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Abstract—Objective: To compare the stepwise regression (SR)
method and the decision tree (DT) method for classification of
parkinsonian syndromes.

Method: We applied the scaled subprofile model/principal
component analysis (SSM/PCA) method to FDG-PET brain
image data to obtain covariance patterns and the corresponding
subject scores. The subject scores formed the input to the C4.5
decision tree algorithm to classify the subject brain images. For
the SR method, scatter plots and receiver operating character-
istic (ROC) curves indicate the subject classifications. We then
compare the decision tree classifier results with those of the SR
method.

Results: We found out that the SR method performs slightly
better than the DT method. We attribute this to the fact that
the SR method uses a linear combination of the best features to
form one robust feature, unlike the DT method. However, when
the same robust feature is used as the input for the DT classifier,
the performance is as high as that of the SR method.

Conclusion: Even though the SR method performs better than
the DT method, including the SR procedure in the DT classi-
fication yields a better performance. Additionally, the decision
tree approach is more suitable for human interpretation and
exploration than the SR method.

Keywords—Parkinsonian syndromes; FDG-PET; scaled sub-
profile model; principal component analysis; decision tree clas-
sification; stepwise regression

I. INTRODUCTION

Parkinsonian syndromes, like other neurodegenerative dis-

eases, are not easy to diagnose and distinguish at an early

stage [1], [2]. With the purpose of classifying these syn-

dromes, the scaled subprofile model/principal component anal-

ysis (SSM/PCA) method as explained by Moeller phet al. [3]

is used to extract disease-related metabolic brain patterns in

the form of principal component images from subject brain

images. Then these individual subject images are projected

onto the patterns to obtain their corresponding scores. These

scores depict the network expression of individual subjects on

the pattern [4].

The SSM/PCA method has been used in several studies to

extract disease-related patterns from imaging data. In Moeller

phet al. [5] the SSM method is applied to regional metabolic

rates for glucose data to identify specific age-related disease

profiles. Similarly, in Spetsieris phet al. [1] the SSM/PCA

method is used to derive disease-related spatial covariance

patterns which are represented as spatial weighted images. In

the study by Spetsieris and Eidelberg [6] the methodological

questions that arise regarding the use of the SSM method are

addressed. In addition, the SSM/PCA method together with

several versions of the Statistical Parametric Mapping (SPM)

software were applied by Peng phet al. [7] to obtain disease-

specific patterns. Therefore, from the aforementioned studies

we can say that the SSM/PCA method application is quite

broad and effective at identifying brain patterns. These patterns

can act as biomarkers for predicting parkinsonian disorders

and neurodegenerative diseases in general.

This paper, which is an extended version of [10], presents a

comparison between the stepwise regression (SR) method [8]

and the decision tree (DT) method in the classification of

parkinsonian syndromes [9]. In both methods we apply the

SSM/PCA method to the brain data to obtain subject scores,

which are used as features in the subsequent classification pro-

cess. Specifically, we use the C4.5 machine learning algorithm

in this study to build the DT classifiers [11], [12], [13]. The

SR method uses a mechanism of choosing one model or a

few models (here known as components) from a larger set of

models [14], [15]. Further, the components are chosen based

on how well they separate subject image groups using the

Akaike Information Criterion (AIC) [16].

There are three approaches we use in this study:

1) the stepwise regression method;

2) decision tree classification with all features, and a re-

duced set of features, respectively;

3) decision tree classification using the set of features

obtained from the stepwise regression procedure.
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With the SR method, one feature (subject z-score) is deter-

mined from a combination of components, while in the DT

method several features (subject scores) are determined from

individual components. In approach 3 we combine the SR

procedure and DT method in two different ways. In the first

approach, the best features obtained by the SR procedure are

used as features for decision tree classification, that is, without

linearly combining them. In the second approach, we use the

exact same subject z-score (that is, a linear combination of

best features) as obtained by the SR method (stepwise plus

logistic regression procedure) and use it as a single feature

for decision tree classification.

II. METHOD

A. Data acquisition and feature extraction

We used fluorodeoxyglucose positron emission tomography

(FDG-PET) brain scans as described in the previous studies

by Teune phet al. [17], [8]. The data set includes a total of

76 subject brain images, namely: 18 healthy controls (HC), 20

Parkinson’s disease (PD), 21 multi-system atrophy (MSA), and

17 progressive supra-nuclear palsy (PSP). An implementation

of the SSM/PCA method developed in Matlab was used, fol-

lowing the procedure as described by Eidelberg [18], Spetsieris

phet al. [1], [19], and Spetsieris & Eidelberg [6].

The SSM/PCA method was applied to the FDG-PET data

to obtain principal components (PCs) onto which original

images were projected to obtain their weights on the PCs,

known as subject scores. Thereafter, we used the subject scores

as features for the decision tree method and the stepwise

regression procedure to differentiate among the parkinsonian

syndromes.

B. Classification

1) Stepwise regression method: Following Teune phet

al. [8], the SR procedure is used to obtain a linear combination

of PCs (combined pattern) that best discriminates groups. The

SR method consists of the following steps:

• The principal components that make up 50% of the vari-

ance are considered in the stepwise regression procedure.

This procedure retains only those components which

best separate groups according to Akaike’s information

criterion (AIC) [16].

• By fitting the subject scores corresponding to the retained

PCs to a logistic regression model, scaling factors (or

weights) for all PCs are obtained. The combined pattern

is a sum of PCs weighted by the scaling factors. Then

the subject score on the combined pattern is determined

by adding the retained subject scores multiplied by their

corresponding scaling factors.

• Z-scores are calculated and displayed on scatter plots,

and receiver operating characteristic (ROC) curves are

determined. Then a subject is classified according to the

z-score cut-off value, which corresponds to the z-score

where the sum of sensitivity and specificity is maximised.

A subject is diagnosed as belonging to the class of

patients if the z-score value is higher than the cut-off

value, and as a healthy control if it is lower than the

cut-off value.

a) Leave one out cross validation (LOOCV): In the

SSM/PCA-SR method, one subject (for testing) is removed

from the training set at a time and the SSM/PCA method

is applied to the remainder of the subjects. The stepwise

regression procedure is followed to create a combined pattern.

The left-out subject scores on the PCs that form the combined

pattern are multiplied by the scaling factors to obtain a single

subject score on the combined pattern. Each subject score is

transformed into a z-score which then becomes the feature

used to separate groups.

2) Decision tree method: This method builds a classifier

from a set of training samples with a list of features and

class labels. We used the C4.5 machine learning algorithm by

Quinlan [12] to train classifiers based on the subject scores as

features. As a result, a pruned decision tree showing classified

subject images is generated. Pruning helps to obtain a tree

which does not overfit. Note that with the decision tree method

the principal components are not combined but instead used

individually. Therefore, the DT method uses several features

(subject scores on several PCs), unlike the SR method which

uses only one feature (z-score).

a) Leave one out cross validation: We placed one subject

into a test set and the rest of the subjects into a training set.

Then the SSM/PCA method was applied to the training set to

obtain subject scores. These subject scores were used to train

the classifier, and subsequently the test subject was used to test

the DT classifier performance. The procedure was repeated

for each subject in the dataset. We used the AIC criterion in

conjunction with the SR procedure to pre-select features for

the DT method in order to improve the classifier performance.

Furthermore, we provided the single combined feature from

the SR method as input to the DT method.

III. RESULTS

A. Stepwise Regression Procedure

The z-score scatter plots of the combined pattern and the

ROC curves are illustrated in Fig. 1. For the scatter plots, the

groups are displayed on the X-axis and the z-scores on the

Y-axis. On the ROC curves the bullet (•) represents the cut-

point where the difference between true positive rate and false

positive rate, also called the Youden index [20], is maximised.

These results are similar to those in Teune phet al. [8]. The

only difference is seen in Fig. 1(a), where the cut-off is 0.36

instead of 0.45. This can be explained by the fact that at both

cut-off points the sensitivity and specificity are the same; in

this case the value 0.36 is chosen, being the first z-score value

in ascending order.

B. Decision tree classifiers for disease groups versus the

healthy group

The decision tree classifiers are built from the disease

datasets (PD, PSP, MSA), all compared to the healthy control

(HC) group of 18 subjects. Fig. 2 and 3 show the decision

tree diagrams and corresponding scatter plots. The internal
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(a)

(b)

(c)

Fig. 1: Scatter plots and ROC curves for subject z-scores. (a):

PD vs HC; (b): MSA vs HC; (c): PSP vs HC.

tree nodes are drawn as oval shapes, corresponding to the

attributes (subject scores) on which decisions are made. The

threshold values for splitting the dataset are indicated next

to the lines connecting two internal nodes. The actual class

labels are represented by the rectangles (leaves), where “1” is

the label for the disease group (PD, PSP, or MSA) and “0”

the label for the healthy group (HC). In addition, the number

in the brackets within a rectangle shows the total number of

subjects that are classified at that leaf; the number after the

slash (if present) represents the number of misclassified cases

at that leaf.

1) PD Group: The output of the decision tree method

applied to the PD-HC dataset (18 healthy and 20 PD) is

illustrated in Fig. 2. The attributes are subject scores derived

from 38 principal components.

As can be seen in Fig. 2, the classifier chooses the subject

score based on component number 5 (SSPC5) to make the first

split of the dataset. As a result, nine PD subjects (feature value

> 254.14) are identified. Next, the classifier uses component

number 26 to separate the rest of the subjects, where nine

subjects (feature value <= -32.241) are identified as HC; etc.

Only one PD subject is misclassified as HC. Looking at the

Fig. 2: The decision tree diagram and the scatter plot showing

the distribution of the subject scores of the chosen PCs by the

decision tree classifier, without feature pre-selection.

scatter plots on the right of Fig. 2, we can clearly see that for

the chosen PCs there is no clear separation between PD and

healthy controls.

2) MSA and PSP Groups: Fig. 3 shows the decision trees

and the distribution of subject scores displayed on scatter plots

for the MSA-HC (18 HC and 21 MSA) and PSP-HC (18

HC and 17 PSP) datasets. The attributes are subject scores

derived from 39 and 35 principal components for MSA and

PSP, respectively. For the MSA group, one HC subject is

misclassified, whereas no subject is misclassified for the PSP

group. Also, note that for the PSP group the classifier chooses

only 2 out of the available 35 PCs, i.e., SSPC1 and SSPC12, as

illustrated in the scatter plot of Figure 3(b). Moreover, it uses

SSPC1 repeatedly to classify the subjects. Indeed, the C4.5

decision tree inducer can use a feature more than once for

making splits, as long as it maximizes the information gain.

C. Decision trees with reduced number of features

In Section III-B we noticed an overlapping distribution of

subject scores of the chosen PCs by the classifier, with no

clear cut between the PD and HC. To improve robustness,

we considered using only the first two components obtained

from the PCA process since they depict the highest variance.

Fig. 4(a) is an example of one of the 38 classifiers for the PD

vs HC group generated during the LOOCV process, that is

the classifier constructed after removing one subject from the

training set, which is thereafter used for testing the left-out

subject. For the purpose of comparing with the SR method,

we reproduce some of the LOOCV results from the previous

study by Mudali phet al. [9], as shown in Table I.

The scatter plot in Fig. 4(a) shows that there is no clear cut

for the classifier to separate the PD and HC groups. This is

because the subject scores for both PD and HC are overlap-

ping. As seen from the tree diagram, the classifier chooses one

threshold for each of the two given PCs to correctly classify all

PD subjects (100% sensitivity), but misclassifies 7 out of 18

HC subjects as well as the test subject (22.2% specificity). That

is to say, the decision boundaries found by the classifier were

not successful at separating the two groups. In this case, even

classifiers which use non-axis aligned decision boundaries may

not perform well. Accordingly, there is a need to rescale or
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(a)

(b)

Fig. 3: Decision tree diagrams and scatter plots showing

the distribution of subject scores for the PCs chosen by the

classifier. No pre-selection of features is applied. (a): MSA vs

HC; (b): PSP vs HC (Note: For the PSP group only two PCs

[SSPC1 & SSPC12] were used in the classification).

TABLE I: CLASSIFIER LOOCV PERFORMANCE FOR RE-

DUCED NUMBER OF FEATURES, I.E., THE FIRST TWO COM-

PONENTS ACCORDING TO THE HIGHEST AMOUNT OF VARI-

ANCE. THE COLUMN PERF. INDICATES THE PERCENTAGE

OF SUBJECT CASES CORRECTLY CLASSIFIED; SENSITIVITY

THE PERCENTAGE OF CORRECTLY CLASSIFIED PATIENTS;

AND SPECIFICITY THE PERCENTAGE OF CORRECTLY CLAS-

SIFIED HEALTHY CONTROLS

Group Perf. Sensitivity Specificity

PD (38) 63.2 100 22.2

MSA (39) 74.3 83.3 76.2

PSP (35) 80 70.6 88.9

modify the subject scores (like for the SR method) so that

the classifier can find better decision boundaries to efficiently

separate the groups.

Unlike the PD-HC group, the MSA-HC group as illustrated

in Fig. 4(b) has a better separation with the two decision

boundaries chosen by the classifier. Only 6 out of 39 subjects

are misclassified. Note that for the PSP-HC group the classifier

uses only one feature, i.e., SSPC1, out of the available two

features to separate the two groups; 5 out of 17 PSP subjects

are misclassified.

(a)

(b)

(c)

Fig. 4: The decision tree diagrams and scatter plots showing

the distribution of subject scores for the first two features

obtained from the LOOCV process. (a): PD vs HC; (b): MSA

vs HC; (c): PSP vs HC.

D. Decision trees with the subject z-score on a combined

pattern as the single feature

In the next experiment, the subject z-score determined by

the SR method in the study by Teune phet al. [8] is used as a

single feature for the decision tree classification. This feature

is the result of a linear combination of the best PCs according

to AIC (for details see Section III-A). Note that we used only

this single feature (the subject z-score) as input to the decision

tree classifier to separate the patient group from the healthy

controls. The results are shown in Fig. 5 and Table II.

(a) PD vs HC (b) MSA vs HC (c) PSP vs HC

Fig. 5: The trees obtained after using the subject z-score on

the combined pattern as the single feature for classification.
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TABLE II: SUMMARY OF THE DECISION TREE CLASSIFICA-

TION WITH THE Z-SCORE ON THE COMBINED PATTERN AS

THE SINGLE FEATURE

Group Perf. Sensitivity Specificity

PD (38) 79 80 77.8

MSA (39) 87.2 90.5 83.3

PSP (35) 91.4 82.4 100

In Fig. 5a the tree chooses a cutoff value of 0.36 as the

threshold for the single z-score feature to split the dataset,

with 14 out of 18 healthy controls and 16 out of 20 PD

subjects correctly classified. These results correspond to the

80% sensitivity and 77.8% specificity at the z-score cutoff

value of 0.45 as reported in the study by Teune phet al. [8].

That the cutoff values are not identical can be explained as

follows. Since the z-scores take a discrete number of values,

there can be a small interval of cut-off values which lead to

the same sensitivity and specificity (for both the SR and DT

methods). The decision tree method uses a mechanism called

phinformation gain to sort the thresholds in ascending order

and then chooses the first threshold. For example, the cut-

off interval for the PD group was [0.36,0.45] (with the same

sensitivity and specificity), and the decision tree method chose

the first value, which is 0.36. For testing new data samples, a

mid-value threshold should be considered to avoid a reduction

in specificity.

Interestingly, the DT method produces exactly the same

values for sensitivity and specificity as the SR method of Teune

phet al. [8], although with small differences in z-score cut-off

values. That is to say, at thresholds 0.65 and 0.88 the DT

results correspond to the 90.5% sensitivity, 83.3% specificity

results for the MSA group, and the 82.4% sensitivity, 100%

specificity results for the PSP group, respectively, in the same

study [8]. Therefore, with the same single feature (z-score)

obtained from a linear combination of the best PCs, the

decision tree method is as capable as the SR method (with

optimal cut-point value determined from the ROC curve) to

obtain high classification performance.

E. Information gain versus Youden index

Here we illustrate in more detail that maximising the infor-

mation gain by the DT method and maximising the Youden

index [20], [21] in the SR method lead to identical results. We

conjecture that this identity holds in more generality, although

we do not have a proof at this point.

Let us consider a data set with healthy and non-healthy cases

and compute the optimal split of this data set based on a single

attribute according to two different criteria: information gain

(as used in decision tree classifiers) and the Youden index. We

will illustrate by an example that these two different measures

give identical results.

a) Computing the information gain: Let T be a set

of cases, where each case belongs to one of k classes

C1,C2, . . . ,Ck (for example, k = 2, i.e., healthy and diseased).

Let freq(C j,T ) be the number of cases belonging to class C j.

The phinformation of T is:

info(T ) =−
k

∑
j=1

freq(C j,T )

|T |
log2

(

freq(C j,T )

|T |

)

(1)

When T is split into subsets T1,T2, . . . ,Tn by some attribute X

which has n outcomes, the phexpected information of T with

respect to X is:

infoX (T ) =
n

∑
i=1

|Ti|

|T |
info(Ti) (2)

Now consider the complete data set T , with attributes

X1,X2, . . ., and two classes, healthy and diseased. The pro-

portion of healthy cases is pH , the proportion of disease

cases is pD. Let info(T ) be the phinformation (entropy) of

T . (For a pure set, for example if there are only healthy cases,

info(T ) = 0.) Consider an attribute X and a phsplit value V of

this attribute. Split the data set T into two subsets T1 and T2:
{

T1 = all cases from T where X 6V

T2 = all cases from T where X >V
(3)

The expected phinformation of this partition of T is denoted

by info
(V )
X (T ).

The information gain is: gain
(V )
X (T ) = info(T )− info

(V )
X (T ).

In order to find the optimal split of the data set, one computes

gain(V )(X) for all attributes X and all split values V . Then

the attribute X which maximizes gain
(V )
X is chosen as the first

node of the tree, with V the corresponding split value.

b) Youden index: For distinguishing between individuals

with and without a disease, the phYouden index [20], [21] is

often used as a measure of overall diagnostic effectiveness.

This index is defined by J = T PR−FPR, with T PR the true

positive rate (fraction of true positives out of all positives),

and FPR the false positive rate (1-fraction of true negatives

out of all negatives). In other words, J is the maximum vertical

distance between the ROC curve and the diagonal or chance

line. Note that T PR equals sensitivity and FPR equals 1-

specificity, so that J is equal to sensitivity+specificity-1.

c) Example: Consider now an example data set T with

six cases, two healthy (labeled H) and four diseased (labeled

D). Let us consider the disease cases as positives and the

healthy cases as negatives. We now consider all possible

choices for the split point; let us indicate the cases by

0,1,2,. . . ,6. This leads to the seven pictures in Fig. 6.

TABLE III: THE YOUDEN INDEX AND INFORMATION GAIN

COMPUTED FOR ALL THE SEVEN CASES IN FIG. 6

Case No 0 1 2 3 4 5 6

Youden index 0 0.5 0.25 0.75 0.5 0.25 0

Information gain 0 0.32 0.05 0.46 0.25 0.11 0

For all these cases we have computed the Youden index and

the information gain gain
(V )
X (T ) = info(T )− info

(V )
X (T ), where

V refers to the possible cases 0,1,2,. . . ,6 for choosing the split

value. Table III shows the results.
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Fig. 6: All possible cases for the split point

As can be seen in Table III, Case 3 has both the highest

Youden index J and the highest information gain gain
(V )
X (T ).

This illustrates the relationship between the information gain

(the mechanism used in the C4.5 decision tree inducer to

determine thresholds) and the Youden index used to determine

the best cut-off point (best combination of sensitivity and

specificity) on the ROC curve, as used in the SR method [8].

F. Pairwise disease-group comparisons

In pairwise binary classification we do direct comparisons

of each disease against another (that is, excluding the healthy

group).

In this experiment, the LOOCV procedure is carried out

in the usual way; however, we combine the SR procedure

and decision tree method in two different ways. In the first

approach, the subject scores of the best components obtained

by the SR procedure and AIC (that is, without linearly com-

bining the best components) are used as features for training

the decision tree classifier. In the second approach, we linearly

combine the best components to form a single pattern and the

subject score on the combined pattern is used for training, as

in Section III-D. The left-out subject is then tested on the best

components (approach 1), or the combined pattern (approach

2), respectively.

For the PD vs MSA comparison the performance is better

than for the other comparisons, both for individual and com-

bined PCs. Similarly, the PD vs PSP classification performs

well, especially when the PCs are combined. Note that the

performance is lowest for the PSP group versus the MSA

group. This can be attributed to the fact that PSP and MSA

have a quite similar disease pattern [22]. As can be seen,

combining PCs to form a single pattern is always better than

using individual PCs for the pairwise comparisons.

TABLE IV: PAIRWISE DISEASE-GROUP COMPARISONS:

CLASSIFIER LOOCV PERFORMANCE FOR (1) SUBJECT

SCORES ON PCS SELECTED BY THE SR PROCEDURE AND

AIC; AND (2) SUBJECT SCORES ON THE COMBINED PAT-

TERN. FOR EACH PAIR OF DISEASE GROUPS A AND B, SEN-

SITIVITY SS THE PERCENTAGE OF CORRECTLY CLASSIFIED

SUBJECTS OF GROUP A, AND SPECIFICITY THE PERCENT-

AGE OF CORRECTLY CLASSIFIED SUBJECTS OF GROUP B

Subject scores on individual PCs Subject scores on combined pattern

Group Perf. Sensitivity Specificity Perf. Sensitivity Specificity

PD vs MSA (41) 75.6 70 81 90.2 90 90.5

PD vs PSP (37) 70.3 85 52.9 81.1 80 82.4

MSA vs PSP (38) 63.2 66.7 58.8 65.8 61.9 70.6

IV. DISCUSSION

The SR method was found to work better than the DT

method, especially when considering all or a few features

for the DT method. In most cases a major difference was

notable in the performance of the PD vs HC classification,

which can be attributed to the fact that the PD-related pattern

is very similar to the healthy pattern. Additionally, in the PD vs

HC comparison, the principal components generated have less

variance. Hence, a combination of several best components

yields better results, which is exactly what the SR method

does.

Furthermore, when the same single z-score feature corre-

sponding to the combined pattern in the SR method is used

in the DT classification (see Section III-D), the performance

is as high as that of the stepwise regression method [8].

The pairwise disease comparisons yielded quite an impressive

performance, especially for the PD vs MSA group, when

compared to those in Mudali phet al. [9]. Combining the

SR procedure with the DT method improved performance in

the separation of some disease groups. Therefore, the robust

feature obtained using the SR procedure could be used in the

DT method to improve classification.

In a previous study [9], we compared the performances

of several classification methods, i.e., random forest, nearest

neighbors, classification and regression trees (CART), linear

support vector machine (SVM), linear discriminant analysis

(LDA), and naive Bayes in the separation of parkinsonian

syndromes. Indeed some of these classifiers, like linear SVM

and nearest neighbors, performed better than the decision tree

method. However, our specific purpose in this paper was to

compare the classification performances of the SR and DT

methods, also to show that the classification performance

improves when both methods are combined.

V. CONCLUSION

Covariance patterns were extracted from four distinct groups

of FDG-PET data using the SSM/PCA method. The subject

scores served as the feature set and input to the C4.5 decision

tree classification algorithm. Classifiers were constructed from

distinct groups for future prediction of new unlabeled subject

images. Validation of classifiers was performed using the
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leave-one-out method. The decision tree results were com-

pared to the scatter plots and receiver operating characteristic

(ROC) curves obtained in the stepwise regression method.

In some instances, the DT results are still not competitive

with the SR method. To maximise classifier performance the

decision tree method would require several horizontal and

vertical decision boundaries to separate the dataset (especially

for the PD group), since the subject scores overlap in the

feature space. But this could lead to a high generalization error.

Hence, it is preferable to combine the features to form one

robust feature (subject z-score) which is capable of separating

the groups while minimizing the generalization error. In fact,

when we included the z-score feature (as determined by Teune

phet al. [8]) in the DT classification, we obtained identical

results for the C4.5 algorithm and the SR methods. Therefore,

we can improve the DT method by using the linearly combined

features obtained by the SR procedure. It would be interesting

to study the performance of a multi-class classification of all

parkinsonian syndromes, i.e., PD vs MSA vs PSP using SR

feature(s) in the DT classification. Unfortunately, with the SR

method in its current form only two groups can be compared.

Nevertheless, given the small size of the current datasets

the decision tree method is highly promising. In addition it

provides a visual understanding of the classification results and

accommodates multi-class classification, as reported in Mudali

phet al. [9]. In the long run, we need to devise means of

obtaining a more diverse set of features and / or a larger set

of training data for the decision tree to perform even better.
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