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Imaging‑based representation 
and stratification of intra‑tumor 
heterogeneity via tree‑edit 
distance
Lara Cavinato 1,7*, Matteo Pegoraro 1,7, Alessandra Ragni 1, Martina Sollini 2,3, 
Paola Anna Erba 4,5 & Francesca Ieva 1,6

Personalized medicine is the future of medical practice. In oncology, tumor heterogeneity assessment 
represents a pivotal step for effective treatment planning and prognosis prediction. Despite new 
procedures for DNA sequencing and analysis, non-invasive methods for tumor characterization are 
needed to impact on daily routine. On purpose, imaging texture analysis is rapidly scaling, holding 
the promise to surrogate histopathological assessment of tumor lesions. In this work, we propose 
a tree-based representation strategy for describing intra-tumor heterogeneity of patients affected 
by metastatic cancer. We leverage radiomics information extracted from PET/CT imaging and we 
provide an exhaustive and easily readable summary of the disease spreading. We exploit this novel 
patient representation to perform cancer subtyping according to hierarchical clustering technique. 
To this purpose, a new heterogeneity-based distance between trees is defined and applied to a case 
study of prostate cancer. Clusters interpretation is explored in terms of concordance with severity 
status, tumor burden and biological characteristics. Results are promising, as the proposed method 
outperforms current literature approaches. Ultimately, the proposed method draws a general analysis 
framework that would allow to extract knowledge from daily acquired imaging data of patients and 
provide insights for effective treatment planning.

The current paradigm shifting of modern medical practice sinks its root in providing personalized treatments 
and improving therapy outcomes. Huge strides have been made in oncology with the uprising of quantitative 
imaging techniques and new procedures for DNA sequencing and analysis that allow an extensive characteriza-
tion of cancer subtypes. In particular, recent research has investigated the main causes of cancer progression, 
resistance to therapy and late recurrence. Among these, tumor heterogeneity has gained special interest and 
has been recognized to play a crucial role1: defined as complex genetic, epigenetic and protein modifications 
that can be found within the same patient’s disease, tumor heterogeneity behaves as a driver for phenotypic 
selection. According to Stanta and Bonin and y Cajal et al.2,3, different types of tumor manifestation may exist 
as a response to microenvironmental and external changing, differing between primary tumor and proximal 
and distant metastases. As a result, certain tumor phenotypes properly respond to therapies and others become 
resistant clones, leading to treatments ineffectiveness and cancer progression. Pertinently, detecting at baseline 
which phenotype will respond and which will not—known as prognostic cancer subtyping—represents a pivotal 
step in personalized medicine.

Although recent findings about heterogeneity suggest that therapy would be improved if guided by the analysis 
of both primary and metastatic tissues—such as lymph nodes4—, clinical practice usually relies on primary tumor 
biomarkers for prognosis definition and treatment planning. Thus, baseline assessment emerges altered by the 
understimation of intra-tumor heterogeneity which behaves as confounding factor in pre-treatment clinical-
pathological prognosis, leading to poor survival rates5. This misalignment between research evidence and clinical 
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practice seems mostly due to the lack of non-invasive methods for heterogeneity quantification. Accordingly, 
current prognostic cancer subtyping cannot be translated into daily clinical practice and therapeutic guidelines.

Over the last two decades, the texture analysis of digital images—such as Magnetic Resonance Imaging (MRI) 
and Positron Emission Tomography/Computer Tomography (PET/CT)—has arisen as a valuable non-invasive 
proxy for biological assessment of tumors, eventually growing in a discipline of its own, namely radiomics6. Spe-
cifically, macroscopic appearance of tumors has been acknowledged as a valid tool for guiding clinical decisions 
in the definition of disease severity and treatment planning. Broadly speaking, image texture analysis consists of 
extracting descriptors of spatial variation of voxel grey-scale and intensity within the image Volumes Of Inter-
est (VOI), i.e., the tumor lesions. Under the name of radiomic features, such textural descriptors form a high 
dimensional vector embedding of the VOI and may provide a non-invasive assessment of tumor appearance 
from routinely acquired imaging studies7. These features are indeed supposed to supply additional predictive 
and prognostic information, ready to use to postulate the underlying biological mechanisms of disease progres-
sion in clinical routine8. Accordingly, the dissimilarity in the appearance of different lesions, therefore in their 
texture descriptions, can be regarded as radiological heterogeneity, which can be easily quantified and leveraged 
in the daily practice.

Despite the increasing interest in tumor heterogeneity, imaging-guided therapy currently employs biomarkers 
for tumor burden that stem from the characterization of the primary tumor, the bigger lesion (often coinciding 
with the hottest lesion) or the mean lesions’ profile. Only recently few radiomics-based approaches have been sug-
gested—for prognosis, treatment outcome and survival prediction—which consider the multi-lesion disease in a 
comprehensive way. In particular, several researchers9–11 proposed different segmentation strategies for feature 
extraction from patient level VOIs, while Cottereau et al.12 evaluated the predictive power of several indicators 
reflecting the spatial distributions of malignant foci spread throughout the whole body. A number of dissemina-
tion features have been explored and reviewed: the number of lesions, the euclidean distance between crucial or 
predominant bulks, the largest value of the pairwise sum of the physical distances between lesions, etc. Stemming 
from a similar idea, Cavinato et al.13 proposed a similarity metric for comparing lesions’ texture descriptions, 
defining intra-patient heterogeneity as the normalized average of pairwise distances between lesions’ radiomic 
vectors. This similarity over patient’s lesions description has thus been suggested as functional, rather than spa-
tial, dispersion index for tumor burden and disease severeness, with promising results in Hodgkin Lymphoma14 
and Prostate Cancer15. Preliminary results represent an insightful starting point in the debate around the proper 
definition of heterogeneous disease.

In this work, motivated by the need to embed tumor heterogeneity quantification into patients’ clinical 
pathway planning, we propose a novel way for modeling intra-patient tumor heterogeneity in a non-invasive 
way, leveraging the radiomic framework. Specifically, we perform dimensionality reduction on radiomic vectors, 
as to remove redundancy and collinearity while preserving the multi-view nature of the texture description. 
Reduced vectors of peer lesions within the same tumor are then compared via pairwise distances. Representing 
the patient via the pairwise distance matrix of its lesions makes it laborious to compare patients with different 
numbers of lesions. For this reason, upon lesions’ distance matrix, we build a dendrogram, which hierarchically 
aggregates peer lesions in a unique combinatorial object. This object-oriented representation summarizes the 
multi-lesion disease and highlights the relationship among lesions, basing on similarities in their imaging char-
acteristics. In fact, lesions are not independent as they are statistically and semantically connected to the patient 
they belong to. Accordingly, such relationship shapes and influences the structure of the dendrogram associated 
to the patient. We then exploit the tree-based patient representation to cluster cancer subtypes according to 
their imaging heterogeneity. To do so, we define a new ad hoc distance between trees. To validate the method, 
we test the whole pipeline on a dataset of patients affected by metastatic Prostate Cancer (PCa), evaluating the 
descriptive and stratification performance in terms of disease severeness and outcomes. We associate imaging 
subtypes to clinically relevant information within and beyond clinical surrogates, with the goal of eventually 
supporting therapy decisions wherein actions regarding active surveillance, mild treatment or intensified therapy 
are devised and taken1.

Results
Case study: prostate cancer.  Within the personalized medicine framework, Prostate cancer (PCa) is a 
striking example of the need to exploit an insightful prognostic cancer subtyping for treatment planning. In fact, 
even if recent studies have reported a decreasing pattern of overall PCa incidence, Culp et al.16 and Siegel et al.17 
recorded an alarming mortality rate due to an increasing trend of distant stage metastatic disease, even in devel-
oped countries. Moreover, the role of imaging-guided therapy for PCa has revealed to be very promising and is 
consistently spreading in daily practice18. Despite these facts, clinical guidelines still rely on primary tumor bio-
markers. Besides, very limited methods have been proposed for reliably assessing and quantifying multi-lesion 
heterogeneity information within the same patient from an imaging point of view. This misalignment between 
research evidence and clinical routine results in poor disease free survival rates, mostly due to the lack of non-
invasive methods for heterogeneity quantification.

The case study analyzed in this work is composed by a set of N = 333 lesions belonging to fifty-five patients 
of Azienda Ospedaliero-Universitaria Pisana with multi-site, multi-lesion, recurrent Prostate Cancer confirmed 
with a positive PET/CT study. The study was performed in accordance with the Declaration of Helsinki and 
approved by the local ethics committee (Ethics Committee of the Pisa University Hospital—Pisa 8424/2015). 
The signature of a specific informed consent and the legal requirements of clinical trials were waived given the 
observational retrospective study design. During the observational trial, patients showed evidence of biochemical 
recurrence after first-line treatments, exhibiting metastatic disease. Every patient manifested a different number 
of tumor lesions ni , according to the spreading burden of the metastatic tumor. Information about age, sex, lesion 
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site, total tumor volume, Gleason Score19, Prostate Specific Antigen20 and therapy treatment was collected per 
each patient. Personal information and qualitative tumor data are displayed in Supplementary Tables S1 and 
S2 online. Additionally, from PET/CT, volumes of interest, i.e. lesions, were segmented by experienced nuclear 
medicine physicians and texture features were extracted over VOIs according to the radiomic framework, result-
ing in forty radiomic features ( p = 40 ). Both the segmentation of lesions and radiomic features extraction were 
performed using LifeX software21, according to the formulas detailed in the software documentation (https://​
www.​lifex​soft.​org/).

We fed Prostate Cancer imaging data into the pipeline described in Fig. 1, obtaining a tree-based represen-
tation T for each of the patients. The pruned edit distance dµP  , as defined in the “Methods”, was implemented 
and leveraged to compute the patient-to-patient distance matrix. Clustering of patients was thus completed 
according to hierarchical clustering algorithm with the proposed ad hoc distance and ward linkage. Specifically, 
ward linkage was chosen as it provided better results under a prognostic point of view with respect to other 
linkages (for a definition of all available linkages see Section 4 of Supplementary Materials online). The number 
of clusters was selected over the range [2, 5], as a trade off between similarity performance and interpretability. 
Specifically, the number k that presented both a reasonable silhouette coefficient and a high concordance (in 
terms of mutual information) with therapy response was selected. The resulting classes could then be intended as 
groups of patients with similar representations in terms of heterogeneous disease, to be characterized according 
to exogenous clinical variables and risk assessment.

Clusters characterization.  As to profile the clustering, we describe how the stratification procedure cap-
tures the differentiation of tumor heterogeneities and provide a clinical/biological interpretation.

Upon pipeline implementation, hierarchical clustering identified three groups: groups 0, 1 and 2 hosted 39, 
10 and 6 patients respectively. In Fig. 2 the curves of the heights of the trees’ vertices over the three groups can 
be appreciated: branches present different average heights according to the group their dendrograms belong (see 
Fig. 2). Groups are shown to entail different heterogeneity extent, following an ANOVA functional approach22,23.

Beside the group-wise characterization of tree conformation as manifestation of tumor heterogeneity, clini-
cal variables were used as exogenous factors to characterize and interpret the groups. We used appropriate tests 

[Step 1] View-aware Principal 
Component Analysis

Patient as a point cloudRadiomic vectors Reduced vectors

Pairwise distance matrixPatient as a dendrogram

[Step 4] Hierarchical 
Clustering

Histo Shape GLCM GLRLM GLZLM NGLDM

[Step 2] Projection on 
the radiomic space

P
C

1

PC2

[Step 3] Computation 
of pairwise distance

Figure 1.   Patient representation pipeline: lesions’ radiomic vectors of each patient are dimensionally reduced 
according to view-aware Principal Component Analysis. [Step 1] Features are grouped according to the six 
semantic group, or view, they are semantically divided into. As to preserve a balanced importance between 
views, two principal components are kept from the scores of each PCA, leading to different percentages of 
explained variability. A total of twelve principal components results from the process, which include six 
orthogonal pairs of linear combinations of original features. [Step 2] Accordingly, patients are represented 
as finite sets of ni points in R12 , that is the reduced radiomic space according to view-aware strategy 
implementation. In the example, ni = 7 . [Step 3] Pairwise (Euclidean) distance is computed among patients’ 
lesions and [Step 4] hierarchical clustering with average linkage is applied to distance matrices, resulting in a 
dendrogram T representing each patient.

https://www.lifexsoft.org/
https://www.lifexsoft.org/
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according to the variable type, normality of data and sample size. Normality was tested according to the Shapiro 
test. We thus employed Mann-Whitney non-parametric tests for comparing distributions of continuous (non-
normal) variables; parametric t-tests for testing the difference of means in continuous (normal) variables; Levene 
non-parametric tests for comparing variances of continuous (non-normal) variable; Bartlett parametric tests for 
continuous (normal) variable ratio of variances; Chi − squared tests for independence of categorical variable. 
P-values are indicated respectively as pm/d for tests on means/distributions, pvar for tests on variance and pind 
for tests on independence. Pairwise one-sided comparison between groups rather than multivariate analysis was 
investigated as to provide a group-wise characterization. As to avoid potential Type II errors due to small sample 
size, value of α = 0.1 was considered for significance.

We evaluated the differences between the obtained groups in terms of number of oligo/multi-metastatic 
patients (as classified with two different clinical cut-offs of 3 and 5 lesions), number of patients with bone disease, 
total tumor volume and number of tumor lesions. Also, the implementation of combined therapy (such as joint 
radiotherapy and chemotherapy with respect to only chemotherapy) and response to therapy were evaluated 
in patients of different groups. Additionally, among clinical prognostic tools, tumor aggressiveness is usually 
assessed with Gleason Grading System (or Gleason Score)24. A Gleason Score (GS) is given to Prostate Cancer 
based upon its microscopic appearance with respect to cell differentiation. Pathological scores represent the 
sum of the primary and secondary patterns (each ranging from 1—well differentiated, like normal cells—and 
5—poorly differentiated, i.e., abnormal cells) and range from 2 to 10. Higher numbers indicate more aggressive 
disease, worse prognosis and higher mortality19. In particular, patients with Gleason Score exceeding the value 
of 7 experience extraprostatic extension and biochemical recurrence more frequently than others25. Accordingly, 
clusters were also analyzed in terms of mean Gleason Score and number of patients exceeding GS of 7.

Besides, Prostate Specific Antigen (PSA) has been proposed for screening, assessment of future risk of prostate 
cancer development, detection of recurrent disease after local therapy and treatment planning of advanced dis-
ease. Often employed as criteria in combination of stage and GS, its role in early stage assessments is still debated 
due to instability of measurements and the presence of confounding factors. However, PSA is still considered a 
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Figure 2.   (a) Curves displaying the filtered heights of the trees’ vertices for the three groups. Operationally, 
curves were built as follows: for any fixed height (x-axis), for any tree in the selected group, we count the 
number of nodes whose height value is greater than the fixed one (y-axis). For the step-by-step procedure 
see Section 3 of Supplementary Materials online. The curves in the plot represent the pointwise within-group 
means of such counts, and the shaded regions cover an area of 1 standard deviation around the means. The 
values of such counting process result in a monotonically non-increasing function detecting information about 
trees’ heterogeneity. In fact, higher values of such function, especially as the height threshold becomes bigger 
and bigger, correspond to a greater number of heterogeneous lesions in the patients. Patients of group 0 (blue 
line) are characterized by a very homogeneous disease where trees branches are on average less and very short 
compared to the other groups; patients of group 1 (orange line) tend to exhibit more lesions than patients 
belonging to group 0, lesions which are intermediately heterogeneous, as their representation trees display 
both short branches and longer branches than group 0; patients in group 2 (green line) are associated to very 
heterogeneous diseases, displaying a similar number of lesions to group 0, but with the associated branches 
being much longer. A synthetic example of tree per each group is displayed in Fig. 7, elucidating the differences 
with a graphical support. (b) Functional comparison between curves: in order to test the hypothesis that curves 
belonging to different groups are different, we use the ANOVA procedure proposed in22. It outputs an interval-
wise adjusted p-value function. Depending on the sort and level α of Type-I error control, significant intervals 
can be selected. Here, we highlighted in grey the region of significance. Of note, the curves appear different for 
what homogeneity-heterogeneity balance is concerned; they lose significance as they approach very big height 
values.
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valid tool for prognosis and treatments in advanced stages of metastatic prostate cancer26. Moreover, PSA values 
after cytotoxic regimens has been shown to predict survival. Particularly, the decrease in PSA levels is associated 
to therapy response in soft tissue lesions and thus could be intended as a proxy of therapy outcome27. Accord-
ingly, we recorded PSA levels before the therapy (PSA0), right after the first line of therapy (PSA1) and at the 
end of the follow up (PSA2). Delta-PSA levels were computed between PSA1-PSA0 and PSA2-PSA0 as proxies 
of cancer progression. In the following, they will be referred as PSA, �PSA1,0 and �PSA2,0.

Table 1 and Fig. 3 elucidate the results. The profile of the blue and green groups are very similar for what 
PSA ( pm/d = 0.3787 , pvar = 0.4714 ) and �PSA1,0 ( pm/d = 0.3477 , pvar = 0.4533 ) are concerned, with a very 
limited range of values concentrated around zero. Different trends are exhibited by the blue and green curves of 
the �PSA2,0 ( pm/d = 0.0591 ), where the difference could support the hypothesis of different cancer evolution 
starting from similar baseline assessments. Yet, they present similar variance ( pvar = 0.2159 ). The orange group, 
on the other hand, presents wider ranges and higher intra-group heterogeneity. In particular, orange PSA is sig-
nificantly higher than the blue group with a much more spread distribution ( pm/d = 0.0116 ; pvar = 0.0013 ) yet 
no statistical difference with the green groups is confirmed ( pm/d = 0.3089 ; pvar = 0.1845 ); orange �PSA1,0 is 
significantly lower than the blue group ( pm/d = 0.0019 ) but not than the green one ( pm/d = 0.1810 ), however its 
distribution appears more spread and inhomogeneous, covering both the negative and the positive axis, in both 
cases ( pvar = 0.0003 ; pvar = 0.0995 ). The �PSA2,0 of the orange group does not vary from the one of the blue 
group ( pm/d = 0.3689 ). However, it shows a higher variance than the other, suggesting a heterogeneous long-
term tumor prognosis ( pvar = 0.0066 ). Also, the orange group and the green group do not differ significantly 
in their average ( pm/d = 0.1855 ) but their variances reveal a mild divergence in terms of distribution kurtosis 
( pvar = 0.1085).

Regarding the number of lesions, the orange group displays a higher number of metastases than the blue one 
( pm/d = 0.0081 ). The green group exhibits a behavior very similar to the blue group ( pm/d = 0.4162 ), diverging 
from the orange group with respect to which it presents fewer lesions ( pm/d = 0.0722 ). Moreover, total volume 
of the tumor is related to the number of lesions. In fact, the blue group displays a reduced spreading of the tumor 
over the body with respect to the orange group ( pm/d = 0.0002 ) but not to the green group ( pm/d = 0.4917 ). The 
orange and the green groups also exhibit a statistical difference in terms of tumor volume ( pm/d = 0.0306 ). Of 
note, despite the number of metastases in the blue and green groups are very similar, it should be noticed that 
their tumor spreading appears shifted in the figure, entailing unrelated tumor burden information. Similarly, the 
orange group, while presenting a greater number of lesions, shows an extension of the tumor visually analogous 
to the green group. Such discrepancy is imputable to the difference of variances the distributions display.

From these consideration, it appears clear how the green group shows phenotypic similarities and dissimilari-
ties with respect to both blue group and orange group, presenting an in-between behavior. However, the detach 
of green patients from the rest of the population is mostly driven by the different distribution of GS levels. In 
fact, the blue and orange groups do not show peculiar differences ( pm/d = 0.2967 ), although both differ from 

Table 1.   Significance in terms of p values of the statistical tests between cluster 0 and cluster 1, cluster 0 and 
cluster 2, cluster 1 and cluster 2 in the proposed pipeline: non-parametric/parametric tests on difference of 
averages and variances were performed for (non-normal/normal) numerical variables while tests on category 
independence were performed for categorical variables. Significant values are in [bold].

Variable Test on

0 versus 1 0 versus 2 1 versus 2

(p values) (p values) (p values)

Gleason score
Mean 0.2967 0.0419 0.0601

Variance 0.8368 0.5433 0.7093

Gleason category Independence 0.5129 0.5056 0.3077

Oligo or multi ( > 3) Independence 0.0601 0.9260 0.1729

Oligo or multi ( > 5) Independence 0.0848 0.6868 0.3339

3 <  Lesions ≤ 5 Independence 0.1969 0.9022 0.3950

N lesions
Mean 0.0081 0.4162 0.0722

Variance 0.3871 0.4357 0.1469

Skeleton Independence 0.0769 0.9622 0.1729

Total volume (ml)
Mean 0.0002 0.4917 0.0306

Variance 0.0000 0.0047 0.2009

PSA
Mean 0.0116 0.3787 0.3089

Variance 0.0013 0.4714 0.1845

�PSA1,0

Mean 0.0019 0.3477 0.1810

Variance 0.0003 0.4533 0.0995

�PSA2,0

Mean 0.3689 0.0591 0.1855

Variance 0.0066 0.2159 0.1085

Ongoing therapy Independence 0.0601 0.5875 0.3339

Combined therapy Independence 0.0517 0.6091 0.0863

Therapy response Independence 0.6856 0.127 0.2907
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Figure 3.   Results of clustering characterization: the first three rows draw the distributions of the numerical 
clinical variables in the three groups, namely the PSA values, the �PSA1,0 , the �PSA2,0 , the number of lesions, 
Gleason Scores and the total tumor volume; the last row shows the proportions of the categorical clinical 
variables in the three groups, that are the combination of therapy and the response to treatment. For the 
proportion of skeleton disease and of the oligo/multi-metastatic status as devised by the two clinical cut-offs (3 
and 5 lesions) see Section 8 of Supplementary Materials online.
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the green group, compared to which they have a higher GS ( pm/d = 0.0419 ; pm/d = 0.0601 ). As it will be fur-
ther discussed in discussion, prognostic power of GS values should be taken with the grain of salt due to their 
qualitative and aggregated nature.

As for the clinical assessment of patients, the blue and green groups present similar to each other yet oppo-
site characterizations with respect to the orange group. They display a lower percentage of patient with bone 
disease ( pind = 0.0769 ; pind = 0.1729 ), therefore fewer people who have undergone an invasive combination 
of therapies ( pind = 0.0517 ; pind = 0.0863 ). Moreover, although the results on the response to therapy are not 
significant due to the limited data available, they reveal a certain trend. In fact, both blue and green groups of 
patients are administered a milder therapy with respect to orange group. On one hand, such treatment results 
effective for the blue group, which shows the highest percentage of responders; while, on the other hand, this 
is not the case for the green group, which manifests the highest percentage of non-responders. Group 2 thus 
exhibit a clinical characterization comparable to group 0, whereas tree conformation analysis and prognostic 
assessment, i.e., response to therapy, agree in granting it a higher score of risk. Finally, the orange group presents 
the highest number of multi-metastatic patients, followed by the blue group and finally the green group, which 
hosts mostly oligo-metastatic patients.

From Fig. 4, some extent of stratification is appreciable, although the groups’ survival curves separation is 
not neat and statistically significant ( p = 0.12 ). All patients of group 0 gradually respond since they feature mild 
disease, both from a structural, i.e., tree conformation, and clinical point of view. The green group host patients 
who the clinic would treat as not severe (in terms of number of lesions, GS and PSA baseline information), but 
our radiomics investigation has put in an at risk group, to be properly monitored, in terms of tree structure 
and tumor extension. In line with the results of our policy, these patients do not respond to therapy during the 
study period. Finally, the orange group carries severe patients from both a structural and a clinical point of view.

Since unsupervised approaches are thoroughly dataset dependent, hierarchical clustering grouped in the 
same clusters very heterogeneous patients, due to the limited data available. In fact, clinical variable variance of 
orange patients was consistently larger than other groups—despite not being the largest cluster. Interestingly, 
we fit a DBSCAN (Density Based Spatial Clustering of Applications with Noise) algorithm28 on the pruned-edit 
distance matrix which lead to the same clustering policy of patients. In this setting, while blue and green groups 
were confirmed to be clusters with similar density, the orange group was classified as noise, i.e., observations that 
display inconsistent density characterization. Accordingly, a couple of patients responded to therapy while the 
majority did not respond and entered more invasive treatments. For these reasons, the orange survival curve is 
hardly interpretable and is left out the discussion. For sure, the high variability of this group testifies that a larger 
testing cohort would allow to identify further separations within this group, leading to clearer prognostic results.

Comparison with state‑of‑the‑art methods.  The established radiomics frameworks contemplate the 
extraction of texture features from a single lesion, often located on the prostate where the bigger lesion or the 
primary tumor are found. Such features are usually fed into a classification or stratification model as to predict 
cancer diagnosis, staging and prognosis.

As a comparison with the state of the art, we investigated the stratification resulting from the analysis of 
the biggest lesions’ textural description. We selected the bigger lesion of each patient, we reduced the texture 
vector dimensionality according to view-aware PCA dimensionality reduction procedures and we performed 
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Figure 4.   Group-wise Kaplan Meier curves of time to therapy response: it visually shows the probability of the 
response to treatment in a certain time interval. The blue line, the orange line and the green line correspond 
to group 0, 1 and 2 arising from clustering performed on patients’ dendrograms. Groups have a different time 
to response. In particular, green group does not respond to therapy along the study period. Orange group 
shows indeterminate results due to the lack of and heterogeneity of clinical data. Blue group gradually responds 
throughout the study period.
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hierarchical clustering on the patient-to-patient Euclidean distance matrix with ward linkage. The clustering 
procedure lead to the stratification of patients into two groups, namely group 0 and group 1. It is worth noting 
that this clustering approach—based only on the bigger lesion and/or primary tumor—share some extent of the 
stratification underpinnings of the tree-based clustering. For the sake of clarity, we refer to one-lesion cluster-
ing as tumor clustering and to tree-based clustering as heterogeneity clustering. In particular, tumor clustering 
resulted to have a mild concordance with heterogeneity clustering (Rand Index = 0.4329). Coherently, the tumor-
based stratification leads to clinical significance. Tumor clustering pipeline discriminated between patients with 
different GS ( pm/d = 0.0259 ), number of lesions ( pm/d = 0.0001 ), oligo/multi-metastatic disease proportions 
( pind = 0.0191 ), PSA ( pm/d = 0.0339 ), ongoing therapy ( pind = 0.0847 ) and total volume ( pm/d < 0.0001 ). 
However, �PSA1,0 ( pm/d = 0.2942 ), �PSA2,0 ( pm/d = 0.2920 ), proportion of patients exhibiting bone disease 
( pm/d = 0.5220 ), combination of therapy ( pind = 0.3698 ) and response to therapy ( pind = 0.2170 ) did not result 
significant in tumor clustering pipeline. These findings were somehow expected. In fact, therapeutic guidelines 
are mainly taken on the basis of the characterization of the primary tumor. Accordingly, these results confirm 
the role of the primary tumor in acting as a driver for tumor heterogeneity and enforce radiomics role in the 
clinical treatment planning. Nevertheless, despite the coherence with qualitative clinical investigation, tumor-
based stratification does not translate into a risk assessment and prediction. In fact, the Kaplan Meier curve, 
describing the probability of response to treatment of the two groups, appear almost superimposed ( p = 0.85 ) 
and do not reveal any prognostic mechanism of the clustering.

As a step forward from one-lesion strategy, radiomics literature suggests to average radiomic descriptions of 
peer lesions belonging to a patient, as to obtain one single vector. Such vector-based representation plays for the 
mean imaging phenotype of all lesions expressed by a patient, taking into account the variability of the imaging 
profiles. Such method provide an information-complexity trade-off between one-lesion strategy and the tree-
based patient representation we propose. Under these considerations, we performed patient-wise weighting of 
lesions’ vectors, implemented the view-aware PCA dimensionality reduction methods and computed vector-
based representation of each patient. The pipeline grouped all the patients in one cluster, although one patient 
with higher PSA was clustered separately from the rest of the cohort population as to meet hyperparameter 
criteria (e.g. minimum number of clusters at least equal to 2). Clear stratification was indeed not achieved in 
this setting, however a particularly bad-prognosis patient detached from the main group. From these findings, it 
follows that vector-based representation model did not lead to clear and solid results in our dataset, suggesting 
the non robustness of the lesions’ weighting procedures.

Discussion
Current radiomic framework presents some limitations, including the inter-operator variability in imaging 
acquisition settings, the relatively small sample sizes bounding the performance of supervised approaches, the 
lack of standardization, the high dimensionality and the collinearity of radiomics variables as well as the absence 
of a clinical interpretation for features30. For these reasons, intra-patient tumor heterogeneity quantification has 
long been attempted with poorer results, hampering its embedding into daily practice. In this work, we propose 
a patient representation for agnostic multi-lesion cancer description, able to overcome intrisinc limitations of 
radiomics. The method exploits the texture analysis of lesions’ imaging according to the radiomic workflow, 
overcoming features redundancy with PCA-based dimensionality reduction strategies. The proposed dendrogram 
representation results agnostic with respect to acquisition settings and operator variability as it is built upon 
statistical relationship within peer lesions’ descriptions. Moreover, the small sample size issue is tackled by the 
employment of unsupervised methods. As to leverage the complex representation for stratification purposes, 
a suitable distance between dendrograms was required. Indeed, the pruned tree edit distance was specifically 
designed for heterogeneity-based hierarchical dendrograms and was the keystone to deliver a stratification policy 
based on agnostic disease conformations.

For what dimensionality reduction is concerned, view-aware PCA was hereby proposed as a scalable yet 
minor novelty. PCA is a well known, established, interpretable technique, often producing good results. With the 
rationale of improving the scalability of the approach, we introduced the view-aware PCA, such that the dimen-
sionality reduction step could be performed in parallel in smaller and semantically-similar euclidean spaces. 
Nevertheless, further studies could investigate the sensitivity of the representation model and the performance 
of the clustering policy when employing feature transformation methods that capture non-linear dependencies 
of across- and within-view features31.

Compared to state-of-the-art disease representation, our pipeline shaped an exhaustive representation of 
intra-patient heterogeneity and devised an informed patient stratification. In fact, it led to a more complex 
yet low-processed modelling of cancer disease, underlining interactions and relationships between lesions of 
individuals from which to infer prognostic knowledge. Clearly, one-lesion strategy did not provide a quantifica-
tion of lesions’ diverse phenotypes within a patient, as it only relies on the primary tumor. Nevertheless, tumor 
clustering led to a coherent stratification with respect to the current clinical biomarkers, i.e., PSA, GS and oligo/
multi-metastatic status. However, such clinically-informed stratification did not reach a significance in terms of 
prognostic power, bringing out the limitation of current clinical and radiomic-based biomarkers for treatment 
and prognosis. Interestingly, the proposed representation brought out a comprehensive way to capture tumor 
biology and heterogeneity, revealing a deeper appreciation of the disease than a single lesion or the primary tumor 
alone. On the other hand, the vector-based representation was confirmed insufficient to properly embed the 
patient’s complexity of information. In fact, mean radiomic profile seemed not to properly capture intra-tumor 
variability while it overlooked the primary tumor information entailing clinical information. In both cases—when 
only the primary tumor was considered and when the mean radiomic profile of lesions was computed - state of 
the art methods failed in perspectively stratifying patients.
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Beside descriptive and prognostic purposes, the proposed tree-based representation and stratification of 
tumor heterogeneity permitted an exhaustive comparison between the role played by the primary lesion and 
its involvement into phenotypic selection mechanism. This is worth to be drawn and further investigated from 
a tumor heterogeneity and prognostic point of view. In fact, tumor clustering showed a latent agreement with 
heterogeneity clustering, suggesting the reliability of the current clinical practice in assessing intra-tumor char-
acterization from primary lesions. Accordingly, primary tumor information seemed to be more informative 
than intra-patient mean lesions’ profiles. If used in combination with dissemination indexes—such as number 
of metastases, dispersion of intra-patient lesions’ radiomic profiles and number of involved organs -, primary 
tumor characterization could provide enough information to support therapeutic decisions when an exhaustive 
assessment of tumor metastases results too expensive.

Of note, heterogeneity clustering highlighted milder significance for what GS biomarkers is concerned with 
respect to tumor clustering. Pertinently, although GS is a solid clinical prognostic factor driving therapy plan-
ning, it represents the histo-pathological analysis for characterizing primary and secondary tumor biology at 
molecular level. Accordingly, the aggregated value, that is the sum of primary differentiation pattern and sec-
ondary differentiation pattern, do not entail heterogeneity information. For instance, studies using surrogate 
PCa end points have suggested that outcomes for GS 7 cancers vary according to the predominance of pattern 
4. PCa mortality, biochemical progression and development of metastases differ for 3 + 4 and 4 + 3 tumors32. 
This means that, according to tree-based representation, patients tagged with a GS 7 may still be clustered in 
different prognostic groups and alter the tests on averages. For these reasons, GS should not be considered as 
a solid ground truth for a perspective model, rather it conveys only a association between radiomic-based het-
erogeneity assessment and its biological counterpart, that is tumor microscopic appearance. On the other hand, 
PSA and �PSA values significantly supported the predictive power of imaging-based representation in terms 
of cancer progression and disease free survival. Consistently, a decrease in PSA levels after treatment regimens 
was associated to therapy response. In this sense, exhaustive lesions’ texture assessment and imaging-based 
heterogeneity quantification devised cancer subtypes that correlated with prognosis beyond clinical surrogates, 
eventually supporting treatment planning.

Basing on our and literature findings, the systematic digital tissue collection and its analysis should be 
enforced in the translational research of tumor disease and in the developing of targeted therapies. The debate 
around the therapeutic exploitation of imaging biomarkers for intra-tumor heterogeneity is nowadays on the 
cutting edge of medicine literature and it interlaces with other science field such as mathematics and geometry. 
This dynamic interplay between disciplines may provide a propitious route to ultimately attempt to limit tumor 
progression and treatment resistance. Stemming from this work, future research could consider longitudinal 
evolution of heterogeneity-based representation objects and, accordingly, investigate the course of the disease 
over time in a non invasive way.

Methods
In this section we outline the steps involved in the proposed methodological pipeline. In particular, methods 
for radiomics-based representation of patients’ heterogeneity and its stratification are discussed. We present the 
challenges of analyzing a general radiomic dataset proposing an insightful dimensionality reduction approach 
(M1). Representation strategy is then deduced and described (M2). We then introduce an existing edit distance 
for comparing tree objects, on which we build the proposed metrics. It follows the derivation of an ad hoc metric 
(M3) for capturing intra-tumor heterogeneity variability and computing the similarity matrix between patients 
on which to perform the stratification according to hierarchical clustering.

M1: dimensionality reduction.  As previously introduced, radiomic features are regarded as a high dimen-
sional vector embedding of the VOI, providing a non-invasive assessment of tumor appearance from routinely 
acquired imaging studies. Several softwares, e.g. LifeX software, allow to extract several texture indexes from 
VOIs, according to the formulas provided by the software documentation (https://​www.​lifex​soft.​org/). Consid-
erable efforts have been devoted to link biological meaning with texture descriptors. So far, little evidence of tight 
correlation between the two has been found, preventing from univocally define tumor inherent heterogeneity of 
lesions. However, different textural features have been proposed and reviewed by Castellano et al.33 as measures 
of tumor-specific intra-lesion heterogeneity. Indeed, radiomics analysis is widely assumed to entail all the infor-
mation needed for a definition of lesion heterogeneity34,35.

When managing a radiomic dataset, several challenges come across, above all high dimensionality and col-
linearity between features. Thus, prior to pairwise distance computation, lesions’ radiomic vectors need to be 
properly reduced as to selectively bring out relevant information.

According to Nioche et al.21, radiomic features divide into six semantic groups of different methodological 
levels of texture analysis. First order statistics are the statistical moments of the grey level distribution extracted 
from the VOI under analysis. Shape features describe morphological characteristics of the tumor. The Grey Level 
Co-occurrence matrix (GLCM) describes the co-occurrence of pairs of grey values in the VOI at a given distance 
δ (offset), usually set to 1, towards thirteen different directions. The Grey Level Run Length matrix (GLRLM) 
describes the length of homogeneous runs for each grey level, averaged across thirteen directions. Similarly, 
the Grey Level Zone Length matrix (GLZLM) provides information on the size of homogeneous zones for each 
grey level, averaged across three dimensions. Finally, the Neighbour Grey Level Difference matrix (NGLDM) 
corresponds to the difference of grey levels between one voxel and its twenty-six neighbors in three dimensions. 
From each of these groups, several indices are extracted, exhibiting a multi-view intrinsic structure that induces 
intra- and inter-group correlation patterns. Accordingly, such vectors disclose high collinearity between their 
elements that needs to be properly managed. To overcome this, we leverage the very basic idea of multi-view 

https://www.lifexsoft.org/
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learning and dimensionality reduction approaches: the view-wise linear combination of features36. We propose 
to separately apply the PCA to each of the radiomic groups, as to exploit the multi-view nature of the radiomic 
vectors and to reduce the computational cost of the dimensionality reduction step. In this way, we may keep the 
information carried by each group well discerned, as it is methodologically extracted in different ways. A more 
interpretable  and scalable dimensionality reduction comes from the process.

Upon pre-processing, namely missing values imputation and Z-transform normalization of radiomic vari-
ables, we thus perform this novel dimensionality reduction, namely view-aware PCA.

As depicted in Fig. 1, features are grouped according to the six semantic group—view—as described above. 
Within each group, PCA is performed and two principal components are retained from the scores of each PCA, 
resulting in different percentages of explained variability. The process yields a total of twelve principal compo-
nents, including six orthogonal pairs of linear combinations of original features. It follows that each lesion is 
described by a twelve-dimensional vector entailing view-wise texture information.

Further, we build the patient representation upon the such reduced radiomic vectors of peer lesions.

M2: tree‑based patient representation.  To exhaustively represent patients’ disease in terms of tumor 
heterogeneity, relationships between lesions needs to be learnt from data. Distance between texture descriptors 
could be an appropriate surrogate. Specifically, radiomic variables of a lesion—possibly after dimensionality 
reduction as in M1—define a lesion-specific point in an Euclidean space. All lesions belonging to the same 
patient form a point cloud in Rp , with a number of points ni equal to the number of patient’s tumor lesions and 
p being the number of radiomic variables.

Although some frameworks are available to compare point clouds via discrete transport37,38, interpretability is 
often limited by the high dimensionality of the embedding space. Also, model based approaches, which capture 
the variability of cloud-generating processes by means of interpretable parameters, require a high number of 
observations in each point cloud to produce reliable estimations39.

A more insightful approach would be to transform the point cloud into a proper summary, i.e., a representa-
tion, equally informative and easily readable. Pertinently, hierarchical clustering dendrograms have been exten-
sively studied in the last decades as they unveil the intrinsic relationship among points of a point cloud (for a 
review on hierarchical clustering dendrograms see40). In our setting, the rationale behind hierarchical clustering 
stems from the need to quantify to which extent lesions, i.e., their radiomic vectors, are similar within patients 
and how they get agglomerated, hierarchically, one to each other. A dendrogram is obtained in such a way that 
lesions are linked in terms of relationship, based on similarities in their imaging characteristics. Figure 5 graphi-
cally describes the process while Section 4 of Supplementary Materials online formalizes the mathematical steps 
involved. Dendrograms’ structure reflects the homogeneity between points of the point cloud. For instance, Fig. 7 
presents three dendrograms: the blue one describes a condensed point cloud, the green one presents a scattered 
point cloud while the orange tree denotes a hybrid situation.

Lesion 

Point cloud 
(Patient)

Merging step 1 Merging step 2 Merging step 3

Figure 5.   Tree-based patient representation via agglomerative hierarchical clustering: from the bottom up to 
the root, leaves get agglomerated and merged into bigger and bigger clusters, to finally converge in a single set. 
As a consequence, tree branches reflect pairwise similarity between lesions and the tree structure surrogates 
the overall dispersion among peer lesions. In the final dendrogram representation, leaves are the lesions of 
the patient and edges illustrate the similarity-connection between them. Leaves that are close to each other 
are intended by construction to be similar and exhibit a comparable radiomic profile (homogeneous) while 
distant leaves can be thought as lesions expressing different imaging phenotypes (heterogeneous). In this sense, 
dendrogram structure entails the heterogeneity quantification within the tumor, which needs to be exploited 
for heterogeneity-based stratification of patients. For mathematical formulation see Section 4 of Supplementary 
Materials online.
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To build hierarchical clustering dendrograms, a similarity measure is needed together with an agglomera-
tive criterion—also known as linkage—that best suit the structure of the data and the aim of the analysis. In our 
setting, an appropriate similarity measure is the Euclidean distance between lesions’ radiomic vectors, as sug-
gested by Cavinato et al.13. Additionally, average linkage is employed as it is known to be less sensitive to outliers, 
producing a more robust representation41.

M3: a novel heterogeneity‑based distance.  After having obtained patient representation, we proceed 
to defining a distance between dendrograms, which can properly reflect the affinity between patients in terms of 
tree conformations as manifestation of intra-tumor heterogeneity. A suitable metric should meet some require-
ments in order to produce effective results: (1) the comparison between dendrograms should reflect the proper-
ties of the point cloud they stem from: if two point clouds are close in terms of sparsity and conformation, we 
require the associated dendrograms to be close as well. In other words, any metric between dendrograms must 
hold some continuity properties with respect to the original point clouds comparison; (2) the metrics should 
weight differently the homogeneous part of the tree structures and the heterogeneous ones. This means that 
distance has to be evaluated as a trade-off between the extents of homogeneity and heterogeneity exhibited by 
the lesions of different patients.

Edit distance.  Dendrograms are unlabelled object which, in our context, may have a different number of leaves 
and do not hold any a-priori correspondence between the leaves in different objects.

The literature dealing with the comparison of dendrograms is reviewed Section 2 of Supplementary Materi-
als online, where we detail the limitations that prevent us from employing existing distances in our context. 
Recently, Pegoraro et al.42–44 proposed a novel distance for merge trees. Following the authors, we call this metric 
edit distance for merge trees and indicate it with dE . The metric dE is defined for weighted, rooted, unlabelled 
trees and extends to merge trees via truncation process (see Section 4 of Supplementary Materials online and 
43). As most of the metrics for unlabelled trees, its computational complexity has been shown to scale poorly 
with the number of leaves in the trees. However, it is particularly efficient for small-scale trees with respect to 
other metrics. In our setting, trees present a number of leaves less or equal to the number of tumor lesions in a 
patient, that is a few dozens at most. Thus, we can run the comptuation of dE on general purpose machines, like 
personal computers. Unlike other metrics, continuity properties are easily proven. Moreover, dE is interpretable, 
easy to understand and to communicate.

As depicted in Fig. 6b), one tree T can be modified and transformed into a different tree T ′ by performing 
different sets of allowed modifications, each coming with its own cost (for details see Pegoraro et al.42,43). The set 
of consequent edit operations which comes at the minimum cost is named the optimal edit path and represents 
the core of the edit distance between the two trees. The distance dE is thus the total cost of the optimal edit path 
and is defined as:

where Ŵ(T ,T ′) indicates all the possible edit paths which start in T and ends in T ′ . The algorithm for dE com-
putation is exhaustively detailed in42. Through combinatorial objects called mappings, it is shown that dE is a 
metric in the space of merge trees and that it can be computed with a Linear Integer Programming approach42.

Upon these premises, we proceed to verify the two aforementioned conditions. Specifically, (1) we prove 
the continuity property of dE and (2) propose a modification of dE as to meet the homogeneity-heterogeneity 
requirement.

Continuity property of dE.  As previously stated, a continuity result with respect to the original point clouds 
comparison would guarantee interpretability properties for the distance between dendrograms: under cer-
tain hypotheses, if two clouds are pointwise close, also their merge trees should be close with respect to dE . In 
Fig. 6a), we introduce the Gromov-Hausdorff metric between point clouds (for formal definition see Section 5 
of Supplementary Materials online). It can be interpreted as a measure of the pointwise proximity between two 
point clouds and provide a comparison between the heterogeneity of two patients’ diseases. In Section 5 of Sup-
plementary Materials online, we prove that Gromov-Hausdorff-closeness for point clouds implies Edit-closeness 
for the associated dendrogram objects, i.e., multi-lesion patients representation.

Homogeneity‑heterogeneity trade‑off.  In the edit distance dE , the distance values are strongly dependent on the 
clouds cardinalities, meaning that pairs of point clouds with higher cardinalities tend to be farther apart from 
pairs of point clouds with smaller cardinalities. At first sight, such assumption sounds reasonable for stratifica-
tion purposes. In fact, patients with multiple lesions are known to exhibit a more severe disease than patients 
with fewer lesions, as the spreading of the tumor entails prognostic power. Still, the mere counting of lesions 
lacks of robustness in perspective studies and, in this context, may overshadow the variability between hierar-
chical dendrograms induced by intra-patient heterogeneity. For this reason, we propose a modification of the 
metric dE as to mitigate cardinality issue.

Pruned edit distance.  The kind of variability we are interested in is the one induced by patient-wise hetero-
geneity between lesions. By construction of the dendrogram representation, two lesions of a patient are het-
erogeneous—in terms of radiomic/imaging description—according to the length of the dendrogram branches 
connecting them. The longer the branches, the higher the inter-lesions heterogeneity and, viceversa, the shorter 
the branches the more homogeneous the patient’s disease phenotypes. Accordingly, we may want to modulate 

(1)dE(T ,T
′) = inf

γ∈Ŵ(T ,T ′)
cost(γ )
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the extent to which we consider edit costs according to branch length. In particular, we may want to induce edits 
applied on small edges to contribute less to the final distance than bigger edges, which we deem more relevant 
for stratification purposes.

We introduce the pruning operator Pε as regularization strategy, which deletes leaves associated with edges 
whose weights are so small that one may want to neglect them in the analysis of heterogeneity. Given a threshold 
ε , we consider for deletion all leaves whose father-child edge has weight ≤ ε . However, when two or more of 
candidate leaves share the same father, i.e. they are siblings, we delete all the leaves but the one with the bigger 
weight. Moreover, if the weights of the siblings are equal, as it is often the case in clustering dendrograms, we 
randomly choose to keep one of them, delete the other(s) and, eventually, ghost their father (see Fig. 6 for mean-
ing of ghosting). This pruning operation is recursively iterated until no leaves with small edges can be found. 
To note, removing only one leaf in case of two small-weight siblings is equivalent to considering the two leaves 
as clustered together from the “beginning” in the hierarchical clustering procedure. Accordingly, siblings leaves 
(lesions) entail phenotype expressions so similar to be considered as one single imaging phenotype. In this 
way, the pruned tree displays the number of different phenotypes coexisting in the patient instead of the mere 
number of lesions. Figure 6c) displays the edits needed for transforming a pruned tree into another, whose costs 
determine the pruned edit distance.

dH

Point cloud 1

Point cloud 2

a) Gromov-Hausdorff distance

(Patient 1)

(Patient 2)

Lesion

dE

b) Edit distance

d P

c) Pruned edit distance

Figure 6.   Continuity among metrics. (a) Gromov-Hausdorff distance between two point clouds: the point 
clouds get overlapped and dH is defined as the maximum distance between the two maximally distant points; 
Gromov-Hausdorff-closeness reflects the similarity in the spreading of points of two point clouds throughout 
the space. Specifically in the radiomic space, such spreading entails the quantification of inter-patient 
heterogeneity. This means that Gromov-Hausdorff-close point clouds, i.e., patients’ sets of lesions, have similar 
intra-patient heterogeneity characterization and thus should be regarded as similar by the metric we employ for 
dendrograms; (b) Tree edit distance dE between hierarchical clustering dendrograms: the distance is given by 
the sum of the costs of the minimum number of modifications needed for transforming a tree into the other. 
Modifications include positive/negative shrinking, deletion/insertion and ghosting/splitting. The shrinking edit 
multiplies the weight value of an edge with a positive factor, which can either lengthen (positive shrinking) of 
shorten (negative shrinking) the original edge weight. The cost of shrinking an edge is equal to the absolute 
value of the difference between the initial and the final weights. Deleting or inserting an edge (v1, v2) removes 
or introduces a branch at a given height, altering the children-father structure of the tree. For any deletion/
insertion, the cost is equal to the weight of the edge deleted/inserted. Finally, the ghosting edit eliminates a vertex 
v that connects only two adjacent edges (order 2 vertex) such as one new edge results from the sum of the two 
former edges. The opposite edit is the splitting. Ghosting and splitting have no cost, therefore order 2 vertices 
are de facto irrelevant when computing the cost of an edit path; (c) Pruned tree edit distance between pruned 
dendrograms: pruning removes leaves with weights ≤ ε , eventually aggregating homogeneous phenotypes. 
The operator Pε thus gradually discards intra-patient homogeneity, disclosing only the heterogeneous—
independent—tumor phenotypes. Of note, dµ

P
 is different from dE since the pruning modulates the effect 

of cardinality on the distance computation by removing redundant edges of the tree and compressing tree 
dimensionality.
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Operationally speaking, the “correct” value of ε is a-priori unknown and needs to be tuned with a complexity-
information trade-off. To enhance the robustness of this parameter choice, we take the weighted average of the 
distances between two trees pruned with all the possible values of ε . Accordingly, the definition of pruned edit 
distance for general merge trees develops as follows. Given two merge trees T and T ′ , the pruned edit distance is:

where µ is a finite measure on R which provides the weighting strategy across different values of ε in order to 
compute a weighted average among trees distances. The higher the mass µ associated to an interval [a, b], the 
bigger the contribution to the final result of the tree distance according to ε ∈ [a, b] . In other words, the meas-
ure µ allows to control the contribution to the final distance of branches with weight below ε , which are indeed 
homogeneous enough to be removed. Figure 7 elucidates the choice of µ tuned on case study data. Note that 
if we have a sequence of weakly converging probability measures µn ⇀ µ , then dµn

P (T ,T ′) → d
µ
P (T ,T

′) . This 
implies that the proposed distance is robust with respect to the choice of µ : similar measures µ (in the sense of 
weak convergence) would give similar distances.

To assess the different behaviours between dE and dµP  and the extent to which dµP  is suitable for our purposes, in 
Section 7 of Supplementary Material online we present a detailed simulation study. Moreover, we can prove that, 
under general conditions on µ , dµP  is still a metric (for proof see Section 6 of Supplementary Materials online).

Data availability
The data that support the findings of this study are available from Azienda Ospedaliero-Universitaria Pisana but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the authors upon reasonable request and with permission 
of Azienda Ospedaliero-Universitaria Pisana. The code implemented during the current study together with 
simulation data will be available upon acceptance on GitHub at this link https://​github.​com/​pego91/​pruned-​
edit-​dista​nce.

(2)d
µ
P (T ,T

′) :=

∫

R

dE(Pε(T),Pε(T
′))dµ(ε) = Eε∼µ[dE(Pε(T),Pε(T

′)]

a) Synthetic patient dendrograms and vertices height densities b) All patient vertices height density
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Figure 7.   Choice of µ : (a) costruction of qualitative densities of the vertices heights in three example 
dendrograms: the velocity with which leaves get merged in a dendrogram, i.e., edges length variability, reflects 
the heterogeneity characterization of lesions. Per every dendrogram, branches heights (rescaled on [0, 1] 
dividing by the highest value) are annoted on the left and their associated density is inspected. The vertices 
heights of a patient exhibiting homogeneous lesions concentrates in a small real interval [0, a]—with a > 0 (blue 
tree); the vertices heights of a patient exhibiting heterogeneous lesions spread in a range of values far from zero 
[a, b], with a, b > 0 (green tree); a patient showing groups of homogeneous lesions, the one heterogeneous to 
the others, is associated to a dendrogram with an explicit clustering structure with clusters with multiple close 
leaves (orange tree). The vertices heights distribution displays two components, reflecting both the homogeneity 
of similar lesions—with values close to 0—and the heterogeneity of dissimilar clusters—with values far from 0; 
b) µ provides the coefficients with which to weight the different pruning cutoffs ε , to neglect the homogeneity 
within clusters of similar lesions’ phenotypes and bring out the informative heterogeneity between different 
phenotypes. To efficient the computation, a parametric shape of µ is used and empirical heights distributions 
of all patients (black line) is exploited to model the distribution. In the population heights distribution, we 
discern both homogeneous and heterogeneous phenotypes. The two components are demarked with a saddle 
point on 0.15. Accordingly, low weights of µ should be associated to ε ≪ 0.15 and ε ≫ 0.15 and high weights to 
ε ≃ 0.15 . In fact, low ε values entail pure homogeneity information while high ε values would lead to discarding 
useful heterogeneity information. We thus infer to model µ as an asymmetric bell-shaped density function with 
one peak centered in the saddle point of the heights distribution. The Beta family of distributions, supported 
in [0, 1], well meets the requirements; it simplifies both the numeric integration procedure and the results’ 
interpretation. The Beta-shaped µ is centered on 0.15 (grey line), properly tuning α and β shape parameters 
( α = 2.5, β = 15).
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