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A B S T R A C T   

Background: Splice prediction algorithms currently used in routine DNA diagnostics have limited sensitivity and 
specificity, therefore many potential splice variants are classified as variants of uncertain significance (VUSs). 
However, functional assessment of VUSs to test splicing is labour-intensive and time-consuming. We developed a 
decision tree to prioritise potential splice variants for functional studies and functionally verified the outcome of 
the decision tree. 
Materials and methods: We built the decision tree, SEPT–GD, by setting thresholds for the splice prediction 
programs implemented in Alamut. A set of 343 variants with known effects on splicing was used as control for 
sensitivity and specificity. We tested SEPT–GD using variants from a Dutch cardiomyopathy cohort of 2002 
patients that were previously classified as VUS and predicted to have a splice effect according to diagnostic rules. 
We then selected 12 VUSs ranked by SEPT–GD to functionally verify the predicted effect on splicing using a 
minigene assay: 10 variants predicted to have a strong effect and 2 with a weak effect. RT-PCR was performed for 
nine variants. Variant classification was re-evaluated based on the functional test outcome. 
Results: Compared to similar individually tested algorithms, SEPT–GD shows higher sensitivity (91 %) and 
comparable specificity (88 %) for both consensus (dinucleotides at the start and end of the intron, GT at the 5′

end and AG at the 3′ end) and non-consensus splice-site variants (excluding middle of exon variants). Using 
clinical diagnostic criteria, 1295 unique variants in our cardiomyopathy cohort had originally been classified as 
VUSs, with 57 predicted by Alamut to have an effect on splicing. Using SEPT–GD, we prioritised 31 variants in 40 
patients. In the minigene assay, all 12 variants showed results concordant with SEPT-GD predictions. RT-PCR 
confirmed the minigene results for two variants, TMEM43 c.1000 + 5G > T and TTN c.25922–6 T > G. Based 
on all outcomes, the SGCD c.4-1G > A and CSRP3 c.282-5_285del variants were reclassified as likely pathogenic. 
Conclusion: SEPT–GD outperforms the tools commonly used for RNA splicing prediction and improves prioriti
sation of variants in cardiomyopathy genes for functional splicing analysis in a diagnostic setting.  

Abbreviations: VUS, Variant of unknown significance; NGS, Next generation sequencing; LP, Likely pathogenic; HGMD, Human Gene Mutation Database; P, 
Pathogenic; RT-PCR, Reverse transcription polymerase chain reaction; qPCR, quantitative PCR; SEPT-GD, Splice effect prediction tree, Genome diagnostics; B, 
Benign; LB, Likely benign; WT, Wildtype; SSF, Splicesite finder; MES, MaxEntScan; NNS, Network Splice; GS, Genesplicer; ESE, Exonic splice enhancer; TP, True 
positive; TN, True negative; FN, False negative; FP, False positive; HEK, Human embryonic kidney; DMEM, Dulbecco’s modified eagle medium; EGFP, Enhanced 
green flourescent protein; LoF, Loss of function; DCM, Dilated cardiomyopathy; HCM, Hypertrophic cardiomyopathy; NMD, nonsense-mediated decay; ASSP, 
Alternative splice site predictor. 
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1. Introduction 

The clinical application of next-generation sequencing (NGS) using 
targeted, exome or whole genome sequencing approaches has resulted 
in a marked increase in the molecular diagnostic yield in Mendelian 
diseases [Shen et al, 2015]. However, before genetic variants can be 
classified as (likely) pathogenic ((L)P), leading to a molecular genetic 
diagnosis, large numbers of identified variants require prioritisation and 
pathogenicity assessment [Ito et al, 2017]. To predict the functional 
impact of variants and guide classification of variant pathogenicity, 
genome diagnostic centres use various decision trees, including out
comes of in silico prediction tools [Rhine et al, 2018]. While these 
computational tools are expanding [Ito et al, 2017; Rhine et al, 2018] 
and improving, clinical laboratory specialists still end up with long lists 
of variants of unknown significance (VUSs) that are clinically not 
actionable. 

One category of VUSs consists of variants that potentially disturb 
normal mRNA splicing [Crehalet et al, 2012]. Approximately 9 % of all 
the variants in the Human Gene Mutation Database (HGMD) that are 
considered responsible for human inherited disease are labelled as 
variants with consequences for splicing (27,959/323,661; accessed on 
23 December 2021) [Stenson et al., 2003]. The molecular diagnostic 
yield likely increases if more VUSs suspected to have an effect on 
splicing could be reclassified as LP or P based on functional evidence. 
Commonly used techniques for functional analysis of splicing are reverse 
transcription PCR (RT-PCR), in vitro minigene assays, quantitative PCR 
(qPCR) and protein truncation tests [Harvey and Cheng, 2016; Anna and 
Monika, 2018]. Ideally, all VUSs would be functionally tested for 
aberrant splicing. However, this goal is currently unrealistic as these 
tests remain very labour-intensive and time-consuming. 

Given the current limitations of functional test capacity, diagnostics 
laboratories turn first to predictive in silico testing and then follow up 
with functional in vitro analysis of selected variants prioritised based on 
the prediction outcome. These in silico prediction tools are based on 
nucleotide frequency matrices and algorithms that measure the inter
dependence of adjacent (Markov model) and distant (Maximum entropy 
model) positions of core splicing consensus sequences [Vorechovsky, 
2006; Anna and Monika, 2018]. Although these algorithms perform well 
for the canonical splice sites (most commonly found dinucleotides GT 
and AG for donor and acceptor sites, respectively) [Jian et al., 2014], 
they work less well outside these consensus regions, often leading to 
false positive results [Jian et al., 2014]. To demonstrate the clinical 
value of routinely used in silico predictions of effects on splicing, one 
would ideally perform functional mRNA analysis in a larger series of 
gene variants across the complete range of predicted non-splice- 
affecting and splice-affecting cases. As the algorithm should preferably 
be applicable to all genes tested clinically, the variants in an algorithm 
study should have been identified in a wide range of genes, or at least in 
those most frequently tested in the clinic. Moreover, having a reliable 
decision tree to help prioritise RNA splicing variants for functional 
verification would be advantageous. So far, studies on these topics have 
been limited and there are no recognised thresholds for distinguishing 
between positive and negative effects on splicing for a particular variant 
at a particular site [Jian et al., 2014]. In this study, we set out to develop 
a workflow to better prioritise potential splice-affecting VUSs for follow- 
up functional analysis. For this purpose, we designed a decision tree, 
Splice Effect Prediction Tree – Genome Diagnostics (SEPT–GD), by 
setting thresholds for parameters in the prediction tools that are inte
grated in the widely used Alamut® variant interpretation software 
package. SEPT-GD aims to be a more stringent, structured and quanti
fiable method to prioritize potential splice affecting VUSs for functional 
follow up using the same algorithms present in Alamut®, after initial 
selection of such VUSs using our routine diagnostic splice prediction 
criteria. To test the robustness of SEPT–GD, we used variants with 
known effects on splicing in cardiomyopathy genes, one of the most 
frequently tested group of genes in diagnostics. We then used SEPT–GD 

to predict the effect on splicing of VUSs previously identified in a cohort 
of 2002 cardiomyopathy patients [Alimohamed et al, 2021] and func
tionally tested a selection of these variants in an in vitro minigene assay 
and in RNA isolated from blood. 

2. Materials and methods 

2.1. Patient samples and variants 

We previously reported the yield of targeted NGS data in a cohort of 
2002 cardiomyopathy patients [Alimohamed et al, 2021]. Patients 
included in this study were referred to our clinical genetics laboratory 
for genetic testing for various types of cardiomyopathies. Variant 
interpretation was based on guidelines recommended by the American 
College of Medical Genetics and Genomics [Richards et al, 2015]. Var
iants were classified as benign (B), likely benign (LB), VUS, LP or P. The 
study was performed in accordance with UMCG and Dutch national 
ethical guidelines. Informed consent was obtained for all patients. 

2.2. Splice vacriant prediction – Routine diagnostic analysis 

Alamut® software version 2.11 (Interactive Bio software, Rouen, 
France) was used for in silico prediction of splice-affecting nucleotide 
variants. Within Alamut, in silico scores comparing wild type (WT) and 
mutant alleles for all genetic variants were obtained using four splicing 
prediction tools: SpliceSiteFinder (SSF)-like, MaxEntScan (MES), Neural 
Network Splice (NNS) and GeneSplicer (GS). A variant is considered 
potentially splice-altering when 3 out of 4 of the prediction tools show a 
significant score difference between the WT and mutant allele as 
manually scrutinized by the responsible laboratory specialist clinical 
genetics. 

2.3. Variant datasets 

LP/P variants and VUSs from our cardiomyopathy cohort that were 
predicted to be splice-altering using Alamut® software, known splice 
variants and true negatives confirmed from literature were analysed in 
two datasets:  

A. Reference set 

The reference set to optimise the analysis and interpretation pro
cedure, i.e., setting the thresholds in the SEPT–GD decision tree, con
sisted of the following list of variants:  

1) (L)P splice-altering variants at canonical splice sites in 
cardiomyopathy-related genes detected in our cardiomyopathy 
cohort (Supplemental Table 1), 

2) HGMD-listed proven exonic splice variants of all genes in our car
diomyopathy gene panel and.  

3) Variants identified by a systematic PubMed search (5 March 2019) 
using the search items: splicing/splice mutations/variants in cardio
myopathy minigene/RNA analysis, duration of 10 years, sorted of best 
match with medical subject headings (MeSH) terms; cardiomyopathies, 
RNA splicing, mutation, RNA, mutation; sub heading: analysis. A variant 
was included for analysis when all the following criteria were met: a) 
the variant (gene) was relevant to cardiomyopathy, b) it was impli
cated to alter splicing and, c) there was functional evidence available 
(RNA analysis and/or minigene splicing assay).  

B. Test set - cardiomyopathy cohort VUSs 

The VUS test set consisted of potential RNA splice variants classified 
as VUS for cardiomyopathy-related genes in our previously described 
cohort [Alimohamed et al, 2021]. 

M.Z. Alimohamed et al.                                                                                                                                                                                                                       
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2.4. Decision tree for splice variant selection 

In Alamut®, the following prediction algorithms were used: SSF, 
MES, NNS, GS. In addition, we incorporated the RESCUE-ESE that 
identifies candidate exonic splicing enhancers in vertebrate exons 
[Fairbrother et al, 2004] and EX-SKIP, a tool that quickly estimates 
which allele is more susceptible to exon skipping [Raponi et al, 2011]. 
For interpretation using SEPT-GD, if the EX-SKIP icon indicates for a 
variant a higher probability that a mutant will undergo skipping 
compared to WT, we considered this as one of the evidence criteria 
needed towards variant prioritisation. Similarly, for Rescue-ESE, under 
the ESE prediction icon, if a hexanucleotide sequence as candidate ESE is 
indicated under a specific variant or mutated sequence then we 
considered this as one of the evidence criteria needed towards variant 
prioritisation’. Variants from the control and test sets were further 
evaluated using our decision tree, as shown in Fig. 1. 

Based on the genomic position of a variant within the gene of in
terest, the variants were split into four main categories: (1) consensus 
splice sites, (2) intronic variants, (3) near-consensus exonic variants and 
(4) middle-of-exon variants. For each of the main categories, criteria 
based on scores from the prediction algorithms in Alamut® were pro
vided to prioritise variants for functional follow-up. In addition, a grey 
zone category was introduced to indicate variants with inconclusive in 
silico predictions.  

1. Variants ± 2 base pairs intronic from the start or end of an exon 
(consensus splice sites) should always be prioritised for follow- 
up.  

2. Intronic VUSs that do not meet criterium 1 must meet two of the 
following criteria to be prioritised:  

i) two out of four algorithms predict a score difference ≥ 50 % 
between the mutated and WT sequence at the original splice site,  

ii) the end of the exon is visible (within approx. 180 bp Alamut® 
window) and the score difference between WT and intronic 
variant is clearly seen and recorded whilst showing the investi
gated variant in the same window and  

iii) an alternative splice site is clearly present (defined as presence of 
score difference between mutant and WT sequence above 50 % in 
a minimum of two out of four scores (SSF range 0–100, MES 
range 0–16, NNS range 0–1 and GS range 0–21).  

3. Exonic VUS present from the start of the exon up to 5 bp in the 
exon for acceptor sites and from 5 bp before the end of the exon 
for donor sites must meet two of the criteria below to be 
prioritised:  

i) two out of four algorithms predict a score difference ≥ 50 % 
between the mutated and WT sequence at the original splice site,  

ii) the start or end of the exon should be visible (within approx. 180 
bp Alamut® window) and there is a clear score difference be
tween WT and the exonic splice variant whilst showing the 
investigated variant in the same window and  

iii) clear presence of an alternative splice site (see 2 (iii)).  
4. VUS present in the middle of an exon (a predicted donor or 

acceptor site) > 5 bp from the start or the end of the exon have to 
meet three of the following criteria to be prioritised:  

i) two out of four algorithms predict a score difference ≥ 50 % 
between the mutated and WT sequence of the original splice site,  

ii) the start or end of exon is visible (within approx. 180 bp Alamut® 
window) and there is a clear score difference between the WT and 
mutated exon whilst showing the investigated variant in the same 
window,  

iii) there is clear presence of an alternative splice site location (see 2 
(iii)),  

iv) Ex-skip predicts a higher probability for the mutant to undergo 
skipping compared to WT,  

v) Rescue-ESE, under the ESE Predictions icon, indicates the variant 
at WT or mutated sequence to be a hexanucleotide sequence as 
candidate ESE (exonic splicing enhancer) and/or a branch point 
difference ≥ 50 % between the mutated and WT sequence 
variant,  

vi) Note: in the case of a variant where both the donor and acceptor 
sites indicate a difference between the mutated and WT sequence, 
follow the relevant closest-site scores depending on the start and 
end of an exon (i.e., if the start-site of the exon is closer to the 
variant position than the end-site, focus on the acceptor site, 
otherwise focus on the donor site) and 

vii) for a variant whose exon ends are not visible for scoring com
parison, three criteria from i, iii, iv and v must be met. 

Fig. 1. Schematic representation of Splice Effect Prediction Tree – Genome Diagnostics (SEPT–GD).  

M.Z. Alimohamed et al.                                                                                                                                                                                                                       
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2.5. Criteria for weak splice prediction 

To balance specificity and sensitivity, we introduced weak splice 
effect criteria to show indeterminate prioritisation due to inconclusive in 
silico evidence. These include:  

i) intronic variants that do not present with any scores but are 
predicted by Rescue-ESE to be a hexanucleotide sequence and by 
SSF to have a branch point difference of 40 points between the 
mutated and WT sequence variant,  

ii) deep intronic variants (100 bp away from exon-intron junction) 
that have met the intronic VUS criteria to be prioritised for 
functional follow-up,  

iii) exon variants that have not met the criteria to be prioritised for 
functional follow-up but are labelled as hexanucleotide sequence 
using Rescue-ESE and show a branch point difference of 40 points 
between the mutated and WT sequence variant,  

iv) exon variants for which two or more algorithms present a score 
difference > 30 % (one of which is completely abolished) be
tween WT and variant,  

v) middle-of-exon variants with not enough score difference that 
present with predictions from Rescue-ESE and a branch point 
difference of 40 points or skipping predicted by Ex-skip and  

vi) middle-of-exon variant calls with enough score difference but no 
additional indications. 

The outcome of the decision tree, i.e., whether to prioritise a variant 
as a potential splice variant for functional follow-up or as variant with 
no priority, was considered true positive (TP) if the outcome was 
concordant with literature results based on functional proof. The 
outcome was considered true negative (TN) if the variant was not 
considered splice-altering by the decision tree and the results from 
functional studies. The outcome was considered false negative (FN) if 
the decision tree indicated a variant to be non-splice-altering when it is a 
splicing variant according to literature reports based on functional ex
periments. The outcome was considered false positive (FP) when the 
decision tree analysis indicated a variant to be splice-altering when it 
was not shown to be a splice variant according to functional analysis in 
literature reports. The sensitivity and specificity of the prediction of 
splicing affecting variants using SEPT–GD was calculated as: Sensitivity 
= TP/ (TP + FN), Specificity = TN/ (TN + FP). 

2.6. Constructs for ex vivo splicing assay (minigene assay) 

To functionally verify the variant prioritisation results from the de
cision tree, we tested selected variants with an ex vivo splicing assay, the 
minigene assay [Gaildrat et al, 2010]. Variants predicted by the decision 
tree to influence splicing were selected for testing based on availability 
of samples and consent of patients. 

Genomic WT and mutant fragments containing an exon or exons in 
the region of interest and up to 250 bp of 5′and 3′ flanking intronic 
sequences were PCR-amplified (primer sequences in Supplemental 
Table 2). The products were subcloned into the pJET cloning vector, 
following manufacturer’s instructions (Thermo Fisher Scientific, MA, 
United States). The inserts were verified with Sanger sequencing and 
correct inserts were cloned into the pSPL3 exon-trapping vector (Invi
trogen Corporation, Carlsbad, CA, United States). 

2.7. Transfection of HEK293 cells and RT-PCR 

Human embryonic kidney (HEK) 293 cells were plated in 6-well 
plates containing 6 × 105 cells/well and cultured in Dulbecco’s Modi
fied Eagle Medium (DMEM) supplemented with glutamine, 10 % foetal 
bovine serum, 1 % penicillin/streptomycin (penicillin 10,000 U/ml, 
streptomycin 10000 µg/ml) and incubated at 37 ◦C, 5 % CO2. After 24 h, 
the cells were transfected with 1 µg plasmid DNA using 

polyethylenimine according to the manufacturer’s instructions (Poly
science Inc, Warrington, PA, USA). As positive control, we used the 
pSPL3 plasmid containing WT KIAA exon 28 or the KIAA exon 
28c.4862G > A p. (Arg1621Glu) sequence known to generate a new 
splice site and previously confirmed in the minigene assay (loss of 54 
nucleotides). The empty pSPL3 vector was used as negative control. 
Transfection with an Enhanced Green Flourescent Protein (EGFP)-con
taining vector was performed to check the transfection efficiency. After 
48 h, the cells were lysed and RNA was isolated according to the man
ufacturer’s instruction (Qiagen, Hilden, Germany). 5 µg total RNA was 
used as a template to synthesise cDNA (RevertAid H Minus First Strand 
cDNA Synthesis Kit, Thermo Fisher Scientific) using the cDNA random 
hexamer primers pd(N)6 and/or oligo (dT)18 primers. PCR was per
formed using the primers (SD6) 5′-CTGAGTCACCTGGACAACC-3′ and 
(SA2) 5′-ATCTCAGTGGTATTTGTGAGC-3′, of which the sequences are 
complementary to sequences of the exons standardly available in pSL3, 
and Amplitaq Gold Fast PCR mix (Thermo Fisher Scientific, MA, United 
States) and the following amplification programme: 5 min at 96 ◦C, 
followed by 35 cycles of 1 min at 94 ◦C, 1 min at 58 ◦C, 1 min at 72 ◦C 
(depending on insert size) and a final elongation time of 10 mins at 
72 ◦C. PCR products were analysed by agarose gel electrophoresis and 
Sanger sequencing (Supplemental Table 2). Splice assay minigene ex
periments were performed in duplicates. To predict the functional 
consequences of the cloned sequence on the minigene assay and the 
effect of the splice variant on the transcript, we used the Human Splicing 
Finder 3.1 programme, as previously described [Desmet et al, 2009]. 
The HSF was used to seek the consensus values comparing WT and 
mutant sequences which is not available on the Alamut platform. The 
program generated consensus values (CV) in a range from 0 to 100 for 
each nucleotide input. WT and mutant sequences were uploaded in the 
program and difference between the CV were analyzed. 

2.8. RT-PCR on patient RNA 

An additional consent was obtained from patients with the variants 
tested using minigene (primary test) to obtain a separate blood sample 
for RNA isolation and RT-PCR analysis. RNA was isolated from whole 
blood collected in PAXgene® Tubes using the Maxwell® 16 Instrument 
and the Maxwell® 16 LEV simply RNA Blood Kits (Promega Corpora
tion, Madison, WI, United States). To investigate the effect of a potential 
splice-site variant at RNA level, equal amounts of RNA were synthesised 
to first strand cDNA using the RevertAid H Minus First Strand cDNA 
synthesis kit (Thermo Fisher Scientific). RT-PCR was performed using 
gene-specific primers designed to amplify the exon expected to be 
affected by the variant and flanking region sequences. The resulting PCR 
products were analysed by agarose gel electrophoresis and Sanger 
sequencing. A result was considered positive on RT-PCR when the ex
pected splice effect was observed as a specific-sized band on agarose gel 
and considered negative when the expected band was not observed. 
Minigene and RT-PCR results were independently interpreted. 

3. Results 

In our cohort of 2002 cardiomyopathy patients, we detected 1904 
variants that were classified as VUS, (L)P or P. Of these 1904 variants, 
485 were unique variants classified as (L)P. Forty-one of those variants, 
present in 59 patients (3 % of the cohort), have an (known) effect on 
splicing. The prevalences of (L)P splicing variants per gene, cardiomy
opathy subtype and gender are provided in Supplemental Fig. 1. Using 
the routine diagnostic criteria for predicting splicing, 57 of the 1295 
unique variants classified as VUS were predicted to alter splicing 
(Fig. 2). 

3.1. Validation of SEPT–GD for splice prediction using the reference set 

To test the validity and set thresholds within the Alamut®-based 
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SEPT–GD decision tree, we used a reference set, built as described in the 
Methods section, which included:  

i) 41 unique (L)P splice-altering variants for cardiomyopathy- 
related genes that we detected in our cardiomyopathy cohort: 
39 intronic and 2 exonic,  

ii) an additional 36 exonic splice variants from the HGMD database 
that were present in genes also screened using our 
cardiomyopathy-targeted panel genes as external control variants 
set to equalise the number of intronic and exonic splice variants 
and  

iii) variants identified by a systematic PubMed literature search. This 
provided 50 papers matching the initial criteria. After careful 
reading, 34 were rejected because the data presented was not 
relevant to cardiomyopathy or humans, the variants described 
affected the splicing machinery (factors), or the papers lacked 
functional analysis using RNA or minigene assay. In total, 16 
papers met the inclusion criteria and contributed 266 unique 
variants to the external control variant set. 

The total control variant set comprised of 343 unique variants. Of 
these, 183 were splicing and 160 were non-splicing variants [Table 1], 
while 161 variants were intronic and 182 variants were exonic, 
including 111 middle-of-exon variants (102 from literature 1–50 and 9 
from HGMD), i.e., variants not present in the first or last 5 bp at the 
beginning or end of the exon, respectively. Using our SEPT–GD decision 
tree resulted in 140 TP variants (including all the (L)P splicing variants 
detected in our cardiomyopathy patient cohort), 80 TN variants, 27 FP 
variants and 14 FN variants, leading to a sensitivity of 91 % and speci
ficity of 75 % in predicting a splice effect. None of the 14 FN variants 
showed a difference in splice predictions between the mutant and WT 
using our splice prediction tree. Of the 27 FP variants, 20 were located in 
the middle of the exon, 5 in the intron and 2 in the first or last 5 bp of the 
exon. For these, the splicing prediction algorithms used showed a sig
nificant score difference between the mutant and WT sequence. 

SEPT–GD labelled 82 variants out of the 343 as having a ‘weak splice 
effect’, of which 33 % (27/82) were reported as splice variants and 67 % 
(55/82) as non-splicing variants. Of the variants predicted to have a 
weak splice effect, 56 % (46/82) were located in the middle of an exon 
or were deep intronic. 

To assess the performance of SEPT–GD in comparison to other in 

Fig. 2. Schematic representation of prioritised splice variants for in vitro 
testing, following SEPT–GD based on in silico splicing prediction tools. (i) 
Cardiomyopathy cohort containing 2002 patients and 1904 variants separated 
into (L)P and VUS following routine diagnostic criteria. (ii) VUSs from car
diomyopathy cohort were tested using the routine diagnostic decision criteria 
in Alamut® software for splicing prediction. (iii) Variants underwent additional 
analysis with SEPT–GD, and we selected VUSs predicted to affect splicing 
selected for minigene analysis. (iv) Variants tested splice-affecting with the 
minigene assay. (v) Variants tested splice-affecting with RT-PCR. 

Table 1 
Overview of literature-reported splicing variants and performance of the splice effect decision tree. Control numbers refer to literature files used to extract variants, as 
shown in Supplemental Table 4.   

Literature variants Decision tree results Inconclusive 

Control No. Splicing Non-splicing Total TP TN FP FN Variants T F 

1 9 0 9 7 0 1 0 1 0 1 
2 3 2 5 3 2 0 0 0 0 0 
3 54 143 197 33 64 25 8 67 13 54 
4 7 0 7 3 0 0 0 4 4 0 
5 8 0 8 8 0 0 0 0 0 0 
6 5 0 5 3 0 0 2 0 0 0 
11 6 3 9 6 2 1 0 0 0 0 
14 1 8 9 1 8 0 0 0 0 0 
15 1 0 1 1 0 0 0 0 0 0 
21 1 2 3 1 2 0 0 0 0 0 
22 1 0 1 1 0 0 0 0 0 0 
26 1 0 1 1 0 0 0 0 0 0 
30 1 0 1 1 0 0 0 0 0 0 
37 5 0 5 3 0 0 0 2 2 0 
46 4 0 4 2 0 0 0 2 2 0 
50 1 0 1 1 0 0 0 0 0 0 
(L)P 41 0 41 41 0 0 0 0 0 0 
HGMD 34 2 36 24 2 0 4 6 6 0 
Excl. MOE*    126 50 7 13    
Total 183 160 343 140 80 27 14 82 27 55 

*MOE – Middle of exon variants, defined as variants not present in the first or last 5 bp at the beginning or end of the exon – not included in total row. 
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silico splice prediction programmes, the middle-of-exon variants were 
removed as they are known to be difficult to predict for splicing effects 
by existing programmes. re-calculating the specificity and sensitivity of 
SEPT–GD on literature-reported splice variants excluding middle-of- 
exon variants (N = 196) led to an increase of specificity to 88 %, 
while the sensitivity remained 91 %. Of these, 36 variants were labelled 
as having a weak predicted effect (SEPT–GD decision inconclusive), of 
which 59 % (21/36) were true splice variants and 41 % (15/36) were 
non-splicing variants. 

Test set of variants: In our cardiomyopathy cohort, 1419 variants 
(1295 unique) were classified as VUS. Using the routine diagnostic 
criteria, 57 of these unique variants, which were detected in 71 patients 
(including one variant seen in three patients), were predicted to have a 
splicing effect (Supplemental Table 3). We then used SEPT–GD to pri
oritise these variants. A total of 26 variants were labelled as having a 
weak effect and therefore not prioritised for follow-up. The remaining 
31 strongly predicted splicing variants were detected in 40 patients (2 % 
of the total cohort) and labelled as priority variants. Supplemental Fig. 2 
lists the prevalence of predicted splice variants classified as VUS per 
gene, cardiomyopathy subtype and gender. 

3.2. Ex vivo splicing reporter assay (minigene testing) 

We selected 12 variants for minigene testing based on availability of 
consent for follow up as well as DNA stored at the diagnostics section of 
the department. Of these, 10 were predicted by SEPT–GD to be strong 
splice-altering variants and two were predicted to be weak variants (one 
of which was detected in three families). Using this assay, we detected 
splice alterations for all 10 variants strongly predicted to affect splicing 
and for one variant with a weak prediction (ABCC9 c.2424 + 6C > G) 
[Table 2]. For the remaining variant (DES c.79G > A), predicted to be 
weak, the minigene experiments were inconclusive, with no differences 
observed between transfected minigene constructs containing WT, 
mutant or no insert. Detailed results of the minigene assay and 
sequencing results demonstrating the functional consequences of 
splicing variants are provided in Supplemental Fig. 3 (1–12). 

Details on the 11 variants with observed splicing alteration were as 
follows. For five variants, at least two aberrantly spliced products were 
found: SGCD c.4-1G > A (partial intron 2 retention, partial exon 3 
skipping), TXNRD2 c.591 + 1G > C (partial exon 6 and total exon 7 
skipping, at least 170 bp intron 7 retention), DSP c.273 + 5G > A (partial 
intron 2 retention, over 250 bp intron 2 retention), TTN c.25922–6 T >G 
(partial retention of intron 90, exon 91 skipping) and TMEM43 c.1000 +
5G > T (exon 11 skipping, at least 138 bp intron 11 retention). Partial 
intron retention only was detected in four variants: RYR2 c.1477-8C > A 
(partial intron 15 retention), LAMA4 c.814 + 17A > G (partial intron 7 
retention), CSRP3 c.282-5_285del (partial intron 3 retention) and 
ABCC9 c.2424 + 6C > G (partial intron 19 retention). Total exon skip
ping only was detected for two variants: ILK c.1210-2A > G (exon 12 
skipping) and TTN c.31514-3A > G (exon 120 skipping). Results 
comparing the in silico predictions and ex vivo assay outcomes for the 
variants tested are shown in Table 2. 

3.3. RT-PCR on patient RNA 

From the 12 variants selected for RT-PCR, for only 9 variants RNA 
samples for testing were available. Eight of those variants were strongly 
predicted to affect splicing by SEPT–GD and positive for splice-altering 
on minigene assay and one variant (DES gene) was inconclusive on 
minigene assay. For strong-predicted splice variants, RT-PCR showed a 
splice effect for two variants, TMEM43 c.1000 + 5G > T (exon 91 
skipping) and TTN c.25922–6 T > G (exon 11 skipping) (Table 2), 
concordant with the minigene assay results. For the remaining six var
iants, RT-PCR did not show a splice effect. Based on the RT-PCR results, 
the DES c.79G > A variant that was inconclusive in the minigene assay 
did not affect splicing (data not shown), underscoring its weak splicing 

prediction. 

3.4. Variant reclassification 

The data obtained with the minigene and RT-PCR assays were used 
to reclassify the variants tested. Two variants, SGCD c.4-1G > A and 
CSRP3 c.282-5_285del, were reclassified to LP as their effect, now 
proven via our functional assays, results in haploinsufficiency and loss of 
function (LoF) is a known disease mechanism for these genes within the 
respective cardiomyopathy subtype (i.e., DCM and HCM respectively). 
For four variants, ABCC9 c.2424 + 6C > G, ILK c.1210-2A > G, TTN 
c.31514-3A > G and TTN c.25922–6 T > G, our results provide addi
tional evidence for pathogenicity, but these were not reclassified to LP 
because the association of LoF variants (while the result of the splicing 
effect in the respective exons/genes) has not clearly been established as 
a disease mechanism for cardiomyopathy. In addition, the results for 
DSP c.273 + 5G > A also provided more proof for pathogenicity.How
ever, although LoF is a known mechanism for disease for DSP, we did not 
reclassify this variant to LP because of its relatively high frequency in the 
general population (0.05 % in non_Finnish Europeans). This variant was 
also previously reported to alter the donor splice site on intron 2 in the 
DSP gene [Basso et al, 2006]. We also considered the TMEM43 c.1000 +
5G > T variant a “VUS towards LP”. Skipping of exon 11 will result in a 
frameshift and a premature stop codon in exon 12, and the variant allele 
is therefore expected to escape nonsense-mediated mRNA decay (NMD) 
and thus the production of a truncated protein, but the association of 
such a variant in this gene with disease is currently unknown. The 
remaining four variants, TXRND c.591 + 1G > C, DES c.79G > A, RYR2 
c.1477-8C > A, and LAMA4 c.814 + 17A > G were not considered for 
reclassification. For the TXRND2 and DES variants this was because both 
were predicted to result in a frame-shift and thus LoF and the association 
of that type of variant in these genes with cardiomyopathy is not yet 
established. For the RYR2 and LAMA4 variant reclassification was not 
considered because the association of these genes with the cardiomy
opathy subtypes (DCM) found in the respective patients is not yet 
established. All four are still classified as VUS, without considering these 
splice results as additional proof of pathogenicity. 

4. Discussion 

In this study, we developed a decision tree, SEPT–GD, based on in 
silico predictions within the widely used commercial software Alamut®. 
SEPT–GD supports prioritisation of variants for functional analysis of 
splicing by setting thresholds for reliable predictions based on a refer
ence variant set with known effects on splicing.This allows the priori
tisation of potential splice variants with a high probability of being 
splice-altering that have been classified as VUS in routine diagnostics, 
which was confirmed with in vitro functional assessment of selected 
splice variants using minigene reporter assays with 100 % concordance. 

Our decision tree showed higher sensitivity (91 %) and comparable 
specificity (88 %) for consensus and non-consensus splice-site variants 
when compared to similar individually tested algorithms on consensus 
splice sites. In a study comparing bioinformatic programmes (HSF, MES, 
NNS and ASSP) for analysis of variants within splice-site consensus re
gions that used a collection of 222 pathogenic variants and 50 benign 
polymorphisms, 75.9 %–83.6 % sensitivity and 72.3 %–81.3 % speci
ficity ranges were reported [Tang et al, 2016]. In silico algorithms are 
thus more accurate in predicting the splicing effects of variants located 
closer to the intron–exon boundaries [Tosi et al, 2010]. The high 
occurances of inconclusive evidence and weak calls for middle-of-exon 
and deep intronic variants in our cohort, which lowered the specificity 
of SEPT–GD to 75 %, highlights the on-going challenge in predicting 
these categories of splice alterations using current software. Notably, in 
our cohort, we used variants in genes implicated in cardiomyopathies, 
and this may not necessarily be representative of other disease types. 
Testing the performance of SEPT–GD for other genes in daily practice 
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Table 2 
Table showing in silico predictions, minigene splice reporter assay and RT-PCR results for variants tested.  

Nr. Gene Variant Transcript Size 
cDNA* 

New potential splice 
site 

HSF Consensus value 
(0–100) 

In silico 
prediction 

Size New 
site* 

Ex vivo 
confirmation 

Minigene Variant 
result 

RT-PCR 

1 SGCD c.4-1G > A NM_000337.5 452 ctcttctctcagCG 90.46 Exon 3 
42 bp longer 

494 42 bp insertion Partial intron 2 retention In frame ins N/A      

caaatgcctcagGA 82.86 Exon 3 
9 bp shorter 

443 9 bp deletion Partial exon 3 skipping In frame del  

2 TXNRD2 c.591 + 1G >
C 

NM_001282512.1 405 AAGgtggga 87.21 Exon6/7 
75 bp shorter 

330 75 bp deletion Partial exon 6 and total 
exon 7 skipping 

Frameshift No variation      

N/A N/A Exon 7 
170 bp longer 

575 170 bp insertion Intron 7 retention (at least 
170 bp cloned) 

Frameshift  

3 RYR2 c.1477-8C > A NM_001035.2 399 ttttttttaaagTT 84.08 Exon 16 
6 bp longer 

405 6 bp insertion Partial intron 15 retention In frame ins No variation 

4 DSP c.273 + 5G >
A 

NM_004415.2 366 CTGgttagc 88.05 Exon 2 
61 bp longer 

427 61 bp insertion Partial intron 2 retention Framsehift No variation      

N/A N/A Exon 2 
250 bp longer 

610 250 bp insertion Over 250 bp intron 2 
retention 

Frameshift  

5 LAMA4 c.814 + 17A 
> G 

NM_001105206.2 359 ACAgtacgt 74.91 Exon 7 
12 bp longer 

371 12 bp insertion Partial intron 7 retention In frame ins No variation 

6 ILK c.1210-2A >
G 

NM_001014795.2 644 N/A N/A Exon 12 
150 bp shorter 

494 150 bp deletion Exon 12 skipping In frame del N/A 

7 DES c.79G > A NM_001927.3 2311 cttcccactcagCT 88.43 Exon 1 
71 bp shorter 

2240 inconclusive 
result 

N/A N/A No variation 

8 CSRP3 c.282- 
5_285del 

NM_003476.4 396 CAGatgagg 70.07 Exon 4 
110 bp longer 

506 110 bp insertion Partial intron 3 retention Frameshift No variation 

9 TTN c.25922–6 T 
> G 

NM_001267550.1 542 cttttttccaagTT 82.49 Exon 91 
5 bp longer 

547 5 bp insertion Partial intron 90 retention Frameshift Exon 91 
skipping      

N/A N/A Exon 91 
279 bp shorter 

264 279 bp deletion Exon 91 skipping In frame del  

10 TTN c.31514-3A >
G 

NM_001267550.1 431 N/A N/A Exon 120 
81 bp shorter 

350 81 bp deletion Exon 120 skipping Frameshift No variation 

11 TMEM43 c.1000 + 5G 
> T 

NM_024334.2 381 N/A N/A Exon 11 
118 bp shorter 

264 118 bp deletion Exon 11 skipping Frameshift Exon 11 
skipping      

N/A N/A Exon 11 
138 bp longer 

519 138 bp insertion At least 138 bp intron 11 
retention 

Frameshift  

12 ABCC9 c.2424 + 6C 
> G 

NM_020297.2 348 GAGgtatat 77.27 Exon 19 
5 bp longer 

352 5 bp insertion Partial intron 19 retention Frameshift N/A 

*cDNA- Exons + Vector pSPL3 – 263 bp. 

M
.Z. A

lim
oham

ed et al.                                                                                                                                                                                                                       



Gene 851 (2023) 146984

8

and functionally following up would be ideal as a validation step. 
Our decision tree is based on the splice prediction tools available in 

the Alamut® software. This commercially available software is used in 
many genetic diagnostic labs and integrates several splice effect pre
diction tools. However, these algorithms are often used with default 
parameter settings [Millat et al, 2015] or by adapting variable cut-off 
thresholds for the same algorithm [Houdayer et al, 2012; Steffensen et 
al, 2014; Bonnet et al, 2008]. SEPT–GD shows promising potential for 
predicting splice-affected variants with high(er) accuracy. Its applica
tion adds value to routine practice in that it reduces the large burden of 
testing variants that can be splice-affecting by narrowing down the list to 
strong candidates for functional assessment, potentially reducing the 
resources needed and time taken. 

To confirm our decision tree predictions, we performed in vitro DNA 
analysis using minigene splicing reporter assays. This showed 100 % 
concordant results for variants with a strong predicted splice effect with 
SEPT–GD. In total, we analysed 12 selected VUSs, of which 10 variants 
were predicted to be strongly damaging by our decision tree, while one 
weak splice-effecting variant, ABCC9 c.2424 + 6C > G, also showed 
positive minigene results. For the remaining weak predicted DES variant 
c.79G > A, a conclusion was not achieved due to lack of evidence. 
Pathogenicity assessment of candidate variants resulted in reclassifica
tion of two variants to LP. Notably, reclassification cannot only rely on 
the results of functional data and other criteria as presented by the 
ACMG/AMP guidelines (Richards et al, 2015) should also be met, like 
criteria PM2 (absent from or rare in controls) and/or PP3 (multiple lines 
of computational evidence support pathogenicity). In case of the two 
variants that were reclassified, data from our functional splice analyses 
(criteria PS3; well-established in vitro or in vivo functional studies sup
portive of a damaging effect) suggest these variants result in LoF and 
therefore also criteria PVS1 (null variant in a gene where LoF is a known 
mechanism of disease) being met. When the full strength of these criteria 
would be considered, these variants would be reclassified as pathogenic, 
however, like also suggested by Rofes et al., 2020 in a comparable study, 
these criteria should be weighed more carefully, all together justifying 
reclassification these as LP. Likewise, for another six variants, we pro
vide additional evidence for pathogenicity, although this was not yet 
sufficient for reclassification as LP. For these variants, co-segregation 
data may establish the association to disease. In the majority of the 
cases, the minigene-based assay is considered to provide a reliable 
assessment of whether a variant is splice-affecting. In vitro results, 
however, must be interpreted with caution, particularly for classifica
tion of VUS. Such methods by themselves cannot prove variant patho
genicity, as the pathobiological consequence may not be the same in the 
tissue of interest, and thus require complementing in vivo analyses 
[Groeneweg et al, 2014]. 

Using SEPT–GD, 31 unique variants that seemed to have a potential 
effect on the splicing machinery were detected in 39 patients, making up 
2 % of the total cohort and 4.8 % of the patients with a VUS. This leads to 
an estimate of a 40 % potential increase (31 new variants added to the 
initial 41 splicing (L)P reported from the cohort (31/(31 + 41)) and a 5 
% increase in total potential (L)P variants (72/526) in identification of 
potential pathogenic splice variants seen in cardiomyopathy patients. 
This result is comparable to a previously reported finding where the 
inclusion of variants functionally validated to alter splicing yielded a 50 
% increase in pathogenic splicing variants in cardiomyopathy patients 
and demonstrated that ~5% of VUSs from affected patients alter splicing 
and are undetected disease-causing variants [Ito et al, 2017]. 

Comparing RT-PCR results for variants tested on minigene showed 
poor concordance (25 % for strongly predicted splice-altering variant 
using SEPT–GD). Although patient RNA is usually preferred for splicing 
analysis, several issues hamper the analysis of aberrant splicing from the 
variant allele, such as availability, degradation of aberrant transcripts 
through NMD, like would be expected for the RT-PCR experiments 
performed in material of carriers of the TXNRD2, DSP, ILK, DES, CSRP3, 
and TTN variants for which the introduction of premature stop codons is 

the most likely effect, and the confounding presence of normal and 
alternative transcripts from the WT allele in heterozygous patients. 
Minigene assays that display high sensitivity and specificity in the 
assessment of aberrant splicing caused by genetic sequence variants 
[Tournier et al, 2008] are thus used instead. However, occasional dif
ferences in splice patterns are observed between minigene and patient 
RNA analysis [Bonnet et al, 2008; Acedo et al, 2012; Steffensen et al, 
2014]. For minigene assays it is important to keep in mind that the 
construct size might be a limitation for mimicking the natural genomic 
environment in the best way. Furthermore, for genes such as DES and 
ILK, indeed it might be difficult to assess variants in first and last exons 
to mimic the authentic splicing mechanism in vivo, requiring adapted 
minigenes to be designed for a splice effect to be depicted [Chen et al, 
2018]. Assessing splice effects in RNA isolated from whole blood is 
restricted by the fact that not all genes or relevant transcripts thereof are 
expressed in blood. Although SGCD, RYR2, DSP, LAMA4, CSRP3, TTN 
and ABCC9 are known to be lowly expressed in blood, we continued 
studying the respective genes and the other highly expressed genes 
(TXNRD2, ILK, DES, TMEM43) in blood [GTEx consortium, 2013], as 
other tissues were unavailable. We were able to detect the respective 
transcripts in blood, however only found aberrant transcripts for 
TMEM43 and TTN variants with RT-PCR. Further studies using specific 
tissues is needed for conclusive results. Therefore, showing a splice ef
fect in a functional assay is on its own not enough to classify a variant as 
pathogenic. 

Several promising developments will improve and accelerate the 
evaluation of potential splice-site variants in the near future. Various 
approaches using next-generation RNA sequencing [Davy et al, 2017, 
Adamopoulos et al., 2018; Bryant et al, 2012; Park et al, 2013] are being 
developed that might be implemented in routine diagnostics in the 
coming years to ease the recognition of splice effects. Moreover, 
massively parallel reporter assays such as MaPSy (Massive parallel 
splicing assay) and Vex-seq (variant exon sequencing) [Soemedi et al, 
2017; Adamson et al, 2018] have now become an increasingly popular 
tool to study alternative splicing and are expected to be the future of 
testing splicing variants. In addition, existing computational tools and 
online resources are designed to predict the effects of missense variants 
on protein products [Park et al, 2018], and work particularly well for 
variants in mutation hotspot regions in extensively studied genes with 
established association between disease and variants in those regions. 
Therefore, for variants in these regions computational predictions and 
algorithms may be sufficient for classification in the future. However, 
more evidence suggests that missense, nonsense and silent variants 
within exons and intronic variants can also disrupt splicing and cause 
diseases and should be the focus moving forward. Furthermore, non-SNP 
variants such as indels and short tandem repeats should be studied as 
they have been reported to modify cis splicing regulatory elements and 
to affect splicing [Gymrek et al, 2016; Zhang et al, 2014]. 

5. Conclusion 

Our data show that SEPT–GD is a reliable tool to prioritise RNA 
splicing variants for functional follow-up, as exemplified by the variants 
identified in cardiomyopathy genes. Moreover, when confirmed by 
functional assays, this also supports classifying more VUSs as LP or P. 
Further studies incorporating larger datasets and other disease in
dications using SEPT–GD are needed to help solve the more difficult 
weakly predicted splice variants. The larger datasets may provide the 
necessary numbers of variants needed to train AI-based software tools, 
which will allow routine diagnostics to rely solely on prediction algo
rithms/models for (near) consensus splice-site variants while functional 
tests can be focused on middle-of-exon and deep(er) intronic variants, 
which are more difficult to predict. 
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