
Features and Algorithms for Embedded Protein
Sequence Classification with Class Imbalance

著者 ファトマ インドリアニ
著者別表示 FATMA INDRIANI
journal or
publication title

博士論文本文Full

学位授与番号 13301甲第5587号
学位名 博士（学術）
学位授与年月日 2022-09-26
URL http://hdl.handle.net/2297/00068842

doi: https://doi.org/10.3389/fgene.2022.885929

Creative Commons : 表示 - 非営利 - 改変禁止
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ja

Dissertation

Features and Algorithms

for Embedded Protein Sequence Classification

with Class Imbalance

埋め込み表現されたタンパク質配列の不均衡な分類のための特徴お

よびアルゴリズム

Graduate School of

Natural Science & Technology

Kanazawa University

Division of Electrical Engineering and Computer Science

Student ID No. 1924042009

Name: Fatma Indriani

Chief Advisor: Professor Kenji Satou

Date of Submission: June, 2022

ii

Abstract

With machine learning, we can learn hidden information from large-scale

biological data to be applied in various prediction or identification tasks. Many of these

applications involve the study of protein sequence data. We identify two major challenges

in dealing with protein sequence data in the bioinformatics domain. The first is how to

represent the protein data so that it is suitable for machine learning tasks. A recent

approach is the protein sequence embedding methods borrowed from natural language

processing (NLP) research. The second challenge is class imbalance, which is a problem

because standard classification algorithms are not designed to handle imbalanced data.

Previous studies of protein embedding methods for protein classification are still

limited, especially in tasks that have class imbalance. In this study, we investigated the

best approach in using protein embedding methods for imbalanced class protein

classification tasks. Two different protein classification tasks are investigated for this aim:

(1) Protein-protein Interaction: Identification of Human-Virus PPI, and (2) PTM

classification: Lysine glutarylation prediction.

For the first task, it is found that modification to the feature formulation

improved the classification performance. Another process that improved performance is

applying random over-sampling. However, combining them both at once improved the

classification evaluation further from originally 0.9414 to 0.9448.

For the second task, we improved lysine glutarylation prediction by combining

embedding features (ProtT5-XL-UniRef50) with non-embedding features (enhanced

iii

amino acid composition encoding and distribution encoding) and applying random under-

sampling. The performance evaluations obtained from this model for recall, specificity,

and AUC are 0.7864, 0.6286, and 0.7075, respectively. Compared to other models using

the same dataset, this model outperformed the existing model in terms of recall and AUC

score and could potentially be used to complement previous models to reveal new

glutarylated sites.

Keywords: protein classification, protein embedding, class imbalance, doc2vec, BERT,

protein-protein interaction, post translational modification

iv

Acknowledgments

I am very grateful to my supervisor, Professor Kenji Satou, and other professors in the

Bioinformatics Laboratory at Kanazawa University for giving me the opportunity and for

providing constant support and guidance during the course of this study.

Next I would like to thank my husband, Ely Fahrudin, and my daughter, Alisha

Mumtaz Fahrudin for their encouragement, understanding, and general support in

finishing this research.

I am also extremely indebted to my parents who has always supported my study

since I am still a kid, and my siblings for their love, prayers, and support.

Special thanks goes to my lab colleagues Kunti, Mera, and Bedy for the

discussions and encouragement, especially during the early years of my study.

I would also like to thank and acknowledge the Directorate General of Higher

Education, Research, and Technology; Ministry of Education, Culture, Research, and

Technology of The Republic of Indonesia for providing the BPP-LN scholarship during

the duration of this research.

v

Contents

Abstract ... ii

Acknowledgments ... iv

List of Figures .. viii

List of Tables ... ix

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Objective ... 2

1.3 Contribution .. 2

1.4 Thesis Organization .. 3

Chapter 2 Literature Review... 4

2.1 Protein Sequence Features Extraction Methods ... 4

2.1.1 Non-embedding based Features Extraction Methods 4

2.1.2 Embedding-based Features Extraction Methods ... 9

2.2 Imbalanced Data Handling .. 11

2.2.1 Undersampling ... 11

2.1.2 Oversampling .. 12

2.3 Workflow for Supervised Classification ... 13

2.4 Model Evaluation ... 14

vi

2.4.1 k-Fold Cross Validation ... 14

2.4.2 Performance Metric ... 15

Chapter 3 Improving Human-Virus Protein-Protein Interaction Prediction 17

3.1 Introduction .. 17

3.2 Materials and methods .. 18

3.2.1 Dataset ... 18

3.2.2 Workflow for Building the Model ... 18

3.3 Result and Discussion ... 21

3.3.1 Experiments on Different Feature Formulation ... 21

3.3.2 Experiments on Preprocessing Methods ... 22

3.3.3 Experiments on Different Classification Algorithms 24

3.3.4 Combining Random Oversampling with Best Feature Formulation Method 24

3.4 Conclusion .. 25

Chapter 4 Improving Lysine Glutarylation Prediction ... 27

4.1 Introduction .. 27

4.2 Materials and methods .. 28

4.2.1 Dataset ... 28

4.2.2 Workflow for Building the Model ... 29

4.2.3 Imbalanced Data Handling .. 32

4.3 Result and Discussion ... 32

4.3.1 Models Based on Sequence-based Feature Set.. 32

vii

4.3.2 Models Based on Embeddings from Pre-trained Transformer Models 34

4.3.3 Models Based on Combination of Sequence-based Feature and Pre-trained

Transformer Models Feature Set .. 36

4.3.4 Discussion .. 39

5.4 Conclusion .. 41

Chapter 6 Summary and Future Research .. 43

6.1. Summary .. 43

6.2 Future Research .. 43

Bibliography ... 44

viii

List of Figures

Figure 1. Framework of the doc2vec model training method .. 10

Figure 2. General workflow for building a classification model 14

Figure 3. Example of 5-fold cross validation ... 15

Figure 4. Workflow of the Experiment ... 19

Figure 5. Combining Human Vectors H1, H2, H3 with Virus Vectors V1, V2, V3 20

Figure 6. Workflow for building lysine glutarylation predictor 30

Figure 7. Evaluation of ProTrans-Glutar using independent test set 38

Figure 8. ROC Curves evaluation on independent test set ... 39

ix

List of Tables

Table 1. Physicochemical attributes and its division of the amino acids 5

Table 2. Confusion matrix .. 15

Table 3. Feature formulation methods .. 21

Table 4. Classification result for different transformation methods 22

Table 5. Classification result for different sampling methods .. 23

Table 6. Classification result for different classifiers ... 24

Table 7. Classification result for combination of feature formulation and transformation

methods ... 25

Table 8. Number of positive and negative sites in training and test set 29

Table 9. Features investigated for method development .. 31

Table 10. Cross validation result of models from sequence-based features 33

Table 11. Cross validation result of models from pre-trained transformer models 35

Table 12. Performance comparison of existing models .. 40

Table 13. Performance comparison with RF-GlutarySite using balanced train and test data

 .. 41

1

Chapter 1 Introduction

1.1 Background

In the past, before the development of machine learning, bioinformatics algorithms had

to be programmed individually. With machine learning, we can learn hidden information

from large scale biological data, to be applied in various prediction or identification task.

For example, it has led advances in personalized medicine, adapting treatment based on

personal health record and personal genes. Another area is pharmaceutical research,

designing new drugs to combat infectious diseases, and in developing new vaccines.

Another application of machine learning is genetics, particularly in fighting illnesses

caused by individual genes that have been affected or inherited. In addition, comparing

genomic data adds to our understanding of Earth's evolutionary history. Another area of

application is in agriculture: the study of proteomics and genetics helps better crops to be

developed that are more resistant to drought and to pests. Many of these applications

involved with the study of protein sequence data.

 We identify two major challenges in dealing with protein sequence data in the

bioinformatics domain. The first is how to represent the protein data so that it is suitable

for machine learning tasks. Various methods have been proposed in this area and this is a

highly active research area. A recent approach is the protein sequence embedding methods,

borrowed from natural language processing (NLP) research, in which a protein model is

learned from large scale protein data, similar to how a language model is learned from

large text corpora [1]. Later this trained protein model can be used to extract features to

represent different protein sequences intrinsically, even those sequences that have not

been seen in the training process. Previous studies have investigated the use of pre-trained

2

language models to show its effectiveness as protein sequence representation for protein

classification, such as ([2], [3]). However, it is essential to investigate this approach

further, especially in conjunction with different preprocessing methods and different

classifiers.

 The second challenge is the class imbalance problem. Many data in the

bioinformatics domain are naturally imbalanced in real world scenario. For example in

the protein classification problems, certain types of proteins is far more common than

other types of protein; a few protein-protein pairs may have interactions, but many other

pairs revealed no interaction; post-translational modifications happen rarely compared to

no modifications, etc. In these cases, one of the class has significantly more samples than

the other class. This issue is a problem because standard classification algorithms are not

designed to handle imbalanced data. The result may be biased towards the majority class.

1.2 Objective

Previous studies of protein embedding methods for protein classification is still limited,

especially in tasks that have class imbalance. The aim of this study is find the best

approach in using protein embedding methods for imbalanced class protein classification

tasks. Two different protein classification tasks are investigated for this objective:

1. Protein-protein Interaction: Identification of Human-Virus PPI

2. PTM classification: Lysine glutarylation prediction

1.3 Contribution

Below is a description of the study's contributions.

1. Improving human-virus PPI identification using Doc2Vec encoding by modifying the

feature formulation method and applying random oversampling

2. Improving lysine glutarylation prediction by combining embedding features (ProtT5-

3

XL-UniRef50) with non-embedding features (enhanced amino acid composition

encoding and distribution encoding) and applying random undersampling.

1.4 Thesis Organization

This thesis consists of five chapters.

Chapter 1 describes the research's background and rationale. Additionally, this chapter

explained the objectives and contribution of the research.

Chapter 2 presents related work regarding various encoding methods to represent protein

sequence data. We divide it into two major approach, traditional methods (non-embedded)

and embedding methods. We also highlight some background knowledge about class

imbalance methods used in this research. Finally we describe the workflow to build the

best classification model and the evaluating its performance.

Chapter 3 presents the study to improve human-virus PPI identification using doc2Vec

encoding. We investigated 6 different feature formulation methods, 4 different feature

transformations, 6 different data resampling, and 7 different classification algorithms. It

is revealed a new feature formulation method combined with random oversampling

improved the result.

Chapter 4 presents the study to find the best model for lysine glutarylation prediction.

We investigated combinations of 7 non-embedding features, 6 embedding features, 5

classification algorithms. It is revealed that best features are a combination of embedding

features (ProtT5-XL-UniRef50) with non-embedding features (enhanced amino acid

composition encoding and distribution encoding) with XGBoost classifier, with random

undersampling to balance the data.

Chapter 5 summarizes the study findings and suggests directions for further research in

this topic.

4

Chapter 2 Literature Review

In this chapter, we presented well-known and state-of-the-art protein features methods,

divided into two types: non-embedding methods and embedding methods. In the second

section, we explained resampling methods commonly used to handle class imbalance.

Finally, we presented a common framework to build a classification model and evaluating

its performance.

2.1 Protein Sequence Features Extraction Methods

Protein sequence has variable length, commonly between 50 and 2000. Traditional

machine learning algorithms need fixed length input and cannot handle sequence directly.

Many algorithms also prefer numerical input. Various methods has been proposed to

extract features from protein sequence so that it becomes suitable for machine learning

application. In this chapter, we divide the methods utilized in this study into two

approaches: (1) traditional (non-embedding based) methods, and (2) embedding based

methods.

2.1.1 Non-embedding based Features Extraction Methods

1. Amino acid composition (AAC) and Enhanced Amino Acid Composition (EAAC)

The AAC method encodes a protein sequence-based on the frequency of each amino acid

[4]. For this type of feature, we used two variants. The first variant is the basic AAC, in

which the protein sequence is converted into a vector of length 20, representing the

frequency of the 20 amino acids (“ACDEFGHIKLMNPQRSTVWY”). Each element is

calculated according to Equation 1, as follows:

f(𝑡) =
𝑁(𝑡)

𝑁
 (1)

5

where t is the amino acid type, N(t) is the total number of amino acids t appearing in the

sequence, and N is the length of the sequence.

The second variant is EAAC, introduced by [5]. In this encoding, the EAAC was

calculated using sliding windows, that is, from a fixed window size, moving from left to

right. To calculate the frequency of each amino acid in each window, see Equation 2:

f(𝑡, 𝑤𝑖𝑛) =
𝑁(𝑡,𝑤𝑖𝑛)

𝑁(𝑤𝑖𝑛)
 (2)

where N(t,win) represents the number of amino acids t that appear in the window win and

N(win) represents the length of the window. To develop our model, a default window size

of five was used.

2. Composition/Transition/Distribution (CTD)

The CTD method encodes a protein sequence-based on various structural and

physicochemical properties [6], [7]. Thirteen properties were used to build the features.

Each property was divided into three groups (see Table 1). For example, the attribute

“Hydrophobicity_PRAM900101” divides the amino acids into polar, neutral, and

hydrophobic groups.

Table 1. Physicochemical attributes and its division of the amino acids

Attribute Division

Hydrophobicity_PRAM9

00101

Polar: RKEDQN Neutral:

GASTPHY

Hydrophobicity:

CLVIMFW

Hydrophobicity_ARGP8

20101

Polar: QSTNGDE Neutral:

RAHCKMV

Hydrophobicity:

LYPFIW

Hydrophobicity_ZIMJ68

0101

Polar:

QNGSWTDERA

Neutral:

HMCKV

Hydrophobicity: LPFYI

6

Hydrophobicity_PONP9

30101

Polar: KPDESNQT Neutral: GRHA Hydrophobicity:

YMFWLCVI

Hydrophobicity_CASG9

20101

Polar:

KDEQPSRNTG

Neutral:

AHYMLV

Hydrophobicity: FIWC

Hydrophobicity_ENGD8

60101

Polar:

RDKENQHYP

Neutral :SGTA

W

Hydrophobicity:

CVLIMF

Hydrophobicity_FASG89

0101

Polar: KERSQD Neutral: NTPG Hydrophobicity:

AYHWVMFLIC

Normalized van der

Waals volume

Volume range: 0-

2.78

GASTPD

Volume range:

2.95-94.0

NVEQIL

Volume range: 4.03-

8.08

MHKFRYW

Polarity Polarity value: 4.9-

6.2

LIFWCMVY

Polarity value:

8.0-9.2

PATGS

Polarity value: 10.4-

13.0

HQRKNED

Polarizability Polarizability value:

0-1.08

GASDT

Polarizability

value: 0.128-

120.186

GPNVEQIL

Polarizability value:

0.219-0.409

KMHFRYW

Charge Positive: KR Neutral:

ANCQGHILMF

PSTWYV

Negative: DE

Secondary structure Helix: EALMQKRH Strand:

VIYCWFT

Coil: GNPSD

Solvent accessibility Buried: ALFCGIVW Exposed: Intermediate: MPSTHY

7

PKQEND

The CTD feature comprises three parts: composition (CTDC), transition (CTDT),

and distribution (CTDD). For composition, an attribute contributes to three values,

representing the global distribution (frequency) of the amino acids in each of the three

groups of attributes. The composition is computed as follows:

C(𝑟) =
𝑁(𝑟)

𝑁
 (3)

where N(r) is the number of occurrences of type r amino acids in the sequence and N is

the length of the sequence.

For transition, an attribute also contributes to three values, each representing the

number of transitions between any pair of groups. The transition is calculated as follows:

T(𝑟, 𝑠) =
𝑁(𝑟,𝑠)+𝑁(𝑠,𝑟)

𝑁−1
 (4)

where N(r,s) represents the number of occurrences amino acid type r transit to type s (i.e.

it appeared as “rs” in the sequence), and N is the length of the sequence. Similarly, N(s,r)

is the reverse, that is, the number of “sr” occurrences in the sequence.

The distribution feature consists of five values per attribute group, each of which

corresponds to the fraction of the sequence length at five different positions in the group:

first occurrence, 25%, 50%, 75%, and 100%.

3. Pseudo amino acid composition

Pseudo amino acid composition feature was proposed by [8]. For protein sequence P with

L amino acid residues P = [R1R2R3…RL], the PAAC features can be formulated as

P= [p1, p2, …, p20, p20+1, …, p20+λ]
T , (λ< L) (5)

where

8

𝑝𝑢 = {

𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜏𝑘

𝜆
𝑘=1

, (1 ≤ 𝑢 ≤ 20)

𝑤𝜏𝑢−20

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜏𝑘

𝜆
𝑘=1

, (20 + 1 ≤ 𝑢 ≤ 20 + 𝜆)
 (6)

w is the weight factor and 𝜏𝑘 is the k-the tier correlation factor, defined as

𝜏𝑘 =
1

𝐿−𝑘
∑ 𝐽𝑖,𝑖+𝑘, (𝑘 < 𝐿)𝐿−𝑘
𝑖=1 (7)

and

𝐽𝑖,𝑖+𝑘 =
1

Γ
∑ [Φ𝑞𝑅𝑖+𝑘 −Φ𝑞𝑅𝑖]

2Γ
𝑞=1 (8)

where Фq(Ri) is the q-th function of the amino acid Ri, and Г the total number of functions.

In here Г=3 and the functions used are hydrophobicity value, hydrophilicity value, and

side chain mass of amino acid Ri.

A variant of PAAC called amphiphilic pseudo amino acid composition (APAAC)

proposed in [9]. A protein sample P with L amino acid residues P = [R1R2R3…RL], is

formulated as

P= [p1, p2, …, p20, p20+1, …, p20+λ, p20+λ, …, p2λ]
T , (λ< L) (9)

where

𝑝𝑢 = {

𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜏𝑗

2𝜆
𝑗=1

, (1 ≤ 𝑢 ≤ 20)

𝑤𝜏𝑢−20

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜏𝑗

2𝜆
𝑗=1

, (20 + 1 ≤ 𝑢 ≤ 20 + 2𝜆)
 (10)

τj is the j-tier sequence-correlation factor calculated using the equations:

{

 𝜏1 =

1

𝐿−1
∑ 𝐻𝑖,𝑖+1

1𝐿−1
𝑖=1

𝜏2 =
1

𝐿−1
∑ 𝐻𝑖,𝑖+1

2𝐿−1
𝑖=1

𝜏3 =
1

𝐿−2
∑ 𝐻𝑖,𝑖+2

1𝐿−2
𝑖=1

𝜏4 =
1

𝐿−2
∑ 𝐻𝑖,𝑖+2

2𝐿−2
𝑖=1 , 𝜆 < 𝐿
⋯

𝜏2𝜆−1 =
1

𝐿−1
∑ 𝐻𝑖,𝑖+𝜆

1𝐿−𝜆
𝑖=1

𝜏2𝜆 =
1

𝐿−1
∑ 𝐻𝑖,𝑖+𝜆

1𝐿−𝜆
𝑖=1

 (11)

where Hi,j
1 and Hi,j

2 are hydrophobicity and hydrophilicity values of the i-th amino acid,

9

described by the following equation:

𝐻𝑖,𝑗
1 = ℎ1(𝑅𝑖) ∙ ℎ

1(𝑅𝑗)

𝐻𝑖,𝑗
2 = ℎ2(𝑅𝑖) ∙ ℎ

2(𝑅𝑗) (12)

2.1.2 Embedding-based Features Extraction Methods

1. Doc2Vec

Doc2vec is a method to represent textual documents as numerical vectors proposed by

Mikolov and Le [10]. It is based from another method called Word2Vec [11]. Training the

doc2vec model required a set of documents. For each word appearing in the document, a

word vector W is generated. For each document, a document vector D is generated.

Weights for a softmax hidden layer is also trained in the model. When the trained model

is presented with a new document, these weights are used to calculate the document vector.

 The doc2vec model, originally proposed for textual documents, has been adapted

for the biological sequence by [12] (Figure 1). Each protein sequence represented a

sentence, and is broken into k-mers as words. Then, each word was mapped to a unique

vector. All word vectors (W1, W2, W3, … WM) constitute a matrix M V×W , where M

words constitute M rows, and the column number is the number of hidden layer neurons

(V). Similar to words, each sentence (a protein sequence) in the document containing N

sequences was also mapped to a unique vector, represented by a row in matrix N V×D .

Further, the average of the sentence and word vectors was used to predict the output word

vectors in a text window and formed the matrix V M×W' . Stochastic Gradient Descent

(SGD) and backpropagation were used to update weights. Resulting sentence vectors then

can be used to for features in a machine learning model.

10

Figure 1. Framework of the doc2vec model training method

2. Transformer-Based Models

A transformer model is a neural network that learns context and meaning in sequential

data such as text data or biological sequence by tracking relationships. Transformer

models utilizes a set of mathematical techniques, named self-attention, to detect influence

and dependencies between distant data elements in a sequence. It is originally presented

by for machine translation task [13], and has been evolved with different variations. It has

also been applied to other areas such as image recognition and bioinformatics domain.

Protein language models has been trained from large protein corpora, using the state-

of-the-art Transformer models from the latest NLP research [14]. In chapter 5, six of the

models were applied to extract features for our task of predicting glutarylation sites.

 ProtBERT and ProtBert-BFD are derived from the BERT model [15], trained

on UniRef100 and BFD corpora, respectively.

11

 ProtT5-XL-UniRef50 and ProtT5-XL-BFD are derived from the T5 model [16],

trained on UniRef50 and BFD corpora, respectively.

 ProtAlbert is derived from the Albert model [17] trained on UniRef100 corpora.

 ProtXLNet is derived from the XLNet model [18], trained on UniRef100 corpora.

Protein embeddings (features) can be extracted from the last layer of this protein

language model to be used for subsequent supervised training. This layer is a 2-

dimensional array with a size of 1024 × length of sequence, except for the ProtAlbert

model with an array size of 4096 × length of sequence. For the glutarylation prediction

problem in Chapter 5, this feature is simplified by summing the vectors along the length

of the sequence; hence, each feature group is now one-dimensional, with a length of 4096

for ProtAlbert and 1024 for the rest.

2.2 Imbalanced Data Handling

Many real-world datasets have imbalances. Class imbalance occurs when one class have

far less number of samples compared to the other class. The class with less samples is

called the minority class (or positive class), while the other class with more samples is

called the majority class (or negative class). In most problems, we are interested in the

rare cases or the minority class compared to the abundant (or normal) cases. Standard

classifiers are not designed to handle highly imbalance data. This imbalance case may

cause classifier to bias towards the majority class. Thus, class imbalance should be

handled to improve detection of minority samples. A common approach for dealing with

imbalance is preprocessing at the data level. The data is balanced before being processed

in the classification algorithm.

2.2.1 Undersampling

In the undersampling technique, the majority class is reduced by removing some instances.

12

This method will achieve reducing the data from being highly imbalanced (for example

1:100 ratio) to a lesser ratio of imbalance (for example 1:10 or 1:3 or 1:1). One of the

simplest method to undersample the majority class, is by random undersampling. In this

method, a certain number of instance from the majority class is removed randomly. This

method is very simple, yet has the drawback of potentially removing important samples.

2.1.2 Oversampling

In the oversampling technique, the minority class is increased through various means.

This method will also achieve reducing the imbalance ratio of the classes. The simplest

method to increase the minority class is random oversampling. The random oversampling

technique involves selecting random examples from the minority class with replacement,

and adding them in the training dataset. Another approach to increase the minority class

is by generating artificial examples. Methods that fall into this type include Synthetic

Minority Oversampling Technique (SMOTE) [19] and its variations, as well as Adaptive

Synthetic (ADASYN) [20].

SMOTE

In the SMOTE method, for each sample in the minority class, artificial samples is created

along the line segments between the sample and k minority class nearest neighbors. This

neighbors are randomly chosen from the k nearest neighbors. The artificial samples are

created in the following method: For the sample under consideration, find the difference

between it and its chosen nearest neighbor. Multiply this difference by a random number

[0-1], then add it to the original sample vector. This is basically selecting a random point

between two nearest neighbor (minority) samples.

ADASYN

ADASYN assigned weighted distribution for different minority class examples based on

13

their level of difficulty in learning. For minority class examples that are more difficult to

learn, more synthetic data will be generated compared to those minority samples that are

easier to learn. The ADASYN method reduces the bias due to the class imbalance, as well

as adaptively moving the classification decision boundary towards the hard examples.

2.3 Workflow for Supervised Classification

In finding the best classification model a general workflow for the model is presented in

Figure 2 below. First, raw data is obtained from the real world. This dataset is usually not

ready to be processed with classification algorithms, and need one or more preprocessing

steps. These preprocessing steps may include feature extraction, data cleaning, and data

transformation.

After the preprocessing step, the data is then split into two groups, training data

set and testing data set. Generally the training data set is around 60-90% of the whole

dataset. The training dataset is then used to find the best classification model. This model

building may include a training and validation steps, either separately or combined in a

validation system such as k-fold cross validation (Section 2.4.1). Validation process is

important since classification algorithms need tweakings and parameter optimization. The

output of model building is the best classification model.

Finally the testing dataset is used to evaluate the model. Using a separate test set

ensured that the model is evaluated using data unseen during the training process. The

predicted label of the test data then can be measured using various performance metric

(Section 2.4.2).

14

Figure 2. General workflow for building a classification model

2.4 Model Evaluation

During and after a model is trained, it needs to be evaluated. During the training, the

evaluation is performed to fine tune the model and/or choose the best among several

models. After the training process, evaluation is performed to estimate the model’s

performance in the future or in the real world.

2.4.1 k-Fold Cross Validation

A simple train/test split to validate a classification model can have bias due to the different

15

split that is possible. To handle this bias, k-fold cross validation can be used. In this

method, the (training) data set is split into k equal sized groups (or folds). A fold is

designated as the test set while the other k-1 folds is used for training the model. This

training and test is repeated k times, each time with a different fold for testing. The

evaluation of each fold is then averaged to get the overall performance of the model. An

example of 5-fold cross validation is shown in Figure 3.

Figure 3. Example of 5-fold cross validation

2.4.2 Performance Metric

A confusion matrix is a summary of the prediction results of a test set on a classification

task. For each class, correct and incorrect predictions are counted. A confusion matrix for

binary classification problem is shown in Table 2. True Negative and True Positive

happens when the predicted class matches the actual class. False Positive and False

Negative happen when the predicted class are incorrect.

Table 2. Confusion matrix

16

 Predicted

0

Predicted

1

Actual

0

True Negative

(TN)

False Positive

(FP)

Actual

1

False Negative

(FN)

True Positive

(TP)

From the confusion matrix, various other performance metrics can be derived.

The ones specifically used in this study are: recall (Rec), specificity (Spe), precision (Pre),

accuracy (Acc), MCC, F1-score (F1), and area under the ROC curve (AUC). These six

metrics were calculated with the following formulas:

Rec =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Spe =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Pre =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Acc =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

MCC =
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

F1 = 2 ×
𝑅𝑒𝑐.𝑃𝑟𝑒

𝑅𝑒𝑐+𝑃𝑟𝑒
 (12)

where TP is True Positive, FP is False Positive, TN is True Negative, and FN is False

Negative.

Another metric, the AUC (Area Under Curve) is obtained by plotting recall

against (1 – specificity) for every threshold and then calculating the area under the curve.

17

Chapter 3 Improving Human-Virus Protein-Protein

Interaction Prediction

3.1 Introduction

Viral infection is a major health problem to humans, in addition to major cause of human

death. As of July 2021, WHO reported there have been 196 million cases of COVID-19

and 4.2 million deaths confirmed [21]. In other news, chronic hepatitis is suffered by over

354 million people worldwide, with 8,000 new infections of hepatitis B and C every day,

and more than one million deaths from liver disease and liver cancer occur every year

[22]. Studying interactions between human and virus proteins is important in

understanding host immune responses and viral infections [23]. This understanding will

provide foundation in the development of strategies to prevent and combat viral diseases.

One main task in protein-protein interaction (PPI) identification is to predict

whether a human protein interacts with another virus protein. Experimental techniques

have been invaluable in compiling and collecting validated human-virus PPI. However,

this approach is expensive and time-consuming and it is important to discover more PPI

through computational approaches. Recently, research is focused on utilizing

computational and machine learning methods to identify new or unknown protein-protein

interactions [24].

One promising method for human-virus PPI identification is representing the protein-

protein interaction as embedded protein sequence [12]. The authors showed that using

doc2vec embedding on the proteins, combined with Random Forest classifier, they

18

achieved the best classification performance. Although the authors investigated the

embedding parameters and experimented on 3 classifiers, other preprocessing methods

have not been studied. Additional preprocessing before the classification stage may

improve the performance.

3.2 Materials and methods

3.2.1 Dataset

We obtained the human-virus PPI dataset from [12] which is derived from Host-Pathogen

Interaction Database (HPIDB) [25]. This dataset consisted of 249,184 pairs of human-

virus PPI, and is imbalanced with a ratio 1:10 of positive to negative data. Next, a doc2vec

model [10] is trained using proteins from Swiss-Prot [26]. The training scheme for the

doc2vec model is based on previous work of ([12], [27]) where each protein is duplicated

k times and split into non-overlapping k-mers with different groupings, before training

the embedded protein model. For this study, 3-mer is chosen.

3.2.2 Workflow for Building the Model

The overall pipeline of our experiment is shown in Fig. 3. This pipeline is based on

machine learning process with features based on protein embedding, but with a

preprocessing step as emphasis. The human-virus PPI dataset and the doc2vec model

were obtained as described in Section 3.2.1 above.

19

Figure 4. Workflow of the Experiment

For our experiment, there are 3 different parts in which various methods would

be compared: (1) feature formulation, the methods used to create the feature vectors of

the dataset, (2) data preprocessing, which consisted of various transformation methods

and resampling methods, and (3) the classification method used for the classification task.

In all evaluations of classification performance, the Area Under Curve (AUC) was applied.

This metric is chosen in accordance with the previous study of the same dataset [12].

Before doing the various modifications, we introduce a basic procedure, in which

a base method for each of the three processes is set. This basic procedure will serve as a

comparison for the various modifications applied.

1. Base feature formulation method

For the feature formulation method, a basic method is used, in which each pair of human

and virus protein is represented as summing all the representative human vectors,

Feature Formulation

Classification

HV PPI dataset doc2vec model

classification model and
evaluation

Preprocessing

20

summing all the virus vectors, and concatenating them (Fig. 3). An instance from the

human-virus PPI dataset consisted of a pair of human and virus proteins with their label

(either positive or negative interaction). These proteins are converted into feature vectors

by getting their individual vector representations from the doc2vec model and combining

them in certain ways. In our experiment 3-mer is used, so the model saved 3 different

vector representations of each protein, with each vector having a length 16. To aid our

explanation, let us name the three human protein vectors H1, H2, H3 respectively, while

the virus vectors V1, V2, V3.

Figure 5. Combining Human Vectors H1, H2, H3 with Virus Vectors V1, V2, V3

2. Base data preprocessing method

In accordance with the previous study, no further data preprocessing is involved.

3. Base classifier

In accordance with the previous study, the classification method is Random Forest

classifier, using the 5-fold cross-validation scheme. By several trials, the parameters used

for the Random Forest are nb_estimators=1000 and criterion=’entropy’.

This basic procedure for PPI classification will be used as a base comparison for

modifications in any of the three steps: feature formulation, preprocessing, and classifier.

The metric to compare is the Area Under Curve (AUC) value.

H1 H2 H3 V1 V2 V3

H V

21

3.3 Result and Discussion

3.3.1 Experiments on Different Feature Formulation

We experimented on 6 different ways to combine the human and virus vector

representations (Table 3). The first method is the base method. The fifth method is

separated into 9 different combinations, in which one of the 3 human vectors is paired

differently with one of the 3 virus vectors. Hence the total feature formulation methods

investigated is 14. During this experiment, the preprocessing and classifier, are not

changed i.e., the same as the base procedure. It is revealed that the best method is method

6, followed by method 1 (base method)

Table 3. Feature formulation methods

Method Feature Formulation
Feature

Length
AUC

1 (base) concat(sum(H1,H2,H3), sum(V1,V2,V3)) 32 0.9414

2 concat(H1,H2,H3,V1,V2,V3) 96 0.9408

3 sum(H1,H2,H3,V1,V2,V3) 16 0.8080

4 concat(sum(H1,V1), sum(H2,V2), sum(H3,V3)) 48 0.8331

5-1 concat(H1,V1) 32 0.9322

5-2 concat(H1,V2) 32 0.9361

5-3 concat(H1,V3) 32 0.9366

5-4 concat(H2,V1) 32 0.9328

5-5 concat(H2,V2) 32 0.9373

5-6 concat(H2,V3) 32 0.9378

5-7 concat(H3,V1) 32 0.9320

5-8 concat(H3,V2) 32 0.9367

22

Method Feature Formulation
Feature

Length
AUC

5-9 concat(H3,V3) 32 0.9372

6
concat (concat(sum(H1,H2,H3), sum(V1,V2,V3)),

concat(H1,H2,H3,V1,V2,V3))
128 0.9418

3.3.2 Experiments on Preprocessing Methods

For the second part of the experiments, two sets of modifications were investigated. The

first is feature transformation (Table 4). PCA with all dimensions (32) performed slightly

worse than no transformation. t-SNE and UMAP, even with parameter tuning, had much

lower AUC. This showed that these transformations fail to improve the classification

result.

Table 4. Classification result for different transformation methods

Transformation Parameters AUC

No transformation (base) - 0.9414

PCA dimension=32 0.9277

t-SNE n=3, p=30 0.8689

UMAP
dimension=32,

neighbors=50
0.8110

Another experiment on preprocessing was applying resampling methods to the dataset

(see the result in Table 5). Random oversampling improved the AUC slightly. On the

other hand, all undersampling methods performed worse than the original.

23

Table 5. Classification result for different sampling methods

Sampling Parameters AUC

No sampling (base) - 0.9414

Random Oversampling

sampling_strategy=1 0.9437

sampling_strategy=0.5 0.9434

sampling_strategy=0.25 0.9420

Random Undersampling

sampling_strategy=1 0.9289

sampling_strategy=0.5 0.9334

sampling_strategy=0.25 0.9370

sampling_strategy=0.2 0.9381

SMOTE

k=1 0.9370

k=2 0.9365

k=3 0.9357

k=4 0.9355

k=5 0.9354

k=6 0.9350

k=7 0.9346

k=8 0.9349

k=9 0.9340

k=10 0.9342

BorderlineSMOTE - 0.9344

ADASYN

n=1 0.9407

n=3 0.9403

n=5 0.9395

24

3.3.3 Experiments on Different Classification Algorithms

The next experiment investigated various classifiers and their best parameter (Table 6).

The original classifier, Random Forest, gave the best performance with AUC 0.9414. This

is in agreement with previous research. SVM and Multilayer Perceptron were the next

best classifiers with AUC 0.8909 and 0.8862 respectively. The other classifiers performed

poorly.

Table 6. Classification result for different classifiers

Classifier Best Parameters AUC

Random Forest (base) nb_trees=1000 0.9414

SVM kernel=rbf, gamma=0.1, C=1 0.8909

knn k=6 0.8614

Naïve Bayes default 0.7129

Logistic Regression default 0.7100

Multi Layer Perceptron default (hidden neurons=100) 0.8862

Decision Tree default 0.7119

3.3.4 Combining Random Oversampling with Best Feature Formulation Method

From experimenting with feature formulation methods, the best method was

Method 14. Furthermore, in the experiment with data preprocessing, Random

Oversampling was the best. Next, we experimented in combining the two Method 6 with

Random Oversampling (Method 6-ROS) and applied it to Random Forest and SVM

(Table 7). For Random Forest classifier, both modifications increased the AUC even

further from 0.9414 to 0.9448. For SVM, both modifications also increased the AUC from

25

0.8909 to 0.9147, but not better than the Random Forest classifier. Combining the best

feature formulation and the best resampling method showed that the classification

performance can be improved.

Table 7. Classification result for combination of feature formulation and transformation

methods

Method Combination AUC

Random Forest

Method 1-NoTransformation-RandomForest 0.9414

Method 6-ROS-Random Forest 0.9448

SVM

Method 1-NoTransformation-SVM 0.8909

Method 6-ROS-SVM 0.9147

3.4 Conclusion

In this chapter, we investigated various modifications to the process of human-virus

PPI classification based on sequence-embedding and machine learning methods. It is

found that modification to the feature formulation improved the classification

performance. Another process that improved performance is applying random

oversampling. However, combining them both at once improved the classification

evaluation further from originally 0.9414 to 0.9448. We also confirm that Random Forest

is the best classifier for this task and this dataset. For future study in this topic, we suggest

to expand the modifications, such as experiment on other datasets, investigate different

embedding scheme and/or different embedding parameters, investigate other

26

preprocessing methods, investigate simultaneous combinations of modifications as well

as classification methods, in order to achieve better performance.

27

Chapter 4 Improving Lysine Glutarylation Prediction

4.1 Introduction

The post-translational modification (PTM) of amino acids dynamically changes the

function of proteins and is actively studied in the field of molecular biology. Among

various kinds of PTMs, lysine glutarylation is defined as an attachment of a glutaryl group

to a lysine residue of a protein [28]. This modification was first detected via

immunoblotting and mass spectrometry analysis and later validated using chemical and

biochemical methods. It is suggested that this PTM may be a biomarker of aging and

cellular stress [29]. Dysregulation of glutarylation is related to some metabolic diseases,

including type 1 glutaric aciduria, diabetes, cancer, and neurodegenerative diseases [30]–

[32]. Since the identification of glutarylated peptides using proteomics techniques is

expensive and time-consuming, it is important to investigate computational models and

predictors to rapidly identify glutarylation.

Based on a survey of previous research, various prediction models were

proposed to distinguish glutarylation sites, including GlutPred [33], iGlu-Lys [34],

MDDGlutar [35], RF-GlutarySite [36], and iGlu_Adaboost [37]. Although many models

have been built to distinguish between positive and negative glutarylation sites, the

performance of these methods remains limited. One challenge to this problem is finding

a set of features to represent the protein subsequence, which enables a correct

classification of glutarylation site. BERT models [15], and other transformer-based

language models from natural language processing (NLP) research, show excellent

performance for NLP tasks. These language models, having been adapted to biological

sequences by treating them as sentences and then trained using large-scale protein corpora

28

[14], also show promise for various machine learning tasks in the bioinformatics domain.

Previous studies have investigated the use of pre-trained language models from

BERT and BERT-like models to show its effectiveness as protein sequence representation

for protein classification. For example, [2] proposed a new approach to predict flavin

adenine dinucleotide (FAD) binding sites from transport proteins based on pre-training

BERT, position-specific scoring matrix profiles (PSSM), and an amino acid index

database (AAIndex). In another study, Liu built a predictor for protein lysine glycation

sites using features extracted from pre-trained BERT models, which showed improved

performance in terms of accuracy and AUC score compared to previous methods [38].

These studies demonstrate the suitability of utilizing BERT models to improve various

protein classification tasks. Therefore, using embeddings from pre-trained BERT and

BERT-like models has the potential to build an improved glutarylation prediction model.

In this chapter, we proposed a new prediction model to predict glutarylation sites

(Figure 1) by incorporating features extracted from pre-trained protein models combined

with features from handcrafted sequence-based features.

4.2 Materials and methods

4.2.1 Dataset

This study utilized unbalanced benchmark datasets compiled by [36] to build

their predictor, RF-GlutarySite. This dataset collected positive glutarylation sites from

various sources, including PLMD [39] and [32] and consisted of four different species

(Mus musculus, Mycobacterium tuberculosis, E. coli, and HeLa cells), for a total of 749

sites from 234 proteins. Homologous sequences that showed ≥40% sequence identity

were removed using the CD-HIT tool. The remaining proteins were converted into

peptides with a fixed length of 23, with glutarylated lysine as the central residue, and 11

29

residues each upstream and downstream. Negative sites were generated in the same way,

but the central lysine residue was not glutarylated. After removing homologous sequences,

the final dataset consisted of 453 positive and 2043 negative sites. The distributions of

the training and testing datasets are listed in Table 8. This dataset was also used to build

the proposed predictor model iGlu_Adaboost [37].

Table 8. Number of positive and negative sites in training and test set

 Training set Test set

Positive sites 400 44 444

Negative sites 1703 203 1906

 2103 247

4.2.2 Workflow for Building the Model

The workflow for building the model is presented in Figure 4. The extraction of numerical

features from protein sequences or peptides is an important step before they can be

utilized by machine learning algorithms. In this study, we investigated two types of

features: classic sequence-based features and features derived from pre-trained

transformer-based protein embeddings. Classic sequence-based features were extracted

using the iFeature Python package [5].

30

Figure 6. Workflow for building lysine glutarylation predictor

After preliminary experiments, seven feature groups were chosen for further

investigation: AAC, EAAC, Composition/Transition/Distribution (CTD), pseudo-amino

acid composition (PAAC), and amphiphilic pseudo-amino acid composition (APAAC).

The second type of feature, embeddings from pre-trained transformer-based models, was

extracted using models trained and provided by [14]. It consists of six feature sets from

six protein models: ProtBERT, ProtBert-BFD, ProtAlbert, ProtT5-XL-UniRef50, ProtT5-

XL-BFD, and ProtXLNet. The complete list of features investigated is shown in Table 3.

31

Table 9. Features investigated for method development

Group Feature set
Length of

features

Amino acid composition

AAC 20

EAAC 380

C/T/D

CTDC 39

CTDT 39

CTDD 195

Pseudo amino acid composition
PAAC 35

APAAC 50

Embeddings from pretrained

transformer-based model

ProtBERT 1024

ProtBert-BFD 1024

ProtAlbert 4096

ProtT5-XL-UniRef50 1024

ProtT5-XL-BFD 1024

ProtXLNet 1024

The next step was to combine two or more feature sets to evaluate further models,

such as AAC-EAAC, AAC-CTDC, and AAC-ProtBert. For this, we limited the

embedding features to a maximum of one in the combination. Five classification

algorithms were included in the experiments: Adaboost, XGBoost, SVM (with RBF

kernel), random forest (RF), and multilayer perceptron (MLP).

Our best model combines the features of CTDD, AAC, and ProtT5-XL-

32

UniRef50 with the XGBoost classification algorithm. This model, with the model of

the best feature set from sequence-based feature groups and the model of the best feature

set from the protein embedding feature group, was then evaluated with an independent

dataset. For independent testing, the entire training set was used to develop a model. In

both model building and independent testing, a random under-sampling method was used

to balance the training dataset, while the testing dataset was not resampled to reflect

performance in the real-world unbalanced scenario.

4.2.3 Imbalanced Data Handling

In the glutarylation dataset, the number of negative samples is nearly four times that

of positive samples. This imbalance may affect the performance of classifiers because

they are biased to misclassify a positive example as a negative one [40]. A common

strategy to solve this problem is by data re-sampling, either adding minority samples

(over-sampling) or reducing majority samples (under-sampling). In this study, we

implemented a random under-sampling strategy [41] after preliminary experiments with

various re-sampling methods.

4.3 Result and Discussion

4.3.1 Models Based on Sequence-based Feature Set

We calculated the cross-validation performance for each sequence-based feature

set using five supervised classifiers: AdaBoost, MLP, RF, SVM, and XGBoost. The

performances of these classifiers are shown in Table 4. It can be observed that no classifier

is the best for all feature groups. For example, using AAC features, MLP performs the

best based on the AUC score. However, using EAAC features, the RF model has the best

performance, whereas MLP has the poorest. Among the six different feature sets, the best

model achieved was using EAAC features combined with RF, with an AUC score of

33

0.6999. This model also had the best specificity, precision, and accuracy compared to the

other models.

Table 10. Cross validation result of models from sequence-based features

Feature

groups
Classifier Rec Spe Pre Acc MCC F1 AUC

AAC Adaboost 0.6120 0.6013 0.2654 0.6033 0.1690 0.3700 0.6433

 MLP 0.6520 0.6192 0.2864 0.6255 0.2150 0.3977 0.6864

 Random Forest 0.6190 0.5809 0.2575 0.5881 0.1576 0.3635 0.6378

 SVM 0.6395 0.5969 0.2714 0.6050 0.1868 0.3808 0.6651

 XGBoost 0.5917 0.5482 0.2353 0.5565 0.1102 0.3362 0.6101

EAAC Adaboost 0.5983 0.6015 0.2608 0.6009 0.1584 0.3629 0.6384

 MLP 0.5850 0.5946 0.2530 0.5928 0.1422 0.3529 0.6323

 Random Forest 0.6450 0.6598 0.3089 0.6570 0.2450 0.4171 0.6999

 SVM 0.5967 0.6434 0.2821 0.6345 0.1923 0.3827 0.6571

 XGBoost 0.6408 0.6385 0.2945 0.6389 0.2230 0.4030 0.6834

CTDC Adaboost 0.7050 0.5518 0.2699 0.5809 0.2019 0.3901 0.6641

 MLP 0.6867 0.6034 0.2905 0.6193 0.2300 0.4073 0.6912

 Random Forest 0.6408 0.5676 0.2579 0.5815 0.1639 0.3676 0.6556

 SVM 0.6842 0.5657 0.2705 0.5882 0.1966 0.3874 0.6765

 XGBoost 0.6367 0.5754 0.2605 0.5871 0.1672 0.3693 0.6450

CTDT Adaboost 0.6208 0.5762 0.2566 0.5847 0.1556 0.3627 0.6261

 MLP 0.6408 0.5756 0.2622 0.5880 0.1708 0.3717 0.6439

 Random Forest 0.6025 0.5982 0.2603 0.5990 0.1588 0.3633 0.6241

34

SVM 0.6425 0.5841 0.2661 0.5952 0.1787 0.3760 0.6493

 XGBoost 0.5783 0.5668 0.2390 0.5690 0.1147 0.3378 0.6015

CTDD Adaboost 0.6358 0.6046 0.2744 0.6106 0.1904 0.3831 0.6531

 MLP 0.5942 0.5365 0.2434 0.5475 0.1120 0.3297 0.6065

 Random Forest 0.6967 0.6164 0.2994 0.6316 0.2476 0.4185 0.6987

 SVM 0.6675 0.6111 0.2877 0.6218 0.2206 0.4017 0.6794

 XGBoost 0.6675 0.6201 0.2927 0.6291 0.2282 0.4064 0.6847

PAAC Adaboost 0.5942 0.6052 0.2611 0.6031 0.1581 0.3626 0.6253

 MLP 0.5958 0.5717 0.2462 0.5763 0.1321 0.3482 0.6261

 Random Forest 0.6375 0.5809 0.2633 0.5917 0.1723 0.3723 0.6413

 SVM 0.6617 0.5905 0.2752 0.6041 0.1990 0.3885 0.6745

 XGBoost 0.6217 0.5731 0.2554 0.5823 0.1537 0.3615 0.6375

APAAC Adaboost 0.6125 0.5976 0.2634 0.6004 0.1662 0.3682 0.6367

 MLP 0.5658 0.5904 0.2450 0.5857 0.1237 0.3416 0.6162

 Random Forest 0.6458 0.5831 0.2671 0.5950 0.1805 0.3776 0.6464

 SVM 0.6650 0.5970 0.2794 0.6099 0.2069 0.3932 0.6777

 XGBoost 0.6425 0.5694 0.2596 0.5833 0.1668 0.3695 0.6375

4.3.2 Models Based on Embeddings from Pre-trained Transformer Models

Based on the embeddings extracted from the pre-trained transformer models, we

evaluated the same five supervised classifiers. The performance results of the models are

presented in Table 5. The combination of the ProtBERT model and SVM can match the

recall score with the classic sequence-based feature result. However, all other metrics

were lower. In this experiment, the best model with respect to the AUC score was a

35

combination of features from the ProtAlbert model and SVM classifier (AUC = 0.6744).

This model also had the highest cross-validation scores for precision, MCC, and F1-score.

It can also be noted that out of the six models, SVM performed best on four of them

compared to the other machine learning algorithms.

Table 11. Cross validation result of models from pre-trained transformer models

Feature groups Classifier Rec Spe Pre Acc MCC F1 AUC

ProtBERT Adaboost 0.5767 0.5680 0.2389 0.5697 0.1142 0.3374 0.5996

MLP 0.5892 0.5608 0.2395 0.5662 0.1187 0.3396 0.6128

Random

Forest
0.5567 0.6426 0.2681 0.6262 0.1602 0.3616 0.6415

SVM 0.7042 0.4775 0.2420 0.5207 0.1475 0.3578 0.6275

XGBoost 0.6033 0.6007 0.2619 0.6012 0.1616 0.3649 0.6398

ProtBert-BFD Adaboost 0.5433 0.5547 0.2231 0.5525 0.0773 0.3162 0.5776

MLP 0.5900 0.5645 0.2420 0.5694 0.1218 0.3430 0.6076

Random

Forest
0.5383 0.6230 0.2510 0.6069 0.1289 0.3421 0.6122

SVM 0.6242 0.5819 0.2595 0.5899 0.1626 0.3662 0.6420

XGBoost 0.5908 0.5733 0.2453 0.5766 0.1295 0.3464 0.6142

ProtAlbert Adaboost 0.5875 0.5753 0.2450 0.5776 0.1284 0.3456 0.6193

MLP 0.5858 0.6189 0.2657 0.6126 0.1646 0.3615 0.6407

Random

Forest
0.5808 0.6316 0.2703 0.6220 0.1697 0.3687 0.6535

SVM 0.6283 0.6136 0.2767 0.6164 0.1919 0.3840 0.6744

36

XGBoost 0.6092 0.5927 0.2604 0.5958 0.1597 0.3646 0.6477

ProtT5-XL-

UniRef50

Adaboost 0.5533 0.5655 0.2306 0.5632 0.0938 0.3254 0.5897

MLP 0.6192 0.5633 0.2501 0.5739 0.1439 0.3558 0.6296

Random

Forest
0.5608 0.6171 0.2562 0.6064 0.1419 0.3515 0.6237

SVM 0.6583 0.5710 0.2653 0.5876 0.1807 0.3777 0.6600

XGBoost 0.5933 0.5807 0.2497 0.5831 0.1377 0.3509 0.6183

ProtT5-XL-BFD Adaboost 0.5892 0.5600 0.2395 0.5656 0.1175 0.3405 0.5959

MLP 0.6000 0.5768 0.2502 0.5812 0.1396 0.3529 0.6188

Random

Forest
0.5392 0.6163 0.2485 0.6017 0.1242 0.3399 0.6145

SVM 0.6550 0.5625 0.2604 0.5801 0.1711 0.3724 0.6548

XGBoost 0.5858 0.5862 0.2490 0.5862 0.1361 0.3489 0.6224

ProtXLNet Adaboost 0.5125 0.5343 0.2057 0.5302 0.0369 0.2934 0.5421

MLP 0.5325 0.5248 0.2081 0.5262 0.0450 0.2991 0.5463

Random

Forest
0.5050 0.5668 0.2152 0.5551 0.0568 0.3015 0.5511

SVM 0.4742 0.5770 0.2103 0.5575 0.0408 0.2900 0.5460

XGBoost 0.5642 0.5504 0.2274 0.5530 0.0902 0.3238 0.5652

4.3.3 Models Based on Combination of Sequence-based Feature and Pre-trained

Transformer Models Feature Set

To obtain the best model, we tested various combinations of two or more feature

37

sets to evaluate further models, such as AAC-EAAC, AAC-CTDC, and AAC-ProtBert.

For this, we limited the embedding features to a maximum of one set in the combination.

Similar to previous experiments, five classification algorithms were used: AdaBoost,

XGBoost, SVM (RBF kernel), RF, and MLP.

Our best model, ProtTrans-Glutar, uses a combination of the features CTDD,

EAAC, and ProtT5-XL-UniRef50 with the XGBoost classification algorithm. The

performance of this model is shown in Table 6, with comparison to the best model from

sequence-based features (EAAC with RF classifier) and the best model from embeddings

of the protein model (ProtAlbert with SVM classifier). According to the cross-validation

performance on training data, this model has the best AUC and recall compared with

models with features from only one group. These three models were then evaluated using

an independent dataset (Figure 5). This test result shows that ProtTrans-Glutar

outperformed the other two models in terms of AUC, recall, precision, MCC, and F1-

score. However, it is severely worse in terms of specificity and slightly worse in terms of

accuracy compared to the EAAC+RF model.

38

Figure 7. Evaluation of ProTrans-Glutar using independent test set

As shown in the ROC curves of the three models (Figure 6), EAAC+RF

performed better for low values of FPR, but for larger values, ProtTrans-Glutar performed

better. It is also noted that ProtAlbert+SVM performed worse for most values of FPR.

Overall, ProtTrans-Glutar was the best model with an AUC of 0.7075.

39

Figure 8. ROC Curves evaluation on independent test set

4.3.4 Discussion

From our study, it was shown that building prediction models from traditional sequence-

based features only provided limited performance (Table 10). It was also shown that using

only embeddings from pre-trained protein models gave slightly worse results, except that

the recall performance was almost the same (Table 11). When we combined the features

from these two groups, we found that the best performance was achieved by the

combination of the features CTDD, EAAC, and ProtT5-XL-UniRef50 with the XGBoost

classifier (independent test AUC = 0.7075). This indicated that ProtT5-XL-UniRef50

features on their own are not the best embedding model during the individual feature

evaluation (see Table 5), but combined with CTDD and EAAC, it outperformed the other

models. It is worth mentioning that Elnaggar et al. (2021), who developed and trained

protein models, revealed that ProtT5 models outperformed state-of-the-art models in

protein classification tasks, namely in prediction of localization (10-class classification)

and prediction of membrane/other (binary classification), compared to other embedding

40

models.

For further evaluation, we compared our model with previous glutarylation site

prediction models (Table 12). The first three models, GlutPred, iGlu-Lys, and MDDGlutar,

used datasets that were different from our model and are shown for reference. The other

model, iGlu_Adaboost, utilized the same public dataset as for our model and contained

glutarylation sites from the same four species. ProtTrans-Glutar outperformed the other

models in terms of the recall performance (Rec = 0.7864 for unbalanced data). This high

recall suggests that this model can be useful for uncovering new and potential

glutarylation sites.

Table 12. Performance comparison of existing models

Models Resources Rec Spe Pre Acc MCC F1 AUC

GlutPred PLMD 0.5179 0.7850 0.2397 0.7541 0.2238 n/a 0.7663

iGlu-Lys PLMD 0.5143 0.9531 n/a 0.8853 0.52 n/a 0.8842

MDDGlutar PLMD 0.652 0.739 n/a 0.71 0.38 n/a n/a

iGlu_AdaBoost
PLMD, NCBI,

Swiss-Prot
0.7273 0.7192 0.3596 0.7207 0.36 0.48 0.6300

ProtTrans-

Glutar

PLMD, NCBI,

Swiss-Prot
0.7822 0.6286 0.3147 0.6567 0.3196 0.4494 0.7075

Furthermore, we also evaluated our model by using a balanced training and

testing dataset using random under-sampling for comparison with the RF-GlutarySite

model (Table 13), which uses the same dataset but is balanced before evaluating

performance. Because the authors of RF-GlutarySite did not provide their data after the

resampling process, we performed the experiments 10 times to handle variance from the

41

under-sampling. The ProtTrans-Glutar model showed a higher recall score of 0.7864

compared to RF-GlutarySite (0.7410), in addition to a slightly higher accuracy, MCC,

and F1-score. However, the specificity and precision scores were lower.

Table 13. Performance comparison with RF-GlutarySite using balanced train and test data

Models Resources Rec Spe Pre Acc MCC F1 AUC

RF-

GlutarySite*

PLMD,

NCBI,

Swiss-Prot

0.741 0.685 0.72 0.713 0.43 0.72 0.72

ProtTrans-

Glutar

(balanced)

PLMD,

NCBI,

Swiss-Prot

0.7864 0.6455 0.6955 0.7159 0.4388 0.7358 0.7159

 *RF-GlutarySite model balanced the training and testing dataset using

undersampling

In summary, the model improved the recall score compared to the existing models but

did not improve other metrics. However, we would like to point out that GlutPred, iGlu-

Lys, and MDDGlutar based their glutarylation datasets on less diverse sources (two

species only), whereas ProtTrans-Glutar with RF-GlutarySite and iGlu_Adaboost utilized

newer datasets (four species). The more diverse source of glutarylation sites in the data

may present more difficulty in improving performance, especially in terms of specificity

and accuracy. Compared with iGlu_Adaboost, which used the same dataset, our model

improved their recall and AUC scores. Despite this, the specificity is worse and will be a

challenge for future research.

5.4 Conclusion

42

In this chapter, we presented a new glutarylation site predictor by incorporating

embeddings from pretrained protein models as features. This method, which is termed

ProtTrans-Glutar, combines three feature sets: EAAC, CTDD, and ProtT5-XL-UniRef50.

Random under-sampling was used in conjunction with the XGBoost classifier to train the

model. The performance evaluations obtained from this model for recall, specificity, and

AUC are 0.7864, 0.6286, and 0.7075, respectively. Compared to other models using the

same dataset of more diverse sources of glutarylation sites, this model outperformed the

existing model in terms of recall and AUC score and could potentially be used to

complement previous models to reveal new glutarylated sites. In the future, refinements

can be expected through further experiments, such as applying other feature selection

methods, feature processing, and investigating deep learning models.

43

Chapter 6 Summary and Future Research

6.1. Summary

To summarize, we investigated using protein embedding features for protein classification

tasks with class imbalance using two different classification tasks.

1. We improved human-virus PPI classification by applying random oversampling and

modifying some preprocessing steps

2. We proposed a new glutarylation site predictor, by combining 3 feature sets, random

undersampling, and XGBoost algorithm.

6.2 Future Research

Further study is needed to improve protein classification tasks. Our suggestion is as

follows.

1. More variations of feature extraction methods need to be explored.

2. Another promising direction is to experiment using deep learning algorithms for the

classification.

44

Bibliography

[1] F. Cui, Z. Zhang, and Q. Zou, “Sequence representation approaches for sequence-

based protein prediction tasks that use deep learning,” Brief. Funct. Genomics, vol.

20, no. 1, pp. 61–73, Mar. 2021, doi: 10.1093/bfgp/elaa030.

[2] Q.-T. Ho, T.-T.-D. Nguyen, N. Q. Khanh Le, and Y.-Y. Ou, “FAD-BERT: Improved

prediction of FAD binding sites using pre-training of deep bidirectional

transformers,” Comput. Biol. Med., vol. 131, p. 104258, Apr. 2021, doi:

10.1016/j.compbiomed.2021.104258.

[3] S. M. Ali Shah, S. W. Taju, Q.-T. Ho, T.-T.-D. Nguyen, and Y.-Y. Ou, “GT-Finder:

Classify the family of glucose transporters with pre-trained BERT language models,”

Comput. Biol. Med., vol. 131, p. 104259, Apr. 2021, doi:

10.1016/j.compbiomed.2021.104259.

[4] M. Bhasin and G. P. S. Raghava, “Classification of Nuclear Receptors Based on

Amino Acid Composition and Dipeptide Composition,” J. Biol. Chem., vol. 279,

no. 22, pp. 23262–23266, May 2004, doi: 10.1074/jbc.M401932200.

[5] Z. Chen et al., “iFeature: a Python package and web server for features extraction

and selection from protein and peptide sequences,” Bioinformatics, vol. 34, no. 14,

pp. 2499–2502, Jul. 2018, doi: 10.1093/bioinformatics/bty140.

[6] C. Z. Cai, “SVM-Prot: web-based support vector machine software for functional

classification of a protein from its primary sequence,” Nucleic Acids Res., vol. 31,

no. 13, pp. 3692–3697, Jul. 2003, doi: 10.1093/nar/gkg600.

[7] I. Dubchak, I. Muchnik, S. R. Holbrook, and S. H. Kim, “Prediction of protein

folding class using global description of amino acid sequence.,” Proc. Natl. Acad.

Sci., vol. 92, no. 19, pp. 8700–8704, Sep. 1995, doi: 10.1073/pnas.92.19.8700.

[8] K.-C. Chou, “Prediction of protein cellular attributes using pseudo-amino acid

composition,” Proteins Struct. Funct. Genet., vol. 43, no. 3, pp. 246–255, May 2001,

doi: 10.1002/prot.1035.

[9] K.-C. Chou, “Using amphiphilic pseudo amino acid composition to predict enzyme

subfamily classes,” Bioinformatics, vol. 21, no. 1, pp. 10–19, Jan. 2005, doi:

10.1093/bioinformatics/bth466.

[10] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and

Documents,” ArXiv14054053 Cs, May 2014, Accessed: Jul. 31, 2021. [Online].

Available: http://arxiv.org/abs/1405.4053

[11] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed

45

Representations of Words and Phrases and their Compositionality,” ArXiv13104546

Cs Stat, Oct. 2013, Accessed: Jul. 31, 2021. [Online]. Available:

http://arxiv.org/abs/1310.4546

[12] X. Yang, S. Yang, Q. Li, S. Wuchty, and Z. Zhang, “Prediction of human-virus

protein-protein interactions through a sequence embedding-based machine learning

method,” Comput. Struct. Biotechnol. J., vol. 18, pp. 153–161, 2020, doi:

10.1016/j.csbj.2019.12.005.

[13] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information

Processing Systems, 2017, vol. 30. [Online]. Available:

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845

aa-Paper.pdf

[14] A. Elnaggar et al., “ProtTrans: Towards Cracking the Language of Lifes Code

Through Self-Supervised Deep Learning and High Performance Computing,” IEEE

Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2021, doi:

10.1109/TPAMI.2021.3095381.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” ArXiv181004805 Cs,

May 2019, Accessed: Feb. 23, 2022. [Online]. Available:

http://arxiv.org/abs/1810.04805

[16] C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-

Text Transformer,” ArXiv191010683 Cs Stat, Jul. 2020, Accessed: Feb. 23, 2022.

[Online]. Available: http://arxiv.org/abs/1910.10683

[17] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT:

A Lite BERT for Self-supervised Learning of Language Representations,”

ArXiv190911942 Cs, Feb. 2020, Accessed: Feb. 23, 2022. [Online]. Available:

http://arxiv.org/abs/1909.11942

[18] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet:

Generalized Autoregressive Pretraining for Language Understanding,”

ArXiv190608237 Cs, Jan. 2020, Accessed: Feb. 23, 2022. [Online]. Available:

http://arxiv.org/abs/1906.08237

[19] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:

Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp.

321–357, Jun. 2002, doi: 10.1613/jair.953.

[20] Haibo He, Yang Bai, E. A. Garcia, and Shutao Li, “ADASYN: Adaptive synthetic

sampling approach for imbalanced learning,” in 2008 IEEE International Joint

Conference on Neural Networks (IEEE World Congress on Computational

46

Intelligence), Hong Kong, China, Jun. 2008, pp. 1322–1328. doi:

10.1109/IJCNN.2008.4633969.

[21] “WHO Coronavirus (COVID-19) Dashboard.” https://covid19.who.int (accessed

Jul. 31, 2021).

[22] “‘Hepatitis can’t wait’ - WHO commemorates World Hepatitis Day 2021.”

https://www.who.int/news/item/28-07-2021-hepatitis-can-t-wait---who-

commemorates-world-hepatitis-day-2021 (accessed Jul. 31, 2021).

[23] M. D. Dyer, T. M. Murali, and B. W. Sobral, “The Landscape of Human Proteins

Interacting with Viruses and Other Pathogens,” PLoS Pathog., vol. 4, no. 2, p. e32,

Feb. 2008, doi: 10.1371/journal.ppat.0040032.

[24] H. Chen et al., “Systematic evaluation of machine learning methods for identifying

human–pathogen protein–protein interactions,” Brief. Bioinform., vol. 22, no. 3, p.

bbaa068, May 2021, doi: 10.1093/bib/bbaa068.

[25] M. G. Ammari, C. R. Gresham, F. M. McCarthy, and B. Nanduri, “HPIDB 2.0: a

curated database for host–pathogen interactions,” Database, vol. 2016, p. baw103,

2016, doi: 10.1093/database/baw103.

[26] “reviewed:yes in UniProtKB.”

https://www.uniprot.org/uniprot/?query=reviewed:yes (accessed Jul. 31, 2021).

[27] E. Asgari and M. R. K. Mofrad, “Continuous Distributed Representation of

Biological Sequences for Deep Proteomics and Genomics,” PLOS ONE, vol. 10,

no. 11, p. e0141287, Nov. 2015, doi: 10.1371/journal.pone.0141287.

[28] J. V. Lee et al., “Akt-Dependent Metabolic Reprogramming Regulates Tumor Cell

Histone Acetylation,” Cell Metab., vol. 20, no. 2, pp. 306–319, Aug. 2014, doi:

10.1016/j.cmet.2014.06.004.

[29] R. Harmel and D. Fiedler, “Features and regulation of non-enzymatic post-

translational modifications,” Nat. Chem. Biol., vol. 14, no. 3, pp. 244–252, Mar.

2018, doi: 10.1038/nchembio.2575.

[30] C. Carrico, J. G. Meyer, W. He, B. W. Gibson, and E. Verdin, “The Mitochondrial

Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease

Implications,” Cell Metab., vol. 27, no. 3, pp. 497–512, Mar. 2018, doi:

10.1016/j.cmet.2018.01.016.

[31] B. Osborne, N. L. Bentley, M. K. Montgomery, and N. Turner, “The role of

mitochondrial sirtuins in health and disease,” Free Radic. Biol. Med., vol. 100, pp.

164–174, Nov. 2016, doi: 10.1016/j.freeradbiomed.2016.04.197.

[32] M. Tan et al., “Lysine Glutarylation Is a Protein Posttranslational Modification

Regulated by SIRT5,” Cell Metab., vol. 19, no. 4, pp. 605–617, Apr. 2014, doi:

47

10.1016/j.cmet.2014.03.014.

[33] Z. Ju and J.-J. He, “Prediction of lysine glutarylation sites by maximum relevance

minimum redundancy feature selection,” Anal. Biochem., vol. 550, pp. 1–7, Jun.

2018, doi: 10.1016/j.ab.2018.04.005.

[34] Y. Xu, Y. Yang, J. Ding, and C. Li, “iGlu-Lys: A Predictor for Lysine Glutarylation

Through Amino Acid Pair Order Features,” IEEE Trans. NanoBioscience, vol. 17,

no. 4, pp. 394–401, Oct. 2018, doi: 10.1109/TNB.2018.2848673.

[35] K.-Y. Huang, H.-J. Kao, J. B.-K. Hsu, S.-L. Weng, and T.-Y. Lee, “Characterization

and identification of lysine glutarylation based on intrinsic interdependence

between positions in the substrate sites,” BMC Bioinformatics, vol. 19, no. S13, p.

384, Feb. 2019, doi: 10.1186/s12859-018-2394-9.

[36] H. J. AL-barakati, H. Saigo, R. H. Newman, and D. B. Kc, “RF-GlutarySite: a

random forest based predictor for glutarylation sites,” Mol. Omics, vol. 15, no. 3,

pp. 189–204, 2019, doi: 10.1039/C9MO00028C.

[37] L. Dou, X. Li, L. Zhang, H. Xiang, and L. Xu, “iGlu_AdaBoost: Identification of

Lysine Glutarylation Using the AdaBoost Classifier,” J. Proteome Res., vol. 20, no.

1, pp. 191–201, Jan. 2021, doi: 10.1021/acs.jproteome.0c00314.

[38] Y. Liu, Y. Liu, G.-A. Wang, Y. Cheng, S. Bi, and X. Zhu, “BERT-Kgly: A

Bidirectional Encoder Representations From Transformers (BERT)-Based Model

for Predicting Lysine Glycation Site for Homo sapiens,” Front. Bioinforma., vol. 2,

p. 834153, Feb. 2022, doi: 10.3389/fbinf.2022.834153.

[39] H. Xu, J. Zhou, S. Lin, W. Deng, Y. Zhang, and Y. Xue, “PLMD: An updated data

resource of protein lysine modifications,” J. Genet. Genomics, vol. 44, no. 5, pp.

243–250, May 2017, doi: 10.1016/j.jgg.2017.03.007.

[40] Haibo He and E. A. Garcia, “Learning from Imbalanced Data,” IEEE Trans. Knowl.

Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009, doi: 10.1109/TKDE.2008.239.

[41] H. He and Y. Ma, Eds., Imbalanced learning: foundations, algorithms, and

applications. Hoboken, New Jersey: John Wiley & Sons, Inc, 2013.

