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Abstract 

 

 

With machine learning, we can learn hidden information from large-scale 

biological data to be applied in various prediction or identification tasks. Many of these 

applications involve the study of protein sequence data. We identify two major challenges 

in dealing with protein sequence data in the bioinformatics domain. The first is how to 

represent the protein data so that it is suitable for machine learning tasks. A recent 

approach is the protein sequence embedding methods borrowed from natural language 

processing (NLP) research. The second challenge is class imbalance, which is a problem 

because standard classification algorithms are not designed to handle imbalanced data. 

Previous studies of protein embedding methods for protein classification are still 

limited, especially in tasks that have class imbalance. In this study, we investigated the 

best approach in using protein embedding methods for imbalanced class protein 

classification tasks. Two different protein classification tasks are investigated for this aim: 

(1) Protein-protein Interaction: Identification of Human-Virus PPI, and (2) PTM 

classification: Lysine glutarylation prediction. 

For the first task, it is found that modification to the feature formulation 

improved the classification performance. Another process that improved performance is 

applying random over-sampling. However, combining them both at once improved the 

classification evaluation further from originally 0.9414 to 0.9448. 

For the second task, we improved lysine glutarylation prediction by combining 

embedding features (ProtT5-XL-UniRef50) with non-embedding features (enhanced 
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amino acid composition encoding and distribution encoding) and applying random under-

sampling. The performance evaluations obtained from this model for recall, specificity, 

and AUC are 0.7864, 0.6286, and 0.7075, respectively. Compared to other models using 

the same dataset, this model outperformed the existing model in terms of recall and AUC 

score and could potentially be used to complement previous models to reveal new 

glutarylated sites. 

 

Keywords: protein classification, protein embedding, class imbalance, doc2vec, BERT, 

protein-protein interaction, post translational modification 
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Chapter 1 Introduction 

 

1.1 Background 

In the past, before the development of machine learning, bioinformatics algorithms had 

to be programmed individually. With machine learning, we can learn hidden information 

from large scale biological data, to be applied in various prediction or identification task. 

For example, it has led advances in personalized medicine, adapting treatment based on 

personal health record and personal genes. Another area is pharmaceutical research, 

designing new drugs to combat infectious diseases, and in developing new vaccines. 

Another application of machine learning is genetics, particularly in fighting illnesses 

caused by individual genes that have been affected or inherited. In addition, comparing 

genomic data adds to our understanding of Earth's evolutionary history. Another area of 

application is in agriculture: the study of proteomics and genetics helps better crops to be 

developed that are more resistant to drought and to pests. Many of these applications 

involved with the study of protein sequence data. 

 We identify two major challenges in dealing with protein sequence data in the 

bioinformatics domain. The first is how to represent the protein data so that it is suitable 

for machine learning tasks. Various methods have been proposed in this area and this is a 

highly active research area. A recent approach is the protein sequence embedding methods, 

borrowed from natural language processing (NLP) research, in which a protein model is 

learned from large scale protein data, similar to how a language model is learned from 

large text corpora [1]. Later this trained protein model can be used to extract features to 

represent different protein sequences intrinsically, even those sequences that have not 

been seen in the training process. Previous studies have investigated the use of pre-trained 
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language models to show its effectiveness as protein sequence representation for protein 

classification, such as ([2], [3]). However, it is essential to investigate this approach 

further, especially in conjunction with different preprocessing methods and different 

classifiers. 

 The second challenge is the class imbalance problem. Many data in the 

bioinformatics domain are naturally imbalanced in real world scenario. For example in 

the protein classification problems, certain types of proteins is far more common than 

other types of protein; a few protein-protein pairs may have interactions, but many other 

pairs revealed no interaction; post-translational modifications happen rarely compared to 

no modifications, etc. In these cases, one of the class has significantly more samples than 

the other class. This issue is a problem because standard classification algorithms are not 

designed to handle imbalanced data. The result may be biased towards the majority class. 

1.2 Objective 

Previous studies of protein embedding methods for protein classification is still limited, 

especially in tasks that have class imbalance. The aim of this study is find the best 

approach in using protein embedding methods for imbalanced class protein classification 

tasks. Two different protein classification tasks are investigated for this objective: 

1. Protein-protein Interaction: Identification of Human-Virus PPI 

2. PTM classification: Lysine glutarylation prediction 

1.3 Contribution 

Below is a description of the study's contributions. 

1. Improving human-virus PPI identification using Doc2Vec encoding by modifying the 

feature formulation method and applying random oversampling    

2. Improving lysine glutarylation prediction by combining embedding features (ProtT5-
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XL-UniRef50) with non-embedding features (enhanced amino acid composition 

encoding and distribution encoding) and applying random undersampling. 

1.4 Thesis Organization 

This thesis consists of five chapters.  

Chapter 1 describes the research's background and rationale. Additionally, this chapter 

explained the objectives and contribution of the research. 

Chapter 2 presents related work regarding various encoding methods to represent protein 

sequence data. We divide it into two major approach, traditional methods (non-embedded) 

and embedding methods. We also highlight some background knowledge about class 

imbalance methods used in this research. Finally we describe the workflow to build the 

best classification model and the evaluating its performance. 

Chapter 3 presents the study to improve human-virus PPI identification using doc2Vec 

encoding. We investigated 6 different feature formulation methods, 4 different feature 

transformations, 6 different data resampling, and 7 different classification algorithms. It 

is revealed a new feature formulation method combined with random oversampling 

improved the result. 

Chapter 4 presents the study to find the best model for lysine glutarylation prediction. 

We investigated combinations of 7 non-embedding features, 6 embedding features, 5 

classification algorithms. It is revealed that best features are a combination of embedding 

features (ProtT5-XL-UniRef50) with non-embedding features (enhanced amino acid 

composition encoding and distribution encoding) with XGBoost classifier, with random 

undersampling to balance the data.  

Chapter 5 summarizes the study findings and suggests directions for further research in 

this topic.  
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Chapter 2 Literature Review 

 

In this chapter, we presented well-known and state-of-the-art protein features methods, 

divided into two types: non-embedding methods and embedding methods. In the second 

section, we explained resampling methods commonly used to handle class imbalance. 

Finally, we presented a common framework to build a classification model and evaluating 

its performance. 

2.1 Protein Sequence Features Extraction Methods 

Protein sequence has variable length, commonly between 50 and 2000. Traditional 

machine learning algorithms need fixed length input and cannot handle sequence directly. 

Many algorithms also prefer numerical input. Various methods has been proposed to 

extract features from protein sequence so that it becomes suitable for machine learning 

application. In this chapter, we divide the methods utilized in this study into two 

approaches: (1) traditional (non-embedding based) methods, and (2) embedding based 

methods. 

2.1.1 Non-embedding based Features Extraction Methods 

1. Amino acid composition (AAC) and Enhanced Amino Acid Composition (EAAC) 

The AAC method encodes a protein sequence-based on the frequency of each amino acid 

[4]. For this type of feature, we used two variants. The first variant is the basic AAC, in 

which the protein sequence is converted into a vector of length 20, representing the 

frequency of the 20 amino acids (“ACDEFGHIKLMNPQRSTVWY”). Each element is 

calculated according to Equation 1, as follows: 

f(𝑡) =
𝑁(𝑡)

𝑁
    (1) 
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where t is the amino acid type, N(t) is the total number of amino acids t appearing in the 

sequence, and N is the length of the sequence. 

The second variant is EAAC, introduced by [5]. In this encoding, the EAAC was 

calculated using sliding windows, that is, from a fixed window size, moving from left to 

right. To calculate the frequency of each amino acid in each window, see Equation 2:  

f(𝑡, 𝑤𝑖𝑛) =
𝑁(𝑡,𝑤𝑖𝑛)

𝑁(𝑤𝑖𝑛)
    (2) 

where N(t,win) represents the number of amino acids t that appear in the window win and 

N(win) represents the length of the window. To develop our model, a default window size 

of five was used.  

2. Composition/Transition/Distribution (CTD) 

The CTD method encodes a protein sequence-based on various structural and 

physicochemical properties [6], [7]. Thirteen properties were used to build the features. 

Each property was divided into three groups (see Table 1). For example, the attribute 

“Hydrophobicity_PRAM900101” divides the amino acids into polar, neutral, and 

hydrophobic groups. 

Table 1. Physicochemical attributes and its division of the amino acids 

Attribute Division 

Hydrophobicity_PRAM9

00101 

Polar: RKEDQN Neutral: 

GASTPHY 

Hydrophobicity: 

CLVIMFW 

Hydrophobicity_ARGP8

20101 

Polar: QSTNGDE Neutral: 

RAHCKMV 

Hydrophobicity: 

LYPFIW 

Hydrophobicity_ZIMJ68

0101 

Polar: 

QNGSWTDERA 

Neutral: 

HMCKV 

Hydrophobicity: LPFYI 
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Hydrophobicity_PONP9

30101 

Polar: KPDESNQT Neutral: GRHA Hydrophobicity: 

YMFWLCVI 

Hydrophobicity_CASG9

20101 

Polar: 

KDEQPSRNTG 

Neutral: 

AHYMLV 

Hydrophobicity: FIWC 

Hydrophobicity_ENGD8

60101 

Polar: 

RDKENQHYP 

Neutral :SGTA

W 

Hydrophobicity: 

CVLIMF 

Hydrophobicity_FASG89

0101 

Polar: KERSQD Neutral: NTPG Hydrophobicity: 

AYHWVMFLIC 

Normalized van der 

Waals volume 

Volume range: 0-

2.78 

GASTPD 

Volume range: 

2.95-94.0 

NVEQIL 

Volume range: 4.03-

8.08 

MHKFRYW 

Polarity Polarity value: 4.9-

6.2 

LIFWCMVY 

Polarity value: 

8.0-9.2 

PATGS 

Polarity value: 10.4-

13.0 

HQRKNED 

Polarizability Polarizability value: 

0-1.08 

GASDT 

Polarizability 

value: 0.128-

120.186 

GPNVEQIL 

Polarizability value: 

0.219-0.409 

KMHFRYW 

Charge Positive: KR Neutral: 

ANCQGHILMF

PSTWYV 

Negative: DE 

Secondary structure Helix: EALMQKRH Strand: 

VIYCWFT 

Coil: GNPSD 

Solvent accessibility Buried: ALFCGIVW Exposed: Intermediate: MPSTHY 
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The CTD feature comprises three parts: composition (CTDC), transition (CTDT), 

and distribution (CTDD). For composition, an attribute contributes to three values, 

representing the global distribution (frequency) of the amino acids in each of the three 

groups of attributes. The composition is computed as follows: 

C(𝑟) =
𝑁(𝑟)

𝑁
    (3) 

where N(r) is the number of occurrences of type r amino acids in the sequence and N is 

the length of the sequence. 

For transition, an attribute also contributes to three values, each representing the 

number of transitions between any pair of groups. The transition is calculated as follows: 

T(𝑟, 𝑠) =
𝑁(𝑟,𝑠)+𝑁(𝑠,𝑟)

𝑁−1
    (4) 

where N(r,s) represents the number of occurrences amino acid type r transit to type s (i.e. 

it appeared as “rs” in the sequence), and N is the length of the sequence. Similarly, N(s,r) 

is the reverse, that is, the number of “sr” occurrences in the sequence. 

The distribution feature consists of five values per attribute group, each of which 

corresponds to the fraction of the sequence length at five different positions in the group: 

first occurrence, 25%, 50%, 75%, and 100%. 

3. Pseudo amino acid composition  

Pseudo amino acid composition feature was proposed by [8]. For protein sequence P with 

L amino acid residues P = [R1R2R3…RL], the PAAC features can be formulated as  

P= [p1, p2, …, p20, p20+1, …, p20+λ]
T , (λ< L)    (5) 

where 
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𝑝𝑢 = {

𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜏𝑘

𝜆
𝑘=1

, (1 ≤ 𝑢 ≤ 20)

𝑤𝜏𝑢−20

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜏𝑘

𝜆
𝑘=1

, (20 + 1 ≤ 𝑢 ≤ 20 + 𝜆)
   (6) 

w is the weight factor and 𝜏𝑘 is the k-the tier correlation factor, defined as 

𝜏𝑘 =
1

𝐿−𝑘
∑ 𝐽𝑖,𝑖+𝑘, (𝑘 < 𝐿)𝐿−𝑘
𝑖=1    (7) 

and  

𝐽𝑖,𝑖+𝑘 =
1

Γ
∑ [Φ𝑞𝑅𝑖+𝑘 −Φ𝑞𝑅𝑖]

2Γ
𝑞=1    (8) 

where Фq(Ri) is the q-th function of the amino acid Ri, and Г the total number of functions. 

In here Г=3 and the functions used are hydrophobicity value, hydrophilicity value, and 

side chain mass of amino acid Ri.  

A variant of PAAC called amphiphilic pseudo amino acid composition (APAAC) 

proposed in [9]. A protein sample P with L amino acid residues P = [R1R2R3…RL], is 

formulated as  

P= [p1, p2, …, p20, p20+1, …, p20+λ, p20+λ, …, p2λ]
T , (λ< L)   (9) 

where 

𝑝𝑢 = {

𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜏𝑗

2𝜆
𝑗=1

, (1 ≤ 𝑢 ≤ 20)

𝑤𝜏𝑢−20

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜏𝑗

2𝜆
𝑗=1

, (20 + 1 ≤ 𝑢 ≤ 20 + 2𝜆)
    (10) 

τj is the j-tier sequence-correlation factor calculated using the equations: 

{
 
 
 
 

 
 
 
 𝜏1 =

1

𝐿−1
∑ 𝐻𝑖,𝑖+1

1𝐿−1
𝑖=1

𝜏2 =
1

𝐿−1
∑ 𝐻𝑖,𝑖+1

2𝐿−1
𝑖=1

𝜏3 =
1

𝐿−2
∑ 𝐻𝑖,𝑖+2

1𝐿−2
𝑖=1

𝜏4 =
1

𝐿−2
∑ 𝐻𝑖,𝑖+2

2𝐿−2
𝑖=1 , 𝜆 < 𝐿
⋯

𝜏2𝜆−1 =
1

𝐿−1
∑ 𝐻𝑖,𝑖+𝜆

1𝐿−𝜆
𝑖=1

𝜏2𝜆 =
1

𝐿−1
∑ 𝐻𝑖,𝑖+𝜆

1𝐿−𝜆
𝑖=1

    (11) 

where Hi,j
1 and Hi,j

2 are  hydrophobicity and hydrophilicity values of the i-th amino acid, 
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described by the following equation: 

𝐻𝑖,𝑗
1 = ℎ1(𝑅𝑖) ∙ ℎ

1(𝑅𝑗) 

𝐻𝑖,𝑗
2 = ℎ2(𝑅𝑖) ∙ ℎ

2(𝑅𝑗)   (12) 

 

2.1.2 Embedding-based Features Extraction Methods 

1. Doc2Vec 

Doc2vec is a method to represent textual documents as numerical vectors proposed by 

Mikolov and Le [10]. It is based from another method called Word2Vec [11]. Training the 

doc2vec model required a set of documents. For each word appearing in the document, a 

word vector W is generated. For each document, a document vector D is generated. 

Weights for a softmax hidden layer is also trained in the model. When the trained model 

is presented with a new document, these weights are used to calculate the document vector. 

 The doc2vec model, originally proposed for textual documents, has been adapted 

for the biological sequence by [12] (Figure 1). Each protein sequence represented a 

sentence, and is broken into k-mers as words. Then, each word was mapped to a unique 

vector. All word vectors (W1, W2, W3, … WM) constitute a matrix M V×W , where M 

words constitute M rows, and the column number is the number of hidden layer neurons 

(V). Similar to words, each sentence (a protein sequence) in the document containing N 

sequences was also mapped to a unique vector, represented by a row in matrix N V×D . 

Further, the average of the sentence and word vectors was used to predict the output word 

vectors in a text window and formed the matrix V M×W' . Stochastic Gradient Descent 

(SGD) and backpropagation were used to update weights. Resulting sentence vectors then 

can be used to for features in a machine learning model. 
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Figure 1. Framework of the doc2vec model training method 

2. Transformer-Based Models 

A transformer model is a neural network that learns context and meaning in sequential 

data such as text data or biological sequence by tracking relationships. Transformer 

models utilizes a set of mathematical techniques, named self-attention, to detect influence 

and dependencies between distant data elements in a sequence. It is originally presented 

by for machine translation task [13], and has been evolved with different variations. It has 

also been applied to other areas such as image recognition and bioinformatics domain. 

Protein language models has been trained from large protein corpora, using the state-

of-the-art Transformer models from the latest NLP research [14]. In chapter 5, six of the 

models were applied to extract features for our task of predicting glutarylation sites. 

 ProtBERT and ProtBert-BFD are derived from the BERT model [15], trained 

on UniRef100 and BFD corpora, respectively. 
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 ProtT5-XL-UniRef50 and ProtT5-XL-BFD are derived from the T5 model [16], 

trained on UniRef50 and BFD corpora, respectively. 

 ProtAlbert is derived from the Albert model [17] trained on UniRef100 corpora. 

 ProtXLNet is derived from the XLNet model [18], trained on UniRef100 corpora. 

Protein embeddings (features) can be extracted from the last layer of this protein 

language model to be used for subsequent supervised training. This layer is a 2-

dimensional array with a size of 1024 × length of sequence, except for the ProtAlbert 

model with an array size of 4096 × length of sequence. For the glutarylation prediction 

problem in Chapter 5, this feature is simplified by summing the vectors along the length 

of the sequence; hence, each feature group is now one-dimensional, with a length of 4096 

for ProtAlbert and 1024 for the rest. 

2.2 Imbalanced Data Handling 

Many real-world datasets have imbalances. Class imbalance occurs when one class have 

far less number of samples compared to the other class. The class with less samples is 

called the minority class (or positive class), while the other class with more samples is 

called the majority class (or negative class). In most problems, we are interested in the 

rare cases or the minority class compared to the abundant (or normal) cases. Standard 

classifiers are not designed to handle highly imbalance data. This imbalance case may 

cause classifier to bias towards the majority class. Thus, class imbalance should be 

handled to improve detection of minority samples. A common approach for dealing with 

imbalance is preprocessing at the data level. The data is balanced before being processed 

in the classification algorithm. 

2.2.1 Undersampling 

In the undersampling technique, the majority class is reduced by removing some instances. 
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This method will achieve reducing the data from being highly imbalanced (for example 

1:100 ratio) to a lesser ratio of imbalance (for example 1:10 or 1:3 or 1:1). One of the 

simplest method to undersample the majority class, is by random undersampling. In this 

method, a certain number of instance from the majority class is removed randomly. This 

method is very simple, yet has the drawback of potentially removing important samples. 

2.1.2 Oversampling 

In the oversampling technique, the minority class is increased through various means. 

This method will also achieve reducing the imbalance ratio of the classes. The simplest 

method to increase the minority class is random oversampling. The random oversampling 

technique involves selecting random examples from the minority class with replacement, 

and adding them in the training dataset. Another approach to increase the minority class 

is by generating artificial examples. Methods that fall into this type include Synthetic 

Minority Oversampling Technique (SMOTE) [19] and its variations, as well as Adaptive 

Synthetic (ADASYN) [20]. 

SMOTE 

In the SMOTE method, for each sample in the minority class, artificial samples is created 

along the line segments between the sample and k minority class nearest neighbors. This 

neighbors are randomly chosen from the k nearest neighbors. The artificial samples are 

created in the following method: For the sample under consideration, find the difference 

between it and its chosen nearest neighbor. Multiply this difference by a random number 

[0-1], then add it to the original sample vector. This is basically selecting a random point 

between two nearest neighbor (minority) samples. 

ADASYN 

ADASYN assigned weighted distribution for different minority class examples based on 
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their level of difficulty in learning. For minority class examples that are more difficult to 

learn, more synthetic data will be generated compared to those minority samples that are 

easier to learn. The ADASYN method reduces the bias due to the class imbalance, as well 

as adaptively moving the classification decision boundary towards the hard examples. 

2.3 Workflow for Supervised Classification 

In finding the best classification model a general workflow for the model is presented in 

Figure 2 below. First, raw data is obtained from the real world. This dataset is usually not 

ready to be processed with classification algorithms, and need one or more preprocessing 

steps. These preprocessing steps may include feature extraction, data cleaning, and data 

transformation. 

After the preprocessing step, the data is then split into two groups, training data 

set and testing data set. Generally the training data set is around 60-90% of the whole 

dataset. The training dataset is then used to find the best classification model. This model 

building may include a training and validation steps, either separately or combined in a 

validation system such as k-fold cross validation (Section 2.4.1). Validation process is 

important since classification algorithms need tweakings and parameter optimization. The 

output of model building is the best classification model. 

Finally the testing dataset is used to evaluate the model. Using a separate test set 

ensured that the model is evaluated using data unseen during the training process. The 

predicted label of the test data then can be measured using various performance metric 

(Section 2.4.2). 
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Figure 2. General workflow for building a classification model 

2.4 Model Evaluation 

During and after a model is trained, it needs to be evaluated. During the training, the 

evaluation is performed to fine tune the model and/or choose the best among several 

models. After the training process, evaluation is performed to estimate the model’s 

performance in the future or in the real world. 

2.4.1 k-Fold Cross Validation 

A simple train/test split to validate a classification model can have bias due to the different 
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split that is possible. To handle this bias, k-fold cross validation can be used. In this 

method, the (training) data set is split into k equal sized groups (or folds). A fold is 

designated as the test set while the other k-1 folds is used for training the model. This 

training and test is repeated k times, each time with a different fold for testing. The 

evaluation of each fold is then averaged to get the overall performance of the model. An 

example of 5-fold cross validation is shown in Figure 3. 

 

Figure 3. Example of 5-fold cross validation 

2.4.2 Performance Metric 

A confusion matrix is a summary of the prediction results of a test set on a classification 

task. For each class, correct and incorrect predictions are counted. A confusion matrix for 

binary classification problem is shown in Table 2. True Negative and True Positive 

happens when the predicted class matches the actual class. False Positive and False 

Negative happen when the predicted class are incorrect. 

Table 2. Confusion matrix  
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 Predicted 

0 

Predicted 

1 

Actual 

0 

True Negative 

(TN) 

False Positive 

(FP) 

Actual 

1 

False Negative 

(FN) 

True Positive 

(TP) 

 

From the confusion matrix, various other performance metrics can be derived. 

The ones specifically used in this study are: recall (Rec), specificity (Spe), precision (Pre), 

accuracy (Acc), MCC, F1-score (F1), and area under the ROC curve (AUC). These six 

metrics were calculated with the following formulas: 

Rec =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Spe =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Pre =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Acc =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

MCC =
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

F1 = 2 ×
𝑅𝑒𝑐.𝑃𝑟𝑒

𝑅𝑒𝑐+𝑃𝑟𝑒
   (12) 

where TP is True Positive, FP is False Positive, TN is True Negative, and FN is False 

Negative.  

Another metric, the AUC (Area Under Curve) is obtained by plotting recall 

against (1 – specificity) for every threshold and then calculating the area under the curve. 
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Chapter 3 Improving Human-Virus Protein-Protein 

Interaction Prediction 

  

3.1 Introduction 

Viral infection is a major health problem to humans, in addition to major cause of human 

death. As of July 2021, WHO reported there have been 196 million cases of COVID-19 

and 4.2 million deaths confirmed [21]. In other news, chronic hepatitis is suffered by over 

354 million people worldwide, with 8,000 new infections of hepatitis B and C every day, 

and more than one million deaths from liver disease and liver cancer occur every year 

[22]. Studying interactions between human and virus proteins is important in 

understanding host immune responses and viral infections [23]. This understanding will 

provide foundation in the development of strategies to prevent and combat viral diseases. 

One main task in protein-protein interaction (PPI) identification is to predict 

whether a human protein interacts with another virus protein. Experimental techniques 

have been invaluable in compiling and collecting validated human-virus PPI. However, 

this approach is expensive and time-consuming and it is important to discover more PPI 

through computational approaches. Recently, research is focused on utilizing 

computational and machine learning methods to identify new or unknown protein-protein 

interactions [24]. 

One promising method for human-virus PPI identification is representing the protein-

protein interaction as embedded protein sequence [12]. The authors showed that using 

doc2vec embedding on the proteins, combined with Random Forest classifier, they 
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achieved the best classification performance. Although the authors investigated the 

embedding parameters and experimented on 3 classifiers, other preprocessing methods 

have not been studied. Additional preprocessing before the classification stage may 

improve the performance. 

3.2 Materials and methods 

3.2.1 Dataset 

We obtained the human-virus PPI dataset from [12] which is derived from Host-Pathogen 

Interaction Database (HPIDB) [25]. This dataset consisted of 249,184 pairs of human-

virus PPI, and is imbalanced with a ratio 1:10 of positive to negative data. Next, a doc2vec 

model [10] is trained using proteins from Swiss-Prot [26]. The training scheme for the 

doc2vec model is based on previous work of ([12], [27]) where each protein is duplicated 

k times and split into non-overlapping k-mers with different groupings, before training 

the embedded protein model. For this study, 3-mer is chosen. 

3.2.2 Workflow for Building the Model  

The overall pipeline of our experiment is shown in Fig. 3. This pipeline is based on 

machine learning process with features based on protein embedding, but with a 

preprocessing step as emphasis. The human-virus PPI dataset and the doc2vec model 

were obtained as described in Section 3.2.1 above. 
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Figure 4. Workflow of the Experiment 

For our experiment, there are 3 different parts in which various methods would 

be compared: (1) feature formulation, the methods used to create the feature vectors of 

the dataset, (2) data preprocessing, which consisted of various transformation methods 

and resampling methods, and (3) the classification method used for the classification task. 

In all evaluations of classification performance, the Area Under Curve (AUC) was applied. 

This metric is chosen in accordance with the previous study of the same dataset [12]. 

Before doing the various modifications, we introduce a basic procedure, in which 

a base method for each of the three processes is set. This basic procedure will serve as a 

comparison for the various modifications applied. 

1. Base feature formulation method 

For the feature formulation method, a basic method is used, in which each pair of human 

and virus protein is represented as summing all the representative human vectors, 

Feature Formulation

Classification

HV PPI dataset doc2vec model

classification model and 
evaluation

Preprocessing
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summing all the virus vectors, and concatenating them (Fig. 3). An instance from the 

human-virus PPI dataset consisted of a pair of human and virus proteins with their label 

(either positive or negative interaction). These proteins are converted into feature vectors 

by getting their individual vector representations from the doc2vec model and combining 

them in certain ways. In our experiment 3-mer is used, so the model saved 3 different 

vector representations of each protein, with each vector having a length 16. To aid our 

explanation, let us name the three human protein vectors H1, H2, H3 respectively, while 

the virus vectors V1, V2, V3.  

 

 

 

 

Figure 5. Combining Human Vectors H1, H2, H3 with Virus Vectors V1, V2, V3 

 

2. Base data preprocessing method 

In accordance with the previous study, no further data preprocessing is involved. 

3. Base classifier 

In accordance with the previous study, the classification method is Random Forest 

classifier, using the 5-fold cross-validation scheme. By several trials, the parameters used 

for the Random Forest are nb_estimators=1000 and criterion=’entropy’. 

 

This basic procedure for PPI classification will be used as a base comparison for 

modifications in any of the three steps: feature formulation, preprocessing, and classifier. 

The metric to compare is the Area Under Curve (AUC) value. 

 

H1 H2 H3 V1 V2 V3

H V
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3.3 Result and Discussion 

3.3.1 Experiments on Different Feature Formulation 

We experimented on 6 different ways to combine the human and virus vector 

representations (Table 3). The first method is the base method. The fifth method is 

separated into 9 different combinations, in which one of the 3 human vectors is paired 

differently with one of the 3 virus vectors. Hence the total feature formulation methods 

investigated is 14. During this experiment, the preprocessing and classifier, are not 

changed i.e., the same as the base procedure. It is revealed that the best method is method 

6, followed by method 1 (base method) 

Table 3. Feature formulation methods 

Method Feature Formulation 
Feature 

Length 
AUC 

1 (base) concat(sum(H1,H2,H3), sum(V1,V2,V3)) 32 0.9414 

2 concat(H1,H2,H3,V1,V2,V3) 96 0.9408 

3 sum(H1,H2,H3,V1,V2,V3) 16 0.8080 

4 concat(sum(H1,V1), sum(H2,V2), sum(H3,V3)) 48 0.8331 

5-1 concat(H1,V1) 32 0.9322 

5-2 concat(H1,V2) 32 0.9361 

5-3 concat(H1,V3) 32 0.9366 

5-4 concat(H2,V1) 32 0.9328 

5-5 concat(H2,V2) 32 0.9373 

5-6 concat(H2,V3) 32 0.9378 

5-7 concat(H3,V1) 32 0.9320 

5-8 concat(H3,V2) 32 0.9367 
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Method Feature Formulation 
Feature 

Length 
AUC 

5-9 concat(H3,V3) 32 0.9372 

6 
concat (concat(sum(H1,H2,H3), sum(V1,V2,V3)), 

concat(H1,H2,H3,V1,V2,V3)) 
128 0.9418 

 

 

3.3.2 Experiments on Preprocessing Methods 

For the second part of the experiments, two sets of modifications were investigated. The 

first is feature transformation (Table 4). PCA with all dimensions (32) performed slightly 

worse than no transformation. t-SNE and UMAP, even with parameter tuning, had much 

lower AUC. This showed that these transformations fail to improve the classification 

result. 

Table 4. Classification result for different transformation methods 

Transformation Parameters AUC 

No transformation (base) - 0.9414 

PCA dimension=32 0.9277  

t-SNE n=3, p=30 0.8689 

UMAP 
dimension=32, 

neighbors=50 
0.8110 

 

Another experiment on preprocessing was applying resampling methods to the dataset 

(see the result in Table 5). Random oversampling improved the AUC slightly. On the 

other hand, all undersampling methods performed worse than the original. 
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Table 5. Classification result for different sampling methods 

Sampling Parameters AUC 

No sampling (base) - 0.9414 

Random Oversampling 

sampling_strategy=1 0.9437 

sampling_strategy=0.5 0.9434 

sampling_strategy=0.25 0.9420 

Random Undersampling 

sampling_strategy=1 0.9289 

sampling_strategy=0.5 0.9334 

sampling_strategy=0.25 0.9370 

sampling_strategy=0.2 0.9381 

SMOTE 

k=1 0.9370 

k=2 0.9365 

k=3 0.9357 

k=4 0.9355 

k=5 0.9354 

k=6 0.9350 

k=7 0.9346 

k=8 0.9349 

k=9 0.9340 

k=10 0.9342 

BorderlineSMOTE - 0.9344 

ADASYN 

n=1 0.9407 

n=3 0.9403 

n=5 0.9395 
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3.3.3 Experiments on Different Classification Algorithms 

The next experiment investigated various classifiers and their best parameter (Table 6). 

The original classifier, Random Forest, gave the best performance with AUC 0.9414. This 

is in agreement with previous research. SVM and Multilayer Perceptron were the next 

best classifiers with AUC 0.8909 and 0.8862 respectively. The other classifiers performed 

poorly. 

Table 6. Classification result for different classifiers 

Classifier Best Parameters AUC 

Random Forest (base) nb_trees=1000 0.9414 

SVM kernel=rbf, gamma=0.1, C=1 0.8909  

knn k=6 0.8614 

Naïve Bayes default 0.7129 

Logistic Regression default 0.7100 

Multi Layer Perceptron default (hidden neurons=100) 0.8862 

Decision Tree default 0.7119 

 

3.3.4 Combining Random Oversampling with Best Feature Formulation Method 

From experimenting with feature formulation methods, the best method was 

Method 14. Furthermore, in the experiment with data preprocessing, Random 

Oversampling was the best. Next, we experimented in combining the two Method 6 with 

Random Oversampling (Method 6-ROS) and applied it to Random Forest and SVM 

(Table 7). For Random Forest classifier, both modifications increased the AUC even 

further from 0.9414 to 0.9448. For SVM, both modifications also increased the AUC from 
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0.8909 to 0.9147, but not better than the Random Forest classifier. Combining the best 

feature formulation and the best resampling method showed that the classification 

performance can be improved. 

 

Table 7. Classification result for combination of feature formulation and transformation 

methods 

Method Combination AUC 

Random Forest  

Method 1-NoTransformation-RandomForest 0.9414 

Method 6-ROS-Random Forest 0.9448 

SVM  

Method 1-NoTransformation-SVM 0.8909 

Method 6-ROS-SVM 0.9147 

 

3.4 Conclusion 

In this chapter, we investigated various modifications to the process of human-virus 

PPI classification based on sequence-embedding and machine learning methods. It is 

found that modification to the feature formulation improved the classification 

performance. Another process that improved performance is applying random 

oversampling. However, combining them both at once improved the classification 

evaluation further from originally 0.9414 to 0.9448. We also confirm that Random Forest 

is the best classifier for this task and this dataset. For future study in this topic, we suggest 

to expand the modifications, such as experiment on other datasets, investigate different 

embedding scheme and/or different embedding parameters, investigate other 
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preprocessing methods, investigate simultaneous combinations of modifications as well 

as classification methods, in order to achieve better performance. 
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Chapter 4 Improving Lysine Glutarylation Prediction 

4.1 Introduction 

The post-translational modification (PTM) of amino acids dynamically changes the 

function of proteins and is actively studied in the field of molecular biology. Among 

various kinds of PTMs, lysine glutarylation is defined as an attachment of a glutaryl group 

to a lysine residue of a protein [28]. This modification was first detected via 

immunoblotting and mass spectrometry analysis and later validated using chemical and 

biochemical methods. It is suggested that this PTM may be a biomarker of aging and 

cellular stress [29]. Dysregulation of glutarylation is related to some metabolic diseases, 

including type 1 glutaric aciduria, diabetes, cancer, and neurodegenerative diseases [30]–

[32]. Since the identification of glutarylated peptides using proteomics techniques is 

expensive and time-consuming, it is important to investigate computational models and 

predictors to rapidly identify glutarylation.  

Based on a survey of previous research, various prediction models were 

proposed to distinguish glutarylation sites, including GlutPred [33], iGlu-Lys [34],  

MDDGlutar [35], RF-GlutarySite [36], and iGlu_Adaboost [37]. Although many models 

have been built to distinguish between positive and negative glutarylation sites, the 

performance of these methods remains limited. One challenge to this problem is finding 

a set of features to represent the protein subsequence, which enables a correct 

classification of glutarylation site. BERT models [15], and other transformer-based 

language models from natural language processing (NLP) research, show excellent 

performance for NLP tasks. These language models, having been adapted to biological 

sequences by treating them as sentences and then trained using large-scale protein corpora 
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[14], also show promise for various machine learning tasks in the bioinformatics domain.  

Previous studies have investigated the use of pre-trained language models from 

BERT and BERT-like models to show its effectiveness as protein sequence representation 

for protein classification. For example, [2] proposed a new approach to predict flavin 

adenine dinucleotide (FAD) binding sites from transport proteins based on pre-training 

BERT, position-specific scoring matrix profiles (PSSM), and an amino acid index 

database (AAIndex). In another study, Liu built a predictor for protein lysine glycation 

sites using features extracted from pre-trained BERT models, which showed improved 

performance in terms of accuracy and AUC score compared to previous methods [38]. 

These studies demonstrate the suitability of utilizing BERT models to improve various 

protein classification tasks. Therefore, using embeddings from pre-trained BERT and 

BERT-like models has the potential to build an improved glutarylation prediction model. 

In this chapter, we proposed a new prediction model to predict glutarylation sites 

(Figure 1) by incorporating features extracted from pre-trained protein models combined 

with features from handcrafted sequence-based features. 

4.2 Materials and methods 

4.2.1 Dataset 

This study utilized unbalanced benchmark datasets compiled by [36] to build 

their predictor, RF-GlutarySite. This dataset collected positive glutarylation sites from 

various sources, including PLMD [39] and [32] and consisted of four different species 

(Mus musculus, Mycobacterium tuberculosis, E. coli, and HeLa cells), for a total of 749 

sites from 234 proteins. Homologous sequences that showed ≥40% sequence identity 

were removed using the CD-HIT tool. The remaining proteins were converted into 

peptides with a fixed length of 23, with glutarylated lysine as the central residue, and 11 
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residues each upstream and downstream. Negative sites were generated in the same way, 

but the central lysine residue was not glutarylated. After removing homologous sequences, 

the final dataset consisted of 453 positive and 2043 negative sites. The distributions of 

the training and testing datasets are listed in Table 8. This dataset was also used to build 

the proposed predictor model iGlu_Adaboost [37]. 

Table 8. Number of positive and negative sites in training and test set 

 Training set Test set  

Positive sites 400 44 444 

Negative sites 1703 203 1906 

 2103 247  

 

4.2.2 Workflow for Building the Model 

The workflow for building the model is presented in Figure 4. The extraction of numerical 

features from protein sequences or peptides is an important step before they can be 

utilized by machine learning algorithms. In this study, we investigated two types of 

features: classic sequence-based features and features derived from pre-trained 

transformer-based protein embeddings. Classic sequence-based features were extracted 

using the iFeature Python package [5]. 
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Figure 6. Workflow for building lysine glutarylation predictor 

After preliminary experiments, seven feature groups were chosen for further 

investigation: AAC, EAAC, Composition/Transition/Distribution (CTD), pseudo-amino 

acid composition (PAAC), and amphiphilic pseudo-amino acid composition (APAAC). 

The second type of feature, embeddings from pre-trained transformer-based models, was 

extracted using models trained and provided by [14]. It consists of six feature sets from 

six protein models: ProtBERT, ProtBert-BFD, ProtAlbert, ProtT5-XL-UniRef50, ProtT5-

XL-BFD, and ProtXLNet. The complete list of features investigated is shown in Table 3.  
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Table 9. Features investigated for method development 

Group Feature set 
Length of 

features 

Amino acid composition 

AAC 20 

EAAC 380 

C/T/D 

CTDC 39 

CTDT 39 

CTDD 195 

Pseudo amino acid composition 
PAAC 35 

APAAC 50 

Embeddings from pretrained 

transformer-based model 

ProtBERT 1024 

ProtBert-BFD 1024 

ProtAlbert 4096 

ProtT5-XL-UniRef50 1024 

ProtT5-XL-BFD 1024 

ProtXLNet 1024 

 

 

The next step was to combine two or more feature sets to evaluate further models, 

such as AAC-EAAC, AAC-CTDC, and AAC-ProtBert. For this, we limited the 

embedding features to a maximum of one in the combination. Five classification 

algorithms were included in the experiments: Adaboost, XGBoost, SVM (with RBF 

kernel), random forest (RF), and multilayer perceptron (MLP). 

Our best model combines the features of CTDD, AAC, and ProtT5-XL-
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UniRef50 with the XGBoost classification algorithm. This model, with the model of 

the best feature set from sequence-based feature groups and the model of the best feature 

set from the protein embedding feature group, was then evaluated with an independent 

dataset. For independent testing, the entire training set was used to develop a model. In 

both model building and independent testing, a random under-sampling method was used 

to balance the training dataset, while the testing dataset was not resampled to reflect 

performance in the real-world unbalanced scenario. 

4.2.3 Imbalanced Data Handling 

In the glutarylation dataset, the number of negative samples is nearly four times that 

of positive samples. This imbalance may affect the performance of classifiers because 

they are biased to misclassify a positive example as a negative one [40]. A common 

strategy to solve this problem is by data re-sampling, either adding minority samples 

(over-sampling) or reducing majority samples (under-sampling). In this study, we 

implemented a random under-sampling strategy [41] after preliminary experiments with 

various re-sampling methods. 

4.3 Result and Discussion 

4.3.1 Models Based on Sequence-based Feature Set 

We calculated the cross-validation performance for each sequence-based feature 

set using five supervised classifiers: AdaBoost, MLP, RF, SVM, and XGBoost. The 

performances of these classifiers are shown in Table 4. It can be observed that no classifier 

is the best for all feature groups. For example, using AAC features, MLP performs the 

best based on the AUC score. However, using EAAC features, the RF model has the best 

performance, whereas MLP has the poorest. Among the six different feature sets, the best 

model achieved was using EAAC features combined with RF, with an AUC score of 
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0.6999. This model also had the best specificity, precision, and accuracy compared to the 

other models. 

Table 10. Cross validation result of models from sequence-based features 

Feature 

groups 
Classifier Rec Spe Pre Acc MCC F1 AUC 

AAC Adaboost 0.6120 0.6013 0.2654 0.6033 0.1690 0.3700 0.6433 

 MLP 0.6520 0.6192 0.2864 0.6255 0.2150 0.3977 0.6864 

 Random Forest 0.6190 0.5809 0.2575 0.5881 0.1576 0.3635 0.6378 

 SVM 0.6395 0.5969 0.2714 0.6050 0.1868 0.3808 0.6651 

 XGBoost 0.5917 0.5482 0.2353 0.5565 0.1102 0.3362 0.6101 

EAAC Adaboost 0.5983 0.6015 0.2608 0.6009 0.1584 0.3629 0.6384 

 MLP 0.5850 0.5946 0.2530 0.5928 0.1422 0.3529 0.6323 

 Random Forest 0.6450 0.6598 0.3089 0.6570 0.2450 0.4171 0.6999 

 SVM 0.5967 0.6434 0.2821 0.6345 0.1923 0.3827 0.6571 

 XGBoost 0.6408 0.6385 0.2945 0.6389 0.2230 0.4030 0.6834 

CTDC Adaboost 0.7050 0.5518 0.2699 0.5809 0.2019 0.3901 0.6641 

 MLP 0.6867 0.6034 0.2905 0.6193 0.2300 0.4073 0.6912 

 Random Forest 0.6408 0.5676 0.2579 0.5815 0.1639 0.3676 0.6556 

 SVM 0.6842 0.5657 0.2705 0.5882 0.1966 0.3874 0.6765 

 XGBoost 0.6367 0.5754 0.2605 0.5871 0.1672 0.3693 0.6450 

CTDT Adaboost 0.6208 0.5762 0.2566 0.5847 0.1556 0.3627 0.6261 

 MLP 0.6408 0.5756 0.2622 0.5880 0.1708 0.3717 0.6439 

 Random Forest 0.6025 0.5982 0.2603 0.5990 0.1588 0.3633 0.6241 
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SVM 0.6425 0.5841 0.2661 0.5952 0.1787 0.3760 0.6493 

 XGBoost 0.5783 0.5668 0.2390 0.5690 0.1147 0.3378 0.6015 

CTDD Adaboost 0.6358 0.6046 0.2744 0.6106 0.1904 0.3831 0.6531 

 MLP 0.5942 0.5365 0.2434 0.5475 0.1120 0.3297 0.6065 

 Random Forest 0.6967 0.6164 0.2994 0.6316 0.2476 0.4185 0.6987 

 SVM 0.6675 0.6111 0.2877 0.6218 0.2206 0.4017 0.6794 

 XGBoost 0.6675 0.6201 0.2927 0.6291 0.2282 0.4064 0.6847 

PAAC Adaboost 0.5942 0.6052 0.2611 0.6031 0.1581 0.3626 0.6253 

 MLP 0.5958 0.5717 0.2462 0.5763 0.1321 0.3482 0.6261 

 Random Forest 0.6375 0.5809 0.2633 0.5917 0.1723 0.3723 0.6413 

 SVM 0.6617 0.5905 0.2752 0.6041 0.1990 0.3885 0.6745 

 XGBoost 0.6217 0.5731 0.2554 0.5823 0.1537 0.3615 0.6375 

APAAC Adaboost 0.6125 0.5976 0.2634 0.6004 0.1662 0.3682 0.6367 

 MLP 0.5658 0.5904 0.2450 0.5857 0.1237 0.3416 0.6162 

 Random Forest 0.6458 0.5831 0.2671 0.5950 0.1805 0.3776 0.6464 

 SVM 0.6650 0.5970 0.2794 0.6099 0.2069 0.3932 0.6777 

  XGBoost 0.6425 0.5694 0.2596 0.5833 0.1668 0.3695 0.6375 

 

4.3.2 Models Based on Embeddings from Pre-trained Transformer Models 

Based on the embeddings extracted from the pre-trained transformer models, we 

evaluated the same five supervised classifiers. The performance results of the models are 

presented in Table 5. The combination of the ProtBERT model and SVM can match the 

recall score with the classic sequence-based feature result. However, all other metrics 

were lower. In this experiment, the best model with respect to the AUC score was a 
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combination of features from the ProtAlbert model and SVM classifier (AUC = 0.6744). 

This model also had the highest cross-validation scores for precision, MCC, and F1-score. 

It can also be noted that out of the six models, SVM performed best on four of them 

compared to the other machine learning algorithms. 

Table 11. Cross validation result of models from pre-trained transformer models 

Feature groups Classifier Rec Spe Pre Acc MCC F1 AUC 

ProtBERT Adaboost 0.5767 0.5680 0.2389 0.5697 0.1142 0.3374 0.5996 

MLP 0.5892 0.5608 0.2395 0.5662 0.1187 0.3396 0.6128 

Random 

Forest 
0.5567 0.6426 0.2681 0.6262 0.1602 0.3616 0.6415 

SVM 0.7042 0.4775 0.2420 0.5207 0.1475 0.3578 0.6275 

XGBoost 0.6033 0.6007 0.2619 0.6012 0.1616 0.3649 0.6398 

ProtBert-BFD Adaboost 0.5433 0.5547 0.2231 0.5525 0.0773 0.3162 0.5776 

MLP 0.5900 0.5645 0.2420 0.5694 0.1218 0.3430 0.6076 

Random 

Forest 
0.5383 0.6230 0.2510 0.6069 0.1289 0.3421 0.6122 

SVM 0.6242 0.5819 0.2595 0.5899 0.1626 0.3662 0.6420 

XGBoost 0.5908 0.5733 0.2453 0.5766 0.1295 0.3464 0.6142 

ProtAlbert Adaboost 0.5875 0.5753 0.2450 0.5776 0.1284 0.3456 0.6193 

MLP 0.5858 0.6189 0.2657 0.6126 0.1646 0.3615 0.6407 

Random 

Forest 
0.5808 0.6316 0.2703 0.6220 0.1697 0.3687 0.6535 

SVM 0.6283 0.6136 0.2767 0.6164 0.1919 0.3840 0.6744 
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XGBoost 0.6092 0.5927 0.2604 0.5958 0.1597 0.3646 0.6477 

ProtT5-XL-

UniRef50 

Adaboost 0.5533 0.5655 0.2306 0.5632 0.0938 0.3254 0.5897 

MLP 0.6192 0.5633 0.2501 0.5739 0.1439 0.3558 0.6296 

Random 

Forest 
0.5608 0.6171 0.2562 0.6064 0.1419 0.3515 0.6237 

SVM 0.6583 0.5710 0.2653 0.5876 0.1807 0.3777 0.6600 

XGBoost 0.5933 0.5807 0.2497 0.5831 0.1377 0.3509 0.6183 

ProtT5-XL-BFD Adaboost 0.5892 0.5600 0.2395 0.5656 0.1175 0.3405 0.5959 

MLP 0.6000 0.5768 0.2502 0.5812 0.1396 0.3529 0.6188 

Random 

Forest 
0.5392 0.6163 0.2485 0.6017 0.1242 0.3399 0.6145 

SVM 0.6550 0.5625 0.2604 0.5801 0.1711 0.3724 0.6548 

XGBoost 0.5858 0.5862 0.2490 0.5862 0.1361 0.3489 0.6224 

ProtXLNet Adaboost 0.5125 0.5343 0.2057 0.5302 0.0369 0.2934 0.5421 

MLP 0.5325 0.5248 0.2081 0.5262 0.0450 0.2991 0.5463 

Random 

Forest 
0.5050 0.5668 0.2152 0.5551 0.0568 0.3015 0.5511 

SVM 0.4742 0.5770 0.2103 0.5575 0.0408 0.2900 0.5460 

XGBoost 0.5642 0.5504 0.2274 0.5530 0.0902 0.3238 0.5652 

 

 

4.3.3 Models Based on Combination of Sequence-based Feature and Pre-trained 

Transformer Models Feature Set 

To obtain the best model, we tested various combinations of two or more feature 
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sets to evaluate further models, such as AAC-EAAC, AAC-CTDC, and AAC-ProtBert. 

For this, we limited the embedding features to a maximum of one set in the combination. 

Similar to previous experiments, five classification algorithms were used: AdaBoost, 

XGBoost, SVM (RBF kernel), RF, and MLP. 

Our best model, ProtTrans-Glutar, uses a combination of the features CTDD, 

EAAC, and ProtT5-XL-UniRef50 with the XGBoost classification algorithm. The 

performance of this model is shown in Table 6, with comparison to the best model from 

sequence-based features (EAAC with RF classifier) and the best model from embeddings 

of the protein model (ProtAlbert with SVM classifier). According to the cross-validation 

performance on training data, this model has the best AUC and recall compared with 

models with features from only one group. These three models were then evaluated using 

an independent dataset (Figure 5). This test result shows that ProtTrans-Glutar 

outperformed the other two models in terms of AUC, recall, precision, MCC, and F1-

score. However, it is severely worse in terms of specificity and slightly worse in terms of 

accuracy compared to the EAAC+RF model. 
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Figure 7. Evaluation of ProTrans-Glutar using independent test set 

As shown in the ROC curves of the three models (Figure 6), EAAC+RF 

performed better for low values of FPR, but for larger values, ProtTrans-Glutar performed 

better. It is also noted that ProtAlbert+SVM performed worse for most values of FPR. 

Overall, ProtTrans-Glutar was the best model with an AUC of 0.7075. 
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Figure 8. ROC Curves evaluation on independent test set 

4.3.4 Discussion 

From our study, it was shown that building prediction models from traditional sequence-

based features only provided limited performance (Table 10). It was also shown that using 

only embeddings from pre-trained protein models gave slightly worse results, except that 

the recall performance was almost the same (Table 11). When we combined the features 

from these two groups, we found that the best performance was achieved by the 

combination of the features CTDD, EAAC, and ProtT5-XL-UniRef50 with the XGBoost 

classifier (independent test AUC = 0.7075). This indicated that ProtT5-XL-UniRef50 

features on their own are not the best embedding model during the individual feature 

evaluation (see Table 5), but combined with CTDD and EAAC, it outperformed the other 

models. It is worth mentioning that Elnaggar et al. (2021), who developed and trained 

protein models, revealed that ProtT5 models outperformed state-of-the-art models in 

protein classification tasks, namely in prediction of localization (10-class classification) 

and prediction of membrane/other (binary classification), compared to other embedding 
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models. 

For further evaluation, we compared our model with previous glutarylation site 

prediction models (Table 12). The first three models, GlutPred, iGlu-Lys, and MDDGlutar, 

used datasets that were different from our model and are shown for reference. The other 

model, iGlu_Adaboost, utilized the same public dataset as for our model and contained 

glutarylation sites from the same four species. ProtTrans-Glutar outperformed the other 

models in terms of the recall performance (Rec = 0.7864 for unbalanced data). This high 

recall suggests that this model can be useful for uncovering new and potential 

glutarylation sites. 

Table 12. Performance comparison of existing models 

Models Resources Rec Spe Pre Acc MCC F1 AUC 

GlutPred PLMD 0.5179 0.7850 0.2397 0.7541 0.2238 n/a 0.7663 

iGlu-Lys PLMD 0.5143 0.9531 n/a 0.8853 0.52 n/a 0.8842 

MDDGlutar PLMD 0.652 0.739 n/a 0.71 0.38 n/a n/a 

iGlu_AdaBoost 
PLMD, NCBI, 

Swiss-Prot 
0.7273 0.7192 0.3596 0.7207 0.36 0.48 0.6300 

ProtTrans-

Glutar 

PLMD, NCBI, 

Swiss-Prot 
0.7822 0.6286 0.3147 0.6567 0.3196 0.4494 0.7075 

 

Furthermore, we also evaluated our model by using a balanced training and 

testing dataset using random under-sampling for comparison with the RF-GlutarySite 

model (Table 13), which uses the same dataset but is balanced before evaluating 

performance. Because the authors of RF-GlutarySite did not provide their data after the 

resampling process, we performed the experiments 10 times to handle variance from the 
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under-sampling. The ProtTrans-Glutar model showed a higher recall score of 0.7864 

compared to RF-GlutarySite (0.7410), in addition to a slightly higher accuracy, MCC, 

and F1-score. However, the specificity and precision scores were lower. 

Table 13. Performance comparison with RF-GlutarySite using balanced train and test data 

Models Resources Rec Spe Pre Acc MCC F1 AUC 

RF-

GlutarySite* 

PLMD, 

NCBI, 

Swiss-Prot 

0.741 0.685 0.72 0.713 0.43 0.72 0.72 

ProtTrans-

Glutar 

(balanced) 

PLMD, 

NCBI, 

Swiss-Prot 

0.7864 0.6455 0.6955 0.7159 0.4388 0.7358 0.7159 

 *RF-GlutarySite model balanced the training and testing dataset using 

undersampling 

 

In summary, the model improved the recall score compared to the existing models but 

did not improve other metrics. However, we would like to point out that GlutPred, iGlu-

Lys, and MDDGlutar based their glutarylation datasets on less diverse sources (two 

species only), whereas ProtTrans-Glutar with RF-GlutarySite and iGlu_Adaboost utilized 

newer datasets (four species). The more diverse source of glutarylation sites in the data 

may present more difficulty in improving performance, especially in terms of specificity 

and accuracy. Compared with iGlu_Adaboost, which used the same dataset, our model 

improved their recall and AUC scores. Despite this, the specificity is worse and will be a 

challenge for future research. 

5.4 Conclusion 
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In this chapter, we presented a new glutarylation site predictor by incorporating 

embeddings from pretrained protein models as features. This method, which is termed 

ProtTrans-Glutar, combines three feature sets: EAAC, CTDD, and ProtT5-XL-UniRef50. 

Random under-sampling was used in conjunction with the XGBoost classifier to train the 

model. The performance evaluations obtained from this model for recall, specificity, and 

AUC are 0.7864, 0.6286, and 0.7075, respectively. Compared to other models using the 

same dataset of more diverse sources of glutarylation sites, this model outperformed the 

existing model in terms of recall and AUC score and could potentially be used to 

complement previous models to reveal new glutarylated sites. In the future, refinements 

can be expected through further experiments, such as applying other feature selection 

methods, feature processing, and investigating deep learning models. 
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Chapter 6 Summary and Future Research 

6.1. Summary 

To summarize, we investigated using protein embedding features for protein classification 

tasks with class imbalance using two different classification tasks.  

1. We improved human-virus PPI classification by applying random oversampling and 

modifying some preprocessing steps  

2. We proposed a new glutarylation site predictor, by combining 3 feature sets, random 

undersampling, and XGBoost algorithm. 

 

6.2 Future Research 

Further study is needed to improve protein classification tasks. Our suggestion is as 

follows.  

1. More variations of feature extraction methods need to be explored. 

2. Another promising direction is to experiment using deep learning algorithms for the 

classification.  
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