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General introduction
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10 CHAPTER 1

STRESS AND RESILIENCE

Stress is associated with an increased risk of numerous diseases, including several forms 
of cancer (1), musculoskeletal diseases (2), periodontal diseases (3), type 2 diabetes 
mellitus (4), stroke (5) and (recurring) cardiovascular disease (6,7). It also can be detri-
mental to mental well-being, for instance in the development of mental-disorders (8) 
and burn-out (9). Besides this impact on the health and quality of life (10) of individuals, 
stress also impacts the work situation and thus has major implications for their employ-
ers. For instance, a nationwide survey under Dutch workers showed that occupational 
stress was attributed to be the primary cause in 36.8% of all absenteeism from work 
in 2021 (11). The resulting financial burden of stress is estimated to mostly come from 
productivity loss (70-90%) and medical costs (10-30%) (12). Stress therefore has a major 
individual and societal impact, especially in employees of high risk professions such as 
police officers (13) and military personnel (14). Early recognition of emerging stress-re-
lated problems that is followed-up with personalized just-in-time feedback may help 
alleviate these burdens (15). Recent developments in wearable sensor technology have 
introduced new opportunities for this and have spearheaded academic studies on this 
topic (16,17), including this thesis.

Before hypothesizing how interventions that aim to limit the negative impact of stress 
may be able to do so, it is helpful to first understand how stress emerges and causes 
these problems. Stress is the outcome of a psychological process that is known as 
appraisal (18). When an individual is confronted with certain demands, the brain sub-
consciously assesses to what extent resources are available that may be used to cope 
with the situation. If sufficient resources are perceived to be available, the demand is 
appraised as a non-threatening challenge. When this is not the case, the demand is 
appraised as a threat, causing a stress response. In the context of this thesis, ‘stress’ 
therefore does not refer to the trigger, but to the stress response itself. This stress 
response prepares the body for action via metabolic changes that prioritize the flow 
of oxygen and glucose to skeletal muscle and brain cells (19). It also strengthens the 
functioning of the brain’s emotional response center (the amygdala) while impairing 
the part of the brain that is responsible for decision making and social behavior (the 
prefrontal cortex) (20). Essentially, a tradeoff is made by sacrificing certain restorative 
functions and cognitive abilities to be able to more swiftly respond to environmental 
demands. Although this response is helpful in the context of traditional stressors that 
require an individual to fight or flight to survive (e.g., a wild animal), it not always is for 
modern stressors that require individuals to think clearly or communicate well (e.g., 
cognitive workload or stressful social interactions). These modern stressors tend to 
be more chronic in nature and thus remain present or keep reoccurring, keeping the 
body in an aroused state (21), as well as limiting the quality and quantity of the rest 
(including sleep) that is needed to recover and sustain balanced psychophysiological 
functioning (22,23). The stress response of our neurological and hormonal systems that 
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11General introduction

originally evolved thousands of years ago is therefore not always optimal to cope with 
these modern stressors that have emerged during the last centuries or even decades 
(24,25). Eventually, this leads to a wear and tear on bodily systems (allostatic load) that 
is detrimental for long-term health and well-being (26). Maintaining resources and 
sufficient quality and quantity of rest to prevent buildup of allostatic load is therefore 
essential in remaining resilient when meeting new demands.

Resilience can be defined as the process of positively adapting to adverse events (27), 
and is achieved when an individual functions well despite facing adversity by having 
sufficient relevant resources and being able to utilize them (28). Since resources are 
used to battle stress, an initial loss of resources may increase one’s vulnerability to 
upcoming stress, potentially leading to a loss spiral that negatively impacts resilience 
(29) – especially when combined with limited recovery opportunities or quality (22,23).

Therefore, continuous monitoring of relevant resources and the recovery process may 
be a way to identify changes in resilience in an early stage. This data can then be used 
to provide just-in-time feedback that may allow the individual to take action before 
more serious harm is done (15). One approach for this, is to inquire about resources and 
recovery by taking short questionnaires throughout the day on a smartphone, but this is 
likely to result in a response burden that is detrimental to adherence (30). Unobtrusive 
monitoring via wearable sensors therefore is more convenient than daily questionnaires 
from a user perspective, and also differentiates from it by collecting more objective 
data. The following sections describe why recent developments in wearable sensor 
technology introduce new opportunities to potentially do so via monitoring of resting 
Heart Rate Variability (HRV) and sleep, before summarizing the overarching aims and 
outline of this thesis.

WEARABLE SENSOR TECHNOLOGY

The emergence of wearable sensor technology, often referred to as ‘wearables’, pro-
vides promising opportunities to unobtrusively monitor behavior and physiological 
states. A well-known example of this is the pedometer, of which the ‘manpo-kei’ (liter-
ally translated as ‘ten thousand steps meter’) originates as both the first consumer-avail-
able step counter (1965) and coincidental basis for the 10.000 steps daily goal (31). Since 
around 2009, when the first modern wearables were launched (e.g., the Fitbit Classic), 
the devices primarily used an accelerometer (and later also a gyroscope) to measure 
physical activity and sleep (32). Another innovation in these devices that seems trivial 
today is the inclusion of a memory and Bluetooth connection, allowing the devices to 
store and communicate historical data. This opened up a breadth of possibilities to gain 
‘self-knowledge through numbers’, as the Quantified Self movement that flourished 
around that time adopted as a slogan (33). Self-tracking became popular, incentivizing 
further development of consumer-available tools.

1
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The next important technological innovation in consumer-available wearables was 
the introduction of photoplethysmography (PPG) sensors around 2015 (e.g., the Fitbit 
Charge HR) (34). PPG sensors shine a green, red or infrared light at the skin and use a 
photodetector to measure how much light of specific wavelength was absorbed (35). 
Since corpuscles (e.g., red blood cells) in the blood differ in what wavelength (color) 
light they absorb (e.g., red blood cells particularly absorb green light), PPG sensors can 
for instance detect volumetric variations in blood circulation as a result of contractions 
of the heart, which can thus be used to estimate heart rate (36). Although heart rate 
remains the primary use case for PPG sensor application, the technique can now also be 
used to estimate other physiological parameters such as blood oxygen saturation, blood 
pressure and respiration (37). These developments continue to increase the diversity 
of human behaviors and physiological states that can conveniently be measured in a 
real-life setting. In the context of stress, where continuous and unobtrusive monitor-
ing of psychophysiological resources and recovery is seen as a promising approach to 
model (changes in) resilience, particularly resting Heart Rate Variability (HRV) and sleep 
stand out as interesting parameters that can be measured using consumer-available 
wearables, for instance via the Oura ring (Figure 1) that was used in chapters 5 and 6 
of this thesis (38–42).

Figure 1: The Oura ring, a wearable that can validly measure resting heart rate variability and 
total sleep time.
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HEART RATE VARIABILITY

HRV is a measure for the variation in inter-beat-intervals between heartbeats. There-
fore, having a high HRV (Figure 2, green line) means that the heart rate is constantly 
accelerating and decelerating, whereas a low HRV means that it is beating at a rela-
tively stable pace (Figure 2, red line). The latter may initially sound positive, but having 
a low HRV has actually been associated with an increased risk of cardiac events (43), 
diabetes (44), stroke (45) and mortality (46,47). HRV is a reflection of the functioning 
of the Autonomous Nervous System (ANS), which the part of the nervous system that 
is responsible for regulating bodily processes such as blood pressure, breathing and 
digestion (48). During low-stress circumstances, the parasympathetic branch of the 
ANS that directs the body to “rest and digest” is particularly active and HRV is relatively 
high, whereas during high-stress circumstances the sympathetic branch of the ANS 
takes control in order to prepare the body to “fight-or-flight”, during which HRV drops 
(49). Prolonged disruptions of the balanced functioning of both branches provides a 
burden on bodily systems via allostatic load, which can express itself as a low HRV (50).

Figure 2: Examples of a low and high resting Heart Rate Variability (HRV).

During stress, HRV acutely declines (51), and can remain suppressed during sleep (52,53). 
In addition, having a low resting HRV has been associated with an increased sensitivity 
to perceive stress (54–56), as well as suboptimal emotion regulation (the ability to 
exert control over one’s own emotional state) (57,58), cognitive inhibition (ability to 
tune out irrelevant stimuli) (59) and cognitive flexibility (ability to switch thinking about 
two concepts) (59). Neuroimaging studies showed that there is a relationship between 
HRV and the regions of the brain that are involved in the stress response (the amygdala 

1
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and prefrontal cortex) (60). As a result, HRV is now widely seen a psychophysiological 
resource that is a reflection of the ability to flexibly adapt to changing environmental 
demands and regulate emotions (61), or even as an index of resilience (62,63).

Due to its association with resilience, monitoring trends in HRV may contribute to 
insights in individuals’ resilience. To be able to draw conclusions based on HRV mea-
surements, it is important that the datapoints are inter-comparable, which means that 
each measurement is taken in a relatively similar context. This is necessary because 
besides stress, HRV is influenced throughout the day by factors like body posture (64), 
exercise (65) and the intake of caffeine (66) or alcohol (67). Therefore, measuring HRV 
in a resting state that is minimally confounded by other factors (e.g., during sleep or 
upon awakening) is recommended (68).

The daily monitoring of resting HRV is still a novel and relatively under-explored topic in 
psychological research, but interesting lessons can be learned from the field of sports 
science, in which these techniques have been applied and studied for over a decade 
(69). In HRV guided training, athletes monitor their daily resting HRV and compare it 
to historical data in order to gain insight in the impact of training-, psychological- and 
lifestyle-stressors on their physiology and adjust the intensity of their training accord-
ingly. HRV guided training was found to be more effective than predefined training for 
improving the body’s peak oxygen uptake (VO2max) (70), as well as for maintaining and 
improving resting HRV and lowering the likelihood of negative outcomes (71), proving 
its merit for optimizing performance while limiting unnecessary physiological burden. 
In these studies, psychological stress is regularly attributed to cause changes in resting 
HRV (72–74), which are sometimes even described to have a more distinct and lasting 
influence than the impact of intensive training itself (75). It is therefore possible that 
daily resting HRV monitoring holds promise for other contexts as well, such as for em-
ployees in demanding work environments.

SLEEP

Besides monitoring the physiological resting state over time, tracking the recovery 
process itself may also be a promising approach for estimating an individual’s capacity 
for resilience. Sleep has an important role in the recovery from mental and physical 
demands (23). Adults are therefore recommended to sleep at least 7 hours per night 
on a regular basis in order to avoid adverse health outcomes (76). Although sleep is 
needed for the psychophysiological recovery from stress, stress itself can also nega-
tively impact sleep (77–80). The complexity of the association between sleep and stress 
becomes even more apparent when learning that a lack of sleep also increases stress 
sensitivity (77–81). The association between stress and sleep is clearly bidirectional, 
but the adverse impact of sleep deprivation on perceived stress is more consistently 
reported and found to be stronger (80). Finally, sleep deprivation also negatively influ-
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15General introduction

ences HRV on the subsequent workday (82), which is another sign that a lack of sleep 
can contribute to the draining of psychophysiological resources, as well as the buildup 
of allostatic load (22,23). “Getting a good night’s sleep” therefore truly is important to 
ensure that individuals have sufficiently recovered psychophysiological resources to 
contribute to their stress resilience.

AIM OF THIS THESIS

The Wearable and app-based resilience Modelling in employees (WearMe) study that 
is described in this thesis aims to model (changes in) resilience based on data that is 
derived from wearables and apps, particularly resting HRV and sleep. By doing so, it 
hopes to contribute valuable knowledge that may be used in the future development 
of automated interventions that use continuous and unobtrusive monitoring to gen-
erate personalized just-in-time feedback on employees’ resilience in order to mitigate 
or prevent the adverse impact of stress. To close off the general introduction of this 
thesis, the following outline will briefly address the gap in knowledge that each of the 
chapters will address and how each chapter aims to contribute to the overarching 
purpose of this thesis.

OUTLINE OF THE THESIS

Before diving into the specific rationales behind each of the chapters in this thesis, it 
may be supportive to first understand how these chapters complement each other 
regarding the broader aim of this thesis. In general, the current state of knowledge 
on this topic is mostly based on cross-sectional population studies in controlled envi-
ronments. As a result, insight in the extent to which this knowledge also applies on a 
within-subject level in free-living conditions is limited. Therefore, there is a particular 
need for within-subject studies using wearables to collect continuous data in free-living 
conditions (63). Therefore, the studies that are presented in this thesis utilized three 
different within-subject methodologies to contribute to this body of knowledge.

Figure 3A visualizes the nested within-day analyses that were performed in the studies 
in chapters 2 and 4. In these studies, each participant collected data using a wearable 
and short daily questionnaire via an Ecological Momentary Assessment (EMA) smart-
phone app. These datapoints were then used to assess within-day associations (e.g., 
is nocturnal wearable data related to morning EMA questionnaire data) by analyzing 
them as one large pool of observations, while accounting for between-subject differ-
ences via multi-level modelling or within-subject standardization (83). In the (multiple) 
n-of-1 time series analysis that is described in Figure 3B and was applied in chapter 5, 
the data collection occurred in a similar fashion. The data analysis, however, differs in 
that it does not only assess within-day associations between both data sources, but 
investigates their relationship over a timespan of multiple days within each participant. 

1
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Finally, Figure 3C visualizes the nested longitudinal analysis that was used for the study 
in chapter 6. Similar to the aforementioned nested approach (Figure 3A), each partici-
pant contributes a certain number of observations to the pool of observations that are 
analyzed as a whole. However, in this case a time window of 5 weeks is analyzed instead 
of the within-day analysis that was discussed before. As such, these methodological 
approaches complement each other by investigating within-subject associations on 
multiple different timeframes in the chapters in this thesis, which will be briefly intro-
duced in each of the following paragraphs.

Figure 3: Visualization of the 3 within-subject research designs that were used for the studies in 
this thesis.

During stress appraisal, the brain subconsciously assesses the perceived availability of 
resources to cope with the situation (18), including the individual’s perceived mental 
(84) and physical fitness (85). Resting HRV has been related to components of both 
mental (57,58,62,86) and physical fitness (87–92), but it is unknown to what extent it 
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is associated with the subjectively perceived mental and physical fitness. Insight in the 
degree in which resting HRV is associated with perceived mental and physical fitness 
will improve our understanding of whether resting HRV should be seen as a proxy for 
the perceived fitness that is assessed during stress appraisal, or as an independent 
psychophysiological resource. Therefore, the study in chapter 2 explores to what extent 
wearable-measured HRV during sleep predicts perceived mental and physical fitness 
on the subsequent morning in military employees (n=63) in a nested within-subject 
design (Figure 3A).

Since most of the traditional research on resilience performed population studies that 
assess between-subject differences (63), existing resilience-related models and theories 
also tend to focus on relatively broad concepts and higher time-frame mechanisms. 
While such theories are essential for our current understanding of employee resilience 
(28), they do not necessarily explain how demands may or may not cause intra- or multi-
day changes in resilience. In order to perform the wearable-based and within-subject 
research that is needed for the overarching purpose of this thesis, it is necessary to 
conceptualize this mechanism on a lower time. Chapter 3 therefore introduces a cyclical 
conceptual model for resilience that provides a basis for several short-term (intra- or 
multi-day) associations, as well as the study protocol for the first data collection of the 
WearMe study.

Chapter 4 describes the results of the study that was conceptualized in chapter 3. A 
nested within-subject design (Figure 3A) is utilized in a sample (n=26) of first-time interns 
that collected data during 15 weeks to test 4 hypotheses that are derived from the 
previously introduced conceptual model. Resting HRV upon awakening is hypothesized 
to have a buffering effect on the positive associations between daytime demands and 
stress (hypothesis 1), as well as between daytime stress and evening mental exhaustion 
(hypothesis 2). Furthermore, daytime stress is also expected to negatively influence 
sleep (hypothesis 3), whereas sleep is hypothesized to buffer against the expected 
negative association between evening mental exhaustion and subsequent-morning 
resting HRV (hypothesis 4). The combination of hypotheses 1, 2 and 4 creates a potential 
negative feedback loop, which aligns with the conservation of resources theory that 
states that an initial loss of resources may create a loss spiral, as resources are needed 
to adaptively cope with future demands (29). Insight in the degree in which these as-
sociations can indeed be observed in free-living conditions is important to improve 
our understanding of the role of resting HRV and sleep in how intra-day changes may 
potentially cascade into multi-day or multi-week trends, which are explored in the 
remaining chapters.

Stress can negatively impact resting HRV (52,53), whereas suppressed resting HRV has 
also been associated with increased stress sensitivity (54–56), suboptimal emotion 
regulation (57,58), as well as decreased cognitive inhibition and cognitive flexibility (59). 

1
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In a similar way, stress has been shown to have a negative bidirectional association with 
sleep (77–80,93). As these studies primarily focused on intra-day bidirectional effects, 
within-subject research assessing potential multi-day associations is lacking. Increased 
insight in the degree in which these associations can also be observed on a multi-day 
level in free-living conditions may improve the wearable-based resilience models that 
are targeted by this thesis. Therefore, the study in chapter 5 assesses to what extent 
wearable-measured sleep and nocturnal HRV can be predicted on a multi-day level by 
resilience-related diary outcomes and vice versa in a multiple n-of-1 time series analysis 
(Figure 3B) in 8 police officers that collected time series data during 15 to 55 weeks.

Longitudinal decreases in resting HRV can be associated with increased stress (94–97) 
and mental exhaustion (98–100). Having a relatively low resting HRV is also related to 
increased depression (101), anxiety (102) and somatization (103) at a population level. 
Furthermore, increasing fluctuations in the day-to-day resting HRV are associated with 
increased fatigue (104–106) and stress (72) in athletes, although these associations may 
be moderated by trends in the underlying resting HRV values (107). Although these 
studies show that trends in resting HRV and the daily fluctuations therein may be used 
to model longitudinal changes in mental health outcomes that would be relevant for 
the overarching purpose of this thesis, no studies to date have done so using granu-
lar wearable-based data. Therefore, the study in chapter 6 assesses if trends in daily 
resting HRV or the fluctuations therein are associated with 5-week changes in stress, 
somatization, depression and anxiety in a nested longitudinal design (Figure 3C) where 
9 police officers collected 47 5-week observations.

Together, this thesis contributes to the existing body of knowledge on wearable-based 
resilience modelling by investigating relevant within-subject associations on multiple 
timeframes and in different occupational settings. By doing so, the studies in this thesis 
provide insights in the degree in which resting HRV and sleep may be useful in future 
wearable-based resilience interventions that hope to limit the negative consequences 
of stress. The results of these studies are described in the upcoming chapters (2 to 6), 
which were all reported as they were presented in the academic journals that they 
were published in. Finally, the general discussion in chapter 7 discusses the overarching 
findings regarding the overall aim of this thesis, some methodological considerations 
and finally reflect on potential future directions of research on wearable-based resil-
ience modelling.
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ABSTRACT

The emergence of wearable sensor technology may provide opportunities for automat-
ed measurement of psychophysiological markers of mental and physical fitness, which 
can be used for personalized feedback. This study explores to what extent within-sub-
ject changes in resting Heart Rate Variability (HRV) during sleep predict the perceived 
mental and physical fitness of military personnel on the subsequent morning. Partici-
pants wore a Garmin wrist-worn wearable and filled in a short morning questionnaire 
on their perceived mental and physical fitness during a period of up to 46 days. A cus-
tom-built smartphone app was used to directly retrieve heart rate and accelerometer 
data from the wearable, on which open-source algorithms for sleep detection and 
artefact filtering were applied. A sample of 571 complete observations in 63 partici-
pants were analyzed using linear mixed models. Resting HRV during sleep was a small 
predictor of perceived physical fitness (marginal R2=.031), but not of mental fitness. The 
items on perceived mental and physical fitness were strongly correlated (r=.77). Based 
on the current findings, resting HRV during sleep appears to be more related to the 
physical component of perceived fitness than its mental component. Recommendations 
for future studies include improvements in the measurement of sleep and resting HRV, 
as well as further investigation of the potential impact of resting HRV as a buffer on 
stress-related outcomes.

Keywords: heart rate variability; sleep; resilience; ecological momentary assessment; 
wearables; military.
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INTRODUCTION

Occupational stress can lead to physical (1,2) and mental (3) health problems, decrease 
quality of life (4) and imposes a financial burden on society via absenteeism and produc-
tivity loss (5). Early recognition of the potential development of stress-related problems 
can be useful for personalized just-in-time interventions that may help alleviate or pre-
vent these personal and societal burdens of stress (6). Due to recent developments in 
wearable sensor technology, continuous and unobtrusive measurement of physiological 
and behavioral data that may be related to stress resilience, is becoming increasingly 
feasible (7,8). One of the challenges for current research on this topic is to explore and 
verify to what extent these novel sources of personal data can indeed be related to 
one’s ability to resiliently cope with stress.

Before hypothesizing how wearable-measured data may be related to resilience, it is 
important to understand how stress itself emerges. Stress is the outcome of a psycho-
logical process that is known as appraisal (9). When a person is faced with demands, the 
brain subconsciously assesses the perceived availability of resources to cope with the 
situation. When sufficient resources appear to be available, the demand is appraised as 
a challenge. When this is not the case, the demand is appraised as a threat – causing a 
stress response. Therefore, the subjective assessment of the availability of resources 
is what determines the stress response. This can be measured as the perceived fitness, 
which is defined as “the modifiable capacity to utilize resources and skills to flexibly 
adapt to challenges or advantages” (10). Since appraisal is a psychological process, it 
is not the person’s objective fitness-related characteristics that are directly assessed 
during appraisal, but the person’s perceived fitness. For instance, an objectively fit but 
insecure person may experience stress when confronted with a minor challenge that 
the person should easily be able to handle. Unfortunately, it is currently not possible to 
directly measure mental states like perceived fitness in an automated and unobtrusive 
way. However, if relevant physiological or behavioral data from wearables can be linked 
to it, it may be possible to use these measures as a proxy for perceived fitness in future 
studies and applications.

One metric that may be related to perceived fitness is Heart Rate Variability (HRV). HRV 
is a measure for the variation in the inter-beat-intervals (IBIs) between heartbeats that 
functions as a proxy for autonomous nervous system functioning (11). Throughout the 
day, HRV is continuously influenced by factors such as stress (12) and emotions (13), 
body posture (14), exercise (15) and intake of caffeine (16) or alcohol (17). HRV mea-
surements are therefore context-dependent and fluctuate throughout the day, but 
when measured in a similar resting state where confounders are minimized (e.g., during 
sleep or upon awakening), accurate measurement of resting HRV is possible, even with 
consumer-available wearables or the camera of a smartphone (18,19).

2
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Resting HRV has been consistently linked to diverse aspects of mental functioning. For 
instance, prior studies found that on a between-subject level, resting HRV is positively 
associated with cognitive flexibility (20), affective flexibility (21), emotion regulation 
(22,23) and resilience (24). Two recent studies also found that on a within-subject level, 
resting HRV buffered the positive associations between stress and negative affect (25), 
as well as between stress and both demands and mental exhaustion (26). These find-
ings indicate that having a high resting HRV generally reflects more optimal mental 
functioning and adaptability to environmental demands, which makes it a potential 
proxy for perceived fitness.

Besides being linked to these mental aspects that may be related to perceived fitness, 
resting HRV has shown to be associated with physical components of fitness as well. On 
a between-subject level, resting HRV is positively associated with cardiovascular fitness 
(27,28), and negatively associated with overuse injuries (29–31) and pain perception 
(32). Finally, resting HRV has also been linked to viral infections on a within-subject level 
(33). These associations are the basis for HRV guided training, in which daily resting HRV 
is being used in comparison to the personal baselines of athletes to determine their 
physiological recovery from prior physical or mental stress and adjust training plans 
when necessary (34,35). In this setting, the objective resting HRV data are often com-
bined with subjective questionnaire data in order to get a more complete view of the 
athlete’s current status. Since resting HRV has been linked to both mental and physical 
aspects of fitness, it is possible that its potential association with perceived fitness may 
also differ for the perceived mental and physical fitness.

Wearable-measured resting HRV has been linked to diverse aspects of mental and 
physical functioning. As such, it may also be linked to a person’s overall perception 
of fitness. From the perspective of appraisal theory, this is relevant, since a person’s 
overall perception of fitness can be considered a resource to deal with demands. When 
this resource is perceived to be lacking, the person may be more susceptible to expe-
rience demands as stressors, and develop more stress-related complaints as a results. 
Exploration of the degree in which within-subject differences in resting HRV are indeed 
associated with perceived fitness will benefit the current state of knowledge on how 
HRV relates to subjective mental and physical functioning. Furthermore, insights in this 
association may be useful for the development of tools that provide automated and 
personalized feedback on its users’ readiness to handle demands and cope with stress. 
Such tools may be useful in intervention programs that aim to prevent stress-related 
problems. These insights are therefore particularly relevant for high-risk professions 
such as military personnel, in which resting HRV has already been related to objective 
fitness and occupational performance (28). Therefore, this study aims to explore to what 
extent wearable-measured resting HRV during sleep predicts the perceived mental and 
physical fitness of military personnel on the subsequent morning. We hypothesize that 
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wearable-measured resting HRV during sleep predicts both the mental and physical 
aspects of perceived fitness on the subsequent morning.

METHODS

An observational study was performed based on within-subject nested daily observa-
tions. The study protocol was approved (case 2019-038) by the internal Research Ethics 
Committee of TNO (TC-nWMO) in the Netherlands. The Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) statement was used as a guideline 
for reporting (36).

Participants
A convenience sample of 73 employees of the Dutch military were recruited to partici-
pate and collect data for a period of up to 8 weeks. This group consisted of 43 marines 
in training and 30 staff members of the Dutch Defense Healthcare Organization. Both 
the recruitment and data collection of this study was performed in the summer of 2019 
at peacetime, in the Netherlands. Recruitment was facilitated by the Dutch military, 
but participation occurred on a voluntary basis and participants were free to stop at 
any time without adverse consequences. All participants gave explicit consent for the 
use of their (health) data.

Data collection
Descriptive data such as the age, gender and function of the participants were not 
collected out of privacy and security concerns related to the sensitive profession of 
the participants. Out of privacy and security concerns related to the military context 
of this study, it was not deemed acceptable to store the participants’ data on servers 
outside the jurisdiction of the Dutch government, which would have been the case 
during regular use of the Garmin wearables. As such, descriptive statistics could only 
be provided based on the daily measurements of the independent and dependent 
variables, and no subgroup analyses were performed.

Independent variable: heart rate variability during sleep
All participants wore a Garmin Tactix Charlie smartwatch which is described as a mul-
tisport GPS watch with additional tactical functionality (37). Therefore, a custom-built 
smartphone application was used that utilized the Garmin Health Standard Software 
Development Kit (SDK), which allows the application to collect data directly from the 
wearable device and process and store it on a self-hosted server (38). Using this ap-
proach, data on accelerometry and green-light photoplethysmography-based IBIs be-
tween heartbeats were available, based on which sleep episodes and the related resting 
HRV can be detected and calculated.

2
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Sleep detection was performed based on an open-source algorithm that detects sleep 
based on wrist movements (39), with three adjustments. First, the parameter that 
describes how long the user must lie still before that period is classified as ‘in bed’ 
was lowered from 30 minutes to 10 minutes. This was done because pilot tests of the 
applied algorithm showed that the original algorithm sometimes classified a full night 
sleep as separate sleep episodes when a participant was awake at night, which can be 
prevented by lowering this threshold. The second adjustment was done with the same 
goal, by adding a parameter that allowed participants to have a period of up to 10 
minutes of small movements during (restless) sleep, without being classified as awake 
and thus potentially splitting the sleep episode. Finally, an adjustment was made in how 
the start of the sleep episode was detected. Initially, the start of a sleep episode was 
estimated based on accelerometer data, as per the original algorithm. The start of the 
sleep episode was then adjusted to use the timestamp of the peak in the HRV during 
the first 30 minutes of that episode (based on the 90 second time window with the 
highest HRV) was then attributed as the actual start of the sleep episode. This was done 
because pilot tests showed that the original algorithm sometimes classified a period 
during which participants were lying still but not sleeping (e.g., reading on smartphone) 
as sleep, and prior research showed that HRV briefly peaks around the start of the sleep 
episode (40). Since this study compares the perceived mental and physical fitness of 
the participants during the morning to their resting physiology, the nocturnal HRV data 
was then related to the subsequent morning’s Ecological Momentary Assessment (EMA) 
questionnaire during statistical analysis. Finally, the Total Sleep Time (TST; the total 
duration of the sleep episode spent asleep) in hours and Resting Heart Rate (RHR; the 
average heart rate during sleep) were included as control variables.

The HRV was then calculated for each sleep episode. Since motion artefacts are common 
in real-life wearable-based measurements and can influence the accuracy of the HRV 
estimation, an artefact detection algorithm that has been used in prior research was 
used (18). This method consists of two steps. First, intervals are removed when they 
differ more than 75% from the previous one. Second, outliers are removed by including 
only intervals that are within less than 25% of the first quartile and within more than 
25% of the third quartile. Additionally, sleep episodes where valid IBIs were available 
for less than 64% of the duration of the sleep episodes were discarded. This was done 
because prior research has shown that the rMSSD can be validly determined without 
clinically significant change (a 5% change in mean absolute percent difference) when 
up to 36% of the IBIs are removed (41). This study also showed that frequency domain 
HRV parameters are much more impacted by missing data and thus less robust in this 
context than time domain parameters. Another study confirmed that of all time and 
frequency domain HRV measures, rMSSD is one of the two (alongside mean NN) most 
robust features (42). Therefore, the root Mean Square of the Successive Differences 
(rMSSD) in milliseconds was used as the primary HRV variable and calculated based on 
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the valid IBIs of the respective sleep episodes1. This metric was then logarithmically 
transformed (lnrMSSD) to improve its distribution for statistical modelling, which is a 
common procedure in HRV research (43).

Dependent variables: perceived mental and physical fitness
Participants filled in a brief EMA questionnaire in the morning that included two items 
on their perceived mental and physical fitness, each of which scored on a 11-point 
Numeric Rating Scale (NRS) ranging from 0 to 10. Perceived physical fitness was as-
sessed based on the item “I feel physically fit”, whereas perceived mental fitness was 
inquired via the item “I feel mentally fit”. These items were originally self-composed, 
but align well with items of the Acute Readiness Monitoring Scale (items 5 and 13) that 
has since then been validated for the use in military personnel (44). Finally, the partic-
ipants already were used to distinguish between mental and physical fitness based on 
their professional training and functioning. For these participants, perceived physical 
fitness is about feeling physically ready to perform (e.g., strength, endurance, mobility), 
whereas perceived mental fitness is related to feeling mentally (e.g., cognitively and 
emotionally) ready to perform.

Data analyses
All data-management and analyses were performed in RStudio (45) and R (46). Descrip-
tive statistics on the HRV, TST, as well as the perceived mental and physical fitness of the 
participants were calculated. Due to the difference in scales between HRV, TST and the 
EMA items, standardizing the data was necessary to optimize the comparability of the 
coefficients of the independent variables. Standardization based on the within-subject 
values was considered since the level 1 association between HRV and the EMA items is 
of primary interest (47), but standardization at the grand mean was finally preferred, 
as some participants collected a relatively low number of complete observations.

Two two-step hierarchical linear mixed-effects models for each of the EMA outcomes 
were created using the “lme4” package in R (48) to account for repeated measures 
within participants. All models were based on fixed effects (level 1 association between 
HRV and the EMA outcomes) and random slopes (the participants themselves were 
allowed to differ from each other in level 2). For each model, a control model was first 
created using only TST and RHR, followed by the full model that also included HRV. The 
marginal and conditional R2 of each model were then computed, which respectively 
represent the proportion of the variance that can be explained solely by the fixed ef-
fects (HRV, TST and RHR) and by the combination of the fixed and random effects (the 

1 Upon request during peer-review, the Standard Deviation of the NN intervals (SDNN) time domain HRV 

metric was also calculated and analyzed as an alternative to the rMSSD. SDNN during sleep was not 

found to be significantly associated with morning mental and physical fitness. For transparency, the 

findings of these additional alternative analyses are available in Appendix 1.
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participant). Differences in the marginal and conditional R2 between the control and full 
models were also calculated to assess (changes in) the goodness-of-fit of the models.

During statistical analysis, relatively large differences were found in the marginal 
and conditional R2 in each of the created models. To facilitate interpretation of these 
relatively large differences in the variance that was explained by the fixed and the 
combination of fixed random effects, three versions of the Coefficient of Variation 
(CV) of each variable were calculated to explore how the within-subject variance, the 
between-subject variance and the overall variance in the dataset compared to each 
other. The first version describes the average within-subject CV for each variable, and 
was determined by first calculating the within-subject CV based on the values of each 
participant (standard deviation divided by the mean) and then calculating the mean of 
those values. A CV of 0 was imputed for the (7) participants that had collected only one 
complete observation. The second version describes the between-subject CV for each 
variable, and was calculated by first determining the mean value for each participant 
and then calculating the CV of those values. The third version describes the overall CV 
for each variable, and consisted of the CV of the full dataset without accounting for 
within- or between-subject differences.

RESULTS

Of the 73 recruited participants, 63 collected at least one complete observation that 
included valid sleep, HRV and morning EMA data. The participation period per analyzed 
participant ranged from 1 to 57 days, with a median of 44 days. During these periods, 
the analyzed participants collected complete data on 1 to 46 days, with a median of 
15 days. A total of 571 complete observations were analyzed. Due to training-related 
circumstances, the marines in training could temporarily not use their smartphones 
and thus collect data. The descriptive statistics for and intercorrelations between the 
independent (HRV, TST and RHR) and dependent (EMA) items of the analyzed dataset 
are presented in table 1. A strong (r=.77; p<.001) correlation between perceived mental 
and physical fitness was found.

Analysis 1: perceived physical fitness
A two-step hierarchical linear mixed model for perceived physical fitness was created 
(table 2). After controlling for TST and RHR, resting HRV during sleep was a statistically 
significant (p=.005) predictor of perceived physical fitness on the subsequent morn-
ing. Based on this finding, participants reported a higher perceived physical fitness on 
mornings after a sleep episode during which they also had a relatively high resting HRV. 
RHR significantly (p=.03) predicted perceived physical fitness in the control model (step 
1), but not in the final model that also included HRV (step 2). Participants also tended 
(p=.10) to report a higher perceived physical fitness on mornings that followed a sleep 
episode with a relatively high TST. The explained variance of the fixed effects in the full 
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model that included HRV (step 2) increased with 1.2% to a total of 3.1% in comparison 
to the control only model that was based on TST and RHR (step 1). The combination of 
the fixed and random effects explained 57.7% of the variance in the control model and 
58.9% of the full model.

Table 1: Descriptive statistics for and intercorrelations between the daily measurements

Variable Mean (SD) Correlation

1 2 3 4

1. TST (hours) 6.22 (1.90) -

2. RHR (beats per minute) 61.80 (8.88) -.09 * -

3. lnrMSSD (milliseconds) 3.83 (0.40) -.03 -.64 *** -

4. Perceived physical fitness (0-10) 7.84 (1.37) .04 .03 .01 -

5. Perceived mental fitness (0-10) 8.11 (1.27) .05 .10 * -.08 . .77 ***

Note. N=63, n=571; *** p<.001, ** p<.01, * p<.05, . p<.1; TST: Total Sleep Time; RHR: Resting Heart 
Rate; lnrMSSD: logarithmically transformed root Mean Square of the Successive Differences, a 
measure for Heart Rate Variability (HRV).

Table 2: Hierarchical linear mixed model for perceived physical fitness

Independent variable Perceived physical fitness

Step 1 
β

Step 2 
β 

Intercept -0.053 -0.087

TST 0.051 0.052 .

RHR -0.101 * -0.066

HRV 0.124 *

Marginal R2 0.013 0.031

� Marginal R2 0.018

Conditional R2 0.577 0.589

� Conditional R2 0.012

Note. N=63, n=571; * p<.05, . p<.1; TST: Total Sleep Time; RHR: Resting Heart Rate; HRV: Heart 
Rate Variability.

Analysis 2: perceived mental fitness
Another two-step hierarchical linear mixed model on perceived mental fitness was 
created (table 3). After controlling for TST and RHR, resting HRV during sleep was not a 
statistically significant predictor of perceived mental fitness on the subsequent morning. 
TST was positively associated with perceived mental fitness (p=.04), as participants re-
ported a higher perceived mental fitness on mornings that followed a sleep episode with 

2
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a relatively high TST. Only 0.4% of the variance could be explained by the fixed effects 
in the full model, whereas 63.4% of the variance was explained by the combination of 
the fixed and random effects.

Table 3: Hierarchical linear mixed model for perceived mental fitness

Independent variable Perceived mental fitness

Step 1
β

Step 2
β

Intercept -0.052 -0.059

TST 0.057 * 0.058 *

RHR -0.009 -0.002

HRV 0.025

Marginal R2 0.004 0.004

� Marginal R2 0.000

Conditional R2 0.633 0.634

� Conditional R2 0.001

Note. N=63, n=571; * p<.05; TST: Total Sleep Time; RHR: Resting Heart Rate; HRV: Heart Rate 
Variability.

Within-subject, between-subject and overall coefficients of variation
The within-subject, between-subject and overall CV for each predictor and outcome 
variable are visualized in figure 1. Two relevant observations can be made based on 
this data. First, participants reported consistently high scores on perceived mental and 
physical fitness (mean: 7.84-8.11) with a limited tendency to also report low scores from 
time to time (SD: 1.27-1.37). A second observation is that for perceived mental and 
physical fitness and particularly resting HRV, a relatively low amount of within-subject 
variance was available in the data in comparison to the between-subject and overall 
variance. This combination of findings indicates that there was a relatively modest 
amount of within-subject variance available for both outcome measures as well as the 
central predictor, which may have contributed to the relatively low explained variance 
of the fixed effects (marginal R2) in relation to the explained variance of the combination 
of the fixed and random effects (conditional R2).
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Figure 1: The Coefficient of Variation (CV) for the within-subject (left bar), between-subject (middle 
bar) and grand mean (right bar) version of each variable of the daily measurements.

DISCUSSION

This study aimed to explore to what extent wearable-measured resting Heart Rate Vari-
ability (HRV) during sleep predicts the perceived mental and physical fitness of military 
personnel on the subsequent morning. After controlling for Total Sleep Time (TST), 
resting HRV during sleep was a small but statistically significant predictor of perceived 
physical fitness, but not of perceived mental fitness. The current study yielded several 
insights that are relevant for future research on this topic. We will first provide a more 
in-depth interpretation of the findings and how they relate to prior research, then 
address strengths and limitations of this study, and finally provide recommendations 
for practice and future research.

Interpretation of the results
Wearable-measured resting HRV during sleep was a statistically significant positive 
predictor of perceived physical fitness on the subsequent morning. Although no prior 
studies utilizing a within-subject design to assess these relationships were identified, 
these results are in line with prior research that showed that between-subject differ-
ences in resting HRV are positively associated with cardiovascular fitness (27,28) and 
negatively associated with overuse injuries (29–31) and pain perception (32). However, 
resting HRV explained only a small portion of the variance in perceived physical fitness 
(3.1% after controlling for TST and RHR).

2
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Unlike hypothesized, wearable-measured resting HRV during sleep did not predict 
perceived mental fitness on the subsequent morning. To our knowledge, no prior 
studies have assessed the direct association between within-subject differences in 
resting HRV during sleep and perceived mental fitness on the subsequent morning, 
but between-subject differences in resting HRV have been positively associated with 
emotion regulation (22,23) and resilience (24,49). However, within-subject differences 
in resting HRV were recently found to buffer against the associations between stress 
and negative affect (25), as well as between demands and stress or stress and mental 
exhaustion (26). It is therefore possible that despite not being directly associated to 
perceived mental fitness in the current study, resting HRV could play a relevant role as 
a (psycho)physiological resource during appraisal and/or emotion regulation regardless.

In the current study, perceived mental and physical fitness were assessed via two items 
in a short EMA questionnaire and therefore represent the participant’s subjectively 
experienced mental and physical fitness rather than the underlying objective capaci-
ties. This, combined with the finding that the items on perceived mental and physical 
fitness were strongly correlated (r=.77), means that the found association between 
resting HRV and perceived physical fitness is reflective of a psychological state. Since 
psychological states can influence the perception of bodily sensations such as pain and 
vice versa (50), the potential influence of the items on perceived mental and physical 
fitness may be bidirectional. Although both items can therefore be seen as different 
components of the perceived overall fitness that is assessed as a psychophysiological 
resource during appraisal, the current results suggest that resting HRV during sleep 
may be more related to the physical component of perceived fitness rather than the 
perceived mental component.

The comparison of the CVs (figure 1) showed that there was a relatively low amount of 
within-subject variance in the two perceived fitness measures as well as the central pre-
dictor HRV in comparison to the between-subject and overall variance. Several possible 
explanations for this can be given. For instance, the participants collected data during a 
relatively short period (1-57 days: median 44 days). As a result, there were a relatively 
modest number of complete observations per participant that could be analyzed (1-46 
observations: median 15 observations). Since a lack of relevant variance (e.g., floor or 
ceiling effects) can contribute to false negative conclusions (51), it is possible that this 
may have contributed to a potential underestimation of the strength of the associations 
and thus the low explained within-subject variance (marginal R2).

Finally, the results showed that RHR had a negative correlation (r=-.64; table 1) with 
resting HRV and similar associations with mental and physical fitness. Neither RHR 
were related to mental fitness, but both RHR (table 3, step 1) and resting HRV (table 
3, step 2) were linked to physical fitness. However, physical fitness was less strongly 
associated with RHR than with resting HRV, which was the only significant predictor in 
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the full model where both were included. This observation aligns with that of a recent 
large-scale study which showed that RHR and resting HRV have similar associations to 
stress-related measures and concluded that resting HRV is a more sensitive but not 
specific marker of stress (52).

Strengths and limitations
A strength of this study is that it was based on data that was collected in a real-life 
setting, optimizing the generalizability of the findings. Furthermore, by utilizing an open-
source sleep detection algorithm and a publicly available IBI artefact filtering method, 
the methods were transparent and reproducible. For instance, the used sleep detection 
algorithm and IBI artefact filtering method could in future research or applications be 
combined with hardware of another manufacturer.

Despite these advantages, a potential downside of using a novel open-source sleep 
detection algorithm is that it may be less accurate than algorithms of commercial wear-
able manufacturers that have more resources available for research and development. 
In the current study, the measurement of resting HRV during sleep directly depends 
on the respective sleep detection algorithm to ensure that the collected inter-beat-in-
terval data is measured within the desired context. Potential inaccuracies in the sleep 
detection algorithm may therefore result in heart rate data of awake periods being 
included in the calculation of the resting HRV. Since motion artefacts are more likely 
to be present during awake periods, the accuracy of the HRV measurement may be 
indirectly affected by it. Potential inaccuracy in the detection of sleep and measure-
ment of the related resting HRV may therefore have added error variance to the data, 
potentially leading to an underestimation of the strength of the associations that were 
tested. Another limitation of the current study was that a convenience sample was 
used where no data on the participants’ age, gender, function or reasons for missing 
data or drop-outs could be logged due to privacy and security concerns related to the 
profession of this military personnel. Since this study primarily focused on short-term, 
within-subject associations, this limitation did not impact the accuracy or relevance 
of the current results. However, as a result, no subgroup analyses could be performed 
to assess potential differences in the investigated associations among participants of 
different ages, gender of function groups. This also impacts the generalizability of the 
current findings, as it limits potential extrapolation to similar populations.

Recommendations for practice
This study presented relatively modest findings on associations between sleep, resting 
HRV and perceived mental and physical fitness. Although the found associations where 
relatively modest, the insights gained from this exploration using novel methods can 
be used to guide future use in future research and practice and thus provide a relevant 
contribution to the broader purpose of this body of knowledge; to eventually provide 
individuals with relevant and timely feedback on their readiness to handle demands 

2



589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries
Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023 PDF page: 44PDF page: 44PDF page: 44PDF page: 44

44 CHAPTER 2

and cope with stress. This segment will therefore first reflect on how the current find-
ings should be interpreted for practice, whereas the next segment will describe more 
detailed recommendations for future studies.

Wearable-measured resting HRV during sleep was positively associated with perceived 
physical fitness in the current study, but explained only a small portion of its variance 
(3.1% after controlling for TST and RHR). Resting HRV during sleep should therefore not 
be seen as a potential replacement of perceived physical fitness, but as a complement 
to it. Prior studies showed that utilizing resting HRV measurements to guide train-
ing-related decision making can lead to positive outcomes in comparison to predefined 
training (34,35). Therefore, resting HRV during sleep may be useful as a complement 
to the perceived physical fitness to guide decision-making on the physical readiness of 
the respective individual on the following day. Within this context, a resting HRV that 
is relatively high for the individual’s own standards can be seen as a favorable sign of 
physical fitness, whereas a low resting HRV would reflect the opposite.

Based on the current results, resting HRV during sleep does not appear to be direct-
ly associated to the perceived mental fitness. However, recent studies showed that 
waking up with a relatively favorable (within-subject) resting HRV appears to buffer 
against the negative impact of demands and stress (25,26). It is therefore possible 
that resting HRV has no or a limited direct association to perceived mental fitness, but 
does function as a psychophysiological resource that allows the individual to flexibly 
adapt to challenges and thus as a component of the underlying mental fitness itself. 
Future research is needed to better understand the potential role of resting HRV in this 
process of resilience.

Recommendations for future studies
Several recommendations for future studies on improving the accuracy of the sleep 
and related resting HRV measures, as well as how to assess the potential role of resting 
HRV as a measure of (perceived) fitness. The capacity of wearable technology to detect 
sleep affects the accuracy of the resting HRV measurements that are automatically 
collected within those periods. Three potentially promising approaches to measure 
resting HRV in a daily-life setting using consumer wearables can be considered by future 
studies. First, contributing to the development of open-source sleep detection algo-
rithms and using more recent and optimized iterations of them will result in optimally 
transparent and reproducible methods (53). Another approach for studies in which full 
custody of the collected data is required is to utilize the sleep algorithms of the used 
wearable devices itself and load the aggregated data of the full sleep episode directly 
from the wearable. For the present study, only accelerometer and inter-beat-interval 
data were available, but the latest versions of the Garmin Health SDK now also allow 
the extraction of the sleep data as classified by Garmin’s sleep algorithm (38), of which 
the validity has been studied (54–56). Finally, studies in domains with more lenient 
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data storage requirements can also consider using consumer-available wearables that 
have been directly validated to accurately measure the resting HRV during sleep, such 
as the Oura ring (19,57,58).

Besides optimizing the sleep and resting HRV measurement of wearables, future studies 
can consider taking a different approach in determining how HRV may be associated 
with (perceived) mental or physical fitness. Two recent studies showed that within-sub-
ject differences in resting HRV had a moderating effect on the associations between 
stress and negative affect (25), as well as on demands and stress and stress and mental 
exhaustion (26). This is consistent with the neurovisceral integration model, which con-
siders (vagally mediated) resting HRV itself to be an index of relatively optimal nervous 
system functioning to support adaptability to environmental demands (59,60). There-
fore, it is possible that wearable-measured resting HRV is not (strongly) correlated with 
perceived physical or mental fitness as was found in this study, but does directly act as 
a psychophysiological resource during the processes of appraisal or emotion regulation 
and thus as a relevant but perhaps subconscious component of mental fitness. Future 
studies are therefore recommended to further explore this potentially direct role of 
resting HRV as a psychophysiological resource on fitness or similar resilience-related 
outcomes on a within-subject level. Furthermore, the present study and discussed 
recent studies primarily assess within-day associations of resting HRV. Although this 
approach is important to better understand the short-term relationship of differences 
in resting HRV with these outcomes, studies assessing longitudinal relationships are 
also needed to explore the potential impact of within-subject trends in resting HRV on 
a larger timeframe.

Finally, future research could further explore the mechanisms that were proposed in 
this article. For instance, by assessing how perceived measures of mental and physical 
fitness relate to objective observations of fitness, as well as general health and function-
ing, and if it can be improved through training. Although the short EMA-questionnaires 
that were used in this study are likely preferable for longer and more intensive (daily) 
data collection, future studies with a different design could also consider using more 
detailed questionnaires, for instance (a subscale of) the recently introduced and vali-
dated Acute Readiness Monitoring Scale that also specifically differentiates between 
mental and physical readiness (44). Future studies in target populations with less priva-
cy-related limitations should also include the analysis of whether the strength of these 
associations differs between individuals, for instance based on personal characteristics 
(e.g., age, gender, function-group).

2
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APPENDIX 1

Table 1: Hierarchical linear mixed model for perceived physical fitness

Independent variable Perceived physical fitness

Step 1
β

Step 2
β

Intercept -0.053 -0.070

TST 0.051 0.039

RHR -0.101 * -0.105 *

SDNN 0.066

Marginal R2 0.013 0.023

� Marginal R2 0.019

Conditional R2 0.577 0.580

� Conditional R2 0.011

Note. N=63, n=571; * p<.05; TST: Total Sleep Time; RHR: Resting Heart Rate; SDNN: Standard 
Deviation of the NN intervals, a measure for Heart Rate Variability (HRV).

Table 2: Hierarchical linear mixed model for perceived mental fitness

Independent variable Perceived mental fitness

Step 1
β

Step 2
β

Intercept -0.052 -0.061

TST 0.057 * 0.051 .

RHR -0.009 -0.012

SDNN 0.035

Marginal R2 0.004 0.005

� Marginal R2 0.001

Conditional R2 0.633 0.632

� Conditional R2 -0.001

Note. N=63, n=571; * p<.05, . p<.1; TST: Total Sleep Time; RHR: Resting Heart Rate; SDNN: Standard 
Deviation of the NN intervals, a measure for Heart Rate Variability (HRV).
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ABSTRACT

Occupational stress can cause health problems, productivity loss or absenteeism. 
Resilience interventions that help employees positively adapt to adversity can help 
prevent the negative consequences of occupational stress. Due to advances in sensor 
technology and smartphone applications, relatively unobtrusive self-monitoring of re-
silience-related outcomes is possible. With models that can recognize intra-individual 
changes in these outcomes and relate them to causal factors within the employee’s 
context, an automated resilience intervention that gives personalized, just-in-time feed-
back can be developed. This paper presents the conceptual framework and methods 
behind the WearMe project, which aims to develop such models. A cyclical conceptual 
framework based on existing theories of stress and resilience is presented as the basis 
for the WearMe project. The operationalization of the concepts and the daily mea-
surement cycle are described, including the use of wearable sensor technology (e.g., 
sleep tracking and heart rate variability measurements) and Ecological Momentary 
Assessment (mobile app). Analyses target the development of within-subject (n=1) 
and between-subjects models and include repeated measures correlation, multilevel 
modelling, time series analysis and Bayesian network statistics. Future work will focus 
on further developing these models and eventually explore the effectiveness of the 
envisioned personalized resilience system.

Keywords: occupational stress; personalized ehealth; sensors; wearables; virtual coach-
ing.
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INTRODUCTION

The Wearables and app-based resilience Modelling in employees (WearMe) project 
focuses on the mental resilience of employees with a stressful occupation (1). Occupa-
tional stress can cause health problems, such as musculoskeletal disease, cardiovascular 
disease, depression and burnout (2). Consequently, it can also lead to financial burdens 
due to treatment costs, productivity loss and absenteeism (3). The cumulative wear 
and tear on bodily systems caused by stress is particularly detrimental for health and 
well-being (4); this so-called ‘allostatic load’ increases the brain’s sensitivity to appraise 
stimuli as threats and reduces resources to cope, which can result in a loss spiral (5).

Resilience can be defined as the process of positively adapting to adverse events (6). 
It entails the use of individual (e.g., personality) and contextual (e.g., social support) 
resources to cope with adversity (7). By utilizing these resources, resilient individuals are 
able to recover from the negative impact of stress relatively quickly and thus decrease 
their risk of negative long-term consequences.

Companies and institutions may offer resilience interventions to their employees to 
promote their health and employability and prevent stress-related problems. These 
interventions often target a broad population which unfortunately disregards the vari-
ability between employees. More personalized approaches might monitor for early 
signs of stress-related outcomes, link these to causal factors in the employee’s own 
context, and provide personalized advice to sustain relevant resources that may prevent 
the aforementioned loss spiral. Due to advances in sensor technology and smartphone 
applications, relatively unobtrusive self-monitoring of changes in resilience related out-
comes is increasingly possible (8). While these advances open up the possibility of 
personalized monitoring in resilience interventions, models are needed to recognize 
intra-individual changes in these outcomes and relate these to causal factors and future 
consequences; this would allow for the opportunity to create automated resilience 
interventions that give personalized, just-in-time feedback, for employees to utilize in 
workplace applications.

In this paper, we present the conceptual framework and the study protocol of the on-
going WearMe project. After introducing the rationale behind the WearMe project in 
Section I, Section II describes a cyclical conceptual framework that is based on existing 
theories on stress and resilience. This framework represents the concepts and interre-
lations between concepts that we predict are necessary to model employee resilience. 
In Section III, we elaborate on how these concepts are operationalized in the WearMe 
Project, including the use of consumer-available wearables and an Ecological Momen-
tary Assessment (EMA) app. Afterwards, we describe in Section IV the methods of the 
first WearMe study. Finally, Section V discusses possible directions for future work that 
can help develop predictive employee resilience models and personalized interventions.

3
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Figure 1: Conceptual framework for the WearMe study.

CONCEPTUAL FRAMEWORK

The conceptual framework of the WearMe project is presented in Figure 1. It illustrates 
our hypotheses on how the accumulation of the negative consequences of stress has 
a cyclical nature and how it can contribute to a loss spiral. This framework is based on 
the Transactional Model of Stress and Coping (9), the Job Demands-Resources Model of 
Burnout (10), the Effort-Recovery Model (11) and the Conservation of Resources Theory 
(5).

Stress accumulates when (job) demands, such as time pressure or physical workload, 
are appraised as threats due to inefficient available resources to adaptively cope with 
them (9). Afterwards, an individual’s need for recovery, characterized by feelings of 
exhaustion and reduced vigor to undertake new activities, depends on the individual’s 
ability to utilize the available resources to adaptively cope with the demands (9,10). A 
high need for recovery (i.e., little vigor to undertake activities), has a negative impact 
on an individual’s resources to appraise and cope with new demands – unless there 
is sufficient recovery to alleviate this effect (11). Aside from causing a perceived need 
for recovery, stress can also decrease sleep quality (12) and psychological detachment 
(13), which are aspects of recovery (14).

This framework’s cyclical nature is supported by the Conservation of Resources theory 
(5), which states that initial loss of resources increases one’s vulnerability to stress. 
Since additional resources are necessary to battle stress, this may lead to a depletion 
of resources or a loss spiral.

OPERATIONALIZATION

Based on the conceptual framework described above, we developed a measurement 
cycle to operationalize concepts using consumer-available wearables and an EMA smart-
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phone application. All concepts are measured daily except adaptive coping—due to its 
highly context-specific nature which makes it difficult to quantify. In this section, we 
will first briefly present our daily measurement cycle. Following this, we will describe 
each concept and its operationalization.

The presented conceptual framework is not bounded by a specific timeframe. Howev-
er, since the WearMe study particularly aims to investigate day-to-day and multi-day 
trends, we operationalized the concepts in a daily measurement cycle (Figure 2). For 
the daily measures, the WearMe study protocol utilizes: (i) a wrist-worn tracker for 
unobtrusive, continuous measurements throughout the day and night, (ii) a Bluetooth 
chest strap and a smartphone application for a physiological measurement taken upon 
awakening and (iii) a smartphone application for EMA questionnaires taken upon awak-
ening and before bedtime.

Figure 2: Measurement cycle of the WearMe study.

A. Demands
Demands refer to the physical, social or organizational aspects that require sustained 
physical or mental effort and are therefore associated with certain physiological costs 
(15). Participants’ perceived daily demands are scored with the evening EMA question-

3
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naire and is based on the self-composed diary question “How demanding was your 
day?”; this is scored on an 11-point Numeric Rating Scale (NRS) that ranges from 0 (“Not 
at all”) to 10 (“Extremely”).

B. Stress
Participants’ perceived total daily stress is scored in the evening EMA questionnaire 
with a validated single-item scale (16): “How much stress did you perceive today?”. The 
question was rephrased to be applicable for daily use and the NRS that ranged from 1 
(“No stress”) to 6 (“Extreme stress”) was adjusted to range from 0-10 for consistency.

C. Need for recovery
Need for recovery can be defined as a conscious emotional state and is connected with 
a temporal reluctance to continue with the present demands or to accept new demands; 
it is related to the depletion of resources following effort to meet certain demands (17). 
The concept is characterized by a combination of perceiving high fatigue, as well as low 
vigor to undertake new activities. Participants’ perceived fatigue is questioned in both 
the morning and evening EMA questionnaires to allow the calculation of within-day 
changes, while mental exhaustion is only measured during the evening. For fatigue, a 
validated single-item scale (“How fatigued do you currently feel?”) is used (18). Item 3 
of the Need For Recovery Scale is used to inquire mental exhaustion (19): “I felt men-
tally exhausted as a result of my activities”. All items are scored on an 11-point NRS 
ranging from 0 (“Not at all” for fatigue and “Strongly disagree” for exhaustion) to 10 
(“Extremely” for fatigue and “Strongly agree” for exhaustion).

D. Resources
According to the Job Demands-Resources model, job resources refer to physical, psycho-
logical, social or organizational aspects of a job that: (i) are functional in achieving work 
goals, (ii) reduce job demands and the associated physiological and psychological costs 
and (iii) stimulate personal growth, learning and development (10). The resources in 
our conceptual framework can be seen as personal resources that enable an individual 
to better deal with stress. These resources include vigor, fitness, general self-efficacy 
(GSE), happiness, work engagement, and Heart Rate Variability (HRV). Items for vigor, 
fitness, general self-efficacy (GSE) and happiness are included in both the morning and 
evening EMA questionnaires, and are all scored on an 11-point NRS ranging from 0 (“Not 
at all”) to 10 (“Extremely”). Below, the measured resources are described in more detail.

Vigor can be characterized by high levels of energy and mental resilience, the willing-
ness to invest effort in one’s work and persistence even in the face of difficulties (20). 
Having high perceived vigor can therefore be seen as an individual resource during 
the appraisal of and coping with high demands. The item for vigor (measured in the 
morning and the evening) is based on an item of the vigor subscale of the Utrecht Work 
Engagement Scale (UWES) and rephrased for daily use in a neutral setting (“Do you feel 
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like undertaking activities?”) (21). Additionally, one item from the dedication subscale 
of the UWES is only included in the evening EMA questionnaire (“Today, my activities 
were full of meaning and purpose.”) (21).

Fitness is also an individual resource for the appraisal of and coping with high demands; 
it is scored with a self-composed item that is similarly phrased to the fatigue item: 
“How fit do you currently feel?”. The item on fitness is included due to its more physical 
characteristics in comparison to the other items.

GSE is the belief in one’s competence to tackle novel tasks and cope with adversity in 
a broad range of stressful or challenging encounters (22). High GSE is associated with 
high optimism, self-regulation and self-esteem, and low depression and anxiety (22); it 
can therefore be seen as an individual resource that is addressed during the appraisal 
of a stressor. The EMA item for GSE is based on the item with the highest factor loading 
(item 6) of the Generalized Self-Efficacy Scale and is rephrased for daily use: “Do you 
feel capable of solving problems today?”. During the evening, “today” is replaced with 
“tomorrow”.

Happiness is a state of well-being and contentment, characterized by frequent positive 
affect, high life satisfaction and infrequent negative affect (23). Happiness has an inverse 
correlation with stress (24) and contributes to the psychological capital (resources) 
that may be key in better understanding the variation in perceived symptoms of stress 
(25). Positive emotions like happiness can also predict increases in (trait) resilience 
and life satisfaction (26). Participants’ perceived happiness is scored using a validated 
single-item scale (“Do you feel happy?”) (27).

HRV refers to the variation in the inter-beat-intervals between heartbeats and is consid-
ered a proxy for autonomous nervous system functioning (28). While HRV mostly serves 
as a parameter that illustrates physiological changes during acute stress, the resting HRV 
can remain decreased during and after acute stress (29,30). In addition, having a lower 
resting HRV has been associated with increased sensitivity for stress (31), decreased 
emotion-regulation (32), decreased physical performance (33) and an increased risk of 
long-term physical or mental health problems (34). In the WearMe study, resting HRV is 
therefore considered to be a potential indicator for the accumulation of stress, as well 
as an individual resource used in the appraisal of and coping with upcoming demands. 
Participants measure their resting HRV in the morning after waking up and before 
getting out of bed for 2 minutes in a supine position using the Elite HRV smartphone 
application (35) and a Polar H7 chest strap (36). This aligns with existing standards that 
suggest a duration of 1-5 minutes under consistent circumstances with as little influ-
ence of circadian rhythms, meals, smoking, posture changes and significant mental 
or physical exertion (37,38). We chose not to apply guided breathing, as respiratory 
rate influences HRV (39,40), and we intend to measure the natural resting state of the 
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participant. The exported inter-beat-interval data are analyzed using Kubios Premium 
software, version 3.1.0 (41). Our analyses will focus on a time-domain outcome called 
Root Mean Square of the Successive Differences (RMSSD).

E. Recovery
Recovery refers to the recuperation from potential load effects after the exposure to 
certain demands (11). The concept of recovery consists of two components that are 
known to limit the spillover of a perceived need for recovery from the previous day to 
the next day: (i) sleep and (ii) being able to psychologically detach from work during 
leisure time (42). Since stress is known to have a negative effect on sleep quality (12) 
and psychological detachment (13), deteriorated sleep and psychological detachment 
are also considered to be potential indicators for the accumulation of the negative 
consequences of stress. Sleep deprivation contributes to the accumulation of allostatic 
load (43,44), but also attenuates the relationship between negative affect experienced 
at work and negative affect in the next morning (42). Sleep is therefore an important 
component in the recovery from (work-related) stress and helps limit the potential 
loss of resources.

Detachment is measured with an item from the psychological detachment subscale of 
the Recovery Experience Questionnaire that had the highest average correlation to the 
other three included subscale questions (14): “During my off-job time, I distanced myself 
from my work”. Additionally, the perceived availability of time to recover throughout 
the day is measured based on an item used in a prior study (17): “Today I had enough 
time to relax and recover from work”. Both items are included in the evening EMA 
questionnaire and scored on an 11-point NRS ranging from 0 (“Strongly disagree”) to 
10 (“Strongly agree”).

The Fitbit Charge 2 wrist-worn tracker is used to objectively measure the total sleep 
time and sleep efficiency (45). Additionally, the subjective sleep quality is measured in 
the morning EMA questionnaire with a validated single-item (46): “How was the quality 
of your sleep?” and is scored on an 11-point NRS ranging from 0 (“Worst possible sleep”) 
to 10 (“Best possible sleep”).

Other
In order to account for potentially confounding effects and explain relevant variance, 
two other variables are included in the daily measures: (i) alcohol intake and (ii) physical 
activity. Alcohol intake is associated with a lower resting HRV (47), but is sometimes 
also used as a strategy to cope with increased stress (48). Alcohol intake is therefore 
measured during the morning EMA questionnaire by asking for the number of alcoholic 
beverages that the participant consumed during the previous day. While the absolute 
amount of alcohol in different types of beverages may deviate, asking for the number of 
alcoholic beverages consumed is both convenient for daily inquiry and consistent with 
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the widely used AUDIT-C questionnaire (49). Finally, physical activity (steps, sedentary 
minutes, minutes of moderate-to-vigorous physical activity) is measured throughout the 
day using the Fitbit Charge 2 (50). Physical activity levels are associated with decreased 
stress reactivity (51), a higher resting HRV (52) and improved sleep (53); therefore, 
physical is a potential confounder.

PRESENT STUDY

The first WearMe study aims to test the usability of the described measurement proto-
col, as well as to gather a first wave of data to be able to test the hypothesized relations 
in the conceptual model. Additionally, the development of both intra-individual and 
population models will be explored. The study protocol was approved by the ethical 
committee of the Hanze University of Applied Sciences Groningen (heac.2018.008).

Population
For the first WearMe study, students who are starting their first full-time internship 
for Social Work and Applied Psychology are invited to participate. We anticipate this 
population to be at risk of experiencing stress due to the potentially stressful nature 
of these disciplines and the fact that these are the first full-time internships in the 
participants’ curriculum. The students need to own an Android or iOS smartphone 
in order to participate. For recruitment, a message is placed on the school’s digital 
learning environment and the students who are scheduled for their first internships 
receive an e-mail. Participation in the study is voluntary. In order to facilitate recruit-
ment and optimize adherence during participation, participants who collect at least 
80% valid data points are rewarded with a €25 gift voucher. Additionally, participants 
who collect enough data to create intra-individual models receive individual feedback. 
Since this first WearMe study is exploring a new topic, it was impossible to perform 
an accurate power calculation based on the considered data-analysis methods. Due 
to the availability of materials, a maximum of 15 participants can be simultaneously 
recruited. Therefore, the recruitment and data-collection processes are divided over 
two waves. The first recruitment wave started in September 2018, whereas the second 
waive started in September 2019.

Data collection
The total data collection period is 15 weeks, targeting a maximum of 105 full days 
of data per participant. The operationalization of the conceptual model and items 
included in the EMA questionnaires are described in the Operationalization section. 
The participants use a Polar H7 Bluetooth chest strap in combination with the Elite 
HRV smartphone application to measure their resting HRV upon awakening and used 
a Fitbit Charge 2 wrist-worn tracker to continuously measure their physical activity and 
sleep. In order to collect the subjective EMA questionnaire data, TNO’s self-developed 
“How am I?” smartphone application is used. Participants are instructed to fill in their 
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morning EMA questionnaire (7 items) after measuring their resting HRV and fill in their 
evening EMA questionnaire (12 items) before going to bed. The morning question-
naire is available between 06:00 and 15:00 and the evening questionnaire is available 
between 21:00 and 06:00 in order to offer participants a broad window to fill in the 
questionnaires (e.g., when potentially staying up late or sleeping in during weekends). 
Additionally, participants receive smartphone notifications as reminders at 06:00 for the 
morning questionnaires and at 21:00 for the evening questionnaires. Where available, 
validated Dutch versions of the questionnaires described in Section III are used. Items 
based on questionnaires that were only available in English were translated into Dutch. 
For validation of these items, backwards translation by a native English speaker was 
performed. No differences that significantly changed the meaning of the items were 
found during this process.

The daily measurements described in Section II consisted of concepts that can vary 
on a day-to-day basis. However, some of the concepts of the conceptual framework 
included aspects that are more trait-like (e.g., personality traits as potential resources 
or preferred coping strategies) or could be expected to vary over a longer timeframe 
(e.g., burnout, depression). Therefore, several full questionnaires are administered to 
benefit the development of population models using between-subject analyses: a ques-
tionnaire on personality traits (the Big Five Inventory; BFI) (54), coping strategies (the 
COPE-Easy) (55), burnout (the Oldenburg Burnout Inventory; OLBI) (56), work engage-
ment (the Utrecht Work Engagement Scale; UWES) (20) and symptoms of somatization, 
distress, depression and anxiety (the Four-Dimensional Symptom Questionnaire; 4DSQ) 
(57). The questionnaires on burnout, work engagement and symptoms of somatization, 
distress, depression and anxiety are also administered after 5, 10 and 15 weeks. Finally, 
after 15 weeks, participants fill out a resources questionnaire to retrospectively assess 
the perceived personal and environmental resources throughout the internships, since 
participants are not able to accurately assess the environmental resources prior to or at 
the beginning of their internship. This resources questionnaire was inspired by resourc-
es questionnaires that were developed for other domain-specific work environments 
(58,59) and adjusted to better align with the participants’ internship contexts. Addition-
ally, the distributed questionnaires consisted of items that were derived from existing 
validated questionnaires such as the Life Orientation Test (60), the Connor Davidson 
Resilience Scale (61) and the Dispositional Resilience Scale (62). Figure 3 illustrates the 
timeline for the measurements in the first WearMe study.
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Figure 3: The WearMe study timeline.

Data analysis
Several approaches to data-analysis will be explored. First, the hypotheses formulated 
in the conceptual framework that were introduced in Section II will be tested using 
within-day relations and, if possible, on multi-day trends. The repeated measures cor-
relation technique as described by Bakdash and Marusich (63) will be used to analyze 
the correlation between two variables while taking into account that data points are 
repeated measures within participants. Random intercept, fixed slopes multilevel mod-
elling will be applied when two or more variables within a specific concept or potential 
confounders are included to predict the variance within a single dependent variable. 
Both methods allow the scores between participants to differ (random intercepts), but 
explore a fixed effect between the variables (fixed slopes). We anticipate that there 
will be insufficient data available to explore whether the effect between the included 
variables differ between participants (random slopes).

Second, we will explore the development of intra-individual (n=1) models for within-day 
and, if possible, multiday trends using the data of the participants with the highest 
adherence. Aside from the aforementioned techniques, the use of time series analysis 
techniques and Bayesian statistics will be considered for the multi-day trend analyses.

Finally, the data of the full questionnaires will be used to explore (i) if trends in relevant 
daily outcomes like sleep, resting HRV and the presence of resources and need for 
recovery can be predicted based on personality traits or preferred coping strategies 
measured at baseline, (ii) if these trends are also predictive for changes in burnout, work 
engagement and symptoms questionnaires and (iii) if there is an association between 
the daily measured state-related variables (e.g., individual resources and perceived 
stress) and the trait-variables measured at baseline (the personality traits and preferred 
coping strategies).

3
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CONCLUSION AND FUTURE WORK

This article presented the conceptual framework for the WearMe project and a detailed 
description of the operationalization of these concepts in the first (ongoing) WearMe 
study. Data collected with a wrist-worn wearable tracker, a Bluetooth chest-strap and a 
smartphone EMA questionnaire app on a daily will be used to explore if the hypotheses 
that are presented in the conceptual framework are indeed supported.

When the results affirm that tracking sleep and resting HRV with the use of consumer 
wearables is feasible and can be useful in resilience modelling, the current models will 
be expanded. Future studies will therefore focus on the development of predictive 
models that allow early detection of stress-related symptoms. In addition, expanding 
the current model by using additional consumer-available wearables or apps that can 
unobtrusively collect potentially relevant data (e.g., GPS location, calendar events) may 
be explored. When our conceptual framework is validated, a more inductive approach 
to data-analysis may also be explored (e.g., using machine learning) to increase the ex-
plained variance of the individual models. If successful, these models can be implement-
ed in applications that create personalized feedback on how to cope with demands or 
limit the loss of relevant resources, which may help employees optimize their resilience.

Furthermore, it is likely that the development of within-subject models requires a 
long period of data collection. This means that in the envisioned automated resilience 
system, an individual will have to collect data for a relatively long period before receiv-
ing personalized feedback. The creation of a classification algorithm and the identifica-
tion of subgroups with similar outcome trajectories using between-subject analyses of 
baseline and first-week data in a larger sample might allow for the development of a 
system that combines both methods (64). In such a system, participants could receive 
semi-personalized feedback early on based on their subgroup classification and receive 
fully personalized feedback when enough within-subject data are available. Such a 
method would be a compromise between deductive methods that test assumptions 
based on existing knowledge and inductive methods that allow specific intra-individual 
predictors to be included in even more personalized feedback.
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CHAPTER 4

Moderation of the 
stressor-strain process 
in interns by heart rate 
variability measured 
with a wearable and 
smartphone app: within-
subject design using 
continuous monitoring
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ABSTRACT

Background: The emergence of smartphones and wearable sensor technologies en-
ables easy and unobtrusive monitoring of physiological and psychological data related 
to an individual’s resilience. Heart rate variability (HRV) is a promising biomarker for 
resilience based on between-subject population studies, but observational studies that 
apply a within-subject design and use wearable sensors in order to observe HRV in a 
naturalistic real-life context are needed.

Objective: This study aims to explore whether resting HRV and total sleep time (TST) 
are indicative and predictive of the within-day accumulation of the negative conse-
quences of stress and mental exhaustion. The tested hypotheses are that demands 
are positively associated with stress and resting HRV buffers against this association, 
stress is positively associated with mental exhaustion and resting HRV buffers against 
this association, stress negatively impacts subsequent-night TST, and previous-evening 
mental exhaustion negatively impacts resting HRV, while previous-night TST buffers 
against this association.

Methods: In total, 26 interns used consumer-available wearables (Fitbit Charge 2 and 
Polar H7), a consumer-available smartphone app (Elite HRV), and an ecological momen-
tary assessment smartphone app to collect resilience-related data on resting HRV, TST, 
and perceived demands, stress, and mental exhaustion on a daily basis for 15 weeks.

Results: Multiple linear regression analysis of within-subject standardized data collected 
on 2379 unique person-days showed that having a high resting HRV buffered against 
the positive association between demands and stress (hypothesis 1) and between stress 
and mental exhaustion (hypothesis 2). Stress did not affect TST (hypothesis 3). Finally, 
mental exhaustion negatively predicted resting HRV in the subsequent morning but 
TST did not buffer against this (hypothesis 4).

Conclusions: To our knowledge, this study provides first evidence that having a low 
within-subject resting HRV may be both indicative and predictive of the short-term 
accumulation of the negative effects of stress and mental exhaustion, potentially form-
ing a negative feedback loop. If these findings can be replicated and expanded upon 
in future studies, they may contribute to the development of automated resilience 
interventions that monitor daily resting HRV and aim to provide users with an early 
warning signal when a negative feedback loop forms, to prevent the negative impact 
of stress on long-term health outcomes.

Keywords: stress; strain; burnout; resilience; heart rate variability; sleep; wearables; 
digital health; sensors; ecological momentary assessment; mobile phone.
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INTRODUCTION

Background
Psychological stress is associated with increased risk of several forms of cancer (1), mus-
culoskeletal diseases (2), periodontal diseases (3), type 2 diabetes mellitus (4), stroke 
(5), cardiovascular disease (6), and recurrent cardiovascular disease (7). In an occupa-
tional setting, psychosocial risk factors such as high job demands are estimated to in-
crease the risk of stress-related diseases (e.g., burnout) by 60%-90% (8). Occupational 
stress can therefore cause absenteeism, organizational dysfunction, and decreased 
productivity, and it has a large economic burden (9).

Stress occurs when the brain subconsciously appraises a demand as threatening be-
cause of a lack of resources to cope with it (10). This threat appraisal that we refer to 
as stress is sometimes referred to as distress, whereas demands for which sufficient 
coping resources are available are appraised as a challenge or as eustress. Therefore, 
stress can be seen as a psychological state that is the result of a divergence between 
demands on an individual and the individual’s perceived capacity to cope with them. 
Stress causes an imbalance in the body’s biological equilibrium (homeostasis), which 
requires a neural, neuroendocrine, and neuroendocrine-immune adaptation to restore 
it (allostasis) (11,12). Although acute stress can have negative effects, it is particularly 
the cumulative wear and tear on bodily systems (allostatic load) caused by excessive 
stress or inefficient management of the systems that promote adaptation that is det-
rimental to long-term health and well-being (13). In addition, lifestyle-related factors 
such as obesity, sleep, and substance abuse can also contribute to allostatic load (14). 
Allostatic load is therefore considered a measure of the cumulative biological burden 
on health (15).

To complement this biological and neuroendocrinological perspective on the negative 
long-term health effects of stress and provide a framework for how short-term spill-
over effects of stress accumulate the need for a recovery concept be introduced (16). A 
need for recovery arises when an individual has problems using resources to adaptively 
cope with demands that induce stress (17). Need for recovery is a conscious emotional 
state that is related to the temporal depletion of resources following effort to meet 
demands and is characterized by feelings of mental exhaustion (18). As the availability 
of resources is assessed during appraisal and the use of resources may be needed during 
coping, the Conservation of Resources Theory states that an initial loss of resources can 
lead to a negative feedback loop that increases one’s vulnerability to stress (19). Such 
a loss spiral may become even more distinct if stress negatively impacts the recovery 
process itself, for instance, by negatively impacting sleep quality (20) and psychological 
detachment (21). Resilience, which can be defined as the process of positively adapting 
to adverse events (22), is a term describing this process from a positive perspective. 
During a resilient process, the aforementioned loss spiral is prevented by using resourc-
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es to adaptively cope with demands and stress to limit long-term strain and its related 
negative consequences on health and well-being from developing (23). Resilience is 
therefore an ongoing process that influences the extent to which adverse events that 
occur on a small timescale have an impact on mid- to long-term health outcomes.

Heart rate variability
A challenge for resilience research that focuses on resilience-related associations on 
timescales is that it requires continuous data collection, making it relatively labor-inten-
sive for participants to do so. Over the past decade, the emergence of smartphones and 
wearable sensor technologies has enabled the easy and unobtrusive measurement of 
physiological and psychological data related to an individual’s resilience (24). A promis-
ing example of such a metric is heart rate variability (HRV), which refers to the variation 
in inter-beat intervals of the heartbeats (25). HRV is a plausible, noninvasive, and easily 
applicable biomarker for resilience that may serve as a global index of an individual’s 
flexibility and adaptability to stressors (26,27). HRV is negatively correlated with al-
lostatic load, illustrating its use as an overall health risk indicator (28). Stress is also 
known to decrease HRV, particularly with reduced parasympathetic activation (29–31). 
Although an acute decline in HRV may be indicative of increased acute stress levels, HRV 
can remain lowered during rest and sleep after stress or mental exhaustion (32–35). 
Conversely, having a lower trait resting HRV has been linked to increased sensitivity to 
stress via appraisal when faced with demands (36) and to suboptimal emotion regula-
tion that may result in mental exhaustion (37,38). Therefore, resting HRV can be seen as 
a physiological resource that is addressed during the appraisal of demands and coping 
with stress. Therefore, resting HRV can be hypothesized to have a buffering effect on 
the positive associations between demands and stress, as well as between stress and 
mental exhaustion. These two hypothesized buffering effects are depicted as circles 1 
and 2 in Figure 1, which represent the conceptual model for this study and were based 
on a previous publication (39). The model is based on the Transactional Model of Stress 
and Coping (10), the Job Demands-Resources Model of Burnout (40), the Effort-Recov-
ery Model (17), and the Conservation of Resources Theory (19). In short, it depicts that 
demands are appraised as stress when resources are low, that stress leads to mental 
exhaustion when resources to cope with the demands are lacking, and that mental 
exhaustion limits resources to deal with future demands, unless there are sufficient 
recovery opportunities. In this study, HRV is the resource of interest, whereas sleep, 
operationalized as total sleep time (TST), represents the model’s recovery process.
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Figure 1: The conceptual model for this study and the four hypotheses that will be tested.

Sleep
Besides resting HRV, sleep is also a relevant potential indicator for the accumulation of 
the negative consequences of stress and predictor of spillover need for recovery. In the 
literature, stress has been consistently shown to decrease slow-wave sleep, rapid eye 
movement sleep, and sleep efficiency, as well as to increase the number of awakenings 
that may impact the overall sleep duration (20). Therefore, stress can be hypothesized 
to negatively affect the TST, which is the total time during a sleep episode in which one 
was not awake (Figure 1; hypothesis 3). In contrast, sleep has important homeostatic 
functions that are essential during recovery from both physiological and psychological 
strains (41). Sleep deprivation therefore has been linked to an increase in allostatic load 
(42) and has been linked to decreased HRV in some studies (43,44). As mental exhaus-
tion may result in decreased resting HRV (34,35) and sleep is an essential aspect of the 
recovery process, TST can be hypothesized to buffer against the negative association 
between mental exhaustion and resting HRV (Figure 1; hypothesis 4).

AIMS OF THIS STUDY

HRV measurement is regularly used as a biofeedback tool in mobile health (mHealth) 
interventions that target acute stress relief (45–47) but may also be useful for inter-
ventions that aim to provide users with feedback on their resilience over a longer time-
frame. A recent literature review confirmed that HRV has potential as a biomarker for 
resilience but suggested that more longitudinal studies are needed that use wearable 
sensors to observe HRV in a naturalistic context of real-life and associate it with resil-
ience-related outcomes, as most of the evidence is based on cross-sectional population 
studies (27). Therefore, this study longitudinally assessed the aforementioned hypothe-
ses in a free-living context using consumer-available wearable sensors. Exploring these 
will provide insight into the potential causal pathways of the within-day accumulation of 
the negative consequences of stress. Gained insights may therefore be beneficial to the 
future development of (automated) resilience interventions that target the prevention 
of stress-related health problems.

4
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METHODS

The study protocol was approved by the ethical committee of the Hanze University of 
Applied Sciences Groningen (heac.2018.008) in the Netherlands.

Participants
Students in applied psychology, social work, and physiotherapy who were about to start 
their first full-time internship were invited to participate via a message on the school’s 
digital learning environment and email. This population was anticipated to be at risk of 
experiencing stress because of the potentially stressful nature of these internships, as 
well as the fact that this was the first internship in the participants’ curriculum. A max-
imum of 15 participants could be simultaneously recruited because of the availability 
of materials. The recruitment and data collection processes were therefore divided 
into two waves that started in September 2018 and September 2019, respectively. The 
students were sent an email with an information letter that described the goal of the 
study, a description of the measurement protocol, and management of the collected 
data; the email also stated that participation would be unrelated to their internship 
or educational progress, that participation would occur on a voluntary basis, and that 
they could stop at any time without negative consequences. Some of the researchers 
were employed by the university in which the students were enrolled but had no other 
associations with the invited students (e.g., via education). The participants provided 
written informed consent before participation. Participants who collected complete 
data on at least 84 days during the formal participation period were rewarded with a 
€25 (US $27.50) gift voucher to facilitate recruitment and optimize adherence during 
participation. This reward threshold represents an adherence of at least 80% over a 
data collection period of 15 weeks (105 days). The threshold was solely used as a cutoff 
point for the reward and not for statistical analyses.

Data collection
Participants were assisted in installing the required apps on their smartphones and 
were instructed on how to use the devices used for data collection. The data collection 
period started immediately after the measurement instructions, after which participants 
collected data for 15 weeks. Some participants completed additional daily measure-
ments on a voluntary basis until their appointment was planned to return the used 
materials. At this appointment, an additional 20-minute conversation was held about 
how they experienced the daily measurements and to learn about potential improve-
ments for future studies. During the study, anonymized user accounts were used for 
the applied consumer-available wearables in order to protect the participants’ privacy 
on the companies’ cloud servers, before being exported and deleted by the researchers 
after completing their participation.
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Main variables
Resting HRV was measured daily using a consumer-available Polar H7 Bluetooth chest 
strap in combination with the Elite HRV app that is freely available in the iOS App Store 
and Google Play Store. The Polar H7 chest strap has been shown to accurately measure 
resting HRV when compared with an electrocardiogram (48). The Elite HRV app was 
chosen because it is easy to use for daily HRV measurements in a consumer setting and 
allows data export on an inter-beat interval level. Participants were instructed to per-
form a 2-minute HRV measurement in a supine position after awakening before getting 
out of bed. This is consistent with existing standards and recommendations that suggest 
a measurement duration of 1-5 minutes and consistent circumstances with as little 
influence as possible from circadian rhythms, meals, smoking, posture changes, and 
before significant mental or physical exertion (49,50). We considered sitting or standing 
resting HRV measurements to account for the possible presence of parasympathetic 
saturation in case we recruited an elite endurance athlete (51). However, we opted 
for supine measurements immediately after awakening in order to limit the potential 
influence of posture changes, physical activity, meals, and smoking as recommended 
by the aforementioned guidelines, as well as to ensure that all participants performed 
the measurement at a similar post-awakening time and in a similar context.

The wrist-worn Fitbit Charge 2 activity tracker was used to measure TST, which tends 
to slightly overestimate but for which has acceptable measurement accuracy in diverse 
populations (52–54). Participants were instructed to continuously wear the Fitbit during 
the day and night and charge it at least once every 5 days.

Before bedtime (available between 08 PM and 06 AM), participants completed a short 
ecological momentary assessment (EMA) questionnaire using an internally developed 
smartphone app to measure demands, stress, and mental exhaustion. The daily EMA 
questionnaire data were stored on premise. In the absence of a single item or full scale 
that was relevant for the study setting, demands were scored on the self-composed 
diary question, “How demanding was your day?” These demands represent the contex-
tual circumstances that exerted pressure on the participant, whereas stress reflected 
the resulting threat appraisal that these evoked within the individual. Stress was scored 
on a validated single-item scale (55): “How much stress did you perceive today?” Mental 
exhaustion is an aspect of the need for recovery concept and was based on item 3 of 
the Need for Recovery Scale (56), which was chosen because it appropriately represents 
strain within the context of the used conceptual model (39): “I felt mentally exhausted 
as a result of my activities.” All three items were scored on a 11-point numeric rating 
scale ranging from 0 (not at all for demands and stress and strongly disagree for mental 
exhaustion) to 10 (extremely for demands and stress and strongly agree for mental 
exhaustion).

4
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Control variables
Although the Fitbit Charge 2 was chosen for its accuracy in measuring TST, its data 
on moderate-to-vigorous physical activity (MVPA) and sedentary time were also used 
during analysis as potential confounders. MVPA is defined as the total amount of daily 
minutes where the participant was physically active at an intensity of 3 metabolic equiv-
alents or more, where 1 metabolic equivalent represents the resting metabolism. In 
previous studies, MVPA was negatively associated with state anxiety (57), mental strain 
(58), and HRV recovery (59), as well as positively associated with TST (60). Similarly, 
sedentary time was positively associated with depression and anxiety (61) and neg-
atively associated with TST (62) and HRV (63). Finally, Fitbit-measured TST was also 
used as a control variable in the analyses for stress and mental exhaustion because 
intraindividual variability in accelerometer-measured TST has been associated with 
increased stress (64).

In addition, alcohol consumption during the previous day was measured in a morning 
questionnaire (available between 6 AM and 3 PM) for use as a potential confounder. 
In previous literature, alcohol consumption has been negatively associated with wear-
able-measured TST (65) and reduced HRV (66). Alcohol consumption was scored as a 
numeric variable by asking for the number of alcoholic beverages consumed during the 
previous day. Although the absolute amount of alcohol in different types of beverages 
may deviate, asking for the number of alcoholic beverages consumed is both conve-
nient for daily inquiry and consistent with the widely used AUDIT-C questionnaire (67).

Data analysis
All data management and analyses were performed in RStudio (68) and R (69).

Data management
For HRV data management, the RHRV package (70) was used. Inter-beat interval data 
of all daily observations were filtered for artifacts using the algorithm in the RHRV 
package. The respective algorithm is described fully in a complementary book written 
by the authors of the RHRV package (71). The algorithm is too comprehensive to be 
fully described here but is summarized by the authors to apply an adaptive threshold 
to reject beats whose inter-beat interval value differs from previous and following 
beats, and from a mobile mean more than a threshold value, as well as beats that are 
not within acceptable physiological values. Subsequently, the root mean square of the 
successive differences (RMSSD) was calculated for every observation by first calculating 
each successive difference between heartbeats in milliseconds, then squaring these 
values, averaging that result, and finally taking its square root (72). However, algorithmic 
artifact correction can only distinguish potential measurement errors on an inter-beat 
interval level and can result in abnormally high RMSSD values if there are too many 
measurement errors present. As this study was performed in free-living conditions, it 
was not possible to verify if participants performed the daily measurements exactly 
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as instructed. Therefore, a second filtering method was applied to filter out HRV ob-
servations with extreme RMSSD values for that specific participant. To achieve this, 
within-subject RMSSD outliers of daily observations with a value that lies more than 
1.5 IQR below the first quartile or 1.5 IQR above the third quartile for all available data 
of the respective participant were removed (73). Finally, the RMSSD values were loga-
rithmically transformed to improve the distribution for parametric statistical modelling 
of resting HRV.

The TST data were filtered for episodes that started after filling in the evening EMA 
questionnaire and ended before the morning questionnaire was filled in to obtain the 
nighttime TST. When more than one TST episode was present between the evening and 
the subsequent morning EMA questionnaire, they were combined. No outliers were 
removed from the EMA data because no unfeasible values were identified.

Because of the different scales of the resting HRV, TST, and EMA data, centering and 
standardizing the data was necessary to prevent potential multicollinearity and allow 
comparability of the coefficients of the independent variables. As the level 1 associa-
tion between the aforementioned main variables is the primary interest in this study, 
centering within subject is recommended as opposed to centering at the grand mean 
(74). Therefore, all data were centered and standardized within subjects by subtracting 
the subject’s mean value over all daily observations from each value and dividing it by 
the subject’s SD over all daily observations. The z-scores that were used during analysis 
therefore reflect the degree to which a daily observation differed from the individual’s 
own mean. As the mean z-scores for each variable in each individual were zero, there 
was no between-subject variance left in the data. Therefore, multiple regression anal-
ysis was performed instead of the multi-level modelling that we originally planned to 
undertake, despite the observations being nested within subjects (Linear Mixed Model-
ling with fixed effects and random slopes using the within-subject standardized values 
resulted in the same outcomes and conclusions on all analyses but had a boundary 
[singular] fit and no differences in the within- and between-subject explained variance 
because there was no between-subject variance. As these multi-level models had no 
benefit, the results of our multiple regression analyses were presented in this study).

Statistical analysis
To test the four hypotheses described in the Introduction, four statistical analyses were 
performed. In the first analysis, stress was first modeled based on the control variables 
MVPA, sedentary time, and previous-day TST, after which the main variables demands, 
resting HRV, and the interaction effect of demands and resting HRV were added to 
create the full model. In the second analysis, a control variable model for mental ex-
haustion was first developed based on MVPA, sedentary time, and previous-night TST, 
after which a full model was created by adding the main effects of stress and resting 
HRV, as well as the interaction effect between stress and resting HRV. For analysis three, 
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the control variable model for TST contains previous-day MVPA, sedentary time, and 
alcohol consumption, with previous-day stress being added to the full model. Finally, 
the fourth analysis first modeled resting HRV based on control variables previous-day 
MVPA, sedentary time, and alcohol consumption before adding the main effects of 
previous-evening mental exhaustion and previous-night TST, as well as the interaction 
effect between previous-evening mental exhaustion and previous-night TST. To com-
pare the explained variance and statistical significance of the control variable and full 
models, the difference in the adjusted R-squared value and F statistic was calculated 
for all four analyses.

RESULTS

Overview
A total of 26 participants were recruited for this study. The participants were predom-
inantly women (n=24). Most participants studied applied psychology (n=19), followed 
by social work (n=6) and physiotherapy (n=1). The participants were aged between 19.2 
and 33.2 years (median 22.6). The participants collected TST data on 2129 days (per 
participant range 10-119; median 94), 1731 morning EMA questionnaires (range 5-109; 
median 74), 1653 evening EMA questionnaires (range 7-111; median 73), and HRV data 
on 1443 days (range 6-115; median 53). In total, for 1004 of the 2379 days (42.2%) on 
which a participant collected data, the participant collected complete data containing 
all required TST, HRV, and EMA data. The descriptive statistics for and intercorrelations 
between the main and control variables are presented in Table 1. Three participants did 
not complete the full (105 days) measurement period because they lost motivation for 
the daily measurements, and one participant stopped the daily measurements because 
of skin rash related to wearing the Fitbit. All three participants who did not complete 
the full measurement period contributed daily measurements and were thus still in-
cluded in the analyses. During the exit conversations, several participants stated that 
they found it difficult to adhere to the HRV measurement, because the need to apply a 
moistened chest strap and lay still for 2 minutes after awakening while they wanted to 
continue with their day was inconvenient. Missing Fitbit data were primarily ascribed 
to forgetting to charge it, particularly when participants were away from home. Finally, 
participants mostly attributed missing EMA data to simply forget to act on the smart-
phone notification as they were busy at that time.
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Analysis 1: stress
A two-step hierarchical multiple regression model explaining stress scores was devel-
oped (Table 2). After controlling for MVPA, sedentary time, and previous-night TST, 
demands were positively associated (P<.001) with stress. In addition, the interaction 
effect of demands and resting HRV significantly (P=.044) buffered against this positive 
association. This means that participants tended to report higher stress scores on days 
that they also considered to be more demanding, but this relationship was weaker on 
days where the participant woke up with a relatively high resting HRV. The positive 
association between demands and stress, as well as the buffering effect of resting HRV, 
confirms hypothesis one. Furthermore, the control variable MVPA was positively associ-
ated with stress (P=.044), which means that participants reported higher stress scores 
on days where they were more physically active. In the control variable model, TST was 
a negative predictor of stress (P=.03), but this effect was no longer significant in the 
full model. The control variable model of analysis explained 2.0% of the within-subject 
variance in the daily stress scores, whereas the full model had an explained variance of 
21.7%, which is a significant increase from the control variable model.

Table 2: Hierarchical multiple regression model for stress (analysis 1).

Independent variable Stress

Step 1 Step 2

β p β p

Intercept .05 .14 .00 .96

TST -.09 .03 .00 .89

MVPA .12 <.01 .06 .04

Sedentary time .02 .75 .05 .29

Demands .47 <.01

HRV .01 .70

Demands * HRV -.06 .04

Adjusted R2 .02 .22

F 7.541 44.86

� Adjusted R2 .20

� F 37.32

Note. N=26, n=953; TST: Total Sleep Time (in hours); MVPA: Moderate-to-Vigorous Physical Activity 
(in minutes); HRV: Heart Rate Variability (in milliseconds).
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Analysis 2: mental exhaustion
A two-step hierarchical multiple regression model explaining mental exhaustion scores 
was developed (Table 3). After controlling for MVPA, sedentary time, and previous-night 
TST, stress was positively associated (P<.001) with mental exhaustion. In addition, the 
interaction effect of stress and resting HRV significantly (P=.029) buffered against this 
positive association. This means that participants tended to report higher mental ex-
haustion scores on days that they were also considered stressful, but this relationship 
was weaker on days where the participant woke up with a relatively high resting HRV. 
The positive association between stress and mental exhaustion, as well as the buffer-
ing effect of resting HRV confirm hypothesis two. In the control variable model, MVPA 
was also positively associated with mental exhaustion (P=.017), but this effect was no 
longer significant in the full model. The control variable model of analysis two explains 
1.4% of the within-subject variance in the daily mental exhaustion scores, whereas the 
full model has an explained variance of 31.6%, which is a significant increase from the 
control variable model.

Table 3: Multiple regression model for mental exhaustion (analysis 2).

Independent variable Mental exhaustion

Step 1 Step 2

β p β p

Intercept .05 .12 .02 .37

TST -.06 .15 -.01 .68

MVPA .09 .02 .02 .58

Sedentary time .09 .09 .07 .09

Stress .55 <.01

HRV -.04 .15

Stress * HRV -.06 .03

Adjusted R2 .01 .32

F 5.42 74.17

� Adjusted R2 .30

� F 68.75

Note. N=26, n=953; TST: Total Sleep Time (in hours); MVPA: Moderate-to-Vigorous Physical Activity 
(in minutes); HRV: Heart Rate Variability (in milliseconds).

4
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Analysis 3: total sleep time
A two-step hierarchical multiple regression model explaining nighttime TST was devel-
oped (Table 4). After controlling for previous-day MVPA, sedentary time, and alcohol 
consumption, previous-day stress did not predict TST, unlike our expectation based 
on hypothesis 3. However, the control variables previous-day MVPA and alcohol con-
sumption were negatively associated with TST, whereas sedentary time was positively 
associated with TST. This means that participants had a lower TST on days where they 
were relatively physically active, consumed alcohol, and had limited sedentary time. 
The control variable model of analysis three explains 3.8% of the within-subject vari-
ance in TST, whereas the full model has an explained variance of 4.6%, which is not a 
statistically significant increase from the control variable model.

Table 4: Multiple regression model for Total Sleep Time (analysis 3)

Independent variable TST

Step 1 Step 2

β p β p

Intercept -.03 .32 -.03 .33

MVPA -.07 .01 -.07 .01

Sedentary time .08 <.01 .08 .01

Alcohol consumption -.20 <.01 -.20 <.01

Stress -.01 .64

Adjusted R2 .05 .05

F 21.88 16.46

� Adjusted R2 .01

� F -5.42

Note. N=26, n=1285; MVPA: Moderate-to-Vigorous Physical Activity (in minutes).
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Analysis 4: heart rate variability
A two-step hierarchical multiple regression model explaining resting HRV was devel-
oped (Table 5). After controlling for previous-day MVPA, sedentary time, and alcohol 
consumption, previous-evening mental exhaustion negatively predicted (P<.001) resting 
HRV, but previous-night TST did not buffer against this negative association. Therefore, 
these results partially support hypothesis four. Among the control variables, previ-
ous-day alcohol consumption negatively predicted resting HRV (P<.001). The control 
variable model explained 2.3% of the within-subject variance in resting HRV, whereas 
the full model had an explained variance of 3.6%, which was not a statistically significant 
increase from the control variable model.

Table 5: Multiple regression model for Heart Rate Variability (analysis 4)

Independent variable HRV

Step 1 Step 2

β p β p

Intercept -0.00 .98 0.00 .96

MVPA -0.06 .06 -0.05 .10

Sedentary time 0.02 .53 0.03 .40

Alcohol consumption -0.18 <.01 -0.19 <.01

Mental exhaustion -0.12 <.01

TST 0.02 .52

Mental exhaustion * TST -0.00 .92

Adjusted R2 0.02 0.04

F 8.42 6.96

� Adjusted R2 0.01

� F -1.46

Note. N=26, n=948; TST: Total Sleep Time (in hours); MVPA: Moderate-to-Vigorous Physical Activity 
(in minutes).
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DISCUSSION

Principal findings
This study aimed to test the hypotheses that (i) demands are positively associated with 
stress and resting HRV buffers against this association, (ii) stress is positively associat-
ed with mental exhaustion and resting HRV buffers against this association, (iii) stress 
negatively impacts subsequent-night TST, and (iv) previous-evening mental exhaustion 
negatively impacts resting HRV, while previous-night TST buffers against this associa-
tion. By assessing these associations based on longitudinal data that were collected 
using consumer-available wearables and smartphone apps in a free-living context, this 
study provides insight into the potential pathways of the within-day accumulation of 
the negative consequences of stress. The results of this study support hypotheses one 
and two and partially support hypothesis four.

Heart rate variability as an index of resilience
As hypothesized, having a high resting HRV buffered against the positive associations 
between demands and stress (hypothesis 1), as well as between stress and mental ex-
haustion (hypothesis 2). Similarly, mental exhaustion negatively predicted resting HRV, 
as expected (hypothesis 4). These findings suggest that waking up with a relatively high 
intraindividual resting HRV decreases an individual’s sensitivity to stress when faced 
with demands, as well as the likelihood of being mentally exhausted during a stressful 
day. In addition, as the accumulation of mental exhaustion negatively impacts an indi-
vidual’s resting HRV, an increase in mental exhaustion negatively impacts this (psycho) 
physiological resource and thus potentially creates a negative feedback loop that can 
lead to a loss spiral. These results therefore confirm our hypothesis that a decline in 
resting HRV is indicative of the accumulation of the negative consequences of stress, 
as well as the continued accumulation of negative consequences of stress. Therefore, 
resting HRV can be seen as a biomarker for or an index of resilience, where a decline 
in resting HRV may signal that buildup of allostatic load is present and suggests that 
the individual’s readiness to face new demands may at least be temporarily decreased.

As highlighted in a recent literature review, most studies to date investigating the role of 
HRV as an index for resilience have a cross-sectional nature and assess relationships at 
the between-subject level (27). To our knowledge, this study is the first to apply a nested 
longitudinal design and assess the potential of resting HRV as an index of resilience to 
stress on a within-subject level. Previous studies that investigated between-subject 
differences identified similar relationships between resting HRV and mental health out-
comes. For instance, a recent study with school teachers concluded that 48-hour trait 
HRV buffered the effect of emotional demands on exhaustion (75). Another recent study 
cross-sectionally assessed a population of young female adults and found that having a 
high resting HRV buffered against the positive association between emotion regulation 
difficulties and depressive symptoms (76). Resting HRV has also been reported to buffer 
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against the negative effects of chronic stress on sleep quality, which in turn is related 
to greater depressive symptoms (77). Finally, high stress-induced HRV was shown to 
buffer against the negative effect of hostility on cortisol sensitivity (78). Therefore, 
the within-subject findings of this study align with previous studies that also reported 
favorable between-subject effects of resting HRV on diverse mental health outcomes.

The role of sleep in the within-day stressor-strain process
Contrary to our hypothesis, stress did not negatively affect TST (hypothesis 3). The 
absence of a negative association between stress and TST conflicts with previous liter-
ature that consistently links experimental stress to decreased slow-wave sleep, rapid 
eye movement sleep, sleep efficiency, and increases in awakenings (20). A possible 
explanation for this could be the difference in context, as those studies examined the 
influence of experimental stress on polysomnographically measured sleep, whereas this 
study investigated daytime stressors and TST in a natural free-living context. Because of 
the increasing capabilities and performance of consumer wearables to measure sleep 
and the resulting rise in the use of consumer wearables in sleep research, future studies 
may increase insights into the potential relationship between daily stressors and TST 
in a natural free-living context (79).

TST also did not buffer against the negative association between mental exhaustion and 
resting HRV, as expected (hypothesis 4). This expectation was based on the rationale 
that sleep has important homeostatic functions that are essential during recovery from 
strain (41), and that sleep deprivation has been linked to an increase in allostatic load 
(42) and a decrease in HRV (43,44). As mental exhaustion was measured during the 
evening and resting HRV during the morning, we expected TST to potentially have a 
buffering effect, meaning that the negative impact of mental exhaustion on resting HRV 
would be smaller if the participant slept well that night. This buffering effect was not 
present in these findings, but TST was also not positively associated with resting HRV, 
as might be expected based on the aforementioned literature. A possible explanation 
for this could be that the relationship between sleep deprivation and HRV in previous 
literature seems to be particularly present in studies assessing a longer sleep depriva-
tion period (80), which might suggest that the nuanced day-to-day differences in TST 
are too small to significantly impact the resting HRV. Future studies investigating the 
impact of TST on resting HRV or the recovery from strain in a natural free-living context 
in which such long periods of sleep deprivation are relatively uncommon, assessing the 
impact of multi-day trends in TST might help increase insight on this topic.

Notable effects of MVPA, sedentary time, and alcohol consumption
The effects of most of the control variables that were significantly associated with the 
outcomes of the four analyses were as expected, but some of the effects seem to con-
flict with previous literature. For instance, MVPA was negatively associated with TST, 
but a recent study found a positive association between MVPA and TST (60). Similarly, 
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sedentary time was positively associated with TST in this study, whereas a negative 
association with TST was reported in another recent study assessing obese adults (62). 
A possible explanation can be found in the reported significant correlations between 
MVPA, sedentary time, and alcohol consumption (Table 1). This young student popula-
tion spends part of their leisure time enjoying the local nightlife, in which dancing and 
alcohol consumption are common. It is therefore possible that this will have caused 
the low sedentary time, high MVPA, and alcohol consumption that were associated 
with low TST.

Strengths and limitations
The strengths of this study are its longitudinal design and large sample of nested obser-
vations, optimizing the within-subject variance. Moreover, the use of consumer-friendly 
wearable sensors and smartphone apps allowed for relatively unobtrusive monitoring in 
a free daily living context, optimizing the generalizability for similar settings. A limitation 
of this study was the need to apply relatively coarse algorithmic artifact correction and 
rule-based outlier filtering during HRV data management. Because of the choice to use 
a consumer-available sensor and app for long-term daily measurements in free-living 
conditions, electrogram-level data were unavailable, and it was impossible to verify if 
participants performed the measurements as instructed. As the applied algorithmic 
artifact removal method can only filter out inter-beat interval artifacts within an HRV 
measurement, it has no rules to decide whether an observation should be removed 
altogether, filtering out extreme within-subject RMSSD outliers was necessary. Fur-
thermore, algorithm-based artifact correction was preferred over manually adjusting 
inter-beat interval artifacts to make the findings of this study applicable to the con-
text of an automated resilience intervention that does not rely on human interference 
during data management. In addition, the use of single-item scales in the evening EMA 
questionnaire forms a limitation of comprehensiveness at which the concepts can be 
measured. Therefore, validated single-item scales or items with the most favorable psy-
chometric properties in existing validated scales were used where available (39). As sin-
gle-item scales have consistently been found to be valid measures for diverse concepts 
in comparison to full scales (81–84) and have become common good in EMA research, 
the applied EMA methods can still be considered appropriate. The participants also 
received some feedback on their sleep, physical activity, and HRV because of the use 
of the consumer-available Fitbit and Elite HRV apps, which might have influenced their 
behavior. Nevertheless, any such influence was not considered a problem because this 
study observes the natural relationship between several variables and does not reflect 
on the behaviors themselves. Finally, only 3.6% of the within-subject variance in resting 
HRV could be explained, and the buffering effect of resting HRV was relatively modest.

Generalizability
The HRV-related results can be generalized to young and employed female adults who 
track their resting HRV upon awakening. As 92% (24/26) of the participants were female 
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and HRV can be related to menstrual cycle changes (85), further research on young 
males is necessary to improve the generalizability of these findings to young adults 
regardless of gender. As the resting HRV was measured upon awakening in this study, 
the influence of a phenomenon called the cortisol awakening response (CAR) might 
have played a role. Upon awakening, cortisol levels start to increase and peak approx-
imately 30-45 minutes thereafter because of the CAR, where 1%-3.6% of its variance 
can be explained by psychosocial factors (86). Although the CAR is associated with 
post-awakening changes in HRV, these changes appear to be unrelated to perceived 
stress and measures of emotion regulation (87). Therefore, it is possible that measuring 
HRV during sleep could yield similar results. An advantage of measuring resting HRV 
during sleep is that participants would not need to apply a moistened chest strap and 
lay still in a supine position upon awakening to collect their resting HRV data. As multiple 
participants described that this procedure negatively impacted their adherence to the 
measurement protocol, unobtrusively measuring the resting HRV during sleep might 
improve adherence and thus increase statistical power. Future research is needed to 
confirm whether resting HRV during sleep can be used to yield similar results.

Implications
To our knowledge, this study is the first to report a significant within-subject buffering 
effect of resting HRV on the positive associations between demands and stress, as well 
as between stress and mental exhaustion and a negative association between mental 
exhaustion and resting HRV. Replication of these findings in future studies is needed. 
As the combined findings form a feedback loop, it is possible that multi-day trends in 
resting HRV could be linked to longitudinal mental health outcomes in future studies. 
Furthermore, exploring the use of time series analysis to create within-subject models 
in which multi-day trend data are used to assess the daily outcomes could potentially 
improve the accuracy of the presented models. Future studies are advised to use pas-
sive monitoring techniques that require little to no user attention whenever possible 
to improve participant adherence and optimize statistical power.

If the findings of this study can indeed be replicated and expanded upon, it would show 
that longitudinally monitoring resting HRV as a biomarker of or index for resilience may 
be useful in the context of prevention. In this context, a structural increase or decline 
in resting HRV could provide an early warning signal that a positive or negative feed-
back loop is formed. When used in a consumer wearable–based automated resilience 
intervention, these signals can be used to prompt user feedback. For instance, users 
could be rewarded when a positive feedback loop is recognized or suggested to perform 
cognitive behavioral therapy–based self-reflection exercises or relaxation techniques 
when a negative feedback loop occurs. Such an automated resilience intervention that 
unobtrusively monitors the user’s resting HRV for the early recognition of (un)favorable 
feedback loops and generation of just-in-time feedback may therefore limit the buildup 
of allostatic load and improve long-term health outcomes.
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ABSTRACT

The effects of stress may be alleviated when its impact or a decreased stress-resilience 
are detected early. This study explores whether wearable-measured sleep and resting 
HRV in police officers can be predicted by stress-related Ecological Momentary Assess-
ment (EMA) measures in preceding days and predict stress-related EMA outcomes in 
subsequent days. Eight police officers used an Oura ring to collect daily Total Sleep 
Time (TST) and resting Heart Rate Variability (HRV) and an EMA app for measuring 
demands, stress, mental exhaustion, and vigor during 15–55 weeks. Vector Autoregres-
sion (VAR) models were created and complemented by Granger causation tests and 
Impulse Response Function visualizations. Demands negatively predicted TST and HRV 
in one participant. TST negatively predicted demands, stress, and mental exhaustion 
in two, three, and five participants, respectively, and positively predicted vigor in five 
participants. HRV negatively predicted demands in two participants, and stress and 
mental exhaustion in one participant. Changes in HRV lasted longer than those in TST. 
Bidirectional associations of TST and resting HRV with stress-related outcomes were 
observed at a weak-to-moderate strength, but not consistently across participants. TST 
and resting HRV are more consistent predictors of stress-resilience in upcoming days 
than indicators of stress-related measures in prior days.

Keywords: wearables, heart rate variability, sleep, stress, time series analysis, police, 
ecological momentary assessment, resilience.
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INTRODUCTION

Stress is associated with an increased risk of numerous diseases (1–7) and mental disor-
ders (8,9). Besides these adverse effects on individuals, it also imposes a large financial 
burden on society via absenteeism, healthcare costs, and productivity loss (10,11). Per-
sonalized just-in-time interventions may be able to prevent or alleviate some of these 
burdens (12). To do this, either the negative impact of stress or a decreased resilience 
to cope with stress should be detected early, preferably via unobtrusive monitoring. 
For instance, unobtrusive detection of the negative impact of stress (e.g., on sleep 
or physiological systems) in an early state may help increase awareness that current 
circumstances may be causing wear and tear on bodily systems (allostatic load) that 
may be contributing to health-related problems if sustained over time (13). Similar-
ly, recognition of the potential depletion of resources that are needed for resiliently 
coping with challenges could be used to trigger feedback to take it easy that day and 
avoid overly challenging circumstances where possible. Recent developments in wear-
able sensor technology introduce promising opportunities for this type of unobtrusive 
monitoring (14,15).

When the first modern wearables came to market around 2009 (e.g., the Fitbit Classic), 
these devices initially became popular as pedometers or activity trackers but were 
already able to estimate sleep duration via accelerometry as well (16). Since then, con-
sumer wearable-based sleep tracking has improved to a point where it is considered 
proficient for measuring the Total Sleep Time (TST), while the detection of sleep stages 
needs further work (17). Sleep deprivation is known to have a reciprocal relationship 
with stress, meaning that it is both caused and can be caused by stress (18). Longitudi-
nal studies with repeated daily measures confirm this bidirectional association (19–21) 
but tend to rely on subjective TST measures (e.g., measured via questionnaires) and 
need verification using objective sleep measurements (22). Wearable-based research 
can therefore contribute to this body of knowledge and explore the potential of wear-
ables to unobtrusively monitor for signs of the negative impact of stress or decreased 
resilience.

Besides behavioral outcomes such as physical activity and sleep, around 2015 (e.g., the 
Fitbit Charge HR) consumer wearables started measuring heart rate after photoplethys-
mography (PPG) sensors were included (23). Today, PPG sensors are also used to track 
physiological outcomes such as heart rate, blood oxygen saturation, blood pressure, and 
respiration (24). Perhaps the most important PPG-based innovation in the context of 
stress and resilience is the measurement of Heart Rate Variability (HRV), which can now 
be accurately measured using wearables or even camera-based smartphone apps in a 
resting state or during sleep (25). HRV is a measure of the variation in heartbeats and is 
a proxy for autonomous nervous system functioning (26). HRV acutely declines during 
stress (27) and afterward can remain suppressed during subsequent sleep (28,29). Con-
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sequently, individuals with a low resting HRV are more likely to interpret seemingly 
mild stimuli as significant stressors (30–32) and have suboptimal emotion regulation 
(33,34). Although these findings are based on population studies that investigated be-
tween-subject differences, the reciprocal nature of these findings illustrates that an 
initial decline in resting HRV could potentially cascade into subsequent days and thus 
have downstream effects.

A recent paper introduced a conceptual model in which the potential underlying mech-
anism for such a cascading effect of an initial decline in resting HRV was described (14). 
The model suggests that resting HRV buffers against the impact of demands on stress 
by making potentially stressful situations seem less stressful (30–32), as well as against 
the impact of stress on mental exhaustion via more optimal emotion regulation (33,34). 
Since this model also proposes that the need for recovery (e.g., increased mental ex-
haustion and/or decreased vigor) negatively influences resting HRV (28,29), a potential 
negative feedback loop is formed. This aligns with the conservation of resources theory, 
which states that since resources are needed to cope with demands, an initial loss of re-
sources may result in a loss spiral (35). Finally, the model hypothesizes stress to both be 
negatively impacted by stress (18–21), as well as to buffer against the negative impact 
of an increased need for recovery on resting HRV due to its restorative properties 
(36,37). A study was then performed to test these hypotheses by utilizing wearables to 
measure TST and resting HRV, as well as an Ecological Momentary Assessment (EMA) 
smartphone app to measure subjective demands, stress, and mental exhaustion (38). 
The study confirmed that resting HRV is both negatively impacted by mental exhaustion 
and buffers against the negative associations between demands and stress, as well as 
stress and exhaustion. Day-to-day changes in resting HRV may therefore be both in-
dicative of the negative impact of stress and predictive of stress-resilience, potentially 
even on a multiday level. Further exploration of these potential multi-day bidirectional 
associations will improve our understanding of the degree to which day-to-day changes 
in wearable-measured resting HRV can be interpreted as potentially stress-related and 
in which they should be expected to reflect a state of lowered resilience.

To summarize: wearable-measured sleep and resting HRV have both been bidirection-
ally associated with subjective stress-related outcomes, but within-subject research 
investigating the potential patterns in multi-day associations in a real-world context is 
lacking. Increased insight into the degree to which these relationships are consistently 
observed in individuals may help improve models for the early recognition of the neg-
ative impact of stress and of lowered resilience. Such insights could contribute to the 
development of automated resilience interventions that may help to prevent stress-re-
lated problems. These interventions are especially relevant for individuals working in 
safety-critical professions, such as police officers (39). Therefore, this study explores 
whether wearable-measured TST and resting HRV in police officers (1) can be predicted 
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by stress-related EMA outcomes (demands, stress, mental exhaustion and vigor) in the 
preceding days, and (2) predict stress-related EMA outcomes in the subsequent days.

MATERIALS AND METHODS

Study design
An observational multiple n-of-1 study design was used (40), where individuals collect-
ed data on a daily basis, which were then individually assessed as independent time 
series. The results are therefore presented as a series (n = number of participants) of 
independent quantitative analyses on within-subject associations (e.g., a case series) 
based on samples with a high number of observations per participant (N = number of 
observations per participant) that can be relatively well-intercompared due to consis-
tency in the applied methods. The current design is therefore optimized to provide a 
first exploration of possible multi-day associations at a within-subject level based on 
high-quality data, as is the aim of this study. Additionally, a rough estimate of the extent 
to which the respective associations may be found across individuals can be described 
in order to guide future studies. The current methods were based on a prior study that 
investigated nested within-day associations (14,38). Missing data are problematic for 
time-series analysis. To limit missing data, we made several adaptations to optimize the 
previously used research design. We included automatic resting HRV measurements, a 
shorter daily Ecological Momentary Assessment (EMA) questionnaire, and an improved 
reward for adhering to the measurement protocol (participants were allowed to keep 
the wearable if they collected at least 100 complete daily observations). Data were 
collected for two purposes: (1) comparing longitudinal (5-week) trends in daily resting 
HRV and fluctuations therein to full questionnaire outcomes for stress, somatization, 
anxiety, and depression, and (2) the assessment of potential bidirectional and/or multi-
day associations of sleep and resting HRV with stress-related EMA outcomes. The re-
sults of the former are published elsewhere (41), whereas the results of the latter are 
presented in this paper. The study protocol was approved by the ethical committee of 
the Hanze University of Applied Sciences Groningen (heac.2020.012).

Participants
Police officers working in a large Dutch city and possessing an Android- or iOS-based 
smartphone were invited to participate by the human resources bureau of their office. 
Interested respondents received the study information via e-mail. Participation was 
voluntary. The data collection period lasted a minimum of 15 weeks but could be ex-
tended with a number of additional 5-week periods. Extending the data-collection 
period was optional. Since at least 20 but preferably 50 observations with limited 
missing data are needed for accurate time series analysis (42,43), this data collection 
period (105–140 days) was expected to be appropriate to collect sufficient data. To also 
minimize potential missing data participants could keep the wearable and received a 
personal feedback report after the study as a reward if they collected complete daily 
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data for at least 100 days and completed all baseline and 5-weekly questionnaires. The 
recruitment period lasted until the maximum capacity of 10 participants was reached 
(i.e., it ran from June 2020 and July 2020). Before the start of their data collection, par-
ticipants had a conversation with the first author during which the study requirements 
were explained, and participants gave their written informed consent. Due to COVID-19 
restrictions, all contact with the participants occurred via teleconferencing and e-mail. 
After data collection, one participant was excluded because they were diagnosed with 
atrial fibrillation. This participant’s data were excluded from the study, because this may 
have interfered with the accuracy of the HRV measurements. Another participant of 
whom only 56.3% of the daily observations were available was also excluded from the 
analysis. The remaining eight analyzed participants were predominantly male (n = 6), 
had an average age of 37.0 years (range: 29–51), and contributed at least 80% (range: 
80.7–96.8%) of complete observations.

Data-collection

Baseline questionnaires
Immediately after consent was provided, participants were asked to fill in a baseline 
questionnaire. The baseline questionnaire included two items on gender and birthdate, 
as well as full questionnaires on personality traits (the Big Five Inventory; BFI) (44), 
symptoms of distress, somatization, depression, and anxiety (the Four-Dimensional 
Symptom Questionnaire; 4DSQ) (45), burnout (the Oldenburg Burnout Inventory; OLBI) 
(46) and work engagement (the Utrecht Work Engagement Scale; UWES) (47). The out-
comes of the baseline questionnaires and the mean values of the daily wearable and 
EMA outcomes were summarized per participant and on aggregate and used to describe 
the current sample for generalization purposes and as background information on the 
characteristics of the participants (Table 1). The age and gender of the individual par-
ticipants were not described out of privacy considerations.
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Table 1: Participant characteristics

Participant

Baseline questionnaires 1 2 3 4 5 6 7 8

Extraversion (1-5) 2.8 3.3 3.3 2.5 3.8 4.4 3.8 4.1

Agreeableness (1-5) 3.3 3.9 3.8 3.6 3.4 3.8 3.9 3.8

Conscientiousness (1-5) 3.9 3.8 3.3 3.3 3.8 3.0 3.8 4.0

Neuroticism (1-5) 2.1 2.5 2.4 2.4 2.5 2.3 2.9 2.4

Openness (1-5) 4.1 2.8 3.7 3.6 3.4 3.8 2.5 3.4

Distress Low Moderate Low Low Low Low Moderate Low

Depression Low Low Low Low Low Low Low Low

Anxiety Low Low Low Low Low Low Low Low

Somatization Low Low Low Low Low Low Low Low

Exhaustion (1-4) 3.0 2.5 3.3 2.5 3.0 2.6 2.6 2.6

Disengagement (1-4) 2.4 2.6 3.3 2.9 2.9 2.3 2.4 3.8

Work engagement (1-7) 5.4 4.6 5.3 4.5 5.2 5.1 4.2 5.9

Daily measurements

Total observations 147 125 386 150 285 143 147 140

% complete observations 81.6 94.4 88.3 80.7 96.8 93.0 95.9 80.7

TST (hours) 7.0 
(1.5)

6.5 
(0.8)

7.4 
(1.5)

5.5 
(1.3)

6.7 
(1.3)

7.6 
(1.5)

7.4 
(1.3)

6.5 
(1.2)

HRV (rMSSD in 
milliseconds)

51.3
(15.6)

43.8
(5.1)

54.8
(15.9)

72.8
(9.8)

47.4
(15.2)

29.6
(4.3)

39.6
(6.9)

26.8
(5.1)

Demands (0-10) 4.4 
(3.0)

4.7 
(2.0)

3.2 
(1.6)

5.1 
(2.7)

4.1 
(1.2)

2.4 
(1.9)

4.3 
(2.7)

3.4 
(2.2)

Stress (0-10) 3.9 
(2.7)

3.5 
(1.9)

2.6 
(1.8)

3.3 
(2.0)

1.5 
(0.9)

1.6 
(1.8)

1.3 
(1.9)

2.8 
(1.6)

Mental exhaustion (0-10) 2.8 
(2.7)

4.8 
(2.0)

3.7 
(1.7)

4.2 
(2.4)

2.1 
(1.0)

1.4 
(1.9)

2.6 
(2.9)

3.3 
(2.1)

Vigor (0-10) 5.3 
(2.8)

5.6 
(1.4)

5.8 
(2.1)

5.0 
(2.1)

4.9 
(1.1)

6.0 
(1.7)

5.5 
(2.5)

7.4 
(0.8)

MVPA (minutes) 54.2 
(33.4)

49.3
(24.2)

45.4
(35.6)

28.0
(26.5)

49.7
(28.7)

33.4
(30.3)

25.7
(19.2)

18.5
(14.2)

Alcohol use (units) 0.4 
(0.8)

0.5 
(0.9)

0.4 
(0.7)

0.1 
(0.6)

0.5 
(0.9)

0.1 
(0.4)

0.9 
(1.3)

0.1 
(0.5)

Note. For the baseline questionnaires, the observed values are reported. For the daily 
measurements, mean and standard deviation are reported. TST: Total Sleep Time; HRV: Heart 
Rate Variability; rMSSD: root Mean Square of the Successive Differences; MVPA: Moderate-to-
Vigorous Physical Activity
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Wearable-based variables
The Oura ring (generation 2, Oura Ring, Oulu, Finland) was used to measure TST and 
resting HRV during sleep. The Oura ring is a consumer wearable that measures sleep, 
physical activity, temperature, heart rate, and HRV. The consumer-available ring con-
tains 2 infrared Light-Emitting Diode (LED) sensors, 2 Negative Temperature Coefficient 
(NTC) thermistor sensors, a tri-axial accelerometer, and a gyroscope. Although the 
algorithms that are used by the Oura ring to classify sleep and HRV based on the out-
puts of these sensors are proprietary, the ring (generation 2) has been confirmed to 
provide valid measurements of TST (48,49) and HRV (25,50,51) in independent research. 
Participants used a ring-size kit to determine their correct ring size to optimize fit for 
both user comfort and measurement accuracy and were allowed to choose a ring color 
of their preference. To preserve privacy, anonymized Oura accounts were created by 
using e-mail addresses on a custom domain to create accounts without the participants’ 
names. The Oura-reported TST was used, which represents the total Duration of the 
Sleep Episode (DSE) minus the Sleep Onset Latency (SOL) and Wake-time After Sleep 
Onset (WASO). Similarly, the Oura-reported HRV was used, which represents the root 
Mean Square of the Successive Differences (rMSSD) in the inter-beat-intervals. This 
metric was then logarithmically transformed (lnrMSSD) to improve its distribution for 
statistical modelling, which is a common procedure in HRV research (52). Finally, the 
Moderate-to-Vigorous Physical Activity (MVPA) was used as a control variable during 
analysis (53).

Ecological Momentary Assessment-based variables
Every day at 7 PM, participants received a notification that a new EMA questionnaire 
was available on their smartphone app. Participants were instructed to complete the 
EMA before they went to bed. Since participants regularly worked night shifts, the 
EMA was available until 3 PM on the next day while participants received a reminder 
at noon to fill in their previous-day questionnaire if they had not finished it already. The 
EMA items were based on items used in a similar study (14,38). The EMA measured: 
demands (“How demanding was your day?”), stress (“How much stress did you perceive 
today?”), mental exhaustion (“I felt mentally exhausted as a result of my activities”), 
vigor (“Do you feel like undertaking activities?”), and alcohol intake (“I consumed … 
alcoholic beverages today”). The demands, stress, and vigor items were scored on an 
11-point Numeric Rating Scale (NRS), ranging from 0 (“Not at all”) to 10 (“Extremely”). 
Mental exhaustion was scored on an 11-point NRS ranging from 0 (“Strongly disagree”) 
to 10 (“Strongly agree”). The item for stress was based on a validated single-item scale 
(54), the item for mental exhaustion on an item of the Need For Recovery Scale (55), the 
item for vigor on an item of the Utrecht Work Engagement Scale (47), whereas the item 
for demands was self-composed in a similar style as the item for stress. The number 
of alcoholic beverages participants consumed during the passing day was included for 
use as a control variable during analysis and based on the AUDIT-C questionnaire (56), 
since alcohol consumption is known to impact resting HRV (57).
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Data-analysis
All analyses were performed in RStudio version 2022.7.1.554 (58) using R version 4.2.1 
(59). The ‘zoo’ package was used for linear interpolation of missing data (60), the ‘vars’ 
package was used for Vector Auto-Regression (VAR) modelling, Granger causation test-
ing, and Impulse Response Function (IRF) calculation (61). Finally, ‘ggplot2’ was used 
to visualize the IRFs (62).

Data preparation
First, descriptive statistics on the number of observations, the percentage of complete 
observations, and the wearable- and EMA-variables were calculated based on the full 
set of collected data. Since VAR analyses do not allow for missing data, missing data 
were imputed via linear interpolation. Rows, where data were missing at the beginning 
or end of the time series, were removed, as these could not be imputed. All values were 
standardized (by first subtracting the within-subject mean from each daily value and 
then dividing it by the within-subject standard deviation) to optimize the inter-compa-
rability of beta-coefficients and prevent multicollinearity. Finally, two versions of the 
vectors with the four core EMA variables (demands, stress, mental exhaustion, and 
vigor), two core wearable variables (TST and resting HRV), and two control variables 
(MVPA and alcohol consumption) were constructed to answer both research questions. 
The vector for the first analysis contained rows with values for the passing night’s TST 
and nocturnal HRV, combined with the EMA items of the subsequent evening so that 
the lagged values of the EMA items (the values on the previous row that represent 
the EMA of the previous day) could be interpreted as predictors for TST and HRV (the 
values on the current row that represent the values for the passing night). For analysis 
2, the TST and HRV data were shifted to the previous day, so that the lagged values 
of the TST and HRV (the values on the previous row, representing the passing night) 
could be interpreted as predictors for the EMA items (the values on the current row, 
representing the current day).

Vector Auto-Regressive modelling
To assess the stationarity of the time series as a prerequisite to performing VAR analy-
sis, the Phillips-Perron (PP) unit root test was used on all variables (63). All-time series 
were stationary (PP p < 0.05). Next, the number of lags (i.e., number of preceding days 
included as predictor values) to include in the VAR model was determined. This was 
completed via the ‘VARselect’ function, which calculates models up to 7 lags (i.e., one 
full week’s worth of lags). The most optimal lag order is based on four information 
criteria corresponding to the different models (i.e., Akaike Information Criterion (AIC), 
Hannan-Quinn (HQ) criterion, Schwarz Criterion (SC), and Final Prediction Error (FPE) 
criterion). The mode of these four information criteria was selected as the most optimal 
lag order used in the VAR model. In the case of a tie, the most conservative estimate 
was chosen. Assumptions were tested on the residuals of the VAR model. The residuals 
were assessed for autocorrelation via an asymptotic multivariate Portmanteau Test (PT) 

5



589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries
Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

110 CHAPTER 5

(64), for heterogeneity via an ARCH-LM test (65), and for normality via a Jarque-Bera 
(JB) test (66).

Granger causation testing
To increase confidence in the predictive value of core EMA variables that were found 
to be statistically significant predictors of wearable variables (or vice versa) in the full 
VAR models, Granger causation tests were applied (67). Granger causation tests assess 
if the inclusion of a predictor significantly improves a VAR. To isolate the direct rela-
tionships between these associations of interest from interrelations with the other 
variables in the vector, the Granger causation tests were applied to vectors with only 
the core predictor and outcome variables. Therefore, significant Granger causation tests 
showed that the predictor variable itself explains meaningful variance in the outcome 
variable and is not just significant in the VAR due to interrelations with other variables 
in the vector.

Impulse Response Function visualization
An IRF is the reaction of a dynamic system in response to an external change (68). IRF 
visualizations of relevant predictors on the outcomes can illustrate how the outcome 
varies on subsequent days after being faced with an increase in a predictor variable. 
The IRF of predictors that were both statistically significant in the full VAR model and in 
the additional Granger causation test were visualized. The IRF visualizations consisted 
of an overlay of participants where the respective association was observed. The IRFs 
with the same predictor were grouped in a grid in order to cluster visualizations of the 
multi-day impact of a predictor on all relevant outcomes (including bootstrapped 95% 
confidence interval (CI) based on 1000 runs).

RESULTS

Participant characteristics
The eight participants, who were 29.4 to 51.1 years old (median = 36.8) and predom-
inantly male (75%), collected 125 to 386 observations per person (median = 147) of 
which 80.7 to 96.8% (median = 90.7%) contained complete data on the EMA outcomes, 
as well as daytime and nighttime wearable outcomes. The average TST ranged from 5.5 
to 7.6 h (median = 6.8), during which they had an average resting HRV (rMSSD) of 26.8 
to 72.8 milliseconds (median = 45.6). The participants were moderate-to-vigorously 
physically active for 18.5 to 54.4 min per day (median = 39.4). The median reported 
daily scores on the stress-related outcomes was in the lower half of the scale (0–10) 
for demands (median = 4.2, range = 2.4–5.1), stress (median = 2.7, range = 1.3–3.9) and 
mental exhaustion (median = 3.0, range = 1.4–4.8). The mean reported daily scores on 
vigor were in the upper half of the scale (median = 5.6, range = 4.9–7.4). On average, 
the participants consumed between 0.1 and 0.9 (median = 0.4) alcoholic beverages per 
day. An overview of all participant characteristics is presented in Table 1.
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Analysis 1: Predicting TST & HRV by EMA
All analyzed time series were found to be stationary (PP unit root test p < 0.05). The AIC, 
HQ, SC, and FPE information criteria that were used to determine the lag order for the 
VAR models unanimously suggested an optimal lag order of 1 in all participants, with 
exception of participant 7, where 2 out of 4 information criteria suggested a lag order 
of 2. Since the conservative option was chosen in case of a tie (§2.4.2), VAR models with 
1 lag were created for all participants. No heterogeneity (ARCH-LM test p > 0.05) was 
found in the residuals of any model. The residuals also contained no autocorrelation 
(PT p > 0.05) in most participants, except for participant 5. This autocorrelation could 
not be resolved (e.g., by adding additional lags to the model), and suggests that an 
unobserved but relevant factor was not included in the model, which therefore may 
be useful but not complete. Finally, none of the residuals of any model were found to 
be normally distributed (JB-test p < 0.05). This was likely attributable to the distribution 
of some of the EMA items, which were occasionally skewed or even bimodal. Since 
simulation studies showed that non-normally distributed residuals are not problematic 
in analyses with a sample of at least 100 observations (69), this was not considered to 
be a problem for the interpretation of these results.

The results of the VAR models on TST are presented in Table 2. Demands was a statisti-
cally significant (p < 0.05) negative predictor of TST for three participants (4, 5, 7). For 
participant 5 this finding was confirmed by a statistically significant Granger causation 
test. Mental exhaustion was a significant positive predictor of TST in participant 4, 
but this was not confirmed in Granger causation testing and therefore interpreted as 
a potentially spurious relationship. Stress and vigor were not statistically significant 
predictors of TST in any model. The explained variance in the TST of the participant 
(5) in which demands was a significant predictor that was confirmed by a significant 
Granger causation test was 9%.

5
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The results of the VAR models on HRV are presented in Table 3. Demands was a signifi-
cant negative predictor of HRV in participant 3, which was also confirmed via Granger 
causation testing. Mental exhaustion was a significant positive predictor of HRV in 
participant 4, but it was in Granger causation testing and therefore interpreted as 
a potentially spurious relationship. Stress and vigor were not statistically significant 
predictors of HRV in any model. The explained variance in the HRV of the participant 
(3) in which demands was a significant predictor that was confirmed by a significant 
Granger causation test was 22%.

To support the interpretation of the temporal associations where both the beta coef-
ficient and Granger causation tests were significant, IRF visualizations for the impact 
of an increase in demands on (A) TST and (B) HRV are displayed in Figure 1. In both 
outcomes, an increase in demands results in a sudden drop in the outcome variable, 
which then gradually recovers in subsequent days. However, the recovery of HRV takes 
longer (0 enters the 95% CI on the sixth day) than that of TST (0 enters the 95% CI on 
the third day). This difference can be attributed to the highly significant autoregression 
component in HRV (p < 0.001), which is not observed in TST. This means that resting HRV 
values are relatively likely to be similar to the previous day (e.g., if yesterday’s resting 
HRV value was relatively low, today’s value is likely to be relatively low again), whereas 
TST values have little to no association to the value of the previous day. The impact of 
demands, therefore, appears to be more long-lasting on HRV than on TST—at least in 
these participants.

Figure 1: Visualization of the Impulse Response Function (IRF) of the impact of an increase in 
demands on the (A) Total Sleep Time (TST) and (B) resting Heart Rate Variability (HRV) during 
the subsequent week.
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Analysis 2 Predicting EMA by TST & HRV
The outcomes of the pre- and post-model diagnostic tests of analysis 2 were similar 
to those of analysis 1. The only difference in the pre- and post-model diagnostic tests 
of analysis 1 is that in analysis 2, participant 7 had just 1 out of 4 information criteria 
suggesting an optimal lag order of 2 instead of 2 out of 4. Therefore, VAR models with 
1 lag were again created for all participants.

The results of the VAR models on demands are presented in Table 4. TST was a statis-
tically significant negative predictor of demands in two participants (1, 2), which was 
confirmed with the Granger causation test in both cases. HRV was a significant negative 
predictor of demands in two participants (7, 8), also confirmed via Granger causation 
tests. The explained variance in the demands of these participants was 16% and 23%, 
respectively.

Table 5 contains the results of the VAR models on stress. TST was a significant negative 
predictor of stress in three participants (1, 2, 7), all confirmed via the Granger causation 
test. HRV was a significant negative predictor of stress in one participant (8), again 
confirmed via Granger causation tests. The explained variance in the stress of these 
participants ranged from 2% to 23%.

5
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The results of the VAR models on mental exhaustion are presented in Table 6. TST was 
a significant negative predictor of mental exhaustion in five participants (1, 2, 3, 5, 7), 
all confirmed via Granger causation tests. HRV was a significant negative predictor 
of mental exhaustion in one participant (8), again confirmed via Granger causation 
testing. The explained variance in the mental exhaustion of these participants ranged 
from 3% to 36%.

Finally, the results of the VAR models on vigor are presented in Table 7. TST was a sig-
nificant positive predictor of vigor in five participants (1, 3, 4, 5, 7), all confirmed via 
Granger causation tests. HRV did not predict vigor in any participant. The explained 
variance in the vigor of these participants ranged from 8% to 34%.

IRF visualizations for the impact of an increase in TST on each of the four EMA outcomes 
(A–D) are displayed in Figure 2. In all outcomes, an increase in TST resulted in a sudden 
decline (or incline in the case of vigor) that recovered (0 enters the 95% CI) in the sub-
sequent 1 or 2 days. The IRF visualizations for the impact of an increase in HRV on the 
four EMA outcomes (Figure 3A–C) is similar for demands (1–2 days), although recovery 
from the impact on stress (2–3 days) and mental exhaustion (2–3 days) appears to take 
a bit longer. It appears that in these participants, the impact of changes in HRV is more 
long-lasting than for changes in TST.
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121Sleep and resting heart rate variability as an outcome of and predictor for stress measures

Figure 2: Visualization of the Impulse Response Function (IRF) of the impact of an increase in 
Total Sleep Time (TST) on the subsequent week’s (A) demands, (B) stress, (C) mental exhaustion 
and (D) vigor.

Figure 3: Visualization of the Impulse Response Function (IRF) of the impact of an increase in 
resting Heart Rate Variability (HRV) on the subsequent week’s (A) demands, (B) stress and (C) 
mental exhaustion.
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DISCUSSION

This study aimed to explore to what degree wearable-measured sleep and resting HRV 
in police officers (1) can be predicted by stress-related EMA outcomes in the preced-
ing days, and (2) predict stress-related EMA outcomes in the subsequent days. After 
performing a time series analysis on eight participants, the results showed that asso-
ciations in both directions of modest strength were observed and that TST and resting 
HRV were more consistent predictors for the next day’s perceived demands, stress, 
mental exhaustion, and vigor than the other way around. Demands was a negative 
predictor of TST of one participant, and for resting HRV in another. Mental exhaustion 
predicted both resting HRV and TST in the same participant. Especially, TST seemed a 
strong predictor of stress-related EMA outcomes. TST negatively predicted demands 
in two participants, stress in three participants, mental exhaustion in five participants, 
and positively predicted vigor in five participants. Resting HRV negatively predicted 
demands in two participants, and both stress and mental exhaustion in one participant.

This study led to three key findings that will first be reflected upon, followed by a dis-
cussion of the strengths and limitations of the study, and finally a summary of the main 
conclusions and recommendations for future research.

Associations between TST, HRV and EMA outcomes are not consistently observed
Although TST was a negative predictor of mental exhaustion and a positive predictor 
of vigor in the majority (62.5%) of the participants, no association between a wearable- 
and an EMA-based item was consistently observed in all participants. No convincing 
explanations for the prevalence of these associations were identified after inspection 
of differences in the participant characteristics (Table 1).

The number of participants in this study (n = 8) was too low to meaningfully assess 
to what extent between-subject differences in participant characteristics could pre-
dict the prevalence of these associations. Future studies with a larger sample size are 
recommended to explore if the occurrence or strength of these associations may be 
explained by participant characteristics, for instance via multilevel VAR (70). If these 
differences can be explained in future studies, they may be used to further personalize 
wearable-based models for stress-resilience.

It is also possible that the strength of these associations does not (only) depend on 
differences between individuals, but (also) on differences within individuals or in their 
environment. However, it may be difficult to determine beforehand what these influ-
encing factors may be. It is possible to first explore if the strength of these relationships 
changes over time, for example via time-varying VAR models (71). Detecting such chang-
es over time is particularly feasible in datasets with a larger number of observations 
and/or more granular data. If these associations do change over time, it is possible 
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that they may be actually relevant for all participants, but only under certain circum-
stances. Depending on the outcomes of such studies, it could provide new insights into 
the internal or external factors that determine when these associations are observed.

The impact of changes in HRV appears to be more abiding than that of changes in 
TST
The IRF visualizations in Figure 1 demonstrated that a demand-induced decline of rest-
ing HRV appears to have a longer recovery time (5–6 days) than a demand-induced de-
cline of TST (2–3 days). Similarly, the impact of a change in resting HRV on stress-related 
EMA outcomes (Figure 3) appears to also be more long-lasting (1–3 days) than that of 
a change in TST (1 day) (Figure 2). This was attributed to the significant autoregression 
component that was observed in resting HRV, but not in TST. The strong autoregression 
component in the resting HRV model means that resting HRV values are relatively likely 
to be similar to those of the previous day(s). Therefore, a demand-induced decline in 
resting HRV (analysis 1) may take several days to recover from. Similarly, the impact of a 
decline in resting HRV on demands, stress, mental exhaustion, and vigor is likely to spill 
over into subsequent days, as it means that resting HRV is likely to remain suppressed 
for another few days.

This observation may be explained by the fundamentally different nature of the con-
cepts resting HRV and TST. Resting HRV is a quantification of a physiological state that 
is continuously striving to maintain stability (homeostasis) despite disruptive challenges 
(allostasis) (13). The recovery from a stressor that has a physiological impact (allostatic 
load) could take longer depending on the intensity and frequency of the stressor, as well 
as the quality and quantity of the subsequent recovery (36,37). As such, a large decline 
in resting HRV can logically be expected to take some time as well. TST, on the other 
hand, is a quantification of the recovery process itself. Stress can negatively influence 
TST on the following night (18–21) and can therefore also impact TST on subsequent 
nights in the case of a recurring or sustained stressor. However, when this is not the 
case, it is also possible that the individual compensates for the previous sleep loss via 
recovery sleep (72), which would mean that TST on a subsequent night is no longer 
suppressed but actually increased. From this perspective, TST values can be expected 
to be more volatile than changes in resting HRV and thus have a weaker autoregression 
component. However, it is possible that changes in TST do have a longer-lasting impact 
on relevant underlying (psycho)physiological states such as vigor, which was observed 
to consistently have a significant autoregression component (Table 4).

The seemingly more abiding impact of a change in resting HRV on the resting HRV of 
the subsequent days may also be influenced by the development of a negative feedback 
loop. A previous study showed that evening mental exhaustion negatively impacted 
subsequent resting HRV and that resting HRV itself buffered against the positive asso-
ciation between demands and stress, as well as between stress and mental exhaustion 
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(38). This aligns with the Conservation of Resources Theory, which describes that an 
initial loss of resources could lead to a negative feedback loop. This means that fewer 
resources are available to handle upcoming challenges, which leads to lower resilience 
(35). However, in the current study, no bidirectional association between a stress-re-
lated EMA item and resting HRV was observed within a single participant. Future stud-
ies with a larger sample are needed to increase insight into the multi-day impact of 
stress-related changes in resting HRV.

TST and HRV are more consistent predictors of stress-related outcomes than vice 
versa
These findings indicate that wearable-measured TST and HRV seemed better predictors 
of stress-related EMA outcomes than the other way around. EMA-based predictions 
of TST and resting HRV were only observed in two participants, who had relatively 
large samples of observations (N = 385 and N = 283) compared to the median (N = 144). 
Additionally, these relationships were not consistently observed in both participants. 
These differences cannot merely be explained by statistical power. Nevertheless, these 
models explained a modest amount of variance in TST (9%) and resting HRV (22%) in 
some participants. It is possible that these relationships are relatively small in nature 
and can only be observed in larger samples.

The finding that TST is a more consistent predictor of stress-related outcomes than that 
it can be predicted by stress-related outcomes aligns with prior research (22). For in-
stance, a lower TST has consistently been shown to predict increased stress (19–21,73). 
Conversely, in the same studies, the opposite is regularly associated with smaller effect 
sizes (19–21), but in another study, TST was not associated with stress-related outcomes 
(73).

Similar scientific findings on the combination of both the predictive power and predict-
ability of resting HRV in the context of stress-related outcomes are limited. However, 
the current findings do align with prior research, which has shown that stress-related 
outcomes negatively affect resting HRV (27,28,38) and that a relatively lower resting HRV 
than an individual’s normal resting HRV can negatively impact stress-related outcomes 
on the following day (38,74).

One of the implications of this finding is that a decrease in wearable-measured TST or 
resting HRV does not necessarily point toward the occurrence of stress-related out-
comes. Although the observed decrease in TST or resting HRV might have been caused 
by subsequent high demands or stress, this outcome may have been confounded by 
other factors. In situations where sudden extreme demands or stress occur, this might 
in some cases directly cause a decreased TST or resting HRV. However, in these cir-
cumstances, the wearable-user is likely already aware of the impact of such events. In 
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such instances, the wearable-user less likely needs objective feedback to confirm this 
short-term effect.

Based on these findings, wearable-measured TST and resting HRV are not necessarily 
usable as a direct indication of the negative impact of stress but hold more promise to 
function as potential predictors to estimate one’s resilience. For instance, these insights 
could be implemented in resilience interventions in the form of a readiness score that 
gives the user feedback on his or her expected readiness to handle mental and physical 
challenges that day (75). Ideally, these factors will be expanded upon in future research 
(e.g., by also assessing behavioral outcomes such as smartphone usage, geolocation, 
or patterns in communication) that also explore different modelling approaches (e.g., 
machine learning) in order to improve the performance of these models.

Strengths and limitations of the current study
This study applied a novel research design and recruited a motivated number of par-
ticipants that resulted in a series (n = 8) of sizable datasets (N = 125–386) with mostly 
(80.7–96.8%) complete observations. By utilizing a consumer-available wearable that is 
validated for both TST and resting HRV measurements to collect observational data in a 
real-life environment, the generalizability of the findings to practical settings is relatively 
good. However, three limitations of the current study should also be considered during 
the interpretation of the presented results.

First, the multiple n-of-1 study design with a small number of participants (n) but a large 
number of observations per participant (N) was optimized as a first exploration of the 
potential existence of the hypothesized multi-day associations at a within-subject level 
based on high-quality data but limits the generalizability of the current findings to a 
broader target population. Therefore, future research with a larger number of partici-
pants is needed to increase confidence that the found associations are indeed relevant 
for larger groups of people. Future research is also needed to better understand why 
the identified relationships are prevalent in some cases, but not in others. For instance, 
it is possible that studies with a larger number of observations per participant can 
unveil to what extent associations with a smaller strength can be observed in other 
participants, and to what extent the strength of these associations may change over 
time (e.g., via time-varying VAR).

Second, the included healthy participants and data collection during the COVID-19 
lockdown might have affected the participants’ perceptions of demanding and stressful 
situations. Their daily practice may not have been very demanding, which may have 
resulted in relatively low variance in the data. This aligns with the findings of a study 
on 2567 European police officers, which reported decreased strain during the pandem-
ic (76). The analyzed participants all scored relatively well on the mental well-being 
questionnaires (Table 1). Another article that was based on data from this same study 
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population showed that some participants reported moderately elevated stress and 
somatization throughout the study period, but that there were no clinically relevant 
signs of anxiety and depression (41). Future studies with a more mentally challenged 
sample need to verify the current findings for more challenging conditions.

Finally, some of the statistical assumptions of the created VAR models were technically 
violated. Most notably, none of the VAR models had normally distributed residuals, 
which was likely the result of sometimes skewed or bimodally distributed EMA items. 
Since simulation studies have shown that this assumption is particularly relevant when 
relatively small samples are assessed but not problematic when a sample of at least 
100 observations is analyzed (70), this was not considered to be a problem for the 
interpretation of the results. The VAR model of participant 5 was also found to have 
autocorrelated residuals, which could not be resolved (e.g., by adding additional lags). 
Although this does not necessarily limit the interpretability of the model and related 
findings, it does show that the model is incomplete, and at least one unobserved but 
relevant factor was not included in the present study.

CONCLUSIONS AND RECOMMENDATIONS

This multiple n-of-1 study showed that in relatively healthy police officers, demands 
were occasionally observed to be a negative predictor of wearable-measured TST and 
resting HRV. TST and resting HRV were more regularly observed to be negative predic-
tors of demands, stress, or mental exhaustion, whereas TST also positively predicted 
vigor in several participants. The presented results illustrate that caution is needed 
when interpreting changes in TST and resting HRV to be potentially stress-related and 
that TST and resting HRV are more likely to be useful as predictors of stress-resilience 
(e.g., expressed as a readiness score).

However, since the identified associations were not consistently observed amongst 
participants, further research is necessary to better understand the underlying mech-
anism. For instance, future studies with a larger sample of participants, which is also 
needed to improve the generalizability of the current findings, could consider assessing 
if these between-subject differences could be explained by participant characteristics 
(e.g., via multilevel VAR). Another direction could be to explore if the strength of these 
associations’ changes over time in samples with a larger number or more granular data 
(e.g., via time-varying VAR). Finally, future studies should explore if predictive models 
with a higher explained variance can be achieved by including additional data sources 
(e.g., smartphone usage, geolocation, or patterns in communication) or utilizing more 
inductive methods (e.g., machine learning approaches).
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Trends in daily heart rate 
variability fluctuations 
are associated with 
longitudinal changes in 
stress and somatization in 
police officers
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ABSTRACT

The emergence of wearable sensors that allow for unobtrusive monitoring of phys-
iological and behavioral patterns introduces new opportunities to study the impact 
of stress in a real-world context. This study explores to what extent within-subject 
trends in daily Heart Rate Variability (HRV) and daily HRV fluctuations are associated 
with longitudinal changes in stress, depression, anxiety, and somatization. Nine Dutch 
police officers collected daily nocturnal HRV data using an Oura ring during 15–55 
weeks. Participants filled in the Four-Dimensional Symptoms Questionnaire every 5 
weeks. A sample of 47 five-week observations was collected and analyzed using mul-
tiple regression. After controlling for trends in total sleep time, moderate-to-vigorous 
physical activity and alcohol use, an increasing trend in the seven-day rolling standard 
deviation of the HRV (HRVsd) was associated with increases in stress and somatization 
over 5 weeks. Furthermore, an increasing HRV trend buffered against the association 
between HRVsd trend and somatization change, undoing this association when it was 
combined with increasing HRV. Depression and anxiety could not be related to trends 
in HRV or HRVsd, which was related to observed floor effects. These results show that 
monitoring trends in daily HRV via wearables holds promise for automated stress mon-
itoring and providing personalized feedback.

Keywords: stress; somatization; heart rate variability; longitudinal; wearables; ecolog-
ical momentary assessment
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INTRODUCTION

Stress can be defined as a relationship between the person and the environment that 
is appraised by the person as taxing or exceeding one’s resources and endangering 
one’s well-being (1). Stress disturbs the body’s biological equilibrium (homeostasis), 
requiring a neural, neuroendocrine and neuroendocrine-immune adaptation to re-
store it (allostasis) (2). Acute stress has a function to trigger a behavioral response to 
cope with the demand, but chronic stress leads to cumulative wear and tear on bodily 
systems (allostatic load), which is detrimental to long-term health and well-being (3). 
Policing is a good example of a physically and psychologically demanding job that can 
cause stress (4). In police officers, chronic stress is associated with neuro-endocrine 
changes (5) and an increased risk of physical (6), mental illness (7), and absenteeism (8).

The emergence of wearable sensors that allow for unobtrusive monitoring of physio-
logical and behavioral patterns introduces new opportunities to study the impact of 
stress in a real-world context (9). In particular, Heart Rate Variability (HRV), which can 
be measured using wearable sensors, is promising as a biomarker for resilience to stress 
(10). If trends in daily HRV observations can be related to mental health outcomes, 
it enables possibilities for early recognition of the impact of stress and personalized 
stress counselling based on objective feedback. This study, therefore, explores to what 
extent daily HRV trends are related to longitudinal changes in several mental health 
outcomes in police officers. Below, we provide a detailed description of HRV and how 
its daily fluctuations may be a relevant proxy for homeostatic disturbances, and then 
we describe this study’s hypotheses.

Heart Rate Variability (HRV)
HRV is a measure for the variation in inter-beat-intervals that reflects autonomic ner-
vous system functioning and is negatively correlated to allostatic load (11). HRV declines 
during stress (12) and can remain suppressed during subsequent rest and sleep (13). 
Originally, HRV was measured using electrocardiography (ECG), but in recent years, 
wearable sensor technologies increasingly started using photoplethysmography (PPG). 
Unlike ECG, which is based on the electrocardiographic signal that is related to the 
contraction of the heart muscle, PPG quantifies HRV by assessing the blood flow in 
peripheric arteries to assess heart rate. Due to this subtle difference, PPG-based HRV is 
sometimes referred to as “Pulse Rate Variability” (14), but it has been shown to estimate 
HRV and mental states, such as stress and anxiety (15,16).

HRV can be seen as a resource that enables cognitive and emotional regulation (17) and 
is physiologically depleted when dealing with demands (18). Since HRV is associated 
with stress-buffering effects (19,20), its depletion may indicate a decline in resilience 
to cope with new demands and thus lead to unfavorable outcomes if a trend develops. 

6
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This aligns with the conservation of resources theory, which suggests that an initial 
loss of resources can create a negative feedback loop that results in a loss spiral (21).

Longitudinal studies showed that a decline in HRV can be related to increased stress 
(22–25) or emotional exhaustion (26–28). HRV-related emotional exhaustion is often 
interpreted in the context of burnout but can overlap with depression (29), suggesting 
that changes in HRV may also be related to other mental health outcomes. Although 
longitudinal evidence for relationships between HRV and other mental health and 
well-being outcomes is limited, population studies have shown that HRV is indeed not 
just negatively associated with stress (30) but also with anxiety (31), depression (32), 
and somatic symptoms (33). The overlap in the associations between these diverse 
mental health and well-being outcomes with HRV is the result of their similar negative 
impact on autonomic nervous system functioning (decreased vagal tone), of which 
HRV is a reflection (34). Since changes in HRV are therefore not a direct proxy for any 
specific mental state, using a broad approach when investigating the relationship be-
tween structural changes in HRV and diverse mental health and well-being outcomes 
is warranted.

Since most of the existing evidence is based on cross-sectional population studies, 
recent reviews on HRV literature call for future studies with a longitudinal and with-
in-subject focus (30,35). Traditional longitudinal studies assess HRV by taking one- or 
multiday samples across a period of weeks, months or years, but wearables can un-
obtrusively collect HRV data on a daily basis. An academic study of this more granular 
HRV data may help in obtaining a better understanding of relationships between HRV 
and other variables in a naturalistic setting. These more granular data allow us to look 
at trends in daily HRV but also open up the possibility to assess the degree to which 
the daily HRV fluctuates over time.

Daily HRV fluctuations
Since HRV reflects autonomic nervous system functioning, daily HRV fluctuations can 
be seen as a proxy for the homeostatic disturbances that form an allostatic burden. 
The autonomic nervous system continually strives to restore homeostasis. As such, it 
is possible that homeostatic disturbances exist while the average level of physiological 
functioning itself (e.g., the mean HRV) remains relatively constant. In this scenario, the 
allostatic process that continuously restores homeostasis is successful, but the pressure 
on the system as a whole may still be indicative of underlying problems.

Research on associations between daily HRV fluctuations and stress is still nascent 
in occupational settings, but interesting parallels to sports science can be drawn. For 
instance, increases in daily HRV fluctuations have consistently been associated with 
increased fatigue in athletes (36–38) but were also attributed to increased stress in a 
study describing a notable case of a female soccer player (39). Another study found that 
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soccer players that had a decreased HRV and increased daily HRV fluctuations after a 
high-load week had a decreased stress tolerance (40), suggesting that these homeo-
static disturbances may also impact the individuals’ resilience to cope with upcoming 
demands. Therefore, changes in daily HRV fluctuations may be an interesting precursor 
to identify the development of more structural changes in stress.

As a result, trends and fluctuations in daily HRV may not only be directly related to 
changes in mental health outcomes, but trends in the underlying daily HRV itself may 
also moderate that association. An example of this was presented in a case study under 
elite triathletes. In the study, a decrease in daily HRV fluctuations, which is usually 
seen as a sign of positive adaptation, preceded poor performance and subsequent ill-
ness when the downtrend in daily fluctuations was combined with a downtrend in the 
daily HRV itself (41). The decrease in daily HRV fluctuations was not a sign of positive 
adaptation in this case but may actually have been indicative of a lack of autonomous 
nervous system reactivity to the challenges at hand since the underlying daily HRV was 
also trending down. Conversely, it is also possible that an uptrend in the daily HRV may 
buffer against the unfavorable effect of uptrends in daily HRV fluctuations on relevant 
outcomes. In that scenario, an uptrend in the daily HRV fluctuations would indicate 
that the individual’s homeostasis is increasingly being challenged, but the uptrend in 
the daily HRV itself shows that the underlying physiological system itself is actually 
responding resiliently.

Aim of the study
Existing literature showed that a longitudinal decrease in HRV is positively associated 
with increased stress and that having a lower HRV is related to increased depression, 
anxiety and somatization at a population level. There are also indications that increases 
in daily HRV fluctuations are related to unfavorable outcomes and that an increasing 
daily HRV trend could have a buffering effect. Therefore, this study aims to explore to 
what extent within-subject trends in daily HRV and daily HRV fluctuations are related 
to changes in stress, depression, anxiety, and somatization in police officers in a large 
Dutch city. By applying a longitudinal design that utilizes continuous daily measurements 
in a real-world context, this study provides a unique contribution to the existing body 
of knowledge. We hypothesize that increasing trends in daily HRV fluctuations and 
decreasing trends in daily HRV are associated with increased (i) stress, (ii) depression, 
(iii) anxiety, and (iv) somatization, as well as that increasing trends in daily HRV buffer 
against the positive association between trends in daily HRV fluctuations and these 
outcomes.

MATERIALS AND METHODS

The study protocol was approved by the ethical committee of the Hanze University of 
Applied Sciences Groningen (heac.2020.012).

6
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Participants
Police officers that worked in a large Dutch city and possessed a smartphone running 
on Android or iOS were invited to participate. The officers received an information 
letter via e-mail that informed them about the study. Participants were asked to col-
lect data for 15 weeks, with an option to extend this to 20 weeks to reach a reward 
threshold, but participated voluntarily and were free to stop at any time. Participants 
that collected complete daily data on at least 100 days (>71–95% adherence based on 
a period of 15–20 weeks) and completed all longitudinal questionnaires were allowed 
to keep the wearable and received a feedback report after the study. Recruitment 
started in June 2020 and was completed in July 2020 after reaching the capacity of 10 
participants, which was related to the availability of materials. Participants gave their 
informed consent prior to participation and had a conversation with the first author 
before and after their data collection period. Due to policies related to the COVID-19 
pandemic, which was ongoing during data collection, these conversations were held via 
a teleconferencing tool. One participant was excluded from analysis due to diagnosed 
atrial fibrillation. The remaining 9 participants were predominantly male (77.8%) and 
had mean age of 35.8 years (25.8–51.1).

Data collection
Data collection started after the participants received their wearable and was planned 
to run for 15 to 20 weeks. Some participants voluntarily extended this period. During 
data collection, participants collected daily wearable data and a daily Ecological Mo-
mentary Assessment (EMA) question and filled in a longitudinal questionnaire every 5 
weeks. Participants, therefore, collected multiple nested five-week observations. All 
participants reached the reward threshold. One participant collected data for 15 weeks, 
five for 25 weeks, whereas three participants proceeded to collect data for 25, 40, and 
55 weeks. As a result, change scores and trends in the corresponding daily measure-
ments were calculated for a sample of 47 five-week observations that were analyzed.

Stress, anxiety, depression and somatization
The Dutch version of the Four-Dimensional Symptom Questionnaire (4DSQ) was used 
to measure stress, anxiety, depression, and somatization every 5 weeks (42). The 4DSQ 
consists of 50 items, of which 16 concerning stress, 12 on anxiety, 5 on depression, 
and 16 on somatization. All items inquire about the occurrence of symptoms over the 
previous week and are scored on a 5-point Likert scale (‘no’, ‘sometimes’, ‘regularly’, 
‘often’, or ‘very often or constantly’). Responses are scored as 0 (‘no’), 1 (‘sometimes’), 
or 2 (‘regularly’, ‘often’, or ‘very often’) and summarized to create the overall scores on 
each scale. Each scale has cut-off points for moderately or severely elevated levels for 
clinical use, but these were not used for data analysis in this study. Five-week change 
scores were calculated by subtracting the scores of the 4DSQ scales from the scores on 
the subsequent measurement, resulting in 4 variables in which a higher score indicates 
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an increase in the measured concept: stress increase, anxiety increase, depression 
increase, and somatization increase.

Daily HRV & daily HRV fluctuations
Daily HRV was measured with an Oura ring during sleep. The Oura ring is a consum-
er-available wearable with the size of a wedding ring, has a battery life of 4–7 days and 
measures sleep, physical activity, temperature, heart rate, and HRV. In this study, a 
second-generation Oura ring was used, which uses infrared light to measure HRV via 
PPG. The Oura ring uses a built-in artefact identification algorithm that is described in 
more detail elsewhere (43). In short, the algorithm in the ring labels each inter-beat-in-
terval (IBI) as normal or abnormal by calculating its deviation from the median of the 
nearest surrounding IBIs. The night is then subdivided into 5-min segments for which 
the HRV is calculated. Finally, the average HRV of all 5-min segments that have sufficient 
valid measurements is then calculated to obtain the HRV for the full night. A validation 
study under 49 healthy individuals aged 15–72 years showed that the Oura ring’s HRV 
measure explained 98.0% of the variance (r2 = 0.980) in the gold standard ECG-based 
HRV measurement (43). Another study under 5 healthy young adults that generated 
23 trials found that the Oura ring had the second-lowest mean absolute percent error 
of the 7 investigated consumer-available wearables and reported a 0.91 correlation 
coefficient with ECG measurements (44). Participants in this study selected a ring type 
and color of their preference with an optimal fit for both user comfort and measure-
ment accuracy. To preserve privacy, anonymized Oura accounts were created. The HRV 
metric reported by the Oura ring is the Root Mean Square of the Successive Differences 
(RMSSD), which is a time-domain metric for vagally mediated HRV and is expressed in 
milliseconds (45). To improve the distribution for statistical modelling, the RMSSD was 
logarithmically transformed (lnrMSSD), which is a common procedure (46).

Daily HRV fluctuations were operationalized by calculating the 7-day rolling standard 
deviation (HRVsd) when HRV observations on at least three out of the seven prior days 
were available (47). Other studies on daily HRV fluctuations have applied a seven-day 
moving window to account for weekly influences and calculate a coefficient of variation 
(37,41). Using the coefficient of variation is helpful if between-subject comparison of 
HRV fluctuations is targeted, as HRV can differ vastly between individuals (48). That 
approach does not apply to this study, which analyses within-subject trends in daily HRV 
and fluctuations therein. Since this study explores moderating effects between those 
two trends, using a coefficient of variation means that a small portion of the variation 
of the daily HRV trend is included in the daily HRV fluctuations metric, increasing the 
likelihood of a type II error occurring and making it less ideal than using a seven day 
rolling standard deviation within the aims of this study.

To determine trends in daily HRV, HRVsd, and control variables, a linear regression 
model was used to examine the rate of change as a function of time (41). To do so, 

6



589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries
Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023 PDF page: 142PDF page: 142PDF page: 142PDF page: 142

142 CHAPTER 6

measurements between longitudinal questionnaires were first filtered into subsets 
with the daily observations between two questionnaires. Linear regression models 
were then created by regressing each of the variables on time (the dates). A positive 
beta-coefficient, therefore, represents an uptrend over the respective period, whereas 
a negative beta-coefficient represents a downtrend.

Control variables
To account for confounders, control variables for Total Sleep Time (TST), Moder-
ate-to-Vigorous Physical Activity (MVPA), and alcohol use were included. TST, which 
is the total duration of the main sleep episode that the user is asleep, was measured 
using the Oura ring (49). The Oura ring also measured MVPA, which is the number of 
minutes of physical activity at an intensity of at least 3 times the metabolic equivalent 
(MET) of the resting state. Alcohol use was measured with a daily EMA question that was 
available from 19:00 to 15:00 the next day to accommodate for night shifts. The item 
inquired about the number of consumed alcoholic beverages that day and was based 
on the AUDIT-C questionnaire (50). Data for the EMA question were collected using an 
in-house developed smartphone application and stored on-premise. As with HRV and 
HRVsd, trend scores were determined via linear regression models, where a positive 
beta-coefficient represents an uptrend, and a negative beta-coefficient represents a 
downtrend on the measure within the respective five-week period.

Data analysis
Data management and analyses were performed in RStudio (51) and R (52). Values for 
the changes on the longitudinal questionnaires and trends in the daily observations 
were standardized at the grand mean (subtracting the mean value of all observations 
from each value and then dividing it by the standard deviation of all observations). This 
procedure was applied to prevent scaling issues during statistical testing and optimize 
the comparability of the beta-coefficients of the final models (53). Each five-week data 
collection period represented one observation for which the change scores on the 
longitudinal questionnaire are compared to the trends in the daily measurements. For 
instance, if all 10 participants completed 4 data collection periods, that would result in 
a total sample of 40 observations available for analysis.

A three-step hierarchical modelling approach was used. The outcomes were first mod-
elled based on the control variables for trends in TST, MVPA, and alcohol use, after 
which the main variables for trends in HRV and HRVsd were added in step two. In 
the third and final step, the interaction effect between trends in HRV and HRVsd was 
added to create the full model. Initially, Linear Mixed Modelling with fixed effects and 
random slopes was performed to account for repeated measurements within partic-
ipants. However, analyses experienced singular bound problems due to a lack of be-
tween-subject variance, which is a sign that the fitted models may be too complex and 
more parsimonious models should be considered (54,55). We, therefore, chose to apply 



589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries
Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023 PDF page: 143PDF page: 143PDF page: 143PDF page: 143

143Trends in daily heart rate variability fluctuations are associated with stress and somatization

more parsimonious multiple regression analyses instead, which yielded the same results 
and conclusions that were drawn based on the initial multi-level modelling approach.

RESULTS

The data of this sample of 47 five-week observations included a total of 57 longitudinal 
questionnaires. Daily data were available on 1734 unique person-days, of which 1648 
(94.3%) included HRV data and 1458 (89.0%) included EMA data. Based on interviews 
and manual inspection of missing data, missing HRV data were attributed to drained 
ring batteries, accidentally not wearing the ring, or could not be explained. Missing EMA 
questionnaire data were primarily attributed to forgetting to fill it in before going to 
bed. Two participants (22.2%) had moderately elevated stress on the 4DSQ at baseline, 
whereas the remaining seven (77.8%) did not have elevated stress at baseline. No par-
ticipants (0%) had elevated depression, anxiety, or somatization levels at baseline. The 
intercorrelations between the changes in the longitudinal questionnaires and trends 
in the wearable and control variables are described in Table 1.

Table 1: Intercorrelations between the wearable (1-2), longitudinal (3-6) and control (7-9) 
variables.

Variable Correlation

1 2 3 4 5 6 7 8

1. HRV uptrend -

2. HRVsd uptrend -.04 -

3. Stress increase -.09 .43 ** -

4. Anxiety increase -.00 -.04 .24 -

5. Depression increase .06 -.03 .31 * .15 -

6. Somatization increase -.03 .42 ** .56 *** -.03 .09 -

7. TST uptrend .01 -.01 .11 -.22 .10 .09 -

8. MVPA uptrend -.13 .09 -.21 -.05 .12 -.17 -.28 . -

9. Alcohol use uptrend -.12 -.21 -.06 .28 . .03 -.19 -.47 *** .14

Note. N=47; *** p<0.001, ** p<0.01, * p<0.05, . p<0.1; HRV: Heart Rate Variability; HRVsd: 7 
day rolling standard deviation of the HRV; TST: Total Sleep Time; MVPA: Moderate-to-Vigorous 
Physical Activity.

A three-step hierarchical multiple regression model for five-week stress changes was 
formed (Table 2). After controlling for trends in TST, MVPA, and alcohol use, uptrends 
in daily HRVsd were associated (p = 0.004) with increased stress, whereas daily HRVsd 
downtrends were associated with decreased stress (Figure 1). Trends in the daily HRV 
itself were unrelated to stress and did not buffer against the positive association be-
tween trends in daily HRVsd and stress increases. Hypothesis 1 is therefore partially 
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confirmed. The full model explains 18.5% of the variance in five-week stress changes 
and provides a marginally significant improvement (p = 0.08) over the control model 
but is not significantly different from the main effects model (p = 0.96).

Table 2. Hierarchical multiple regression model for five-week stress increase

Independent variable Stress increase

Step 1 Step 2 Step 3

β β β

Intercept −0.019 −0.024 −0.029

TST uptrend 0.048 0.075 0.056

MVPA uptrend −0.209 −0.275 . −0.276 .

Alcohol use uptrend −0.005 0.100 0.092

HRV uptrend −0.098 −0.089

HRVsd uptrend 0.590 ** 0.542 **

HRV uptrend * HRVsd uptrend −0.224

R2 0.047 0.267 0.291

Adjusted R2 −0.019 0.177 0.185

F 0.711 2.984 * 2.737 *

ΔR2 0.220 0.024

ΔF 2.273 . −0.247

Note. N = 47; ** p < 0.01, * p < 0.05, p < 0.1; HRV: Heart Rate Variability; HRVsd: Heart Rate 
Variability, 7-day rolling standard deviation; TST: Total Sleep Time; MVPA: Moderate-to-Vigorous 
Physical Activity.

Another three-step hierarchical multiple regression model was formed for a five-week 
somatization change (Table 3). After controlling for trends in TST, MVPA, and alcohol 
use, uptrends in daily HRVsd were positively associated (p = 0.01) with somatization 
increase, whereas downtrends in daily HRVsd were associated with a decrease in so-
matization. Trends in daily HRV itself were not associated with changes in somatization, 
but uptrends in daily HRV moderated (p = 0.04) the association between daily HRVsd 
uptrends and somatization increase. The interaction plot in Figure 2 shows that up-
trends in daily HRVsd are associated with somatization increase when the daily HRV 
trends down, but not when it trends up. Therefore, uptrends in daily HRV buffer against 
the positive association between uptrends in daily HRV fluctuations and somatization 
increase, as expected. Hypothesis 4 is therefore partially confirmed. The full model 
explains 21.3% of the variance in the five-week somatization change and provides a 
marginally significant improvement (p = 0.07) over the control model but not over the 
main effects model (p = 0.76).
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Figure 1: Scatter plot for the five-week uptrends in the 7 day rolling mean of the Heart Rate Vari-
ability (HRVsd) versus five-week stress increases on the Four-Dimensional Symptom Questionnaire 
(4DSQ). The grey area represents the 95% confidence interval for the values that are estimated 
by the linear model (the black line).

Table 3. Hierarchical multiple regression model for five-week somatization increase.

Independent variable Somatization Increase

Step 1 Step 2 Step 3

β β β

Intercept 0.003 −0.002 −0.012

TST uptrend −0.051 −0.024 −0.058

MVPA uptrend −0.169 −0.224 −0.226

Alcohol use uptrend −0.191 −0.091 −0.107

HRV uptrend −0.054 −0.038

HRVsd uptrend 0.530 ** 0.443 *

HRV uptrend * HRVsd uptrend −0.407 *

R2 0.061 0.234 0.315

Adjusted R2 −0.004 0.141 0.213

F 0.931 2.508 * 3.069 *

ΔR2 0.173 0.081

ΔF 1.577 0.561

Note. N = 47; * p < 0.05, p < 0.1; HRV: Heart Rate Variability; HRVsd: Heart Rate Variability, 
7-day rolling standard deviation; TST: Total Sleep Time; MVPA: Moderate-to-Vigorous Physical 
Activity.
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Figure 2: Estimated coefficient for the association between the five-week uptrend in the 7-day 
rolling standard deviation of the Heart Rate Variability (HRVsd) and five-week somatization in-
crease by the five-week HRV uptrend. The grey area represents the 95% confidence interval for 
the values that are estimated by the linear model (the black line)

For depression (Hypothesis 2) and anxiety (Hypothesis 3), no models could be formed. 
This was related to floor effects on both scales. On the 56 questionnaires, 52 (92.9%) 
were scored zero on depression and 49 (87.5%) on anxiety. None reached cut-off points 
for elevated levels, illustrating a complete absence of clinically relevant symptoms.

DISCUSSION

This study hypothesized that increasing trends in daily HRV fluctuations and decreasing 
trends in daily HRV are associated with five-week increases in (i) stress, (ii) depression, 
(iii) anxiety, and (iv) somatization, and that increasing trends in daily HRV buffer against 
the positive association between the uptrends in daily HRV fluctuations and increases 
in these outcomes. The results of this study showed that uptrends in daily HRV fluctu-
ations were indeed associated with increased stress and somatization, and uptrends 
in daily HRV buffered against the positive association between uptrends in daily HRV 
fluctuations and somatization increase (Hypotheses 1 and 4). Uptrends in daily HRV were 
not directly associated with changes in any of the outcomes, and changes in depres-
sion and anxiety could not be linked to trends in daily HRV nor daily HRV fluctuations 
(Hypotheses 2 and 3) due to floor effects. Hypotheses 1 and 4 are therefore partially 
confirmed, whereas Hypotheses 2 and 3 are unconfirmed.
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Associations between daily HRV fluctuations, stress and somatization
When the day-to-day variation in the daily HRV trended up, participants were more 
likely to report increased stress on the next five-weekly questionnaire. Since HRV re-
flects the functioning of the autonomic nervous system (56), which continuously strives 
to restore homeostasis when faced with stress (2), the relationship between increased 
stress and homeostatic disturbances is intuitive. Although the existing body of knowl-
edge on this topic is limited, this result aligns with that of two prior studies that related 
an uptrend in daily HRV fluctuations to stress increase in soccer players (39,40). To our 
knowledge, this study is the first to explore associations between trends in daily HRV 
and fluctuations therein to longitudinal mental health outcomes in an occupational 
setting. The reported results, therefore, contribute valuable new insights that mea-
suring HRV on a daily basis using a consumer-available wearable may be a feasible and 
effective approach for the unobtrusive and early recognition of changes in stress in 
occupational settings.

This study also linked uptrends in daily HRV fluctuations to increased somatization 
scores, whereas daily HRV uptrends were buffered against this. The interaction plot in 
Figure 2 showed that the association between uptrends in daily HRV fluctuations and 
increases in somatization is only significant when combined with a downtrend in daily 
HRV but not when daily HRV is increasing. To our knowledge, this specific association 
has not been addressed in prior literature. There is some overlap with a prior study that 
reported an association of increased daily HRV fluctuations and decreased daily HRV 
with muscle soreness in swimmers during overload training (57). However, in our study, 
somatization increase was not related to uptrends in MVPA (Table 3) but was significant-
ly correlated (r = 0.56; Table 1) to stress increase, underlining a possible difference in 
the underlying mechanisms between training- and stress-induced somatic symptoms.

Floor effects in depression and anxiety
No associations of trends in daily HRV and daily HRV fluctuations with five-week changes 
in depression and anxiety were found. Since 92.9% of all depression scores and 87.5% 
of all anxiety scores were zero and the cut-off points for elevated levels on these scales 
were not reached on any observation, there was a complete absence of clinically rel-
evant symptoms on these dimensions. Since the presence of floor effects means that 
there may be insufficient variance within the respective sample to find a statistically 
significant effect even if there could be one in the full population (type II error) (58), this 
absence of proof should not be interpreted as a proof of the absence of this associa-
tion. Based on population studies that related HRV to depression (32) and anxiety (31), 
this hypothesis warrants further investigation in future studies under populations that 
experience more clinically relevant symptoms or that use more sensitive measurement 
instruments.
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Strengths and limitations
This study used a consumer-available wearable that is known to produce valid daily 
HRV data (43,44) to measure HRV on 94.3% of all 1734 person-days on which data were 
reported. The trends in daily HRV that are analyzed in this paper are therefore based on 
more granular data than longitudinal studies that apply a pretest-posttest design and 
are likely a good reflection of the true daily HRV trends over the full five-week periods. 
Another strength of this study is that data were collected within a naturalistic setting, 
optimizing the generalizability of the reported findings to real-world applications. By 
applying a novel design to assess the relationship between daily HRV observations 
that are measured with a consumer-available wearable and longitudinal mental health 
outcomes, this study takes important steps in a nascent but promising research field.

A sample of 47 five-week observations was analyzed, based on data collected by nine 
Dutch police officers. Not all participants contributed equally in the number of col-
lected five-week observations. Although there are no indications that using nested 
observations within this sample or the unequal contribution of observations were prob-
lematic, replication of these findings in a larger sample of participants collecting an 
equal number of observations would be beneficial for the external validity. Similarly, 
future studies that analyses a larger number of observations may consider applying 
cross-validation methods. For example, studies could use the observations of a subset 
of participants to predict the outcomes in the remainder of the participants.

Finally, data collection occurred during the COVID-19 pandemic. A study under 2567 
European police officers reported decreased strain during the pandemic, where the risk 
of infection and deficient communication were the main stressors (59). Another study 
found that COVID-19 lockdowns lead to increased HRV in 20% and decreased HRV in 
80% of the French general population (60). Thus, it is possible that the unique context 
of this period influenced the observed daily HRV values and mental health outcomes. 
However, since this study does not assess these actual outcomes but observes to what 
extent trends between them are interrelated, this context is unlikely to have directly 
influenced this study’s findings.

Implications
The results showed that uptrends in daily HRV fluctuations were related to five-week 
increases in stress and somatization and that uptrends in daily HRV buffer against the 
association between uptrends in daily HRV fluctuations and somatization increase. If 
these findings are replicated in future studies, they show that tracking daily HRV using 
a consumer-available wearable holds promise for early recognition of the impact of 
stress and for personalized feedback based on objective data in stress management 
interventions. Companies that are developing these wearable devices or related systems 
can then consider including metrics for daily HRV fluctuations (e.g., the 7-day rolling 
standard deviation or coefficient of variation) and estimate periodic trends in the daily 
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HRV and daily HRV fluctuations. The presence of a statistically significant trend in the 
daily HRV fluctuations could then be used to trigger personalized in-app feedback, no-
tifying the user that a trend was witnessed that may be stress-related. Such a trigger 
could, for instance, nudge the user to reflect on the current situation, consider coaching 
or offer other interventions aiming to limit the negative impact of stress.

6
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General discussion
The aim of the Wearable and app-based resilience Modelling in employees (WearMe) 
study was to improve the current state of knowledge on how (changes in) resilience 
can be modelled based on data that is derived from wearables and apps. Models on 
the extent to which wearable-based data can be used to recognize the negative impact 
of stress in an early stage, or predict when the individual is more vulnerable to stress, 
may benefit the future development of automated resilience interventions. Such inter-
ventions could use continuous and unobtrusive monitoring to generate personalized 
just-in-time feedback on a person’s resilience, allowing the individual to be more frugal 
with the available resources or better prepare for upcoming demands in order to miti-
gate the adverse impact of stress. This approach is for instance relevant for individuals 
in high-risk professions that are regularly faced with highly demanding circumstances 
(e.g., police officers or military personnel), but can also be utilized in other sectors that 
cope with increased stress and related absenteeism (e.g., education, healthcare) and 
thus benefit a broad audience.

The chapters in this thesis describe several studies that contributed to this goal. This 
final chapter will first provide an overview of the main findings of these studies and 
discuss their relevance for the overarching purpose of this thesis in the context of the 
broader scientific literature on the topic. Subsequently, several methodological con-
siderations with regard to these studies are discussed (e.g., differences between and 
iterative improvements in the study design of these studies). Finally, a reflection on 
the future directions of research on wearable-based resilience modelling is presented, 
before closing off by briefly summarizing the overarching conclusions that can be drawn.

Main findings and discussion
The chapters of this thesis explored associations of wearable-measured sleep and rest-
ing Heart Rate Variability (HRV) with subjective resilience-related outcomes based 
on several different methodologies and on intra-day, multi-day and multi-week time-
frames. For each of the main outcomes, the findings of the respective timeframes are 
therefore complementary to each other. To provide a compelling overview, the main 
findings of these studies are therefore grouped per main outcome in the following sec-
tions by discussing (i) resting HRV as an index for resilience (chapters 2 to 5), (ii) stable 
daily resting HRV values during periods of adversity as a demonstration of resilience 
(chapter 6), and (iii) sleep as a predictor of resilience-related outcomes (chapters 3 to 5).

Resting HRV as an index for resilience
Chapter 1 introduced resting HRV as a psychophysiological resource that is a reflection 
of the ability to flexibly adapt to changing environmental demands and regulate emo-
tions (1). Based on population studies that investigate between-subject differences, 
having a high resting HRV is generally found to be positive for resilience, which is why it 
is sometimes referred to as an index for resilience (2,3). For instance, a high resting HRV 
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is associated with a lower sensitivity to perceive stress (4–6) and more optimal emo-
tion regulation (ability to exert control over one’s own emotional state) (7,8). Resting 
HRV has also been found to be positively associated with cognitive inhibition (ability to 
tune out irrelevant stimuli) and cognitive flexibility (ability to switch thinking about two 
concepts) (9). Since the majority of the current knowledge on the role of resting HRV in 
resilience is based on cross-sectional population studies that assess between-subject 
differences, longitudinal within-subject studies to measure resting HRV in a naturalistic 
context of real-life were needed (3). Chapters 2 to 5 utilized several different approaches 
to explore whether within-subject differences in resting HRV may indeed be reflective of 
changes in resilience. This section will briefly describe the main findings of each of these 
chapters and then provide an overarching discussion of them in the final paragraph.

The first study of this thesis, which is described in chapter 2, aimed to investigate to 
what extent resting HRV during sleep is associated with perceived mental and physical 
fitness on the subsequent morning. After following a group of 63 employees of the 
Dutch military for a period of up to 46 days using a wrist-worn wearable (Garmin Tactix 
Charlie) and daily Ecological Momentary Assessment (EMA) questionnaires on a smart-
phone app, resting HRV during sleep was found to have a small (2.4% explained vari-
ance) but significant positive association with perceived physical fitness, but not with 
perceived mental fitness. Based on this finding, resting HRV should not be interpreted 
as a direct proxy for perceived mental or physical fitness, but rather as a relatively in-
dependent psychophysiological resource. Therefore, resting HRV appears to be more 
complementary than substitutive for subjective measures of perceived resources that 
are subconsciously assessed during stress appraisal.

Chapter 3 introduced a conceptual model for the (intra-day) process of resilience by 
combining insights of existing theories (the Transactional Model of Stress and Coping 
(10), Job Demands-Resources Model of Burnout (11), Effort-Recovery Model (12) and 
Conservation of Resources Theory (13)) into a cyclical model. In this model, resting HRV 
was positioned as a psychophysiological resource that is utilized during the appraisal of 
demands and emotion regulation with regard to stress, and gets drained after mental 
exhaustion. Based on population studies, having a high resting HRV was expected to 
result in lower stress in demanding circumstances (more favorable appraisal) (4–6), as 
well as to lower the impact of stress on mental exhaustion (more favorable emotion 
regulation) (7,8). Mental exhaustion was also expected to lower resting HRV (14–16), 
which would thus form a potential negative feedback loop where an initial loss of 
resources lowers the individual’s resources to cope with upcoming demands and thus 
results in decreased resilience (13).

The study in chapter 4 tested these intra-day hypotheses in a group of 26 first-time 
interns that collected data during 15 weeks. This time, resting HRV was measured using 
a validated Bluetooth chest strap (Polar H7) (17) and smartphone app (Elite HRV) (18) 
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in a supine position during 2 minutes upon awakening whereas the subjective items 
were again inquired via a short evening EMA questionnaire on a smartphone app. The 
results showed that, as expected, resting HRV buffered against the positive association 
between demands and stress (22% explained variance), as well as between stress and 
mental exhaustion (32% explained variance). This means that when participants woke 
up with a relatively high resting HRV, they were less likely to report a highly demanding 
day as stressful, and less likely to feel mentally exhausted after a stressful day. Since 
evening mental exhaustion also negatively predicted resting HRV on the subsequent 
morning (4% explained variance), the cyclical nature of the conceptual model in chapter 
3 was confirmed. This finding aligns with the Conservation of Resources Theory, which 
states that an initial loss of resources increases one’s vulnerability to upcoming stress, 
potentially leading to a loss spiral that negatively impacts resilience (13). Although this 
study itself exclusively assessed intra-day associations, these findings provided valu-
able insights in the mechanism of how changes in resting HRV could potentially have a 
cascading effect on subsequent days.

Building on chapters 3 and 4, the study in chapter 5 investigated to what extent resting 
HRV can also be predicted by and is predictive of subjective resilience-related outcomes 
on a multi-day level. Data of 8 police officers that were followed for 15-55 weeks were 
analyzed using in a multiple n-of-1 observational study. Participants continuously wore 
a smart ring (Oura ring, generation 2) that was validated for both sleep (19,20) and 
resting HRV (18,21,22) and filled in a short EMA questionnaire on their smartphone at 
the end of each day. Resting HRV could only be predicted based on prior-day demands 
in 1 participant, and was also predictive of demands (n=2), stress (n=1) and mental ex-
haustion (n=1) on subsequent days in some participants. Although the applied vector 
autoregression models could only be based on data of the preceding day (1 lag), impulse 
response functions revealed that the impact of a change in resting HRV could take mul-
tiple days to fade out due to the strong autoregression that was consistently observed 
for resting HRV itself. These results showed that resting HRV was a better predictor of 
subjective resilience-related outcomes than vice versa, and were only observed in a 
select number of participants.

Several overarching conclusions can be drawn from this. Taken together, these results 
confirm the potential of wearable-measured resting HRV as an index for resilience, but 
also show that the daily resting HRV values are by themselves insufficient to mean-
ingfully guide resilience-related decision-making. The findings of chapters 2 to 5 also 
generally align with those of similar studies. For instance, a recent study found that 
within-subject differences in resting HRV buffered against the spillover of stress on 
negative affect (23), which is comparable to the buffering effects of resting HRV that 
were described in chapter 2. Another recent large-scale study found that mixed-effects 
generalized linear models could only explain an average of 1% of the variance in daytime 
stress based on wearable-measured HRV data and EMA questionnaires (24). The authors 
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concluded that although HRV is clearly associated with perceived stress in laboratory 
settings, the strength of those associations diminishes in real-life settings. Although this 
association between daytime HRV and stress is even more likely to be confounded by 
factors like body posture (25), exercise (26) and the intake of caffeine (27) or alcohol 
(28), the overarching conclusion regarding the modest strength of these associations 
may also apply to the findings of chapters 2-5.

Stable daily resting HRV values as a demonstration of resilience
The studies in chapters 2 to 5 assessed HRV as an index for resilience (“higher is better”), 
but it is also possible to look at stability in daily resting HRV values during periods of 
adversity as a demonstration of resilience (“stable is better”, chapter 6). This method 
originates from sports science, where researchers observed that athletes whose resting 
HRV values are stable on a day-to-day basis despite undergoing intensive training tend 
to respond better to training (29,30) and have a higher aerobic fitness (31–33). Seen 
through this lens, stable daily resting HRV values despite challenging circumstances are 
interpreted as a sign of positive adaptation, whereas increasing day-to-day fluctuations 
represent homeostatic disruptions that may result in cumulative wear and tear on 
bodily systems (allostatic load) (34,35). Increasing fluctuations in the daily resting HRV 
have also been linked to increased stress (36) and fatigue (37–39) in athletes, but were 
not yet explored in occupational settings. Despite being unexplored in this setting, the 
approach aligns with the Integrative Model of Resilience for Employees, which consid-
ers positive adaptation by maintaining optimal functioning despite adversity to be a 
demonstration of resilience (40).

The study that is described in chapter 6 utilized this approach to assess whether trends 
in the daily resting HRV and the fluctuations therein are associated with changes in 
stress, somatization, anxiety and depression in police officers. Nine police officers wore 
an Oura ring during 15-55 weeks and filled in a 5-weekly questionnaire on stress, so-
matization, anxiety and depression. The results showed that increasing trends in daily 
resting HRV fluctuations were associated with 5-week increases in stress and somatiza-
tion. Trends in the daily resting HRV measurements themselves were not directly related 
to these outcomes, but increasing trends in resting HRV did buffer against the positive 
association between the daily resting HRV fluctuations and somatization. This means 
that increasing daily resting HRV fluctuations were only associated with somatization 
when the underlying daily resting HRV measurements themselves were trending down 
or neutral, but not when the daily measurements were increasing. After publication of 
the results described in chapter 6, a similar study in a healthy general population was 
published, and found that individuals with relatively high or more stable daily resting 
HRV measurements have more favorable health and lifestyle markers, including lower 
perceived stress (41). These results therefore show that besides having a relatively high 
resting HRV, having a relatively stable resting HRV on a day-to-day basis despite chal-
lenging circumstances or adversity can be seen as a sign of positive adaptation (e.g., the 
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demands did not disrupt the balanced functioning of the autonomous nervous system), 
and thus as a demonstration of resilience (40).

Sleep as a predictor of resilience related outcomes
The third and final main outcome that was assessed as a potential predictor of resilience 
in this thesis (chapters 3 to 5) is Total Sleep Time (TST), which is the duration of the 
sleep episode without the sleep onset latency and waketime after sleep onset. In the 
conceptual model in chapter 3, TST was introduced as one of the variables reflecting 
the process of recovery. Based on prior research that showed that stress can negatively 
impact the recovery process by negatively impacting psychological detachment (42) and 
sleep (43), increased prior-day stress was expected to predict lower TST (hypothesis 1). 
Subsequently, TST was expected to moderate the hypothesized negative association 
between evening mental exhaustion and subsequent morning resting HRV (hypothe-
sis 2) based on the Effort-Recovery Model (12). Neither hypothesis was confirmed in 
the study in chapter 4. Other studies have also observed stress to be an inconsistent 
predictor of TST (44).

The study in chapter 5, which analyzed n-of-1 data of 8 police officers via vector au-
toregression, also did not find stress, mental exhaustion and vigor to be significant 
predictors of TST in any participant, although increased demands did predict lower TST 
in 1 participant. On the other hand, increased TST did predict lower demands (n=2), 
stress (n=3) and mental exhaustion (n=5) on the subsequent day, as well as increased 
vigor (n=5) in multiple participants. TST therefore appears to be a stronger and/or 
more consistent predictor of resilience-related outcomes than an outcome variable 
that is impacted by them, which aligns with findings of prior studies (44–47). Impulse 
response functions showed that the impact of changes in TST only lasted for about 1 
day, illustrating that these associations are of a short-term nature.

Methodological considerations
Although the studies described in chapters 2 to 6 use similar approaches to collect 
within-subject data on sleep and resting HRV, subtle nuances between these studies 
can be observed. This section will address several methodological considerations that 
were made in these studies and how in some cases follow-up studies iterated on prior 
data collections.

Sample size
Due to limitations in the available materials, budget and time, a choice had to be made 
between achieving (i) a sample with a larger number of participants (N) and lower 
number of observations per participant (n) via multiple data-collection waves, or (ii) a 
sample where a small number of individuals (N) are followed over a longer time span 
and thus a larger number of observations per participant (n). Exploring temporal with-
in-subject associations between wearable-data and subjective outcomes was important 
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for the overarching purpose of the WearMe study to contribute to systems that provide 
personalized risk-signaling and support. Therefore, a choice was made to prioritize a 
larger number of observations per participant over the total number of participants 
for the studies in chapters 3 to 6. This allowed us to contribute valuable insights based 
on longitudinal wearable data that was collected in a naturalistic real-world context 
which are needed for the current body of knowledge (3). As a resulting limitation of the 
described trade-off, the studies in this thesis were not equipped to draw conclusions on 
between-subject differences, for instance, concerning why certain associations were 
observed in some participants but not in others. The study in chapter 2 did have a larger 
number of participants (N=63) with a lower number of observations per participant 
(median n=15, maximum n=46) to accommodate the testing of intra-day, within-subject 
associations, but complementary between-subject models could not be formed due to 
privacy-related limitations (e.g., data on personal characteristics could not be collected).

Recruitment of healthy individuals in high-risk professions
The goal of the WearMe study was to develop models that may benefit the early de-
tection of resilience-related problems. Therefore, all studies recruited samples with 
healthy adults, optimizing their generalizability for this preventive context. Due to the 
observational nature of these studies, it was unknown to what extent the participants 
would actually experience stress- and resilience-related problems. Since the presence 
of variance in the analyzed data is a pre-requisite for the development of relevant 
statistical models, participants were recruited in populations (military personnel, 
first-time interns and police officers) that were expected to be at risk for experiencing 
stress. However, chapter 2 showed that the military participants felt mentally (M=8.11, 
SD=1.27) and physically (M=7.84, SD=1.37) fit throughout the study, while only modest 
within-subject variation (CV=4.7%) in resting HRV was observed as well. Similarly, the 
police officers in chapters 5 and 6 reported moderate stress and somatization but had 
a total absence of symptoms of anxiety and depression. These participants attributed 
this to unusually quiet and predictable work environments due to lockdowns during 
the COVID-19 pandemic, which other European police officers also described (48). The 
resulting floor effects may have led to an underestimation of the strength of the report-
ed associations (49). Therefore, it is unknown to what extent these findings also apply 
to individuals that are experiencing more extreme problems. Insight in the extent in 
which that is the case would benefit generalizability of the current findings, and thus 
allow for a potentially more diverse target group of future wearable-based resilience 
interventions that aim to prevent stress-related problems in employees.

Optimizing adherence
As described in the previous section, achieving a sample with sufficient observations 
per participant was necessary to create within-subject models. Besides collecting data 
over a sufficiently long period, ensuring completeness of the collected data is (at least) 
equally important. Therefore, the study protocol (chapter 3) for the study in chapter 
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4 described that participants would receive a gift voucher and individual feedback if 
they collected complete data for at least 80% of their full participation period. Although 
some participants did very well, just 42.2% (1,004 out of 2,379) of the total daily obser-
vations contained complete data of the participants’ resting HRV, sleep and the morning 
and evening EMA questionnaires. Of these four measurements, the completeness for 
resting HRV data was the lowest (60.7%). The relatively low availability of resting HRV 
data was attributed to the protocol that asked participants to lie still and perform a 
2-minute HRV measurement upon awakening, and even caused dropouts. While the 
data availability was sufficient to test the hypothesized within-subject nested, intra-day 
associations, it limited the possibilities to also assess temporal associations via time 
series analysis.

In preparation of the data-collection for the follow-up studies in chapters 5 and 6, three 
adaptations were made to the study protocol in order to improve adherence. First, the 
manual morning resting HRV measurement was replaced with an automatic nocturnal 
measurement via a wearable (Oura ring generation 2) that was validated for both sleep 
(19,20) and resting HRV (18,21,22). This reduced the number of measurement devices 
and allowed for a more passive data-collection. Second, the participants ordered a ring 
of their preferred size, shape and color, and were allowed to keep it if they collected 
complete data on at least 100 days (>71-95% of their expected participation period of 
15 to 20 weeks), improving the reward threshold. Finally, the morning and evening EMA 
questionnaires were combined into a single evening EMA questionnaire and limited to 7 
items. As a result, it was possible to send participants that forgot to fill in their evening 
questionnaire a reminder to do so on the next morning, which was particularly relevant 
for the police officers that also worked night shifts. The combination of these adjust-
ments resulted in significantly more complete observations in the studies in chapters 
5 (89.5%) and 5 (94.3% for sleep and resting HRV and 89.0% for EMA), allowing us to 
report on multi-day and -week associations.

Morning or nocturnal resting HRV measurements
The previous paragraphs described that in an iterative process, automated nocturnal 
HRV measurement was preferred over manual morning measurements. Although this 
adjustment was beneficial for adherence and made it possible to explore hypotheses 
that might not have been testable without it, there can be circumstances in which 
morning measurements may be preferrable. For instance, an older study (2011) found 
that between-subject differences in self-reported stress were related to a morning 
orthostatic (a protocol that includes a standing measurement) resting HRV measure-
ment, but not nocturnal HRV (50). A possible explanation for this is the occurrence of 
parasympathetic saturation, which is a situation in which parasympathetic activity is 
high but not reflected well in HRV (51–53). Parasympathetic saturation is particularly 
observed in highly trained individuals (54), but may also occur in heart patients or 
healthy individuals with a low resting heart rate (53). It has been suggested that adding 
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orthostatic stress and increase heart rate by measuring resting HRV upon awakening in 
a sitting (55) or standing (56) position, may help prevent parasympathetic saturation. 
However, parasympathetic saturation is not always eliminated by measuring resting 
HRV in an upright position (57) and standing measurements can vastly reduce com-
pliance (52). To summarize, sitting or standing measurements upon awakening appear 
to be more ideal resting HRV measurements in individuals that are highly trained or 
have an otherwise very low resting heart rate and are motivated to adhere to a strict 
measurement protocol, but for the broader general public, the convenience of unob-
trusive HRV measurements during sleep are more likely to result in usable data. All 
things considered, for future wearable-based resilience interventions that aim to reach 
a relatively broad audience, unobtrusive nocturnal HRV measurements are therefore 
likely the best option.

Inter-beat-interval data processing
For accurate wearable-based HRV measurements, it is important to apply appropriate 
data processing methods, as photoplethysmography measurements are susceptible to 
motion artefacts (58). Motion artefacts particularly influence frequency domain HRV 
parameters, whereas time domain parameters are more robust (58,59). As a result, 
both wearable-based HRV research and wearable manufacturers have converged to 
using the root Mean Square of the Successive Differences (rMSSD), which reflects para-
sympathetic nervous system activity, as a primary HRV metric (60). The studies in this 
thesis have utilized several different methods for measuring resting HRV data. These can 
largely be grouped into (i) custom resting HRV calculation based on self-collected and 
-processed inter-beat-interval data, and (ii) HRV measurements derived from wearables 
using proprietary but validated algorithms.

Due to privacy-related considerations, the data of the study in chapter 2 was not al-
lowed to be stored on external servers. As a practical implication, it was necessary to 
directly derive and process heart rate and accelerometer data from the wearable. An 
open-source algorithm was used to detect sleep (61), of which the inter-beat-intervals 
were also analyzed using a publicly available artefact correction method (17). Using a 
validated wearable was preferred for the study in chapters 3 and 4 but unavailable at 
that time. Electrocardiography-based measurements using a validated Polar H7 chest 
strap (17) were found to be best alternative with regard to the validity and feasibility 
of the measurements. The resulting inter-beat-intervals were processed using an algo-
rithm in a publicly available R-package (62), after which it was necessary to also remove 
within-subject outliers with values with extreme values (>1.5 interquartile range above 
the first quartile or below the third quartile) to clean the data. The follow-up study in 
chapters 5 and 6 used the Oura ring (2nd generation), which was by then validated for 
both TST (19,20) and resting HRV (18,21,22). Since the accuracy of nocturnal HRV mea-
surements indirectly depends on the accuracy of sleep detection (e.g., to limit motion 
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artefacts during an awake state), using a wearable that is validated for both 2-stage 
(sleep/wake) sleep detection and HRV measurement itself is important.

Future directions of wearable-based resilience modelling
This thesis provided a first exploration of the potential of wearable sensor technology 
for modelling stress resilience. Although valuable insights were gained, future research 
is needed to confirm and expand on the presented findings. This section discusses rec-
ommendations and potential directions for future research regarding the improvement 
of current within-subject models, the potential expansion towards between-subject 
models and the eventual development of personalized feedback and applications.

Recommendations for studies based on the current findings
This thesis introduced novel insights on within-subject associations of wearable-based 
sleep and resting HRV measurements with resilience-related outcomes that need to 
be confirmed. Three practical methodological recommendations for similar research 
efforts can be made. First, future studies are recommended to use a wearable that can 
validly and automatically measure sleep and nocturnal resting HRV. In sub-populations 
that have a very low resting heart rate (e.g., highly trained individuals or patients that 
use heart rate suppressing medication) and are motivated to adhere to a strict mea-
surement protocol, morning resting HRV measurements in a sitting or standing posi-
tion may be more expressive. Second, studies that are processing inter-beat-intervals 
themselves are recommended to consider the methods that were used in chapter 2 (a 
well-described method in prior research (52)) over those used in chapter 4 (the com-
bination of a publicly-available R package (62) and removing within-subject outliers), 
as the former do not rely on measurements outside of the HRV measurement that 
is being processed. Finally, adherence may be improved by minimizing the number 
of measurement devices and -moments and appropriately rewarding participants for 
adhering to the measurement protocol.

Besides confirmation and further exploration of the current results, two recommenda-
tions on different design and statistical approaches can be made. First, future studies 
with a large number observations per individual are encouraged to explore to what 
extent the strength of the associations between wearable-based metrics and subjective 
resilience-related outcomes changes over time, for instance via Time-Varying Vector-Au-
to-Regression (TV-VAR) analysis (63). Such insights may improve our understanding of 
why the associations in chapter 5 were not consistently observed, as well as potentially 
benefit personalization in future interventions. Second, future studies with a large 
number of participants are recommended to investigate if between-subject differences 
in the strength of the associations between wearable-based metrics and subjective re-
silience-related outcomes can be explained by participant characteristics, for instance 
via Multi-Level Vector-Auto-Regression (ML-VAR) (64). Such models may be able to 
distinguish differences in resilience between individuals based on stable characteris-
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tics (e.g., gender, age, personality traits), before any of the continuous within-subject 
data (e.g., resting HRV or sleep) is collected. Since a certain amount of this continuous 
data needs to be collected to form within-subject models, future interventions would 
benefit from between-subject models that can provide semi-personalized feedback 
while the system is still gathering the within-subject data that is needed to provide 
fully personalized feedback (65).

Finally, it may be interesting for future studies to explore similarities in and differences 
between the type of field studies in this thesis and studies in laboratory conditions. 
Similarities between both types of research provides confluence that strengthens con-
fidence in existing theories, whereas differences could inspire the development and 
testing of new theories.

Interpretation of daily resting HRV measurements
This thesis investigated resting HRV as an index for resilience (“higher is better”, chap-
ters 2 to 5) and trends in the day-to-day fluctuations therein as a demonstration of 
resilience (“stable is better”, chapter 6). A third approach is to assess how (un)usual 
daily resting HRV measurements are in comparison to intra-individual norms (“normal 
is better”), where values that deviate (e.g., 0.5 or 1 standard deviation) from a lon-
ger-term (e.g., 4 to 8 weeks) rolling within-subject mean are labelled as abnormal dis-
ruptions of the balanced functioning of the autonomous nervous system that may 
signal increased physiological stress and/or insufficient recovery from previous mental 
or physical demands (66–68). This approach is currently unexplored in psychological 
resilience research but common in HRV guided training (69). An interesting and prom-
ising application of such an approach is described in Box 1.

7



589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries
Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023 PDF page: 168PDF page: 168PDF page: 168PDF page: 168

168 CHAPTER 7

Box 1: Using personalized norm zones to detect abnormal HRV values
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An example of an HRV guided training application that uses the “normal is better” 
approach is HRV4training Pro (70), a smartphone app that provides personalized training 
recommendations based on a combination of resting HRV and subjective inputs on perceived 
sleep, fatigue, soreness, stress and more. The app displays a personal norm zone (the 
translucent white band) that is based on historical measurements (1 standard deviation 
around the rolling 60-day mean), a rolling weekly mean (white line) and each of the daily 
measurements (colored bars) that are color-coded by the daily advice on whether to 
“proceed as planned” (green), “limit intensity today” (yellow) or “take it easy today” (red, 
not displayed here). The displayed data are of the author of this thesis and contain values 
of a relatively care-free summer holiday but with unusually high training volume (dates 
up to 20-8) and the return home with lower training volume but relatively long workdays 
in order to finish this thesis, illustrating the relative impact of mental demands on resting 
HRV in comparison to physical demands. The daily resting HRV measurements with values 
below the norm zone triggered recommendations to limit intensity on those days, and here 
particularly occurred during the period with relatively low training load but high mental 
workload. In this example, the measurements with values above the norm zone were not 
flagged because they were combined with positive subjective inputs, but can also trigger 
a warning when the subjective inputs are less favorable. From this perspective, resting 
HRV values that deviate from the personal norm reflect an imbalance in the autonomous 
nervous system, where extremely low values represent abnormally high sympathetic 
activity and extremely high values represent abnormally high parasympathetic activity. 
This approach has been applied in numerous athletic studies for over a decade (66–68), in 
which extreme deviations in daily resting HRV are for instance associated with suboptimal 
athletic performance on that day (71). The applicability of this specific “normal is better” 
approach for stress resilience modelling and/or providing feedback is currently unexplored.

Promising developments in wearable sensors and related technologies
The studies that are described in this thesis reported modest associations between 
resting HRV, TST and subjective resilience-related outcomes. It may be possible to in-
crease the explained variance by including additional relevant metrics to these models. 
When it comes to wearables, several potentially interesting developments may intro-
duce new opportunities for this on a short-term basis. Current consumer-available 
wearables are generally considered to be valid for sleep-wake detection but not for 
5-stage sleep stage measurement (72), but vastly improved algorithms have recently 
been announced (73). Since the impact of emotions on sleep can differ per sleep stage 
(74), more accurate wearable-based sleep stage detection could contribute to a more 
detailed understanding of associations between sleep and resilience. Another current 
development is the addition of continuous electrodermal activity (EDA) sensors in con-
sumer-available wearables (e.g., in the Fitbit Sense 2 that was announced in August 
2022). EDA sensors assess (changes in) the electrical conductivity of the skin and can, 
particularly when combined with other metrics such as HRV, contribute to automatic 
stress detection (75). Although the accuracy of these sensors needs to be verified first, 
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the prospect of unobtrusively quantifying an individual’s daily (emotional) burden is 
conceptually interesting for resilience modelling.

In more fundamental research, several other promising developments may also even-
tually trickle down towards consumer-available wearable systems. One example of this 
is the noninvasive detection of the stress hormone cortisol via wearable-based sweat 
analysis (76). By triangulating the current autonomic nervous system-based metrics 
(e.g., HRV) with endocrine system-based metrics like this, it may be possible to better 
distinguish when an aroused state also has hormonal impacts that may impact health 
and well-being. Similarly, wearable-based solutions for noninvasive continuous glucose 
monitoring are currently being investigated (77). Since changes in blood glucose levels 
influence cognitive performance (78), wearable-based continuous glucose monitoring 
may also be relevant for stress resilience modelling. Finally, recent explorations of 
electrogastrography (EGG) provide intriguing prospects. EGG measures gut activity and 
has been used to estimate affect (79). Since current wearable-based metrics for stress 
recognition (e.g., HRV) are particularly good at detecting arousal, adding sensors that 
can also estimate emotional valence would allow more nuanced distinguishment of 
emotional stages as proposed by the circumplex model of affect (80), sometimes also 
referred to as the Valence-Arousal model.

Several recent studies showed that affect can be also predicted by complementing 
wearable data (e.g., sleep, physical activity, heart rate, HRV) with smartphone use and/
or geolocation data (81–84). Although the specific metrics that were used differed 
between these studies, the machine learning models in these studies all achieved a 
similar an Area Under the Curve (AUC) of the receiver operating characteristic of up to 
0.81-0.82 (81,83,84). This also highlights the potential of machine learning to generate 
well-performing models. The studies in this thesis utilized a deductive approach to for-
mally test hypotheses that were driven by fundamental reasoning and prior studies. As 
our understanding of these associations improves and research efforts gradually move 
towards implementation in Just-In-Time Adaptive Interventions (JITAI) that aim to have 
a real-world impact (85), inductive machine learning approaches may be more beneficial 
to optimize model performance. Improved model performance would mean that the 
envisioned resilience interventions are able to provide more accurate personalized 
feedback. As such, they would be more equipped to contribute to the prevention of 
the stress-related problems that are currently posing a major burden on society (86).

To conclude
This thesis explored to what extent subjective resilience-related outcomes can be mod-
elled based on data that is derived from wearables and apps. The chapters in this thesis 
showed that (i) waking up with a relatively high resting HRV compared to one’s own 
norm is positive in the context of resilience, (ii) having relatively stable daily resting 
HRV values during periods of adversity can be seen as a demonstration of resilience, 
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and (iii) subjective resilience-related outcomes tend to be more favorable after nights 
with a relatively high TST. However, the explained variance in these models was modest 
and some of the observed associations were not consistently observed in all cases. 
Future studies that investigate potential changes of the strength of these associations in 
specific conditions or between individuals are therefore needed. Furthermore, comple-
menting the current models by adding additional variables (e.g., EDA, smartphone use, 
geolocation, etc.) and using more inductive approaches (e.g., machine learning) can be 
considered to generate high-performing models for resilience. If successful, such models 
can be implemented in automated interventions that provide personalized and just-in-
time feedback on resilience based on unobtrusive monitoring via wearables and apps.

7
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SUMMARY

Introduction
As soon as a human being is exposed to demanding conditions, the brain subconsciously 
determines whether there are sufficient resources available to deal with the situation 
(for example: adequate physical and mental fitness). If there are, the brain interprets 
the situation as a challenge. If there are not, the brain interprets it as a threat. The latter 
evokes a state of tension that is also referred to as ‘stress’. Stress prepares the body for 
‘fight or flight’. This is highly useful when facing traditional threats, such as predators, 
but is often less useful for modern threats, such as deadlines and social interactions. 
Stress suppresses the prefrontal cortex, which is the part of the brain that is responsi-
ble for decision-making and social behavior. It also suppresses the amygdala, which is 
the brain’s emotional alarm center. Stress feels annoying and can be inconvenient, but 
when it persists for a long time, it can also contribute to the development of physical 
and mental health problems, reduced productivity, and absenteeism. Early recognition 
of stress-related problems or of reduced resilience (the capacity to adaptively cope 
with stress) can therefore serve as a timely warning to change something, and can 
even support to prevention.

Recent developments in wearable sensor technology, also known as wearables, offer 
promising opportunities for such early detection of problematic stress. Wearables ini-
tially became popular for tracking exercise, but are now also able to measure sleep and 
bodily signals such as heart rate variability (HRV). HRV is a measure for the amount of 
variation between heartbeats and reflects good functioning of the autonomic nervous 
system. For example, HRV declines after exposure to stress, exercise, alcohol, and illness 
so that the sympathetic part of the nervous system (that is active in the ‘fight-or-flight’ 
state) is activated at the expense of the parasympathetic ‘rest-and-digestion’ part. 
Having a high resting HRV is related to reduced stress sensitivity and to improved abil-
ity to control one’s emotional state (emotion regulation), to ignore irrelevant stimuli 
(cognitive inhibition), and to think about different things (cognitive flexibility). Like sleep, 
which also positively contributes to stress-resilience and can be hindered/negatively 
impacted by stress, resting HRV may be useful for prediction of resilience and for timely 
recognition of the negative impact of stress. It therefore also has potential as a cue for 
timely feedback in automated resilience interventions.

Previous research on relationships between resting HRV and sleep with stress-related 
outcomes often looked at differences between individuals (for example: how does 
my resting HRV compare to that of others, and what does that mean?). This is useful 
for understanding how HRV and sleep relate to stress and resilience and for making 
statements about groups of people. However, these insights cannot be automatically 
translated into the context of personalized feedback, which focuses on differences 
within individuals (how does my current resting HRV today compare to that on other 
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days, and what does that mean for me?). Therefore, it is not possible to perform risk 
signaling based on between-subject models, but rather only on within-subject models. 
The studies in the Wearable and app-based resilience Modelling in employees (WearMe) 
study therefore used wearables and smartphone applications to collect daily data on 
resting HRV, sleep, and stress- and resilience-related outcomes in a natural context. 
Based on this data, statistical models were developed that may be used in future re-
silience interventions to provide timely personalized feedback. This summary briefly 
describes the main findings of each chapter and concludes with some overarching 
conclusions and points for discussion.

The first paragraph of this summary showed that the availability of perceived resources 
such as fitness determines whether the brain judges a demanding situation as challeng-
ing or threatening (for example: a very fit person may experience stress if they think 
they are not fit enough for a certain situation). In previous research, resting HRV has 
been related to various aspects of mental and physical functioning. However, it is still 
unclear to what extent it is also associated with perceived mental and physical fitness. 
Improved insight into this connection may help to better understand how resting HRV 
may affect stress and resilience. Chapter 2 therefore explores to what extent resting 
HRV during sleep is predictive of perceived mental and physical fitness the following 
morning. A group of 63 marines in training and employees of the Health Organization 
of the Dutch Defense collected data for several weeks or up to a maximum of 57 days 
via a wrist-worn wearable (Garmin Tactix Charlie) and an app with short, daily ques-
tionnaires. The results showed that resting HRV during sleep had no demonstrable 
relationship with mental fitness, but a weak relationship with physical fitness (only 
2.4% of the difference in physical fitness within individuals could be explained by it). 
Resting HRV thus appears to be somewhat more clearly related to perceived physical 
fitness than to perceived mental fitness, but should be seen as a largely independent 
psychophysiological resource in the context of stress and resilience.

In chapter 3, a conceptual model is introduced for how resting HRV and sleep relate 
to demands, stress, and mental exhaustion (Figure 1). Based on previous research, the 
model hypothesizes that resting HRV is a psychophysiological resource that has a pro-
tective effect on the influence of exercise on stress, as well as on the influence of stress 
on mental exhaustion. In addition, mental exhaustion is expected to lead to decreased 
resting HRV, and thus to a possible vicious cycle due to the protective influence of 
resting HRV on the impact of demands and stress. Stress is also expected to negatively 
impact the sleep that is needed to recover and thus limit any negative impact of mental 
exhaustion on resting HRV. The model is based on existing, more transcending models 
and theories, and it supplements these by describing short-term relationships (within 
a day) which can be tested, for example, using consumer wearables and smartphone 
applications.

A1
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Figure 1: The conceptual model for the WearMe study.

Chapter 4 then describes a study in which the hypotheses from the conceptual model 
are tested among students of applied psychology, social work, and physiotherapy who 
are starting their first internship. The 26 participants wore a Fitbit Charge 2 over a 
period of 15 weeks to monitor (among other things) Total Sleep Time (TST). They also 
measured their resting HRV in the morning immediately after waking up while still 
lying in bed with a Polar H7 chest strap and an application (Elite HRV). In addition, they 
completed a short questionnaire in the morning and evening with items about (but 
not limited to) the perceived demands, stress, mental exhaustion, and alcohol use. The 
results confirmed the hypotheses that if participants woke up with a relatively high 
resting HRV, they reported less stress on demanding days and less mental exhaustion 
on stressful days. They also had a lower resting HRV after days when they felt more men-
tally exhausted. However, stress did not predict lower TST, and TST did not affect the 
relationship between mental exhaustion and resting HRV. This combination of findings 
showed that having a relatively high resting HRV indeed has a buffering effect against 
the consequences of strain and stress, and that through? mental exhaustion can have 
a negative influence on the resting HRV itself. These findings brought new insights 
into these short-term relationships. Further research will have to show whether the 
hypothesized vicious cycle is also present at a multi-day level.

The relationships between resting HRV, sleep, and stress-related outcomes on a multi-
day level were then tested in the study presented in chapter 5. In order to perform 
the required time-series analyses, it was necessary to reduce the amount of missing 
data (e.g., missing wearable measurements and questionnaires) encountered in the 
previous study (chapter 4). This was achieved by using a wearable that automatically 
measures both sleep and resting HRV during sleep (the Oura ring), by only administer-
ing a shortened evening questionnaire of 7 items, and by incentivizing participants by 
rewarding them for adhering to the data collection procedures; they could keep the 
wearable and receive a personal report if they provided sufficient data. Based on anal-
ysis of the data of a group of 8 police officers who collected data for 15 to 55 weeks, 
resting HRV and sleep could each in only 1 participant be partly explained by perceived 
demands on the previous days. Waking up with a relatively low resting HRV or a lack of 
sleep therefore appears to offer limited-to-no retrospective reflection of stress-related 
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measures experienced in the previous days. Prospectively, however, both low waking 
HRV and lack of sleep more clearly related to stress-related measures in multiple par-
ticipants when looking forward to subsequent days. Waking up with a relatively high 
resting HRV predicted decreased demands in 2 participants and decreased stress in 1 
participant on subsequent days. Furthermore, long TST predicted decreased demands 
in 2, stress in 3 and mental exhaustion in 5 participants. Finally, a long TST predicted 
increased vitality in 5 participants. The relationships found were weak to moderate 
(2-34% of the variance in the outcomes could be explained) and usually faded after 1 
day for TST, although they tended to persist for multiple days according to the model 
for resting HRV. Based on these findings, resting HRV and sleep seem to be more suit-
able as predictors of stress-related outcomes in subsequent days than as indicators of 
them in preceding days.

The study in chapter 6 used wearable data from the same agents as before, supplement-
ed with data from a 5-weekly surveyed questionnaire on stress, somatization, anxiety, 
and depression (the 4-Dimensional Symptom Questionnaire, 4DSQ). While the study in 
chapter 4 looked at relationships within a day and the study in chapter 5 looked at multi-
day relationships, the study in chapter 6 tested whether there are also relationships 
between trends in resting HRV and mental well-being at a 5-week level. In addition to 
trends in the resting HRV itself (i.e., is resting HRV increasing, decreasing, or staying the 
same over the period?), trends in the amount of fluctuations in the resting HRV from 
day to day (are the daily resting HRV values   comparable each day, or will they increas-
ingly or decreasingly vary?) were found?. The results show that an increasing trend in 
the amount of fluctuations in daily resting HRV was associated with an increase in both 
stress and somatization. In other words, a disturbance of the balanced daily functioning 
of the autonomous nervous system may be associated with increased stress or physical 
complaints that may coincide with it. In the case of somatization, the relationship was 
only present if there was a decreasing or constant trend in the resting HRV itself, but 
not if the resting HRV rose. No relationships were found for anxiety and depression, 
which could be explained by an absence of clinically relevant problems, resulting in floor 
effects. The relationships found were of weak to moderate strength (18.5 and 21.3% 
of the variance in stress and somatization could be explained). These results showed 
that having relatively stable resting HRV values can be seen as positive in the context 
of stress and resilience. Furthermore, monitoring trends in resting HRV and sleep   may 
contribute to recognizing the potential emergence of stress-related problems and thus 
to initiating feedback via automated resilient interventions.

CONCLUSIONS AND FUTURE DEVELOPMENTS

The goal of the WearMe study was to contribute to the development of resilience inter-
ventions through the development of statistical models based on data from wearable 
sensors and smartphone apps. The studies in this thesis show that monitoring resting 
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HRV and sleep can play a role in this endeavor. Waking up with a relatively high resting 
HRV or after a night with a relatively long TST compared to one’s personal norm usually 
indicates relatively favorable resilience. It also appears that having a relatively stable 
resting HRV over the past 5 weeks may be a signal of limited stress or somatization. 
The results described can in principle be used to initiate timely feedback in automated 
resilience interventions. However, the relationships found were weak to moderate, and 
not consistently present in all participants. The current models should therefore be 
supplemented for optimal application in initiating meaningful feedback at the right time.

The studies in this thesis explored the application of HRV as a short-term indicator of 
resilience (“higher is better”) and as a demonstration of resilience over time (“stable 
is better”). Future research may consider investigating whether deviations from one’s 
personal norm are a better short-term indicator of resilience (“normal is better”). This 
approach has been used in sports science to show that even extremely elevated resting 
HRV values   can be unfavorable in the context of recovery and performance, but has 
not yet been explored in the context of stress and resilience.

The study in chapter 5 showed that relationships between resting HRV, sleep, and 
stress-related outcomes were not consistently present across all participants That said, 
when they were observed in participants, they were similar. To better understand why 
these relationships are not present in all individuals or situations, future research may 
explore two additional approaches. First, a research with a larger number of partici-
pants could consider also testing whether the strength of the tested relationships can 
be explained by differences between participants (for example, personal characteristics 
Second, studies with a larger number of measurements per participant may explore 
whether the relationships also vary within participants over time.

Finally, the current models could be expanded with wearable-based measures that 
become available in consumer wearables in the future and that have been related to 
stress-related outcomes in previous research. Examples include the application of skin 
conductance, non-invasive glucose monitoring, and the monitoring of gastrointestinal 
activity. Another promising direction is the use of smartphone data (such as smartphone 
or app use and GPS data), which recent studies show is also related to (changes in) 
mental well-being. By using different data sources and inductive data analysis tech-
niques (e.g., machine learning), it may be possible to improve the models introduced 
in this thesis to identify appropriate triggers for the delivery of timely and meaningful 
feedback as a resilience intervention.
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SAMENVATTING (SUMMARY IN DUTCH)

Inleiding
Zodra een mens wordt blootgesteld aan veeleisende omstandigheden, bepaalt het brein 
onbewust of er voldoende hulpbronnen beschikbaar zijn om met de situatie om te gaan 
(bijvoorbeeld: fysieke en mentale fitheid). Als dat het geval is, dan zal het brein dat ver-
talen naar een gevoel van uitdaging, en als dat niet het geval is als een bedreiging. Dit 
laatste roept een toestand van spanning op die ook wel ‘stress’ wordt genoemd. Stress 
bereidt het lichaam voor om te vechten of vluchten. Dit is bij traditionele bedreigingen 
(bijvoorbeeld: een roofdier) erg nuttig, maar bij moderne bedreigingen (bijvoorbeeld: 
een deadline of sociale interactie) vaak juist niet. Stress zorgt er namelijk voor dat de 
prefrontale cortex, het deel van het brein dat verantwoordelijk is voor besluitvorming 
en sociaal gedrag, wordt onderdrukt. Daarnaast neemt de amygdala, de emotionele 
alarmcentrale van het brein, de controle over bij stress. Stress voelt vervelend en is dus 
soms onhandig, maar kan als het langdurig aanhoudt ook bijdragen aan het ontstaan 
van fysieke en mentale gezondheidsproblemen of leiden tot verminderde productivi-
teit en werk-gerelateerd verzuim. Het vroegtijdig herkennen van stress-gerelateerde 
problemen of een verminderde veerkracht (het vermogen om adaptief met stress om 
te gaan) kan daarom gebruikt worden voor tijdige waarschuwingen en/of adviezen om 
iets te veranderen, en zo mogelijk bijdragen aan preventie.

Recente ontwikkelingen in draagbare sensor technologie, ook wel ‘wearables’ genoemd, 
bieden daarvoor veelbelovende kansen. Wearables werden aanvankelijk vooral populair 
om lichaamsbeweging bij te houden, maar zijn tegenwoordig ook in staat om slaap en 
lichamelijke signalen zoals hartritmevariabiliteit (HRV) te meten. HRV is een maat voor 
de hoeveelheid variatie tussen hartslagen, en zegt iets over de werking van het auto-
nome zenuwstelsel. De HRV daalt bijvoorbeeld door stress, inspanning, alcohol gebruik 
of ziekte, waardoor het sympathische deel van het zenuwstelsel, dat actief is in de 
‘vechten-of-vluchten’ toestand, geactiveerd wordt ten koste van het parasympatische 
‘rusten-en-verteren’ gedeelte. Het hebben van een hoge rust HRV is te relateren aan 
een verlaagde stress-gevoeligheid en een verbeterd vermogen om de eigen emotionele 
staat te controleren (emotie regulatie), irrelevante prikkels te negeren (cognitieve inhi-
bitie) en na te denken over verschillende dingen (cognitieve flexibiliteit). Net als slaap, 
dat ook negatief beïnvloed kan worden door stress en positief bijdraagt aan stressbe-
stendigheid, is rust HRV mogelijk bruikbaar om enerzijds de impact van stress tijdig te 
herkennen als anderzijds om veerkracht te voorspellen – en dus als potentiële trigger 
voor tijdige feedback in geautomatiseerde veerkracht interventies.

Eerder onderzoek naar relaties tussen HRV en slaap met stress-gerelateerde uitkomsten 
keek veelal naar verschillen tussen personen (bijvoorbeeld: hoe verhoudt mijn rust HRV 
zich tot die van anderen, en wat zegt dat?). Dit is nuttig om beter te begrijpen hoe HRV 
en slaap zich tot stress en veerkracht verhouden of uitspraken te doen over groepen 
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mensen. Deze inzichten vallen echter niet automatisch te vertalen naar de context 
van gepersonaliseerde feedback, waarbij juist gekeken wordt naar verschillen binnen 
personen (hoe verhoudt mijn rust HRV vandaag zich tot die op andere dagen, en wat 
zegt dat?). Op basis van modellen die zich richten op verschillen tussen personen is 
daarom niet persé bruikbaar om risicosignalering te doen op individueel niveau, wat 
bij modellen die dat doen binnen personen wel kan. De studies in de Wearable and 
app-based resilience Modelling in employees (WearMe) studie gebruiken daarom wea-
rables en smartphone applicaties om dagelijks gegevens te verzamelen over rust HRV, 
slaap en stress- en veerkracht-gerelateerde uitkomsten in een natuurlijke context. Op 
basis daarvan worden statistische modellen ontwikkeld die mogelijk gebruikt kunnen 
worden in toekomstige veerkracht interventies die tijdig gepersonaliseerde feedback 
geven. In deze samenvatting worden de belangrijkste bevindingen van ieder hoofd-
stuk kort beschreven, waarna afgesloten wordt met enkele overstijgende conclusies 
en discussiepunten.

Uit de eerste paragraaf van deze bleek dat de beschikbaarheid van ervaren hulpbronnen 
zoals fitheid bepaalt of het brein een veeleisende situatie beoordeelt als uitdagend of 
bedreigend (bijvoorbeeld: een zeer fit persoon kan stress ervaren als diegene denkt 
niet fit genoeg te zijn voor een bepaalde situatie). Rust HRV is in eerder onderzoek 
gerelateerd aan diverse aspecten van mentaal en fysiek functioneren, maar het is nog 
onduidelijk in welke mate het samenhangt met ervaren mentale en fysieke fitheid. Ver-
beterd inzicht in of dat het geval is kan mogelijk helpen om beter te begrijpen hoe rust 
HRV invloed heeft op stress en veerkracht. Hoofdstuk 2 verkent daarom in welke mate 
rust HRV tijdens de slaap voorspellend is voor de ervaren mentale en fysieke fitheid de 
volgende ochtend. Een groep van 63 medewerkers van Defensie (mariniers in opleiding 
en werknemers van de Defensie Gezondheidszorg Organisatie van de Nederlandse 
Defensie) verzamelde gedurende enkele weken tot maximaal 57 dagen gegevens via 
een pols-gedragen wearable (Garmin Tactix Charlie) en een app voor korte dagelijkse 
vragenlijsten. Uit de resultaten bleek dat rust HRV tijdens de slaap geen aantoonbare 
relatie heeft met mentale fitheid, maar wel een zwakke relatie met fysieke fitheid 
(slechts 2.4% van de verschillen in fysieke fitheid binnen personen kon erdoor worden 
verklaard). Rust HRV lijkt dus iets duidelijker gerelateerd aan de ervaren fysieke fitheid 
dan aan de ervaren mentale fitheid, maar lijkt vooral gezien te moeten worden als een 
grotendeels onafhankelijke psychofysiologische hulpbron in de context van stress en 
veerkracht.

In hoofdstuk 3 wordt een volgende stap gedaan door een conceptueel model te intro-
duceren voor hoe rust HRV en slaap zich verhouden tot belasting, stress en mentale 
uitputting (Figuur 1). Het model stelt op basis van eerder onderzoek dat rust HRV een 
psychofysiologische hulpbron is die een beschermend effect heeft op de invloed van 
belasting op stress, evenals op de invloed van stress op mentale uitputting. Daarnaast 
wordt verwacht dat mentale uitputting leidt tot een verlaagde rust HRV, en dus tot een 
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mogelijke vicieuze cirkel vanwege de beschermende invloed van rust HRV op de impact 
van belasting en stress. Ook wordt verwacht dat stress een negatieve invloed heeft op 
de slaap die nodig is om te herstellen en zo de eventuele negatieve impact van men-
tale uitputting op rust HRV te beperken. Het model is gebaseerd op bestaande, meer 
overstijgende modellen en theorieën en vult deze aan door juist kortdurende relaties 
(binnen een dag) te beschrijven, die bijvoorbeeld getoetst kunnen worden met behulp 
van consumenten wearables en smartphone applicaties.

Figuur 1: Het conceptuele model voor de WearMe studie.

Hoofdstuk 4 beschrijft vervolgens een studie waarbij de hypothesen uit het conceptu-
ele model getoetst worden onder studenten Toegepaste Psychologie, Maatschappelijk 
Werk en Fysiotherapie die voor het eerst op stage gaan. De 26 deelnemers droegen 
gedurende een periode van 15 weken een Fitbit Charge 2 om met name de Totale Slaap 
Tijd (TST) te monitoren, en maten ’s ochtends direct na ontwaken liggend in bed hun 
rust HRV met een Polar H7 borstband en een app (Elite HRV). Daarnaast vulden ze ’s 
ochtends en ‘s avonds een korte vragenlijst in met items over onder meer de ervaren 
belasting, stress, mentale uitputting en alcohol gebruik. De resultaten bevestigden de 
hypothesen dat als deelnemers wakker werden met een voor hun doen hoge rust HRV 
zij minder stress rapporteerden op veeleisende dagen, en minder mentale uitputting 
rapporteren op stressvolle dagen. Ook hadden zij een lagere rust HRV na dagen dat zij 
zich meer mentaal uitgeput voelden. Stress voorspelde echter geen lagere TST, en TST 
had geen invloed op de relatie tussen mentale uitputting en rust HRV. De combinatie 
aan bevindingen toonde aan dat het hebben van een relatief hoge rust HRV inderdaad 
een beschermend effect lijkt te hebben tegen de gevolgen van belasting en stress. Deze 
gevolgen kunnen vervolgens via mentale uitputting een negatieve invloed op de rust 
HRV zelf hebben. Deze bevindingen brachten nieuwe inzichten in deze korte termijn 
relaties. Verder onderzoek zal moeten uitwijzen of de eventuele vicieuze cirkel ook op 
meer-dagen niveau aanwezig is.

De relaties tussen rust HRV, slaap en de stress-gerelateerde uitkomsten op meer-dagen 
niveau werden vervolgens getest in de studie uit hoofdstuk 5. Om de daarvoor benodig-
de tijdreeks analyses uit te kunnen voeren was het nodig om de hoeveelheid missende 
gegevens (bijvoorbeeld niet uitgevoerde metingen of vragenlijsten) te verminderen 
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ten opzichte van de vorige studie uit hoofdstuk 4. Dit werd bereikt door een Oura ring 
te gebruiken die zowel slaap als de rust HRV tijdens de slaap automatisch kan meten, 
alleen nog een verkorte avondvragenlijst van 7 items af te nemen en deelnemers te 
prikkelen door ze te belonen voor trouwe deelname – deelnemers mochten de weara-
ble houden en kregen een persoonlijk rapport als ze voldoende gegevens aanleverden. 
Op basis van een groep van 8 politieagenten die gedurende 15 tot 55 weken gegevens 
verzamelden, was te zien dat rust HRV en slaap ieder bij 1 deelnemer deels verklaard 
konden worden door ervaren belasting op de voorgaande dagen. Wakker worden met 
een relatief lage rust HRV of een gebrek aan slaap lijkt daarom terugkijkend slechts 
een beperkte of geen weerspiegeling te zijn van stress-gerelateerde uitkomsten in de 
voorgaande dagen. Vooruitkijkend kunnen ze daar echter duidelijker mee in verband ge-
bracht worden. Wakker worden met een relatief hoge HRV in rust voorspelde namelijk 
een verminderde belasting bij 2 en stress bij 1 deelnemer in de daaropvolgende dagen. 
Bovendien voorspelde lange TST verminderde belasting bij 2, verminderde stress bij 3 
en verminderde mentale uitputting bij 5 deelnemers. Ten slotte voorspelde een lange 
TST verhoogde vitaliteit bij 5 deelnemers. De gevonden relaties waren zwak tot matig 
(2-34% van de variatie in de uitkomsten kon verklaard worden) en doofden voor TST 
doorgaans na 1 dag al uit, hoewel ze volgens het model voor rust HRV geneigd waren 
om enkele dagen aan te houden. Op basis van de deze bevindingen lijken rust HRV en 
slaap meer geschikt als voorspellers voor stress-gerelateerde uitkomsten in de daarop 
volgende dagen dan als uiting van stress in de voorgaande dagen.

De studie in hoofdstuk 6 gebruikte de wearable gegevens van dezelfde agenten als hier-
voor, aangevuld met gegevens van een 5-wekelijks afgenomen vragenlijst over stress, 
somatisatie, angst en depressie (de 4-Dimensionale Klachten Lijst, 4DKL). Daar waar de 
studie uit hoofdstuk 4 keek naar relaties binnen een dag en de studie uit hoofdstuk 5 
keek naar relaties over enkele dagen, toetste de studie uit hoofdstuk 6 of ook op 5-we-
kelijks niveau relaties bestaan tussen trends in rust HRV en het mentale welzijn. Naast 
trends in de rust HRV zelf (neemt de rust HRV toe, af, of blijft deze gelijk gedurende 
de periode?) werd nu ook gekeken naar trends in de hoeveelheid fluctuaties in de rust 
HRV van dag tot dag (zijn de dagelijkse rust HRV waarden iedere dag vergelijkbaar, of 
gaan ze steeds meer of minder variëren?). Uit de resultaten bleek dat een stijgende 
trend in de hoeveelheid fluctuaties in de dagelijkse rust HRV voorspellend was voor een 
toename in zowel stress als somatisatie. Anders gezegd: een eventueel toegenomen 
verstoring van de balans in het dagelijks functioneren van het autonome zenuwstelsel 
hangt mogelijk samen met toegenomen stress of lichamelijke klachten die daar mee 
te maken kunnen hebben. In het geval van somatisatie was die relatie alleen aanwezig 
als er sprake was van een dalende of gelijkblijvende trend in de rust HRV zelf, maar niet 
als de rust HRV steeg. Voor angst en depressie werden geen relaties gevonden, wat 
verklaard kon worden door een afwezigheid van klinisch relevante symptomen daarin 
wat zorgde voor vloer effecten. De gevonden relaties waren zwak tot matig (18.5 en 
21.3% van de variantie in stress en somatisatie werd verklaard). Deze resultaten lieten 
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zien dat het hebben van relatief stabiele dagelijkse rust HRV waarden gezien kan worden 
als positief in de context van stress en veerkracht, en het monitoren op trends in deze 
waarden een bijdrage kan leveren aan het herkennen van het mogelijk ontstaan van 
stress-gerelateerde problemen en dus aan het initiëren van tijdige feedback in geau-
tomatiseerde veerkracht interventies.

CONCLUSIES EN TOEKOMSTIGE ONTWIKKELINGEN

Het doel van de WearMe studie was om bij te dragen aan de ontwikkeling van veer-
kracht interventies via de ontwikkeling van statistische modellen op basis van gegevens 
van wearable sensoren en smartphone apps. De studies in dit proefschrift laten zien 
dat het monitoren van rust HRV en slaap daar een rol in kunnen spelen. Het wakker 
worden met een hoge rust HRV of na een nacht met een relatief lange TST vergeleken 
met de persoonlijke norm kan doorgaans gezien worden als indicatie van relatief gun-
stige veerkracht. Ook blijkt dat het hebben van een relatief stabiele rust HRV tijdens de 
afgelopen 5 weken mogelijk een signaal van beperkt aanwezige stress of somatisatie. De 
beschreven resultaten kunnen in principe gebruikt worden om tijdige feedback te initi-
eren in geautomatiseerde veerkracht interventies. De gevonden relaties waren echter 
zwak tot matig, en niet consistent aanwezig in alle deelnemers. De huidige modellen 
dienen daarom eerst aangevuld te worden voor optimale toepassing bij het initiëren 
van betekenisvolle feedback op het juiste moment.

De studies in dit proefschrift verkende de toepassing van HRV als korte-termijn indica-
tor voor veerkracht (“hoger is beter”) en als demonstratie van veerkracht over de tijd 
(“stabiel is beter”). Toekomstig onderzoek kan overwegen om daarnaast te onderzoeken 
of afwijkingen van de persoonlijke norm een betere korte-termijn indicator zijn voor 
veerkracht (“normaal is beter”). Die benadering is in de sportwetenschap gebruikt om 
aan te tonen dat ook extreem verhoogde rust HRV waarden ongunstig kunnen zijn in 
de context van herstel en presteren, maar is nog niet verkend in de context van stress 
en veerkracht.

De studie in hoofdstuk 5 liet zien dat relaties tussen rust HRV, slaap en de stress-gerela-
teerde uitkomsten niet consistent in alle deelnemers aanwezig waren – hoewel die wel 
vergelijkbaar waren als ze geobserveerd werden. Om beter te begrijpen waarom deze 
relaties niet in alle personen of in alle situaties aanwezig zijn, kan toekomstig onderzoek 
twee aanvullende benaderingen verkennen. Ten eerste kan onderzoek met een groter 
aantal deelnemers overwegen om ook te toetsen of de kracht van de getoetste relaties 
verklaard kan worden door verschillen tussen deelnemers (bijvoorbeeld: persoonlijke 
eigenschappen). Daarnaast is het mogelijk om te verkennen of de relaties mogelijk 
ook binnen deelnemers variëren over de tijd, waarvoor studies met een groter aantal 
metingen per deelnemer nodig zijn.



589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries589278-L-bw-deVries
Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023Processed on: 1-2-2023 PDF page: 193PDF page: 193PDF page: 193PDF page: 193

193Samenvatting (summary in Dutch)

Ten slotte kunnen de huidige modellen mogelijk uitgebreid worden met wearable-geba-
seerde metingen die in de toekomst mogelijk beschikbaar komen in consumenten-wea-
rables en in eerder onderzoek gerelateerd zijn aan stress-gerelateerde uitkomsten. 
Voorbeelden hiervan zijn de toepassing van huidgeleiding, non-invasieve glucose mo-
nitoring en het monitoren van maag-darm activiteit. Een andere veelbelovende richting 
is het gebruik van smartphone data zoals smartphone of app gebruik en GPS gegevens, 
wat in recente studies ook gerelateerd is aan (veranderingen in) het mentale welzijn. 
Door gebruik te maken van verschillende gegevensbronnen en inductieve technieken 
voor gegevensanalyse (bijvoorbeeld: machine learning) is het wellicht mogelijk om de in 
dit proefschrift geïntroduceerde modellen te verbeteren, om zo te komen tot passende 
triggers voor tijdige en betekenisvolle feedback.
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vertrouwen dat hij mij gedurende het traject heeft gegeven. Ik kijk er naar uit om na 
mijn promotie met jullie beide in contact te blijven in de gezamenlijke zoektocht naar 
kennis over gepersonaliseerde systemen die op basis van gegevens uit wearables en 
apps mensen ondersteunen om gezond en veerkrachtig te zijn.

Een promotie kan niet worden voltooid zonder beoordelingscommissie en oppositie. 
Prof. Dr. Mariët Hagedoorn, Prof. Dr. Christiaan Vinkers en Prof. Dr. Matthijs Noordzij 
dank ik hartelijk voor het beoordelen van het proefschrift, evenals hun rol in de oppos-
itie. De overige leden van de oppositie worden eveneens hartelijk bedankt voor hun 
inzet en beschikbaarheid tijdens de verdediging en plechtigheid.

Paranimfen Liselotte en Lea worden bedankt voor hun ondersteuning in aanloop naar 
en tijdens de verdediging – en natuurlijk voor de fijne samenwerking en de gezelligheid 
de afgelopen periode. Liselotte, dank voor het inhoudelijk sparren en het luisterend oor 
als eens iets tegen zat. Ik vond het leuk om samen met jou de werving bij de politie (ten 
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behoeve van de studie uit hoofdstukken 5 en 6) te doen en kijk er naar uit om straks 
bij TNO ook vaker met je samen te werken in projecten. Lea, ik ken je nu pas ruim een 
jaar maar voor mijn gevoel lijkt dat al veel langer, wat volgens mij veel over jou zegt. 
Ik vind het super dat je verder gaat met soortgelijk promotieonderzoek (zelfs in een 
vergelijkbare constructie bij de Hanze en TNO), en ben nu al nieuwsgierig naar wat je 
de komende jaren nog gaat ontdekken.

Tijdens mijn promotie ben ik door diverse mensen geholpen of geadviseerd. Heleen, 
bedankt dat je als coauteur wilde meehelpen met de tijdreeks analyses en het artikel 
uit hoofdstuk 5! Ook Tanja en Arie worden hartelijk bedankt voor hun adviezen over 
respectievelijk statistische methoden en de verzameling en analyse van hartritme-
variabiliteit data. Heather, dank voor je hulp bij de terugvertaling van de items van de 
dagelijkse vragenlijstjes. Ten slotte dank ik in het bijzonder alle politieagenten, militai-
ren en de stagegaande Hanzehogeschool studenten die mee hebben gedaan aan de 
WearMe studie voor hun inzet.

Bij de Hanzehogeschool mocht ik naast mijn promotieonderzoek ook lesgeven bij de 
bachelor opleidingen Toegepaste Psychologie, Fysiotherapie en de master Physician 
Assistant. Het is te omvangrijk om alle onderwijscollega’s te noemen, maar ik wil ie-
dereen die mij zo warm heeft ontvangen bedanken voor de prettige samenwerking. 
Jullie treffen het met zulke betrokken teams. Ook aan de collega’s van de lectoraten 
Personalised Digital Health en New Business & ICT (inmiddels: Digitale Transformatie) 
heb ik goede herinneringen. Miriam, dank voor alles wat je in de loop der tijd voor me 
hebt betekend, eerst als student, later vanuit het Quantified Self Institute (QSI) en de 
laatste jaren als collega. Talko, dank voor de gezelligheid bij het congres in Athene waar 
we met Katharina waren (en daarna). Aranka, Austin, Roland, Aniek, Hugo, Klaas† en 
Rix, bedankt voor de fijne samenwerking en het zo nu en dan voorzien van advies of 
bevestiging als ik dat nodig had.

Ook bij TNO stonden er diverse mensen regelmatig voor mij klaar. Roos, ontzettend be-
dankt voor het meedenken, adviseren en soms inzetten van je netwerk. Ik heb je tijdens 
mijn promotietraject altijd beschouwd als een ‘bonus-begeleider’ en inmiddels als een 
hele fijne collega. Sanne en Els worden bedankt voor de vele lunchwandelingen die we 
in de bosrijke omgeving van Soesterberg maakten, en voor het uitwisselen van ervar-
ingen. Victor, nogmaals dank voor de waardevolle tip voor de journal keuze voor het 
artikel uit hoofdstuk 6! Julia, thanks for the thorough feedback on the English summary 
of this thesis. Eric, Arend en Karina bedank ik voor de mogelijkheid om in aansluiting 
op dit promotietraject mijn carrière voort te zetten bij TNO. Ik ben hier ontzettend blij 
mee en kijk er naar uit om in ieder geval bij te kunnen dragen aan de diverse projecten 
die aansluiten bij mijn promotieonderzoek en daarnaast te ervaren hoe ik me binnen 
de organisatie verder kan ontwikkelen. Ten slotte dank ik alle andere TNO collega’s die 
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mij daar de afgelopen periode snel thuis hebben laten voelen en altijd voor me klaar 
staan als ik een vraag heb – jullie zijn echt geweldig!

De afgelopen jaren was voor mij een interessante transitie vanuit de zorg naar het on-
derwijs en uiteindelijk naar onderzoek op het snijvlak tussen psychologie en technologie. 
Ik kijk uit naar die nieuwe richting van mijn loopbaan, maar waardeer ook de mensen 
die mij in de beginfasen daarvan steunden. Roeli, dank voor de kansen die je mij in het 
begin van mijn loopbaan hebt geboden. Ook hartelijk dank aan alle andere oud-collega’s 
van fysiotherapiepraktijk Paramedics in Assen voor de gezelligheid en collegialiteit die 
ik niet snel zal vergeten. Thea en Corelien, dank voor de prettige samenwerking destijds 
in wat voor mij een ideale voorbereiding was op mijn eigen promotietraject. Martijn, 
bedankt voor het warme welkom bij het QSI en de fijne samenwerking in die periode. 
Ten slotte dank ik mijn oud-studiegenoten en de docenten van de master Klinische 
Gezondheidswetenschappen van de Universiteit Utrecht voor de zowel inspirerende 
als gezellige periode die aan de basis lag van mijn academische vorming.

Naast deze mensen uit de werksfeer die de afgelopen jaren belangrijk voor mij waren, 
was dit niet mogelijk geweest zonder steun van mijn familie. Pap en mam, dank voor 
het vertrouwen en de stabiele basis die mij in staat stelden om op te groeien tot wat 
ik maar wilde. Jullie pasten de laatste jaren ook regelmatig op zodat ik kon werken 
aan de afronding van dit proefschrift (en omdat jullie dat als enthousiaste opa en oma 
gewoon leuk vinden), waarvoor dank. Linda, Fokke, Bert, Maarten en Vicky, ook be-
dankt voor jullie steun, interesse en praktische ondersteuning als dat nodig was. Mijn 
schoonmoeder Corrie, oma Ida en opa Herman overleden tijdens deze periode. Bij de 
afronding van dit proefschrift sta ik nog eens extra stil bij de steun en liefde die ik van 
jullie heb mogen ontvangen.

Ook mensen uit mijn vriendenkring waren de afgelopen periode belangrijk voor 
mij. Bram, dank voor het enkele keren meelezen bij afrondende stukken voor dit 
proefschrift, en je interesse in en het zo nu en dan aanhoren van mijn monologen over 
hartritmevariabiliteit ;). Mark, Bake, Bas, Stefan, Wouter en partners, dank voor jullie 
vriendschap, steun en de vele goede herinneringen. Tijdens de afronding van mijn 
master en promotie heb ik jullie bij vlagen minder gezien dan ik zou willen, maar wat 
in het vat zit, verzuurt niet.

Als laatste – maar zeker niet minst belangrijk – spreek ik mijn dank en waardering uit 
aan mijn vrouw Esther en dochters Anne en Yfke. Jullie onvoorwaardelijke steun en 
liefde maakte het voor mij mogelijk om dit proces te doorlopen en geeft bovenal kleur 
aan mijn leven. Met de afronding van dit proefschrift verdwijnt er een olifant uit de 
kamer die zo ruimte maakt voor nieuwe dingen. Ik kijk er naar uit om die ruimte samen 
met jullie te vullen.
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