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ABSTRACT

In CFD-DEM (computational fluid dynamics-discrete element method) simulations particles are consid-
ered Lagrangian point particles. The details of the flow near the particle surface are therefore not fully
resolved. When the particle scale is larger than the resolved flow scale, the coupling between the CFD
model and the DEM model is critical. An effective coupling scheme should minimize the risk of artificial
influences on the results from choices of numerical parameters in implementations and consider effi-
ciency and robustness. In this work, a novel coupling method is developed. The method includes both
the smoothing of the particle data and the sampling of the gas phase quantities. The smoothing employs
the diffusion-based method. The gas sampling method can reconstruct the filtered fluid quantities at the
particle center. The sampling method is developed based on the diffusion-based method with higher ef-
ficiency. The new method avoids mesh searching and it can be easily implemented in parallel computing.
The developed method is validated by the simulation of a forced convection experiment for a fixed bed
with steel spheres. With the well-posed grid-independent coupling scheme, the simulation results are in
good agreement with the experimental measurements. The coupling effects and the computational cost

are discussed in detail.

© 2023 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The Eulerian-Lagrangian framework is widely used to simulate
multiphase systems such as particle-laden flows, evaporation pro-
cesses, or pipe flows [1-3]. In the computational fluid dynamics-
discrete element method (CFD-DEM) simulations of a gas-solid sys-
tem, the fluid described by the Navier-Stokes equations as a con-
tinuum is resolved by the CFD solver, while the particles modeled
as the dispersed phase are resolved by the DEM solver. Regarding
the DEM, the particles have certain geometry information, such as
size and shape, which is necessary to compute the inter-particle
collisions. However, in the gas phase governing equations, the par-
ticles are represented as Lagrangian point particles (LPPs), which
means the particles do not impose any physical boundary condi-
tions at the interphase between the gas and solid phase. Simula-
tions carried out under the LPP approach are therefore regarded as
unresolved simulations in contrast to resolved particle simulations
in which the details of the flow around the particle’s surface are
fully resolved [4], as the type A and type B particles are illustrated
in Fig. 1. Unresolved CFD-DEM has widely been applied to granular
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flow simulations due to the much lower computational cost than
the resolved simulations [5,6]. It is also an effective tool to conduct
transient simulations of the thermal conversion of e.g. biomass in
lab-scale fixed-bed stoves [7,8] and fluidized bed reactors [9,10].
The Eulerian and Lagrangian models are constructed using
mathematical descriptions at different scales that are independent
of each other. The coupling between the two models could be crit-
ical depending on the simulated situation. The point particle as-
sumption is satisfied when the particle scale is much smaller than
the resolved fluid scale. One such example is the transport of solid
particles smaller than the Kolmogorov scales in a turbulent fluid
flow. The coupling can be accomplished within one grid cell. The
model is more reliable because the boundary conditions required
by the particle sub-models can be calculated directly by interpo-
lating or averaging from the Eulerian grid points, and the parti-
cle’s feedback to the gas phase is unlikely to cause a severe dis-
turbance. However, when the particle size is large, as the group C
particles shown in Fig. 1, the coupling is not straightforward any-
more. Firstly, the calculation of the local void fraction, namely the
bed voidage in a fixed bed or fluidized bed, will be complicated. If
the particle volume is larger than the Eulerian cell, it will induce
discontinuity in the fluid. The phase volume fraction field will not
change smoothly with large particles, which will cause unphysical

0017-9310/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Nomenclature

m mass (kg)

U velocity (m/s)

t time (s)

F force (N)

I moment of inertia (kg/m?)

M torque (N/m)

1 volume (m3)

dp particle diameter (m)

(oF drag force coefficient (-)

Cp specific heat capacity (J/(kg-K))

T temperature (K)

f view factor (-)

he convective heat transfer coefficient (W/(m? - K))
hy conductive heat transfer coefficient (W/K)
A surface area (m?), matrix (-)

B matrix (-)

r radius (m); ratio (-)

d distance (m)

D diffusion coefficient (m?2/s)

X dimensionless length (-)

t* dimensionless time (-)

Lp length (m)

g gravity (m/s?)

h entropy (J)

K kinetic energy (J)

p pressure (Pa)

Sm mass source term (kg/(m3 -s))

Su momentum source term (kg/(m? - s2))
b bandwidth (m); vector (-)

Re Reynolds number (-)

Nu Nusselt number (-)

Pr Prandtl number (-)

o thermal diffusivity (m2/s)

B drag coefficient (-)

€ emissivity (W/m?)

e void fraction (-)

o Stefan-Boltzmann constant (W/(m? - K*)); deviation

(m)

density (kg/m3)

angular velocity (s—1)
passive scalar (-)
viscosity (Pa - s)
diffusion time (s)
dimensionless temperature (-)
particle

solid

fluid

reference

particle index;

particle index; cell index
effective

§ T vT TAT OSSO
=

o -~
=5

fluctuations in the pressure equation [11]. This will impair the nu-
merical stability of the CFD solver. Secondly, when the particles are
viewed as points to the fluid, point particle correlations have to be
used to calculate the interphase transfers, for example, the drag
force correlations used to calculate the momentum exchange and
the expressions of the effective heat transfer coefficients used to
calculate the heat exchange. These interphase interactions, mod-
eled with correlations, will bring two challenges. One is that the
correlations require the flow quantities to be sampled from a re-
gion that is even larger than the particle scale or at the particle
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A: Surface-resolved particle ) )
with body-fitted grid C: Lagrangian particles

(extra coupling methods)

B: Lagrangian particles
(point-particle assumption)

Fig. 1. Scenarios of the coupling calculation between the gas phase and the parti-
cles.

center, but without the disturbance from the particle. The other is
that the interphase interactions must be projected back onto the
fluid appropriately as source or sink terms to the fluid governing
equations at the particle’s surrounding grid cells [12]. One exam-
ple of such a flow situation is the thermochemical conversion of
solid fuel particles in a fixed-bed reactor, where the resolution of
the temperature gradient at the conversion front generally requires
a cell spacing finer than the particle size. The coupling method for
calculating average gas temperature and the source term for each
cell needs to be carefully designed; otherwise, the simulation will
present unphysical results.

Plenty of studies have been conducted to investigate large par-
ticle coupling in unresolved CFD-DEM simulations. One strategy
has been to reduce the particle’s disturbance by reconstructing the
undisturbed flow at the particle’s location [12-14]. Ireland et al.
[15] developed an analytical drag correction that improved the par-
ticle drag predictions for two-way or four-way coupled particle-
fluid systems. Balachandar et al. [12] formulated an explicit ex-
pression for the particle’s self-induced velocity disturbance and re-
constructed the undisturbed flow velocity in order to calculate the
fluid-to-particle forces. Liu et al. [13] followed Balachandar’s work
and developed an analogous correction procedure for self-induced
temperature change by the particle. The analytical solution used
to develop the corrections has some critical limitations; for exam-
ple, the gas should be incompressible, and the particle is treated
as a thermally thin particle. Both these assumptions would not be
valid in many well-known physical processes [16]. Another strat-
egy is to enlarge the coupling scale and smooth the coupling ef-
fects, which means smearing the coupled properties to a larger
region. Capecelatro and Desjardins [6] formulated volume-filtered
equations for the Eulerian-Lagrangian framework. The interactions
between the particle and the fluid are considered at the charac-
teristic length of the filtering kernel function. This method will
achieve good grid independence by nature. In their work, they also
proposed diffusion-based smoothing, which is an efficient method
to smooth the particle quantities with a Gaussian shaped distri-
bution. Sun and Xiao [29] and Wu et al. [1] further discussed the
relationship between the diffusion-based smoothing and the Gaus-
sian kernel distribution in a more detailed mathematical manner.
Compared to other common methods for coupling large particles,
such as the divided particle volume method [17,18] and the statisti-
cal kernel method [19], the diffusion-based method has advantages
in computational efficiency and is easy to implement numerically.
However, the studies of this method mainly focused on numerical
stability and robustness by smoothing the discrete particle data.
Our previous works [7,20] further developed this method and stud-
ied its implementation in the simulations of biomass combustion
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processes. The inter-phase heat and mass transfers are calculated
with smoothed source terms. How the Eulerian fields calculated
with the smoothed particle data will further influence the coupling
between the gas phase and solid phase models requires more in-
vestigation.

In this work, we propose a novel coupling method to further
develop the diffusion-based method. The method uses diffusion-
based filtering combined with a diffusion-based smearing method
for the particle and interphase properties. The filtered gas-phase
properties can be obtained at the particle’s location in the CFD
simulation of a dense particle system. The filtering approach avoids
mesh searching and is thus efficient in parallel computing. The
proposed method is implemented into a CFD solver and validated
against a forced convective heat transfer experiment in a struc-
tured packed bed with steel spheres. The coupling effects in the
particle heat transfer with its ambient gas phase are discussed, as
well is the computational efficiency demonstrated.

2. Numerical model
2.1. CFD governing equations

The governing equations for the gas phase are the continuity,
momentum and energy conservation equations of the flow and are
expressed as follow:

(,?t (ep5) + V- (epsUy) =0, (1)

9
a0 (807U7) +V - (epUUy) = e V2Uy — eV + €08 + Sm.
(2)

a
:8Vp+8,ofo4g+Sh, (3)

where, ¢ is the void fraction. pf, Uy, uy, hy, Ky and o are the den-
sity, velocity vector, viscosity, enthalpy, kinetic energy of the fluid
phase and the effective thermal diffusivity, respectively. p and g
are pressure and the gravity acceleration. Sy, and S, are the source
terms due to the interphase momentum and heat transfer.

2.2. DEM equations

2.2.1. Particle motion model
The particle movement state is calculated under Newton’s laws
of motion:

dUp ;

ZFC +E4+F (4)

da)pl

ZM,, (5)

where, m;, Uf, I; and w{’ are the mass, velocity, moment of inertia
and angular velocity of the ith particle, respectively. Fl?j and M;; are
the contact force and torque acting on the ith particle by the jth
particle. n is the number of total contacts for the ith particle. The
soft-sphere collision model is implemented to calculate the con-
tact force and torque. Further details can be found in Fernandes
et al. [21]. Fig is the gravity force acting on the ith particle. Fif is
the particle-fluid interaction force acting on the ith particle. The
drag force usually is the dominating force, and in this study, only
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the drag force is considered as the interaction force, which can be
expressed as:

f _ P'ﬂ f p
F =1 (U —-up), (6)
where, V,;, is the volume of the ith particle, and 8 is the drag
coefficient. The Gidaspow model [22] is adopted to calculate the

drag coefficient:

5 150“;—5>2“Tf+1.75pf;7;f|uf—up,i|, £<0.8 .
0.75C; = pf| Uy — Up |72, €>08

where g is the fluid viscosity and d,; is the diameter of the ith
particle. The coefficient C; is a function of the particle Reynolds
number, Re), given by:

2 (1+40.15Re%%87), if Re, < 1000

=1 . N (8)
0.4, if Re, > 1000
epf|Ur —Up|d
Re, = M. (9)
My

2.2.2. Particle heat transfer model

The particle will exchange heat with its surrounding through
convection, conduction and radiation. The heat balance equation of
the particle is formulated as:

dT,;
mMiCpp.i dlt) _eaf( i —

)+thu( v = Tni)

+hc iAp_,‘(Tf — pri), (10)

where Cp, i, Tp i, Ap i are the heat capacity, surface temperature and
surface area of the ith particle, respectively. €, o and f are the
emissivity, the Stefan-Boltzmann constant and the view factor. The
radiation control volume method is applied to simplify the calcula-
tion for the radiation model [23]. Te‘}” is the ith particle’s ambient
equivalent radiation temperature which is calculated as follows:

ZTP/‘. (11)

m is the neighboring partlcle number in the ith particle’s radia-
tion control volume. Unlike Mehrabian’s implementation [23], the
quartic average is used to calculate the equivalent radiation tem-
perature. To avoid a massive particle searching procedure, which
is carried out to determine m, the neighboring particles are repre-
sented by the direct contacting particles (m = n, n being the same
as in Eq. (4)). The view factor is assumed to be 1. Since the simula-
tions in this work are carried out in a stagnate packed bed and all
the particles’ temperatures are largely below 823K [24], the heat
conduction and radiation between the particles are not expected to
have a significant contribution to the heat transfer. The above sim-
plifications will not cause notable influence. For high-temperature
cases, when the radiation heat transfer becomes significant, more
detailed radiation models need to be considered [25].

The heat conduction between the contacting particles can be
calculated together with the collision model. According to the soft-
sphere collision model’s assumption, particles are allowed over-
lap. Batchelor and O’brien [26] proposed a method to calculate the
contacting heat conduction, and a modified version by Zhou et al.
[27] is adopted in this work. The equivalent conduction heat trans-
fer coefficient between the ith and jth particle, hy ;; can be calcu-
lated as:

Teq, —8Tf +(1-8&)—

4rc,ij

iy = (1/kpi+1/ky ;)

(12)
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where kp is the particle’s thermal conductivity. r;; is the con-
tacting radius of the overlapping circle and can be resolved from
Heron’s formula, which is calculated as:

Ieij = %‘ (13)
A=/s(s—1j)(s— 1) (s —dyj), (14)

(Tj +T,'+d,'j)
==

where r; and r; are the radius of particles j and i, respectively, and
d;; is the distance between the centroids of particles j and i.

As for heat convection, there are various choices of correlation
of heat transfer coefficient. A widely used correlation for particles
in fixed beds was proposed by Wakao and Kagei [28] as follows:

Nup =2+ 1.1Pr}/3Re?,'6, (16)

(15)

where, Nuy, is the particle Nusselt number, and Pry is the Prandtl
number of the fluid.

The simulated case in this work is a forced convection case, and
the heat transfer coefficient will play an important role. Wakao’s
equation does not include the influence of the bed voidage in an
explicit way. In another simulation of the same experimental case
as in this work, the correlation recommended by KTA 3102.2 stan-
dard [1] is adopted as shown in Eq. (17):

Nup = 0.33Pr§°Rep®0e 17 4 1.27Pr}/3Reg-368—1-88. (17)

For the simulated case, the heat transfer coefficient was also
measured by experimental fitting. The choice of different coeffi-
cients, either by using experimental fitting or using correlations,
will be compared and discussed in later sections.

3. Interphase coupling

Spatially extending the interphase coupling will smooth the
changing of the quantities of the fluid phase and reduce the distur-
bance introduced by the particles. On a practical level, the coupling
includes two aspects. The first is to find proper kernel functions to
redistribute and smooth the particle quantities present in the CFD
governing equations, rather than couple them back to the fluid by
a Dirac delta function shaped distribution. The second is to trans-
fer the gas phase properties present at the Eulerian grid points
into the 0D data required by the particle sub-models. In this work,
both the smearing method for the particle data and the sampling
method for the fluid data are applied based on a Gaussian distribu-
tion. The solver is developed using the open-source software Open-
FOAM®?7, and the code is publicly available at https://github.com/
ComKinBio/fixedBedHeatTransFilteredFoam under GPLv3 license.

3.1. Diffusion based smoothing

Diffusion-based smoothing is a widely used method for smear-
ing the particle data [6,29,30]. For any particle quantity (includ-
ing the source/sink terms generated by the particle sub-models),
the quantity is initialized to a discrete field or a mollified field
[6], which is presented in the Eulerian mesh based on the parti-
cles’ locations. Then it is resolved by a Laplace diffusion operator,
as shown in Eq. (18):

d¢

— = DV2¢p, 18

5> =DV (18)
where, D is a diffusion coefficient, and t is the diffusion time vari-
able. In order to distinguish it from the physical time, t, T is in this
work only employed for the smoothing diffusion.
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Sun and Xiao [29] and Wu et al. [1] used different mathematical
methods to prove that applying the diffusion operation to a field is
equal to smooth the field by a Gaussian kernel function. For exam-
ple, with x as the 3D location vector, consider the diffusion of a
variable u(x, t):
iu =DVZu (19)
at ’

If the distribution of u at T = 0 is given as u(x, 0), the distribution
of u at an arbitrary T can be calculated using the Green function:

ux, 1) = /VG(X, X' r,O)u(x’,O)dx’, (20)
where the Green function is:

.1 xTx—xTx/ 2
G(x.x;7,7') = B G (21)

= ¢
(4nD(t —1/))*?
while a 3D Gaussian function kernel for the particle i is:

XTX*XTXi
! 3/26_( e )* (22)
(27[02)

where x; is ith particle center vector. It is clear that by applying
the diffusion operator and having the diffusion start at T =0, a
field will be smoothed in the same way as by a Gaussian kernel
function with one standard deviation of 0 = +/2Dt. We can define
o as a characteristic length of the smoothing length scale. There is
no need for special treatment of physical boundaries for the diffu-
sion operator. Using zero gradient conditions at the boundaries of
the computational domain, the diffusion operator will ensure the
conservation of the diffused properties [29].

gxX—x;) =

3.2. Filtering of the gas phase

To enable a mesh-independent setup when particles are no
longer small in relation to the size of the computational cells, one
must be able to account for the fluid information on a larger scale
than that of a single mesh cell. In such situations, the locally fil-
tered fields of the fluid data can be calculated from the point
values on the Eulerian mesh by a convolutional integral. The fil-
tered field of a gas phase quantity, a(x,t), is computed by using
the convolution product with the filtering kernel g, the same as
Eq. (22) [31]:

ax.t) = / a(y. Hg(|x — y|)dy. (23)

where, V is the whole fluid domain. The filtering disregards the
phase fraction by assuming the phase fraction is uniform in the
densely packed bed, and this assumption is valid when the parti-
cle volume is diffused sufficiently. Analogous to the diffusion-based
smoothing, the filtering operation can be achieved by using a dif-
fusion operator if the diffusion time and the kernel length scale
satisfy o = +/2Dt. In Appendix A, a mathematical proof based on
the discrete numerical calculation has been provided to shown that
such analogous is valid. It is important to point out the difference
between t and 7. At any physical time ¢, the a(x, t) field should be
diffused by Eq. (18) from 0 to T = ¢2/2D, in order to obtain the
filtered field a(x,t). The gas phase data required by the particle
sub-models can be read directly from the cell or by interpolating
to the particle centroid location from the filtered fields a(x, t).

In this work, we also propose another calculation scheme to get
the filtered field, which has different characteristics than that out-
lined above. Instead of directly applying the diffusion operator on
the gas property fields, the filtering kernel field for individual par-
ticles is calculated based on their location. First we initialize a new
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Diffusion:

Reverting:

Recording surface flux

v
95!

Filtering:

Based on recorded relative surface flux

Fig. 2. Illustration of the discrete calculation of the new filtering method based on the single-particle scenario.

scalar field, S, using the Dirac delta function and the particle’s lo-
cation:

m
Sx.6) =Y 8(x—xy), (24)
i=1
where, m is the total particle number. Then we apply the diffusion
operator to S, and by applying Eqgs. (20) and (21), the S field can
be expressed by:

S(x,t) = zm:G(x—xi; 7,0). (25)
i=1

The S field is an overlay field of the filtering kernel function for
every particle, and it satisfies [}, S(x,t)dx =m. It can be used to
take the weighted average of a gas data field for the particles. For
example, multiplying S with the gas temperature field T yields a
temporary field T’ (T’ = ST), and by calculating the integral over
the domain, then by combining with Eq. (23) we get:

/ T'dx = Z/ TG —x; 7, 0)dx = 3 T(x,,0). (26)
v i=1 7V i=1

The result is the sum of the filtered T values at the particle cen-
troids. The sum is however not as useful as the data of each
T(x;.t). In fact, we can design a scheme to obtain T (x;,t) at each
corresponding cell centroid, and the illustration of the discrete cal-
culation based on the single particle is shown in Fig. 2. First, we
need to resolve the diffusion of the S field with an explicit method.
In every diffusion time step, the explicit method will calculate
the gradient (VS) at each cell center and calculate the divergence
(V- VS) by interpolating VS values at the cell faces from the val-
ues at cell centers. As shown in Fig. 3, the two cells that share face
fij are registered as the owner cell and neighbor cell of face fj;.
With the explicit method, the scalar S can only be transported
between face-neighboring cells in one diffusion time step. If we

record the AS{J. transported through every mesh face in every dif-
fusion time step, we will be able to monitor the entire diffusion
process explicitly. By reversing the diffusion time step and the di-
rection of the A5,~Tj transport at the mesh faces, we can use S(x, t)
to reconstruct S(x, t). This is exactly the reverse process of the dif-
fusion of S. However, instead of reversing the S field, it is the T’
field that needs to be reversed in the coupling calculation. In or-
der to achieve this, it is the transport ratio, rfj“, of AS}; /SFFT that
should be recorded instead of ASI.T]. (note that i is the receiver cell
index of the transported S; ri’;r 1 js positive if S is transported from
the neighbor cell to the owner cell, and negative if S is transported
from the owner cell to the neighbor cell). The reversing process is
simply looping r;; at every diffusion time step and mesh faces and
performing the calculation of T’ by the following:

if r,.fj+1 >0
if ri’j+1 <0

(27)

T _ TIT T+l v _ it _ pTHI/THLL
{T1 =TT+ T T =T g T

T _ TIT T+17/t+1 v _ T _ T+l
Tr =T +r T T =T - T

After the reversing process, T will be reconstructed using the
T'(x, t) field, which now only contains the values of the cells that
the particles’ centroids are located in. The calculation scheme can
be summarized as the following:

1. Initialize the S field using Eq. (26).

2. Apply the diffusion operator to S using an explicit method to
get the S field, and record rij in a two-dimensional table (one
dimension is the diffusion time step, the other is the mesh face
id).

3. Calculate the T’ field as T/ = ST.

4, Loop the diffusion time step in the reverse way, and in ev-
ery diffusion time step loop rj; perform the calculation of
Eq. (27) in order to obtain the filtered T(x;, t) field.
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neighbor

Fig. 3. Discrete scheme of the Laplacian diffusion with the explicit method.

Direct diffusion

g(x—xy)

Kernel function
fields

g(x —Xx;)

The new method

Particle x; | Particlex; |

Fig. 4. The kernel function fields by different filtering methods. (The blue and red lines represent the original Gaussian kernel function, and the solid black line represents
the implemented kernel function by the new method.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

There are three main advantages of the new filtering operation.
The first is that the filtered values that are needed for the parti-
cle consideration are calculated at the cells in which the particles’
centroids are located, hence the DEM code can easily access these
values. The second advantage is that the particle centroid cell ob-
tains the averaged information from the non-adjacent cells without
mesh searching, which can otherwise be a computationally costly
procedure. For example, in order to calculate the discrete cumula-
tive kernel function in one cell, all the contributor cells need to be
found through a mesh searching procedure. The third advantage is
that all the calculations are based on the mesh faces, and there is
thus no need for additional considerations for parallel computing.

Compared to directly applying Eq. (18) to obtain the filtered gas
phase quantities, the new method will have different filtered val-
ues at the particle location, X;, even when they use the same fil-
tering length scale. This happens when the particle is close to its
neighboring particles. With multiple particles, the kernel function
field, S(x,t), has virtual boundaries between every two particles,
as shown in Fig. 4. The diffusion of S is driven by the gradient VS.
At the virtual boundaries, the gradient is 0, and there will be no
transport through the neighboring cell face. In Fig. 4, for the new
method, the shape of the kernel function will be the solid black

line instead of the dashed lines. Compared to the direct diffusion
method, the new method will always have a deformed Gaussian
kernel with a more narrow distribution in length scale, and the
consequences will be further discussed in Section 5.

4. Validation

An experiment with forced convective heat transfer in a struc-
tured packed bed [32] is simulated to validate the proposed CFD-
DEM model. The bed is packed in the form of a simple cubic pack-
ing with steel spheres. The bed geometry and the corresponding
computational mesh are illustrated in Fig. 5. The initial particle
temperature is 338K, and cold air is used to cool the spheres, in-
troduced at the rear inlet with an initial temperature of 298K. The
thermal physical properties of the particles are listed in Table 1.

Based on the geometry, the structured mesh with a cell side
length of 4mm was generated, which according to previous CFD-
DEM simulations with diffusion-based smoothing, should be fine
enough to resolve the gas flow [1]. To keep the Courant number
smaller than 1, the fluid computational time step was set to 10~3s.
An adiabatic wall assumption was used in the simulation, which is
reasonable considering that the temperatures in the experiments
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Fig. 5. The geometry of the fixed bed of cubic packing.
Table 1
Particle physical properties.
Value Unit Ref.
Density 7.81x10°  kg-m>3 [32]
Diameter 0.012 m [32]
Thermal conductivity — 40.1 W.m. K" [32]
Heat capacity 553.0 J kgt K [32]
Elastic modulus 101 Pa -

Poisson’s ratio

were rather low and the material of the walls was plexiglass,
which has a relatively high heat resistance. As outlined above, the
filtering length scale is defined as o, and for the simulations in
this section, o = djp. The selection of the filter length scale is fur-
ther discussed in Section 5.1. For the experimental fitting of the
heat transfer coefficient, we have that Nu, = 47.56 [32], which was
also adopted in the simulations in this section, while the studies
of using different correlations for Nu will be further discussed in
Section 5.2.

The new coupling method as developed in this study is em-
ployed, and two variations thereof are compared. As mentioned
in Section 3, the coupling has two aspects which can be summa-
rized as (1) sampling the gas data for the particle sub-models and
(2) smoothing the particle data or interphase exchanging quan-
tities for the gas phase governing equations. The three coupling
methods all employ the diffusion-based smoothing method, which
means Eq. (18) will be applied to all the particle data that need
to be smoothed, but they are different in the method of sam-
pling. The new method employs the calculation scheme proposed
in Section 3.2 and is hereafter referred to as the diffusion-based
sampling (DBS) method. This method is contrasted against three
alternate approaches (two other coupling methods and the conven-
tional CFD-DEM approach without any specific coupling method).
The approach where the sampling is implemented by directly read-
ing the grid cell values or interpolated values without the use of
any filtering method is referred to as the no filtering (NF) method.
The method where the sampling is achieved by directly apply-
ing Eq. (18) to obtain the filtered gas phase quantities is referred
to as the direct diffusion (DD) method. In addition, the conven-
tional CFD-DEM without any specifically designed coupling method
(NONE) is also employed for comparison. The differences of all the
coupling methods are summarized in Table 2.

The non-dimensional temperatures of the gas phase and the
solid phase, distance and time are defined as:

L_Tr; L T A G S (28)
Tp,o - Tr Tp,o - Tr Lp Lp/Uin

where Ty is the gas temperature measured at the outlet in the ex-
periments (the mass-flow weighted temperature was used as the

6; =
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Table 2
Comparison of different coupling methods.

Method label  Gas data sampling Particle data smoothing

NF None Applying diffusion equation to
particle properties and source
terms
DD Applying diffusion Same as NF
equation to gas phase
properties

DBS Using calculation scheme Same as NF
in Section 3.2

NONE None None

0 2000 4000 6000 8000

Fig. 6. Comparisons of measured and predicted gas phase outlet temperature 6y
with different coupling methods.

1
0.8 e Exp,t*=2114
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0 NONE, t*=2114
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------- DD, t*=5227
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o2 4/ T | - NONE, t*=5227

Fig. 7. Comparisons of measured and predicted solid phase temperature 6; with
different coupling methods.

simulation results) and T}, is the particle’s center temperature mea-
sured at selected particles close to the central line (the Biot num-
ber is about 0.03 << 1, and the thermally thin particle model was
used in the simulation, which assumes the particle is isothermal).
T, is the reference temperature (298K) and T, o is the initial solid
phase temperature. L, is the length of the fixed bed (132mm). U,
is the gas phase inlet velocity (1.23 m/s).

As shown in Fig. 6, the predicted outlet gas phase temperature
after the cooling process by using the NF method provided bet-
ter agreement with the measurements than DBS and DD. There
is little difference between the DD and DBS methods, which both
make use of gas filtering methods. However, as shown in Fig. 7,
the NF method predicted a higher particle temperature compared
to the experimental measurements. The heat transfer source term
Sy in Eq. (3) is smoothed by applying Eq. (18). The diffusion-based
smoothing method will introduce artificial diffusion of the inter-
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Fig. 8. Comparisons of measured and predicted temperatures of gas phases (a) and solid phases (b) with different coupling scales by DBS method. (In figure (b), the @ and
the blue lines are the Exp. data and simulation results when t* = 2114, respectively; the & and the yellow lines are the Exp. data and simulation results when t* = 5227,
respectively.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Comparisons of measured and predicted temperatures of gas phases (a) and solid phases (b) with different coupling scales by DD method. (In figure (b), the ® and
the blue lines are the Exp. data and simulation results when t* = 2114, respectively; the & and the yellow lines are the Exp. data and simulation results when t* = 5227,
respectively.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

phase exchanging quantities [20]. Consequently, the source term
Sy is coupled back even to the upstream region of the gas flow.
The source term S, will raise the gas phase temperature, result-
ing mainly from convection. However, it will further influence the
sampling of the gas phase temperature, which is needed for the
convection calculation. For the NF method, the gas phase temper-
ature is sampled at the particle’s centroid, and the disturbance in-
troduced by the particle to the temperature field of the gas phase
has a larger influence on the coupling calculation than that in the
other two methods with gas filtering. The NF method underesti-
mated the heat transfer rate between the gas and the particles,
resulting in over-prediction of the particles’ temperatures.

However, the smoothing of S, is necessary, otherwise a large
source term will strongly impair the solver’s robustness. For ex-
ample, the simulation failed to predict a reasonable result without
any filtering and smoothing method (NONE).

In general, the DD and DBS methods showed good performance
compared with the experiments. The results showed that the de-
veloped filtering methods successfully reconstructed the ambient
gas phase temperature seen by the particles. Since S;, is smoothed,
the NF method also predicted much better results than with-
out coupling methods. If the interphase heat exchange is not the
only reason for the gas phase temperature changing, for example,
if there are strong endothermic or exothermic homogeneous gas
phase reactions, then the filtering methods will play a much more
important role in the simulation.

5. Discussion
5.1. Length scale in diffusion and filtering

In the coupling models, the filtering and smoothing length scale
is a chosen parameter. It defines the spatial scale on which the in-
teraction between the gas and the particle takes place. Sensitivity
studies of this parameter are presented in this section. Three dif-
ferent length scales were investigated; o equal to 0.75dp, dp and
1.25d), respectively.

As shown in Figs. 8 and 9, the DD and DBS methods predicted
very similar results (e.g., the relative mean differences of the gas
temperature prediction based on DD are 5.18%, 0.69% and 0.67%,
when o equals 0.75d)p, d, and 1.25d,, respectively). As the length
scale became larger, converged results were obtained. The major
difference between the two methods is that when o = 0.75d), the
predicted outlet gas temperature has deviations at the early stage.
That is because of the fundamental difference in the sampling
methods, which is shown in Fig. 4. Due to the particle blocking
effects for the smoothing of the S field, the sampling calculation
will be less sensitive to the length scale for the DBS method. For
both DD and DBS methods, the different predictions using differ-
ent length scales are mainly influenced by the smoothing of the
particle data.

However, the NF method is significantly affected by the selec-
tion of the length scale, as shown in Fig. 10. As expected, when
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Fig. 11. Predicted and sampled temperatures of gas phases in Y direction with different coupling methods at X = 0.864 : (a) o = 0.75d,; (b) o = d).

o becomes smaller, the behavior of the NF method will get closer
to that of the conventional CFD-DEM method, which is shown as
NONE in Figs. 6 and 7. When o becomes larger, the NF method will
be closer to the DD and DBS methods. Since the heat source term
is already smoothed to a certain degree, the gas filtering methods
hardly further influence the gas data sampling.

The above results show that the gas filtering methods are es-
sential when the particle data is not fully smoothed. At the same
time, gas filtering methods are not sensitive to the length scale, as
long as the length scale is large enough. As the length scale is de-
fined using the deviation of the normal distribution, 20% of values
are distributed within one deviation away from the particle cen-
troid and about 73% of the values are distributed within two stan-
dard deviations [33]. The length scale is defined differently in stud-
ies that employed the diffusion-based method. For example, Sun
and Xiao [29] defined the length scale as the bandwidth, b = V20,
and Capecelatro and Desjardins [6] defined the length scale as §,

which is the full width at half the height of the kernel functio?l.
In the above research, the length scale is recommended to employ
a value of 3dp — 6dp. However, it is worth noting that the above
two studies were conducted in 1D or 2D. The 3D normal distribu-
tion has a lower probability within the same deviation range than
in 1D or 2D. From this study, when o > dp, it can be regarded as
large enough for the coupling with the gas filtering method.

The gas phase temperature at location X =0.864 is plotted
along the y direction in Fig. 11. There are six particles arrayed in
the y direction. The solid lines are the gas phase temperature pro-
files, and the marks are the particles surrounding gas phase tem-
peratures sampled by the gas filtering methods. When o = 0.75d),

the heat transfer source term has a more concentrated distribu-
tion at the cell where the particle’s centroid is located, and this
uneven distribution developed more strongly as the flow devel-
oped. This disturbance to the gas temperature field introduced by
the particle further influenced the calculation of the source term
of the interphase heat transfer in the NF method. The DBS and the
DD methods reconstructed the particle ambient temperature, and
the coupling effects from the diffusion-based method had, how-
ever, less influence on the calculation of the convection, as shown
in Figs. 8 and 9.

The smoothing procedure of the S field in the DBS method is
illustrated in Fig. 12. The S field ended up with a very even distri-
bution by the given length scale. Since the S field is determined by
the particle number, unlike the DD method, the filtered gas prop-
erty fields will contain the discrete values at the cells where the
particle’s centroid is located, e.g., the temperature field (T) shown
in Fig. 13. One disadvantage of the DBS method is that the sam-
pling centroid is the cell’s centroid rather than the particle’s cen-
troid and interpolation schemes are not applicable. However, the
DBS method is designed for the situation where the particle size
is much larger than the grid size, and this disadvantage can be ne-
glected.

As mentioned in Section 3.2, the diffusion calculation of the S
field is meaningless when VS = 0. In this study, the passive scalar
S will only be transported to the 26 neighboring cells from the par-
ticle center cell with the simple cubic packed particles. As men-
tioned above, the particle blocking effects will restrict the sam-
pling calculation for one particle within the 27 cells that make up
the cubic space with the side length of dp. However, for the DD
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Fig. 14. Predicted temperatures of gas phases in x direction with different coupling
methods.

method, as the length scale increases, the T’ will converge to a uni-
form distribution. Fig. 14 shows the sampled temperature by using
the DBS and DD methods, respectively, which is based on the gas
temperature profile in the x direction predicted by the NF method
at t* = 2114. There is no observable difference for the DBS method
by using different o, so only the result with o =d, is shown. For
the DD method, there are slight differences between the sampled
temperature with different o.

The above results show that the smoothing process provides the
solver with more robust and accurate capabilities. The gas filtering
method is also critical to the consistency of the coupling calcula-
tion. The DBS and DD methods are developed from the same Gaus-
sian filtering concept. However, the particle location information
is considered in the DBS method with a different implementation
from the DD method.

5.2. Choice of heat transfer coefficient models

In the forced convection case studied here, besides the cou-
pling methods, the heat transfer correlation has a critical influence
on the results. The Nu number calculated by the two correlations,

10
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Fig. 15. Measured and predicted particle Nu numbers with different correlations.

which is mentioned in Section 2.2.2 for the fixed bed discussed
above, is plotted together with the experimental fitting in Fig. 15.

Because the bed is packed in a simple cubic configuration, the
bed voidage is relatively higher than the one in random pack-
ing, and there are unobstructed tunnels for the gas phase to flow.
Hence, the bed correlations will overestimate the heat transfer co-
efficient, even though bed voidage is already considered in equa-
tion [4], and since the correlations are obtained for randomly
packed beds.

Predicted results of both gas phase and solid phase tempera-
tures, using the two different correlations of the heat transfer co-
efficients with the DBS method, are shown in Fig. 16. The larger
the calculated coefficient, the higher heat transfer rate is predicted,
which means a higher gas phase temperature at the outlet in the
beginning of the simulation. Correspondingly, the solid phase tem-
perature was under-predicted, as shown in Fig. 16(b). Compared
to using the correlations, the heat transfer coefficient obtained by
experimental fitting predicted results that are in better agreement
with the experimental measurement. It shows that the newly de-
veloped coupling method improved the accuracy of the simulation.
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perature 0y; (b) solid phase temperature 6.

5.3. Statistics of the computational cost

The computational cost of different coupling methods is studied
in this section. The computational cost can be divided into four
parts: cost of solving the gas phase governing equations, cost of
solving the DEM, cost induced by the smoothing method and cost
induced by the gas phase filtering. In all the simulations, a grid
with 10,692 cells is employed, and the CPU time spent on solv-
ing the gas phase governing equations is used as a reference for
each case. The most expensive part of the simulations is associ-
ated with solving the DEM model. A moderate number of 396 steel
sphere particles were described by the DEM, yet it required about
10 times as much the cost associated with solving the gas phase
governing equations. For different coupling methods, the smooth-
ing and filtering costs are shown in Fig. 17 as ratios to the cost of
resolving the gas phase. There are three variables for the particle
smoothing method (the particle volume, S;; and S,) that need to be
smeared. The source term has two coefficients with an implicit im-
plementation, and one of the coefficients of the momentum source
term is a vector field. Hence there are an equivalent of 7 scalar
fields that the diffusion operator needs to be applied to. As shown
in Fig. 17, the cost of the diffusion-based smoothing is similar in
different cases and is about 5 times the cost of resolving the gas
phase governing equations.

1
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Fig. 17. Computational cost comparisons of different coupling methods.

For the gas filtering, there are two fields (Uy and Ty) that need
to be filtered, which are equivalent to 4 scalar fields. However,
the number of the filtered gas property fields could be extended
if other thermal property fields or even the species concentration
fields need to be smoothed, e.g., in a combustion simulation of
solid fuel. As a test case, 4 additional fields were added, which are:
Py, g (viscosity), k; (thermal conductivity) and ¢, (heat capac-
ity), and the statics of the filtering with more quantities (the com-
plete set of 6 fields) are also shown in Fig. 17. The DBS method
only requires the diffusion operation once, and the rest of the cal-
culation is mainly looping the mesh faces. For fewer filtered quan-
tities, the DBS method requires almost the same computational
cost as the DD method, while for more quantities it is shown to
represent significant savings compared to the DD method, simply
because face looping is faster than solving matrices.

It is worth mentioning that there is much room for optimizing
the computational cost of the coupling method. The main factor
that influences the computational cost is the diffusion time step
7. In the current settings, the total steps from 0 to t are 6, while
fewer time steps, for example 3, could be applied [29]. For the dif-
fusion of the S field with the explicit method, much smaller time
steps are however required at the beginning, and in this work 25
adjusted time steps are applied. This could be further optimized to
enhance computational efficiency. In general, it is shown that the
developed coupling method is affordable and efficient in the CFD-
DEM simulations.

6. Conclusion

A novel coupling method for multi-phase gas-solid simulations
under the CFD-DEM framework is developed. The method is de-
signed for the simulation with large-sized particles and a sub-
particle scale mesh. The coupling includes both smoothing the par-
ticle point data and filtering the gas field data. The smoothing is
based on a newly proposed diffusion-based smoothing, and filter-
ing is also based on the diffusion operation. The coupling algo-
rithm is validated using a simulation of air cooling steel sphere
by forced convection in a fixed bed, which is in a well-defined
cubic packing configuration. The overall heat transfer rate is well
predicted. Compared to coupling methods only considering the
smoothing, the newly developed approach, including the filtering
method, has a better performance in reducing the particle’s dis-
turbance of the flow field. The method converges even at a small
characteristic length of the coupling method.



J. Zhang, T. Li, H. Strom et al.

The new filtering method developed in the coupling algorithm
is able to reconstruct the particle ambient quantities of the gas
phase, even at a computational size much smaller than the parti-
cle diameter. The DBS method can calculate the averaged gas phase
quantities based on the particle location and size without a com-
putationally costly search algorithm. The filtered quantities are di-
rectly reconstructed at the cell of the particle’s centroid, simplify-
ing the coupling scheme and as well as the implementation into
the CFD solver. The DBS method is also shown to be computation-
ally efficient and well suited for implementation in parallel com-
puting. In this study, only the simulations of fixed beds in dense
packing were conducted; however, for other regimes, for example,
the dilute granular flow, the behavior of the new coupling method,
and the choosing of the coupling parameters need to be further
investigated.
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Appendix A

For a gas phase field (e.g. the temperature field T) the weights
field S is based on the particle location, and XS = 1. For the initial
S field, the value of the cells only where the particle’s centroid lo-
cates is 1, otherwise is 0. Start with the diffusion equation of the
weights field S:
aS
T
where D is the diffusivity. The weights field S will be in Gaussian
distribution. The implicit form of discretization of the equation is
shown as follows:

—DV35=0, (A1)

S-S pwsynt — o (A2)
8t - '

which is equivalent to:

AS™1 = b, (A3)

where A contains the discretization parameters for the time step
n+ 1 and b contains the discretization parameters of the time step
n. b has a form of:

b= BS". (A4)
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The linear system can therefore be rewritten as:

AS™1 = BS™,

(A5)

It should be mentioned that the matrix A is a symmetric ma-
trix and matrix B is a diagonal matrix. After the diffusion of the
weights field S, the weighted temperature T can be calculated as
(SHTTO. Directly applying the same diffusion operation for field T
from TO to T, the targeted weighted average should be (S9) T™.
The following derivation is going to prove that (S")TT0 is equiva-
lent to (S0)7 "

With a same diffusivity D, the diffusion equation of the T field
is:
aT

—DV3T =0, A.6
T (A.6)
which can be represented as the following linear system:

AT™1 = BT". (A7)

If the mesh, time step, and diffusivity are the same, the coefficients
A and B will be the same for the diffusion of S and T. The super-
script T means the transpose of the vector. Expand the S" and T",
(SHTTO becomes:

T T
n
[JA'BS" | TO = (s%T HA 1) 19, (A.8)
i=1 i=1
and (5°)' T" becomes:
n
SO [[A BT (A.9)
i=1
To prove that (S")TT0 = 9T, is equal to prove:
T
n n
[[A'B)] =]]A'B (A.10)
i=1 i=1

Expand the term ([]_; A-'B)T, and considering that the matrix A

is a symmetric matrix and matrix B is a diagonal matrix:
T
n
[14's
i=1

l_[(A 1B)T l_[BT(A )T

i=1
]‘[A1B

It proves that if the diffusion operation is directly applied to the T
field, then, T"(x) = [ TO(y)g(|x — y|)dy, where g is a Gaussian ker-
nel.

I_IB(AT) 1

i=1

:|=z

(A11)
1
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