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a b s t r a c t 

In CFD-DEM (computational fluid dynamics-discrete element method) simulations particles are consid- 

ered Lagrangian point particles. The details of the flow near the particle surface are therefore not fully 

resolved. When the particle scale is larger than the resolved flow scale, the coupling between the CFD 

model and the DEM model is critical. An effective coupling scheme should minimize the risk of artificial 

influences on the results from choices of numerical parameters in implementations and consider effi- 

ciency and robustness. In this work, a novel coupling method is developed. The method includes both 

the smoothing of the particle data and the sampling of the gas phase quantities. The smoothing employs 

the diffusion-based method. The gas sampling method can reconstruct the filtered fluid quantities at the 

particle center. The sampling method is developed based on the diffusion-based method with higher ef- 

ficiency. The new method avoids mesh searching and it can be easily implemented in parallel computing. 

The developed method is validated by the simulation of a forced convection experiment for a fixed bed 

with steel spheres. With the well-posed grid-independent coupling scheme, the simulation results are in 

good agreement with the experimental measurements. The coupling effects and the computational cost 

are discussed in detail. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The Eulerian-Lagrangian framework is widely used to simulate 

ultiphase systems such as particle-laden flows, evaporation pro- 

esses, or pipe flows [1–3] . In the computational fluid dynamics- 

iscrete element method (CFD-DEM) simulations of a gas-solid sys- 

em, the fluid described by the Navier–Stokes equations as a con- 

inuum is resolved by the CFD solver, while the particles modeled 

s the dispersed phase are resolved by the DEM solver. Regarding 

he DEM, the particles have certain geometry information, such as 

ize and shape, which is necessary to compute the inter-particle 

ollisions. However, in the gas phase governing equations, the par- 

icles are represented as Lagrangian point particles (LPPs), which 

eans the particles do not impose any physical boundary condi- 

ions at the interphase between the gas and solid phase. Simula- 

ions carried out under the LPP approach are therefore regarded as 

nresolved simulations in contrast to resolved particle simulations 

n which the details of the flow around the particle’s surface are 

ully resolved [4] , as the type A and type B particles are illustrated

n Fig. 1 . Unresolved CFD-DEM has widely been applied to granular 
∗ Corresponding author. 
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ow simulations due to the much lower computational cost than 

he resolved simulations [5,6] . It is also an effective tool to conduct 

ransient simulations of the thermal conversion of e.g. biomass in 

ab-scale fixed-bed stoves [7,8] and fluidized bed reactors [9,10] . 

The Eulerian and Lagrangian models are constructed using 

athematical descriptions at different scales that are independent 

f each other. The coupling between the two models could be crit- 

cal depending on the simulated situation. The point particle as- 

umption is satisfied when the particle scale is much smaller than 

he resolved fluid scale. One such example is the transport of solid 

articles smaller than the Kolmogorov scales in a turbulent fluid 

ow. The coupling can be accomplished within one grid cell. The 

odel is more reliable because the boundary conditions required 

y the particle sub-models can be calculated directly by interpo- 

ating or averaging from the Eulerian grid points, and the parti- 

le’s feedback to the gas phase is unlikely to cause a severe dis- 

urbance. However, when the particle size is large, as the group C 

articles shown in Fig. 1 , the coupling is not straightforward any- 

ore. Firstly, the calculation of the local void fraction, namely the 

ed voidage in a fixed bed or fluidized bed, will be complicated. If 

he particle volume is larger than the Eulerian cell, it will induce 

iscontinuity in the fluid. The phase volume fraction field will not 

hange smoothly with large particles, which will cause unphysical 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Scenarios of the coupling calculation between the gas phase and the parti- 

cles. 
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Nomenclature 

m mass ( kg) 

U velocity ( m/s ) 

t time ( s ) 

F force ( N) 

I moment of inertia ( kg/m 

2 ) 

M torque ( N/m ) 

V volume ( m 

3 ) 

d p particle diameter ( m ) 

C d drag force coefficient (-) 

C p specific heat capacity ( J/ (kg · K) ) 

T temperature ( K) 

f view factor (-) 

h c convective heat transfer coefficient ( W/ (m 

2 · K) ) 

h k conductive heat transfer coefficient ( W/K) 

A surface area ( m 

2 ), matrix (-) 

B matrix (-) 

r radius ( m ); ratio (-) 

d distance ( m ) 

D diffusion coefficient ( m 

2 /s ) 

X dimensionless length (-) 

t ∗ dimensionless time (-) 

L p length ( m ) 

g gravity ( m/s 2 ) 

h entropy ( J) 

K kinetic energy ( J) 

p pressure ( Pa ) 

S m 

mass source term ( kg/ (m 

3 · s ) ) 

S U momentum source term ( kg/ (m 

2 · s 2 ) ) 

b bandwidth ( m ); vector (-) 

Re Reynolds number (-) 

Nu Nusselt number (-) 

P r Prandtl number (-) 

α thermal diffusivity ( m 

2 /s ) 

β drag coefficient (-) 

ε emissivity ( W/m 

2 ) 

ε void fraction (-) 

σ Stefan–Boltzmann constant ( W/ (m 

2 · K 

4 ) ); deviation 

( m ) 

ρ density ( kg/m 

3 ) 

ω angular velocity ( s −1 ) 

φ passive scalar (-) 

μ viscosity ( Pa · s ) 

τ diffusion time ( s ) 

θ dimensionless temperature (-) 

p particle 

s solid 

f fluid 

r reference 

m, n particle index; 

i, j particle index; cell index 

e f f effective 

uctuations in the pressure equation [11] . This will impair the nu- 

erical stability of the CFD solver. Secondly, when the particles are 

iewed as points to the fluid, point particle correlations have to be 

sed to calculate the interphase transfers, for example, the drag 

orce correlations used to calculate the momentum exchange and 

he expressions of the effective heat transfer coefficients used to 

alculate the heat exchange. These interphase interactions, mod- 

led with correlations, will bring two challenges. One is that the 

orrelations require the flow quantities to be sampled from a re- 

ion that is even larger than the particle scale or at the particle 
2 
enter, but without the disturbance from the particle. The other is 

hat the interphase interactions must be projected back onto the 

uid appropriately as source or sink terms to the fluid governing 

quations at the particle’s surrounding grid cells [12] . One exam- 

le of such a flow situation is the thermochemical conversion of 

olid fuel particles in a fixed-bed reactor, where the resolution of 

he temperature gradient at the conversion front generally requires 

 cell spacing finer than the particle size. The coupling method for 

alculating average gas temperature and the source term for each 

ell needs to be carefully designed; otherwise, the simulation will 

resent unphysical results. 

Plenty of studies have been conducted to investigate large par- 

icle coupling in unresolved CFD-DEM simulations. One strategy 

as been to reduce the particle’s disturbance by reconstructing the 

ndisturbed flow at the particle’s location [12–14] . Ireland et al. 

15] developed an analytical drag correction that improved the par- 

icle drag predictions for two-way or four-way coupled particle- 

uid systems. Balachandar et al. [12] formulated an explicit ex- 

ression for the particle’s self-induced velocity disturbance and re- 

onstructed the undisturbed flow velocity in order to calculate the 

uid-to-particle forces. Liu et al. [13] followed Balachandar’s work 

nd developed an analogous correction procedure for self-induced 

emperature change by the particle. The analytical solution used 

o develop the corrections has some critical limitations; for exam- 

le, the gas should be incompressible, and the particle is treated 

s a thermally thin particle. Both these assumptions would not be 

alid in many well-known physical processes [16] . Another strat- 

gy is to enlarge the coupling scale and smooth the coupling ef- 

ects, which means smearing the coupled properties to a larger 

egion. Capecelatro and Desjardins [6] formulated volume-filtered 

quations for the Eulerian-Lagrangian framework. The interactions 

etween the particle and the fluid are considered at the charac- 

eristic length of the filtering kernel function. This method will 

chieve good grid independence by nature. In their work, they also 

roposed diffusion-based smoothing, which is an efficient method 

o smooth the particle quantities with a Gaussian shaped distri- 

ution. Sun and Xiao [29] and Wu et al. [1] further discussed the 

elationship between the diffusion-based smoothing and the Gaus- 

ian kernel distribution in a more detailed mathematical manner. 

ompared to other common methods for coupling large particles, 

uch as the divided particle volume method [17,18] and the statisti- 

al kernel method [19] , the diffusion-based method has advantages 

n computational efficiency and is easy to implement numerically. 

owever, the studies of this method mainly focused on numerical 

tability and robustness by smoothing the discrete particle data. 

ur previous works [7,20] further developed this method and stud- 

ed its implementation in the simulations of biomass combustion 
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rocesses. The inter-phase heat and mass transfers are calculated 

ith smoothed source terms. How the Eulerian fields calculated 

ith the smoothed particle data will further influence the coupling 

etween the gas phase and solid phase models requires more in- 

estigation. 

In this work, we propose a novel coupling method to further 

evelop the diffusion-based method. The method uses diffusion- 

ased filtering combined with a diffusion-based smearing method 

or the particle and interphase properties. The filtered gas-phase 

roperties can be obtained at the particle’s location in the CFD 

imulation of a dense particle system. The filtering approach avoids 

esh searching and is thus efficient in parallel computing. The 

roposed method is implemented into a CFD solver and validated 

gainst a forced convective heat transfer experiment in a struc- 

ured packed bed with steel spheres. The coupling effects in the 

article heat transfer with its ambient gas phase are discussed, as 

ell is the computational efficiency demonstrated. 

. Numerical model 

.1. CFD governing equations 

The governing equations for the gas phase are the continuity, 

omentum and energy conservation equations of the flow and are 

xpressed as follow: 

∂ 

∂t 

(
ερ f 

)
+ ∇ ·

(
ερ f U f 

)
= 0 , (1) 

∂ 

∂t 

(
ερ f U f 

)
+ ∇ ·

(
ερ f U f U f 

)
= εμ f ∇ 

2 U f − ε∇p + ερ f g + S m 

, 

(2) 

∂ 

∂t 

(
ερ f 

(
h f + K f 

))
+ ∇ ·

(
ερ f U f 

(
h f + K f 

))
− ∇ ·

(
εα f ∇h f 

)
= ε ∇p + ε ρ f U f · g + S h , (3) 

here, ε is the void fraction. ρ f , U f , μ f , h f , K f and α f are the den-

ity, velocity vector, viscosity, enthalpy, kinetic energy of the fluid 

hase and the effective thermal diffusivity, respectively. p and g 

re pressure and the gravity acceleration. S m 

and S h are the source 

erms due to the interphase momentum and heat transfer. 

.2. DEM equations 

.2.1. Particle motion model 

The particle movement state is calculated under Newton’s laws 

f motion: 

 i 

dU p,i 

dt 
= 

n ∑ 

j=1 

F c i j + F g 
i 
+ F f 

i 
(4) 

 i 

dω p,i 

dt 
= 

n ∑ 

j=1 

M i j (5) 

here, m i , U 

p 
i 

, I i and ω 

p 
i 

are the mass, velocity, moment of inertia

nd angular velocity of the i th particle, respectively. F c 
i j 

and M i j are 

he contact force and torque acting on the i th particle by the jth

article. n is the number of total contacts for the i th particle. The

oft-sphere collision model is implemented to calculate the con- 

act force and torque. Further details can be found in Fernandes 

t al. [21] . F 
g 
i 

is the gravity force acting on the i th particle. F 
f 
i 

is

he particle-fluid interaction force acting on the i th particle. The 

rag force usually is the dominating force, and in this study, only 
3 
he drag force is considered as the interaction force, which can be 

xpressed as: 

 

f 
i 

= 

V p,i β

1 − ε 

(
U 

f − U 

p 
i 

)
, (6) 

here, V p,i , is the volume of the i th particle, and β is the drag

oefficient. The Gidaspow model [22] is adopted to calculate the 

rag coefficient: 

= 

⎧ ⎨ 

⎩ 

150 

( 1 −ε ) 2 

ε 
μ f 

d 2 
p,i 

+ 1 . 75 ρ f 
1 −ε 
d p,i 

∣∣U f − U p,i 

∣∣, ε � 0 . 8 

0 . 75 C d 
ε ( 1 −ε ) 

d p 
ρ f 

∣∣U f − U p,i 

∣∣ε −2 . 65 , ε > 0 . 8 

(7) 

here μ f is the fluid viscosity and d p,i is the diameter of the i th

article. The coefficient C d is a function of the particle Reynolds 

umber, Re p , given by: 

 d = 

{ 

24 
Re p 

(
1 + 0 . 15 Re 0 . 687 

p 

)
, if Re p ≤ 10 0 0 

0 . 44 , if Re p > 10 0 0 

(8) 

e p = 

ερ f 

∣∣U f − U p 

∣∣d p 
μ f 

. (9) 

.2.2. Particle heat transfer model 

The particle will exchange heat with its surrounding through 

onvection, conduction and radiation. The heat balance equation of 

he particle is formulated as: 

 i C pp,i 

d T p,i 

d t 
= εσ f 

(
T 4 eq,i − T 4 p,i 

)
+ 

n ∑ 

j=1 

h k,i j 

(
T p, j − T p,i 

)
+ h c,i A p,i 

(
T f − T p,i 

)
, (10) 

here C pp,i , T p,i , A p,i are the heat capacity, surface temperature and 

urface area of the i th particle, respectively. ε, σ and f are the 

missivity, the Stefan–Boltzmann constant and the view factor. The 

adiation control volume method is applied to simplify the calcula- 

ion for the radiation model [23] . T 4 
eq,i 

is the i th particle’s ambient

quivalent radiation temperature which is calculated as follows: 

 eq,i 
4 = εT 4 f + ( 1 − ε ) 

1 

m 

m ∑ 

j=1 

T p, j 
4 
. (11) 

 is the neighboring particle number in the i th particle’s radia- 

ion control volume. Unlike Mehrabian’s implementation [23] , the 

uartic average is used to calculate the equivalent radiation tem- 

erature. To avoid a massive particle searching procedure, which 

s carried out to determine m , the neighboring particles are repre- 

ented by the direct contacting particles ( m = n , n being the same

s in Eq. (4) ). The view factor is assumed to be 1. Since the simula-

ions in this work are carried out in a stagnate packed bed and all 

he particles’ temperatures are largely below 823K [24] , the heat 

onduction and radiation between the particles are not expected to 

ave a significant contribution to the heat transfer. The above sim- 

lifications will not cause notable influence. For high-temperature 

ases, when the radiation heat transfer becomes significant, more 

etailed radiation models need to be considered [25] . 

The heat conduction between the contacting particles can be 

alculated together with the collision model. According to the soft- 

phere collision model’s assumption, particles are allowed over- 

ap. Batchelor and O’brien [26] proposed a method to calculate the 

ontacting heat conduction, and a modified version by Zhou et al. 

27] is adopted in this work. The equivalent conduction heat trans- 

er coefficient between the i th and jth particle, h k,i j can be calcu- 

ated as: 

 k,i j = 

4 r c,i j (
1 /k p,i + 1 /k p, j 

) , (12) 
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here k p is the particle’s thermal conductivity. r c,i j is the con- 

acting radius of the overlapping circle and can be resolved from 

eron’s formula, which is calculated as: 

 c,i j = 

2 A 

d i j 

, (13) 

 = 

√ 

s (s − r j )(s − r i )(s − d i j ) , (14) 

 = 

(r j + r i + d i j ) 

2 

, (15) 

here r j and r i are the radius of particles j and i , respectively, and

 i j is the distance between the centroids of particles j and i . 

As for heat convection, there are various choices of correlation 

f heat transfer coefficient. A widely used correlation for particles 

n fixed beds was proposed by Wakao and Kagei [28] as follows: 

u p = 2 + 1 . 1 P r 1 / 3 
f 

Re 0 . 6 p , (16) 

here, Nu p is the particle Nusselt number, and P r f is the Prandtl 

umber of the fluid. 

The simulated case in this work is a forced convection case, and 

he heat transfer coefficient will play an important role. Wakao’s 

quation does not include the influence of the bed voidage in an 

xplicit way. In another simulation of the same experimental case 

s in this work, the correlation recommended by KTA 3102.2 stan- 

ard [1] is adopted as shown in Eq. (17) : 

u p = 0 . 33 P r 0 . 5 f Re 0 . 86 
p ε −1 . 07 + 1 . 27 P r 1 / 3 

f 
Re 0 . 36 

p ε −1 . 88 . (17)

For the simulated case, the heat transfer coefficient was also 

easured by experimental fitting. The choice of different coeffi- 

ients, either by using experimental fitting or using correlations, 

ill be compared and discussed in later sections. 

. Interphase coupling 

Spatially extending the interphase coupling will smooth the 

hanging of the quantities of the fluid phase and reduce the distur- 

ance introduced by the particles. On a practical level, the coupling 

ncludes two aspects. The first is to find proper kernel functions to 

edistribute and smooth the particle quantities present in the CFD 

overning equations, rather than couple them back to the fluid by 

 Dirac delta function shaped distribution. The second is to trans- 

er the gas phase properties present at the Eulerian grid points 

nto the 0D data required by the particle sub-models. In this work, 

oth the smearing method for the particle data and the sampling 

ethod for the fluid data are applied based on a Gaussian distribu- 

ion. The solver is developed using the open-source software Open- 

OAM®7, and the code is publicly available at https://github.com/ 

omKinBio/fixedBedHeatTransFilteredFoam under GPLv3 license. 

.1. Diffusion based smoothing 

Diffusion-based smoothing is a widely used method for smear- 

ng the particle data [6,29,30] . For any particle quantity (includ- 

ng the source/sink terms generated by the particle sub-models), 

he quantity is initialized to a discrete field or a mollified field 

6] , which is presented in the Eulerian mesh based on the parti- 

les’ locations. Then it is resolved by a Laplace diffusion operator, 

s shown in Eq. (18) : 

∂φ

∂τ
= D ∇ 

2 φ, (18) 

here, D is a diffusion coefficient, and τ is the diffusion time vari- 

ble. In order to distinguish it from the physical time, t , τ is in this

ork only employed for the smoothing diffusion. 
4 
Sun and Xiao [29] and Wu et al. [1] used different mathematical 

ethods to prove that applying the diffusion operation to a field is 

qual to smooth the field by a Gaussian kernel function. For exam- 

le, with x as the 3D location vector, consider the diffusion of a 

ariable u (x , t) : 

∂ 

∂τ
u = D ∇ 

2 u. (19) 

f the distribution of u at τ = 0 is given as u (x , 0) , the distribution

f u at an arbitrary τ can be calculated using the Green function: 

 (x , τ ) = 

∫ 
V 

G 

(
x , x 

′ ; τ, 0 

)
u 

(
x 

′ , 0 

)
dx 

′ , (20) 

here the Green function is: 

 

(
x , x 

′ ; τ, τ ′ ) = 

1 

( 4 πD ( τ − τ ′ ) ) 3 / 2 
e 

− ( x T x −x ′ T x ′ ) 
2 

4 D ( τ−τ ′ ) , (21) 

hile a 3D Gaussian function kernel for the particle i is: 

(x − x i ) = 

1 (
2 πσ 2 

)3 / 2 
e −

( x T x −x T 
i 

x i ) 
2 σ2 , (22) 

here x i is i th particle center vector. It is clear that by applying 

he diffusion operator and having the diffusion start at τ = 0 , a 

eld will be smoothed in the same way as by a Gaussian kernel 

unction with one standard deviation of σ = 

√ 

2 Dτ . We can define 

as a characteristic length of the smoothing length scale. There is 

o need for special treatment of physical boundaries for the diffu- 

ion operator. Using zero gradient conditions at the boundaries of 

he computational domain, the diffusion operator will ensure the 

onservation of the diffused properties [29] . 

.2. Filtering of the gas phase 

To enable a mesh-independent setup when particles are no 

onger small in relation to the size of the computational cells, one 

ust be able to account for the fluid information on a larger scale 

han that of a single mesh cell. In such situations, the locally fil- 

ered fields of the fluid data can be calculated from the point 

alues on the Eulerian mesh by a convolutional integral. The fil- 

ered field of a gas phase quantity, a (x , t) , is computed by using

he convolution product with the filtering kernel g, the same as 

q. (22) [31] : 

 (x , t) = 

∫ 
V 

a (y , t) g(| x − y | ) dy , (23)

here, V is the whole fluid domain. The filtering disregards the 

hase fraction by assuming the phase fraction is uniform in the 

ensely packed bed, and this assumption is valid when the parti- 

le volume is diffused sufficiently. Analogous to the diffusion-based 

moothing, the filtering operation can be achieved by using a dif- 

usion operator if the diffusion time and the kernel length scale 

atisfy σ = 

√ 

2 Dτ . In Appendix A, a mathematical proof based on 

he discrete numerical calculation has been provided to shown that 

uch analogous is valid. It is important to point out the difference 

etween t and τ . At any physical time t , the a (x, t) field should be

iffused by Eq. (18) from 0 to τ = σ 2 / 2 D , in order to obtain the

ltered field a (x , t) . The gas phase data required by the particle

ub-models can be read directly from the cell or by interpolating 

o the particle centroid location from the filtered fields a (x , t) . 

In this work, we also propose another calculation scheme to get 

he filtered field, which has different characteristics than that out- 

ined above. Instead of directly applying the diffusion operator on 

he gas property fields, the filtering kernel field for individual par- 

icles is calculated based on their location. First we initialize a new 

https://github.com/ComKinBio/fixedBedHeatTransFilteredFoam
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Fig. 2. Illustration of the discrete calculation of the new filtering method based on the single-particle scenario. 
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Eq. (27) in order to obtain the filtered T ( x , t) field. 
calar field, S, using the Dirac delta function and the particle’s lo- 

ation: 

(x , t) = 

m ∑ 

i =1 

δ(x − x i ) , (24) 

here, m is the total particle number. Then we apply the diffusion 

perator to S, and by applying Eqs. (20) and (21) , the S field can

e expressed by: 

 (x , t) = 

m ∑ 

i =1 

G (x − x i ; τ, 0) . (25) 

he S field is an overlay field of the filtering kernel function for 

very particle, and it satisfies 
∫ 
V S (x , t) dx = m . It can be used to

ake the weighted average of a gas data field for the particles. For 

xample, multiplying S with the gas temperature field T yields a 

emporary field T ′ ( T ′ = S T ), and by calculating the integral over

he domain, then by combining with Eq. (23) we get: 

 

V 
T ′ dx = 

m ∑ 

i =1 

∫ 
V 

T G (x − x i ; τ, 0) dx = 

m ∑ 

i =1 

T ( x i , t) . (26)

he result is the sum of the filtered T values at the particle cen-

roids. The sum is however not as useful as the data of each 

 ( x i , t) . In fact, we can design a scheme to obtain T ( x i , t) at each

orresponding cell centroid, and the illustration of the discrete cal- 

ulation based on the single particle is shown in Fig. 2 . First, we

eed to resolve the diffusion of the S field with an explicit method. 

n every diffusion time step, the explicit method will calculate 

he gradient ( ∇S) at each cell center and calculate the divergence 

 ∇ · ∇S) by interpolating ∇S values at the cell faces from the val- 

es at cell centers. As shown in Fig. 3 , the two cells that share face

f i j are registered as the owner cell and neighbor cell of face f i j . 

With the explicit method, the scalar S can only be transported 

etween face-neighboring cells in one diffusion time step. If we 
5 
ecord the �S τ
i j 

transported through every mesh face in every dif- 

usion time step, we will be able to monitor the entire diffusion 

rocess explicitly. By reversing the diffusion time step and the di- 

ection of the �S τ
i j 

transport at the mesh faces, we can use S (x , t)

o reconstruct S(x , t) . This is exactly the reverse process of the dif-

usion of S. However, instead of reversing the S field, it is the T ′ 
eld that needs to be reversed in the coupling calculation. In or- 

er to achieve this, it is the transport ratio, r τ+1 
i j 

, of �S τ
i j 
/S τ+1 

i 
that

hould be recorded instead of �S τ
i j 

(note that i is the receiver cell 

ndex of the transported S; r τ+1 
i j 

is positive if S is transported from 

he neighbor cell to the owner cell, and negative if S is transported 

rom the owner cell to the neighbor cell). The reversing process is 

imply looping r i j at every diffusion time step and mesh faces and 

erforming the calculation of T ′ by the following: 

 

T ′ τ
i 

= T ′ τ
i 

+ r τ+1 
i j 

T ′ τ+1 
i 

, T ′ τ
j 

= T ′ τ
j 

− r τ+1 
i j 

T ′ τ+1 
i 

; if r τ+1 
i j 

> 0 

T ′ τ
i 

= T ′ τ
i 

+ r τ+1 
i j 

T ′ τ+1 
j 

, T ′ τ
j 

= T ′ τ
j 

− r τ+1 
i j 

T ′ τ+1 
j 

; if r τ+1 
i j 

< 0 

(27) 

After the reversing process, T will be reconstructed using the 

 

′ (x , t) field, which now only contains the values of the cells that 

he particles’ centroids are located in. The calculation scheme can 

e summarized as the following: 

1. Initialize the S field using Eq. (26) . 

2. Apply the diffusion operator to S using an explicit method to 

get the S field, and record r i j in a two-dimensional table (one 

dimension is the diffusion time step, the other is the mesh face 

id). 

3. Calculate the T ′ field as T ′ = S T . 

4. Loop the diffusion time step in the reverse way, and in ev- 

ery diffusion time step loop r i j perform the calculation of 
i 
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Fig. 3. Discrete scheme of the Laplacian diffusion with the explicit method. 

Fig. 4. The kernel function fields by different filtering methods. (The blue and red lines represent the original Gaussian kernel function, and the solid black line represents 

the implemented kernel function by the new method.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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There are three main advantages of the new filtering operation. 

he first is that the filtered values that are needed for the parti- 

le consideration are calculated at the cells in which the particles’ 

entroids are located, hence the DEM code can easily access these 

alues. The second advantage is that the particle centroid cell ob- 

ains the averaged information from the non-adjacent cells without 

esh searching, which can otherwise be a computationally costly 

rocedure. For example, in order to calculate the discrete cumula- 

ive kernel function in one cell, all the contributor cells need to be 

ound through a mesh searching procedure. The third advantage is 

hat all the calculations are based on the mesh faces, and there is 

hus no need for additional considerations for parallel computing. 

Compared to directly applying Eq. (18) to obtain the filtered gas 

hase quantities, the new method will have different filtered val- 

es at the particle location, x i , even when they use the same fil- 

ering length scale. This happens when the particle is close to its 

eighboring particles. With multiple particles, the kernel function 

eld, S (x , t) , has virtual boundaries between every two particles, 

s shown in Fig. 4 . The diffusion of S is driven by the gradient ∇S.

t the virtual boundaries, the gradient is 0, and there will be no 

ransport through the neighboring cell face. In Fig. 4 , for the new 

ethod, the shape of the kernel function will be the solid black 
6 
ine instead of the dashed lines. Compared to the direct diffusion 

ethod, the new method will always have a deformed Gaussian 

ernel with a more narrow distribution in length scale, and the 

onsequences will be further discussed in Section 5 . 

. Validation 

An experiment with forced convective heat transfer in a struc- 

ured packed bed [32] is simulated to validate the proposed CFD- 

EM model. The bed is packed in the form of a simple cubic pack- 

ng with steel spheres. The bed geometry and the corresponding 

omputational mesh are illustrated in Fig. 5 . The initial particle 

emperature is 338K, and cold air is used to cool the spheres, in- 

roduced at the rear inlet with an initial temperature of 298K. The 

hermal physical properties of the particles are listed in Table 1 . 

Based on the geometry, the structured mesh with a cell side 

ength of 4mm was generated, which according to previous CFD- 

EM simulations with diffusion-based smoothing, should be fine 

nough to resolve the gas flow [1] . To keep the Courant number 

maller than 1, the fluid computational time step was set to 10 −3 s. 

n adiabatic wall assumption was used in the simulation, which is 

easonable considering that the temperatures in the experiments 



J. Zhang, T. Li, H. Ström et al. International Journal of Heat and Mass Transfer 203 (2023) 123817 

Fig. 5. The geometry of the fixed bed of cubic packing. 

Table 1 

Particle physical properties. 

Value Unit Ref. 

Density 7 . 81 × 10 3 kg · m 

−3 [32] 

Diameter 0.012 m [32] 

Thermal conductivity 40.1 W · m 

−1 · K −1 [32] 

Heat capacity 553.0 J · kg −1 · K −1 [32] 

Elastic modulus 10 11 Pa - 

Poisson’s ratio 0.35 - - 
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Table 2 

Comparison of different coupling methods. 

Method label Gas data sampling Particle data smoothing 

NF None Applying diffusion equation to 

particle properties and source 

terms 

DD Applying diffusion 

equation to gas phase 

properties 

Same as NF 

DBS Using calculation scheme 

in Section 3.2 

Same as NF 

NONE None None 

Fig. 6. Comparisons of measured and predicted gas phase outlet temperature θ f 

with different coupling methods. 

Fig. 7. Comparisons of measured and predicted solid phase temperature θs with 

different coupling methods. 
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ere rather low and the material of the walls was plexiglass, 

hich has a relatively high heat resistance. As outlined above, the 

ltering length scale is defined as σ , and for the simulations in 

his section, σ = d p . The selection of the filter length scale is fur-

her discussed in Section 5.1 . For the experimental fitting of the 

eat transfer coefficient, we have that Nu p = 47 . 56 [32] , which was

lso adopted in the simulations in this section, while the studies 

f using different correlations for Nu will be further discussed in 

ection 5.2 . 

The new coupling method as developed in this study is em- 

loyed, and two variations thereof are compared. As mentioned 

n Section 3 , the coupling has two aspects which can be summa- 

ized as (1) sampling the gas data for the particle sub-models and 

2) smoothing the particle data or interphase exchanging quan- 

ities for the gas phase governing equations. The three coupling 

ethods all employ the diffusion-based smoothing method, which 

eans Eq. (18) will be applied to all the particle data that need 

o be smoothed, but they are different in the method of sam- 

ling . The new method employs the calculation scheme proposed 

n Section 3.2 and is hereafter referred to as the diffusion-based 

ampling (DBS) method. This method is contrasted against three 

lternate approaches (two other coupling methods and the conven- 

ional CFD-DEM approach without any specific coupling method). 

he approach where the sampling is implemented by directly read- 

ng the grid cell values or interpolated values without the use of 

ny filtering method is referred to as the no filtering (NF) method. 

he method where the sampling is achieved by directly apply- 

ng Eq. (18) to obtain the filtered gas phase quantities is referred 

o as the direct diffusion (DD) method. In addition, the conven- 

ional CFD-DEM without any specifically designed coupling method 

NONE) is also employed for comparison. The differences of all the 

oupling methods are summarized in Table 2 . 

The non-dimensional temperatures of the gas phase and the 

olid phase, distance and time are defined as: 

f = 

T f − T r 

T p, 0 − T r 
; θs = 

T p − T r 

T p, 0 − T r 
; X = 

x 

L p 
; t ∗ = 

t 

L p / U in 

, (28) 

here T f is the gas temperature measured at the outlet in the ex- 

eriments (the mass-flow weighted temperature was used as the 
7 
imulation results) and T p is the particle’s center temperature mea- 

ured at selected particles close to the central line (the Biot num- 

er is about 0.03 << 1, and the thermally thin particle model was 

sed in the simulation, which assumes the particle is isothermal). 

 r is the reference temperature (298K) and T p, 0 is the initial solid 

hase temperature. L p is the length of the fixed bed (132mm). U in 

s the gas phase inlet velocity (1.23 m/s ). 

As shown in Fig. 6 , the predicted outlet gas phase temperature 

fter the cooling process by using the NF method provided bet- 

er agreement with the measurements than DBS and DD. There 

s little difference between the DD and DBS methods, which both 

ake use of gas filtering methods. However, as shown in Fig. 7 , 

he NF method predicted a higher particle temperature compared 

o the experimental measurements. The heat transfer source term 

 h in Eq. (3) is smoothed by applying Eq. (18) . The diffusion-based 

moothing method will introduce artificial diffusion of the inter- 
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Fig. 8. Comparisons of measured and predicted temperatures of gas phases (a) and solid phases (b) with different coupling scales by DBS method. (In figure (b), the and 

the blue lines are the Exp. data and simulation results when t ∗ = 2114 , respectively; the and the yellow lines are the Exp. data and simulation results when t ∗ = 5227 , 

respectively.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Comparisons of measured and predicted temperatures of gas phases (a) and solid phases (b) with different coupling scales by DD method. (In figure (b), the and 

the blue lines are the Exp. data and simulation results when t ∗ = 2114 , respectively; the and the yellow lines are the Exp. data and simulation results when t ∗ = 5227 , 

respectively.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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hase exchanging quantities [20] . Consequently, the source term 

 h is coupled back even to the upstream region of the gas flow. 

he source term S h will raise the gas phase temperature, result- 

ng mainly from convection. However, it will further influence the 

ampling of the gas phase temperature, which is needed for the 

onvection calculation. For the NF method, the gas phase temper- 

ture is sampled at the particle’s centroid, and the disturbance in- 

roduced by the particle to the temperature field of the gas phase 

as a larger influence on the coupling calculation than that in the 

ther two methods with gas filtering. The NF method underesti- 

ated the heat transfer rate between the gas and the particles, 

esulting in over-prediction of the particles’ temperatures. 

However, the smoothing of S h is necessary, otherwise a large 

ource term will strongly impair the solver’s robustness. For ex- 

mple, the simulation failed to predict a reasonable result without 

ny filtering and smoothing method (NONE). 

In general, the DD and DBS methods showed good performance 

ompared with the experiments. The results showed that the de- 

eloped filtering methods successfully reconstructed the ambient 

as phase temperature seen by the particles. Since S h is smoothed, 

he NF method also predicted much better results than with- 

ut coupling methods. If the interphase heat exchange is not the 

nly reason for the gas phase temperature changing, for example, 

f there are strong endothermic or exothermic homogeneous gas 

hase reactions, then the filtering methods will play a much more 

mportant role in the simulation. 
8 
. Discussion 

.1. Length scale in diffusion and filtering 

In the coupling models, the filtering and smoothing length scale 

s a chosen parameter. It defines the spatial scale on which the in- 

eraction between the gas and the particle takes place. Sensitivity 

tudies of this parameter are presented in this section. Three dif- 

erent length scales were investigated; σ equal to 0 . 75 d p , d p and

 . 25 d p , respectively. 

As shown in Figs. 8 and 9 , the DD and DBS methods predicted

ery similar results (e.g., the relative mean differences of the gas 

emperature prediction based on DD are 5.18%, 0.69% and 0.67%, 

hen σ equals 0 . 75 d p , d p and 1 . 25 d p , respectively). As the length

cale became larger, converged results were obtained. The major 

ifference between the two methods is that when σ = 0 . 75 d p , the

redicted outlet gas temperature has deviations at the early stage. 

hat is because of the fundamental difference in the sampling 

ethods, which is shown in Fig. 4 . Due to the particle blocking 

ffects for the smoothing of the S field, the sampling calculation 

ill be less sensitive to the length scale for the DBS method. For 

oth DD and DBS methods, the different predictions using differ- 

nt length scales are mainly influenced by the smoothing of the 

article data. 

However, the NF method is significantly affected by the selec- 

ion of the length scale, as shown in Fig. 10 . As expected, when
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Fig. 10. Comparisons of measured and predicted temperatures of gas phases (a) and solid phases (b) with different coupling scales by NF method. (In figure (b), the and 

the blue lines are the Exp. data and simulation results when t ∗ = 2114 , respectively; the and the yellow lines are the Exp. data and simulation results when t ∗ = 5227 , 

respectively.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Predicted and sampled temperatures of gas phases in Y direction with different coupling methods at X = 0 . 864 : (a) σ = 0 . 75 d p ; (b) σ = d p . 
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becomes smaller, the behavior of the NF method will get closer 

o that of the conventional CFD-DEM method, which is shown as 

ONE in Figs. 6 and 7 . When σ becomes larger, the NF method will

e closer to the DD and DBS methods. Since the heat source term 

s already smoothed to a certain degree, the gas filtering methods 

ardly further influence the gas data sampling. 

The above results show that the gas filtering methods are es- 

ential when the particle data is not fully smoothed. At the same 

ime, gas filtering methods are not sensitive to the length scale, as 

ong as the length scale is large enough. As the length scale is de- 

ned using the deviation of the normal distribution, 20 % of values 

re distributed within one deviation away from the particle cen- 

roid and about 73 % of the values are distributed within two stan- 

ard deviations [33] . The length scale is defined differently in stud- 

es that employed the diffusion-based method. For example, Sun 

nd Xiao [29] defined the length scale as the bandwidth, b = 

√ 

2 σ , 

nd Capecelatro and Desjardins [6] defined the length scale as δ 1 
2 

, 

hich is the full width at half the height of the kernel function. 

n the above research, the length scale is recommended to employ 

 value of 3 d p − 6 d p . However, it is worth noting that the above

wo studies were conducted in 1D or 2D. The 3D normal distribu- 

ion has a lower probability within the same deviation range than 

n 1D or 2D. From this study, when σ > d p , it can be regarded as

arge enough for the coupling with the gas filtering method. 

The gas phase temperature at location X = 0 . 864 is plotted 

long the y direction in Fig. 11 . There are six particles arrayed in

he y direction. The solid lines are the gas phase temperature pro- 

les, and the marks are the particles surrounding gas phase tem- 

eratures sampled by the gas filtering methods. When σ = 0 . 75 d p ,
9 
he heat transfer source term has a more concentrated distribu- 

ion at the cell where the particle’s centroid is located, and this 

neven distribution developed more strongly as the flow devel- 

ped. This disturbance to the gas temperature field introduced by 

he particle further influenced the calculation of the source term 

f the interphase heat transfer in the NF method. The DBS and the 

D methods reconstructed the particle ambient temperature, and 

he coupling effects from the diffusion-based method had, how- 

ver, less influence on the calculation of the convection, as shown 

n Figs. 8 and 9 . 

The smoothing procedure of the S field in the DBS method is 

llustrated in Fig. 12 . The S field ended up with a very even distri- 

ution by the given length scale. Since the S field is determined by 

he particle number, unlike the DD method, the filtered gas prop- 

rty fields will contain the discrete values at the cells where the 

article’s centroid is located, e.g., the temperature field ( T ) shown 

n Fig. 13 . One disadvantage of the DBS method is that the sam- 

ling centroid is the cell’s centroid rather than the particle’s cen- 

roid and interpolation schemes are not applicable. However, the 

BS method is designed for the situation where the particle size 

s much larger than the grid size, and this disadvantage can be ne- 

lected. 

As mentioned in Section 3.2 , the diffusion calculation of the S

eld is meaningless when ∇S = 0 . In this study, the passive scalar 

will only be transported to the 26 neighboring cells from the par- 

icle center cell with the simple cubic packed particles. As men- 

ioned above, the particle blocking effects will restrict the sam- 

ling calculation for one particle within the 27 cells that make up 

he cubic space with the side length of d p . However, for the DD 
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Fig. 12. The smoothing of the S field in the DBS method, σ = 1 . 25 d p . 

Fig. 13. Predicted and sampled temperatures of gas phases by different coupling methods, σ = 1 . 25 d p . 

Fig. 14. Predicted temperatures of gas phases in x direction with different coupling 

methods. 
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Fig. 15. Measured and predicted particle Nu numbers with different correlations. 
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ethod, as the length scale increases, the T ′ will converge to a uni- 

orm distribution. Fig. 14 shows the sampled temperature by using 

he DBS and DD methods, respectively, which is based on the gas 

emperature profile in the x direction predicted by the NF method 

t t ∗ = 2114 . There is no observable difference for the DBS method 

y using different σ , so only the result with σ = d p is shown. For

he DD method, there are slight differences between the sampled 

emperature with different σ . 

The above results show that the smoothing process provides the 

olver with more robust and accurate capabilities. The gas filtering 

ethod is also critical to the consistency of the coupling calcula- 

ion. The DBS and DD methods are developed from the same Gaus- 

ian filtering concept. However, the particle location information 

s considered in the DBS method with a different implementation 

rom the DD method. 

.2. Choice of heat transfer coefficient models 

In the forced convection case studied here, besides the cou- 

ling methods, the heat transfer correlation has a critical influence 

n the results. The Nu number calculated by the two correlations, 
10 
hich is mentioned in Section 2.2.2 for the fixed bed discussed 

bove, is plotted together with the experimental fitting in Fig. 15 . 

Because the bed is packed in a simple cubic configuration, the 

ed voidage is relatively higher than the one in random pack- 

ng, and there are unobstructed tunnels for the gas phase to flow. 

ence, the bed correlations will overestimate the heat transfer co- 

fficient, even though bed voidage is already considered in equa- 

ion [4] , and since the correlations are obtained for randomly 

acked beds. 

Predicted results of both gas phase and solid phase tempera- 

ures, using the two different correlations of the heat transfer co- 

fficients with the DBS method, are shown in Fig. 16 . The larger 

he calculated coefficient, the higher heat transfer rate is predicted, 

hich means a higher gas phase temperature at the outlet in the 

eginning of the simulation. Correspondingly, the solid phase tem- 

erature was under-predicted, as shown in Fig. 16 (b). Compared 

o using the correlations, the heat transfer coefficient obtained by 

xperimental fitting predicted results that are in better agreement 

ith the experimental measurement. It shows that the newly de- 

eloped coupling method improved the accuracy of the simulation. 
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Fig. 16. Comparisons of experimental and predicted temperatures of gas and solid 

phases with different convection heat transfer coefficients: (a) gas phase outlet tem- 

perature θ f ; (b) solid phase temperature θs . 
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Fig. 17. Computational cost comparisons of different coupling methods. 
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.3. Statistics of the computational cost 

The computational cost of different coupling methods is studied 

n this section. The computational cost can be divided into four 

arts: cost of solving the gas phase governing equations, cost of 

olving the DEM, cost induced by the smoothing method and cost 

nduced by the gas phase filtering. In all the simulations, a grid 

ith 10,692 cells is employed, and the CPU time spent on solv- 

ng the gas phase governing equations is used as a reference for 

ach case. The most expensive part of the simulations is associ- 

ted with solving the DEM model. A moderate number of 396 steel 

phere particles were described by the DEM, yet it required about 

0 times as much the cost associated with solving the gas phase 

overning equations. For different coupling methods, the smooth- 

ng and filtering costs are shown in Fig. 17 as ratios to the cost of

esolving the gas phase. There are three variables for the particle 

moothing method (the particle volume, S m 

and S h ) that need to be 

meared. The source term has two coefficients with an implicit im- 

lementation, and one of the coefficients of the momentum source 

erm is a vector field. Hence there are an equivalent of 7 scalar 

elds that the diffusion operator needs to be applied to. As shown 

n Fig. 17 , the cost of the diffusion-based smoothing is similar in 

ifferent cases and is about 5 times the cost of resolving the gas 

hase governing equations. 
11 
For the gas filtering, there are two fields ( U f and T f ) that need

o be filtered, which are equivalent to 4 scalar fields. However, 

he number of the filtered gas property fields could be extended 

f other thermal property fields or even the species concentration 

elds need to be smoothed, e.g., in a combustion simulation of 

olid fuel. As a test case, 4 additional fields were added, which are: 

f , μ f (viscosity), k f (thermal conductivity) and c p f (heat capac- 

ty), and the statics of the filtering with more quantities (the com- 

lete set of 6 fields) are also shown in Fig. 17 . The DBS method

nly requires the diffusion operation once, and the rest of the cal- 

ulation is mainly looping the mesh faces. For fewer filtered quan- 

ities, the DBS method requires almost the same computational 

ost as the DD method, while for more quantities it is shown to 

epresent significant savings compared to the DD method, simply 

ecause face looping is faster than solving matrices. 

It is worth mentioning that there is much room for optimizing 

he computational cost of the coupling method. The main factor 

hat influences the computational cost is the diffusion time step 

. In the current settings, the total steps from 0 to τ are 6, while

ewer time steps, for example 3, could be applied [29] . For the dif-

usion of the S field with the explicit method, much smaller time 

teps are however required at the beginning, and in this work 25 

djusted time steps are applied. This could be further optimized to 

nhance computational efficiency. In general, it is shown that the 

eveloped coupling method is affordable and efficient in the CFD- 

EM simulations. 

. Conclusion 

A novel coupling method for multi-phase gas-solid simulations 

nder the CFD-DEM framework is developed. The method is de- 

igned for the simulation with large-sized particles and a sub- 

article scale mesh. The coupling includes both smoothing the par- 

icle point data and filtering the gas field data. The smoothing is 

ased on a newly proposed diffusion-based smoothing, and filter- 

ng is also based on the diffusion operation. The coupling algo- 

ithm is validated using a simulation of air cooling steel sphere 

y forced convection in a fixed bed, which is in a well-defined 

ubic packing configuration. The overall heat transfer rate is well 

redicted. Compared to coupling methods only considering the 

moothing, the newly developed approach, including the filtering 

ethod, has a better performance in reducing the particle’s dis- 

urbance of the flow field. The method converges even at a small 

haracteristic length of the coupling method. 
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The new filtering method developed in the coupling algorithm 

s able to reconstruct the particle ambient quantities of the gas 

hase, even at a computational size much smaller than the parti- 

le diameter. The DBS method can calculate the averaged gas phase 

uantities based on the particle location and size without a com- 

utationally costly search algorithm. The filtered quantities are di- 

ectly reconstructed at the cell of the particle’s centroid, simplify- 

ng the coupling scheme and as well as the implementation into 

he CFD solver. The DBS method is also shown to be computation- 

lly efficient and well suited for implementation in parallel com- 

uting. In this study, only the simulations of fixed beds in dense 

acking were conducted; however, for other regimes, for example, 

he dilute granular flow, the behavior of the new coupling method, 

nd the choosing of the coupling parameters need to be further 

nvestigated. 
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ppendix A 

For a gas phase field (e.g. the temperature field T ) the weights 

eld S is based on the particle location, and �S = 1 . For the initial

field, the value of the cells only where the particle’s centroid lo- 

ates is 1, otherwise is 0. Start with the diffusion equation of the 

eights field S: 

∂S 

∂τ
− D ∇ 

2 S = 0 , (A.1) 

here D is the diffusivity. The weights field S will be in Gaussian 

istribution. The implicit form of discretization of the equation is 

hown as follows: 

S n +1 − S n 

δτ
− D (∇ 

2 S) n +1 = 0 , (A.2) 

hich is equivalent to: 

S n +1 = b, (A.3) 

here A contains the discretization parameters for the time step 

 + 1 and b contains the discretization parameters of the time step 

 . b has a form of: 

 = BS n . (A.4) 
12 
he linear system can therefore be rewritten as: 

S n +1 = BS n . (A.5) 

t should be mentioned that the matrix A is a symmetric ma- 

rix and matrix B is a diagonal matrix. After the diffusion of the 

eights field S, the weighted temperature T can be calculated as 

S n ) T T 0 . Directly applying the same diffusion operation for field T 

rom T 0 to T n , the targeted weighted average should be (S 0 ) 
T 

T n . 

he following derivation is going to prove that (S n ) T T 0 is equiva- 

ent to (S 0 ) 
T 

T n 

With a same diffusivity D , the diffusion equation of the T field 

s: 

∂T 

∂t 
− D ∇ 

2 T = 0 , (A.6) 

hich can be represented as the following linear system: 

T n +1 = BT n . (A.7) 

f the mesh, time step, and diffusivity are the same, the coefficients 

 and B will be the same for the diffusion of S and T . The super-

cript T means the transpose of the vector. Expand the S n and T n ,

S n ) T T 0 becomes: 

 

n ∏ 

i =1 

A 

−1 BS 0 

) T 

T 0 = (S 0 ) T 

( 

n ∏ 

i =1 

A 

−1 B 

) T 

T 0 , (A.8) 

nd (S 0 ) 
T 

T n becomes: 

S 0 ) T 

( 

n ∏ 

i =1 

A 

−1 B 

) 

T 0 (A.9) 

o prove that (S n ) T T 0 = (S 0 ) 
T 

T n , is equal to prove: 

 

n ∏ 

i =1 

A 

−1 B 

) T 

= 

n ∏ 

i =1 

A 

−1 B (A.10) 

xpand the term ( 
∏ n 

i =1 A 

−1 B ) T , and considering that the matrix A

s a symmetric matrix and matrix B is a diagonal matrix: 

 

n ∏ 

i =1 

A 

−1 B 

) T 

= 

n ∏ 

i =1 

(A 

−1 B ) T = 

n ∏ 

i =1 

B 

T (A 

−1 ) T = 

n ∏ 

i =1 

B (A 

T ) −1 

= 

n ∏ 

i =1 

BA 

−1 = 

n ∏ 

i =1 

A 

−1 B (A.11) 

t proves that if the diffusion operation is directly applied to the T 

eld, then, T n (x ) = 

∫ 
T 0 (y ) g(| x − y | ) dy , where g is a Gaussian ker-

el. 
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