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a b s t r a c t

In this paper, we address the inverse problem in the case of linear–quadratic zero-sum differential
games. The problem is to evaluate an unknown cost function given the observed trajectories that are
known to be generated by a stationary linear feedback Nash equilibrium pair. Using the observed
data, we construct a game that is equivalent to the game that leads to the observed trajectories in the
sense that the equilibrium feedback law of any of the two player is the same for that player in the
original and constructed games. Towards this end, we introduce a model-based algorithm that uses
the given trajectories to accomplish this task. The algorithm combines both inverse optimal control
and reinforcement learning methods making extensive use of gradient descent optimization for the
latter. The analysis of the algorithm focuses on the proof of its convergence and stability. Simulation
results validate the effectiveness of the proposed algorithm.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Dynamic game theory brings together four components that
re key to many situations in economics, ecology, and other
elated disciplines: optimizing behavior, the presence of mul-
iple agents/ players, enduring consequences of decisions, and
obustness with respect to the changing environment [1]. Non-
ooperative differential games were first introduced in [2] within
he framework of zero-sum games. This type of game attracted
onsiderable attention from the control community due to the
act that quadratic differential games provide new angles to
xamine the performances of control laws. The application of
ifferential games is far-reaching [3–5]. Although most of the lit-
rature has focused on determining the outcome of a game given
he players’ objective function, recently, an increasing interest
ppeared in the inverse problem, where, given the players’ game-
laying behavior, one wants to reverse engineer the objective of
player.
Inverse problems have attracted considerable attention due

o, in part, their application in guiding the system to desired
ehavior outcomes. Significant research has been done in the
rea of inverse optimal control (IOC) [6,7]. Another closely related
esearch area is inverse reinforcement learning (IRL) [8]. Although
hese two areas are concerned with similar problems, they are
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different in structure — the IOC aims to reconstruct an objective
function given the state/action samples assuming dealing with a
stable control system, while the IRL recovers an objective function
using expert demonstration assuming that the expert behavior is
optimal [9]. There is a close relationship between IOC and the
inverse problem for linear quadratic differential games. There
are various works dedicated to the inverse problem for non-
cooperative linear–quadratic differential games. Some of them
use purely IRL approaches [10,11], while others are based on
IOC [12]. However, not much attention was paid to the linear–
quadratic zero-sum differential games despite the fact that they
might be used to solve the L2-gain problem [13]. Some results
or the inverse problem in such games were achieved via inverse
-learning in the context of the imitation learning problem [14].
For linear–quadratic zero-sum differential games, finding the

ash equilibrium is done via solving the so-called Generalized Al-
ebraic Riccati Equation (GARE) [15,16]. In this work, we use rein-
orcement learning methods and inverse optimal control methods
o solve GARE. The developed algorithm is model-based, i.e., in
ddition to knowing equilibrium trajectories, we also know the
eight matrices in the dynamics. Instead of seeking the cost func-
ion that, together with the dynamics, generated the observed
ehavior, we are looking for an equivalent cost function that,
ogether with the given dynamics, constitutes a game that shares
he same feedback law with the original game.

The paper is structured as follows. Section 2 provides pre-
iminary results on linear–quadratic zero-sum differential games
nd formulates the problem addressed in the paper. In Section 3,

e describe each step of the algorithm. Section 4 is dedicated

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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o the analysis of the algorithm; we show its convergence and
tability and characterize possible solutions. Sections 5 and 6
rovide simulation results and conclusion, respectively.
Notations: For a matrix P ∈ Rm×n, Pk, P (k) denote P to the

power of k, and matrix P at the kth iteration, respectively. In
addition, P > 0, P ≥ 0, P ≤ 0, and P < 0, denote positive
(semi-)definiteness, and (semi-)negative definiteness of matrix P ,
respectively. Tr P denotes the trace of matrix P . Ik is the k × k
identity matrix. R+ denotes the set of positive real numbers. Z+

denotes the set of positive integers.

2. Problem formulation

This section introduces linear–quadratic (LQ) zero-sum differ-
ential games and defines stationary linear feedback Nash equilib-
rium (referred to as NE). We clarify what an optimal behavior for
the game is and introduce the inverse problem.

2.1. LQ zero-sum differential game

Consider a differential game with continuous time dynamics

ẋ(t) = Ax(t) + Bu(t) + Dd(t), (1)

x(0) = x0 (2)

where x ∈ Rn is the state and u ∈ Rm and d ∈ Rp are control
inputs of players 1 and 2, respectively; plant matrix A, control
input matrices B and D have appropriate dimensions.

We consider that the players select their control to be linear
time-invariant feedback laws of the form

u(t) = Fx(t), (3)

d(t) = Lx(t), (4)

where F and L are linear time invariant feedback matrices of
players 1 and 2, respectively. Further, to ease notations, we use
x(t) = x, u(t) = u and d(t) = d.

Within the game, player 1 aims to find a controller that min-
imizes a cost function, and player 2, on the opposite, looks for a
controller that maximizes it. The cost function is quadratic and
given as follows

J(x0, u, d) =

∫
∞

0

(
x⊤Qx + u⊤Ru − d⊤Md

)
dt, (5)

where Q ∈ Rn×n, R ∈ Rm×m, M ∈ Rp×p are symmetric and
R,M > 0.

In the game, we are interested in finding a Nash equilibrium
(u∗, d∗) in the sense that

J(x(0), u∗, d) ≤ J(x(0), u∗, d∗) ≤ J(x(0), u, d∗), (6)

that is J(x(0), u∗, d∗) = minu maxd J(x(0), u, d).
The optimal value function in the game is defined by

V ∗(x) := min
u

max
d

∫
∞

0

(
x⊤Qx + u⊤Ru − d⊤Md

)
dt

= x⊤Kx
(7)

where K is a symmetric matrix, sometimes referred to as the
value matrix. Define ∇V ∗

:=
(

∂V∗

∂x

)
. The Hamiltonian function is

(V ∗, u, d) :=x⊤Qx + u⊤Ru − d⊤Md

+ ∇V ∗⊤(Ax + Bu + Dd).
(8)

Using the stationarity conditions

∂H(V ∗, u, d)
= 0,

∂H(V ∗, u, d)
= 0 (9)
∂u ∂d A

2

we obtain

u∗
= −R−1B⊤K ∗x := F∗x, (10)

∗
= M−1D⊤K ∗x := L∗x (11)

here K ∗ satisfies the following Generalized Algebraic Riccati
quation (GARE) [1]

− A⊤K ∗
− K ∗A + K ∗(BR−1B⊤

− DM−1D⊤)K ∗
− Q = 0. (12)

n this game, we restrict the set of admissible controllers (F , L) to
elong to the following set

= {(F , L)|A + BF + DL is stable}, (13)

ince (u∗, d∗) need to stabilize trajectories to qualify as the unique
E equilibrium in this game [1]. This restriction is essential be-
ause, as shown in [17], without this restriction it is possible
o provide an example where a non-stabilizing feedback yields
ower cost for one of the player while another player sticks
o the stabilizing feedback law. Thus, beside satisfying (12), K
hould also be stabilizing to qualify (F , L) as a unique NE [1]. The
ollowing assumption guarantees the non-emptiness of the set.

ssumption 1. (A, [B,D]) in (1) is stabilizable.

.2. Inverse problem

We formulate the inverse problem for LQ zero-sum differential
ames in this subsection.
Consider an LQ differential game (referred to as the observed

Q game) with continuous-time system dynamics

˙o = Axo + Buo + Ddo, (14)

o(0) = x0,o (15)

here xo ∈ Rn, uo ∈ Rm and do ∈ Rp are NE trajectories of the
bserved LQ game with u and d being trajectories of players 1 and
, respectively; A, B, D have appropriate dimensions and satisfy
ssumption 1. The cost function of the game has the following
nown quadratic structure

o(x0, u, d) =

∫
∞

0

(
x⊤Qox + u⊤Rou − d⊤Mod

)
dt, (16)

ith the unknown matrices Qo = Q⊤
o , Ro = R⊤

o > 0 and Mo =
⊤
o > 0. Considering that (xo, uo, do) are NE trajectories, we have

o = Fox = −R−1
o B⊤Kox, (17)

do = Lox = M−1
o D⊤Kox, (18)

here Ko is the unique stabilizing symmetric solution of the
ollowing GARE
⊤Ko + KoA − Ko(BR−1

o B⊤
− DM−1

o D⊤)Ko + Qo = 0. (19)

ssumption 2. A + BFo is stable.

The above assumption is the only restriction we have on the
ame that lead to the observed equilibrium trajectories. In fact,
ssumption that the unique stabilizing solution of (19) is positive
efinite, i.e., Ko > 0, leads to A + BFo being stable. Although the
esult is known [16], it lacks the proof which is presented below.

emma 1. Consider the observed LQ game (A, B, C,Qo, Ro,Mo) de-
cribed in Section 2.2. Then if (Fo, Lo) is the feedback NE equilibrium
air and Ko > 0, then
+ BFo is a stable matrix. (20)



E. Martirosyan and M. Cao Systems & Control Letters 172 (2023) 105438

p
s
s
f

F

T
t

3

F
t
a
b
w

x
u

T

F

W
i

s

N

E

w
g
r

K

N
i
f
d

C

s

To see this, we use the fact that Fo = R−1B⊤Ko and Lo =

M−1
o D⊤Ko constitute the equilibrium pair and Ko > 0. Hence,

(A + BFo + DLo)⊤Ko + Ko(A + BFo + DLo) =

− Qo − F⊤

o RoFo + L⊤

o MoLo < 0.
(21)

Moving the DLo terms to the right-hand side, we get

(A + BFo)⊤Ko + Ko(A + BFo) = −Qo − F⊤

o RoFo − L⊤

o MoLo. (22)

From the inequality in (21), one can conclude that

−Qo − F⊤

o RoFo − L⊤

o MoLo < 0 (23)

and, as a result of Ko > 0, A + BFo is a stable matrix. ■
Positive definiteness of the value matrix is a common assump-

tion for differential games [18]. Note that whether A+BFo is true
or not can be checked using the estimation of Fo, which can be
computed via the procedure described in 3.2.

Notation: we use the (A, B,D,Q , R,M) tuple to describe an LQ
differential game with the dynamics’ matrices A, B,D and the cost
function parameters Q , R,M .

Definition 1 (Equivalent Game). The (A, B,D,Q , R,M) game is
called equivalent to the observed game (A, B,D,Qo, Ro,Mo) with
the value matrix Ko if for the selected Q , R and M , GARE (12) has
a unique stabilizing solution K such that R−1B⊤K = R−1

o B⊤Ko,
i.e., F := −R−1B⊤K = Fo.

In other words, the games are equivalent if they share the
same equilibrium feedback law of the player that minimizes the
cost function (16), i.e. player 1.

Now, we are ready to formulate the inverse problem to be
addressed in this paper.
Inverse Problem: Given the dynamics’ matrices A, B,D and the
observed trajectories (xo, uo), we want to derive a game equiva-
lent to the (A, B,D,Qo, Ro, Mo) game.

Remark 1. Since no assumptions on definiteness of Qo are made,
the problem can be reformulated for player 2, and the solution
proposed further is still valid.

The goal is to be accomplished via a model-based inverse rein-
forcement learning algorithm described in the following section.

3. Model-based inverse learning

In this section, we describe the algorithm that uses trajectories
(xo, uo) generated by known dynamics in (14) for learning a cost
function equivalent to the one parametrized by (Qo, Ro,Mo).

The procedure is as follows — firstly, we initialize an LQ
differential game with dynamics (A, B,D). We generate an initial
Q (0) updated in each iteration, M (0) > 0 updated when necessary
and, the control input weights R > 0 remaining the same in each
iteration. The next step is to provide an estimation of Fo using
the observed trajectories. Then, to solve the resulting LQ game,
we solve GARE (12) to derive the unique stabilizing solution K (0).
After that, we start the iterative update of K (0) using the gradient
descent method [19] and update of Q (0) using the inverse optimal
control method [20].

3.1. Optimal control on given cost function parameters

Following the first step, we need to initialize Q (0)
= Q (0)⊤,

R = R⊤ > 0 and M (0)
= M (0)⊤ > 0. Moreover, we initialize M

as M (0)
= M (0)⊤

= (γ (0))2Ip where γ (0)
∈ R+ (which allows us

to write D
(
M (0)

)−1D⊤
= (γ (0))−2DD⊤. With the known dynamics

A, B,D, one needs to solve the following GARE

A⊤K (0)
+ K (0)A−

(0) −1 ⊤ (0) −2 ⊤ (0) (0) (24)

K (BR B − (γ ) DD )K + Q = 0 A

3

with respect to the symmetric K (0), which is the unique stabiliz-
ing solution. To solve (24) might not be straightforward because
GARE is not guaranteed to have the desired solution due to the
following term

BR−1B⊤
− (γ (0))−2DD⊤ (25)

which might be indefinite. However, since we have the freedom
to choose Q (0), R and γ (0), referring again to [18], we initialize
Q (0)

≥ 0 such that (A,
√
Q (0)) is observable. Note that if the

desired solution exists, it is unique [21,22].
Then, using the algorithm presented in [18] (Algorithm 3),

with the initialized parameters Q (0), R, γ (0), through the iterative
rocedure, the process is guaranteed to converge to the unique
tabilizing positive definite solution K (0) > 0. Using the derived
olution, we calculate the state feedback law of player 1 as
ollows
(0)

= −R−1B⊤K (0). (26)

ogether with L(0) = (γ (0))−2DD⊤K (0), F (0) forms the NE pair for
he initialized game (A, B, C,Q (0), R,M (0)).

.2. Gradient descent update

We aim at tracking the difference between the feedback law
that is the NE feedback law for the current iteration game and

he desired feedback law Fo. Towards this end, we need to derive
n estimation F̂o of Fo. Given the (xo, uo) trajectories, we use the
atch least-square (LS) method [23]. To estimate that matrix pair,
e need k ≥ n, k ∈ Z+ data samples from the trajectories, i.e.

ˆo = [xo(t1), . . . , xo(tk)] ∈ Rn×k, (27a)
ˆo = [uo(t1), . . . , uo(tk)] ∈ Rm×k. (27b)

hese data samples are used to estimate Fo via (17), i.e.,

ˆo = −ûox̂⊤

o (x̂ox̂
⊤

o )
−1. (28)

hen tracking the difference between F̂o and F (i) at the ith
teration of the algorithm, we denote the difference function by
(i)(K)

:= F (i)
− F̂o = −R−1B⊤K (i)

− F̂o. (29)

ext, we define an error function as
(i)(K)

:= Tr
(
s(i)⊤s(i)

)
, (30)

hich is a function of K that we aim to minimize. Employing the
radient descent method [19], we introduce the following update
ule

¯ (i)
= K (i)

− α
∂E(i)

∂K
= K (i)

− α
∂ Tr

(
s(i)⊤s(i)

)
∂K

, (31)

where α > 0 is the learning rate and the partial derivative is

∂E(i)

∂K (i) = K (i)BR−1R−1B⊤
+ BR−1R−1B⊤K (i)

+ F̂⊤

o R−1B⊤
+ BR−1F̂o

= −(F (i)
− F̂o)⊤R−1B⊤

− BR−1(F (i)
− F̂o)

= −s(i)⊤R−1B⊤
− BR−1s(i).

(32)

ote that ∥s(i)∥2,1 is bounded for each i if K (0) in F (0)
= −R−1B⊤K (0)

s a solution of the initialized GARE (24). In that case, using the
act that ∥s(i)∥2,1 > ∥s(i+1)

∥2,1 for i = 0, 1, . . . due to gradient
escent update, we have

= ∥s(0)∥2,1 > ∥s(1)∥2,1 > · · · ≥ 0. (33)

Also, as explained in Section 2.1, we want to guarantee the
tability of the resulting solution, i.e.,

+ BF∗
+ (γ ∗)−2DD⊤K ∗ is a stable matrix, (34)
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here K ∗ is the goal of the optimization procedure described
efore, i.e., −R−1B⊤K ∗

= F∗
= Fo; and γ ∗ > 0 is a parameter

hat we might need to update starting from γ (0) to guarantee the
tability of the resulting dynamics. Thus, to update K (i), we need
to always check whether

A − BR−1B⊤K ∗
+ (γ (i))−2DD⊤K (i) is a stable matrix, (35)

and if it is not the case, γ (i) needs to be increased. This update
can be performed, for example, linearly, i.e., γ (i+1)

= cγ (i). As it
is shown in Section 4.2 dedicated to the stability analysis, such a
c always exists.

3.3. Inverse optimal control update

The last step is to update Q (i) using K̄ (i) received via the
gradient descent update. We simply substitute the update value
matrix into GARE (12)

Q (i+1)
=

− A⊤K̄ (i)
− K̄ (i)A + K̄ (i)(BR−1B⊤

− (γ (i+1))−2DD⊤)K̄ (i).
(36)

We repeat the presented steps till 0 ≤ E(i) < ϵ where ϵ ∈ R+

is a desired precision. The resulting Q ∗, M∗
= (γ ∗)2Ip together

with some initialized R and the given dynamics (A, B,D), con-
stitute an LQ game that is equivalent to the observed LQ game
(A, B,D,Qo, Ro,Mo) in the sense described in Definition 1. Hence,
we get a new GARE and the feedback NE pair

A⊤K ∗
+ K ∗A − K ∗(BR−1B⊤

− D(M∗)−1D⊤)K ∗
+ Q ∗

= 0, (37)

F∗
= −R−1B⊤K ∗

= −R−1
o B⊤Ko = Fo, (38)

L∗
= (γ ∗)−2D⊤K ∗

̸= γ −2
o D⊤Ko = Lo, (39)

where M∗
= (γ ∗)2Ip. To summarize, we present the whole

procedure in Algorithm 1. The section thereafter provides the
analysis of the proposed algorithm.

Remark 2. From the complexity point of view, the demanding
parts of algorithm are finding solution of the game with initialized
parameters (Q (0), R,M (0)) and matrix multiplication done in the
following steps. The algorithm proposed in [18], is used in our
work to solve the initialized GARE. This algorithm is based on
so-called Lyapunov Iterations. Methods to solve the Lyapunov
Equations with respect to K ∈ Rn×n usually have complexity
O(n3) [24]. The steps of the algorithm that require perform-
ing matrix multiplication via standard methods have complexity
O(n3

+ n2 m + nm2
+ np2). Hence, the overall computational

complexity is O(n3
+ n2 m + nm2

+ np2).

4. Analysis of the algorithm

In this section, we derive a few analytical results for the
presented algorithm. Firstly, we show the convergence of the
algorithm. Next, we show that F∗

= Fo and L∗ constitute the
equilibrium for the synthesized game. Finally, we provide some
results on the characterization of possible solutions in the ad-
dressed inverse problem.

We introduce the following notations

Γ (γ (i)) = Γ (i)
:= BR−1B⊤

− (γ (i))−2DD⊤, (46)

and

φ(i)(s) :=
∂E i

∂K (i) = −

(
s(i)⊤R−1B⊤

+ BR−1s(i)
)
. (47)

Note that φ(i)(s) for i = 0, 1, . . . is a symmetric matrix.
4

Algorithm 1 Model-based Inverse Learning Algorithm

1. Initialize R = R⊤ > 0 and γ (0) > 0. Initialize Q (0)
=

Q (0)⊤ > 0 such that (A,
√
Q (0)) is observable for the known

A and set i = 0. Solve GARE (24) with respect to K (0).
2. Estimate Fo using the observed trajectories as

F̂o = −ûox̂⊤

o (x̂ox̂
⊤

o )
−1. (40)

3. Compute

F (i)
= −R−1B⊤K (i), (41)

and evaluate the difference

s(i) = F (i)
− Fo. (42)

4. Update K (i) to K̄ (i) as

K̄ (i)
= K (i)

+ α

(
s(i)⊤R−1B⊤

+ BR−1s(i)
)
, (43)

K (i+1)
= K̄ (i). (44)

5. If A+BF̂o+(γ (i))−2DD⊤K (i+1) is not stable, then (γ (i+1))−2
=

c(i+1))(γ (i))−2 where c(i+1) > c̄(i+1)
≥ 1. Otherwise, γ (i+1)

=

γ (i), i.e. c(i+1)
= 1.

6. Perform evaluation of Q (i+1) as

Q (i+1)
= − A⊤K̄ (i)

− K̄ (i)A+

K̄ (i)(BR−1B⊤
− (γ (i+1))−2DD⊤)K̄ (i).

(45)

7. Set i = i + 1. Perform steps 3-5 till E(i)
= Tr(s(i)⊤s(i)) < ϵ

where ϵ > 0 is a small constant.

4.1. Convergence analysis

The first result claims the convergence of the proposed algo-
rithm.

Theorem 1. In Algorithm 1, the reward weight Q (i) converges to
Q ∗ such that GARE (12), associated with a game (A, B,D, Q ∗, R,M∗),
has solution K ∗ such that

R−1B⊤K ∗
= R−1

o B⊤Ko. (48)

roof. Let us consider (43). Using the gradient descent method
o update K (i), we drive F (i) to F̂o. Hence, the error decreases with
ach iteration, i.e.,
(i) > E(i+1)

≥ 0, for all i = 0, 1, 2, . . . , (49)

and we have

lim
i→∞

E(i)
= 0, lim

i→∞

s(i) = 0 and lim
i→∞

φ(i)(s) = 0. (50)

Then,

lim
i→∞

K (i+1)
= lim

i→∞

K̄ (i)
= lim

i→∞

(K (i)
− αφ(i)(s)) = lim

i→∞

K (i). (51)

Considering the effectiveness of LS estimation F̂o = Fo, we have

lim
i→∞

R−1BK (i)
= lim

i→∞

F (i)
= Fo = R−1

o BKo. (52)

e denote limi→∞ K (i)
= K ∗. It is clear that when K (i) converges

o K ∗, γ (i) also converges to some γ ∗
≥ γ (i) for i = 1, 2, . . . ,

.e., limi→∞ γ (i)
= γ ∗ or limi→∞ c(i) = 1. Next, using the gradient

pdate rule

¯ (i)
= K (i)

− αφ(i)(s), (53)
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w
e expand K̄ (i) in (36) and get

Q (i+1)
= −(A⊤K (i)

+ K (i)A − K (i)Γ (i)K (i))

+ α(A⊤φ(i)(s) + φ(i)(s)A)

− α(K (i)Γ (i+1)φ(i)(s) + φ(i)(s)Γ (i+1)K (i))

+ α2φ(i)Γ (i+1)φ(i)(s)+

(1 − c(i+1))(γ (i))−2K (i)DD⊤K (i).

(54)

Taking the limit of both sides and using (50), we get

lim
i→∞

Q (i+1)
= − lim

i→∞

(A⊤K (i)
+ K (i)A − K (i)Γ (i)K (i))

= lim
i→∞

Q (i).
(55)

Then, we denote limi→∞ Q (i)
= Q ∗. Thus, one can conclude the

following

Q ∗
= lim

i→∞

Q (i)
= − lim

i→∞

(A⊤K (i)
+ K (i)A − K (i)Γ (i)K (i))

= −(A⊤K ∗
+ K ∗A − K ∗Γ ∗K ∗),

(56)

which shows that K ∗ satisfying R−1BK ∗
= Fo is a solution of GARE

associated with (A, B,D,Q ∗, R,M∗). ■

4.2. Stability analysis

In this section, we show the stability of the proposed algo-
rithm.

Since A + BFo is a stable matrix, for any K (i) it will always
be possible to find γ (i) > 0 such that A + BFo dominates
(γ (i))−2DD⊤K (i).

We give some more details on the initial choice of γ (0). Notice
that before implementing check in step 5 and iterative update of
Q (i) in step 6, steps 3 − 4 in Algorithm 1 only require initialized
K (0). Thus, we can always evaluate K ∗ and see whether for the
initialized γ (0) the resulting solution K ∗ is a stabilizing one. Note
that if GARE (12) for some γ1, γ2 such that 0 < γ2 < γ1 and some
fixed A, B,D, R,Q has solution, then K (γ1) < K (γ2) [21].

Before presenting the result on the stability of the proposed
algorithm, we use the following result from [1].

Theorem 2. Consider an LQ zero-sum differential game described
by (1) with the cost function given by (5). The game has for every
initial state a feedback NE if and only if the following Riccati equation

− A⊤K − KA + K (BR−1B⊤
− DM−1D⊤)K − Q = 0 (57)

has a symmetric solution such that the matrix A − BR−1B⊤K +γ −2

DD⊤K is stable. Moreover, the pair of F = −R−1B⊤ K and L =

M−1D⊤K constitutes the unique equilibrium.

Finally, the following can be concluded for the algorithm.

Theorem 3. The output of Algorithm 1, given the observed trajec-
tories (xo, uo) generated by a game (A, B,D,Qo, Ro, Mo) described
in Section 2, is the tuple (Q ∗, R,M∗) such that, combined with the
known dynamics (A, B,D), it forms a game with the unique NE
feedback law for player 1 identical to (A, B,D,Qo, Ro,Mo) game,
i.e., F∗

= Fo.

Proof. In view of Theorem 1 and the validity of (34) via step 5
in Algorithm 1, one concludes that K ∗ is both a solution of GARE
(57) and stabilizing. ■

Corollary 1. There exist ᾱ > 0 and N such that for i = N,N+1, . . .
Algorithm 1 produces Q (i) that together with (A, B,D, R,M (i)), where
M (i)

= γ (i)Ip, forms GARE where K (i) is a stabilizing solution, i.e.,
(i) (i)
(A + BF + DL ) < 0. (58)

5

Proof. Note that

A + BF (i)
+ DL(i), (59)

using (42), can be rewritten as

A + B(Fo + s(i)) + DL(i). (60)

As shown in Lemma 1, A+BFo is stable; and γ (i) in L(i) is updated
if needed in a way to guarantee the stability of A + BFo + DL(i).
Thus, the term Bs(i) is the one that might violate the stability of
(60). However, s(i) is decreasing with each i and, starting from
i = N,N + 1, . . . , Bs(i) is small enough so (60) is satisfied.

Now, we have that (F (N), L(N)) and (F∗, L∗), where F∗
= Fo is

the terminal feedback law for player 1, are both stabilizing pairs,
i.e.,

A + BF (N)
+ DL(N)

=

A − BR−1B⊤K (N)
+ (γ (N))−2DD⊤K (N) < 0, (61)

A + BF∗
+ DL∗

=

A − BR−1B⊤K ∗
+ (γ ∗)−2DD⊤K ∗ < 0. (62)

Since K (i) linearly affects (F (i), L(i)) for i = N,N + 1, . . . and
(F (i), L(i)) is a result of the gradient descent update from (F (N), L(N))
in the direction of (F∗, L∗), there exists α = ᾱ in (43) that
guarantees the stability of (F (i), L(i)) [19]. Hence, Q (i), updated via
(36) using K (i), is stabilizing. This completes the proof. ■

Remark 3. N might be reduced by increasing γ (i) since bigger γ (i)

changes the eigenvalues of A+ BF (i)
+DL(i) (that are all negative)

in a non-increasing way. In fact, picking γ (0) such that K (0) and
resulting K ∗ for γ ∗

= γ (0) are both stabilizing, which guarantees
that every K (i) is stabilizing, i.e., N = 0. Practical advice for
implementing the algorithm would be to choose ‘‘high’’ γ (0) from
the beginning.

4.3. Characterization of the solutions

In this section, we provide a discussion and results on the
characterization of the possible output of the algorithm.

Note that we are looking for (Q ∗, R, M∗) such that with the
known (A, B, C) that form GARE (12) that has a stabilizing solution
K ∗ satisfying R−1

o B⊤Ko = R−1B⊤K ∗. Since R > 0, B⊤K ∗
=

RR−1
o B⊤Ko. If B has no full rank, there might be an infinite number

of possible K ∗ [14].

Remark 4. All possible outputs of Algorithm 1, i.e., Q ∗, γ ∗ and
K ∗, satisfy the following equality

A⊤(Ko − K ∗) + (Ko − K ∗)A + F⊤

o (R − Ro)Fo−

γ ∗L∗⊤L∗
+ L⊤

o MoLo = Qo − Q . (63)

(63) is received via subtracting (37) from (19).

Let us denote

Qd = Q ∗
− Qo, Kd = K ∗

− Ko, Rd = R − Ro

β∗
= (γ ∗)−2, βo = γ −2

o , βd = β∗
− βo. (64)

Corollary 2. Kd and Qd satisfy the following equality

Qd + A⊤Kd + KdA − FoRdFo+

βd(Kd + Ko)DD⊤(Kd + Ko)+ (65)

βo(KdDD⊤Kd + KdDD⊤Ko + KoDD⊤Kd) = 0.

Proof. Considering (37) and (64), we receive

Q ∗
+ A⊤K ∗

+ K ∗A− (66)
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∗(BR−1B⊤
− (γ ∗)−2DD⊤)K ∗

=

Qd + Qo + A⊤Kd + A⊤Ko + KdA + KoA−

K ∗BR−1B⊤K ∗
+ β∗K ∗DD⊤K ∗. (67)

Expanding the two last terms and using RR−1
o B⊤Ko = B⊤K ∗, we

get

K ∗BR−1B⊤K ∗
= KoBR−1

o RR−1
o B⊤Ko =

KoBR−1
o (Rd + Ro)R−1B⊤Ko (68)

nd
∗K ∗DD⊤K ∗

= βoKoDD⊤Ko+

βd(Kd + Ko)DD⊤(Kd + Ko)+

βo(KdDD⊤Kd + KdDD⊤Ko + KoDD⊤Kd). (69)

Substituting (68) and (69) into (66) and using (19), (37) with

KoBR−1
o RdR−1

o B⊤Ko = F⊤

o RdFo,

we arrive (65). ■

5. Simulations

In this section, we present simulation results of the model-
based algorithm developed in this paper.

5.1. Simulation results 1

Consider the following continuous time system dynamics

ẋ = Ax + Bu + Dd, (70)

where

A =

(
3 −2
2 −4

)
, B =

(
1
0

)
, D =

(
0 0
0 1

)
. (71)

The observed NE trajectories are generated for the game with the
following weight matrices

Qo =

(
7 2
2 5

)
, Ro = 2, Mo =

(
5 0
0 3

)
. (72)

Given this game, Fo and Ko are

Fo =
(
−5.8515 1.4358

)
Ko =

(
11.7030 −2.8716
−2.8716 1.6603

)
.

The initialized parameters are the following

Q (0)
= 3I2×2, R = 3, M (0)

= (γ (0))2I2×2, (73)

ith γ (0)
= 2. The learning rate is set to α = 0.1.

The solution generated by the algorithm is

∗
=

(
9.9875 3.4593
3.4593 3.4247

)
, γ ∗

= 2, (74)

ith

∗
=

(
−5.8509 1.4418

)
, K ∗

=

(
17.5528 −4.3251
−4.3251 1.9330

)
. (75)

n addition,

∗
= γ −2DD⊤K ∗

=

(
0 0

−1.0813 0.4832

)
. (76)

he resulting dynamics A + BF + DL < 0 is stable as shown in
ig. 1(a). The convergence of the iterative procedure is shown in

ig. 1(b).

6

Fig. 1. (a) The stability of the observed and resulting dynamics. (b) Convergence
of the norm for iterations of F (i) , K (i) and Q (i) .

.2. Simulation results 2

In this example, we use the dynamics and the cost function
rovided in [18]. Consider the following continuous time system
ynamics

˙ = Ax + Bu + Dd, where A =

⎛⎜⎝1 0 3 0
0 −2 3 0
0 1 −3 0
1 0 0 4

⎞⎟⎠ , (77)

=

⎛⎜⎝0.0116 0.6020
0.9215 0.5565
0.5450 0.0730
0.5565 0.3834

⎞⎟⎠ , D =

⎛⎜⎝0.4814
0.3909
0.4087
0.5591

⎞⎟⎠ . (78)

he observed NE trajectories are generated for the game with the
ollowing weight matrices

o =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ , Ro = I2×2, Mo = 1. (79)

iven this game, Fo and Ko are

o =

(
−2.2299 −0.7173 −2.0091 0

)
, (80)
−2.8548 −0.5269 −2.2088 0
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Fig. 2. (a) The stability of the observed and resulting dynamics. (b) Convergence
of the norm for iterations of F (i) , K (i) and Q (i) .

o =

⎛⎜⎝3.0103 0.3834 2.1315 0
0.3834 0.3875 0.5205 0
2.1315 0.5205 1.8134 0

0 0 0 0

⎞⎟⎠ . (81)

he initialized parameters are the following
(0)

= 3I4×4, R = 0.5I2×2, M (0)
= (γ (0))2, (82)

ith γ (0)
=

√
2. The learning rate is set to α = 0.1.

The solution generated by the algorithm is

∗
=

⎛⎜⎝ 2.7575 0.7219 1.3039 −0.5685
0.7219 1.6441 −1.2203 −0.4297
1.3039 −1.2203 3.0806 −0.3972

−0.5685 −0.4297 −0.3972 2.4634

⎞⎟⎠ , (83)

ith γ ∗
=

√
2 and

∗
=

(
−2.2298 −0.7171 −2.0091 −0.0001
−2.8550 −0.5271 −2.2088 0.0002

)
, (84)

∗
=

⎛⎜⎝ 1.5801 0.3175 1.0288 −0.0766
0.3175 0.4113 0.1715 −0.0912
1.0288 0.1715 1.0409 −0.1255

⎞⎟⎠ . (85)
−0.0766 −0.0912 −0.1255 0.3081
7

In addition,
∗

= γ −2DD⊤K ∗
=

(
0.6312 0.1664 0.4588 0.0242

)
. (86)

he resulting dynamics A + BF + DL < 0 is stable as shown in
ig. 2(a). The convergence of the iterative procedure is shown in
ig. 2(b).

. Conclusion

In this paper, we provided the algorithm that solves the in-
erse problem for linear–quadratic zero-sum differential games.
e showed that the algorithm’s output is the set of weight ma-

rices that together with the known dynamics form an equivalent
ame for one of the players. After proving the convergence of
he algorithm to a desired output, we provided simulations to
emonstrate the effectiveness of the proposed method.
The presented algorithm has the potential for extension to

odel-free (neither plant matrix A nor control input matrices
, D are unknown) or to partially model-free (plant matrix A
s unknown) settings. The steps of the algorithm that require
lant matrix A are related to solving the initialized GARE and the
nverse update of matrix Q . These steps might be implemented
n different ways if methods to find the optimal controller for
RE without knowledge of dynamics are exploited [25,26]. Note
hat in the case of unknown control input matrices, the gradient
pdate step might require changes in order to avoid using matrix
(or D in the case for player 2).
For future work, the case of a general-sum game will be

onsidered, where instead of GARE, described in this work, the
oupled algebraic Riccati equation arise [18].
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