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ABSTRACT Diet is an important determinant of the human gut microbiome. Here, we
analyzed fecal metagenomes of Dutch adults following omnivorous, pescatarian, vegan,
and vegetarian diets. We compared the taxonomic composition of individuals from our
study with publicly available gut metagenomes from westernized and non-westernized
societies. We observed that, despite long-term transition to diets rich in plant fibers
(vegan or vegetarian), the microbiomes of these were typical of westernized populations,
and similar in composition to omnivores. Although there were no major differences in
metabolic modules, we identified differences in the species that contributed to particular
functions, such as carbohydrate degradation and short-chain fatty acid metabolism.
Overall, this study shows functional redundancy of the microbiomes among westernized
populations, which is independent of long-term individual dietary habits.

IMPORTANCE Diet is an important modulator of the human gut microbiome, which
is susceptible to increased consumption of plant fibers in vegan or vegetarian life-
styles. To investigate this, we compared the gut microbiome of Dutch adults follow-
ing omnivorous, pescatarian, vegan and vegetarian diets. We did not observe major
differences in the gut microbiome composition and function between individuals
with different dietary habits. However, we observed differences in the species that
contribute to the core functions of the gut microbiome. Our study thus emphasizes
the need to better understand the species-specific functional changes associated
with dietary habits in the human gut microbiome.

KEYWORDS diet, microbiome, omnivore, vegan, diet

In westernized societies traditionally known to have an omnivorous diet, some individu-
als have transitioned toward vegetarian and vegan diets. These diets are enriched in

microbiota-accessible carbohydrates (MACs) that are not digested and absorbed by the
host but support a complex microbiome with supposedly beneficial effect on host health
(1). MACs like resistant starch, inulin, xylan, pectin and similar complex substrates favor
the growth of specialized taxa like Ruminococcus bromii, Roseburia intestinalis, and
Faecalibacterium prausnitzii (2). High-fiber diets rich in MACs are reported to have benefi-
cial effects on host physiology via enhanced butyrate production and promoting higher
bacterial diversity (3). Short-term (4-day) dietary interventions have reported reversible
changes in the microbiome, indicating rapid adaptation of the microbiota to the changing
diet (3). Individuals consuming high-fiber diets for longer periods are shown to have a
Prevotella enriched microbiome, which is stable at least up to 10 days, indicating that
long-term dietary habits can select for specific taxa that form a stable community (4).
However, in our recent study comparing gut microbiome of individuals with different
long-term dietary habits ($6 months), we did not observe major differences in micro-
biome diversity and resistome (5). As high functional redundancy is a hallmark of the gut
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microbiome, where multiple species can carry out similar functional roles (6, 7), linking
abundances of specific bacterial taxa with their contribution to functional potential may
provide a better understanding of species-specific associations with dietary habits.

Here, we investigated whether different long-term dietary habits ($6 months)
result in a gut microbiome composition that deviates from that observed in wester-
nized populations and identify differences in species-specific contributions to key met-
abolic pathways.

The participants in our study (NLD-VEGA) were classified into vegetarian, vegan or
pescatarian if they followed these diets for at least 6 months, and omnivores if they eat
meat at least three time per week (5, 8). Details about the NLD-VEGA study population
are described in Table S1, and metagenomic data analysis is provided in the supple-
mentary information (Text S1). Information on public data used in this study are pro-
vided in Table S2. Taxonomic composition and functional annotations were done using
the biobakery tools (9). The fecal microbiomes of participants in the NLD-VEGA study
were similar to westernized populations (Wilcox test, P , 2.2e 2 16) and showed high
similarity with individuals from another independent Dutch study, Netherlands
LifeLines cohort (NLD-LifeLines; n = 1039) (Fig. 1a, b and c) (10). The NLD-VEGA and
NLD-LifeLines cohorts shared 39 (61%) of the core microbes (min. relative abundance
0.0001% and 75% prevalence) (Fig. S1). This common core (NLD-VEGA 1 NLD-
LifeLines) consists of species involved in polysaccharide degradation and short-chain
fatty acid production (e.g., Ruminococcus bromii, Eubacterium rectale, Faecalibacterium
prausnitzii, Eubacterium hallii, Coprococcus catus, Anaerostipes hadrus) (Fig. 1d) (11–13).

We investigated the effect of long-term dietary habits (i.e., omnivore, vegetarian, vegan
and pescatarian) on so-called VANISH (volatile and/or associated negatively with industrial-
ized societies of humans) taxa in our cohort (14). VANISH taxa, i.e., Succinovibrionaceae,
Paraprevotellaceae, Prevotellaceae, and Spirochaetaceae, are considered to be lost with in-
dustrialization, and therefore more prevalent in non-westernized microbiomes. As previously
observed in westernized diets (14, 15), the NLD-VEGA population showed loss of certain
VANISH taxa and overall low abundance of Prevotellaceae (Fig. S2a), with no significant dif-
ferences between the diet groups. The BloSSUM taxa (bloom or selected in societies of
urbanization/modernization) were observed in all diet groups in the NLD-VEGA (Fig. S2b).
Furthermore, western-style diet is often associated with a higher Bacteroidetes, while tradi-
tional high-fiber diet rich in vegetables and fish is associated with a high Firmicutes abun-
dance (1, 16). Here, we observed a significantly higher Firmicutes/Bacteroidetes ratio in the
pescatarian and vegan group compared to the omnivore and vegetarian group (Fig. 1e).
While diets rich in plant-based fibers were also reported to be associated with a higher
Prevotella/Bacteroides (P/B) ratio (17), we did not find these associations in our data set
(Fig. 1f). These results highlight the potential non-universality of previously reported associa-
tions of higher P/B ratio with a plant-based diet (18). In addition to diet, possibly other fac-
tors (e.g., environmental exposures) play a significant role in determining the P/B ratio in
non-westernized individuals. Therefore, increasing dietary fibers or becoming vegetarian/
vegan alone might not be enough to increase the P/B ratio in westernized individuals.

Metabolic potential of the gut microbiome is key for maintenance of host health. Here,
we investigated the functional repertoire in gut metagenomes and species-specific contri-
butions to key metabolic processes, and its relation to the different long-term dietary habits.
We used a curated version of the previously described Gut Metabolic Modules (GMMs) to
group KEGG orthologues (KOs) into metabolic modules (see supplementary data) (18). To
these GMMs, we added modules related to amino acid metabolism and refined GMMs
based on a synthetic microbiome used in a previous study (19). Except for lipid degradation,
abundances of amino acid, carbohydrate and glycoprotein degradation modules were not
significantly different between diet groups (Fig. S3). However, species-specific differences in
abundances of the bacteria involved in the different processes were observed (Fig. 2). We
observed nine species that differed in their contribution to amino acid degradation module
(Fig. 1a, Kruskal-Wallis test, adj. P , 0.05, followed by Dunn’s Test adj. P , 0.05). For carbo-
hydrate degradation module, eight species differed in their contribution between groups
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(Fig. 1b). No species were observed to differ in relative contribution to amino acid and car-
bohydrate degradation modules between vegans and vegetarians. For glycoprotein and
lipid degradation, Bacteroides ovatus was observed to be significantly different between
omnivore and vegetarian (Fig. 1c). Notably, no statistically significant species-specific differ-
ences in contribution to lipid metabolism was observed in our study.

FIG 1 Global and local comparison of gut microbiome of NLD-VEGA. Ordination plot depicting gut microbiome variation between (a) westernized and
non-westernized populations and (b) highlighting the overlap between the two Dutch (NLD) populations, i.e., the Lifelines cohort (NLD-Lifelines; n = 1039)
and our study population (NLD-VEGA; n = 149). (c) Similarity (depicted as (1-Bray-Curtis dissimilarity index) of the gut microbiome structure and
composition of NLD-VEGA compared to other westernized (N = 1940; from NLD-Lifelines, Denmark, DNK; Ireland, IRL; Great Britain, GBR; Italy, ITA; El
Salvador, SLV; USA, USA; China, CHN) and non-westernized populations (N = 429; from Mongolia, MNG; Indonesia, IDN; Tanzania, TZA; Peru, PER;
Madagascar, MDG; India, IND; Cameroon, CMR). (d) Abundance of common core species in NLD-VEGA and NLD-Lifelines. Ratios of (e) Firmicutes/
Bacteroidetes and f) Prevotella/Bacteroides in NLD-VEGA participants with different dietary patterns (two-sided Wilcoxon test adjusted by the Benjamini &
Hochberg method).
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Except for butyrate metabolism, the GMMs for acetate, propionate and lactate metabo-
lisms did not differ between diet groups (Fig. S3). Similar with higher level GMMs, species-
specific differences in contribution to these modules were observed. Ruminococcus tor-
ques had a significantly higher contribution in omnivores compared to vegan group.
Three species showed differences in contribution to lactate metabolism, Streptococcus
thermophilus and S. thermophilus CAG236 in omnivores compared to vegan and vegetar-
ian groups. Roseburia hominis was higher contributor in pescatarians compared to omni-
vores. Ruminococcus torques was higher contributor to propionate metabolism module in
omnivores. Although R. torques is not yet reported to produce propionate, it does have

FIG 2 Diet based comparison of gut metabolic modules and contribution by taxa. Species significantly different between diet groups and their relative
contribution to gut metabolic modules for degradation (a, b, and c). Species significantly different between diet groups and their relative contribution to
gut metabolic modules for short-chain fatty acid metabolism (d, e, and f). Significance in differences were calculated using Kruskal-Wallis test followed by
Dunn's test for pairwise comparisons and adjusted for multiple comparisons with the Benjamini & Hochberg method. The differences were considered
significant when adjusted P-value was less than , 0.05.
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key genes for producing propionate via the propanediol pathway (20). R. torques is known
to produce lactate, an important precursor for propionate production via the acrylate
pathway.

R. torques is reported to be associated with proinflammation (21). Flavonifractor
plautii contributed higher to propionate metabolism module in omnivores compared
to pescatarians. This bacterium is known to utilize simple sugars and amino acids to
produce butyrate and was recently shown to be associated with young-onset colo-
rectal cancer (22, 23). No statistically significant species-specific differences in contribu-
tion to butyrate metabolism between the four diet group was observed in our study.

Overall, we see that despite showing modest differences in abundances of key
GMMs, species-specific differences in contribution to key metabolic pathways were
observed between the diet groups. This further highlights the widely accepted func-
tional redundancy of the gut microbiome. Future research investigating species spe-
cific activity using a combination of multi-omics and in vitro/in vivo investigations can
help to improve our understanding of diet mediated effects on human health.

Data availability. The raw sequencing data are available at EMBL-ENA under acces-
sion number PRJEB45944. The codes to reproduce the analysis are available from GitHub
(https://github.com/RIVM-IIV-Microbiome/VEGA-2021).
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