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Abstract Symbol demapping for multidimensional multilevel coding (MLC) is proposed, together with a 

novel nonsystematic encoding method, applicable to any dimensionality. The complexity of soft-decision 

forward error correction and symbol demapping, both normally problematic in multidimensional MLC, is 

reduced, which enables high-throughput implementation. ©2022 The Author(s) 

Introduction 

Forward error correction (FEC) is an efficient tool 

for reliable communications, aiming for bit error 

rates (BER) down to 10–15. There are several 

practical FEC schemes in fiber-optic 

communications: hard-decision (HD) FEC for 

direct-detection systems and 100 Gb/s coherent 

system [1,2], and soft-decision (SD) FEC for 400 

Gb/s 16-ary quadrature amplitude modulation 

(QAM) systems [3,4]. SD-FEC additionally treats 

reliability information for better correction 

performance at the expense of larger complexity 

than HD-FEC [5]. Multilevel coding (MLC) [6] can 

ideally achieve the information-theoretic limits of 

multilevel systems, at the cost of a high SD-FEC 

complexity [7]. Methods for reducing the SD-FEC 

complexity in MLC were proposed in [8–15]. 

Probabilistic constellation shaping (PCS) is 

another key technique for approaching the 

capacity given by the Shannon limit [16]. Recent 

MLC techniques realized the combination of MLC 

with PCS [10,13–15,17].  

While previous works [8–15] on MLC mainly 

focused on the complexity of SD-FEC coding, 

other functions, such as HD-FEC coding, symbol 

demapping, and (de)interleaving can also have 

significant complexities. Higher-dimensional 

MLC can further reduce the SD-FEC complexity 

at the expense of a larger dimension for the 

symbol demapping, a higher residual BER before 

HD-FEC decoding, and hence a higher HD-FEC 

redundancy. 

This work aims at simplifying multidimensional 

(MD) MLC by introducing a simple symbol 

demapping, useful for channel-polarized (CP) 

MLC [14,15], and a nonsystematic (NS) MLC 

scheme, which is proposed here for the first time. 

Both are suitable for MD systems. 

Principles 

This section shows the principles for encoding 

and decoding, including the proposed symbol 

demapping functions for MLC with multistage 

decoding. 

Fig. 1 shows the FEC coding blocks for CP-

MLC and NS-MLC, and Fig. 2 illustrates 

examples of the frame structures. The portion of 

the bit frame that controls the amplitudes of the 

channel-input symbols, i.e., the second-most to 

least significant bits (SSB–LSB) for a pulse 

amplitude modulation (PAM) symbol, is shaped 

in the PCS encoder. The PCS-encoded bits are 

then processed in either a CP-MLC or an NS-

MLC encoder. Here, 𝑚1 denotes the number of 

bit tributaries for a one-dimensional PAM symbol 

and 𝐷 denotes the dimensionality of the MLC (i.e., 

the number of PAM symbols in the entire 

constellation set. Fig. 2 shows an example with 

𝐷 = 2 and 𝑚1 = 3). 

Fig. 1(a) is the encoder for CP-MLC [15]. The 

incoming bits are encoded by a systematic HD-

FEC encoder and demultiplexed into 𝑚 = 𝐷 ∙ 𝑚1 

tributaries. All HD-FEC parity bits are placed on 

the sign-bit tributary (the most significant bit, 

MSB) for Gray-labelled PAM symbols. One of the 

sign-bit tributaries (the top row in Fig. 2) is further 

encoded by an SD-FEC encoder. An exclusive 

OR (XOR) operation among the 𝑚 tributaries is 

 
Fig. 1: Encoder and decoder blocks for CP-/NS-MLC. 
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then performed, which partitions the constellation 

set. The SD-FEC-encoded bits (including both 

payload and parity) are replaced by the XOR:ed 

bits. The obtained 𝑚  bits are converted into 

channel-input MD symbols 𝑿 = [𝑋1𝑋2 … 𝑋𝐷] 
using a one-dimensional Gray encoder 𝑀s 

independently for each 2𝑚1-PAM symbol 𝑋𝑗; e.g., 

bits 000, 001, …, 111 are respectively converted 

into one-dimensional symbols 1, 3, 7, 5, –1, –3, –

7, –5 if 𝑚1 = 3 . Here, 𝑖 ∈ {1,2, ⋯ , 𝑚1}  denotes 

the bit tributary index for the PAM symbol in the 

𝑗-th dimension (𝑗 ∈ {1,2, ⋯ , 𝐷}), and the MD bit 

tributary index is 𝑘 = 𝐷(𝑖 − 1) + 𝑗. 
Fig. 1(b) is the encoder for NS-MLC. One 

difference from the CP-MLC encoder is the 

location of the XOR operation, which is here 

placed before the SD-FEC encoding. The 

XOR:ed bits are encoded by the SD-FEC 

encoder. While the SD-FEC payload (systematic) 

bits are not used because they can be recovered 

from other bits at the decoder, the parity bits are 

fed to the symbol mapping. The other difference 

is that NS-MLC has two symbol groups, where 

𝑔 ∈ {1,2} denotes the symbol group index. The 

symbol group 2 carries SD-FEC parity bits in 

MSB, while symbol group 1 does not. In symbol 

group 2 of NS-MLC, 𝐷(𝑚1 − 1)𝑇 bits are XOR:ed, 

e.g., an 8-bit XOR is performed with 𝑇 = 2 in Fig. 

2(b). 

The channel-output symbols 𝒀 = [𝑌1𝑌2 … 𝑌𝐷] 
should be softly demapped into a logarithmic ratio 

of a posteriori probabilities (a posteriori L-values) 

for the XOR:ed bits, i.e., 

 𝐿ideal = ln
∑ 𝑃𝑿(𝒙)𝑞𝑿,𝒀(𝒙,𝒀)𝒙∈𝝌:𝑏xor=0

∑ 𝑃𝑿(𝒙)𝑞𝑿,𝒀(𝒙,𝒀)𝒙∈𝝌:𝑏xor=1
, (1) 

where 𝑃𝑿(𝒙), 𝑞𝑿,𝒀(𝒙, 𝒚), and 𝝌: 𝑏xor = 0/1 denote 

probability mass function of 𝑿, decoding metric, 

e.g., exp(− ‖𝒚 − 𝒙‖2 (2𝜎2)⁄ ) for an additive white 

Gaussian noise (AWGN) channel with a noise 

variance 𝜎2 , and sets of partitioned MD 

constellations for the XOR:ed bit of 0/1, 

respectively. The L-values are processed by the 

SD-FEC decoder to yield decoded bits 𝐻 . Bits 

input to the HD-FEC decoding are conventionally 

generated by hard-decision of 𝒀 based on 𝐻, i.e., 

 𝑿̂ = arg max
𝒙∈𝝌:𝑏xor=𝐻

𝑃𝑿(𝒙)𝑞𝑿,𝒀(𝒙, 𝒀). (2) 

The decided MD symbols 𝑿̂ are demapped to bits 

𝐵̂𝑘 . The decoding complexity of for the ideal 

symbol demapping rules (1) and (2) can however 

increase exponentially with 𝐷. 

Fig. 1(c) is our decoder, including the 

proposed low-complexity symbol demapping 

functions based on the min-sum algorithm. The 

decoder can be almost identical for CP-MLC and 

NS-MLC. A channel-input PAM symbol for the 𝑗-
th dimension, 𝑌𝑗, is demapped into L-values 

 𝐿𝑖+𝑗𝐷
c = ln

∑ 𝑃𝑋(𝑥)𝑞𝑋,𝑌(𝑥,𝑌𝑗)𝑥∈𝝌:𝑏𝑖=0

∑ 𝑃𝑋(𝑥)𝑞𝑋,𝑌(𝑥,𝑌𝑗)𝑥∈𝝌:𝑏𝑖=1
. (3) 

The MD bit tributary with the smallest reliability, 

 𝑘′ = arg min
𝑘

|𝐿𝑘
c |, (4) 

is identified, where 𝑘 = 𝐷(𝑖 − 1) + 𝑗 . Then the 

sign and absolute value of the L-values,  

 𝐻d = ∑ 𝐻𝑘𝑘  mod 2, (5) 

 |𝐿d| = |𝐿𝑘′
c |, (6) 

are respectively obtained, where 𝐻𝑘 ∈ {0,1} is the 

hard-decision bit of 𝐿𝑘
c , i.e., 𝐻𝑘 = 0 if 𝐿𝑘

c > 0 and 

1 otherwise. The SD-FEC decoder decodes the 

L-values 𝐿d = (−1)𝐻d|𝐿d| into bits 𝐻 . In symbol 

group 2 of NS-MLC, index 𝑘 is given by 𝐷(𝑚1 −
1)(𝑡 − 1) + 𝐷(𝑖 − 2) + 𝑗  for 𝑖 ∈ {2,3, … , 𝑚1} , 𝑗 ∈
{1,2, … , 𝐷}, and 𝑡 ∈ {1,2, … , 𝑇}. The L-values for 

the SD-FEC parity bits (marked “MSB (𝑔 = 2)” in 

Fig. 1), 𝐿MSB2  (Fig. 1(c)), are directly fed to the 

SD-FEC decoding because they are not XOR:ed 

in the encoder. The HD-FEC decoder input bits 

𝐵̂𝑘 are then given by 

 𝐵̂𝑘 = 𝐻𝑘   if  𝑘 ≠ 𝑘′, (7) 

 𝐵̂𝑘′ = (𝐻𝑘 + 𝐻d + 𝐻) mod 2. (8) 

These equations mean that only the least reliable 

bit is flipped, i.e., 𝐵̂𝑘′ = 𝐻𝑘 if  𝐻 ≠ 𝐻d. While 𝐵̂1 =
𝐻  for CP-MLC, 𝐻  is not fed to the HD-FEC 

decoder for NS-MLC. The HD-FEC decoded bits 

are further processed in the PCS decoding before 

the frame termination. Note that the interleaver 

and deinterleaver are placed inside both SD-FEC 

and HD-FEC for breaking error bursts. The 

symbol demapping with (3)–(8) significantly 

reduces the complexity compared with the ideal 

demapper (1)–(2). 

Simulations 

Through numerical simulations over the AWGN 

channel, we verified the proposed low-complexity 

symbol demapping method and the proposed 

NS-MLC scheme. The performance degradation 

 

 
Fig. 2: Examples of frame structures (𝐷 = 2 and 𝑚1 = 3):  

(a) CP-MLC and (b) NS-MLC (𝑇 = 2). Each PAM symbol is 
generated from the MSB, SSB, and LSB tributaries. NS-

MLC has two symbol groups (𝑔 ∈ {1,2}). 
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due to the quantization of the L-values 𝐿𝑘
c  and 𝐿d 

was characterized, as guidance for practical 

hardware implementation. As SD-FEC codes, the 

DVB-S2 low-density parity check codes [18] 

having a codeword length of 64800 and at most 

10 decoding iterations were employed. The SD-

FEC code rate for dimensionality 𝐷 = 1, 2, or 4 

was 2/3, 1/2, or 2/5 in CP-MLC and 3/4, 2/3, or 

3/5 in NS-MLC, respectively. The probabilities of 

channel-input symbols were given by the 

Maxwell-Boltzmann distribution, and the two-

dimensional entropy was 5.75 for PCS-64-QAM.  

Fig. 3 shows the post-SD-FEC and pre-HD-

FEC BER as a function of signal-to-noise ratio 

(SNR) for CP-MLC PCS-64-QAM with 𝐷 = 2, for 

different quantization resolutions. The proposed 

symbol demapping with (𝑁q
c, 𝑁q

d) = (4,4), where 

𝑁q
c  and 𝑁q

d  denote the number of quantization 

bits for 𝐿𝑘
c  and 𝐿d, respectively, showed negligible 

performance loss compared with ideal symbol 

demapping (1)–(2) with floating-point operations. 

The pre-HD-FEC BER displayed degraded 

waterfall and error floor performance for the 

proposed method with 𝑁q
c and 𝑁q

d ≤ 3. If a slight 

loss in waterfall performance is acceptable, 

(𝑁q
c, 𝑁q

d) = (4,3)  provides a reasonable 

performance–complexity tradeoff. Typical BER 

thresholds for use with HD-FEC codes are, e.g., 

5×10–3, 3×10–3, and 5×10–5 for 6.67%, 5%, and 

1% overheads, respectively [19–21]. Setting 

(𝑁q
c, 𝑁q

d) = (4,3) or (4,4), the required SNR was 

in both cases 17.3 dB for an HD-FEC overhead 

of 5% and a corresponding information rate of 

4.99 bits per channel use (bpcu). The SNR gap 

to the Shannon limit was around 2.4 dB.  

Fig. 4 shows the dependence on 𝐷  for the 

same constellation as in Fig. 3 with CP-MLC and 

NS-MLC ( 𝑡 = 1 ). For each scheme and 

dimensionality, the assumed HD-FEC overhead, 

information rate, and SNR gap to the Shannon 

limit are shown. The quantization resolutions 

were (𝑁q
c, 𝑁q

d) = (4,3) or (4,4). More bits for the 

quantization did not improve the pre-HD-FEC 

BER for 𝐷 ≥ 2. A higher 𝐷 can reduce the SD-

FEC complexity, but leads to a higher BER floor, 

requiring a higher redundancy in the HD-FEC for 

error-free operation, which results in a larger gap 

to the Shannon limit. The proposed symbol 

demapping worked well and the requirements for 

L-value quantization were similar for both MLC 

schemes. For lower-order QAM (not shown here) 

and lower 𝐷 , the performance depends more 

strongly on the quantization resolution. 

Conclusions 

A low-complexity symbol demapping method for 

multidimensional MLC schemes was proposed. 

Through numerical simulations, satisfactory 

performance was confirmed for channel-

polarized and the proposed nonsystematic MLC 

schemes, both combined with PCS. As guidance 

for practical DSP implementation, the 

dependence on the L-value quantization 

resolution was characterized, i.e., a good 

performance–complexity tradeoff was obtained 

with only 3- or 4-bit quantization. 
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Fig. 4: Dependence on dimensionality 𝐷 for PCS-64-QAM 

with (a) CP-MLC and (b) NS-MLC (𝑡 = 1), where (𝑁q
c, 𝑁q

d) =
(4,3) or (4,4). Assumed HD-FEC overhead, information rate, 

and SNR gap to the Shannon limit are described. 
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