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Global stabilization for triangular formations under mixed distance and
bearing constraints

Yanjun Lin1∗, Ming Cao2, Zhiyun Lin3, Qingkai Yang4 and Liangming Chen2

Abstract— This paper addresses the triangular formation
control problem for a system of three agents under mixed
distance and bearing constraints. The main challenge is to find
a fully distributed control law for each agent to guarantee the
global convergence towards a desired triangular formation. To
solve this problem, we invoke the property that a triangle can be
uniquely determined by the lengths of its two sides together with
the magnitude of the corresponding included angle. Based on
this feature, we design a class of control strategies, under which
each agent is only responsible for a single control variable,
i.e., a distance or an angle, such that the control laws can be
implemented in local coordinate frames. The global convergence
is shown by analyzing the dynamics of the closed-loop system
in its cascade form. Then we discuss some extensions on more
general formation shapes and give the quadrilateral formation
as an example. Simulation results are provided to validate the
effectiveness of the proposed control strategies.

I. INTRODUCTION

Distributed formation control is a fundamental problem
in multi-agent systems, which has wide applications, such
as search and rescue in hazardous environments, ocean data
retrieval and sampling, satellite formation flying, etc [1]–
[4]. The objective of formation control is to drive multiple
agents to satisfy prescribed constraints on their states. In
recent years, as distinguished by sensed and controlled
variables, distance-based and bearing-based formation con-
trol for groups of mobile agents have gained a significant
amount of attention [5]. Formation control laws with distance
constriants have been proposed and the local and global
stable systems are investigated in the literature [6]–[11]. The
distance-based formation control means that the formation
is specified by distance constraints. The most challenging
problem is to drive the formation from undesired non-trivial
equilibria to the desired one. It has been shown that there
might be no global solution for a system with four or
more agents [12]. Bearings have also been employed in
formation control algorithms due to its easy access espe-
cially in vision-based control frameworks. There are several
methods for bearing-only based fomation control in terms

1Yanjun Lin is with the State Key Laboratory of Industrial Control Tech-
nology, College of Electrical Engineering, Zhejiang University, Hangzhou
310027, China. 11510061@zju.edu.cn

2 Ming Cao, Qingkai Yang and Liangming Chen are with the Fac-
ulty of Faculty of Science and Engineering, University of Gronin-
gen, 9747 AG Groningen, The Netherlands m.cao@rug.nl,
qingkyang@gmail.com, chenliangming@hit.edu.cn

3 Zhiyun Lin is with the School of Automation, Hangzhou Dianzi
University, Hangzhou 310018, China. linz@hdu.edu.cn

4 Qingkai Yang is with the School of Automation, Beijing Institute of
Technology, Beijing 100081, China. qingkai.yang@bit.edu.cn

The work was supported by National Natural Science Foundation of
China under grant 61673344.

of different definitions of bearing. One denotes the bearing
as the angle between the sensor link and the x-axis of the
global coordinate frame [13]. Then [14] and [15] relax the
definition of bearing to the angle between the sensor link
and the x-axis of its local coordinate frame attached to the
body. In [16], bearing is defined as the unit vector whose
direction is along the sensing link of the pair agents in a
global coordinate frame. However, these classes of bearing-
only based formation control strategies result in an intrinsic
problem: the scale of the formation is uncontrollable. To
overcome this problem, some extra distance constraints can
be added with the purpose of removing undesirable motion
freedoms, and then one arrives at hybrid formation control
with both distance and bearing constraints.

Formation control with a mixture of distance and bearing
constraints is addressed in [17]–[19]. In [17], a class of
control laws for achieving triangular formations with two
angle and a single distance constraints is proposed and
the local asymptotic stability of the closed-loop system has
been proved. Later, different formation shapes with n agents
are taken into consideration in an ambient two-dimensional
space [18]. Although [19] achieves the global asymptotic
stability for more than 3 agents in a two-dimensional space,
the sensing graph of the system is limited to a 2-simple graph
(the defination of 2-simple graph is given in [20]). When it
comes to a three-agent systems, it requires the knowledge
of all three distance constraints and one angle. This paper
focuses on the problem of triangular formation control with
a mix of distance and bearing constraints. A new class
of control laws is proposed to ensure global convergence
towards a desired triangular formation in a two-dimensional
space. In the proposed control law, only two distance and
one bearing constraints are used.

The main contribution of this work is threefold. On one
hand, in comparison with the local stability achieved in [17]
[18], one can obtain more applaudable global results by
employing our proposed control laws. On the other hand,
to relax the strong sensing requirements that agents need
to measure both distances and angles, each agent is only
required to measure one of these variables in our control
scheme [19]. Our proposed method can reduce the overall
hardware cost which is more preferable in practice. Further-
more, our control approach is free of the global coordinate
frame due to the fact that the angle we used is the included
angle with respect to its neighbors.

This paper is organized as follows. Section II gives some
notations and formulates the problem. In Section III, the fully
distributed control law is presented. Then the global stability
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Fig. 1. A triangular formation.
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Fig. 2. The motion direction and some
notions of agent 1.

analysis is provided. We then discuss some extensions to
more general formation shapes and give the global quadri-
lateral formation with 4 agents as an example in Section
IV. Section V presents simulation results to validate our
theoretical results. Section VI concludes the paper.

II. NOTATION AND PROBLEM FORMULATION

A. Notation

A directed graph G = (V, E) consists a vertex set V =
{1, 2, . . . , n} and edge set E ⊂ V × V . A configuration in
R2 is denoted by p = [pT1 , · · · , pTn ]T where pi ∈ R2(i =
1, 2, · · · , n). The neighbor set Ni ∈ V represents the set of
agents connected to agent i directly by an undirected edge.
Agent j and agent k are two neighbor of agent i, namely
j, k ∈ Ni and j 6= k.

The formation shape as well as its scale is characterized by
the interior angle of agent i, θi and the distances between i
and j, dij = ||pi−pj ||(∀j ∈ Ni). Agent i can measure either
the distance dij or the bearing φij ∈ [0,−2π),∀j ∈ Ni, de-
fined as positive (counter-clockwise) or negative (clockwise)
pointing from its local x-axis to agent j.

By introducing an auxiliary angle

σi = |φij − φik| ∈ [0, 2π), (1)

the interior angle θi is given by

θi =

{
σi if σi 6 π
2π − σi otherwise

with θi ∈ [0, π]. When θi = 0 or θi = π, it means the three
agents are collinear.

Define the desired distance between i and j by d∗ij with
0 < d∗ij <∞. The desired interior/included angle associated
with agent i, denoted by θ∗i , obeys the geometric relationship
that the interior angles of a triangle add up to exactly π,
namely θ∗1 + θ∗2 + θ∗3 = π. Let the set of agents with
distance constraints be VD and the set of agents with bearing
constraints VB . Note that V = VD ∪ VB and we assume
VD ∩ VB = ∅ in this paper.

B. Problem Formulation

We consider a formation consisting of three agents (n =
3) whose positions are denoted by p1, p2, p3 ∈ R2. A
configuration is denoted as p = [pT1 , p

T
2 , p

T
3 ]

T. Assume that
each agent can measure only one quantity ( distance or
bearing). Without loss of generality, in this paper, the agent,

labelled as 1, is assumed to measure the bearing constraint
θ1 governed by the dynamics

ṗ1 = u1

[
cosβ1
sinβ1

]
(2)

where u1 and β1 are both the control inputs for agent 1
to be determined. The two agents labelled as i ∈ {2, 3},
measuring the distances d1i, are governed by the single-
integrator dynamics

ṗi = ui, i ∈ {2, 3}, (3)

where ui ∈ R2 is the control input for agent i to be designed.
The problem of triangular formation control with com-

bined distance and bearing constraints is that for a framework
(G, p), design a distributed control law (2) and (3) for each
agent to reach the desired triangular formation globally. The
desired formation are determined by the distances d∗12, d

∗
12

and the angle θ∗1 .
We make the following assumptions.
Assumption 2.1: No two agents are initially coincident

and the equation
∑
θ∗i = π(i = 1, 2, 3) holds. The case

where θ∗i = 0, θ∗j 6= 0 and θ∗k = π−θ∗j (j, k ∈ Ni and j 6= k)
is excluded.

Assumption 2.2: The set of desired distances and angles
associated with the desired formation are realizable.

The solution to this problem will be especially meaningful
when one of the agents only has the capability of measuring
the distance (angle) while the others can measure the an-
gles (distances) in some practical applications. This control
scheme enjoys the advantage that the desired formation
can be achieved as long as each agent realizes its own
control task. In addition, agents do not have to share a
common coordinate frame and instead the measurements can
be obtained in a fully local manner.

III. TRIANGULAR FORMATION CONTROL

In this section, we consider the triangular formation shown
in Fig.1 as a representative. In this setup agent 1 measures
the angle θ1, agent 2 and 3 monitor the distance information
d12 and d13 respectively.

A. Control Law Design

Agent 1 is governed by the dynamics (2), where β1 is
measured counter-clockwise from agent 1’s local x-direction,
defined by

β1 =

 θ1γ1 +
π
2 , if σ1 = 0

θ1γ1 + min(φ12,φ13), if 0 < σ1 6 π
θ1γ1 + max(φ12,φ13), if π < σ1 < 2π

(4)

where σ1 is defined in (1) and 0 < γ1 < 1. Here σ1γ1
represents the motion direction of agent 1. γ1 is allowed to
be a function of time and it can be selected at run-time by
agent 1. One illustrative example is given in Fig. 2.

We define the control input, u1 as follows

u1 = −k1(θ1 − θ∗1) (5)
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Fig. 3. The motion directions of agent i (i ∈ {1, 2, 3} ).

where k1 > 0 is a constant scalar. Denote by the angle
stabilization error e1 = θ1−θ∗1 . Agents 2 and 3 are governed
by (3) and the control input ui is given by

ui = −ki(pi − p1)
||(pi − p1)||2 − d∗21i
||(pi − p1)||2

. (6)

When all agents keep moving, the dynamics of θ1 can be
given according to [14]

θ̇1 = g1 · (θ∗1 − θ1)− f12 · (θ∗2 − θ2)− f13 · (θ∗3 − θ3). (7)

Let us denote ˙̂
θi (i ∈ 1, 2, 3) as the dynamics of the interior

angle associated with agent i when the other two agents of
the triangular are static. In (7),

˙̂
θ1 = g1 · (θ∗1 − θ1),

Since
∑3
i=1

˙̂
θi = 0 and ˙̂

θ2 and ˙̂
θ3 are given as follows by

using the formula for the angular velocity in terms of the
cross radial component of the velocity of agent i,

˙̂
θ2 = − k1

d12
sin(α1)(θ

∗
1 − θ1),

˙̂
θ3 = − k1

d13
sin(θ1 − α1)(θ

∗
1 − θ1),

where α1 = θ1γ1, one can get the derivative of θ̂1

˙̂
θ1 =

k1
d12

sin(α1)(θ
∗
1 − θ1) +

k1
d13

sin(θ1 − α1)(θ
∗
1 − θ1)

=
k1(d12sin(θ1 − α1) + d13sin(α1))

d12d13
(θ∗1 − θ1).

(8)

Then g1 in (7) is given by

g1 = k1
d12sin(θ1 − α1) + d13sin(α1)

d12d13
. (9)

It is known that g1 > 0 as all of parameters in (9) are
positive. To better illustrate the angle evolution, we present
an example shown in Fig. 3. In (7), −f1i · (θ∗i − θi) with
i ∈ {2, 3} means the derivative of θ̂i when agent 1 and agent
i+ 1 or i− 1 are static, namely its angular velocity is zero.
So f12 and f13 are defined as follows

f12 =
1

d12
sin(α2), (10)

f13 =
1

d13
sin(α3), (11)

where αi(i ∈ {2, 3}) denotes the angle i subtended from the
movement direction of agent i to the edge (1, i).

When agent 1 and agent 3 are static, the motion of agent
2 is along the direction of φ12 according to (6), the control
law of agent 2. It is easy to see that α2 = 0 or α2 = π. Then
f12 = 0. Similarly, we have f13 = 0. So (7) finally reduces
to

θ̇1 = −g1 · (θ1 − θ∗1). (12)

B. Stability Analysis

In this section, we focus on the stability analysis of the
overall system defined by (2) and (3).

The dynamics of the overall system is given by

ṗ1 = −k1(θ1 − θ∗1)
[

cosβ1
sinβ1

]
,

ṗ2 = −k2(p2 − p1)
||(p2 − p1)||2 − d∗212
||(p2 − p1)||2

,

ṗ3 = −k3(p3 − p1)
||(p3 − p1)||2 − d∗213
||(p3 − p1)||2

.

(13)

where β1 is given in (4).
In order to facilitate the stability analysis, we introduce

the error e ∈ R3 as follows

e =

 e1
e2
e3

 =

 θ1 − θ∗1
||p2 − p1||2 − d∗212
||p3 − p1||2 − d∗213

 . (14)

Each ei → 0 (i ∈ {1, 2, 3} ) implies that the distances
and angle converge to their corresponding desired values.
Note that the two distances of two sides, d12 and d13,
and the magnitude of their included angle θ1 can uniquely
determine a triangle. So the system (13) converges to a
desired triangular formation asymptotically when each ei →
0 (i ∈ {1, 2, 3} ).

The dynamics of e1 is given by

ė1 = θ̇1 = −g1 · (θ1 − θ∗1) = −g1e1. (15)

The dynamics of ei (i ∈ {2, 3}) are

ėi =2(pi − p1)T(ṗi − ṗ1)

=− 2kiei + 2k1(pi − p1)T
[

cosβ1
sinβ1

]
e1.

(16)

Define an auxiliary variable

h1i = 2k1(pi − p1)T
[

cosβ1
sinβ1

]
.

In view of (15) and (16), the dynamics of e can be written
as

ė =

 −g1 0 0
h12 −2k2 0
h13 0 −2k3

 e. (17)

Now we analyze the equilibrium points of the overall
system. From Assumptions 2.1 and 2.2, it is obvious that the
equilibrium of the overall system (13) corresponds to those
values of the pi (i ∈ {1, 2, 3} ) when ei = 0 (i ∈ {1, 2, 3}
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). Namely the equilibrium set of (13) is

ζ = {p : θ1 = θ∗1 ,d12 = d∗12,d13 = d∗13}. (18)

Before presenting the main results, we introduce the
following lemma.

Lemma 3.1: For system (13) with three agents, the dis-
tances between agent i ( i = {2, 3}) and agent 1, d1i =
||pi − p1|| are bounded.
Proof: We consider the following candidate Lyapunov
function V1 for agent 1:

V1 =
1

2
k21(θ1 − θ∗1)2. (19)

The derivative of V1 is

V̇1 = −k21(θ∗1 − θ1)θ̇1 = −k21g1(θ∗1 − θ1)2 6 0.

The inequality is obtained based on the fact that g1 > 0.
Since V1 > 0 and V̇1 6 0, we have the conclusion that V1 is
bounded, namely there is a positive constant c so that V1 6 c
holds.

For agents 2 and 3, the candidate Lyapunov function Vi
with i ∈ {2,3} is given by

Vi =
1

2
ki||pi − p1||2. (20)

From (20), it can be seen that Vi > 0 and the derivative
of Vi is

V̇i =ki(pi − p1)T(ṗi − ṗ1)

=ki(pi − p1)T(−ki(pi − p1)
(||pi − p1||2 − d∗21i )
||pi − p1||2

+

k1(θ1 − θ∗1)
[

cosβ1
sinβ1

]
)

=− k2i ||pi − p1||2 + k2i d
∗2
1i + k1ki(pi − p1)T(θ1 − θ∗1)·[

cosβ1
sinβ1

]
.

(21)

Due to the inequality condition XY 6 1
2εX

2 + ε
2Y

2, V̇i
satisfies

V̇i 6− k2i ||pi − p1||2 +
1

2εi
k2i ||pi − p1||2 +

εi
2
k21(θ1 − θ∗1)2

+ k2i d
∗2
1i

=− k2i (1−
1

2εi
)||pi − p1||2 +

εi
2
k21(θ1 − θ∗1)2 + k2i d

∗2
1i

=− 2ki(1−
1

2εi
)Vi + εiV1 + k2i d

∗2
1i

6− 2ki(1−
1

2εi
)Vi + εic+ k2i d

∗2
1i .

(22)

Let δi = 2ki(1− 1
2εi

) and ρi = εic+ k2i d
∗2
1i . It follows that

V̇i 6 −δiVi + ρi. (23)

By solving the differential inequality (23), we get

Vi 6 Vi(0)e
−δit +

ρi
δi
(1− e−δit) 6 ρi

δi
. (24)
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Fig. 4. Constructing a polygon based on vertex 2-addition.

It is known that Vi is bounded if δi > 0 and ρi > 0. One
can choose εi > 1

2 to ensure δi > 0. So d21i = ||pi − p1||2 is
bounded because of the boundedness of Vi. Then the distance
d1i will be bounded.

Theorem 3.1: Suppose Assumptions 2.1 and 2.2 hold.
Under the control law (13), the three-agent system converges
to the desired triangular formation globally.
Proof: It follows from (15) that the angle error e1 converges
to 0 exponentially by taking into consideration the fact that
g1 is always positive. Based on Lemma 3.1, the distances d12
and d13 are bounded.Consider the following equation that

d212 =||p2 − p1||2

=((p2 − p1)T
[

cosβ1
sinβ1

]
)2

=h212/k
2
1 .

Then we know h12 is also bounded. Similarly, we know that
h13 is bounded as well. In light of (16), one can conclude
from the input-to-state stable property h12e1 → 0 as t→∞
by combining the boundedness of h12. So e2 → 0 as t→∞.
Similarly, we have the conclusion that e3 → 0 as t → ∞.
Then all ei (i ∈ {1,2,3}) converge to 0, namely the states
of the system converge to the equilibrium set (18) and the
system achieves the desired triangular formation globally.

IV. DISCUSSION ON MORE GENERAL
FORMATION SHAPES

In this section, we consider a general system with n
agents aiming to give some indication on how to extend our
proposed control methods for triangular formations to more
general polygons in the plane.

Suppose we are given a desired planar formation shape,
which can be globally determined by a set of angle and
distance constraints. To properly construct the growing steps
from a triangle to an arbitrary polygon. First, we present the
definition of one type of Henneberg constructions [20].

Definition 4.1: Given a graph G = (V, E), a vertex 2-
addition of k is the addition of one new vertex, k, and two
new edges, (k, i) and (k, j) with {i, j} ∈ E , creating the
new graph G′ = (V ′, E ′).

Given an arbitrary set of nodes, one can always construct
a new graph based on vertex 2-addition connecting all the
nodes, shown in Fig. 4. When a new vertex is added, one
distance and one angle constraints need to be introduced so
that the new triangle can be fixed based on Theorem 3.1.
Starting from a stabilized triangle, the new triangles can be
stabilized in sequence.

We give an example of a quadrangle presented in Fig. 5
obtained by adding a new vertex 4 on the basis of the triangle
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Fig. 5. An example of a quadrilateral formation.

in Fig. 1. The system is given by
ṗ1 = −(k11(θ1 − θ∗1) + k12(θ2 − θ∗2))

[
cosβ1
sinβ1

]
,

ṗi = −ki(pi − p1)
||(pi − p1)||2 − d∗21i
||(pi − p1)||2

i = {2, 3, 4},

(25)

where β1 is given by

β1 =

 (θ1 + θ2)γ1 +
π
2 if σ1 + σ2 = 0

(θ1 + θ2)γ1 + min(φ12,φ14) if 0 < σ1 + σ2 6 2π
(θ1 + θ2)γ1 + max(φ12,φ14) if 2π < σ1 + σ2 < 4π,

(26)
and we choose γ1 = 1

2 for simplicity (γ1 can be any scalar
between 0 and 1).

Define the error e ∈ R5 as follows

e =


e1
e2
e3
e4
e5

 =


θ1 − θ∗1
θ2 − θ∗2

||p2 − p1||2 − d∗212
||p3 − p1||2 − d∗213
||p4 − p1||2 − d∗214

 . (27)

Each ei → 0 (i ∈ {1, · · · , 5} ) implies that the measurable
distances and angles go to their corresponding desired values.
Based on Assumptions 2.1 and 2.2, the equilibrium set of
(25) is

ζ = {p : θ1 = θ∗1 ,θ2 = θ∗2 ,d12 = d∗12,d13 = d∗13,d14 = d∗14}.
(28)

The dynamics of e can be written as

ė =


−g1 0 0 0 0
0 −g2 0 0 0
h21 h22 −2k2 0 0
h31 h32 0 −2k3 0
h41 h42 0 0 −2k4

 e, (29)

where g1 and g2 are given respectively by

g1 = k11
d12sin( θ1+θ22 ) + d13sin(| θ1−θ22 |)

d12d13
,

g2 = k12
d13sin(| θ1−θ22 |) + d14sin( θ1+θ22 )

d13d14
,

and
hij = 2k1j(pi − p1)T

[
cosβ1
sinβ1

]
,

for i ∈ {2, 3, 4} and j ∈ {1, 2}. Since θ1, θ2 ∈ [0, π] and
both k11 and k12 are positive, we have g1 > 0 and g2 > 0.

It is easy to know that e1 → 0 and e2 → 0. And according
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Fig. 6. The motion of the triangular formation with three non-collinear
initial positions.
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Fig. 7. The errors with desired constraints.

to Lemma 3.1, we can get the boundiness of hij . So we
can conclude that ei → 0 for i ∈ {3, 4, 5} as t → ∞.
As we know, the two distances of two sides, d12 and d13,
and the angle θ1 between the two sides can form a unique
triangle. A quadrangle can thus be uniquely determined when
we add two extra constraints, the distance d14 and the angle
θ2. So the system (25) converges to a desired quadrilateral
formation globally when each ei → 0 (i ∈ {1, · · · , 5} ).

V. SIMULATION RESULTS

In this section, we present some simulations to validate
our theoretical algorithms for distributed triangular formation
control with a mixture of distance and bearing constraints.

Case 1: Three agents are not initially collinear.
The first example illustrates how the formation converges

to a desired triangular formation given some random initial
positions of agents 1, 2 and 3. The desired distances are set as
d∗12 = 10 and d∗13 = 10

√
2 and the desired bearing is θ∗1 =

π
4 . Fig. 6 shows the evolution of the triangular formation
including the initial triangle and the geometric shape. In Fig.
7, the errors of each agent go to zero, which means that
the desired formation is achieved. This simulation verifies
that the proposed control laws can stabilize any initial non-
degenerated triangles to desired formation shapes.

Case 2: Three agents are collinear.
Now we consider the case that three agents are initially

collinear. Let the initial positions of agent 1, 2 and 3 be
p10 = [2, 2]T , p20 = [1, 1]T and p30 = [3, 3]T respectively.
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Fig. 8. The motion of the triangular formation with three collinear initial
positions.
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Fig. 9. The errors with desired constraints.

The desired distances are d∗12 = 10 and d∗13 = 10
√
2 and

the desired bearing θ∗1 = π
4 . Fig. 8 shows the trajectory

of the triangular formation from the colinear initial position
to the stabilized position. The convergence of the errors is
illustrated in Fig. 9. It can be seen from the simulation
results that the desired formation can be achieved using
our proposed control laws even if the agents are initially
collinear.

VI. CONCLUSIONS

In this paper, we have investigated the problem of global
stabilization for a triangular formation with a mixture of
distance and bearing constraints. The key contribution in
this paper is that we have realized the desired triangular
formation in the sense of global stability using our proposed
fully distributed control algorithms, in which each agent
only needs to sense and control one variable. Compared
with [19], the proposed control strategy enables the agents
to measure less variables, which broadens its feasibility
in practical applications. This is further enhanced by the
property that in our proposed control strategy, agents are not
required to share the global coordinate frame. One future
work is to accomplish the triangular formation control with
the alternative constraints, i.e., one distance and two angle
constraints such that a more general global convergence

result for triangular formation control can be established.
We are also interested in extending our results to large-size
systems with more than three agents.
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