed to take
nonnegative integers. As long as u 17, u 18 and u f satisfying
constraints [equations (29)–(31)], all possible value

Table 4 Time of day electricity rates

Time period Electricity rate/ (CNY/kWh)

8:00–12:00 1.31
12:00–17:00 0.74
17:00–21:00 1.31
21:00–the next 8:00 0.37

Table 5 Optimal charging plan under model 1

Trip SOCi/% SOCEi/% Charging time/min Electricity cost/CNY

1 80.00 76.80 0 0
2 76.80 73.73 0 0
3 73.73 68.94 8 5.92
4 78.81 73.28 0 0
5 73.28 68.39 0 0
6 68.39 64.42 0 0
7 64.42 60.86 0 0
8 60.86 57.51 9 13.32
9 68.62 65.51 0 0
10 65.51 62.25 0 0
11 62.25 58.00 0 0
12 58.00 52.83 0 0
13 52.83 47.29 0 0
14 47.29 41.65 0 0
15 41.65 37.47 0 0
16 37.47 34.05 0 0
17 34.05 30.38 20 14.80
18 55.07 51.79 20 14.80
19 76.49 73.50 0 0
Nonoperation hours 73.50%!80.00% 6 4.44
Total charging time is 63min and xtotal =53.28CNY
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combinations of these three variables can lead to the
electricity cost of 53.28 CNY.

11 � u 17 � 20; u 17 2 Z (29)

0 � u 18 � 20; u 18 2 Z (30)

u 17 1 u 18 1 u f ¼ 46; u 17 2 Z; u 18 2 Z; u f 2 Z (31)

Two solutions that u 17 = 11, u 18 = 0, u f=35 and u 17 = 20, u 18 =
20, u f = 6, which satisfy equations (29)–(31), both lead to the
minimum electricity cost at 53.28CNY.The nonlinear discharge
characteristic of batteries suggests lower electricity consumption
rates at higher SOC levels. The second solution taking full use of
every idle time for charging, which helps the battery keep high
SOC levels to the maximum extent, could theoretically reduce
the total energy consumption, bringing the lower electricity bill.
However, this advantage is not reflected by the electricity bill, as
revealed by the identical objective values of the two solutions.
The reason is that the potential values of all charging time
variables are restricted to integers considering the feasibility of the
optimized charging plan. To be specific, to achieve the minor
decrement in the electricity consumption by charging the bus for
the whole duration of idle time after trip 17 and trip 18 (i.e. u 17

and u 18 take their maximum values), the corresponding
reduction in the value of another variable (i.e. u f) is less than
1min in this case. The reduction being rounded to the nearest
integer due to the integer constraints of variables eliminates the
minor improvement in the optimization objective.
To better illustrate, we relax the integer constraint of u f.

Consider u 17 = 11 and u 18 = 0, where u f = 35 can be obtained.
With this solution, the total charging time is 63min and the
electricity cost is 53.28 CNY. If u 17 = 20 and u 18 = 20, which
indicates the full utilization of idle time after trip 17 and 18,
u f = 5.3 can be achieved. With this solution, the total charging
time is 62.3min and the electricity cost is 52.76 CNY.
Comparing to the integer solution where u 17 = 20, u 18 = 20,
and u f = 6, the charging time in the nonoperation hours (u f)
decreases by 0.7min and the electricity cost reduces by 0.52
CNY.
The charging plan provided by Table 5 is labeled as Plan A.

Without the comprehensive optimization model considering
multiple factors, the following two charging plans are usually
applied for electric buses:
Plan B: A normal charging strategy is to charge the bus at the

idle time in off-peak operation hours. The bus is usually
arranged to get charged once when it idles longer in off-peak
operation hours. Otherwise, the energy requirements for
smoothly completing all trips or keeping the battery SOC at its
best status might not be fulfilled. Based on this strategy, a 26-
min charging time will be arranged at a 40-min idle time after
trip 8, which is observed in Table 3. Besides, it is required to
charge the bus in nonoperation hours for 37min. Under this
charging plan, the total electricity bill is 65.86CNY.
Plan C: Another normal charging strategy is to charge the

bus mainly in the off-peak period during which the electricity
rate is low. To be specific, idle time in the off-peak period is
utilized as fully as possible for the bus charging. The bus will
not get charged in any mid-peak or on-peak periods unless the

SOC is not high enough to complete the next trip or drops out
of the best range of SOC.
In this numerical case, idle times after the first three trips and

the last three trips (i = 17. 18, 19) are all in the off-peak period.
According to this strategy, Plan C starts with an 8-min charging
time at the idle time after trip 3. No charging is scheduled in the
following mid-peak/on-peak periods until the end of trip 14
when the SOC is going to be lower than SOCmin. The bus will
get charged for 15min after trip 14. Next charging is arranged
for 20min after trip 17 when it is off-peak period. Finally, the
bus will get charged for another 21min in the nonoperation
hours. The total electricity cost for the whole day is 75.56 CNY
under Plan C.
The comparison among the above three charging plans is

displayed in Table 6.
As observed from Table 6, comparing to Plan B, Plan A

helps to save 12.58 CNY, which is around 19.1%, on the
electricity cost. Similar result is revealed comparing to Plan C
that Plan A saves 22.88CNY, which is 29.5%, on the electricity
cost. Therefore, Plan A effectively reduces the electricity cost
and the total charging time for a whole day, verifying the
effectiveness ofModel 1.

4.2.2 Verification of model 2
Model 2 is solved by the proposed mixed intelligent algorithm
incorporating stochastic simulation and immune algorithm. In
the stochastic simulation phase, sizeT is set as 100 and sizeX as
80,000, under which the number of generated Du is sufficient
for the implementation of immune algorithm later. a and b in
constraints (20) and (21) both take 0.9. When applying
immune algorithm, the size of the population NP is set as 100,
the maximum number of iteration H is 300, the threshold for
iteration numbers H0 is 15, the dimension of vectors in the
population is 18, the coefficients of the incentive are set as a =

Table 6 Comparison among two normal charging plans and proposed
charging plan

Charging plan Plan A Plan B Plan C

h1/min 0 0 0
h2/min 0 0 0
h3/min 8 0 8
h4/min 0 0 0
h5/min 0 0 0
h6/min 0 0 0
h7/min 0 0 0
h8/min 9 26 0
h9/min 0 0 0
h10/min 0 0 0
h11/min 0 0 0
h12/min 0 0 0
h13/min 0 0 0
h14/min 0 0 15
h15/min 0 0 0
h16/min 0 0 0
h17/min 20 0 20
h18/min 20 0 0
hf/min 6 37 21
Total charging time/min 63 63 64
xtotal/CNY 53.28 65.86 75.56
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1, b= 10 and the number of cloned antibodies from each parent
antibody Nc1 is 10. Besides, the threshold of similarity z is set
as 17, which means that if no less than 17 elements of two
antibodies are identical, then these two antibodies are
determined to be similar. The values of all thresholds used in
the mutation procedure are the same with those in solving
Model 1.
Via the mixed intelligent algorithm, the optimal solution and

the corresponding minimum electricity cost v total were
achieved after 160 times of iteration, as illustrated in Table 7.
With modeling the stochasticity of trip travel times in

Model 2, the optimal charging plan consists of 8-min charging
after trip 3, 11-min charging after trip 8, 11-min charging after
trip 17 and 34-min charging in nonoperation hours.
Comparing to the optimal solution of Model 1, the electricity
bill increases from 53.28 CNY to 55.50 CNY. Under the
circumstance with stochastic travel times, the optimal solution
in terms of u 17, u 18 and u f is still not unique. When u 17, u 18

and u f satisfy equations (32)–(34), the electricity bill remains at
theminimum value of 55.50CNY.

11 � u 17 � 20; u 17 2 Z (32)

0 � u 18 � 18; u 18 2 Z (33)

u 17 1 u 18 1 u f ¼ 45; u 17 2 Z; u 18 2 Z; u f 2 Z (34)

Comparing to one optimal solution ofModel 1 that u 3 = 8, u 8 =
9, u 17 = 11 and u f = 35, the largest difference occurs in the
increase of u 8 from 9min to 11min. In the setup of this case
study, with the charge power of 120kW, the energy obtained
from 2-min increased charging can increase 14.8-min traveling
of an electric bus, of which the electricity consumption rate is

around 0.27kWh/min. Due to the tradeoff between the positive
and negative fluctuations of trip travel times around their
scheduled values, the extra electricity power supporting 14.8-
min traveling which is achieved from the extra 2-min charging
from the charging plan from Model 2, should be sufficient for
actual bus operation considering the effects of the stochasticity
of travel times. Therefore, the optimal solution fromModel 2 is
practicable.
To test how well the optimal solution satisfies the

constraints, the simulation runs 50 times with random
travel times based on the solution. 100 units of travel times
for each trip per day are randomly generated for each
simulation run. The probability value a0 is estimated by
counting the number of units which satisfy the constraint
SOCmin 1

Qi
B � SOCi � SOCmax in each run. Among the

total 50 runs, the minimum a0 is 0.97 and greater than 0.9,

demonstrating that Pr SOCmin 1
Qi
B � SOCi � SOCmax

n o
� a (a = 0.9) is well satisfied and validating the optimality
of the solution fromModel 2.
We also conduct the simulation 10 times based on the

solution from Model 1, which is formulated with fixed travel
times, to test whether this solution is applicable with stochastic
travel times. The results are demonstrated in Table 8.
It is noticed from Table 8, that the maximum probability

among 10 runs that SOCmin 1
Qi
B � SOCi � SOCmax is

satisfied is merely 0.64 based on the charging plan obtained
fromModel 1, specifying no applicability of the plan under the
circumstance with stochastic travel times.

4.2.3 Sensitivity analysis
(1) The effect of total trip number I on charging plans
A bus in urban areas usually serves 10–20 trips per day. In

the above case, we take I = 19, and cases where I =11, 12, . . .,
18 are supplemented here to investigate the effects of different
trip numbers on charging plans. Normally the departure time
of the first trip is no later than 7:00 while the arrival time of the
last trip is no earlier than 17:00. The earliest and latest trips
in Table 3 are gradually removed based on this condition to
form the cases where I =11, 12, . . ., 18. The optimal charging
plans of all cases are listed in Table 9 and the comparison
among them are displayed in Figure 1.
Obviously, the accumulated operation mileage reduces with

the decrease of the total trip number, as well as the total
electricity consumption. The charging times at idle time

Table 7 Optimal charging plan under model 2

Trip Charging time after each trip/min

1 0
2 0
3 8
4 0
5 0
6 0
7 0
8 11
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 11
18 0
19 0
Nonoperation hours 34
The total charging time is 64min and xtotal=55.50 CNY

Table 8 Applicability of the optimal solution of model 1 for stochastic
travel times

Simulation run Probability that the constraint is satisfied

1 0.60
2 0.64
3 0.57
4 0.61
5 0.58
6 0.59
7 0.57
8 0.60
9 0.64
10 0.59
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gradually decrease consequently, as illustrated in Table 9.
Besides, the idle times when the bus is arranged to get charged
are identical, which are the last idle time (7:30) in the morning
off-peak period, the first idle time (12:20) in the mid-peak
period and the idle times (21:10, 22:05) in the night off-peak
period.When the total trip number per day is lower than 15, the
bus only needs to get charged once (12:20) in the operation
hours. When the trip number is lower than 11, under fixed
travel time condition, the bus only gets charged in the
nonoperation hours during the off-peak period, without the
requirement of charging in the operation hours, whereas
considering the stochasticity of travel times, the bus still needs
to get charged for 5min in the operation hours.
Comparing the optimal solutions of Model 1 and Model 2,

the effect of stochasticity of travel times on the optimal charging
plans is reflected by the longer charging time of the latter
solution, which considers the stochasticity, than that of the
former one, which satisfies all constraints as well as possible,
ensuring the whole-day operation while leading to the higher
electricity bill. To be more detailed based on Table 5, the
amount that the electricity cost of the latter solution exceeds
that of the former one varies from 1.48 to 4.44 CNY, which
accounts for 3.33%–15.00% of the cost under each case. Large
gaps in the cost occurring in cases where the trip number of 17

and 16, are, respectively, 2.96 CNY and 3.70 CNY. The peak
value shows in the case of 11 trips which is 4.44 CNY,
accounting up for 15% of the cost. The least gap is 1.48 CNY
in cases where the trip number is 12, 13 and 14.
Therefore, the effect of the stochastic of travel times on the

electricity cost varies with different trip numbers. Generally
speaking, with more trips served per day (i.e. I >15 in
this study), the effect on the total electricity consumption is
significate enough to influence the charging scheduling,
demonstrating the necessity of using Model 2 to achieve the
optimal charging plan under the condition of larger trip
numbers. On the other side, with less trips served per day (i.e.
I <15 in this study), the minor effect on the charging
scheduling is revealed by the similarity between two solutions
from Model 1 and Model 2, which indicates that Model 1 is
eligible to generate the optimal charging plan under the
condition of smaller trip numbers. An exception occurs when
the trip number is 11, where large differences show in both
electricity cost and optimal charging plan. When the bus does
not need to get charged in operation hours according to the
solution fromModel 1, it is necessary to verify the result further
through Model 2. Under this case, the stochasticity of travel
times should be considered, which means that Model 2 should

Table 9 Optimal charging plans with different trip numbers

Trip number Operation hours
Model 1 Model 2 Relative

changes(%)Optimal charging plan v total Optimal charging plan v total

19 5:00–23:00 [0 0 8 0 0 0 0 9 0 0 0 0 0 0 0 0 20 20 0; 6] 53.28 [0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 11 0 0; 34] 55.50 2.22/4.17
18 5:00–22:05 [0 0 8 0 0 0 0 9 0 0 0 0 0 0 0 0 13 0; 30] 51.06 [0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 13 0; 29] 53.28 2.22/4.35
17 5:50–22:05 [0 6 0 0 0 0 8 0 0 0 0 0 0 0 0 5 0; 39] 48.84 [0 6 0 0 0 0 11 0 0 0 0 0 0 0 0 8 0; 34] 51.80 2.96/6.01
16 5:50–21:10 [0 6 0 0 0 0 8 0 0 0 0 0 0 0 0 0; 41] 46.62 [0 5 0 0 0 0 11 0 0 0 0 0 0 0 0 0; 41] 50.32 3.70/7.94
15 6:45–21:10 [0 0 0 0 0 12 0 0 0 0 0 0 0 0 0; 41] 48.10 [0 0 0 0 0 14 0 0 0 0 0 0 0 0 0; 40] 50.32 2.22/4.62
14 6:45–20:20 [0 0 0 0 0 10 0 0 0 0 0 0 0 0; 40] 44.40 [0 0 0 0 0 11 0 0 0 0 0 0 0 0; 40] 45.88 1.48/3.33
13 6:45–19:30 [0 0 0 0 0 7 0 0 0 0 0 0 0; 41] 40.70 [0 0 0 0 0 8 0 0 0 0 0 0 0; 41] 42.18 1.48/3.64
12 6:45–18:35 [0 0 0 0 0 5 0 0 0 0 0 0; 39] 36.26 [0 0 0 0 0 5 0 0 0 0 0 0; 41] 37.74 1.48/4.08
11 6:45–17:40 [0 0 0 0 0 0 0 0 0 0 0; 40] 29.60 [0 0 0 0 0 5 0 0 0 0 0; 36] 34.04 4.44/15.0

Notes: In each cell of the columns “Optimal charging plan”, the numbers before semicolons refer to charging times at idle time in operation hours and the
number after semicolons refers to the charging time in nonoperation hours. In each cell of the column “Relative changes”, the former value is the difference
between v total and v total, and the latter is calculated by (v total-v total)/v total�100%

Figure 1 The minimal electricity cost varying with different trip numbers
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be applied for charging scheduling to ensure regular operation
of the bus.
(2) The effect of battery capacityB on the charging plans

The battery capacity of the bus has a significant impact on its
driving range, affecting charging plans consequently. A large
battery capacity ensures a long driving range without multiple
times of charging, while a small capacity can only support a
short driving range of the bus, which needs to get charged in a
high frequency to guarantee the normal transit operation. The
capacity of a normal bus battery is around 140–220kWh.
Within this range, we take the step of 10 kWh to form multiple
cases to explore the effects of battery capacity on the charging
plans. The achieved optimal charging plans as well as the
electricity costs are demonstrated in Table 10, and the variation
of the electricity cost in Figure 2.

As observed from Table 10, when B is within 140–190kWh,
the charging time after trip 8 declines with the increase of B, as
well as the total electricity cost. The charging time after trip 8
reduces by 2–3min with the 10kWh increment of the B. When
B is within 210–220kWh, the bus only needs to get charged
after trip 3, trip 17 and trip 18 in off-peak operation hours,
avoiding the charging scheduled after trip 8 in the mid-peak
period, which indicates that the battery capacity of 210–
220 kWh is large enough for regular bus operation.
Another comment suggested by Table 10 is that the charging

plan from Model 2 requires longer charging time and leads to
high electricity cost comparing to that fromModel 1. The gaps
between the costs of two plans are between 0.74–2.96 CNY,
where the peak occurs with the battery capacity being 140 kWh
while the valley occurs with the capacity being 210kWh.
Besides, a decline of the gaps with the increase of the battery
capacity is displayed in Figure 2, indicating that more attention
should be paid upon the effect of stochasticity of travel times on
formulating charging plans when the capacity is lower.
(3) The effect of electricity rate gaps of different load periods

on charging plans
With implementing the TOD electricity tariff, there is a

high correlation between the optimal charging plans and the
electricity rate gaps of different load periods. In our study, three
electricity rates are taken including off-peak rate, mid-peak
rate and on-peak rate from low to high. Due to the nonlinear
discharge characteristic of batteries, the bus is more likely to be
arranged to get charged at idle time in operation hours to
reduce the total energy consumption and the electricity cost, if
the gaps are narrowed between off-peak rate (applying to the
electricity use in nonoperation hours) and mid-peak rate or on-
peak rate (applying to the electricity use in operation hours).

Table 10 Optimal charging plans with different battery capacities

B/kWh
Model 1 Model 2 Relative

changes(%)Optimal charging plan v total Optimal charging plan v total

140 [0 0 8 0 0 0 0 14 0 0 0 0 0 0 0 0 18 17 0; 6] 56.98 [0 0 8 0 0 0 0 16 0 0 0 0 0 0 0 0 15 15 0; 10] 59.20 2.96/5.26
150 [0 0 8 0 0 0 0 12 0 0 0 0 0 0 0 0 5 14 0; 24] 55.50 [0 0 8 0 0 0 0 14 0 0 0 0 0 0 0 0 15 15 0; 12] 57.72 2.22/4.00
162 [0 0 8 0 0 0 0 9 0 0 0 0 0 0 0 0 20 20 0; 6] 53.28 [0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 11 0 0; 34] 55.50 2.22/4.17
170 [0 0 8 0 0 0 0 7 0 0 0 0 0 0 0 0 14 20 0; 14] 51.80 [0 0 8 0 0 0 0 9 0 0 0 0 0 0 0 0 15 15 0; 17] 54.02 2.22/4.29
180 [0 0 8 0 0 0 0 5 0 0 0 0 0 0 0 0 6 18 0; 26] 50.32 [0 0 8 0 0 0 0 6 0 0 0 0 0 0 0 0 20 20 0; 10] 51.80 1.48/2.94
190 [0 0 6 0 0 0 0 5 0 0 0 0 0 0 0 0 13 19 0; 20] 50.32 [0 0 8 0 0 0 0 5 0 0 0 0 0 0 0 0 12 12 0; 27] 51.06 0.74/1.47
200 [0 0 8 0 0 0 0 5 0 0 0 0 0 0 0 0 18 20 0; 11] 49.58 [0 0 8 0 0 0 0 5 0 0 0 0 0 0 0 0 15 15 0; 21] 51.06 1.48/2.99
210 [0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 6 14 0; 35] 46.62 [0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 18 18 0; 20] 47.36 0.741.59
220 [0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 12 19 0; 26] 46.62 [0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 18 18 0; 20] 47.36 0.74/1.59

Figure 2 The minimum electricity cost with different battery capacities
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Table 11. Optimal charging plans under different price gaps

Electricity rate/CNY/(kWh)

Model 1 Model 2
Relative

changes(%)
Optimal charging

plan v total

Optimal charging
plan v total

[0.37,0.74,1.31] [0 0 8 0 0 0 0 9 0 0 0 0 0 0 0 0 20 20 0; 6] 53.28 [0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 11 0 0; 34] 55.50 2.22/4.17
[0.37,0.64,1.11] [0 0 8 0 0 0 0 9 0 0 0 0 0 0 0 0 5 15 0; 26] 51.48 [0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 19 19 0; 7] 53.30 1.82/3.54
[0.37,0.54,0.91] [0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 16 20 0; 7] 49.62 [0 0 8 0 0 0 0 13 0 0 0 0 0 0 0 0 14 14 0; 15] 51.78 2.16/4.35
[0.37,0.44,0.71] [0 0 8 0 0 0 0 16 0 0 0 0 0 0 0 0 14 17 0; 6] 47.38 [0 0 8 0 0 0 0 13 0 0 0 0 0 0 0 0 17 17 0; 8] 48.44 1.06/2.24
[0.37,0.47,0.57] [0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 19 13 0; 11] 48.08 [0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 19 19 0; 7] 49.56 1.48/3.08
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We conduct the sensitivity analysis of different gaps by keeping
the off-peak rate and reducing other rates. To be specific, as
shown in the first column in Table 11, three cases are formed
by decrementing the gap between off-peak and mid-peak rate,
and the gap between mid-peak and on-peak rate by the step of
0.1 CNY/(kWh) based on the original case (the first row). One
more case is generated by setting a 0.1 CNY/(kWh) gap
between mid-peak and off-peak rate and the same gap between
on-peak and mid-peak rate. Table 11 lists these cases and
corresponding optimal charging plans.
The charging time after trip 8 increases by two minutes in

both optimal charging plans from Model 1 and Model 2 when
the mid-peak rate is adjusted from 0.64 to 0.54 CNY/(kWh)
and the gap reduces to 0.17 CNY/(kWh) between mid-peak
and off-peak rate, indicating the intension and feasibility to
reduce the total energy consumption and the total electricity
cost by prolonging charging times in mid-peak operation hours.
By testing with smaller steps from 0.64 to 0.54CNY/(kWh), we
obtain the thresholds of the gap and mid-peak rate where the
charging time after trip 8 starts to change, which are 0.55 CNY/
(kWh) for mid-peak rate and 0.18 CNY/(kWh) for the gap.
The thresholds remain the same for two models. Therefore,
when the gap betweenmid-peak and off-peak rate drops to 0.18
CNY/(kWh), the optimal charging plan will change no matter
the stochasticity of travel times is considered or not by the
optimizationmodel.
The charging time after trip 8 increases sharply from 11min

to 16min in optimal charging plan from Model 1 when the
mid-peak rate is adjusted from 0.54 to 0.44 CNY/(kWh) and
the gap reduces to 0.07 CNY/(kWh) between mid-peak and
off-peak rate. By testing with smaller steps from 0.54 to 0.44
CNY/(kWh), it is revealed that the charging time after trip 8
changes oncemore exactly at the point where themid-peak rate
is 0.44 CNY/(kWh) and the gap is 0.07 CNY/(kWh). For
the optimal charging plan from Model 2 which models the
stochasticity of travel times, the charging time after trip 8
remains consistent although the mid-peak rate reduces to 0.44
CNY/(kWh) and the gap reduces to 0.07CNY/(kWh).
With regard to the modification of on-peak rate, it is observed

that until the gap between off-peak and on-peak period drops to
0.2 CNY/(kWh) as the last case shown, any charging time in
on-peak period is still not included in either optimal charging
plans of Model 1 or Model 2. Since the gap less than 0.2 CNY/
(kWh) between off-peak and on-peak period is not realistic in
the real TOD electricity tariff application, a conclusion can be
drawn that bus charging will avoid being arranged in on-peak
periods in terms of reducing the electricity cost although the
battery has the nonlinear discharge characteristic.
From the analysis of the above three factors, it is concluded

that trip number, battery capacity and electricity rate gaps of
different load periods all have significant impacts on the
formulation of charging plans for electric buses. The
differences between the electricity costs of optimal charging
plans from Model 1 and Model 2 are, respectively, 1.48–4.44
CNY, 1.06–2.22 CNY and 0.74–2.96 CNY, with one factor
varying and the other two remaining consistent. This indicates
that the stochasticity of travel times performs a higher influence
on the charging plans under various trip numbers than that
under various battery capacities and electricity rate gaps.
Therefore, when the number of trips served per day is changed,

it is suggested to modify the charging plan based on the
optimization model considering the stochasticity of travel
times.

5. Conclusions

With the implementation of the TOD electricity tariff, we
propose two optimization models respectively with fixed trip
travel times and stochastic trip travel times, of which the
objectives both areminimizing the electricity costs of charging a
bus for the whole-day operation and the optimization variables
are the charging times at idle time after each trip. The
numerical test based on a real electric bus is conducted to verify
our models, followed by the sensitivity analysis of three factors
including trip number, battery capacity and electricity rate gaps
of different load periods. The main conclusions are
summarized as follows:
� From the model without considering the stochasticity of

travel times, the optimal charging plan costs 12.58 CNY
and 22.28 CNY less in electricity use than the two plans
formulated based on two normal charging strategies,
saving 19.1% and 29.5% on the electricity bill, verifying
the effectiveness of the proposed model.

� The stochasticity of trip travel times affects charging
plans. In summary, when considering this stochasticity,
the total charging time and the electricity cost will
increase. The more trips a bus serves per day and the
smaller its battery capacity is, the greater influence the
stochasticity has on charging plans, the more attention
should be paid on the stochasticity.

� Even with the nonlinear discharge characteristic of
batteries, it will not be arranged for a bus to get charged in
on-peak periods to reduce the total energy consumption
and the electricity cost. This feature, however, has a
significant impact on the charging schedules in mid-peak
periods.

In this study, the optimizationmodel addresses the charging plan
for only one electric bus of a transit route. More research efforts
will be focused on the studies of the optimization of coordinated
charging plans for buses of one route ormultiple routes.
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