
Leveraging Input Features
for Testing and Debugging

by
Alexander Kampmann

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

Saarbrücken, 2022

2

Day of Colloquium 19th December 2022
Dean of the Faculty Univ.-Prof. Dr. Jürgen Steimle
Chair of the Committee Prof. Dr. Sebastian Hack
Reporters
First Reviewer Prof. Dr. Andreas Zeller,
Second Reviewer Prof. Dr. Lars Grunske,
Third Reviewer Prof. Dr. Thorsten Holz,
Academic Assistant Dr. Dominic Steinhoefel

3

Abstrakt
Bei der Fehlersuche in Softwaresystemen ist es wichtig, die Ursache des Fehlers
zu verstehen. Wie können wir den Entwickler hierbei unterstützen, und den
Prozess des Programmverstehens automatisieren?

Das Verhalten eines Programms wird durch seinen Input bestimmt. Ein
typischer Schritt bei der Fehlersuche ist daher, zu verstehen wie der Input das
Programmverhalten beeinflust. In dieser Arbeit präsentiere ich Alhazen, ein
Programm, das eine Feedback Loop zwischen einem Decision Tree und einen
Testgenerator einrichtet, um eine Erklärung dafür zu generieren, welche Inputs
ein bestimmtes Programmverhalten auslösen. Das kann benutzt werden, um
einen Programmfehler automatisch zu diagnostizieren.

Es wird evaluiert, ob Alhazen eingesetzt werden kann um zusätzliche Inputs
zu generieren und Inputs, die den Fehler auslösen, zu erkennen. Die Arbeit
enhält erste Schritte für eineNutzerstudie, die zeigen soll, obAlhazen Softwareentwicklern
bei der Fehlersuche hilft.

Die Ergebnisse zeigen, dass Alhazen in beiden Szenarien effektiv ist, und
deuten darauf hin, dass maschinelle Lernverfahren beim Programmverstehen
helfen können.

Alhazen wirft die Frage auf, ob die Betrachtung von Input Features andere
Möglichkeiten bietet. Diese Thesis präsentiert Basilisk, einWerkzeug, das Testgenerierung
auf bestimmte Teile des Inputs fokussiert. Basilisk wird als eigenständiges Tool
evaluiert, und eine Integration mit Alhazen wird ausprobiert. Die Ergebnisse
sind vielversprechend, zeigen aber auch Probleme mit der Idee auf.

Insgesamt zeigt die Arbeit das Protential von Input Features.

Abstract
When debugging software, it is paramount to understand why the program
failed in the first place. How can we aid the developer in this process, and
automate the process of understanding a program failure?

The behavior of a program is determined by its inputs. A common step in
debugging is to determine how the inputs influences the program behavior. In
this thesis, I present Alhazen, a tool which combines a decision tree and a test
generator into a feedback loop to create an explanation for which inputs lead to
a specific program behavior. This can be used to generate a diagnosis for a bug
automatically.

Alhazen is evaluated for generating additional inputs, and recognizing bug-
triggering inputs. The thesis makes first advances towards a user study on
whether Alhazen helps software developers in debugging.

Results show that Alhazen is effective for both use cases, and indicate that
machine-learning approaches can help to understand program behavior.

Considering Alhazen, the questionwhat else can be donewith input features
follows naturally. In the thesis I present Basilisk, a tool which focuses testing on
a specific part of the input. Basilisk is evaluated on its own, and an integration
with Alhazen is explored. The results show promise, but also some challenges.

All in all, the thesis shows that there is some potential in considering input
features.

4

Contents

1 Problem Statement 9
1.1 Thesis Structure . 10
1.2 How to read this thesis? . 11
1.3 Motivating Example . 11
1.4 Behavior of Interest and Predicate of Interest 14

1.4.1 General-Purpose Predicates of Interest 14
1.4.2 Specific Predicates of Interest 16

1.5 State of the Art . 17
1.5.1 Debugging . 17
1.5.2 Automated Program Repair 19

2 Learning Explanations for Program Behavior 21
2.1 Context-Free Grammars . 22
2.2 Representing a Grammar as a Graph 25
2.3 Ambiguity . 34
2.4 Increasing the Probability of Behavior-Triggering Samples . . . 37
2.5 Evaluation Setup . 38

2.5.1 Evaluation Metrics . 38
2.5.2 Subjects . 39
2.5.3 Generating Test Data . 42
2.5.4 Generating Training Data 47

2.6 Creating Hypothesis . 48
2.6.1 Feature Extraction . 48
2.6.2 Feature Selection . 49
2.6.3 Decision Trees . 51

2.7 Evaluation . 53
2.7.1 As Predictor . 54
2.7.2 As Generator . 57
2.7.3 Analysis of Individual Cases 61

2.8 Conclusion . 65

3 Refining Hypothesis with a Feedback Loop 67
3.1 Generating Predicate Sets . 67

3.1.1 Extracting Predicates from the Trees 68
3.1.2 Simplifying the Predicate Sets 69
3.1.3 Exploring Beyond known Search Space Areas 69
3.1.4 Breaking Correlations . 70

3.2 Generating Grammar Words . 71

5

6 CONTENTS

3.2.1 More Properties of Control Forms 72
3.2.2 Rewriting the Grammar for Excludes 75
3.2.3 Checking Feasibility . 75
3.2.4 Greedily Searching for Candidate Trees 77
3.2.5 Searching the space of all possible trees 89

3.3 Evaluation . 92
3.3.1 As Predictor . 92
3.3.2 As Generator . 97
3.3.3 Analysis of Individual Cases 101

3.4 Conclusion . 106

4 Debugging with Input Features 107
4.1 Focusing on Small Parts of the Input Space 108

4.1.1 Characterizing the Search Space 108
4.1.2 Evaluation . 110

4.2 Preparing the User Study . 112
4.2.1 Measuring Repair Quality 114
4.2.2 Initial Design . 116
4.2.3 Conducting the Pre-Pilot 120
4.2.4 Refining the Study Design 124
4.2.5 Conducting the Pilot Study 129
4.2.6 Analysis of Pilot Study Results 131
4.2.7 P-Hacking . 142

4.3 Proposed Design for a User Study 146
4.3.1 Recruitment Strategy . 146
4.3.2 Within Subject versus Between Subject 147
4.3.3 Task Design and Screening Test 147

4.4 Conclusion . 149

5 Targeted Carving 165
5.1 Motivating example . 166
5.2 Background . 167

5.2.1 Symbolic Execution . 168
5.2.2 Fuzzing . 170
5.2.3 Low-Level Virtual Machine 171

5.3 Carving C Programs . 171
5.3.1 Carving Approach . 171
5.3.2 Implementation of Carving 175
5.3.3 Parameterizing Unit Tests 186
5.3.4 Lifting Unit-Level Values to the System-Level 188

5.4 Evaluation . 188
5.4.1 Performance of Basilisk 188
5.4.2 Evaluation Subjects . 190
5.4.3 System Testing . 191
5.4.4 Lifting Performance . 196
5.4.5 Unit Testing . 198

5.5 Communicating Interest in Input Parts 199
5.5.1 Search Space Exploration 199
5.5.2 Limitations of Basilisk . 200

5.6 Evaluation . 201

CONTENTS 7

5.6.1 Evaluation Setup . 202
5.6.2 Looking at the Calculator 202
5.6.3 Do Basilisk-generated samples lead to faster hypothesis

learning? . 203
5.6.4 Precision and Accuracy of Basilisk-generated hypothesis 205

5.7 Conclusion . 207
5.7.1 The Design of Basilisk . 207
5.7.2 Summary . 207

6 Closing Remarks 209
6.1 Related Work . 209

6.1.1 Grammar Mining . 209
6.1.2 Grammar-based Input Generation 210
6.1.3 Debugging Aid . 211
6.1.4 Abstracting Failure-Inducing Inputs 213
6.1.5 Specification Mining . 215
6.1.6 Unit Analysis of Subprograms 216

6.2 Threats to Validity . 216
6.3 Future Work . 218
6.4 Conclusion . 219

A Bug Classification 221

B Coverage over Time for Basilisk 227

8 CONTENTS

Chapter 1

Problem Statement

A program fails. This sets a process in motion: A bug report is being written,
someone checks whether the problem can be reproduced. Someone investigates
how severe the problem is and assigns a priority to the bug. And, in the end,
someone needs to figure out why the program failed. This can be a lengthy
and complicated endeavor, however, it is a prerequisite for solving the problem.
Attempts to solve a problem which is not yet full understood lead to incomplete
fixes, or introduce new bugs.

Zeller [77] suggests the scientific method for debugging: Pose a hypothesis
of why the program fails, and conduct an experiment to refute the hypothesis.
If you cannot refute it, the hypothesis must be true, and explain the program
failure.

In this thesis, I am going to automate this process. I will present a tool, named
Alhazen, which can automatically determine the circumstances of a failure.
Alhazen provides an explanation for a given software behavior, based on fea-
tures extracted from the program input. Alhazen is not limited to explanations
for crashes or bugs, any observable behavior of the program under test can be
explained.

Alhazen can be used in three different scenarios:

Predicting program behavior If a program fails with a specific input, this can
have severe consequences. For example, consider the observation by a
twitter user in Figure 1.1: When he joined a wireless network with the
id "%p%s%s%s%s%n", the wifi capabilities of his iPhone were permanently
disabled. Once a model for a specific bug is learned, Alhazen can be used
to recognize inputs which trigger this bug, and prevent them from being
processed. This can serve as a first line of defence and buy the developers
time to come up with a proper fix.

Generating additional inputs Several techniques in software engineering, for
example statistical debugging[65], automated program repair[73, 42] or
specification mining[35, 6, 17] require large sets of inputs. Alhazen can
be used to generate more inputs which trigger a specific behavior.

Understanding program behavior Last but not least, Alhazen’s automatically
generated hypothesis may be helpful to software developers. They provide

9

10 CHAPTER 1. PROBLEM STATEMENT

Figure 1.1: A tweet about problems with a malformed SSID on iOS[1].

a good understanding of the behavior in question, whichmay help to come
up with a fix.

1.1 Thesis Structure
Alhazen consists of two components, which each receive their own chapter in
this thesis:

1. In Chapter 2, I will extract features from program inputs, and train a deci-
sion tree learner to recognize bug-triggering inputs. This is, however, not a
full automation of the scientific method, it cannot yet perform experiments
to refute a hypothesis.

2. In Chapter 3, I will therefore present a test generator which can extract
predicate sets from a decision tree, and generate samples which violate

1.2. HOW TO READ THIS THESIS? 11

(or fulfill) those predicates. This tool can then be used in a feedback loop
with the decision tree learner: It generates the inputs needed to refute the
hypothesis.

3. In Chapter 5, I explore another way to work with partial inputs: Testing of
specific program parts, based on which input parts they process. While
this is a project on its own, I also explore how it can be combined with
Alhazen.

The evaluation in Chapter 2 and Chapter 3 addresses predicting program
behavior and generating additional inputs. In Chapter 4, I discuss how to
evaluate whether Alhazen helps software developers to understand software
behavior. This requires a user study, and Chapter 4 presents insights into how
to conduct such a study. Finally, Chapter 6 presents related work and concludes
the thesis.

1.2 How to read this thesis?
The material in this thesis falls in three categories:

Contributions The thesis presents the results of my scientific inquiry. A reader
who follows the flow of the text meets all those results, ordered such that
they build on each other.

Background Some of the ideas presented in this thesis are based onwell-known
concepts of computer science, or work done by others. If understanding
these is necessary to follow the thesis, they are presented within the flow
of the text, and marked as such. Sections which contain only those defini-
tions say so in their opening paragraph, and can be skipped if the reader
feels familiar with the concepts presented. Definitions, theorems and
observations are boxed.

Boxed Content
Throughout the thesis, boxed content will be repeated when it is
referred to.

Therefore, a reader who skipped such a section can look at the definitions
later. All related work which was not directly used within my projects is
described in Section 6.1.

Definitions Just as definitions contributed by others, my own definitions are
boxed, and will be repeated when they are referred to.

1.3 Motivating Example
In this section, I will illustrate how Alhazen works with an example. All steps
will be discussed in detail later. This section just serves to give a brief overview.

Within the example, I consider a simple calculator program. This program
reads inputs as specified by the grammar in Figure 1.2. The input consists of
a function name, one of "tan", "cos", "sin" or "sqrt", and a number. The
program then outputs the result of applying the given function to the given

12 CHAPTER 1. PROBLEM STATEMENT

〈start〉 → 〈function〉 "(" 〈number〉 ")"

〈function〉 → "tan" | "cos" | "sin" | "sqrt"

〈number〉 → "0" | /-[0-9+](.[0-9+])?/ | /[0-9+](.[0-9+])?/

Figure 1.2: The input grammar for a simple calculator.

max-numeric(〈value〉) ≤ −445

no bug bug

no yes

Figure 1.3: The decision tree obtained by Alhazen0 on the example.

number, e.g. when presented with the input "sqrt(4)", it outputs 2. Let’s
suppose the program crashes on the input "sqrt(-900)". The astute reader
may have a theory on what causes the problem already: The result of

√
−900 is a

complex number, and the implementation of "sqrt" probably does not support
this. This theory is in fact correct, and I will now outline how Alhazen comes to
the same conclusion.

But before I discuss the full Alhazen approach, as presented in Chapter 3, I
will present its predecessor, Alhazen0 which will be presented in Chapter 2.

Alhazen0 starts with two input samples: One input which triggers the bug,
and one input which does not, say "sqrt(9)" and "sqrt(-900)". Alhazen0
now proceeds in 3 steps.

Parsing Alhazen0 uses the context-free grammar in Figure 1.2 to decompose
the inputs into individual input parts. Each input part corresponds to an
element of the grammar.

Feature Extraction Alhazen0 extracts numeric features from the decomposed
inputs. Alhazen0 for each input element, Alhazen0 introduces a feature
which is 0 if the element is not present, and 1 otherwise. It also considers
numeric interpretation of input elements. Within the example, that is e.g.
-900 for the substring "-900", and the length of input elements. E.g 4 for
"sqrt".

Posing a hypothesis Alhazen0 uses a decision tree learner to generate a hypoth-
esis of why the program fails on the failing input. The retrieved decision
tree can be seen in Figure 1.3. This tree proposes that the program fails
if the number is smaller than −445. This is not correct, it ignores the fact
that the failure only occurs if the function is "sqrt", and it assumes that
e.g. "sqrt(-9)" would work out, which it does not. However, all obser-
vations made so far, "sqrt(-900)" and "sqrt(9)", are explained by this
hypothesis.

Within Chapter 3, Alhazen0 will be extended to Alhazen, which solves
this problem, by applying the concept of scientific inquiry: Alhazen performs
additional experiments, and uses the outcome to refine the hypothesis. Within

1.4. BEHAVIOR OF INTEREST AND PREDICATE OF INTEREST 13

〈function〉 == "sqrt"

no bug max-numeric(〈value〉) ≤ −445

no bug bug

no yes

no yes

Figure 1.4: The decision tree obtained in the first iteration of Alhazen on the
example.

〈function〉 == "sqrt"

no bug max-numeric(〈value〉) ≤ 0.0

no bug bug

no yes

no yes

Figure 1.5: The decision tree obtained after 29 iterations of Alhazen on the
example.

the example, this means that Alhazen generates two new inputs: One with a
number larger than -445, and one with a smaller value. The hypothesis does not
specify which function to use, so Alhazen chooses randomly. It may therefore
come up with the inputs "cos(-25)" and "cos(-500)".

Both inputs do not fail, and Alhazen again trains a decision tree, just as
Alhazen0 did, to obtain a refined hypothesis. The new tree is shown in Fig-
ure 1.4. The learner now proposes that the function is relevant, it saw some data
indicating that it is. The hypothesis still asks for the number to be smaller than
−445, because there is no new data indicating something else.

By re-iterating the process of generating new inputs and re-training the
decision tree, Alhazen can refine the hypothesis further. After 29 iterations, it
provides the tree in Figure 1.5, which correctly names the failure circumstances:
The function "sqrt" needs to be used, and the value needs to be smaller than 0.

Looking at intermediate results of those 29 iterations, Alhazen works on
finding the correct boundary value. The decision tree learner always proposes a
value in between the smallest non-failing and the largest failing value. E.g. the
samples "sqrt(-900)" and "sqrt(9)" lead to a value of −445. Alhazen now
tests values larger and smaller than −445, and, in the next iteration, comes up
with a better boundary. Over several iterations, it arrives at 0.

14 CHAPTER 1. PROBLEM STATEMENT

1.4 Behavior of Interest and Predicate of Interest
While the example and discussion so far focused on Alhazen for debugging,
Alhazen can be used to explain other program behaviors. The only require-
ment is that input samples can be labeled as triggering the behavior or not. In
theory, input samples could be labeled by hand, however, as Alhazen requires
quite a few input samples (this will be evaluated in Chapter 2), labeling them
automatically is a better approach. In order to do so, I am using a predicate of
interest.

Definition 0: Predicate of Interest
The predicate of interest is a predicate over observable program behavior.
The program behavior which is recognized by the predicate of interest
is the behavior of interest. If the program exhibits the behavior of interest
while processing a specific input, this input is said to be behavior-triggering.

This definition is vague on purpose. It says little more than that the predicate
of interest separates the space of all possible program executions into two classes,
and that it can be calculated by observing a program run. However, the meaning
of observable may depend on the applied instrumentations.

In this form, the definition allows for a wide range of debugging problems.
Predicates of interest could consider execution times, crashes, or other properties.

Obviously, a good predicate of interest is paramount for Alhazen’s per-
formance. I will show what happens if an insufficient predicate is used in
Section 3.3.3. For the time being, let’s have a look at different options for writing
such predicates.

1.4.1 General-Purpose Predicates of Interest
There are some behaviorswhich are unacceptable for every program. Apredicate
which recognizes such a behavior can be reused with multiple programs. I call
it a general-purpose predicate of interest. s

Crash Oracles Most operating systems and hardware platforms provide some
safeguards: They limit resource usage, detect it if a program tries to access
memory areas that have not been assigned to this program, or detects division
by zero. Program execution is discontinued if one of those checks triggers. If
this happens, users usually say: ”The program crashed.” This is unacceptable in
almost all situations. Besides the terrible user experience, programs which are
just discontinued may leave data in a corrupt state. Therefore, such incidents
can be regarded as a bug.

Timeout Oracles In many cases, there are requirements – or at least expecta-
tions – on the runtime of a program. Program runs which exceed the expected
run time can be considered erroneous, which provides another, simple way to
implement a predicate of interest.

1.4. BEHAVIOR OF INTEREST AND PREDICATE OF INTEREST 15

Oracles Based On Error Messages Programs which detect error states them-
selves usually provide an error message. An analysis of the error message —
in the easiest case string equality with an observed error message — can be
used to recognize specific behaviors. This provides another option to implement
predicates of interest.

A/B Oracles If there are two programs which do the same thing, one can
be used as an oracle for the other. As an example, database engines which
implement the SQL standard should provide the same output, if the database
contents are the same, and they receive the same query. While this makes
for good oracles, it is not actually a practical idea: The situation that there
are two programs which are supposed to behave in the same way is just too
uncommon. Even database engines, which I just used as an example, in practise
often implement custom extensions to the SQL standard, which would make
for enough of a difference to make an A/B oracle impractical. Still, practitioners
should have this option in mind. In some cases, it may be possible to obtain an
A/B oracle nevertheless. In the case of SQL engines, one could test the subset
of SQL for which both databases behave in the same way. Another option is to
build an alternative implementation which does not meet the same performance
goals: A red-black tree, which can perform lookups in logarithmic time, can
be tested against a simple list, which performs the same task in linear time.
The two implementations differ in the expected performance, but not in the
expected output. For testing on small data sets, the performance difference
is acceptable. Similarly, a distributed database engine, which stores data on
multiple, connected machines, could be tested against a deployment of the same
engine on a single node. However, this approach has downsides: It can easily
happen that the development effort in making the comparison program gets out
of hand. Software engineers should make sure that the effort is justified for the
advantages achieved. Also, every bug discovered may be in either the program
under test, or the program used for comparison. This may pose additional
challenges in debugging.

Regression Oracles Most software developers do not write a program from
scratch, but improve upon an existing program. A new version of the program
under test is created whenever a bug is fixed or a new feature is added. Those
changes sometimes introduce new problems: Regression bugs. But then, an
A/B oracle is easily available: The old version of the program can be used for
comparison. If the behavior of the old version and the behavior of the new
version are different, and the difference is not expected, that is, it is not related to
a bug fix or new feature, this is a (newly introduced) bug. But then comparing
the old and new behavior can be used as an oracle.

Regression oracles may be hard to implement: Small changes, e.g. the re-
wording of an error message, or an additional white space in the output, make
a simple comparison of the output far to sensitive. On the other hand, such
changes are usually easy to detect and ignore. Throughout the thesis, I use
some regression oracles. All of those had actions taken to prevent this kind of
problems.

16 CHAPTER 1. PROBLEM STATEMENT

Time-traveling Regression Oracles The specific situation of scientific experi-
mentation allows for a different kind of regression oracles. If I use bugs which
have already been fixed as evaluation subjects, I can also compare the program
outputwithmore recent versions of the programunder test. While those clairvoyant
regression oracles cannot be used in everyday software development 1, they
simplify the development of predicates of interest, and therefore broaden the
number of available subjects for this thesis.

Summary Here is an overview over predicates of interest that can be reused
with multiple programs.

General-purpose Predicates of Interest
The following predicates of interest are reusable with different programs:

Crash Oracle Some error conditions, e.g. memory protection faults, are
detected by the operating system, which, in turn, terminates the pro-
gram. Crash Oracles consider this forceful termination as behavior
of interest.

Timeout Oracle Formany programs, a resonablemaximal execution time
can be defined. Timeout Oracles classify executions which exceed
this maximum as buggy.

Error-message Oracle Many programs output detailed error messages.
In this case, the presence (or absence) of a specific error message
in the program output can be used as an oracle. This is especially
useful for Java Programs, as the Java Runtime offers mechanisms
for error checking, and outputs detailed stack traces if one of those
checks fails. This allows a predicate of interest to check specifically
for the line where an error occurs.

Regression Oracle As programs are being developed, new problemsmay
be introduced in old code. A regression oracle checks whether the
output of a program is the same as in an old version.

1.4.2 Specific Predicates of Interest
For some bugs, general-purpose predicates are not sufficient. In those cases, the
tester need to be creative, and come up with an idea on how to write an oracle.
The main goal is always to be economic in the development of the predicate: If
the predicate of interest takes several days of implementation work, it is likely
better to spend the time on writing a huge number of tests manually, or — in
the context of this thesis — debug without using Alhazen. Still, this section
presents some ideas on how to derive predicates of interest.

Property-based Oracles For some programs, there are properties of the out-
put that can be used to check whether they operate correctly. Property-based
testing[19] proposes to build oracles by checking such properties. If, within an

1More research in time-travel technology is required, but out of scope for this thesis.

1.5. STATE OF THE ART 17

online shopping application, you calculate the total of the wares selected by the
user, a negative result is definitely a bug. As a second example, grep reports
whether a specific pattern is contained within the input text, and outputs those
lines of the input text which match the pattern. This means that every line of the
output should be a line of the input: grep does not invent new text fragments.
Identifying such properties can be difficult, but it makes for powerful predicates
of interest.

Construction-based Oracles Construction-based Oracles are a special case of
property-based oracles. As property-based oracles, they rely on a property of
the output, however, they also require inputs which were crafted to make sure
that this property exists.

In Chapter 4, I am going to use a program which extracts kernel version
numbers from machine descriptors. As an example, when presented with the
input "FreeBSD 12.2-RELEASE amd64 GENERIC", the program reports that the
string describes a FreeBSD kernel in a "release" build for major version 12 and
minor version 2. It is simple to implement a program which accepts the inputs
"FreeBSD", "Release", "12" and "2", and outputs "FreeBSD 12.2-RELEASE
amd64 GENERIC". This program is the inverse to the program under test. Now,
the program under test can be tested by applying its inverse to the output,
and check whether I obtain the input again. As a second example, consider
a program which sums up two numbers. Here, the function is not simply
the inverse: "6+6", "2+10", or "4+8" all give an output of 12. However, I can
craft inputs such that the output is known. E.g. if I provide an input a

2 + a
2 , I

should receive a as an output. The construction-based oracle does not work
for arbitrary program inputs, but only for those which follow the schema used
by the construction part of the oracle. When using construction-based inputs
with Alhazen, one would write a grammar which generates the input to the
program which constructs the input, e.g. the kernel name and versions in the
first example or the number a in the second example, rather than the input to the
program under test. Practitioner’s using this approach should be aware that they
may miss bugs in samples that do not follow the schema of their constructed
inputs.

1.5 State of the Art
The predicate of interest defines which behavior needs diagnosis. However, it
does not provide any diagnosis itself. In the first part of this section, I will look
at existing work that aims to generate a diagnosis to why a program behaves the
way it does.

In the above, I remarked that Alhazen may generate additional samples,
which may be useful for automated program repair. In the second part of
this section, I will look closer at automated program repair, and explain how
Alhazen’s samples can help this field.

1.5.1 Debugging
In general, work in debugging focuses on helping software developers to fix
program faults faster. They fall into two general families:

18 CHAPTER 1. PROBLEM STATEMENT

Input Reduction attempt to give the developer a smaller bug-triggering input
sample.

Fault Localization aims to pinpoint the faulty program statements, telling the
developer where to apply a fix.

A related field is specification mining, which aims to provide a model for all
program behavior, rather than an explanation for one specific program behavior.
Each approach will be examined in one of the following sections:

Input reduction

Input reduction approaches aim to generate a smaller input which triggers the
same bug. The intuition is that smaller inputs mean smaller program runs, and
therefore less program states to analyze.

The best-known algorithm in this area is delta-debugging[78]. This algo-
rithm uses a divide and conquer approach: In each step, half of the input is
removed, until removing any more character from the input means that the
failure does not occur any longer. The approach was successful, Zeller [77]
reports that it has made it into the instructions on how to write a bug report
for the FireFox browser. The approach was later refined. Grammar-based delta
debugging[50, 69] uses a grammar to parse the input, and always removes
entire constituents. This way, each intermediate input is valid according to the
grammar, and delta-debugging converges sooner.

Specification Mining

Many approaches which generate richer models come from specification mining.
This field attempts to infer a specification for all program behavior, rather than
just a specific behavior of interest.

Another family of approaches aims at generating models which give proper-
ties of behavior-triggering inputs. DDSET[25] is a variant of grammar-based
delta debugging that outputs a specialisation of the grammar, which generates
behavior-triggering inputs only. This approach will be further discussed in
Section 6.1.4.

Daikon[17] derives invariants from predefined templates. It generates all
instances of those templates, filling in template variables with values observed
from program runs, and reports resulting formulas if they are fulfilled for a
sufficiently high number of observed program runs. For the example I used
earlier, Daikon would generate the invariant x ≥ 0 in sqrt(x) if x was positive
in all observed runs. Daikon uses statistical methods to decide which formula
remains, and is considered an invariant of the program under test, and which
are removed.

Fault Localization

Besides program input values, researchers also attempted to find the code loca-
tion that contains the bug. One approach to do so is via statistical analysis[65]:
If a set of code locations is executed in every behavior-revealing run, but not in
runs that do not exhibit the behavior, those code locations must be related to the

1.5. STATE OF THE ART 19

behavior. Statistical fault localization tools therefore attempt to establish a statis-
tical correlation between code locations and program failures. There is some
discussion about whether this is useful for programmers[53], but some works
show the usefulness of those approaches for automated program repair[42, 73].
Chen et al. [9] apply this idea to a more coarse-grained idea of code location.
Rather than line numbers, they determine which component in a large system is
responsible for a failure. There approach is based on a decision tree, rather than
probability analysis.

This idea can be combined with test generation. Rößler et al. [61] estblishes
a relation between program behavior and code locations, and then attempts
to generate tests which exercise those program locations. Johnson, Brun, and
Meliou [37] takes a similar approach, using program input values and a large
set of randomly generated tests.

1.5.2 Automated Program Repair
If a program is defective, the defect does not only need to be diagnosed, it
also needs to be fixed. Therefore, automated program repair attempts to find a
modification of the program which leads to correct behavior.

This problem statement can be broken down in two parts:

1. Searching for a modification of the program; and

2. identifying correct behavior

The later problem is related to my behavior of interest. Rather than identify-
ing an existing behavior, automated program repair techniques need to define a
non-existing behavior. The behavior which is correct, as opposed to the existing,
incorrect, behavior. This problem is much harder than the one my predicates
of interest solve. A predicate of interest needs to identify one specific behavior,
and mark it as incorrect, whereas automated program repair techniques need
statements over all program behaviors.

Writing such a specification is impossible in most cases, and therefore re-
searchers use test cases instead. Correct behavior is the behavior which makes
all test cases pass. This is where Alhazen combines with automated program
repair. Alhazen can provide more test cases, it can even generate additional test
cases, which show the behavior of interest. Those can be used in to identify the
desired program behavior in automated program repair.

While relying on test cases is ubiquitous in automated program repair, tech-
niques for searching for a modification of the program are more diverse. They,
basically, fall into two families. The first is search-based approaches. Conceptu-
ally, those build the space of all possible modifications, and use a fitness function
or ranking to select the best one. Obviously, no implementation actually enu-
merate all possible modifications. There are, potentially, infinitely many. They
usually generate modifications with different techniques, and therefore sample
the search space.

The first step in such an approach is to identify the area of the search space
that needs modification. Here, automated program repair uses techniques from
statistical debugging. As discussed in the previous section, those techniques
attempt to identify the program locations that contain the reason for the defective

20 CHAPTER 1. PROBLEM STATEMENT

behavior. Automated program repair techniques than focus on modifications
which modify this area of the program.

Actual repair candidates then can be derived by mutation of existing modifi-
cations[27], which lends itself to a genetic programming approach to searching
the space of possible modifications[73]. Another approach is to move program
fragments from elsewhere in the program into the defective location. This ap-
proach is based on the idea that source code is repetitive[59], and assumes the
competent programmer hypothesis: It states that programmers likely supplied a
correct solution to the same problem at a different location in the program.

Once a technique to sample repair candidates is chosen, those approaches
need to find the best one. The first question here is which is the best candidate.
Approaches may concentrate on the smallest modification or some notion of
readability[40]. Search strategies range from genetic programming[73] over
various heuristics (e.g. [42]) to simple random sampling[58].

The second family of techniques to identify repair candidates in literature is
constraint-based repair. Approaches like SemFix[51] use symbolic execution to
generate symbolic representations of correct behavior, and then apply program
synthesis to generate functions which exhibit the symbolically described behav-
ior. One could say that those techniques construct a repair candidate, rather
than searching for it.

Chapter 2

Learning Explanations for
Program Behavior

In this chapter, I will show how to use evidence in order to provide an hypothesis
of why the program behaves the way it does. This idea is implemented in a tool
called Alhazen0.

Alhazen0 uses a context-free grammar to decompose the program input and
define features, numerically describing the input, from this decomposition. The
features will be used to train a decision tree, a classifier which provides a human-
readable explanation for its classification. This explanation is my hypothesis for
why the program behaves the way it does.

Alhazen0 was designed to support two use cases:

Generating inputs Many techniques within software engineering, for example
statistical debugging[65], automated program repair[73, 42] or specifi-
cation mining[35, 6, 17] require large sets of behavior-triggering inputs.
Alhazen0 can be used as a generator to synthezise such input sets.

Filtering inputs If a specially crafted input causes a program to misbehave, this
can have severe consequences. Especially in situations where program
interfaces are public, such a bug may be abused for Denial-of-service
attacks. Themodels generated byAlhazen0 can be used to predict whether
a given input is going to trigger such a bug. Then, the input can be rejected
before it reaches the program. Therefore, Alhazen0 would protect the
program against such malicious inputs, and by the software developers
time to come up with a real fix for the problem.

In order to facilitate those use cases, I will evaluate whether Alhazen0 is
capable of

1. generating more inputs which exhibit the behavior of interest

2. predicting whether a given input is going to exhibit the behavior of interest

21

22 CHAPTER 2. LEARNING EXPLANATIONS

〈start〉 → 〈function〉 "(" 〈number〉 ")"

〈function〉 → "tan" | "cos" | "sin" | "sqrt"

〈number〉 → /-?[0-9]+(.[0-9]+)?/

Figure 2.1: The grammar for the calculator example in Section 1.3.

2.1 Context-Free Grammars
This section presents definitions for grammars and the properties of grammars
I am going to work with. Similar definitions can be found in many textbooks
about theoretical computer science, so if you feel confident that you know the
material, feel free to skip this section. Important definitions will be referenced
whenever they are used.

As Alhazen0 relies on context-free grammars for input decomposition, I
start by defining them.

Definition 1: Context-Free Grammar
A context-free grammar is a tuple (N,T, P, S), where N is a set of non-
terminal symbols, T is a set of terminal symbols, P is a set of production
rules and S ∈ N is the start symbol.
A production rule p ∈ P has the form 〈A〉 → 〈c〉, where 〈c〉 is one of the
following control forms:

Reference A reference to a non-terminal symbol.

Terminal Symbol A terminal symbol.

Alternation A sequence of control forms 〈C1〉 | …| 〈Cn〉 separated by |,
with n > 1.

Concatenation A sequence of control forms 〈C1〉 …〈Cn〉, with n > 1.

Quantification A control form, called the subject of the quantification,
annotated with +, * or ?

P contains exactly one production rule of the form 〈A〉 → 〈c〉 for each
〈A〉 ∈ N .

In the following, I will write 〈C〉 both for the non-terminal symbol 〈C〉, and a
reference to 〈C〉. This is should not cause confusion, as non-terminals appear
only on the right-hand side of production rules, and references occur only on
the left-hand side. However, there may be more than one reference 〈C〉.

Most other formal definitions of context-free grammars allow more than one
production rule 〈A〉 → 〈c〉 for each 〈A〉 ∈ N . My definition allows at most one
production rule per nonterminal. However, the following definitions are made
such that the effect of two production rules 〈A〉 → 〈C1〉 and 〈A〉 → 〈C2〉 can
be achieved with one production rule that uses an alternation: 〈A〉 → 〈C1〉 |
〈C2〉. Therefore, this definition is equally powerful, but some of the following
definitions are simplified by this restriction.

Figure 2.1 shows the grammar for the calculator example from Section 1.3.

2.1. CONTEXT-FREE GRAMMARS 23

〈number〉 → "-"? 〈regex.1〉+ 〈regex.2〉?

〈regex.1〉 → "0" | …| "9"

〈regex.2〉 → "." 〈regex.1〉+

Figure 2.2: The regular expression /-?[0-9]+(.[0-9]+)?/, represented as a
context-free grammar.

As all grammars in the thesis, this grammar is given as a list of its production
rules P . The non-terminal symbols can be derived from this presentation, as
they are on the left-hand side of the production rules. On the right-hand side
of a production rule, terminal symbols are written in quotes. The grammar
representation does not give the start symbol. In many cases, the top-most
production rule will be the start symbol, as is the case in the example, where
〈start〉 is the start symbol. If it is not the topmost production rule anyways, the
start symbol can be determined from the context. For the grammar in Figure 2.1,
it is

N = {〈start〉, 〈function〉, 〈number〉}
T = {"(", ")", "tan", "cos", "sin", "sqrt", "-", ""."", "0", . . . , "9"}
S = 〈start〉

Figure 2.1 also shows syntactic sugar I allow myself throughout the thesis.
The production rule for 〈number〉 is given as a regular expression, which is not
allowed by the definition. However, every regular expression can be represented
as a context-free grammar. Figure 2.2 shows how to do this for the regex within
the example. In many cases, a regular expression provides a more concise
representation, which is why I allow myself to use them when I write down
grammars. All algorithms apply to context-free grammars only, and regular
expressions would be re-written before applying them.

24 CHAPTER 2. LEARNING EXPLANATIONS

〈function〉 "(" 〈number〉 ")"

〈function〉

"tan" | "cos" | "sin" | "sqrt"

"sqrt"

"(" 〈number〉

"-"? 〈regex.1〉+ 〈regex.2〉?

"-"? 〈regex.1〉+

〈regex.1〉

"0" | …| "9"

"9"

〈regex.2〉?

")"

Figure 2.3: Parse tree for "sqrt(9)" within the grammar in Figure 2.1.

A context-free grammar describes a language, which is composed of all the
words in the grammar.

Definition 2: Parse Trees and Words in the Language
A parse tree for a context-free grammar (N,T, P, S) is a tree where each
node is labeled with a control form. The root node is labeled with a control
form 〈s〉 such that S → 〈s〉 is in P . If a node is labeled with

1. a reference 〈A〉, it has one child which is labeled with a control form
〈C〉, such that 〈A〉 → 〈C〉 is a production rule in P .

2. a terminal symbol, it has no children (it is a leaf node).

3. an alternation 〈C1〉 | …| 〈Cn〉, it has one child, labeled with one of the
〈Ci〉’s.

4. a concatenation 〈C1〉 …〈Cn〉, it has n children, where the i-th child
is labeled with 〈Ci〉.

5. a quantification, all its children are labeled with the subject of the
quantification. The node has one or more children if the annotation
is +, zero or more children if the annotation is * and zero or one
children if the annotation is ?.

The sequence of terminal symbols that consists of the labels of the leaves
labeled with a terminal symbol of the parse tree in preorder is the leaf word
of this tree. It can also be said that the parse tree derives its leaf word. All
words which have valid parse trees, that is, trees formed according to the
rules above, are words of the language.

Figure 2.3 gives the parse tree for the word "sqrt(9)" within the grammar
in Figure 2.1. Each node is labeled with a control form, which means that,

2.2. REPRESENTING A GRAMMAR AS A GRAPH 25

for example, a node labeled with the reference 〈function〉 has a single child
labeled with the alternation "tan" | "cos" | "sin" | "sqrt". Many textbooks use
a notation where this node gets a child labeled with "sqrt" directly, omitting
the node labeled with the alternation. If those nodes are not relevant to the
example at hand, I will do the same within this thesis. In Figure 2.3, I expanded
the nodes below 〈number〉 as defined by the rewritten regex in Figure 2.2. For
the remainder of the thesis, I will avoid a blow-up of the parse trees by allowing
nodes to be labeled with a regex.

A parse tree is defined to have its root node labeled with the control form
that the start symbol expands to. However, in some situations it is useful to
reason about parse trees with different symbols at the root. Those trees follow
the same definition as a parse tree, except for a different root symbol.

2.2 Representing a Grammar as a Graph
In the following (especially Section 3.2) I will argue about different properties
of grammars. It turned out that a graph representation of grammars, as it
was introduced by Havrikov and Zeller [31], simplifies many of those analyses
and observations. Therefore, this section presents the definition of a grammar
graph, which was originally introduced by Havrikov and Zeller [31], and some
observations on the relationship between grammar graphs and parse trees.

Definition 3: The Control Forms of a Grammar
The set of control forms of a grammar G is the smallest set V such that

1. For all production rules 〈A〉 → 〈C〉 in G,
the control form 〈C〉 is in V

2. If 〈C〉 is in V , and 〈C〉 is a concatenation 〈C0〉 …〈Cn〉,
all 〈Ci〉 are in V

3. If 〈C〉 is in V , and 〈C〉 is an alternation 〈C0〉 | …| 〈Cn〉,
all 〈Ci〉 are in V

4. If 〈C〉 is in V , and 〈C〉 is a quantification with the subject 〈D〉,
〈D〉 is in V

All terminal symbols in the grammar are in V , as they appear on the right-
hand side of production rules. However, non-terminal symbols are never in V .
V contains control forms, so a reference to a non-terminal may be in V , but
not the non-terminal itself. As explained before, I use the same notation for
non-terminals and references to non-terminals. There may be more than one
reference to a non-terminal 〈C〉, in which case V contains all those references.

26 CHAPTER 2. LEARNING EXPLANATIONS

〈Expression〉 → 〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉

〈UnaryExpression〉 → 〈Literal〉 | 〈Invocation〉

〈Invocation〉 → 〈Function〉 "(" 〈Expression〉 ")"

〈Function〉 → "sqrt" | "cos" | "tan" | "sin"

〈Literal〉 → /[1-9][0-9]*/

Figure 2.4: A more complex grammar for a calculator. The start symbol is
〈Expression〉.

Definition 4: Grammar Graph
The Grammar Graph for a grammar G is a directed graph. Its nodes are the
control forms of the grammar G. Two nodes 〈Ci〉 and 〈Cj〉 are connected
with an edge if

1. 〈Ci〉 is a reference, and there is a production rule 〈Ci〉 → 〈Cj〉; or

2. 〈Ci〉 is an alternation, and 〈Cj〉 is part of the sequence; or

3. 〈Ci〉 is a concatenation, and 〈Cj〉 is part of the sequence; or

4. 〈Ci〉 is a quantification, and 〈Cj〉 is its subject

Figure 2.4 shows a slightly more complex grammar for a calculator. The
grammar graph for this grammar is given in Figure 2.5. The central node within
the graph is 〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉. The start symbol
of the grammar, 〈Expression〉, expands to this control form. The node is not the
start symbol 〈Expression〉, because in this context, 〈Expression〉 is a non-terminal
symbol, not a control form.

Starting at the node 〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉, there
are outgoing edges to 〈UnaryExpression〉 and 〈Expression〉 "+" 〈Expression〉, as
those are the members of the alternation. This node has incoming edges from
three nodes, and all three are references to 〈Expression〉. The three 〈Expression〉
nodes within the grammar graph each corresponds to one 〈Expression〉 reference
within the grammar. The two in the upper right corner of the figure correspond to
the references in 〈Expression〉 "+" 〈Expression〉, and the third one to the reference
in 〈Function〉 "(" 〈Expression〉 ")".

Relationship of Grammar Graphs and Parse Trees

In this section, I will explore the relationship between the grammar graph and
parse trees.

Theorem 0:
For every path in a parse tree, there is a path with the same node labels in
the grammar graph.

Within a parse tree, each node is labeled with a control form. The same

2.2. REPRESENTING A GRAMMAR AS A GRAPH 27

〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉

〈UnaryExpression〉

〈Expression〉 "+" 〈Expression〉

〈Expression〉 "+"

〈Expression〉

〈Literal〉 | 〈Invocation〉

〈Literal〉

/[1-9][0-9]*/

〈Invocation〉

〈Function〉 "(" 〈Expression〉 ")"

〈Function〉 "("

〈Expression〉

")"

"sqrt" | "cos" | "tan" | "sin"

"sqrt" "sin" "cos" "tan"

Figure 2.5: The grammar graph for the grammar in Figure 2.4.

28 CHAPTER 2. LEARNING EXPLANATIONS

〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉

〈Expression〉 "+" 〈Expression〉

〈Expression〉

〈UnaryExpression〉
| 〈Expression〉 "+" 〈Expression〉

〈UnaryExpression〉

〈Literal〉 | 〈Invocation〉

〈Literal〉

"9"

"+" 〈Expression〉

〈UnaryExpression〉
| 〈Expression〉 "+" 〈Expression〉

〈UnaryExpression〉

〈Literal〉 | 〈Invocation〉

〈Literal〉

"7"

Figure 2.6: The parse tree for "9+7" within the grammar in Figure 2.4.

control form is a node within the grammar graph. Looking at the definition for
a parse tree, and comparing to the definition of the grammar graph, it is obvious
that if there is a child node labeled with 〈C〉j below a node labeled with a control
from 〈C〉i in a grammar graph, there is an edge from 〈Ci〉 to 〈Cj〉 in the grammar
graph.

As an example, look at the parse tree for "9+7", which can be found in Fig-
ure 2.6. The root of the parse tree is labeled with 〈UnaryExpression〉 | 〈Expression〉
"+" 〈Expression〉, the same as the central node in the grammar graph. The only
child is 〈Expression〉 "+" 〈Expression〉, which corresponds to the node in the top-
right corner of Figure 2.5. This node in the parse tree has three children, each of
them corresponds to one outgoing edge in the grammar graph. The node labeled
with 〈Expression〉 is followed by another node labeled with 〈UnaryExpression〉
| 〈Expression〉 "+" 〈Expression〉. The grammar graph has back-edges from the
nodes labeled with 〈Expression〉 to the central node.

This relationship also applies the other way round.

Theorem 1:
Let G be a grammar with start symbol 〈S〉, and a production rule 〈S〉 →
〈s〉.
For every path in the grammar graph that starts in 〈s〉, a parse tree which
contains a path with the same node labels can be constructed.

While not strictly necessary, assume that the path in the grammar graph
ends with a terminal node. If this is not the case, add a suffix to achieve it. Now,

2.2. REPRESENTING A GRAMMAR AS A GRAPH 29

for every node which is labeled with a concatenation, add the required number
of child nodes and complete the required subtrees. The result is a valid parse
tree.

There are two more observations to be made here:

Theorem 2:
Let G be a grammar with start symbol 〈S〉, and a production rule 〈S〉 →
〈s〉. Let 〈c〉 be some other control form in G.
If there is no path within the grammar graph that starts in 〈s〉 and contains
〈c〉, 〈c〉 cannot be part of any parse tree.

The reason is that any path in a parse tree also is a path in the grammar
graph, and vice versa. So if there is no path in the grammar graph, there is no
parse tree which contains such a path as well, but in a parse trees, all nodes are
always reachable from the root node. So if there is no path with leads to 〈c〉 in a
parse tree, then 〈c〉 is not part of any parse tree.

From now on, all theorems will only hold for control forms which can be
part of a parse tree, unless noted otherwise.

The second observation is about concatenations.

Theorem 3:
Let 〈p0〉 → … → 〈pn〉 be a path in a parse tree. For one i < n, let 〈pi〉 be
a concatenation 〈pi〉 → 〈c1〉 …〈cm〉.
For each j < m, there is a path 〈p0〉 → … → 〈pi〉 → 〈cj〉 in the parse
tree.
〈pi〉 has m outgoing edges in the grammar graph.

This is because within a parse tree, each concatenation always has as many
children as there are members in its sequence. But then, a subpath which ends
in a concatenation always has more than one suffix in the parse tree. The last
part of the theorem, concerning the number of outgoing edges in the grammar
graph, needs no proof, as it follows directly from the definition.

To give an example, consider the path 〈UnaryExpression〉 | 〈Expression〉 "+"
〈Expression〉 → 〈Expression〉 "+" 〈Expression〉within Figure 2.6. As can be seen in
the figure, the node 〈Expression〉 "+" 〈Expression〉 has three children. Therefore,
there are three paths which have this path as a prefix:

1. 〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉
→ 〈Expression〉 "+" 〈Expression〉
→ 〈Expression〉

2. 〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉
→ 〈Expression〉 "+" 〈Expression〉
→ "+"

3. 〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉
→ 〈Expression〉 "+" 〈Expression〉
→ 〈Expression〉

Also, the node 〈Expression〉 "+" 〈Expression〉 has three outgoing edges, as can
be seen in Figure 2.5.

30 CHAPTER 2. LEARNING EXPLANATIONS

Strongly Connected Components in Grammar Graphs

An interesting property of grammar graphs is that they are cyclic. Therefore, I
will talk about strongly connected components within grammar graphs.

Definition 5: Strongly Connected Component
A strongly connected component in a directed graph is a set of nodes such
that each node within the set is reachable from every other node within
the set.

Within the example in Figure 2.5, there is a strongly connected component
which contains all nodes except the nodes labeled with terminal symbols and
the nodes labeled with 〈Function〉 and 〈Literal〉.

In fact, nodes labeled with terminal symbols have no outgoing edges. But
then, there can be no path from such a node to any other node, and therefore, I
can observe that:

Theorem 4:
Anode labeledwith a terminal symbol can never be in a strongly connected
component.

In a grammar graph, having a strongly connected component means that
there is an infinite number of path. If there is a node which belongs to the
strongly connected component in a path, there is a path which loops through the
strongly connected component, back to this node. This path can be added to the
original path, therefore generating a longer path through the grammar graph.
Due to Theorem 1, each of those paths can be used to construct a parse tree. We
can rule out that the same parse tree is constructed from all those path, as the
parse tree would be infinite otherwise. But then, there is an infinite number of
parse trees, and therefore the language described by the grammar contains an
infinite number of words.

However, each pathwithin a parse tree needs to end in a terminal symbol, and
terminal symbols cannot be part of a strongly connected component. Therefore,
each strongly connected component in a grammar graph needs an exit.

Definition 6: Exit from a Strongly Connected Component on the Gram-
mar Graph
Within a strongly connected component in a grammar graph, I call an
edge which leads to a node which is not part of the strongly connected
component an exit. I call the edge a real exit if it does not originate in a
(node labeled with a) concatenation.

In Figure 2.5, the edge from 〈Function〉 "(" 〈Expression〉 ")" to 〈Function〉 is an
exit, because 〈Function〉 is not part of the strongly connected component. It is not
a real exit, because it originates in a concatenation. The edge from 〈Expression〉
to 〈UnaryExpression〉 is not an exit. Both nodes are within the strongly connected
component. The edge from 〈Literal〉 | 〈Invocation〉 to 〈Literal〉 is a real exit, because
〈Literal〉 is not in the strongly connected component, and 〈Literal〉 | 〈Invocation〉
is not a concatenation.

As observed before, whenever a path in the parse tree goes through a con-
catenation, there are other paths with the same prefix which go through another

2.2. REPRESENTING A GRAMMAR AS A GRAPH 31

child of the concatenation. But then, if one of the outgoing edges of the concate-
nation is not an exit, it means that there is still an unterminated path after going
through the concatenation. If all outgoing edges of a concatenation were exits,
the concatenation is not in a strongly connected component (which contradicts
the assumption that all edges are exits.) Therefore, the exit on a strongly con-
nected component in the grammar graph cannot originate in a concatenation
(and needs to be a real exit1).

Theorem 5:
Given a path in a parse tree which originates at the root node and ends
in a leaf node, it either does not use any control form that is in a strongly
connected component in the grammar graph, or contains a real exit.

Otherwise, there would be a path in the parse tree which is infinite, and the
derivation tree would not describe a valid word.

Number of Leaf Words

Using the grammar graph, I can count the number of leaf words for a control
form 〈C〉.

Definition 7: Number of leaf words #d(〈C〉)
#d(〈C〉) is the number of valid parse trees rooted in 〈C〉. It is called the
number of leaf words.

The number of leaf words of a control form 〈C〉 can be calculated as

#d(〈C〉) =

∞ if 〈C〉 is part of a strongly connected com-
ponent in the grammar graph.

1 if 〈C〉 is a terminal symbol.
#d(〈A〉) if 〈C〉 is a reference and there is a pro-

duction rule 〈C〉 → 〈A〉∑n
i=0 #d(〈Ci〉) if 〈C〉 is an alternation 〈C0〉 | …| 〈Cn〉.∏n
i=0 #d(〈Ci〉) if 〈C〉 is a concatenation 〈C0〉 …〈Cn〉.

1 + #d(〈D〉) if 〈C〉 is a quantification with the subject
〈D〉 and the annotation ?.

∞ if 〈C〉 is a quantification and the annota-
tion is + or *.

For practical reasons, I also set #d(〈C〉) = ∞ if the value cannot be represented
with a 64 bit two’s complement integer.

Within the more complex calculator grammar in Figure 2.4, 〈Function〉 has
4 leaf words. They are "sqrt", "sin", "cos" and "tan". The formula gives the
same number, as each terminal symbol gives 1, and the alternation gives the
sum of #d for each of its options. As observed before, there is an infinite number
of paths through a strongly connected component, and therefore an infinite
number of leaf words. This is why #d(〈Expression〉) = ∞, #d(〈Invocation〉) = ∞
and #d(〈UnaryExpression〉) = ∞. 〈Literal〉 has infinite leaf words, because the
regex contains a *, which turns into a quantification with the * annotation when
it is rewritten to a context-free grammar.

1This is why the definition makes a distinction between exits and real exits

32 CHAPTER 2. LEARNING EXPLANATIONS

Listing 2.1: An algorithm to calculate the shortest derivation for all control forms
in a grammar CFG.

1 // Input: A grammar CFG
2 Shortest-Derivation(CFG):
3 Let T be a stack
4 Push all terminal symbols in CFG onto T
5 While T is not empty:
6 〈C〉 := pop(T)
7 old_min := SHORTEST-DERIVATION(〈C〉) or undefined,
8 if SHORTEST-DERIVATION(〈C〉) is undefined
9 if 〈C〉 is a terminal symbol:

10 SHORTEST-DERIVATION(〈C〉) := 1
11 if 〈C〉 is a reference:
12 Let 〈C〉 → 〈B〉 be part of the grammar
13 if SHORTEST-DERIVATION(〈B〉) is defined:
14 SHORTEST-DERIVATION(〈C〉) := SHORTEST-DERIVATION(

〈B〉) + 1
15 if 〈C〉 is a quantification annotated with +:
16 Let 〈B〉 be the subject of 〈C〉
17 if SHORTEST-DERIVATION(〈B〉) is defined:
18 SHORTEST-DERIVATION(〈C〉) := SHORTEST-DERIVATION(

〈B〉) + 1
19 if 〈C〉 is a quantification annotated with ? or *:
20 SHORTEST-DERIVATION(〈C〉) := 1
21 if 〈C〉 is a concatenation 〈C1〉 …〈Cn〉:
22 if all SHORTEST-DERIVATION(〈Ci〉) are defined:
23 SHORTEST-DERIVATION(〈C〉) := 1 + maxni=1〈Ci〉
24 if 〈C〉 is an alternation 〈C1〉 | …| 〈Cn〉:
25 Let min be the smallest SHORTEST-DERIVATION(〈Ci〉) for

all i where SHORTEST-DERIVATION(〈Ci〉) is defined
26 SHORTEST-DERIVATION(〈C〉) := min + 1
27 if old_min is undefined or SHORTEST-DERIVATION(〈C〉) 6=

old_min:
28 For all 〈A〉 such that there is an edge 〈A〉 →

〈C〉 in the grammar graph:
29 push 〈A〉 to T

Shortest Derivation

Throughout the thesis, I need away to talk about the size of parse trees. Havrikov
and Zeller [31] introduced the shortest derivation, which is a useful metric to
do so.

Definition 8: Shortest Derivation sd(〈C〉)
sd(〈C〉) is the minimal depth of a valid parse tree rooted in 〈C〉.

Calculating the shortest derivation While this definition is used in Havrikov
and Zeller [31], they do not give an algorithm to calculate the shortest derivation.
Therefore, I present my own algorithm in Listing 2.1. Looking at the source code
of Havrikov and Zeller [31], theirs seems to be similar, but not identical.

2.2. REPRESENTING A GRAMMAR AS A GRAPH 33

The main part of the algorithm is the loop in Line 5. This loop processes
control forms from the stack T until the stack is empty. Line 4 pushes all terminal
symbols to the stack, and in Line 28, all predecessors of an already processed
control form are pushed to the stack. Those are the control forms which can
occur as a parent of the processed control form in a parse tree.

Within the loop, the algorithm therefore either receives a terminal symbol, or
a node which has at least one of its children processed previously. The shortest
derivation for a terminal node is 1 (Line 10), because, according to the definition
of a parse tree, nodes labeled with a terminal symbol do not have children. The
same applies for quantifications which are labeled with * or ? (Line 19). For
quantifications labeled with +, the shortest derivation of the subject is known,
because the quantification would not be in T if it had not been calculated before
(Line 15).

The interesting case are alternations and concatenations. A alternation or
concatenation 〈C〉 has multiple control forms 〈Ci〉 in its sequence, but the loop
invariant guarantees prior calculation of the shortest derivation for just one of
them. Therefore, values for SHORTEST-DERIVATION(〈Ci〉) may be unknown in
Line 24 and Line 21. However, control forms are pushed to the stack for each
of their children, and therefore there will be an execution of the body of the
loop where all children are defined. This argument does not apply in the case
of strongly connected components. In a strongly connected component, there
is a path which connects 〈C〉 with 〈C〉 again. But then, all control forms on this
path have a predecessor with an undefined shortest derivation, because the
shortest derivation of 〈C〉 would be required to calculate it. However, Theorem
5 says that there is an alternation with a real exit somewhere in the strongly
connected compnent. For this alternation, the shortest derivation for the real
exit will be known, and then Line 24 can assign a shortest derivation for this
alternation. At this point, the algorithm ignores undefined values for the other
children. But then, there is a path from this alternation to every other control
form in the strongly connected component, and therefore each control form
in the component has the shortest derivation for one child defined eventually.
This is enough to have a value for all control forms but concatenations. For
concatenations, the algorithm only provides a value for the shortest derivation if
the values for all 〈Ci〉 are defined. As all children are either an exit, and therefore
defined independent of the strongly connected component, or connected to a
real exit, concatenations will be defined eventually. But then, all control forms in
a strongly connected component have a shortest derivation, and the algorithm
is done.

Generating the shallowest parse tree Within their paper, Havrikov and Zeller
[31] also have an algorithm to generate the shallowest parse tree. I will later
use the same, and therefore, I am presenting the algorithm in Listing 2.2 as well.
The algorithm follows the definition of a parse tree: For each node, it generates
the subnodes required by the definition. In cases where the definition gives
multiple options, that is alternations and quantifications, the algorithm uses the
option which has the smallest shortest derivation.

34 CHAPTER 2. LEARNING EXPLANATIONS

Listing 2.2: Algorithm for generating the shallowest parse tree for a given gram-
mar.

1 // Input: A control form 〈c〉 a partial parse tree t
2 Shortest-Generate(〈c〉, t):
3 Create a new node n in t and label it with 〈c〉
4 if 〈c〉 is a Reference:
5 find a production rule 〈c〉 → 〈b〉
6 add Shortest-Generate(〈b〉, t) as a child to n
7 if 〈c〉 is an alternation 〈c1〉 | …| 〈cn〉:
8 select a 〈cj〉 such that Shortest-Derivation(〈cj〉) is minimal
9 within 〈c1〉 …〈cn〉

10 add Shortest-Generate(〈cj〉) as a child to n
11 if 〈c〉 is a concatenation 〈c1〉 …〈cn〉:
12 for all 〈cj〉:
13 add Shortest-Generate(〈cj〉) as a child to n
14 if 〈c〉 is a Quantification 〈c’〉+:
15 add Shortest-Generate(〈c’〉) as a child to n
16 if 〈c〉 is a Quantification 〈c’〉*:
17 no operation
18 if 〈c〉 is a Quantification 〈c’〉?:
19 no operation
20 return n

2.3 Ambiguity
There is one property of grammars which requires special attention. That is
ambiguity.

Definition 9: Ambiguity
A grammar is ambiguous if there are at least two parse trees that derive the
same word.

Parse trees can be derived in two processes:

1. Starting with a word, a parse tree which derives this word can be created.
This process is called parsing.

2. Starting with the grammar, a parse tree can be created from scratch. This
process is called generating.

Generator algorithms are usually unaffected by ambiguity: They generate
one parse tree and do not care about possible ambiguous interpretations.

Many of the grammars I use in my work stem from fuzzing campaigns,
therefore, they were written for generating exclusively, and making them unam-
biguous was not a concern for their authors.

The situation, however, is different for parsing, that is, constructing parse
trees which fit a given language word. If there is more than one parse tree for a
given word, the parser needs to make a decision on which one to output. This
decision making process is called disambiguation.

Disambiguation can be done within the grammar, that is, by rewriting the
grammar until all words have just a single parse tree, or within the parser, using

2.3. AMBIGUITY 35

〈BooleanExpression〉 → 〈Identifier〉 | 〈BooleanLiteral〉 |
〈BooleanExpression〉 "||" 〈BooleanExpression〉 |
〈BooleanExpression〉 "&&" 〈BooleanExpression〉

〈Identifier〉 → /[a-z*]/

〈BooleanLiteral〉 → "false" | "true"

Figure 2.7: An ambiguous grammar for simple boolean expressions. The deriva-
tion rules for 〈Identifier〉 and 〈BooleanLiteral〉 are ambiguous.

"false" "||" "true" "&&" "false"

〈BooleanExpression〉

〈BooleanExpression〉 〈BooleanExpression〉

〈BooleanLiteral〉 〈BooleanExpression〉 〈BooleanExpression〉

〈BooleanLiteral〉 〈BooleanLiteral〉

〈BooleanExpression〉

〈BooleanExpression〉 〈BooleanExpression〉

〈BooleanLiteral〉 〈BooleanLiteral〉

〈BooleanExpression〉 〈BooleanExpression〉 〈BooleanLiteral〉

Figure 2.8: Two possible parse trees (one in blue on top, the other one in teal at
the bottom) for "false || true && false"

some properties that cannot be expressed within the grammar. Consider the
grammar for simple boolean expressions in Figure 2.7. This grammar has lots
of potential for ambiguity. First of all, the 〈BooleanExpression〉 is ambiguous.
The expression "false || true && false" has two parse trees, as depicted in
Figure 2.8.

This problem can be solved with a grammar rewrite: An additional produc-
tion 〈UnaryExpression〉, as presented in Figure 2.9, can be introduced. There can
only be a unary expression behind an operator, forcing the parser to choose the
interpretation which is shown in the blue part on top of Figure 2.8.

However, this does not solve all cases of ambiguity. The input "false" can
be interpreted as 〈BooleanLiteral〉 or 〈Identifier〉, and the same goes for "true".
This means that "false || true && false" still has 8 interpretations: Each
occurrence of "true" or "false" could either be an identifier, or a literal. Such
an ambiguity, which exists in nearly all programming languages, would usually

36 CHAPTER 2. LEARNING EXPLANATIONS

〈BooleanExpression〉 → 〈BooleanExpression〉 "||" 〈UnaryExpression〉 |
〈BooleanExpression〉 "&&" 〈UnaryExpression〉

〈UnaryExpression〉 → 〈Identifier〉 | 〈BooleanLiteral〉

〈Identifier〉 → /[a-z*]/

〈BooleanLiteral〉 → "false" | "true"

Figure 2.9: A grammar for simple boolean expressions. The production rules
for 〈Identifier〉 and 〈BooleanLiteral〉 are ambiguous.

〈Module〉 → (〈Statement〉 | 〈Declaration〉)*

〈Expression〉 → 〈FunctionExpression〉

〈FunctionExpression〉 → "function" 〈Identifier〉 "(" 〈Arguments〉 ")"
〈FunctionBody〉

〈Statement〉 → 〈Expression〉 (";" | "\n") | …

〈Declaration〉 → 〈FunctionDeclaration〉 | …

〈FunctionDeclaration〉 → "function" 〈Identifier〉 "(" 〈Arguments〉 ")"
〈FunctionBody〉 "\n"

Figure 2.10: A subset of the grammar for JavaScript.

be solved by prohibiting the terms "true" and "false" as identifier names.
However, this cannot be expressed easily2 in a context-free grammar.

A more complex example can be found within the JavaScript grammar,
that will be used later. Within Figure 2.10, a module is a list of declarations
and statements. A declaration can be a function declaration (other options
are omitted within the figure). A statement can be an expression, followed
by a semicolon or a line break. This expression can, among other things, be
a function expression. For the input "function foo() {}", the parser cannot
decide whether it is a function expression within a statement, or a function
declaration. If there were a semicolon in the end, it would be a statement, as
only statements can end with a semicolon. However, the semicolon at the end
of a statement can be omitted if there is a line break.

This ambiguity was likely introduced when JavaScript was extended for
functional programming: This paradigm requires that functions can be used as
values, e.g. as arguments to other functions, and therefore it requires a function
expression like the one in Figure 2.10. It would be possible to avoid ambiguity
if a 〈FunctionExpression〉 where prohibited within a "Statement", however, the
necessary grammar rewrite would increase the complexity of the grammar.
Also, this issues does not present itself as a problem for an implementation of
JavaScript, as the semantics of 〈FunctionExpression〉 and 〈FunctionDeclaration〉

2The identifier is expressed as a regular expression, and the rule “every word except for "false"”
can be expressed as a regular expression. Then, regular expressions are closed under intersection,
so “every identifier except for "false"” can be expressed as a regular expression. However, the
resulting expression is too complex to be written — or read — by a human grammar author.

2.4. INCREASINGTHEPROBABILITYOFBEHAVIOR-TRIGGERINGSAMPLES37
Fo

rr
ef
er
en

ce

See Section 1.4

Definition 0: Predicate of Interest
The predicate of interest is a predicate over observable program behavior.
The program behavior which is recognized by the predicate of interest
is the behavior of interest. If the program exhibits the behavior of interest
while processing a specific input, this input is said to be behavior-triggering.

are identical 3. Still, it leads to an ambiguity within the grammar.
Alhazen0 is supposed to be general, and work with every context-free gram-

mar, which means that additional rules, like preventing specific words despite
the fact that they are allowed by the grammar, are not an option. Also, Alhazen0
does not know about the semantics of an input. Therefore, I have to design all
algorithms I am going to use in the thesis such that they can handle ambiguity.

This alsomeans that it is simpler towrite grammars to be usedwithAlhazen0.
There is no need to spend the time to make them unambiguous. Within the
thesis, I was able to use grammars that where written for fuzzing campaigns.
Those were written for generating, not for parsing. Therefore, their authors
did not care about ambiguity, but still Alhazen0, in contrast to most parsers,
consumes those grammars without further ado.

2.4 Increasing the Probability of Behavior-Triggering
Samples

In the context of Alhazen0, I require input data sets for two reasons. First, I
need input samples to learn from. Second, I need test data to evaluate whether
Alhazen0 recognizes behavior-triggering inputs. Generating those data sets
is no easy task: In most use cases, the behavior of interest is seldom, that is,
triggered by a low number of inputs, while the vast majority of inputs trigger
other behaviors. Thismeans that if I were to sample the input space randomly, I’d
get only very few input samples which trigger the behavior, and lots of samples
which do not.

For Alhazen0, I need sample sets which are more likely to contain the
behavior-triggering inputs. I therefore modify the grammar to increase the
probability to generate such inputs.

Concretely, I look at every node in the parse tree which corresponds to a
non-terminal, and I add the leaf word of the subtree rooted at this node to the
grammar, if it does not exist already, and the same leaf word was not added to
the grammar before.

Within the running example, the grammar in Figure 2.1 and the input
"sqrt(9)", I would add "9" as an alternative to 〈number〉 and "sqrt(9)" as
an alternative to 〈start〉. I would consider to add "sqrt" as an alternative to
〈function〉, but abstain from doing so, as it is already present. The enriched
grammar is shown in Figure 2.11.

3The function value is dropped when the expression is in an expression statement and, somewhat
counterintuitive, the 〈FunctionExpression〉 also adds a definition to the current name space.

38 CHAPTER 2. LEARNING EXPLANATIONS

〈start〉 → 〈function〉 "(" 〈number〉 ")" | "sqrt(9)"

〈function〉 → "tan" | "cos" | "sin" | "sqrt"

〈number〉 → /-?[0-9]+(.[0-9]+)?/ | "9"

Figure 2.11: The example grammar, enriched for the input string "sqrt(9)".

There are three possible parse trees for "sqrt(9)" now. In addition to the
original parse tree in Figure 2.3, there is a parse tree which uses the alternative
"9", rather than the regex. And a third one, which derives the entire string at
the root symbol.

This is a general property of this rewrite: Adding existing grammar words
as alternatives means that there are at least two parse trees for those words now.
The grammar is ambiguous. However, as explained before, Alhazen0 needs
to be able to deal with ambiguous grammar anyways, so this does not cause
additional problems.

2.5 Evaluation Setup
The evaluation in this chapter is supposed to assess the generative and predictive
power of Alhazen0. In Section 1.3, I showed howAlhazen0works on two inputs.
However, Alhazen0 is a machine-learning approach, so it stands to reason that
more input data leads to better results. Therefore I will evaluate how Alhazen0
behaves with

1. just two inputs, as in the example (referred to as the twoInputs configura-
tion),

2. a larger set of inputs, randomly sampled from the grammar (referred to
as the sets configuration),

3. a larger set of inputs, based on k-path[31] (referred to as the k-path con-
figuration)

.

2.5.1 Evaluation Metrics
I will evaluate Alhazen0 based on precision and accuracy. For each input, Al-
hazen0 predicts whether it triggers the behavior of interest or not.

This leads to four different outcomes:

True Positive Alhazen0 predicts that the input triggers the behavior, and it
actually does.

True Negative Alhazen0 predicts that the input does not trigger the behavior,
and it actually does not.

False Positive Alhazen0 predicts that the input triggers the behavior, but it
actually does not.

2.5. EVALUATION SETUP 39

False Negative Alhazen0 predicts that the input does not trigger the behavior,
but it actually does.

Obviously, true negative and true positive, the cases where Alhazen0 is
right, are most desirable. Using those four categories, I can define precision and
accurracy.

Definition 10: Precision

precision = #true positive
#true positive + #false positive

That is the fraction of correctly classified inputs among all inputs classified
as behavior-triggering.

Precision rates how often a classifier correctly recognizes behavior-triggering
inputs. Consider the use cases where we want to protect a program against
inputs that cause a crash, e.g. to prevent denial-of-service attacks. In this case,
high precision would render those attacks impossible. However, precision does
not consider the number of true negatives. Within the examplatory use cases,
legitimate users may be denied service, as their inputs are wrongly considered
harmful.

Definition 11: Accuracy

accuracy = #true positive + #true negative
#all inputs

That is the fraction of correctly classified inputs among all inputs.

Accuracy rates how often a classifier correctly classifies all inputs. Accuracy
does not suffer from the problem of ignoring true negatives, but it may be thrown
off by uneven data distribution: If the number of inputs which do not trigger
the behavior is much higher than the number of inputs which do, a classifier
with low precision, that is, a classifier which misses many cases, would likely
have high accuracy, as it gets the much larger class of non-behavior-triggering
inputs right.

In the example of protecting against harmful inputs, high accuracy means
that legitimate users will not be affected. However, if high accuracy is paired
with low precision, many harmful inputs reach the system, as the number of
true negatives is high, but the number of true positives is low.

Within the evaluation, I need to make sure that the number of behavior-
triggering and not behavior-triggering inputs is almost identical, as the interpre-
tation of accuracy values would be difficult otherwise.

2.5.2 Subjects
For evaluation, I need a number of subjects to apply Alhazen0 to. A subject
consists of:

1. a program under test,

2. a grammar for the input language of this program,

40 CHAPTER 2. LEARNING EXPLANATIONS

3. at least one behavior-triggering input,

4. a predicate of interest,

which recognizes the program behavior to generate an explanation for.
In this section, I describe the subjects I am using in the evaluation. Table 5.9

lists all subjects, with information about the grammar and predicate of interest I
used.

grep and find

grep and find are software utilities that can be found on most Unix systems.
grep reads in a text file, applies a regular expression to each line and outputs all
matching lines. find searches the file system for a file which matches a given
query. For my experiments, I used 5 versions of grep and 4 versions fo find
from the dbgbench[7] study. Those grep and find versions contain known bugs.
dbgbench also provides bug reports for those bugs, including inputs which
trigger the problem. I used the inputs from the bug reports as starting points
for Alhazen0. The grammars for grep and find were written by myself.

• For grep, the grammar generates a full shell command, consisting of an
input, a list of environment variables and an invocation of grep. The input
is an alphanumeric string, which may contain utf-8 multibyte characters.
The grammar allows for all environment variables that are documented in
the man page of grep for the oldest version we used. The grammar allows
for all command line flags that are documented in the man page of grep
for the oldest version we used.

• The find grammar also generates a full shell command, and allows for
environment variables and command line flags. In addition, the find
grammar generates a sequence of mkdir, touch and ln shell commands to
generate directories, files and symbolic links.

I used some of the General-purpose Predicates of Interest I introduced in
Section 1.4.1, and two subject-specific oracles:

grep.c96b0f2c, grep.7aa698d3 grep outputs lines of the input which match the
given predicate. So every line in the output of grep should also occur in
the input. If grep outputs character sequences which were not present in
the input, this is a bug. When implementing this predicate, care has to be
taken to handle some options for grep. E.g. the option -n configures grep
to output line numbers, which need to be ignored when comparing the
output to the input.

find.24bf33c0 find outputs file names of files which match the search query.
find should never output a line which is not a (valid) file path, or is a file
path to a non-existant file. Both properties can easily be checked for each
output line. When implementing this, care has to be taken, because find
may output error messages, which are not valid file path, but should not
trigger the predicate either.

2.5. EVALUATION SETUP 41
Fo

rr
ef
er
en

ce

See Section 1.4.1

General-purpose Predicates of Interest
The following predicates of interest are reusable with different programs:

Crash Oracle Some error conditions, e.g. memory protection faults, are
detected by the operating system, which, in turn, terminates the pro-
gram. Crash Oracles consider this forceful termination as behavior
of interest.

Timeout Oracle Formany programs, a resonablemaximal execution time
can be defined. Timeout Oracles classify executions which exceed
this maximum as buggy.

Error-message Oracle Many programs output detailed error messages.
In this case, the presence (or absence) of a specific error message
in the program output can be used as an oracle. This is especially
useful for Java Programs, as the Java Runtime offers mechanisms
for error checking, and outputs detailed stack traces if one of those
checks fails. This allows a predicate of interest to check specifically
for the line where an error occurs.

Regression Oracle As programs are being developed, new problemsmay
be introduced in old code. A regression oracle checks whether the
output of a program is the same as in an old version.

JavaScript

I also used three subjects which process program code written in JavaScript.
JavaScript is a programming language that is widely used for web, full-stack and
desktop applications. I used the JavaScript grammar that was used in Havrikov
and Zeller [31]. This grammar was a manual translation of the JavaScript
specification, done by one of the authors of Havrikov and Zeller [31]. I fixed
several translation errors or imprecisionswhile workingwith the grammar. Most
of those problems can be explained by the fact that Havrikov and Zeller [31]
used the grammar for generating, while I also used it for parsing. A generator
grammar can make due if all words it describes are in the language, whereas a
parse grammar needs to describe the language as precisely as possible.

Rhino and JerryScript are implementations of a JavaScript interpreter, writ-
ten in Java and C++ respectively. Rhino is developed at Mozilla, and was part
of the Java Development Kit from version 6 to 11. JerryScript is a lightweight
JavaScript engine that is optimized for usage in embedded systems. Closure
was developed at Google. It transpiles JavaScript into optimized JavaScript. It is
written in Java as well.

For Rhino and Closure, I targeted bugs that were discovered by the fuzzing
campaign in Havrikov and Zeller [31]. The predicates of interest are based on
recognizing the specific error message triggered by the bug.

For JerryScript, I targeted bugs that I found on the bug tracker. The predicates
of interest are again based on the error message.

42 CHAPTER 2. LEARNING EXPLANATIONS

Fo
rr

ef
er
en

ce

See Section 2.1

Definition 2: Parse Trees and Words in the Language
A parse tree for a context-free grammar (N,T, P, S) is a tree where each
node is labeled with a control form. The root node is labeled with a control
form 〈s〉 such that S → 〈s〉 is in P . If a node is labeled with

1. a reference 〈A〉, it has one child which is labeled with a control form
〈C〉, such that 〈A〉 → 〈C〉 is a production rule in P .

2. a terminal symbol, it has no children (it is a leaf node).

3. an alternation 〈C1〉 | …| 〈Cn〉, it has one child, labeled with one of the
〈Ci〉’s.

4. a concatenation 〈C1〉 …〈Cn〉, it has n children, where the i-th child
is labeled with 〈Ci〉.

5. a quantification, all its children are labeled with the subject of the
quantification. The node has one or more children if the annotation
is +, zero or more children if the annotation is * and zero or one
children if the annotation is ?.

The sequence of terminal symbols that consists of the labels of the leaves
labeled with a terminal symbol of the parse tree in preorder is the leaf word
of this tree. It can also be said that the parse tree derives its leaf word. All
words which have valid parse trees, that is, trees formed according to the
rules above, are words of the language.

Genson

Genson is a Java Library for handling JSON input. JSON is file format that is
based on storing key-value maps, where each value can be a primitive value, an
array of values or another key-value map. JSON is widely used as a serialization
format for data structures.

NetHack

NetHack[45] is an adventure gamewhichwas first published in 1987, andwhich,
despite ASCII graphics and horribly complex gameplay, still receives attention
(and software maintenance) from enthusiasts. This modernized version of
NetHack had a software bug when reading its configuration file. This bug
serves as a subject for Alhazen0. I used a generic grammar for property files,
which I wrote myself.

2.5.3 Generating Test Data
In the evaluation, test data sets are used to see whether Alhazen0 recognizes

behavior-triggering inputs. I generated this test data with an approach similar
to Pavese et al. [55], using the enriched grammar as described in Section 2.4.
This technique uses a probabilistic generator to generate new input samples.

2.5. EVALUATION SETUP 43

Bug Grammar Source Predicate of Interest
grep c96b0f2c hand written subject-specific oracle
grep 55cf7b6a hand written Regression Oracle
grep 7aa698d3 hand written subject-specific oracle
grep 2be0c659 hand written Regression Oracle
grep 3c3bdace hand written Crash Oracle
grep 3220317a hand written Crash Oracle
grep c1cb19fe hand written Regression Oracle
grep 5fa8c7c9 hand written Timeout Oracle

find 07b941b1 hand written Crash Oracle
find 24bf33c0 hand written subject-specific oracle
find 091557f6 hand written error-message oracle
find b445af98 hand written Regression Oracle
find dbcb10e9 hand written Crash Oracle
find e1d0a991 hand written Regression Oracle
find ff248a20 hand written Timeout Oracle

closure 1978 [31], with adaptations error-message oracle
closure 2808 [31], with adaptations error-message oracle
closure 2842 [31], with adaptations error-message oracle
closure 2937 [31], with adaptations error-message oracle
closure 3178 [31], with adaptations error-message oracle
closure 3379 [31], with adaptations error-message oracle

rhino 385 [31], with adaptations error-message oracle
rhino 386 [31], with adaptations error-message oracle

genson 120 [31] error-message oracle

jerryscript 3286 [31], with adaptations error-message oracle
jerryscript 426 [31], with adaptations error-message oracle
jerryscript 3297 [31], with adaptations error-message oracle

nethack 5214 hand-written error-message oracle

Table 2.1: All subjects used in the evaluation of Alhazen0.

The base algorithm for probabilistic generation from a grammar is shown in
Listing 2.3. It is identical to the algorithm used in Pavese et al. [55]4. However,
Pavese et al. [55] use more than 2 seed inputs, which is why there probability
distribution did not work for my use case. Therefore, I define a slightly different
probability distribution at the end of this section.

The algorithm generates the nodes of a parse tree in preorder. This means
that it can always use the definition of a parse tree and the grammar to determine
what kind of node, and how many nodes are required below a given node. This
is used to generate the appropriate child nodes for references and concatenations.
For alternations and quantifications, the definition allows for different labels in
child nodes, or number of child nodes respectively. For alternatives, the given
probability distribution will be used to decide on the label of the child node

4I actually used the same source code.

44 CHAPTER 2. LEARNING EXPLANATIONS

Listing 2.3: Probabilistic algorithm for generating a parse tree for a given gram-
mar, as presented in Pavese et al. [55].

1 // Input: A control form 〈c〉, a probability distribution P, a partial
parse tree t and a depth cut-off value cut_off

2 Probabilistic-Generate(〈c〉, P, t):
3 Create a new node n in t and label it with 〈c〉
4 let current_depth be the depth of n in t
5 if current_depth >= cut_off:
6 remove n from t
7 return shortest-generate(〈c〉, t)
8 if 〈c〉 is a Reference:
9 find a production rule 〈c〉 → 〈b〉

10 add Probabilistic-Generate(〈b〉, P, t) as a child to n
11 if 〈c〉 is an alternation 〈c1〉 | …| 〈cn〉:
12 randomly select a 〈cj〉 with probability distribution P
13 add Probabilistic-Generate(〈cj〉, P, t) as a child to n
14 if 〈c〉 is a concatenation 〈c1〉 …〈cn〉:
15 for all 〈cj〉:
16 add Probabilistic-Generate(〈cj〉, P, t) as a child to n
17 if 〈c〉 is a Quantification 〈c’〉*:
18 choose an integer v larger than 0 at random
19 while n has less than v children:
20 add Probabilistic-Generate(〈c’〉, P, t) as a child to n
21 if 〈c〉 is a Quantification 〈c’〉+:
22 choose an integer v larger than 1 at random
23 while n has less than v children:
24 add Probabilistic-Generate(〈c’〉, P, t) as a child to n
25 if 〈c〉 is a Quantification 〈c’〉?:
26 choose an integer v ∈ [0, 1] at random
27 while n has less than v children:
28 add Probabilistic-Generate(〈c’〉, P, t) as a child to n
29 return n

(Line 11). For quantifications, the random decision how many children to create
is not influenced by the probability distribution (Lines 17, 21 and 25). It was
done like this in the source code of Pavese et al. [55], even if I cannot tell why. The
algorithm uses a cut-off if the tree is too deep: It falls back to Shortest-Generate,
as presented in Listing 2.2, if the tree becomes deeper than the depth limit.

Please mind that P is not the distribution of the leaf words in all generated
parse trees. To see this, consider the grammar shown in Figure 2.12. This gram-
mar has 4 leaf words: "a1", "a2", "b1" and "b2". Assume I am using a prob-
ability distribution which has P (〈A1〉) = P (〈A2〉) = P (〈B1〉) = P (〈B2〉) = 0.5.
Now, one would assume that each leaf word occurs with equal probability.
However, the probability of generating "a1" is in fact P (〈A〉)P (〈A1〉), so if
P (〈A〉) 6= P (〈B〉), leaf words would occur with different probabilities5.

The probability distribution which was used in Pavese et al. [55] does not
work well if there is just two seed inputs to learn from. They just count the
occurrence of control forms, however, with just one sample to learn from, all

5And hence P (〈A1〉) + P (〈A2〉) + P (〈B1〉) + P (〈B2〉) 6= 1 is not a mistake, but necessary.

2.5. EVALUATION SETUP 45

〈start〉 → 〈A〉 | 〈B〉

〈A〉 → 〈A1〉 | 〈A2〉

〈B〉 → 〈B1〉 | 〈B2〉

〈A1〉 → "a1"

〈A2〉 → "a2"

〈B1〉 → "b1"

〈B2〉 → "b2"

Figure 2.12: A grammar which illustrates why P is not the distribution of gram-
mar words.

those counts are either 0 or 1, but then, all probabilities are either 0 or 1 just as
well, a problem that I counteract by smoothing the probability distribution. My
probability distribution is defined as follows:

I took the occurrence count of each control form in the seed inputs (see
Section 2.5.2) and applied a standard Laplace Smoothing[63]:

Definition 12: Occurrence Count and Smoothed Occurence Count
For a control form 〈C〉 and a parse tree T , let the occurence count #T (〈C〉)
be the number of nodes labeled with 〈C〉 in T . Then, I define the smoothed
occurence count

sT (〈C〉) = #T (〈C〉) + 1

.

For a control-form 〈c〉 with a production rule 〈c〉 → 〈c1〉 | …| 〈cn〉, I define
the probability as

P (〈ci〉) = sT (〈ci〉)∑n
i=0 sT (〈ci〉)

This leaves P undefined for all control-forms which are not part of the sequence
of an alternation, however, the algorithm does not use those probabilities any-
ways.

Input Sets

Using the pre-existing behavior-triggering samples as seed inputs, I used the
approach described in Section 2.5.3 to generate large input sets. I filtered those
sets for duplicates, to make sure that I get different input samples. Then, I ran
the approach several times, until I had 1000 unique, behavior-triggering inputs
or a timeout of 1 hour was exhausted.

The inputs within those sets are similar, but not identical to the pre-existing
inputs, so I have a high likelihood to generate behavior-triggering inputs. How-
ever, the proportion of behavior-triggering and non-behavior-triggering inputs
is still not balanced.

Table 2.2 gives the number of bug-triggering and non bug-triggering samples
for each subject.

46 CHAPTER 2. LEARNING EXPLANATIONS

subject all samples training samples fraction
benign bug-

triggering benign bug-
triggering

calculator 3809 1245 311 311 0.25

NetHack 2992 1155 289 289 0.28

closure 1978 3140 1128 282 282 0.26
closure 2808 4043 1157 289 289 0.22
closure 2842 9380 242 60 60 0.025
closure 2937 4058 1147 287 287 0.22
closure 3178 3078 1048 262 262 0.25
closure 3379 3944 1218 304 304 0.23

rhino 385 6077 1100 275 275 0.15
rhino 386 3996 1137 284 284 0.22

genson 120 6940 1174 293 293 0.14

find 07b941b1 3162 922 230 230 0.22
find 091557f6 3206 855 214 214 0.21
find dbcb10e9 3066 995 249 249 0.24
find ff248a20 3351 709 177 177 0.17

grep 3220317a 2862 1219 305 305 0.30
grep 3c3bdace 2787 1298 324 324 0.32
grep 5fa8c7c9 1665 363 91 91 0.18
grep 7aa698d3 3640 433 108 108 0.11
grep c96b0f2c 5625 507 127 127 0.08

jerryscript 3286 4094 1075 269 269 0.21
jerryscript 426 4316 813 203 203 0.16
jerryscript 3297 4176 6 1 1 0.00
jerryscript 3267 4050 1109 277 277 0.21
jerryscript 3276 5021 182 45 45 0.035
jerryscript 3389 4309 873 218 218 0.19

Table 2.2: Size of the sample sets.

It is clearly visible that some bugs are harder to trigger then others. For
Jerryscript 3297, we have just 6 bug-triggering input samples. The initial, bug-
triggering input for this is:

1 "98765".replace(76, function () { return $ })

The important aspect for this bug is that the first argument to replace, in
the sample 76, is a substring of the string replace is invoked on (in the sample
98765). Probabilities, as used with this generator, cannot model that. Therefore,
getting an input which triggers this bug is pure luck.

Other bugs are simpler to trigger: For grep 3c3bdace, I generated 1298 bug-
triggering samples. This bug is a segmentation fault when providing a specific
regex to grep. This specific regex is added as an alternative to the grammar by
the transformation described in Section 2.4, and therefore it is generated over

2.5. EVALUATION SETUP 47

and over again.
All in all, roughly a fifth of all generated samples are bug-triggering. There-

fore, the data sets contain enough benign and bug-triggering samples to evaluate
the Alhazen0 approach.

In fact, a closer examination of the data revealed a potential problem: Many
of the bug-triggering samples contain the (sub-)strings of the original samples,
which was added as an alternative to the grammar in Section 2.4. The reason for
this is first, that those are contained within the parse trees, and therefore get a
high probability within my distribution. Second, the algorithm uses the shortest
derivation as a cut-off if trees get too deep. The newly added alternatives are
terminals, and have a shortest derivation of 1. Therefore, they are chosen as
cut-off in many cases. This means that many of the behavior triggering samples,
while not identical to the original samples, contain fragments of the original
samples. We will see whether this leads to a bias in the evaluation later on.

Splitting into Training and Verification Sets I now proceed to split the gener-
ated input sets into smaller sets. I used 1

4 of the behavior-triggering inputs as
training set, and the remaining 3

4 of them as verification set. To get a balanced
training set, I randomly selected benign samples, such that the training set has
the same number of benign and bug-triggering samples.

Then, I build verification sets: Each of those sets is supposed to be as large as
the training set and contain the same number of benign and behavior-triggering
samples. I achieve this by splitting the remaining samples into sets, and filling
each of those sets with randomly selected samples from other sets until they
have the same size, and same number of benign and behavior-triggering samples.
This means that a sample may be contained in more than one verification sets.

None of those sets, and none of the contained samples, was used during the
training phase of Alhazen0.

2.5.4 Generating Training Data
Within the evaluation, I use three different methods to generate training data:

The Sets Configuration In this configuration, I use the training set which was
extracted from the data generated in the previous section as training data. The
training data sets are relatively large, providing the decision trees with lots of
observations to learn from. However, there is a clear threat to validity: The
verification sets were derived by the same process as the training data. I already
described how those sets contain subsets of the original samples quite often. If
this is true for both, training data and verification data, Alhazen0 may describe
such an implicit property of the inputs, rather than the actual cause of the error.
I’ll have to carefully check whether the values obtained with those training sets
are representative for Alhazen0’s performance.

The TwoInputs Configuration In this configuration, I use the behavior-trigger-
ing input from the bug report (see Section 2.5.2) and a randomly generated
benign sample as training data. This approach has just two inputs to learn from.
In actual software development, it is uncommon to know more than one input

48 CHAPTER 2. LEARNING EXPLANATIONS

which triggers a given bug. Therefore, this is a realistic scenario. On the other
hand, it may simply be not enough data for a machine learning approach.

The 1-Path Configuration In this configuration, I use a set of inputs which
satisfy the k-path criterion[31] with k = 1, and the behavior-triggering input
from the bug report. The 1-path approach generates a set of inputs such that
each control-form 〈c〉 is used in at least one parse tree for any of the inputs in
the set. The 1-path metric was designed to create inputs which contain each
control form 〈c〉 at least once. This means that there is good coverage of the input
model: The decision tree was trained with diverse inputs, covering the entire
input space. The machine learning approach does not suffer from uncertainty
over some part of the input space. However, in many cases those sets contain no
more than one failing input. This means that there is not a lot of information
about the bug.

2.6 Creating Hypothesis
Alhazen0 uses a context-free grammar to parse program inputs, and derive
numerical features from the parse tree. Based on those features, it trains a decision
tree. This decision tree provides a set of constraints, which describe the conditions
under which the behavior of interest occurs. I use the transformed grammar
from Section 2.4 within this process.

2.6.1 Feature Extraction
The second step within Alhazen0 is to extract numeric feature vectors from
input samples. This extraction is based on parsing. Each input sample is a word
in the language of the input grammar. I use a parser to obtain the parse tree
for this word, and extract features from the parse tree. I have to account for
the fact that the grammars are ambiguous, so I use an Earley Parser[15], which
generates all possible parse trees for a word.

In feature extraction, I consider all control forms 〈C〉 such that

1. there is a production rule 〈A〉 → 〈C〉

2. or there is a production rule 〈A〉 → 〈C〉 | 〈B〉 | …

Let 〈C〉 be such a control form, and letW be the set of all words derived from
a node labelled with 〈C〉 in any parse tree for the given input. I use the following
features:

Existence This feature is 1 iff W is non-empty, 0 otherwise. It is written as
exists(〈C〉).

Maximum Length This feature is the length of the longest word in W . It is
written as max-char-length(〈C〉). The value of this feature is 0 if W is
empty.

Maximum Quantification Length If 〈C〉 is a quantification, I use the maximal
number of children for any node labelled with 〈Q〉 in the parse tree. It is
written as max-qu-length(〈C〉). The value of this feature is 0 if W is empty.

2.6. CREATING HYPOTHESIS 49

Feature Value
exists(〈start〉) 1
exists(〈start〉 → "sqrt(9)") 1
exists(〈function〉 → "sqrt") 1
exists(〈function〉 → "tan") 0
exists(〈function〉 → "sin") 0
exists(〈function〉 → "cos") 0
exists(〈number〉) 1
exists(〈number〉 → "9") 1
max-char-length(〈start〉) 11
max-char-length(〈number〉) 4
max-numeric(〈number〉) 9
max-char(〈start〉) 116
max-char(〈number〉) 57

Table 2.3: All features for the example input "sqrt(9)" and the grammar in
Figure 2.11.

Maximum Code Point I use the maximum integer code point within any word
in W as a feature. It is written as max-char(〈C〉). The value of this feature
is −∞ if W is empty, or contains only the empty word.

Maximum Numeric Interpretation If all terminal symbols reachable from 〈C〉
consist of the symbols "-", "." and digits only, I use the maximum nu-
meric interpretation of any word in W as a feature. It is written as max-
numeric(〈C〉). The value of this feature is −∞ if W is empty, or no word
in W has a numeric interpretation.

The features and their values for the example input "sqrt(9)" and the gram-
mar in Figure 2.11 are listed in Table 2.3. The root of the parse tree is labeled
〈start〉, so this production rule is used, and the corresponding exists(〈start〉)-
Feature is 1. The alternative "sqrt(9)", added to the grammar within the gram-
mar transformation described in Section 2.4, is 1 as well. Those two productions,
〈start〉 and 〈start〉 → "sqrt(9)" form a complete parse tree. This illustrates
the need for an earley parser. If I were looking at this parse tree exclusively,
all other features would be 0 or ∞ respectively. However, I look at all possible
parse trees. Therefore, the other features will be derived from other trees. The
feature exists(〈function〉 → "sqrt") is 1, because there is a parse tree, the one
in Figure 2.3, which contains a "sqrt". Likewise, max-numeric(〈number〉) is
set to 9, because there is one parse tree which contains a 〈number〉 node with a
value of 9.

2.6.2 Feature Selection

Feature selection, that is, the decision which features to use, is an important
step in Alhazen0. First of all, the selected features define the capabilities of
Alhazen0. If the condition for the behavior of interest cannot be expressed in

50 CHAPTER 2. LEARNING EXPLANATIONS

Fo
rr

ef
er
en

ce

See Section 2.2

Definition 4: Grammar Graph
The Grammar Graph for a grammar G is a directed graph. Its nodes are the
control forms of the grammar G. Two nodes 〈Ci〉 and 〈Cj〉 are connected
with an edge if

1. 〈Ci〉 is a reference, and there is a production rule 〈Ci〉 → 〈Cj〉; or

2. 〈Ci〉 is an alternation, and 〈Cj〉 is part of the sequence; or

3. 〈Ci〉 is a concatenation, and 〈Cj〉 is part of the sequence; or

4. 〈Ci〉 is a quantification, and 〈Cj〉 is its subject

Fo
rr

ef
er
en

ce

See Section 2.2

Definition 7: Number of leaf words #d(〈C〉)
#d(〈C〉) is the number of valid parse trees rooted in 〈C〉. It is called the
number of leaf words.

terms of the selected features, Alhazen0will not be able to diagnose the problem
correctly.

Another problem are structural correlations. Within the running example,
the calculator grammar in Figure 2.1, there are four possible values for 〈function〉:
"sqrt", "sin", "cos" and "tan". There is an existence feature for each of those
alternatives. However, there is also the max-char-length(〈function〉) feature.
Note that max-char-length(〈function〉)== 4 if and only if exists("sqrt"). There-
fore, the decision tree can, later on, generate either the constraint exists("sqrt")
or max-char-length(〈function〉)== 4. Both constraints are correct with respect
to all available observations. However, as a human reading those constraints,
exists("sqrt") is far more informative. I call this structural correlation.

Definition 13: Structural Correlation
If, due to the shape of the grammar, the values of two features always
correlate, I call this structural correlation.

There are other cases of structural correlation, e.g. a max-numeric() feature
may correlate with a chosen alternative just as well. In the following, I will
present some heuristics which I use to rule out some of those cases.

Disabling Non-Informative Features

Looking at the features described in the previous section, one might notice that
some of them do not give additional information in some situations. As an
example, consider the production rule for 〈Function〉 in Figure 2.4. There are
four exists(): exists("sqrt"), exists("tan"), exists("sin") and exists("cos"),
and in fact, those four each correspond to one of the four possible leaf words.
But then, max-char-length(〈Function〉) == 4 means that exists("sqrt") == 1,
there is no other leaf word with a length of 4. A similar observation can be

2.6. CREATING HYPOTHESIS 51

made for max-char(). If max-char(〈Function〉) == "t", either exists("sqrt") or
exists("tan") is 1.

Such situations occur quite often for control forms with a finite number of
leaf words #d. If #d(〈C〉) is finite, this indicates that there are only alternations,
concatenations and single-member quantifications reachable from this control
form. But then, a combination of exists() already describes the entire (sub-
)tree, and therefore, additional features are superfluous. Therefore, I do not use
max-char-length(), max-char(), max-numeric() or max-qu-length() features
for control forms with finite #d.

For a production rule 〈A〉 → 〈C1〉 | …| 〈Cn〉, many features can be de-
termined by a combination of existence features and features of the 〈Ci〉. E.g.
max-char(〈A〉) == max-char(〈C3〉) if exists(〈C3〉), because 〈C3〉 is a child of
〈A〉 within the parse tree. But then, the feature max-char(〈A〉) correlates with
max-char(〈C3〉). Therefore, I do not use max-char-length(), max-qu-length() or
max-char() for alternations.

The reasoning formaximumnumeric interpretations is slightly different. Due
to the rewrite in Section 2.4, my grammars often contain situations like 〈Literal〉
→ "9" | /[1-9][0-9]*/. In this situation, max-numeric(〈Literal〉) == 9 can be
due to exists("9"), or due to "9" as a derivation of the regex. If, in an alternative,
all options derive digits or the decimal dot only, I introduce a max-numeric()
feature for the alternation, but not for individual members.

This does not remove all cases of structural correlation. For example, am-
biguities always lead to structural correlation because exists() features for all
possible interpretations are present. However, the heuristics in this chapter
remove a far share of structural correlations.

2.6.3 Decision Trees
I use a decision tree learner [71] to learn associations between program behavior
and input features. I use the implementation that is supplied by the scikit-
learn[57] python library.

I decided to use a decision tree learner, because

• A decision tree learner can handle non-parametric data with arbitrary
scale. The complex relationships between features mean that it is unclear
how the values for individual features are distributed. Therefore, I need
to be able to handle non-parameteric data. At the same time, features are
not scaled equally. exists() features are essentially categorical, with the
control from being either present, or not present. max-char-length(), max-
qu-length() or max-numeric() features are numerical, and their upper and
lower bounds depend on the grammar. Models like e.g. a linear regression
require all features to have similar scale, and are therefore not directly
applicable to our data.

• Decision trees are easy to interpret by a human. Explainability is an im-
portant property if I want to be able to use the generated hypothesis as an
aid in manual debugging.

Within every (two-class) classification problem, the two classes generate a
natural split of the input data: All observed data D is the union of the sets D+,
which contains only samples for the first class, and D−, which contains only

52 CHAPTER 2. LEARNING EXPLANATIONS

samples for the second class. Within Alhazen0 those are the sets which contain
only behavior-triggering samples, and the set which contains only non-behavior-
triggering samples.

A decision tree classifier basically operates in the following way: The tree
selects a feature f0 and a boundary value v0. The plane f0 < v0 also splits the
set of all observed samples into two sets. The decision tree learner tries to chose
a feature f0 and a boundary value v0 such that the plane f0 < v0 separates D+

and D− as good as possible. Then, the constraint f0 < v0 is used for the first
node.

Afterwards, the decision tree attempts to split the two sets generated by the
constraint recursively, until a predefined depth limit is reached, or the resulting
sets contain samples with one label only.

Let’s look at an example.

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

x

y

x < 4.5

red blue

Figure 2.13: Step 1 of an example for the decision tree algorithm, using the x
and y coordinates of a set of points as feature.

Figure 2.13 shows a cloud of randompoints. The decision tree learner already
performed its first step. It found that x < 4.5 is a good splitting plane: There are
5× and just one + on the left, and 7 +with 4× on the right 6. The corresponding
tree is shown on the right of Figure 2.13. The learner proceeds to split both sets
a second time.

6In fact, the algorithm to find a splitting plane is more complicated. Please look at Swain and
Hauska [71] for the details.

2.7. EVALUATION 53

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

x

y

x < 4.5

x < 1.5

blue red

y < 6.5

blue red

Figure 2.14: Step 2 of an example for the decision tree algorithm, using the x
and y coordinates of a set of points as feature.

It decides to split the left compartment along the x-axis again, such that all
subsets contain just one kind of points now. On the right-hand side, it split
along the y-axis, which is the best possible split right now. Figure 2.14 shows
the resulting splitting planes as dashed lines, and the resulting tree on the right.
The algorithm introduced new internal nodes on both branches of the previous
tree. In the next step, shown in Figure 2.15, the tree splits the two sets on the
right again.

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

x

y

x < 4.5

x < 1.5

+ ×

y < 6.5

y < 2.5

× +

x < 7.5

× +

Figure 2.15: Step 3 of an example for the decision tree algorithm, using the x
and y coordinates of a set of points as feature.

It decides to split along the x-axis for the set on top, and for the y-axis for the
lower set. This means that two new nodes are created in the decision tree. All
sets contain points from just one class now, so the algorithm terminates.

2.7 Evaluation
The evaluation follows the schema laid out in Section 2.5. I will look at the per-
formance of Alhazen0as a predictor, and as a generator. After these quantitative

54 CHAPTER 2. LEARNING EXPLANATIONS

analysis, I will look at some of the generated trees qualitatively.

2.7.1 As Predictor
In this section, I evaluate whether Alhazen0 can be used to predict whether
an input will trigger the behavior of interest. In order to do so, I ran Alhazen0
on all three training sets (see Section 2.5.3) and used the verification sets (see
Section 2.5.3) to get precision and accuracy (see Section 2.5.1).

The results for accuracy can be seen in Figure 2.16, and Figure 2.17 gives
the achieved precision. In both figures, the accumulated accuracy or precision
respectively over all subjects is given in the top-most box.

From the accumulated results on top of the figures, you can see thatAlhazen0
achieved its best accuracy (97.8%) andprecision (96.5%) in the sets configuration.
As described before, training data and verification data for this configuration
are quite similar, so those results may not be reliable. However, the results
for the twoInputs configuration (75.6% accuracy and 69.5% precision) and k-
path configuration (85.5% accuracy, 81.9% precision) are remarkable as well.
Especially for twoInputs, the configuration where Alhazen0 learns from just
two input samples, the achieved results are stunning.

Many individual results are in the 9x range, and two subjects even achieve
precison and accuracy of 100%. Looking at individual subjects, the worst preci-
sion is 58.9% for rhino 385 in the twoInputs configuration. The worst accuracy
is 61.1%, for Closure 2808 in the twoInputs configuration. It is not surprising to
see both worse results in the two inputs configuration, as this configuration has
the lowest number of samples to learn from.

Rhino 385 requires two function parameters with the same name. A property
which cannot be described by Alhazen0’s features. Therefore, it is not surprising
to see the lowest precision here. Closure 2808 requires a label to be defined,
and used later. This is a context-sensitive property, which, again, cannot be
expressed by Alhazen0, or the used grammar.

Alhazen0 achieves an accuracy of 84.9% and a precision of 82.0% on
average for all subjects, using the k-path training sets.

I used a Wilcoxon paired-samples hypothesis test to check whether the dif-
ferences between the configurations are significant with a significance of 0.05.
The test indicates that the sets configuration achieves statistically significantly
different results from the k-path configuration, which, in turn, achieves different
results than the twoInputs configuration. I can therefore claim that sets indeed
achieves better results than k-path, and k-path achieves better results than two
inputs.

Those results are good news with respect to the first potential use case of
Alhazen0. Within this use case, I attempt to protect programs against malicious
inputs. The word malicious is misleading here: While cyber attackers may use
behavior-triggering inputs to trigger behavior that is beneficial for them, and
harmful for others, a behavior triggering input may also be send to the program
due to human error, or simply because it is not known that it would trigger
misbehavior. Alhazen0’s models serve as a filter in front of the program under
test, and are supposed to recognize inputs that trigger ill-behavior, before any
actual damage occurs. A precision of 95% means that this would be successful:

2.7. EVALUATION 55

0.0 0.2 0.4 0.6 0.8 1.0

total
85.5%
97.8%
75.6%

Accuracy
kpath sets twoInputs

0.0 0.2 0.4 0.6 0.8 1.0

calculator
71.4%
100.0%
74.9%

0.0 0.2 0.4 0.6 0.8 1.0

NetHack
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

genson 120
76.3%
97.5%
67.7%

0.0 0.2 0.4 0.6 0.8 1.0

find 07b94

find 09155

find dbcb1

find ff248

100.0%

88.0%

78.9%

80.2%

100.0%

96.1%

100.0%

92.4%

100.0%

63.1%

73.6%

69.4%

0.0 0.2 0.4 0.6 0.8 1.0

closure 1978

closure 2808

closure 2842

closure 2937

closure 3178

closure 3379

69.3%

96.7%

99.8%

82.3%

85.0%

59.9%

95.7%

99.4%

99.8%

98.7%

96.8%

98.9%

70.3%

61.1%

81.0%

71.5%

81.1%

74.7%

0.0 0.2 0.4 0.6 0.8 1.0

rhino 385

rhino 386

81.8%

87.2%

94.2%

97.5%

65.1%

78.7%

0.0 0.2 0.4 0.6 0.8 1.0

grep 32203

grep 3c3bd

grep 5fa8c

grep 7aa69

grep c96b0

81.8%

74.4%

79.4%

54.3%

74.3%

96.6%

99.9%

95.3%

92.9%

92.5%

71.4%

75.3%

66.1%

72.0%

65.5%

0.0 0.2 0.4 0.6 0.8 1.0

jerryscript 3267

jerryscript 3276

jerryscript 3286

jerryscript 3297

jerryscript 3389

jerryscript 426

96.3%

99.7%

95.3%

99.9%

94.8%

95.2%

99.5%

99.5%

98.5%

97.9%

99.0%

99.7%

69.9%

87.3%

86.8%

91.6%

71.9%

80.5%

Figure 2.16: Accuracy for Alhazen0 as a predictor, on all subjects and all config-
urations.

56 CHAPTER 2. LEARNING EXPLANATIONS

0.0 0.2 0.4 0.6 0.8 1.0

total
81.9%
96.5%
69.5%

Precision
kpath sets twoInputs

0.0 0.2 0.4 0.6 0.8 1.0

calculator
70.0%
100.0%
66.6%

0.0 0.2 0.4 0.6 0.8 1.0

NetHack
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

genson 120
67.8%
95.5%
63.3%

0.0 0.2 0.4 0.6 0.8 1.0

find 07b94

find 09155

find dbcb1

find ff248

100.0%

93.6%

70.4%

76.2%

100.0%

93.7%

100.0%

92.1%

100.0%

59.3%

77.8%

62.8%

0.0 0.2 0.4 0.6 0.8 1.0

closure 1978

closure 2808

closure 2842

closure 2937

closure 3178

closure 3379

72.1%

93.8%

99.6%

98.1%

76.9%

56.6%

93.2%

98.8%

99.6%

97.9%

94.1%

98.0%

62.7%

60.6%

73.6%

66.7%

72.5%

66.4%

0.0 0.2 0.4 0.6 0.8 1.0

rhino 385

rhino 386

79.2%

82.3%

89.6%

95.8%

58.9%

70.1%

0.0 0.2 0.4 0.6 0.8 1.0

grep 32203

grep 3c3bd

grep 5fa8c

grep 7aa69

grep c96b0

75.2%

69.4%

73.8%

52.5%

81.5%

94.5%

99.8%

93.4%

91.0%

89.1%

70.5%

73.4%

62.7%

64.7%

64.0%

0.0 0.2 0.4 0.6 0.8 1.0

jerryscript 3267

jerryscript 3276

jerryscript 3286

jerryscript 3297

jerryscript 3389

jerryscript 426

93.1%

99.3%

93.1%

99.8%

90.6%

91.2%

99.0%

99.0%

97.3%

98.6%

98.1%

99.4%

63.1%

81.2%

79.6%

85.6%

64.0%

73.9%

Figure 2.17: Precision for Alhazen0 as a predictor, on all subjects and all config-
urations.

2.7. EVALUATION 57

A large number of behavior-triggering inputs can be recognized and prevented.
At the same time, the accuracy of 96.6% means that only few legitimate requests
will be denied.

Training Set Size At last, let’s have a look at the size of the training sets.
Figure 2.18 gives those numbers. As with accuracy and precision, those numbers
are averages over 4 runs, which explains why the number of training samples
can be a fractional.

The numbers for twoInputs are not surprising: This configuration supplied
two input samples for each subject, so the number of training samples is always
2. However, it is surprising to see that the sets training sets are on average
smaller than the k-path training sets. After all, one naively assumes that machine
learning approacheswork betterwith larger input sets, and the sets configuration
has better precision and accuracy than the k-path configuration. I can therefore
assume that the inputs within the sets configuration are more informative than
the inputs generated by k-path.

Carefully choosing informative inputs is more important than the absolute
number of inputs.

2.7.2 As Generator

In this section, I evaluate whether Alhazen0 can be used to generate more inputs
which trigger the behavior in question. So far, I did not describe how to create
new samples from the decision tree. The required algorithm will be introduced
in Chapter 3, as it is a main aspect of the work presented there. In this evaluation,
I will just assume that I have the ability to do so.

Concretely, I assessed accuracy and precision of Alhazen0 as a generator in
the following way: I extracted the path constraints for each path in the decision
tree (see Section 3.1). Then I generated inputs for each of those paths/predicate
sets (see Section 3.2). After that, I evaluated precision and accuracy for the set
of inputs that were generated in this process.

Low precision is associated with a high false positive rate, meaning that
Alhazen0 often generates behavior-triggering samples when it was asked to
generate non-triggering inputs.

On the other hand, high accuracy indicates a low number of wrong predic-
tions in general, or, within this part of the evaluation, indicates that Alhazen0
often generates inputs which are in the requested class.

Figure 2.19 gives the accuracy for this evaluation. Precision can be found in
Figure 2.20.

Again, the topmost box in both figures gives accumulated data over all
subjects. The best performing configuration is again the sets configuration. It
achieves an accuracy of 79.8%, and a precision of 46.5%. The huge gap between
precision and accuracy, however, gives reasons for despair. It indicates that
while Alhazen0 generates quite some non-behavior triggering samples, it cannot
generate behavior triggering samples reliably. This is confirmed by the data
for individual subjects. Precision is below 50% for 18 of the 26 subjects. Two
subjects could not even generate a single behavior-triggering samples.

58 CHAPTER 2. LEARNING EXPLANATIONS

0 100 200 300 400 500 600 700

total
679.3
444.2
2.0

Training Set Size
kpath sets twoInputs

0 100 200 300 400 500 600

calculator
11.8
622.0
2.0

0 100 200 300 400 500 600

NetHack
36.0
578.0
2.0

0 100 200 300 400 500 600

genson 120
19.8
586.0
2.0

0 100 200 300 400 500 600 700

find 07b94

find 09155

find dbcb1

find ff248

731.8

715.0

704.5

725.8

460.0

428.0

498.0

354.0

2.0

2.0

2.0

2.0

0 200 400 600 800

closure 1978

closure 2808

closure 2842

closure 2937

closure 3178

closure 3379

875.8

849.0

864.5

861.5

892.5

858.8

564.0

578.0

120.0

574.0

524.0

608.0

2.0

2.0

2.0

2.0

2.0

2.0

0 100 200 300 400 500

rhino 385

rhino 386

382.2

371.8

550.0

568.0

2.0

2.0

0 100 200 300 400 500 600 700

grep 32203

grep 3c3bd

grep 5fa8c

grep 7aa69

grep c96b0

695.2

716.0

689.2

694.5

720.0

610.0

648.0

182.0

216.0

254.0

2.0

2.0

2.0

2.0

2.0

0 200 400 600 800

jerryscript 3267

jerryscript 3276

jerryscript 3286

jerryscript 3297

jerryscript 3389

jerryscript 426

880.8

850.0

877.0

859.8

903.8

874.2

554.0

90.0

538.0

4.0

436.0

406.0

2.0

2.0

2.0

2.0

2.0

2.0

Figure 2.18: Training set sizes for Alhazen0 as a predictor, on all subjects and
all configurations.

2.7. EVALUATION 59

0.0 0.2 0.4 0.6 0.8 1.0

total
71.3%
79.6%
65.8%

Accuracy
kpath sets twoInputs

0.0 0.2 0.4 0.6 0.8 1.0

calculator.py
92.3%
96.1%
61.1%

0.0 0.2 0.4 0.6 0.8 1.0

NetHack.py
82.2%
65.2%
61.3%

0.0 0.2 0.4 0.6 0.8 1.0

genson120.py
100.0%
73.7%
75.7%

0.0 0.2 0.4 0.6 0.8 1.0

find07b941b1.py

find091557f6.py

finddbcb10e9.py

findff248a20.py

79.0%

81.3%

89.4%

80.0%

68.4%

68.9%

57.1%

71.0%

77.8%

30.0%

78.6%

50.0%

0.0 0.2 0.4 0.6 0.8 1.0

closure1978.py

closure2808.py

closure2842.py

closure2937.py

closure3178.py

closure3379.py

70.6%

94.7%

100.0%

80.5%

80.8%

79.6%

78.9%

91.2%

50.0%

70.8%

93.1%

77.9%

80.0%

50.0%

62.5%

62.5%

80.0%

50.0%

0.0 0.2 0.4 0.6 0.8 1.0

rhino385.py

rhino386.py

82.6%

91.8%

85.4%

65.8%

60.0%

60.0%

0.0 0.2 0.4 0.6 0.8 1.0

grep3220317a.py

grep3c3bdace.py

grep5fa8c7c9.py

grep7aa698d3.py

grepc96b0f2c.py

64.2%

46.6%

77.6%

13.4%

84.0%

77.0%

100.0%

95.0%

86.7%

76.6%

70.6%

64.3%

58.3%

57.1%

60.0%

0.0 0.2 0.4 0.6 0.8 1.0

jerryscript3267.py

jerryscript3276.py

jerryscript3286.py

jerryscript3297.py

jerryscript3389.py

jerryscript426.py

100.0%

97.9%

100.0%

86.9%

100.0%

100.0%

93.8%

85.0%

79.9%

92.7%

98.7%

79.7%

61.4%

76.9%

73.3%

77.8%

55.6%

66.7%

Figure 2.19: Accuracy for Alhazen0 as a generator, on all subjects and all config-
urations.

60 CHAPTER 2. LEARNING EXPLANATIONS

0.0 0.2 0.4 0.6 0.8 1.0

total
38.9%
46.5%
22.7%

Precision
kpath sets twoInputs

0.0 0.2 0.4 0.6 0.8 1.0

calculator.py
80.0%
88.9%
0.0%

0.0 0.2 0.4 0.6 0.8 1.0

NetHack.py
38.5%
38.1%
20.0%

0.0 0.2 0.4 0.6 0.8 1.0

genson120.py
100.0%
96.7%
50.0%

0.0 0.2 0.4 0.6 0.8 1.0

find07b941b1.py

find091557f6.py

finddbcb10e9.py

findff248a20.py

69.7%

55.6%

100.0%

30.5%

45.5%

38.8%

25.0%

49.1%

60.0%

0.0%

57.1%

0.0%

0.0 0.2 0.4 0.6 0.8 1.0

closure1978.py

closure2808.py

closure2842.py

closure2937.py

closure3178.py

closure3379.py

13.9%

88.9%

100.0%

80.8%

50.0%

20.0%

48.5%

36.7%

0.0%

4.6%

75.0%

27.2%

33.3%

0.0%

25.0%

25.0%

33.3%

0.0%

0.0 0.2 0.4 0.6 0.8 1.0

rhino385.py

rhino386.py

13.3%

35.3%

13.9%

8.9%

33.3%

33.3%

0.0 0.2 0.4 0.6 0.8 1.0

grep3220317a.py

grep3c3bdace.py

grep5fa8c7c9.py

grep7aa698d3.py

grepc96b0f2c.py

66.3%

26.1%

72.9%

2.0%

4.9%

31.6%

100.0%

63.9%

47.2%

2.8%

44.4%

37.5%

28.6%

0.0%

0.0%

0.0 0.2 0.4 0.6 0.8 1.0

jerryscript3267.py

jerryscript3276.py

jerryscript3286.py

jerryscript3297.py

jerryscript3389.py

jerryscript426.py

100.0%

85.7%

100.0%

10.0%

100.0%

100.0%

100.0%

0.0%

40.7%

25.0%

93.5%

32.3%

19.0%

10.0%

33.3%

0.0%

25.0%

8.3%

Figure 2.20: Precision for Alhazen0 as a generator, on all subjects and all config-
urations.

2.7. EVALUATION 61

The reason for this might again be in the bias in the sets configuration. The
probabilistic generator used for the training and verification data uses shortest
derivation as a cut-off. However, many short derivationswere added in grammar
enrichment (see Section 2.4). So Alhazen0 learned to recognise samples which
used the cut-off, rather than bug-triggering samples. Alhazen0’s own generator
does not use shortest derivation at all. Therefore, the generator does not re-
create this bias, and the generative power is much lower than the predictive
power. I will discuss this aspect further in Section 2.7.3. Despite this bias,
the sets configuration is still more successful than the twoInputs and k-path
configurations, as both configurations achieve worse precision and accuracy.
There seems to be some usable information in the trees after all.

When generative power and predictive power differ a lot, it is likely that
there is some bias in the verification set.

The gap between accuracy and precision indicates that the non-failing class is
much easier to generate than the failing class. This is not surprising: I observed
as much when I generated the training data in Section 2.5.4 already.

Finally, I can only conclude that:

Alhazen0 is not usable as a generator.

2.7.3 Analysis of Individual Cases
Within this section, I am going to look at the decision trees for two of the subjects.
While the shape of the trees is irrelevant for filtering behavior-triggering inputs
and input generation, it does matter if the trees are supposed to be looked at
by humans. Also, observations in this section may point to shortcomings of
the approach or reasons for the underwhelming performance of Alhazen0 as a
generator.

Grep 3c3bdace

Bug 3c3bdace in grep, as found within Böhme et al. [7], is a segmentation fault
which occurs if grep is invokedwith the regex "(^|)*", and the extended regex
option.

Alhazen0 provides the decision tree shown in Figure 2.21. The diagnosis
correctly states that the extended regex option is required to trigger the bug.
Then, it says there has to be an expression "^| ". This is one of the alternatives
that were added in the grammar rewrite in Section 2.4. Samples which contain
this string are indeed likely to trigger the bug, but in fact, "(^|)*" is required.
Alhazen0 missed the requirement for braces and an asterisk. The expression
"(^|)*" was added by the grammar rewrite as well. Alhazen0 does not use
it in the tree due to structural correlation : When "(^|)*" is part of the input
sample, "^| " is as well. It is a substring. Within the training data, Alhazen0
only ever saw examples where both strings were included, and therefore any of
them leads to the same precision. The training cannot decide which one to use,
and arbitrarily chooses one.

However, Alhazen0’s tree contains more information. It also reports that
the bug does not occur any more if the word matching option, which make grep

62 CHAPTER 2. LEARNING EXPLANATIONS

Fo
rr

ef
er
en

ce

See Section 2.6.2

Definition 13: Structural Correlation
If, due to the shape of the grammar, the values of two features always
correlate, I call this structural correlation.

matcher_selection == extended_regex

NO_BUG

no

expression == '^| '

yes

NO_BUG

no

word_match

yes

matching_control == line_match

no

char-length(options == ws matching_control options) <= 13.0

yes

BUG

no

NO_BUG

yes

NO_BUG

yes

NO_BUG

no

Figure 2.21: The decision tree given by Alhazen0 for Grep 3c3bdace.

match complete words only, is used. This is correct, and was not part of the
original bug report.

Alhazen0 can discover information that is not included in the original
bug report.

An Insight about Structural Correlation In Section 2.6.2, some work was
done to eliminate structural correlation for max-char-length(), max-qu-length(),
max-char() and max-numeric() features. However, I did not remove structural
correlation for exists() features, even if there are some obvious cases. For exam-
ple, in a derivation rule 〈C〉 → 〈A〉 | 〈B〉, there would be exists(〈A〉), exists(〈B〉)
and exists(〈C〉), even if exists(〈A〉) implies exists(〈C〉), as does exists(〈B〉). The
reason for not eliminating those structural correlations can be observed in this
example.

Figure 2.22 shows a fragment of the grammar used for grep. The feature
exists(〈extended_regex〉) structurally correlates with the features exists("-E")
and exists("--extended-regex"), for exactly the reason shown above. There
are two options to avoid structural correlation:

• Remove the exists(〈extended_regex〉) feature

• Remove the exists("-E") and exists("--extended-regex") features

2.7. EVALUATION 63

〈extended_regex〉 → "-E" | "--extended-regexp"

Figure 2.22: An excerpt from the grammar used for grep.

Listing 2.4: JavaScript code which triggers Rhino 386.
1 const [y,y] = [];

Within the tree, exists(〈extended_regex〉) is used. This is because for this bug,
it does not matter whether the long or the short form of the option is used to acti-
vate extended regex processing. So for this bug, the structural correlation should
be avoided by removing the exists("-E") and exists("--extended-regex") fea-
tures. It is quite possible that for another bug or another program with a similar
situation in it’s grammar, removing the features below an alternation is wrong,
and removing the exists() feature for the alternation itself would be right. How-
ever, Alhazen0 is supposed to be general and work with any grammar and any
program. So I cannot make this decision in general. This is why I decided not to
fight cases of structural correlation beyond what I explained in Section 2.6.2.

Rhino 386

Rhino is a JavaScript interpreter that is written in Java. Bug 386[29] occurs if
within a destructuring assignment two target variables have the same name.
Listing 2.4 shows a JavaScript snippet which triggers this bug.

The first observation is that Alhazen0 cannot express this. No feature ex-
presses the name of a variable, and even if there was such a feature, the tree
cannot compare features, meaning that it could not express that two variables
need to have the same name. Still, Alhazen0’s sets configuration achieves a
accuracy of 97.5% as a predictor and 60.8% as a generator.

The decision tree for this subject can be seen in Figure 2.23. The first obser-
vation is the size of the tree. With 8 internal nodes and 8 leaf nodes, it is rather
large, and can be confusing. Second, none of the predicates within the nodes
have an obvious connection to the bug. A closer look reveals what is going on:

In Section 2.5.3, I explained how the verification sets contain many substrings
of the samples I generated from. For Rhino 386, the sample I generated from is
17 characters long. The predicate within the root node of the tree restricts the
length of 〈Declaration〉s to 16.5 characters. Therefore, it rejects everything which
is shorter than the original sample, and therefore does not contain the original
sample.

In the right part, the tree checks for the existence of a break statement, and
in the lower left corner, there is a check for a continue statement. "break" and
"continue" are only valid within a loop, this is, however, not modeled in the
grammar. If Rhino encounters a break or continue outside a loop, it terminates
without executing the code. This means that the bug Alhazen0 is diagnosing
does not occur. Therefore Alhazen0 tells its user that the bug only occurs in
absence of a break or continue statement, or if the break statement is paired with
a loop statement.

In the left part of the tree, Alhazen0 next checks for 〈ClassDeclaration〉 and

64 CHAPTER 2. LEARNING EXPLANATIONS

char-length(StatementListItem == Declaration) <= 16.5

NO_BUG

yes

BreakStatement

no

Declaration == ClassDeclaration

no

IterationStatement == 'for' '(' Expression? ';' Expression? ';' Expression? ')' Statement

yes

GeneratorBody

no

NO_BUG

yes

IterationStatement == 'for' '(' 'var' WhiteSpace ForBinding ' in ' Expression ')' Statement

no

BUG

yes

Statement == ContinueStatement

no

NO_BUG

yes

BUG

no

NO_BUG

yes

IterationStatement == 'do' Statement 'while' '(' Expression ')' ';'

no

BUG

yes

NO_BUG

no

BUG

yes

Figure 2.23: The decision tree for Rhino 386.

〈GeneratorBody〉. Both refer to parts of the grammar that contain a fair share of
long keywords: Those productions are an excellent way to get to 17 characters
without using a substring of the original sample. Alhazen0 rules out all samples
where this happened. Therefore, Alhazen0 tells its user that the bug occurs if
the sample is long enough, and the length was not caused by keywords.

This only holds for the data generated in Section 2.5.3. It is the properties of
this generator, its tendency to build short samples unless the snippets from the
original sample are used, which makes this true. Alhazen0 can only learn those
properties if they also hold for the training data. Therefore, this bias does not
exist if k-path or preexisting inputs (as in the twoInputs configuration) where
used for training.

The results for the sets configuration cannot be trusted, as Alhazen0
learned properties of the generator algorithm, rather than properties of
the behavior of interest.

This leads to a second class of unwanted correlations, after structural corre-
lation.

Definition 14: Coincidental Correlation
If, due to properties of the generator algorithm, the values of two features
always correlate, I call this coincidental correlation.

Coincidental correlation depends on the generator algorithm. A different
algorithm has a different bias, and therefore other coincidental correlations
within the data. This can be seen by looking at the generator evaluation for
Rhino 386. Alhazen0 achieved a precision of 8.9%, apparently it generated just
very few behavior-triggering instances. The twoInputs configuration achieved a
precision of 33.3%, and the k-path configuration achieved 35.3%. Both results
are not good, bit better than the one for the sets configuration. The reason is that
Alhazen0’s internal generator, which will be described in the next chapter, has
different biases. Therefore, it does not re-create the coincidental correlations that
were observed in the training data, and a treewhich relies on those correlations is

2.8. CONCLUSION 65

worthless for the generator algorithm. The twoInputs configuration and k-path
configuration were not affected by this bias in generation, and therefore achieve
better results as a generator.

2.8 Conclusion
Alhazen0, as presented in this chapter, shows promise for explaining program
behavior with decision trees. The precision value, 82% for Alhazen0 as a predic-
tor, indicate thatAlhazen0 can be deployed as a filter to reject behavior-triggering
inputs before they actually trigger an unwanted behavior. This may be used as
a first line of defence against attacks. It may take some time to come up with
a proper fix for a bug, and Alhazen0 can be used to protect the system in the
meantime, therefore buying the developers time to implement a proper fix.

However, coincidental correlations are a huge problem. Alhazen0 may learn
properties of the training data, rather than properties of the behavior of interest.
Care needs to be taken to avoid this.

As a generator, Alhazen0 cannot generate sufficient numbers of behavior
triggering inputs. This indicates further that Alhazen0may bemislead by biased
training data.

Still, examining the data brought some insights:

• Alhazen0 needs a mechanism to fight coincidental correlations.

• Comparing the different configurations used in this chapter, it is obvious
that more inputs are not necessarily good. The sets configuration performs
better as a predictor, but worse as a generator. At the same time, the two
inputs configuration does the opposite. This points to over-specialisation
in the two inputs configuration, and over-generalization in the sets config-
uration.

In the next chapter, I will explore whether a specialized generator, built to
create exactly those samples that benefit the tree most, can help to improve
Alhazen0.

66 CHAPTER 2. LEARNING EXPLANATIONS

Chapter 3

Refining Hypothesis with a
Feedback Loop

In Section 2.7.1, I observed that carefully choosing the inputs is more important
than the sheer number of inputs. In this chapter, I will present a method to
systematically generate inputs that are well-suited for learning.

This can be seen as a way to automate scientific inquiry. The new tool
developed in this chapter, Alhazen, postulates an initial hypothesis, using the
samemethod as Alhazen0 in the previous chapter. This initial hypothesis suffers
from the problems observed previously: Lack of precision and sensitivity to
structural and coincidental correlations. A scientist now designs an experiment
which can test this hypothesis, and uses the data collected in the experiment to
refine it. Alhazen does the same: A custom generator produces inputs which,
according to the hypothesis, trigger or do not trigger the behavior of interest.
Then, these are given to the program, and the hypothesis is tested. Using the
newly generated samples – and observed outcomes of the program execution –
as additional data, a new hypothesis is formed.

The process can also be described as a feedback loop between decision tree
learner and input generator: The decision tree learner provides a hypothesis,
and the generator attempts to refute this hypothesis.

As this work aims at improving Alhazen0, it will be evaluated in the same
way as Alhazen0.

3.1 Generating Predicate Sets

Within the feedback loop, Alhazen always attempts to refute the current hy-
pothesis of the tree. That means, Alhazen generates samples which have the
features described by one path in the tree, and checks whether the prediction of
the tree is correct for those samples. This requires a representation of the current
hypothesis which can be consumed by a solver. In other words, the decision
tree needs to be translated into a representation that is more suitable for solving
those constraints.

67

68 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

3.1.1 Extracting Predicates from the Trees
The predicates in the nodes of a decision tree are always of the form f < t,
where f is a feature and t ∈ Q is a threshold value. Let pj be a node on a path
p = p1, . . . pn. Let predicate(pj) be the predicate in pj . I form a predicate set

P (p) =
{

predicate(pj) if pj+1 is the left child of pj
¬predicate(pj) if pj+1 is the right child of pj

j ∈ [1 . . . n− 1]
}

.
This definition reflects the semantics of the decision tree: When classifying

an input, the tree follows a path from the root to a leaf. It takes the left child
if the predicate in a node is fulfilled, and the right child otherwise. So if for a
path p in a decision tree T , an input i fulfills all predicates in P (p), classifying
the input i with T would follow the path p. Due to the way they are derived,
predicates are of the form f < t, or, if they are negated, ¬f < t = f ≥ t. Within
the feedback loop, I generate such a predicate set for each path in the tree.

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

x

y

1: x < 4.5

2: x < 1.5

3: + 4: × 5: y < 6.5

6: y < 2.5

7: × 8: +

9: x < 7.5

10: × 11: +

Figure 3.1: A decision tree which splits a set of points in a 2-dimensional space.
The same tree can be found in Figure 2.15. The numbers before the colon in the
nodes are an index.

To give an example, I use a decision tree which splits a set of points in a
2-dimensional space. The same example was used in Section 2.6.3. The decision
tree can be seen on the right of Figure 3.1.

The extraction process considers all path in the tree one after another. The
left-most path, which ends in +, can be given by the indexes of its nodes. It is
p1 = 1, 2, 3. All of the branches are left children, so the predicate set for this
path is

P (1, 2, 3) = {predicate(1), predicate(2)} = {x < 4.5, x < 1.5}

The second path takes the left branch at the root node and the right branch
in its child. It is p2 = 1, 2, 4. Within the predicate set, the second constraint is
negated.

P (1, 2, 4) = {predicate(1),¬predicate(2)} = {x < 4.5, x ≥ 1.5}

the predicate set {x < 4.5, x ≥ 1.5} is generated.

3.1. GENERATING PREDICATE SETS 69

For the third child node, the predicate set is {x ≥ 4.5, y < 6.5, y < 2.5}. This
time, the predicate that was generated from the root node is negated. The re-
maining predicate sets are {x ≥ 4.5, y < 6.5, y ≥ 2.5}, {x ≥ 4.5, y ≥ 6.5, x < 7.5}
and {x ≥ 4.5, y ≥ 6.5, x ≥ 7.5}. It can be observed that each of those predicate
sets corresponds to one of the rectangular areas that are given by the splitting
hyperplanes shown on the left of Figure 3.1.

3.1.2 Simplifying the Predicate Sets
The predicate sets obtained in the previous section are quite verbose. Therefore, I
apply some simple steps to remove abundant predicates. If there ismore than one
predicate for the same feature, the predicates can be simplified. For predicates
f < h1 and f < h2, I can replace both by a predicate f < min(h1, h2). For
predicates f ≥ h1 and f ≥ h2, I can replace both by a predicate f ≥ max(h1, h2).
For predicates f < h1 and f ≥ h2, I can replace both by a predicate f ∈ [h2, h1].

Also, the decision tree treats everything as a continuous feature. However,
within Alhazen, the predicates of the form exists(〈c〉)opv are in fact binary:
exists() features are always 0 or 1. Still, the decision tree contains predicates
of the form exists(〈c〉)< 0.5 or exists(〈c〉)≥ 0.5. I rewrite those to exists(〈c〉) or
¬exists(〈c〉) respectively.

Within the example, this means that the predicate set {x < 4.5, x < 1.5} can
be simplified to {x < 1.5}. The example contains no binary feature, and therefore
the second simplification cannot be illustrated.

All in all, this simplification is much more effectful on the example than on
real-world data, as the example has just two features, and therefore the third
predicate in a set necessarily uses a feature that appeared in another predicate
before.

3.1.3 Exploring Beyond known Search Space Areas
If I solve the predicate sets obtained in the previous sections, I get predicates
which exercise one decision path in the tree. Looking at Figure 3.1, those samples
are in an area of the input space that already contains samples. They only refute
the current hypothesis, and therefore provide additional information, if the
prediction of the tree happens to be wrong. While this happens sometimes, new
combinations of predicates are more likely to yield this result. In the example, a
point in the lower left corner, for example (1, 1) is certainly more interesting than
yet another point within the area defined by {x ≥ 4.5, y < 6.5, y ≥ 2.5}, which
contains 7 + already.

Therefore, I generate additional predicate sets. For each existing predicate
set P , I take all subsets Psub, and for each of them, I build a new predicate set

P ′ = {p|p ∈ P ∧ p /∈ Psub} ∪ {¬p|p ∈ Psub}

For instance, the predicate set {x ≥ 4.5, y < 6.5, y ≥ 2.5}, I would generate 7
additional sets:

1. {x ≥ 4.5, y < 6.5, y < 2.5},

2. {x ≥ 4.5, y ≥ 6.5, y ≥ 2.5},

70 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

Fo
rr

ef
er
en

ce

See Section 2.6.2

Definition 13: Structural Correlation
If, due to the shape of the grammar, the values of two features always
correlate, I call this structural correlation.

Fo
rr

ef
er
en

ce

See Section 2.7.3

Definition 14: Coincidental Correlation
If, due to properties of the generator algorithm, the values of two features
always correlate, I call this coincidental correlation.

3. {x ≥ 4.5, y ≥ 6.5, y < 2.5},

4. {x < 4.5, y < 6.5, y ≥ 2.5},

5. {x < 4.5, y < 6.5, y < 2.5},

6. {x < 4.5, y ≥ 6.5, y ≥ 2.5} and

7. {x < 4.5, y ≥ 6.5, y < 2.5},

Some of those were present already, as they are the same as extracted from
other parts of the tree, but some describe regions of the input space which were
not yet explored.

3.1.4 Breaking Correlations
Within Section 2.6.2 and Section 2.7.3, I explained the problem of structural cor-
relation and coincidental correlation. As a reminder, a coincidental correlation
is if, due to some property of the generator algorithm, all samples which solve
the predicate f1 ≤ v1 also solve f2 ≤ v2. A structural correlation is if all samples
which solve f1 ≤ v1 also solve f2 ≤ v2, because other solutions are ruled out by
the grammar.

In Section 2.7.3, I showed an example of why structural correlation cannot be
avoided entirely. Still, I would like to have no coincidental correlations inmydata,
as they support wrong believes within the tree. This section shows how to use
the feedback loop to counteract coincidental correlations. I implemented this for
Alhazen’s feedback loop, but did not use it for the evaluations in Section 2.7.2 and
Section 3.3.2. The reason for this decision is that while coincidental correlations
are problematic within the feedback loop, they are irrelevant to the creation of
additional samples.

Coincidental correlation exist, because the generator may be biased towards
specific control forms or grammar structures. One reason for this may be that
the generator tries to generate short samples, and those control forms or struc-
tures are especially short. I believe that other generators would also have some
coincidental bias, even if it may not be for short samples.

However, the generator is still capable of providing samples which do not.
But then, if a predicate f1 < v1 coincidentally leads to f2 < v2, solving a
predicate set P = {f1 < v1, f2 ≥ v2} provides a sample which does not exhibit

3.2. GENERATING GRAMMARWORDS 71

this coincidental correlation. However, if the correlation between f1 < v1 and
f2 < v2 is structural, the predicate set P is infeasible.

This can be applied to counteract coincidental correlations within Alhazen.
If I observe that two features f1 and f2 always correlate within the available
training data, I instruct the generator to generate samples where this is not the
case.

In order to implement this idea, I need to find correlations within the training
data. For this purpose, I use Spearman’s correlation coefficient. This measure
handles ranked data, which means that it can be used for continuous data, such
as the values for max-numeric() features, and ordinal data, such as the values
for exists() features. Also, it is non-parametric, so the distribution of feature
values within my data is of lesser importance.

I select pairs of features f1 and f2 such that, in all existing data, the absolute
correlation coefficient between those features is at least 0.6. Then, I say that f1
enables f2 if is smaller than -0.6, and f1 disables f2 if the correlation coefficient
is larger than 0.6. I chose this value, because Cohen [11] suggests to call a
correlation strong as soon as the correlation coefficient is larger than 0.6.

Then, I generate additional predicate sets according to the following rules:

1. For every predicate set P that contains a predicate which uses a feature f ,

• I add an additional predicate set P ∩ ¬f ′ for all exists() features f ′

that are enabled by f .
• Then, I add an additional predicate set P ∩ f ′ < v for all features f ′

that are enabled by f .

v is the mean of the values for feature f ′ in all data observed so far.

2. For every predicate set P that contains a predicate which uses a feature f ,

• I add an additional predicate set P ∩ f ′ for all exists() features f ′ that
are disabled by f .

• Then, I add an additional predicate set P ∩ f ′ > v for all features f ′

that are disabled by f .

v is the mean of the values for feature f ′ in all data observed so far.

It is important to add additional feature sets, rather than replacing the exist-
ing predicate sets. The algorithm cannot tell apart structural and coincidental
correlation. However, if the additional predicates are added for cases of struc-
tural correlation, they are infeasible, as the predicates demand something that
is not possible within the grammar. Therefore, this step adds several infeasible
predicate sets. The generator algorithm will detect and filter them out later.

3.2 Generating Grammar Words
After extracting predicate sets from decision trees in the previous section, this
section describes how to generate more inputs from the predicate sets.

Those inputs need to fulfill two sets of constraints: The first one is given by
the predicate set, and expressed in ≤, > and range conditions over the features

72 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

〈Expression〉 → 〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉

〈UnaryExpression〉 → 〈Literal〉 | 〈Invocation〉

〈Invocation〉 → 〈Function〉 "(" 〈Expression〉 ")"

〈Function〉 → "sqrt" | "cos" | "tan" | "sin"

〈Literal〉 → /[1-9][0-9]*/

Figure 3.2: A more complex grammar for a calculator.

used by Alhazen. The second one is given by the grammar: Inputs need to be
valid grammar words.

This is difficult, because the predicates often use a different interpretation
than the grammar: If one of the predicate is max-numeric(〈number〉)≤ 9, and
the grammar specifies that 〈number〉 → /9[1-9]+/ | "5.32", it is obvious that
"5.32" is the only solution which fulfills both, the restrictions posed by the
grammar, and the predicate. However, numeric constraint solvers would not be
able to interpret the constraint given by the grammar, and grammar-based gen-
erators argue about individual characters, they cannot know that the sequence
5, ., 3, 2 is a number, and smaller than 9.

The algorithm I developed works in three steps:

1. It starts with a grammar rewrite, which removes parts of the grammar
which are prohibited by the constraints. The details will be described in
Section 3.2.2.

2. It performs a feasibility check, to avoid running the costly search on predi-
cate sets which are obviously infeasible. The details will be described in
Section 3.2.3.

3. The generator itself consists of two intertwined search algorithms. The
inner search is a greedy search which searches for one candidate parse
tree within the grammar. The outer search is a heuristic search within
the space of all possible trees. Within the outer search, the inner search is
used to generate candidate solutions, the outer search modifies the inner
searches starting conditions, until a candidate which fulfills the predicate
set is obtained. The details of the outer search can be found in Section 3.2.5,
and the inner search will be described in Section 3.2.4.

Before jumping into the details of the algorithms, I present some definitions
and observations that will help in understanding the algorithm.

3.2.1 More Properties of Control Forms
This section presents additional properties of grammars, which will be used in
the algorithm in the following sections. Impatient readers may skip it, and come
back when the definitions are used in the following sections.

Unfortunately, the running example, the calculator grammar, is not complex
enough to serve as an example for most of these observations. Therefore, I am
going to use the grammar in Figure 3.2 throughout this section. This grammar

3.2. GENERATING GRAMMARWORDS 73
Fo

rr
ef
er
en

ce

See Section 2.2

Definition 4: Grammar Graph
The Grammar Graph for a grammar G is a directed graph. Its nodes are the
control forms of the grammar G. Two nodes 〈Ci〉 and 〈Cj〉 are connected
with an edge if

1. 〈Ci〉 is a reference, and there is a production rule 〈Ci〉 → 〈Cj〉; or

2. 〈Ci〉 is an alternation, and 〈Cj〉 is part of the sequence; or

3. 〈Ci〉 is a concatenation, and 〈Cj〉 is part of the sequence; or

4. 〈Ci〉 is a quantification, and 〈Cj〉 is its subject

Fo
rr

ef
er
en

ce

See Section 2.2

Theorem 1:
Let G be a grammar with start symbol 〈S〉, and a production rule 〈S〉 →
〈s〉.
For every path in the grammar graph that starts in 〈s〉, a parse tree which
contains a path with the same node labels can be constructed.

has been used in Section 2.2 already, and the corresponding grammar graph can
be found in Figure 2.5.

Reachability

Definition 15: Reachability and Distance
A control form 〈Ci〉 is reachable from a control form 〈Cj〉, iff there is a path
from 〈Cj〉 to 〈Ci〉 within the grammar graph.
The length of the shortest path from 〈Cj〉 to 〈Ci〉 is the distance from 〈Cj〉
to 〈Ci〉. If there is no such path, the distance is infinite.

If there is a path from 〈Cj〉 to 〈Ci〉, as required by the definition, Theorem 1
says that there is a parse tree which contains this path as well. Due to the fact
that paths are directed, 〈Ci〉 is in the subtree rooted at 〈Cj〉 in this parse tree.
Therefore, reachability expresses whether it is possible to derive a control form,
starting at a specific other control form. Moreover, the distance expresses how
much work is required to derive a node labeled with 〈Ci〉, starting at a node
labeled with 〈Cj〉. That is because the length of the path has an impact on the
size of the subtree.

Table 3.1 gives some examples of distances within the grammar in Figure 3.2,
which is a replication of the grammar graph in Figure 2.5. The first column and
second column in the table swap start and end node, but have different length,
due to the fact that the graph is directed. As is obvious from this example,
distance is not symmetric.

74 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

From To Distance

〈UnaryExpression〉 |
〈Expression〉 "+" 〈Expression〉

〈Expression〉 "+" 〈Expression〉 1

〈Expression〉 "+" 〈Expression〉 〈UnaryExpression〉 |
〈Expression〉 "+" 〈Expression〉

2

〈Expression〉 "sqrt" 8

〈Literal〉 〈UnaryExpression〉 not reachable

Table 3.1: Some examples of distance and reachability within Figure 3.2.

Minimal Length

Definition 16: Minimal Length
The minimal length of a control form 〈C〉 is the length of the shortest word
that can be derived from 〈C〉.

The minimal length can be computed with the same algorithm as the shortest
derivation. This algorithm was given in Listing 2.1. Only a few cases need to be
changed. For terminals, the minimal length is the length of the terminal symbol.
For references and alternations, the minimal length of the child node is used
directly, and not incremented (Line 10). The same is true for quantifications
annotated with + (Line 15). Quantifications with ? or * have a minimal length
of 0 (Line 19). For concatenations, the +1 in Line 21 must be omitted.

The algorithm can handle strongly connected components, just as the algo-
rithm for SHORTEST_DERIVATION can.

Within the example, the minimal length for 〈Function〉 is 3, which is the
length of the "tan", "cos" and "sin" terminal symbols. The minimal length
for 〈Expression〉 is 1. This length can be achieved by using a 〈Literal〉 as an
〈Expression〉, via 〈UnaryExpression〉. 〈Expression〉 belongs to a strongly connected
component, and therefore a real exit from this component is required for themin-
imal length. This real exit is 〈Literal〉. Furthermore, the concatenation 〈Function〉
"(" 〈Expression〉 ")" has a minimal length of 6, the sum of the minimal length
of all its members.

Maximal Length

Definition 17: Maximal Length
The maximal length of a control form 〈C〉 is the length of the longest word
that can be derived from 〈C〉.

The calculation of the maximal length is somewhat easier than that of the
minimal length. The reason is that for every node within a strongly connected
component, the maximal length is infinite.Therefore, the maximal length can be
calculated bottom-up:

For concatenations, the maximal length is the sum of the maximal length of all

3.2. GENERATING GRAMMARWORDS 75

children.

For alternations, the maximal length is the longest maximal length of all op-
tions.

For quantifications with + or *, the maximal length is infinite.

For quantifications with ?, the maximal length is the maximal length of the
subject.

Within the example in Figure 3.2, the maximal length for 〈Function〉 is 4,
as the largest reachable terminal symbol, which is "sqrt", is relevant here.
For 〈Expression〉, the maximal length is infinite, as 〈Expression〉 is in a strongly
connected component. Whenever there is an 〈Expression〉, one can generate a
longer 〈Expression〉 by adding a "+" and another expression in the end. Due to
the presence of an element with infinite maximal length in the concatenation,
〈Invocation〉 has infinite maximal length just as well.

3.2.2 Rewriting the Grammar for Excludes
The grammar rewrite presented in this section is the first step of the search for
grammar words that fulfill the predicate sets from Section 3.1. In this step, ev-
erything that is prohibited by the predicates will be removed from the grammar.
As a general remark, removing more control forms helps the algorithm later on:
A smaller grammar is obviously easier to search.

There are three ways how the predicates can prohibit something:

1. A ¬exists(〈C〉) constraint means that 〈C〉 is prohibited.

2. A constraint max-char-length(〈C〉) ≤ v prohibits 〈C〉 if the minimal length
of 〈C〉 is larger than v.

3. A constraint max-char(〈C〉) ≤ v prohibits 〈C〉 if no terminal symbol which
contains a codepoint smaller than v is reachable from max-char(〈C〉).

In all three cases, 〈C〉 is removed from the grammar.
Removing control forms from the grammar needs to be done recursively: If

a control form 〈C〉 is removed, and there is a production rule 〈A〉 → 〈C〉, 〈A〉
should be removed as well, and all references to 〈A〉 should be removed. If there
is a concatenation which includes 〈C〉, the entire concatenation is to be removed.
If there is a quantification with the subject 〈C〉, the entire quantification is to
be removed. If there is an alternation which includes 〈C〉, 〈C〉 is to be removed
from the alternation, while the alternation itself and the other members of the
sequence are preserved.

3.2.3 Checking Feasibility
The search algorithm, described in the next sections, will not terminate on
infeasible cases. However, the algorithm in Section 3.1, especially themechanism
to break coincidental correlations, generates quite a few infeasible predicate
sets. Therefore, checking predicate sets for feasibility before attempting to solve
them is an important optimization. In practice, I cannot detect all infeasible

76 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

Fo
rr

ef
er
en

ce

See Section 2.1

Definition 2: Parse Trees and Words in the Language
A parse tree for a context-free grammar (N,T, P, S) is a tree where each
node is labeled with a control form. The root node is labeled with a control
form 〈s〉 such that S → 〈s〉 is in P . If a node is labeled with

1. a reference 〈A〉, it has one child which is labeled with a control form
〈C〉, such that 〈A〉 → 〈C〉 is a production rule in P .

2. a terminal symbol, it has no children (it is a leaf node).

3. an alternation 〈C1〉 | …| 〈Cn〉, it has one child, labeled with one of the
〈Ci〉’s.

4. a concatenation 〈C1〉 …〈Cn〉, it has n children, where the i-th child
is labeled with 〈Ci〉.

5. a quantification, all its children are labeled with the subject of the
quantification. The node has one or more children if the annotation
is +, zero or more children if the annotation is * and zero or one
children if the annotation is ?.

The sequence of terminal symbols that consists of the labels of the leaves
labeled with a terminal symbol of the parse tree in preorder is the leaf word
of this tree. It can also be said that the parse tree derives its leaf word. All
words which have valid parse trees, that is, trees formed according to the
rules above, are words of the language.

cases, which is why I run the search algorithm with a timeout. But as the
feasibility check is usually faster than the timeout, it improves performance if
I detect infeasibility earlier, and avoid an invocation of the search algorithm. I
implemented the following feasibility checks:

Reachability Check Almost all predicates require a specific control from to be
used. This is obviously true for exists() predicates, but holds for max-numeric(),
max-char(), max-char-length() and max-qu-length() just as well: Numeric
interpretations as well as length have a default value if there is no node labeled
with the required control form.

In the previous step, I performed a grammar rewrite, which means that
control forms were removed, and others are unreachable now. But then, all
predicates which require one of those control forms are infeasible. Therefore,
I implemented a feasibility check which considers a predicate set infeasible if
for any predicate within the set, the control form used within the predicate is
unreachable or has been removed from the rewritten grammar.

Feasible Interval Check max-char-length() predicates require the leaf word
below a given control form to have a specific length. Within Section 3.2.1 and
Section 3.2.1, I gave definitions and showed how to calculate the minimal and
maximal length of the leaf word for a control form. Now, I use those values to

3.2. GENERATING GRAMMARWORDS 77

check whether it is possible to derive a leaf word within the required length,
and consider the predicate as infeasible otherwise.

Feasible Quantification Check A predicate max-qu-length(〈C〉) < 0 is infea-
sible if 〈C〉 is a quantification annotated with +, as those need at least one child
within the parse tree.

3.2.4 Greedily Searching for Candidate Trees
In this section, I will describe an algorithm, which, given a grammar and a set
of predicates over features, generates a parse tree which has features which
fulfil the predicates. Along with the parse tree, it generates a decision sequence,
which will be used in the following section. The algorithm is going to be a
best-effort algorithm, which means that it may, occasionally, give a result which
does not fulfill all predicates.

The Rating Function

The behavior of the algorithm can be controlled by the choice of a rating function
r. I will first describe the algorithm, without providing the details of the rating
function. Afterwards, I define a rating function which is based on a set of
predicates, and which steers the algorithm towards generating parse trees which
fulfil the predicates.

Definition 18: Rating Function
Let Q′ be a set with a total order and three values MIN ∈ Q′, MAX ∈ Q′

and NO ∈ Q′ such that for all q ∈ Q′, MIN ≤ q, MAX < NO and q ≤ NO,
and there is no q ∈ Q′ such that MAX < q and q < NO.
For a partial parse tree t, a node n in t and a control form 〈c〉, a rating
function r is a function r(t, n, 〈c〉) such that for all t, n and 〈c〉, r(t, n, 〈c〉) ∈
Q′.

Unless specified otherwise, I will choose Q′ as a subset of Q. This can be
done by choosing values for MIN ∈ Q, MAX ∈ Q and NO ∈ Q and setting Q′ as
an interval [MIN . . .MAX]∪{NO}. This resonates well with modern computers:
Floating point numbers, as defined in IEEE 754, represent just an interval of Q
anyways. There are three options on how to implement NO:

• Choose a larger value than the one chosen for MAX. Mind that, due to
floating-point imprecision, equality comparisons to this value may be
problematic.

• Use the special value NaN, which is provided by IEEE 754. This requires
custom logic for ordering, as comparisons to NaN usually do not work as
desired.

• Implement functions r\p and p, such that

r\p(t, n, 〈c〉) =

{
r(t, n, 〈c〉) if r(t, n, 〈c〉) 6= NO
MAX else

and p(t, n, 〈c〉) = true if and only if r(t, n, 〈c〉) = NO.

78 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

The last option works for ordering, as all values are within the range defined
by IEEE 754, and it can do equality checks versus NO, as an equality check
can be implemented by calling p. Therefore it is the option that I choose in my
implementation.

Generating Trees based on a Rating Function

The algorithm for the greedy generator is given in Listing 3.1. When invoked on
a control form, this algorithm generates a parse tree node for the new control
form (Line 3). It then proceeds to recursively generate child nodes as demanded
for the production rule for 〈c〉. This essentially generates the nodes of the tree
in pre-order. If the node to be generated corresponds to an alternation (Line 7)
or quantification (Lines 14, 18 and 23), the rating function is used to decide
which alternative should be used, or whether the subject shall be instantiated
respectively. This decision is added to the decision sequence.

The algorithm prefers control forms with smaller r, and never uses control
forms with r = NO. Therefore, the difference between r = MAX and r = NO
is that control forms with a rating of MAX may be used, even if the rating
function indicates that it is not beneficial to do so. For some decisions, it may
happen that all control forms have a rating of MAX, in which case the algorithm
invokes a close-off procedure to take a decision. The close-off procedure will
be discussed in Section 3.2.4. Control forms with a rating of NO will never be
used. If in Line 11 or Line 7 all control forms have a rating of NO, the algorithm
fails. However, all rating functions used within this thesis are built such that the
rating of an alternation 〈A1〉| . . . |〈Aj〉 is NO if the rating for all 〈Ai〉 is NO, and
the rating of a concatenation 〈A1〉 . . . 〈Aj〉 is NO, if the rating for any 〈Ai〉 is NO.

Let’s look at how the algorithm generates "sqrt(9)", using the grammar in
Figure 2.1. In order to do so, I define a rating function rT for an existing tree T .

Definition 19: Reconstructing rating function rT
For a parse tree T , the reconstructing rating function rT is defined as:

rT (t, n, 〈c〉) =

MIN if t is a subtree of T , and there is a child labeled
with 〈c〉 below n in the existing tree T .

MAX otherwise

As we will see in the example, this rating function has the algorithm recon-
struct an existing tree. It always leads the algorithm to generating the nodes
which exist within the pre-existing T . I will use this rating function in all exam-
ples, until I introduce the function Alhazen actually uses.

When reconstructing "sqrt(9)", the first call is to Greedy-Generate(〈start〉,
ε, ε), where ε is an empty tree or a non-existent node respectively. 〈start〉 is a
reference, so after creating a node start labeled with 〈start〉 (Line 3), the first
case of the algorithm is triggered (Line 4), and Greedy-Generate(〈function〉 "("
〈number〉 ")", start, start) is invoked. This generates a node concat (Line 3),
and then the concatenation triggers the third case (Line 11). The members of
the concatenation are ordered by rT . As rT is defined to mimic the existing
tree in this example, rT is MIN for all of them, and therefore the order remains

3.2. GENERATING GRAMMARWORDS 79

Listing 3.1: Greedy search algorithm for generating a parse tree for a given
predicate set.

1 // Input: A control form 〈c〉, a node n' in a partial parse tree t
2 Greedy-Generate(〈c〉, t, np):
3 Create a new node n in t as a child of np and label it with 〈c〉
4 if 〈c〉 is a Reference:
5 find the production rule 〈c〉 → 〈b〉
6 Greedy-Generate(〈b〉, t, n)
7 if 〈c〉 is an alternation 〈c1〉 | …| 〈cm〉:
8 add 〈c〉 to the decision sequence
9 choose 〈cj〉 such that r(t, n, 〈cj〉) is not NO and minimal for

j ∈ [1, . . . ,m]
10 Greedy-Generate(〈cj〉, t, n)
11 if 〈c〉 is a concatenation 〈c1〉 …〈cm〉:
12 for all 〈cj〉, ordered by r(t, n, 〈cj〉):
13 Greedy-Generate(〈cj〉, t, n)
14 if 〈c〉 is a Quantification 〈c’〉*:
15 while r(t, n, 〈cj〉) /∈ [MAX, NO]:
16 add 〈cj〉 to the decision sequence
17 Greedy-Generate(〈c’〉, t, n)
18 if 〈c〉 is a Quantification 〈c’〉+:
19 Greedy-Generate(〈c’〉, t, n)
20 while r(t, 〈cj〉) /∈ [MAX, NO]:
21 add 〈cj〉 to the decision sequence
22 Greedy-Generate(〈c’〉, t, n)
23 if 〈c〉 is a Quantification 〈c’〉?:
24 if r(t, n, 〈c’〉) /∈ [MAX, NO]:
25 add 〈c’〉 to the decision sequence
26 Greedy-Generate(〈c’〉, t, n)
27 return n

unchanged 1. The algorithm therefore makes four recursive calls:

1. Greedy-Generate(〈function〉, {start, concat}, concat);

2. Greedy-Generate("(", {start, concat}, concat);

3. Greedy-Generate(〈number〉, {start, concat}, concat); and

4. Greedy-Generate(")", {start, concat}, concat)

The two calls for the terminal symbols "(" and ")" just generate a node la-
beled with "(" and ")" respectively (Line 3), and return afterwards. From
here on, I will give the full tree as t, it contains all nodes generated thus far.
The invocation for 〈function〉 generates a node labeled with 〈function〉 (Line 3),
and invokes Greedy-Generate("sqrt" | "cos" | "sin" | "tan", t, n). This
is an alternation, so the second case is triggered (Line 7). The algorithm
checks which option of the alternation gives the minimum r. In the exam-
ple, it is rT (t, "sqrt") = MIN, and r = MAX for all other options. There-

1Within this example, it is not obvious why I need the reordering. There will be a more complex
example to showcase in Section 3.2.4.

80 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

Fo
rr

ef
er
en

ce

See Section 2.2

Theorem 0:
For every path in a parse tree, there is a path with the same node labels in
the grammar graph.

Fo
rr

ef
er
en

ce

See Section 2.2

Theorem 1:
Let G be a grammar with start symbol 〈S〉, and a production rule 〈S〉 →
〈s〉.
For every path in the grammar graph that starts in 〈s〉, a parse tree which
contains a path with the same node labels can be constructed.

fore, the algorithm chooses "sqrt". Calling Greedy-Generate for "sqrt" termi-
nates immediately, so the recursive calls of the algorithm return, and Greedy-
Generate(〈number〉, {start, concat}, concat) is the next invocation to be han-
dled. It generates "9" in the same way as the call for 〈function〉 generated "sqrt".

At this point, I would like to make an observation about the grammar graph.
The path from 〈start〉 to "sqrt" in the grammar graph has exactly 7 nodes. This is
the minimal number of calls to Greedy-Generate which is required to generate
a node labeled with "sqrt" after generating a node labeled with 〈start〉. As the
order of calls within the concatenation is not fixed, there may be more than 7
calls. This leads to the following theorem:

Theorem 6:
If there is a path between two control forms 〈C〉 and 〈D〉 in the grammar
graph, the distance of those control forms, incremented by 1, is always
the minimal number of Greedy-Generate invocations required to create a
node labeled with 〈D〉 after creating a node labeled with 〈C〉.

Let’s assume we call Greedy-Generate with a control form 〈C〉. If 〈C〉 is
a terminal symbol, the distance from 〈C〉 to 〈C〉 is 0, and the theorem holds
trivially, as there is just one invocation to Greedy-Generate.

If the control from 〈C〉 is either:

• an alternation 〈C〉 → …| 〈C’〉 | …;

• a concatenation 〈C〉 → …〈C’〉 …;

• a quantification 〈C〉 → 〈C’〉*;

• a quantification 〈C〉 → 〈C’〉+;

• a quantification 〈C〉 → 〈C’〉?; or

• a reference such that 〈C〉 → 〈C’〉 is in the grammar

Greedy-Generate generates exactly one new node n, labeled with 〈C〉. In those
cases, there is a recursive call to Greedy-Generatewith a control form 〈C’〉. This
generates a child node n′ labeled with 〈C’〉 below n. But then, 〈C〉 → 〈C’〉 is a

3.2. GENERATING GRAMMARWORDS 81
Fo

rr
ef
er
en

ce

See Section 3.2.1

Definition 15: Reachability and Distance
A control form 〈Ci〉 is reachable from a control form 〈Cj〉, iff there is a path
from 〈Cj〉 to 〈Ci〉 within the grammar graph.
The length of the shortest path from 〈Cj〉 to 〈Ci〉 is the distance from 〈Cj〉
to 〈Ci〉. If there is no such path, the distance is infinite.

path in the parse tree, and due to Theorem 0 also a path in the grammar graph.
Therefore, the distance from 〈C〉 to 〈C’〉 is 1, and there were two calls to Greedy-
Generate. For longer path, the same argument can be applied iteratively.

It is only the minimal number, not the exact number, as there may be a
concatenation on the path from 〈C〉 to 〈D〉. But then, siblings of a node on the
path could be created before the next node on the path is created, and therefore
more calls to Greedy-Generate may happen in between.

Lastly, it remains to show that there cannot be a shorter path. Assume that
there is a path from 〈C〉 to 〈D〉within the grammar graph, that is shorter than the
number of Greedy-Generate invocations required incremented by 1. I prepend
this path with a prefix that starts in the start symbol, and then, according to
Theorem 1, there is a parse tree which contains such a path, and the execution
of Greedy-Generate which generates this parse tree, has a number of Greedy-
Generate invocations which is the path length incremented by 1 (assuming an
optimal order of the recursive invocations for concatenations). This contradicts
my assumption, and therefore Theorem 6 is proven.

Rating Function rP

The algorithm I introduced in the previous section can generate trees, and the
rating function r can be used to control the shape of those trees. In this section,
I introduce a rating function rP which considers a predicate set P , and leads the
algorithm to generate a tree which fulfills many of the predicates in P .

I start by defining a rating function r′(p′, t, n, 〈C〉), which considers a single
predicate p′, then I use this function to define a rating function which considers
all predicates p in a predicate set P .

For all predicates r′(p, t, n, 〈C〉) = MAX if t fulfills p. This ensures that the
algorithm does not try to reach a goal that is already fulfilled. As long as a
predicate is not fulfilled, the value of r′ depends on the predicate type.

Existence and Maximal Codepoint Predicates An existence predicate has the
form exists(〈D〉) or ¬exists(〈D〉). A predicate of the form exists(〈D〉) is fulfilled
if there is at least one node labeledwith 〈D〉. A predicate of the form¬exists(〈D〉)
is fulfilled if there is no node labeled with 〈D〉.

Predicates of the form ¬exists(〈E〉) were handled in the grammar rewrite,
and can be ignored in this step. For predicates of the form exists(〈D〉), if n is not
labeled with 〈D〉, and not a subnode of a node labeled with 〈D〉, r′(p, t, n, 〈C〉) is
the distance from 〈C〉 to 〈D〉.

Theorem 6 says that, the distance is the minimal number of calls to Greedy-
Generate that is required until a node labeled with 〈D〉 is generated. Going

82 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

Fo
rr

ef
er
en

ce

See Section 3.2.4

Definition 19: Reconstructing rating function rT
For a parse tree T , the reconstructing rating function rT is defined as:

rT (t, n, 〈c〉) =

MIN if t is a subtree of T , and there is a child labeled
with 〈c〉 below n in the existing tree T .

MAX otherwise

for the control form with the smallest distance to 〈D〉 therefore gets Greedy-
Generate to generate a node labeled with 〈D〉 eventually. This is similar to a
path search algorithm, which always expands the node which is closest to its
target first. For existence features this is, in fact, sufficient: The predicate is
fulfilled as soon as 〈D〉 was generated.

A maximal codepoint predicate has the form max-char(D) < v. It is fulfilled
if all characters in the leaf word for all subtrees of nodes labeled with 〈D〉 have a
code point smaller than v.

It is quite simple to check whether a terminal symbol fulfills this requirement.
Afterwards, the sum of the distance to 〈D〉 and the minimum distance from 〈D〉
to any of those terminal symbols can be used as r′.

This has another advantage: If there was an 〈E〉, which is prohibited by the
predicate set on the path to a 〈D〉, which is required, this 〈E〉 was removed from
the grammar, and therefore distance calculations will not consider the path that
contained 〈E〉.

Maximal Numeric Interpretation Predicates A maximal numeric interpre-
tation predicates has the form max-numeric(〈D〉) < v1. It is fulfilled if for all
occurrences of 〈D〉, an interpretation of the leaf word below 〈D〉 is a decimal
number smaller than v1.

The first step in defining r′ for max-numeric() predicates is to determine the
valid interval:

• For a predicate v0 ≤ max-numeric(〈D〉) ∈ [v0, v1], this is [v0, v1].

• For a predicate max-numeric(〈D〉) < v0, this is [v0 − 1000, v0].

• For a predicate max-numeric(〈D〉) ≥ v0, this is [v0, v0 + 1000].

Technically, the valid interval for the last two cases would be [−∞, v0] or [v0,∞],
but this proves to be impractical: The generator tries to generate extremely large
numbers, which, in most cases, is not desired.

After determining the valid interval, I sample 5 equally-spaced values from
the interval. Then, I try to parse each of those values with 〈D〉. This gives me
a set of parse trees T , each representing the parse tree for one of the numbers.
r′(p, t, n, 〈c〉) is the distance from 〈c〉 to 〈D〉, as long as n is not in a subtree of a
node labeled with 〈D〉. Afterwards, r′ is the same as the minimal reconstructing
rating function rT for the parse trees T .

3.2. GENERATING GRAMMARWORDS 83
Fo

rr
ef
er
en

ce

See Section 2.1

Definition 2: Parse Trees and Words in the Language
A parse tree for a context-free grammar (N,T, P, S) is a tree where each
node is labeled with a control form. The root node is labeled with a control
form 〈s〉 such that S → 〈s〉 is in P . If a node is labeled with

1. a reference 〈A〉, it has one child which is labeled with a control form
〈C〉, such that 〈A〉 → 〈C〉 is a production rule in P .

2. a terminal symbol, it has no children (it is a leaf node).

3. an alternation 〈C1〉 | …| 〈Cn〉, it has one child, labeled with one of the
〈Ci〉’s.

4. a concatenation 〈C1〉 …〈Cn〉, it has n children, where the i-th child
is labeled with 〈Ci〉.

5. a quantification, all its children are labeled with the subject of the
quantification. The node has one or more children if the annotation
is +, zero or more children if the annotation is * and zero or one
children if the annotation is ?.

The sequence of terminal symbols that consists of the labels of the leaves
labeled with a terminal symbol of the parse tree in preorder is the leaf word
of this tree. It can also be said that the parse tree derives its leaf word. All
words which have valid parse trees, that is, trees formed according to the
rules above, are words of the language.

Fo
rr

ef
er
en

ce

See Section 3.2.1

Definition 16: Minimal Length
The minimal length of a control form 〈C〉 is the length of the shortest word
that can be derived from 〈C〉.

Max-QA-LengthPredicates Predicate of the form v0 < max-qu-length(〈D〉) <
v1 are fulfilled if all occurrences of 〈D〉, which is a quantification, have less than
v1 child nodes, and at least one of them has more than v0 child nodes. To see
why it is all occurrences for the upper bound, and at least one occurrence for the
lower bound, remember that there is a max in the definition of max-qu-length().

First of all, predicates of the form max-qu-length(〈D〉) also require 〈D〉 to be
reached. Therefore r′(p, t, n, 〈c〉) is the distance from 〈c〉 to 〈D〉, as long as n is
not in a subtree of a node labeled with 〈D〉.

As soon as n is in a subtree of a node labeled with 〈D〉, the rating function
needs to ensure that the correct number of child nodes is generated. I use:

• r′(p, t, n, 〈c〉) = MIN as long as 〈c〉 = 〈E〉, and the number of children of n
is smaller than v0. This encourages the generation of child nodes.

• r′(p, t, n, 〈c〉) = MAX if 〈c〉 = 〈E〉, and the number of children of n is larger
than v0.

84 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

• r′(p, t, n, 〈c〉) = NO if 〈c〉 = 〈E〉, and the number of children of n is larger
than v1. This means that the algorithm will not generate more child nodes.

Maximal Length Predicates A maximal length predicate of the form v0 <
max-char-length(〈D〉) < v1 requires all subtrees with a root labeled with 〈D〉 to
have a leaf word which has a length smaller than v1, and at least one of them
to have a leaf word which has a length larger than v0.I will call v1 the maximal
allowed length of 〈D〉.

In order to define a rating function r′ for those predicates, I need to argue
about the length of the leaf words below a node. More precisely, I need to be able
to argue about the length that a leaf word may have, once the partial parse tree is
completed. This comes in two parts: For nodes which already exist in the partial
parse tree, the leaf word can be examined, and its length can be calculated. If a
node does not yet exist, I can still use the definition of the parse tree to predict
which label it is going to have, and use the minimal length of this control form
as an estimate of length.

Definition 20: Current Length of a Node in a Parse Tree
Let n be a node labeled with 〈A〉 in a (partial) parse tree. Assume that,
according to the definition of a parse tree, n has a child node n〈B〉 labeled
with 〈B〉. Observe that n is in a partial parse tree, so there may not actually
be such a child node.
The current length of 〈B〉 below n is

curr(〈B〉, n) =

{
curr(n〈B〉) if n〈B〉 exists
the minimal length of 〈B〉 otherwise

.
The current length of n is

curr(n) =

curr(〈B〉, n) if n is labeled with a reference
〈A〉, and there is a production
rule 〈A〉 → 〈B〉

the minimal length of 〈A〉 if n is labeled with a terminal
symbol 〈A〉

curr(n′) if n is labeled with an alternation
〈A〉, and there is a child node n′

minj=1,...,j curr(〈Bi〉, n) if n is labeled with an alterna-
tion 〈B1〉 .. 〈Bj〉, and has no child
node∑j

i=1 curr(〈Bi〉, n) if n is labeled with a concatena-
tion 〈B1〉 .. 〈Bj〉

curr(〈B〉, n) if n is labeled with a quantifica-
tion 〈B〉+ and has no children∑j

i=1 curr(ni) if n is labeled with a quantifi-
cation, and has the child nodes
n1, . . . , nj

0 if n is labeled with a quantifica-
tion 〈B〉* or 〈B〉?, and has no child
nodes

3.2. GENERATING GRAMMARWORDS 85

Intuitively, the current length expresses the best estimate on the length in a
completion of a partial parse tree: If a node exists already, the length of its leaf
word is used. Otherwise, the minimal length for this control form is used as an
estimate. Therefore, during the execution of the algorithm, the current length
is an underestimation of the length of this node in the parse tree that will be
obtained when the algorithm terminates. As indicated by the definition, the
current length for a node can be found recursively.

Assume that there is a production rule 〈D〉 → 〈D1〉 …〈Dm〉, and a maximal
length predicate p = v0 ≤ max-char-length(〈D〉) < v1. When r′(p, t, n, 〈Dj〉)) is
calculated, the maximal allowed length for 〈Dj〉 can be found: It is the maximal
allowed length for 〈D〉, v1 in the example, minus the current length of n. This
can be used to propagate the maximal length requirement down the parse tree,
and have a maximal allowed length for each node below a node labeled with
〈D〉.

If the minimal length of a derivation 〈Di〉 is larger than its maximal allowed
length, r′ is NO, otherwise it is MAX.

Let’s illustrate this with an example: Assume the algorithm is supposed to
solve the predicate max-char-length(〈Expression〉) < 8 within the grammar in
Figure 3.2. It already created the partial tree shown in Figure 3.3. The algorithm
needs to choose between "sqrt", "cos", "sin" and "tan", to be added below
〈Function〉.

The maximal allowed length for the root node is 8, due to the predicate.
This number is indicated with a subscript in Figure 3.3. The root node has one
child, "+"with a length of 1, and a child 〈Expression〉 with a minimal length of 1.
This means that the maximal allowed length for the 〈Expression〉 on the left is
6. This propagates to the 〈UnaryExpression〉, because it is the only child below
〈Expression〉, and likewise to 〈Invocation〉. The current length of the node labeled
with 〈Invocation〉 is 3 (2 because of the existing children "(" and ")", plus 1 for
the minimal length of 〈Expression〉). Therefore, the maximal allowed length for
〈Function〉 is 3. This means that r′(p, t, n, "sqrt") = NO, as the minimal length
of "sqrt" is 4, and therefore more than 3. The other 3 options, "sin", "cos" and
"tan", all receive a rating of MAX.

I am using MAX here on purpose: When I combine the r′ into a combined
rating function for a predicate set, rather than an individual predicate, I will
make sure that a rating of MAX means that another r′ can decide which option
to choose. So by rating all options as MAX, this r′ basically indicates that it does
not care, and one of the other r′ should make the decision.

Defining rP , based on r′ Using the rating function r′ for individual predicates,
I define a rating function r for a predicate set P as

rP (t, n, 〈c〉) = min
p∈P

r′(p, t, n, 〈c〉)

Using min in the definition means that the algorithm is lead by the predicate
where r′ gives the smallest value. Intuitively, the algorithm always goes for the
currently easiest problem.

86 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

〈Expression〉8

〈Expression〉6

〈UnaryExpression〉6

〈Invocation〉6

〈Function〉3 "("1 〈Expression〉1 ")"1

"+"1 〈Expression〉1

Figure 3.3: A partial tree for the grammar in Figure 2.4, generated while solving
max-char-length(〈Expression〉) < 8. Subscripts in the node labels indicate the
maximal allowed length of a node, while superscripts indicate the minimal
length for this production.

The Close-Off procedure

As mentioned in Section 3.2.4, the algorithm falls back to a close-off procedure
when multiple alternatives have the same value for the rating function r. Most
ties occur when all rating functions rate a decision as MAX. That is, no predicate
can be fulfilled or violated by a decision. In this case, it basically does not matter
which alternative is choosen.

I implemented the close-off procedure as a secondary rating function. If
the first rating function produces a tie, I get the minimal length for all involved
control forms, and choose the one with the smallest minimal length. This is
different from tribble and the generator in Section 2.5, which use the shortest
derivation for tie-breaking. If smallest minimal length still leads to a tie, I choose
an alternative randomly.

Examples

In this section, I present four examples of how the algorithm behaves in different
situations. Each of the first three examples is chosen to justify one decision in
the design of the algorithm. Those design decisions are:

1. The re-ordering of members in a concatenation2.,

2. the usage of min in the definition of r, and

3. the difference between MAX and NO.

The last example shows a situation where the algorithm is unable to fulfill
all predicates, and therefore motivates why I add the outer search in the next
section.

Example 1: The Re-Ordering of Members in a Concatenation While the child
nodes of a concatenation in the parse tree are ordered, as defined by the grammar,

2Thanks to Havrikov and Zeller [31]. I found this trick in their source code

3.2. GENERATING GRAMMARWORDS 87

〈Start〉 → 〈map〉 | 〈value〉

〈map〉 → 〈map〉 "," 〈pair〉 | ""

〈pair〉 → 〈key〉 ":" 〈value〉

〈key〉 → "key"

〈value〉 → "value"

Figure 3.4: A grammar for a language that consists of a comma-separated list of
key-value pairs, or a single value.

the algorithm generates them in a different order. The following example will
explain why this is necessary.

The grammar in Figure 3.4 describes a format which allows either a single
value, or a comma-separated list of key-value pairs. For the example, assume we
want to fulfill the predicates max-char-length(〈map〉) >= 10 ∧ exists(〈pair〉).

The algorithm starts by calling Greedy-Generate(〈Start〉, ε, ε), where ε is the
empty tree. It generates a node labeled with 〈Start〉, and finds the derivation
rule 〈Start〉 → 〈map〉 | 〈value〉. At this point, it needs to decide between 〈map〉
and 〈value〉. The algorithm calculates r(P, ε, ε, 〈value〉) = MAX, as no predicate
uses 〈value〉. It is r(P, ε, ε, 〈map〉) = 0, because r(max-char-length(〈map〉) >=
10, ε, ε, 〈map〉) = 0, as this is the distance from 〈map〉 to 〈map〉. The algorithm
therefore chooses 〈map〉. It generates a node labeled with 〈map〉 and finds the
derivation rule 〈map〉 → 〈map〉 "," 〈pair〉 | "". It generates a node labeled with
〈map〉 "," 〈pair〉 | "", and needs to choose between 〈map〉 "," 〈pair〉 and "". It is
r(P, t, n, "") = MAX, as this does not fulfill any of the predicates, so the algo-
rithm generates 〈map〉 "," 〈pair〉. This is where the re-ordering of members of a
concatenation takes effect. If the algorithm were to invoke Greedy-Generate(P,
t, n, 〈map〉), it would repeat the same steps as before, and, as the tree does
not contain new node which are relevant for any of the predicates, take the same
decisions as before. This would lead to an endless loop. Reordering means that
the algorithm generates 〈pair〉 first, and when the call to Greedy-Generate(P,
t, n, 〈map〉) occurs, t already contains a 〈pair〉 node, so the value of the rating
function will depend on r(max-char-length(〈map〉) ≥ 10, t, 〈map〉) instead of
r(exists(〈pair〉), t, 〈map〉), and the algorithm does not go into an endless loop.

As the length of the leaf word below 〈map〉 is 10 at this point (the leaf word
below 〈map〉 is ",key:value"), r(max-char-length(〈map〉) ≥ 10, t, n, 〈map〉) <
MAX, and so the algorithm decides to create another 〈map〉 ":" 〈pair〉. Again,
the pair is generated first, and with a length of 20, r(max-char-length(〈map〉) ≥
10, t, 〈map〉) == MAX for the next invocation of r(max-char-length(〈map〉) ≥
10, t, 〈map〉), so the algorithm chooses "". This means that there are no more
decisions to be taken, and the algorithm outputs the obtained parse tree.

Example 2: min in the Definition of r Within the definition of r, I am using
min to combine the value of r′ for individual predicates. The following example
is going to illustrate why I have to use min, rather than

∑
or a mean. Consider

the grammar graph in Figure 3.5. I am working with two predicates exists("a")
and exists("d"). Within Figure 3.5, the values for r′(exists("a"), ...) are given

88 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

2〈A〉4

1〈B〉3 3〈D〉1

4〈C〉20"a"∞ ∞"d"0

Figure 3.5: A grammar graph with a cycle. The left subscript gives the distance
of a node to "a", and the right subscript gives the distance to "d".

〈number〉 → "-"? 〈regex.1〉+ 〈regex.2〉?

〈regex.1〉 → "0" | …| "9"

〈regex.2〉 → "." 〈regex.1〉+

Figure 3.6: A context-free grammar for numbers. Same as in Figure 2.2.

in the left subscript of a node, and the values for r′(exists("d"), ...) are given in
the right subscript.

Greedy-Generate starts by generating a node labeledwith 〈A〉. The recursive
call is invoked with 〈B〉, and the algorithm needs to choose "a" or 〈C〉. With min
in the rating function rP , it chooses "a", and therefore fulfills one predicate. If a
sum where used within the definition of rP , the value for "a" would be MAX,
as "d" is not reachable from "a". The value for 〈C〉, however, would be 6. The
algorithm would therefore choose 〈C〉. Afterwards it needs to generate a 〈D〉,
and then it can choose between "d" and 〈A〉. Again, for "d" the rating function,
if it where defined with a sum, gave MAX. The algorithm would choose 〈A〉,
therefore entering a loop.

In essence, the rating function needs to be defined such that it monotonically
decreases with every step. This is true for each r′, and can only be guaranteed for
their combination, if the r′ are combined with a min.

Example 3: The difference betweenMAX andNO In this example, I will work
with the 〈number〉 non-terminal from the grammar in Figure 3.6. I solve the pred-
icate set P = {max-char-length(number) < 2,max-numeric(number) < 60}.

For max-numeric() predicates the algorithm starts by determining the valid
interval. For the predicate max-numeric(number) < −9, it is [−1009,−9]. The
algorithm samples 5 values from this interval, they are -1009, -759, -509, -259
and -9.

Then, it starts by expanding 〈number〉. For sake of simplicity, I skip the re-
ordering of the concatenation in the example. For the quantification "-"?, the first
predicate givesMAX. The reason is that themaximal allowed length for 〈number〉
is 2, and the minimal length for the quantifications 〈regex.1〉+ and 〈regex.2〉? are
1 and 0 respectively. Therefore, the maximal allowed length of "-"? is 1, which
is the same as the minimal length of this control form. The second predicate
gives MIN, as all five parse trees, start with a "-", such that the reconstructing
rating function for those parse trees gives MIN. The value of rP is therefore
MIN, and the algorithm decides to instantiate "-". Now, 〈regex.1〉 is instantiated.

3.2. GENERATING GRAMMARWORDS 89

This is not a decision, as the quantification is annotated with +, and therefore
has to be instantiated at least once. Within this production, the algorithm has
to decide which option of the alternative to use. The second predicate gives
MIN for 1, 7, 5 and 9, as each of those occurs in one of the parse trees. The first
predicate gives MAX for all of those, as non violates the allowed maximal length
of 1. For the sake of the example, assume that the algorithm chooses 9. Now,
it has to decide whether it wants to instantiate 〈regex.1〉 a second time, which
would be allowed by the quantification. The max-numeric() predicate would
encourage it as all five samples are longer than 2. It gives MIN. However, the
max-char-length() gives NO, as this would violate the maximal allowed length.
Therefore, no additional digit is added. This motivates why NO is needed, and
I cannot rely on MAX: If the first predicate gave MAX, the algorithm would
still choose the smaller value, which is MIN, and therefore it would chose to
expand the quantification once more. Further on, the quantification 〈regex.2〉* is
not instantiated, as no of the samples for the max-numeric() predicate demand
it, and it would violate by the maximal allowed length, which is 0 for this control
form now. The algorithm terminates with a leaf word of "-9", which is the only
option that fulfills both predicates.

As the astute reader may have noticed, this result is not guaranteed. When
the algorithm instantiated 〈regex.1〉, it could have chosen 1, 7, 5 and 9. 9 is the
only option which leads to a satisfying result.

The next section describes a heuristic search which solves this problem, using
the greedy search as a fitness function.

Example 4: Incompleteness For this example, I am solving the predicate set
P = [exists(〈value〉), exists(〈key〉)] for the grammar in Figure 3.4. The algorithm
starts by deriving 〈Start〉. As before, the first decision is whether 〈map〉 or 〈value〉
shall be expanded. This depends on which option has the smaller rating. It is
r′(exists(〈value〉), t, n, 〈value〉) = 0, and r′(exists(〈key〉), t, n, 〈map〉) = 4. Like-
wise, r′(exists(〈value〉), t, n, 〈map〉) = 4. So the algorithm decides for 〈value〉.
There are no more decisions to be taken, and the final result is a tree with just 3
nodes, going from 〈Start〉 directly to 〈value〉. The predicate exists(〈key〉) is not
fulfilled.

The next section describes a heuristic search which solves this problem, using
the greedy search as a fitness function.

3.2.5 Searching the space of all possible trees

This section describes a search process which explores the space of all possible
trees for a tree that fulfills a given set of predicates.

The main insight for this algorithm is that the decision sequences, as gen-
erated by Greedy-Generate, form a tree. Whenever something is added to the
decision sequence, there are alternatives. Each decision becomes a node in the
tree, with its alternatives as siblings. Each path in the obtained tree is a decision
sequence, and each decision sequence corresponds to a parse tree.

To illustrate this, consider the decision sequences for obtaining "sqrt(9)"
and "tan(0)" within Figure 2.1. Figure 3.7 illustrates how those can be viewed
as part of the same tree.

90 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

.

"sqrt"

"9"

+

.

"tan"

"0"

=

.

"tan"

"0"

"sqrt"

"9"

Figure 3.7: The decision sequences for obtaining "sqrt(9)" and "tan(0)"within
Figure 2.1 illustrate how all decision sequences form a tree.

Within this decision tree, a heuristic tree search can be used to identify the
parse tree, or decision sequence, which fulfills the predicate set.

In general, a heuristic tree search starts at the root node of a tree. It then
generates all children of this node (this process is called expansion), and assigns
a heuristic value to each child. Afterwards, the child with the lowest heuristic
value is chosen, and expanded. In doing so, more nodes are created. In each step
the node with the lowest heuristic value, among all known nodes, is expanded,
until there is no unexpanded node left, or a solution is found. By always ex-
panding the node with the lowest heuristic value (among all known nodes), the
search systematically explores the entire tree. If heuristic values are low within
an area of the tree that has a high likelihood to contain the goal of the search, it
will be found sooner than with a depth-first or breadth-first search. This kind of
heuristic tree search algorithms – or its generalization to graphs – are used in
different fields of computer science: The famous A* algorithm for path search is
a heuristic graph search[28], the FF+[34] algorithm in automated planning is a
heuristic graph search, and games like chess or Nine men’s morris can be played
with this kind of algorithm. The key to the application of this kind of algorithm
is to describe the search space as a graph or tree structure, which I just did, and
define a heuristic which allows me to decide where to look for a solution first.

Each internal node in the tree of decision sequences corresponds to the
prefix of a decision sequence, only leaf nodes correspond to complete decision
sequences. However, prefixes of decision sequences yield only partial parse trees,
and no complete leaf words. The grammars I am working with are ambiguous,
and all features are defined such that they consider all possible parse trees
for a word: An existance feature is 0 if there is a parse tree which contains
the corresponding control form, a maximal character length feature considers
the maximal character length with respect to all parse trees and so on. This
means that I can calculate the heuristic for words only, and not for partial parse
trees. This is where the inner search, defined in Section 3.2.4 comes in: I use it
to complete a partial parse tree. In order to do so, I define a rating function
rseq such that the algorithm follows the pre-existing decision sequence for all
decisions that are part of the prefix. As soon as I reach the end of the prefix,
I use rP for the predicate set I am attempting to solve. Now, the inner search
yields a complete parse tree, which I can use to calculate a heuristic that I can
use in the outer search.

Since my goal is to fulfil all predicates within a given predicate set, I just
count the number of predicates within the predicate set which are not fulfilled
by a parse tree, and divide by the number of predicates in the predicate set. If
this number is lower, the parse tree is more similar to a parse tree which fulfills

3.2. GENERATING GRAMMARWORDS 91

.

〈value〉 〈map〉

Figure 3.8: The already expanded parts of the tree of decision sequences after
the first iteration of the outer search in the example.

all predicates. Therefore, the corresponding decision sequence is in an area of
the tree which is likely to contain the correct solution.

In practice, this can be further refined: Not all predicates are necessarily
binary decisions. For numeric predicates, I can use an idea similar to branch
distance[48]. For a predicate v0 < max-char-length(〈C〉) < v1, I can use a value

h =

1 iff v0 < max-char-length(〈C〉) < v1
v0−max-char-length(〈C〉)

v0
iff max-char-length(〈C〉) < v0

max-char-length(〈C〉)−v1
v1

iff max-char-length(〈C〉) > v1

This definition ensures that the value is always between 0 and 1, and is 0 iff
the predicate is fulfilled. If I sum up those values, and divide by the number of
predicates, I get a value between 0 and 1, which is 0 if all predicates are fulfilled.
However, trees which have a max-char-length(〈C〉) closer to the required range
have lower values, therefore leading the search into the right branch of the tree.

Examples

In Section 3.2.4, I presented a case where the inner search cannot find a solution.
The goal is to solve the predicate set P = [exists(〈value〉), exists(〈key〉)] for the
grammar in Figure 3.4. The algorithm initially knows nothing about the tree of
decision sequences. So it invokes the inner search with rP as its rating function.
This invocation is identical to example 3 in Section 3.2.4. The inner search returns
a tree with exactly 3 nodes. This tree fulfills exists(〈value〉), but not exists(〈key〉).
So the heuristic value is 0.5. The decision sequence is rather simple. It has just
one element: 〈value〉. However, the tree of decision sequences, as shown in
Figure 3.8, shows that there is another decision possible: The algorithm could
choose 〈map〉 first.

The outer search proceeds to start the inner search with a rating function r1
such that

r1(t, n, 〈c〉) =

{
rseq(t, n, 〈c〉) for the first decision
rP (t, n, 〈c〉) else

Here, rseq is defined with respect to the decision sequence 〈map〉.
Therefore, the first decision taken by the inner search is 〈map〉. After that, the

inner search has to decide between 〈map〉 "," 〈pair〉 and "". At this point, r just
returns rP , and the first first option gets a value, as it contains a 〈pair〉, and there
are paths from 〈pair〉 to both 〈value〉 and 〈key〉. All in all, this execution of the
inner search is very similar (but not identical), to the invocation in Example 1 in
Section 3.2.4. It yields a tree which contains a pair, and fulfills both predicates.
The outer search finds a solution by invoking the inner search twice.

92 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

By Catch

Within Alhazen, each predicate set corresponds to a path in the decision tree,
and each predicate corresponds to a node on a path. However, nodes appear in
multiple paths, and therefore predicates appear in multiple predicate sets. This
leads to a situation where all predicate sets that are derived within one iteration
of Alhazen are quite similar.

If a decision tree yields the predicate set P1 = [exists(〈value〉), exists(〈key〉)],
it likely also yields the predicate set P2 = [exists(〈value〉),¬exists(〈key〉)]. This
is just the other branch in the node which has the predicate exists(〈key〉). But
when I attempted a solution for P1 within the example in Section 3.2.5, the
first invocation of the inner search gave a sample which fulfills P2. It is no
longer necessary to invoke the search for this predicate set, as the solution was
discovered accidentally. This happens so frequently, that I began to call this by
catch of the outer search. Therefore, it is beneficial to check each intermediate
result against all other predicate sets that are to be solved in the same iteration
of Alhazen’s feedback loop. In some cases, all predicate sets can be solved by a
single invocation of the outer search.

This is especially true for the mechanism which avoids coincidental corre-
lation: It generates predicate sets P ′ such that there is a predicate set P in the
same iteration of Alhazen’s feedback loop such that P is a subset of P ′. But
then, a solution for P ′ is a solution for P just as well.

When the generator algorithm is invoked with more than one predicate set,
it will attempt to solve those sets one after another, but report solutions that
are discovered as by catch. The search will not be started for a predicate set if a
solution is known already, due to by catch.

3.3 Evaluation
In this chapter, I presented Alhazen, which added a feedback loop to Alhazen0.
Therefore, the objective of this evaluation is compare the performance of Al-
hazen0, with the improved Alhazen. Alhazen0 was presented and evaluated
in Chapter 2, and, as Alhazen shares the same objective and use cases, I am
going to use the same evaluation scheme. Results are thus directly comparable.
The evaluation scheme was presented in Section 2.5.

3.3.1 As Predictor

This section evaluates whether Alhazen can be used to determine whether an
input triggers the behavior of interest, without actually running the program
under test with this input. As in Section 2.7.1, I’ll look at precision and accuracy
as the relevantmetrics. The results were determinedwith the samemethodology
as for Section 2.7.1.

Alhazen received the same training samples as Alhazen0, but generated
additional samples in its feedback loop. Figure 3.9 shows the number of samples
initially provided, and additionally created.

For the twoInputs configuration, where Alhazen gets just two inputs to
learn from, it does not generate as many samples as were generated for the sets

3.3. EVALUATION 93

0 500 1000 1500 2000 2500

total
679.3 1803.1
444.2 1801.0
2.0 1041.6

('kpath', 'provided samples')
('kpath', 'training samples')

('sets', 'provided samples')
('sets', 'training samples')

('twoInputs', 'provided samples')
('twoInputs', 'training samples')

0 200 400 600 800 1000 1200 1400 1600

calculator
11.8 665.0
622.0 1032.5
2.0 530.5

0 200 400 600 800 1000 1200 1400 1600

NetHack
36.0 620.5
578.0 1129.2
2.0 680.0

0 200 400 600 800 1000 1200

genson 120
19.8 431.0
586.0 728.5
2.0 382.5

0 500 1000 1500 2000 2500 3000 3500 4000

find 07b94

find 09155

find dbcb1

find ff248

731.8

715.0

704.5

725.8

2773.5

2540.0

3302.8

2217.0

460.0

428.0

498.0

354.0

1471.5

2660.5

1005.8

2020.2

2.0

2.0

2.0

2.0

1433.5

626.2

945.0

1083.8

0 500 1000 1500 2000 2500 3000

closure 1978

closure 2808

closure 2842

closure 2937

closure 3178

closure 3379

875.8

849.0

864.5

861.5

892.5

858.8

1876.8

1793.8

1258.8

1670.0

1420.5

2002.8

564.0

578.0

120.0

574.0

524.0

608.0

2390.8

2163.5

1248.0

2071.0

2454.2

1557.8

2.0

2.0

2.0

2.0

2.0

2.0

1549.8

1488.8

654.0

1385.0

718.2

1433.5

0 500 1000 1500 2000 2500 3000

rhino 385

rhino 386

382.2

371.8

2454.0

2248.8

550.0

568.0

2100.0

2470.0

2.0

2.0

536.2

1173.2

0 500 1000 1500 2000 2500 3000

grep 32203

grep 3c3bd

grep 5fa8c

grep 7aa69

grep c96b0

695.2

716.0

689.2

694.5

720.0

2242.2

1714.8

1878.8

1692.8

2270.0

610.0

648.0

182.0

216.0

254.0

2116.5

1450.2

2207.0

1924.5

1492.2

2.0

2.0

2.0

2.0

2.0

1682.5

461.8

1824.8

1077.8

1101.0

0 500 1000 1500 2000 2500 3000 3500

jerryscript 3267

jerryscript 3276

jerryscript 3286

jerryscript 3297

jerryscript 3389

jerryscript 426

880.8

850.0

877.0

859.8

903.8

874.2

1709.5

1687.0

1510.0

1417.5

1506.8

1976.8

554.0

90.0

538.0

4.0

436.0

406.0

2836.5

1407.2

1904.0

542.2

2933.2

1508.5

2.0

2.0

2.0

2.0

2.0

2.0

1417.5

1015.5

793.5

691.0

1131.2

1265.5

Figure 3.9: Number of training samples for Alhazen as a predictor, on all subjects
and all configurations.

94 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

configuration in 23 out of 26 cases. Alhazen achieves comparable precision and
accuracy, with a lower number of samples.

The samples generated for the twoInputs configuration are more informa-
tive than those generated in Section 2.5.4.

With this observation, let’s look at accuracy in Figure 3.10, and precision in
Figure 3.11.

The twoInputs configuration still archives better precision than the sets
configuration on 6 of the 26 subjects, and better accuracy on 2 subjects. Overall,
the precision of the twoInputs configuration is 90.8%, and the precision of the sets
configuration is 94.8%. This difference is, however, not statistically significant
(tested with a wilcoxon paired-sample test with p < 0.05). I can therefore
conclude that, with respect to precision, Alhazen trained on just two inputs
with the feedback loop is as good as Alhazen with its feedback loop trained on
the sets dataset. As observed before, the number of samples does not coincide
with the quality of the classifier directly. Also keep in mind that the bias for the
sets configuration still exists: The twoInputs configuration was good enough to
offset the bias.

The accuracy data looks slightly different: The overall accuracy of sets is
96.2%, and twoInputs achieves 88.6%. While not a huge difference, this is statis-
tically significant.

In terms of precision, Alhazen trained on just two inputswith the feedback
loop is as good as Alhazen with its feedback loop trained on the sets
dataset. Accuracy is slightly higher for the sets configuration.

The k-path configuration achieves better precision than sets in 5 subjects.
The hypothesis test shows the results to be statistically significantly different
from those obtained with the sets configuration, but similar to the ones obtained
with twoInputs.

In conclusion, the feedback loop has the effect of a larger initial input set
when it is used with a small input set, but does not help as much with a large
initial input set.

Using the feedback loop, differences between different starting conditions
are negligible.

The choice of a configuration should therefore be based on other factors: If, a
huge number of samples exists already, there is no reason why this data should
not be used, and Alhazen0 may indeed be sufficient. On the other hand, the
twoInputs configuration has the lowest number of samples, and therefore needs
the smallest number of invocations of the program under test in the training
phase. If program executions are expensive, it is the best choice.

Learning from just two inputs, Alhazen achieves a precision of 90.8% and
an accuracy of 88.6% over all subjects.

This outperforms the precision I reported in Section 2.7.1.

3.3. EVALUATION 95

0.0 0.2 0.4 0.6 0.8 1.0

total
93.0%
96.2%
88.6%

Accuracy
kpath sets twoInputs

0.0 0.2 0.4 0.6 0.8 1.0

calculator
99.7%
100.0%
99.4%

0.0 0.2 0.4 0.6 0.8 1.0

NetHack
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

genson 120
76.3%
97.4%
76.3%

0.0 0.2 0.4 0.6 0.8 1.0

find 07b94

find 09155

find dbcb1

find ff248

100.0%

92.0%

100.0%

90.8%

100.0%

91.5%

100.0%

94.0%

100.0%

74.7%

100.0%

77.8%

0.0 0.2 0.4 0.6 0.8 1.0

closure 1978

closure 2808

closure 2842

closure 2937

closure 3178

closure 3379

94.1%

95.2%

99.5%

95.0%

94.9%

95.6%

95.6%

99.2%

99.8%

96.9%

96.7%

98.0%

95.3%

97.8%

98.0%

91.5%

96.4%

92.4%

0.0 0.2 0.4 0.6 0.8 1.0

rhino 385

rhino 386

82.4%

87.5%

90.8%

93.6%

69.7%

78.2%

0.0 0.2 0.4 0.6 0.8 1.0

grep 32203

grep 3c3bd

grep 5fa8c

grep 7aa69

grep c96b0

88.6%

95.9%

90.4%

76.0%

89.4%

95.2%

99.9%

97.0%

91.5%

90.2%

94.1%

87.4%

87.5%

70.9%

72.6%

0.0 0.2 0.4 0.6 0.8 1.0

jerryscript 3267

jerryscript 3276

jerryscript 3286

jerryscript 3297

jerryscript 3389

jerryscript 426

99.2%

99.3%

93.5%

95.8%

98.7%

94.3%

99.0%

99.5%

97.9%

83.9%

99.1%

97.7%

98.9%

99.6%

96.1%

73.6%

98.8%

95.6%

Figure 3.10: Accuracy for Alhazen as a predictor, on all subjects and all configu-
rations.

96 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

0.0 0.2 0.4 0.6 0.8 1.0

total
92.1%
94.8%
90.8%

Precision
kpath sets twoInputs

0.0 0.2 0.4 0.6 0.8 1.0

calculator
99.5%
100.0%
98.9%

0.0 0.2 0.4 0.6 0.8 1.0

NetHack
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

genson 120
67.8%
95.2%
67.8%

0.0 0.2 0.4 0.6 0.8 1.0

find 07b94

find 09155

find dbcb1

find ff248

100.0%

90.8%

100.0%

89.8%

100.0%

87.0%

100.0%

92.6%

100.0%

71.4%

100.0%

70.1%

0.0 0.2 0.4 0.6 0.8 1.0

closure 1978

closure 2808

closure 2842

closure 2937

closure 3178

closure 3379

91.7%

97.2%

99.8%

96.0%

94.1%

96.7%

92.2%

98.7%

99.8%

94.2%

93.9%

96.6%

92.2%

98.6%

99.8%

97.6%

93.4%

95.5%

0.0 0.2 0.4 0.6 0.8 1.0

rhino 385

rhino 386

79.6%

82.5%

84.5%

88.9%

81.0%

85.3%

0.0 0.2 0.4 0.6 0.8 1.0

grep 32203

grep 3c3bd

grep 5fa8c

grep 7aa69

grep c96b0

96.0%

98.3%

89.1%

80.2%

92.1%

91.6%

99.8%

94.7%

90.0%

87.6%

89.9%

99.6%

81.2%

93.1%

82.0%

0.0 0.2 0.4 0.6 0.8 1.0

jerryscript 3267

jerryscript 3276

jerryscript 3286

jerryscript 3297

jerryscript 3389

jerryscript 426

98.4%

99.7%

96.6%

100.0%

97.5%

98.0%

98.6%

99.6%

97.1%

94.2%

98.2%

96.1%

98.4%

99.8%

96.6%

100.0%

97.6%

98.2%

Figure 3.11: Precision for Alhazen as a predictor, on all subjects and all configu-
rations.

3.3. EVALUATION 97
Fo

rr
ef
er
en

ce

See Section 2.7.3

The results for the sets configuration cannot be trusted, as Alhazen0
learned properties of the generator algorithm, rather than properties of
the behavior of interest.

Fo
rr

ef
er
en

ce

See Section 2.7.1

Alhazen0 achieves an accuracy of 84.9% and a precision of 82.0% on
average for all subjects, using the k-path training sets.

3.3.2 As Generator
When I evaluated Alhazen0 as a generator in Section 2.7.2, the problems with
the approach became evident: The generator use case seems to be much more
affected by coincidental or structural correlations. So, it will be interesting to
see how the feedback loop improves the situation.

Let’s look at the number of generated samples first. This data can be found
in Figure 3.12.

All configurations generated more samples than for Alhazen0 in total.
Let’s look at the data for precision in Figure 3.14, and accuracy in Figure 3.13.
The precision overall, which was 22.8% for Alhazen0, improved to 65.2% for

the twoInputs configuration. The improvement is statistically significant. This
proves that the feedback loop indeed helps to improve the trees, and eliminate
coincidental correlations. The accurracy is still higher than the precision (89.2%
for the twoInputs configuration), indicating that it is still easier to generate
non-failing than failing samples.

89.2% of the samples generated trigger or don’t trigger the behavior as re-
quested. 65.2% of the samples generated trigger the behavior, if requested.

In Chapter 2, I explained that there is a bias in the sets configuration. This bias
is still present, so twoInputs is at the disadvantage. Nevertheless, the twoInputs
configuration outperforms the sets configuration on both metrics. However, as
for the predictor evaluation, the differences between the three configurations
are not statistically significant. I can confirm that the feedback loop equalizes
differences in input data.

3.3.3 Analysis of Individual Cases
In this section, I describe some of the generated trees. Within Section 2.7.3, this
was the step that made shortcomings of Alhazen0 obvious, so I’ll look at the
same examples again, and check whether the situation improved.

In Section 2.7.3, I analyzed trees obtained in the sets configuration, and one
of the main observations was a bias with this configuration. In this section, the
improved precision and accuracy for Alhazen in the twoInputs configuration

98 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

0 1000 2000 3000 4000 5000 6000 7000 8000

total
7470.0
7837.0
4809.0

generated samples
kpath sets twoInputs

0 5 10 15 20 25 30 35 40

calculator.py
41.0
34.0
37.0

0 10 20 30 40 50

NetHack.py
36.0
44.0
49.0

0 20 40 60 80 100 120

genson120.py
30.0
119.0
30.0

0 200 400 600 800 1000 1200 1400

find07b941b1.py

find091557f6.py

finddbcb10e9.py

findff248a20.py

361.0

334.0

323.0

1121.0

203.0

288.0

54.0

1496.0

420.0

72.0

271.0

478.0

0 50 100 150 200 250 300

closure1978.py

closure2808.py

closure2842.py

closure2937.py

closure3178.py

closure3379.py

256.0

231.0

90.0

148.0

122.0

317.0

270.0

298.0

171.0

269.0

182.0

192.0

262.0

302.0

53.0

179.0

169.0

260.0

0 50 100 150 200 250 300

rhino385.py

rhino386.py

295.0

134.0

230.0

307.0

71.0

155.0

0 200 400 600 800 1000

grep3220317a.py

grep3c3bdace.py

grep5fa8c7c9.py

grep7aa698d3.py

grepc96b0f2c.py

495.0

279.0

386.0

804.0

685.0

475.0

126.0

293.0

979.0

550.0

272.0

18.0

253.0

167.0

415.0

0 50 100 150 200 250 300

jerryscript3267.py

jerryscript3276.py

jerryscript3286.py

jerryscript3297.py

jerryscript3389.py

jerryscript426.py

138.0

214.0

121.0

93.0

152.0

264.0

245.0

204.0

322.0

60.0

284.0

142.0

185.0

146.0

107.0

89.0

166.0

183.0

Figure 3.12: Number of samples generated by Alhazen, on all subjects and all
configurations.

3.3. EVALUATION 99

0.0 0.2 0.4 0.6 0.8 1.0

total
89.5%
87.7%
89.2%

Accuracy
kpath sets twoInputs

0.0 0.2 0.4 0.6 0.8 1.0

calculator.py
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

NetHack.py
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

genson120.py
100.0%
52.1%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

find07b941b1.py

find091557f6.py

finddbcb10e9.py

findff248a20.py

96.4%

92.5%

94.4%

88.5%

97.0%

94.8%

85.2%

85.9%

93.8%

95.8%

85.6%

83.3%

0.0 0.2 0.4 0.6 0.8 1.0

closure1978.py

closure2808.py

closure2842.py

closure2937.py

closure3178.py

closure3379.py

94.1%

91.8%

90.0%

95.9%

99.2%

85.2%

93.7%

89.3%

82.5%

85.9%

95.1%

87.0%

84.4%

81.5%

94.3%

87.7%

94.1%

92.7%

0.0 0.2 0.4 0.6 0.8 1.0

rhino385.py

rhino386.py

80.3%

100.0%

93.0%

85.7%

95.8%

94.2%

0.0 0.2 0.4 0.6 0.8 1.0

grep3220317a.py

grep3c3bdace.py

grep5fa8c7c9.py

grep7aa698d3.py

grepc96b0f2c.py

85.7%

93.5%

87.8%

83.7%

87.0%

84.8%

99.2%

90.4%

84.4%

78.4%

80.9%

100.0%

94.9%

95.2%

81.2%

0.0 0.2 0.4 0.6 0.8 1.0

jerryscript3267.py

jerryscript3276.py

jerryscript3286.py

jerryscript3297.py

jerryscript3389.py

jerryscript426.py

97.8%

96.7%

96.7%

90.3%

97.4%

77.3%

93.9%

99.5%

88.8%

98.3%

98.9%

81.0%

94.1%

90.4%

99.1%

89.9%

98.2%

89.1%

Figure 3.13: Accuracy for Alhazen as a generator, on all subjects and all configu-
rations.

100 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

0.0 0.2 0.4 0.6 0.8 1.0

total
64.2%
62.5%
65.2%

Precision
kpath sets twoInputs

0.0 0.2 0.4 0.6 0.8 1.0

calculator.py
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

NetHack.py
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

genson120.py
100.0%
100.0%
100.0%

0.0 0.2 0.4 0.6 0.8 1.0

find07b941b1.py

find091557f6.py

finddbcb10e9.py

findff248a20.py

86.2%

68.2%

87.0%

68.8%

81.2%

75.0%

66.7%

73.5%

77.4%

76.9%

59.5%

65.5%

0.0 0.2 0.4 0.6 0.8 1.0

closure1978.py

closure2808.py

closure2842.py

closure2937.py

closure3178.py

closure3379.py

72.9%

68.6%

71.4%

85.3%

100.0%

44.9%

74.6%

62.7%

44.9%

58.2%

55.6%

65.6%

47.4%

30.0%

25.0%

67.7%

66.7%

64.0%

0.0 0.2 0.4 0.6 0.8 1.0

rhino385.py

rhino386.py

34.9%

100.0%

56.8%

36.2%

100.0%

76.5%

0.0 0.2 0.4 0.6 0.8 1.0

grep3220317a.py

grep3c3bdace.py

grep5fa8c7c9.py

grep7aa698d3.py

grepc96b0f2c.py

86.4%

75.7%

72.3%

17.4%

30.3%

61.0%

95.0%

81.0%

30.9%

38.6%

65.5%

100.0%

91.5%

83.8%

55.3%

0.0 0.2 0.4 0.6 0.8 1.0

jerryscript3267.py

jerryscript3276.py

jerryscript3286.py

jerryscript3297.py

jerryscript3389.py

jerryscript426.py

84.6%

90.9%

76.9%

35.7%

95.0%

54.7%

66.7%

100.0%

59.3%

66.7%

85.7%

34.5%

85.3%

56.7%

94.1%

40.0%

87.5%

56.8%

Figure 3.14: Precision for Alhazen as a generator, on all subjects and all configu-
rations.

3.3. EVALUATION 101
Fo

rr
ef
er
en

ce

See Section 3.3.1

Using the feedback loop, differences between different starting conditions
are negligible.

first_expression == '(^|)*'

NO_BUG

no

matcher_selection == extended_regex

yes

NO_BUG

no

BUG

yes

Figure 3.15: The decision tree forGrep 3c3bdacewithAlhazen and the twoInputs
configuration.

mean that I can analyze trees obtained in this configuration, which do not suffer
from the bias.

Grep 3c3bdace

Bug 3c3bdace in grep occurs if grep is invoked with the regex "(^|)*" and
the extended regex option. In Section 2.7.3, I observed that Alhazen0 gave a
diagnosis which even included some information that was not included within
the original bug report. Despite this success, Alhazen0 did not identify the
regex correctly.

The tree obtainedwith Alhazen can be found in Figure 3.15. In contrast to the
tree obtained by Alhazen0(presented in Figure 2.21), it identifies the required
regex correctly. However, it does not contain the information that activating the
word match option hides the bug. This was discovered by Alhazen0.

In this experiment, I learned from the twoInputs configuration. None of the
seed inputs for this bug contains the word match option, therefore the decision
tree never uses this option in any decision, and thus it is never included in any
of the generated samples. But then, the decision tree cannot know that it hides
the bug.

102 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

command == ' -E -q '(^|)*(|$)''

extended_regex

no

BUG

yes

NO_BUG

no

pattern == ''(^|)*(|$)''

yes

char-length(first_expression == expression repetition) <= 5.5

no

line_match

yes

NO_BUG

yes

max-numeric(unicode_no_minus) <= 4.25

no

word_match == '-w'

no

NO_BUG

yes

NO_BUG

yes

BUG

no

BUG

no

NO_BUG

yes

Figure 3.16: The decision tree for Grep 3c3bdace with Alhazen and the kPath
configuration.

With the feedback loop, Alhazen concentrates on a subspace of the input
space, and may miss effects in other subspaces.

Randomly generated samples are distributed among the entire search space,
so combining the feedback loop with some randomly generated samples may
be beneficial. In Figure 3.16, the tree for the kPath configuration is shown.

This tree is a lot bigger than the tree from the twoInputs configuration. But
does it also contain more information? This tree starts by pointing out that
using the original sample always fails. Obviously, that is correct, but not helpful.
Afterwards, it reports that the extended regex option is required (correct), and
looks at the pattern used. The tree claims that "(^|)*(|$)" is the required
regex, which is wrong. The first part, "(^|)*", is sufficient already.

Going further down on the right hand side, the tree indicates that using the
line match and word match options hides the bug, as Alhazen0 did. Therefore,
more randomized data actually brings this additional information back.

Looking at the left hand side of the pattern node, the tree talks about the
length of 〈expression〉 〈repetition〉. This production rule would be used to parse
"(^|)*". So there is some hint at the correct pattern, even if it is unlikely that a
software developer would notice it. The last node talks about a max-numeric()
for 〈unicode_no_minus〉: The training data by accident contained non-behavior
triggering samples with a small numeric value for this non-terminal only.

Alhazen does not examine parts of the search space that are not in the seed
samples, so more randomized data, provided together with the seed samples,

3.3. EVALUATION 103

LetOrConst == 'const'

NO_BUG

no

BindingElementList == BindingElementList ',' BindingElisionElement

yes

NO_BUG

no

char-length(StatementListItem == Statement) <= 12.5

yes

ClassTail

yes

NO_BUG

no

Statement == ContinueStatement

no

NO_BUG

yes

BUG

no

NO_BUG

yes

Figure 3.17: The decision tree for Rhino 386.

helps Alhazen to analyse the entire search space, and discover more information.
But then, it alsomeans that there is more random correlationswhichmay distract
Alhazen. While I did not run this experiment, it stands to reason that more time
would help Alhazen to clarify or eradicate wrong beliefs within the tree.

Rhino 386

Bug 386 in Rhino occurs if two variables have the same name within a destruc-
turing assignment. As I already explained in Section 2.7.3, neither Alhazen0
nor Alhazen can express this: My features do not allow me to reason that two
parts of the input, in this example variable names, need to be the same.

Within Section 2.7.3, this example showed how Alhazen0 was biased by the
training data: The tree expressed that samples of a certain lengthwere very likely
to trigger the bug. Figure 3.17 shows the decision tree obtained by Alhazen.

In the root node, Alhazen correctly reports that the "const" keyword needs
to be used. This keyword starts a destructuring assignment. In the second node,
Alhazen found that the 〈BindingElementList〉 needs to be at least 2 elements long.
If it were shorter, there could not be two elements with the same name, so this is
true just as well. Afterwards Alhazen restricts the length of a 〈statement〉. This
restriction leads to shorter variable names, which increases the probability of two
variables with the same name. Then, Alhazen excludes a 〈ClassTail〉, which, as
in Section 2.7.3 would be a way to get a sufficiently long statement without using
the required expressions. In the last node, Alhazen rules out a "continue".
"continue" is invalid in all contexts except for a loop, and violating this means
that Rhino will never execute the code, and the bug will never be triggered. So
this just rules out one factor which makes Rhino fail earlier than the bug I am

104 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

Fo
rr

ef
er
en

ce

See Section 1.4

Definition 0: Predicate of Interest
The predicate of interest is a predicate over observable program behavior.
The program behavior which is recognized by the predicate of interest
is the behavior of interest. If the program exhibits the behavior of interest
while processing a specific input, this input is said to be behavior-triggering.

looking for.
All in all, the tree does contain some distracting nodes, that a user of Alhazen

may not be able to interpret. However, given that this bug exceeds Alhazen’s
abilities, it is remarkable that the two top-most nodes are correct. A software
developer who understands that they have to ignore the remaining nodes may
even profit from looking at this tree.

Alhazen versus Imprecise Oracles

So far, I assumed that the predicates of interest given to Alhazen are perfect
and pure. Here, perfect means that all program runs which exhibit the bug are
recognized as such, while pure means that only program runs which exhibit
the bug are recognized as such. However, writing predicates of interest can be
challenging. Therefore, I will examine what happens with an unpure predicate
of interest in this section.

Bug 3c3bdace in grep is going to serve as an example once more. Alhazen’s
results for this bug were already discussed in Section 2.7.3 and Section 3.3.3. The
bug is a segmentation fault which occurs if grep is invoked with the regex "(^|
)*", and the extended regex option.

For this section, I ran Alhazen with a grammar which would allow for
invalid inputs. As described in Section 2.5.2, the grammar for grep was set up
to generate full shell commands like

1 printf 'X' | timeout 0.5s grep -E -q '[a-z]'

However, the grammar is not perfect. It can also generate inputs like this:

1 printf 'X"'' | timeout 0.5s grep -E -q '(^|)*(|$)'

Within this input, the argument to printf is not properly escaped: The
quotation marks are unbalanced. This means that the shell, upon execution of
this command, will terminate with a syntax error, rather than invoking grep.

For the experiments, the predicate of interest was set up to recognize this
problem, and Alhazen ignored such cases. Within this section, I modified the
predicate of interest to judge those cases as not bug-triggering. As a result,
Alhazen generated the tree in Figure 3.18.

The first observation is that Alhazen uses almost the entire seed input in
the root node. This means that it recognizes samples which are mostly identical
to the seed input. But the remainder of the tree is interesting nevertheless.
The substring used in the root node contains the "-q" option, because it was
used in the original bug report. On the left side, Alhazen describes that in
fact the 〈extended_regex〉 option and the regex "(^|)*" are sufficient. This part

3.3. EVALUATION 105

command == ' -E -q '(^|)*(|$)''

extended_regex

no

max-numeric(unicode_no_minus) <= 6.642857074737549

yes

NO_BUG

no

first_expression == '(^|)*'

yes

BUG

yes

max-char(unicode) <= 42.0

no

NO_BUG

no

matching_control == line_match

yes

BUG

no

NO_BUG

yes

max-char(unicode) <= 34.5

yes

BUG

no

BUG

yes

NO_BUG

no

Figure 3.18: The decision tree for Grep 3c3bdace with an imprecise predicate of
interest.

of the tree also indicates that the 〈line_match〉 option means that the bug does
not appear any longer. Basically, the left side of the tree is identical to what
Alhazen0 gave.

On the right hand side, there is a lot more going on. One would assume
that all inputs which contain the original behavior-triggering sample trigger the
bug. But Alhazen tells us that this is not the case: The bug does not occur if
specific characters are in the argument to printf. Those characters happen to
be quotation marks. Therefore, this part of the tree points at the problem with
the grammar.

Software developers who employ Alhazen should be aware of this kind of
effects. When interpreting the trees, they should examine one sample for each
leaf of the tree, and check whether this sample points to a shortcoming with
the predicate of interest or the grammar (or any other part of the setup, for that
matter). However, as it is quite difficult to write such predicates and grammars, I
assume that the grammar would be written once, and used to diagnose multiple
bugs. The cost for fixing problems in the grammar would be high for the first
couple of bugs analyzed, but quickly decrease as Alhazen and the grammar are
used more often.

If none of the general-purpose predicates of interest can be used, one predi-
cates of interest needs to be written for each bug. However, developers would
quickly build up expertise in how to design those. Also, predicates of interest
are usually just a few lines of code. Even the problem in the predicate of interest
in this section, recognizing a syntax error as a non-behavior triggering input
rather than dismissing the sample, is a problem with the test scaffolding, rather
than the predicate of interest.

106 CHAPTER 3. REFINING HYPOTHESIS WITH A FEEDBACK LOOP

3.4 Conclusion
Within this chapter, Alhazen0 was extended with a feedback loop. Using Al-
hazen instead of Alhazen0, two inputs, a behavior-triggering one and a non-
behavior triggering one, are sufficient to obtain a hypothesis with good results
for precision and accuracy. This means that, in a practical application of Al-
hazen, it is no longer necessary to generate a huge set of input data. Alhazen
can be run with minimal initial input data, and generates the required training
data itself. Users should be aware, however, that the initially supplied samples
also define which part of the input space is examined by Alhazen. Therefore, a
low number of initial samples may compromise Alhazen’s ability to uncover
additional information about the behavior of interest.

In this configuration, Alhazen can be used to predict if a given input triggers a
bug or not. As an example, it would be possible to filter inputs from an external
source before feeding them into the program, and prevent a bug triggering
input, which, in the context of a system reachable remotely, may be an attempt to
perform a cyberattack, before it even reaches the program. Given that Alhazen
cannot provide a guarantee, this filter should only be used as long as the bug is
not yet properly fixed.

Also, Alhazen can be used to generate more behavior-triggering inputs.
Those inputs may be used as regression tests, within automated repair ap-
proaches or for statistical debugging.

This chapter did not attempt to provide an in-depth analysis of whether
Alhazen is useful as a debugging aid. This evaluation will be performed in
Chapter 4. Still, the analysis of individual cases in Section 3.3.3 provides some
insights. Effects within the training data, imprecise predicates or problems with
the grammar and test scaffolding can lead to trees that are hard to interpret.
In most cases, it is possible to build a deeper understanding of the underlying
problem when one looking at the test cases. Still, a developer who wants to use
Alhazen needs a good understanding of how Alhazen works, in order to be
able to recognize and interpret this kind of effects.

Chapter 4

Debugging with Input
Features

Chapter 2 and Chapter 3 presented Alhazen, a tool which generates a bug diag-
nosis automatically. They did not, however, evaluate whether these diagnoses
are useful for software developers.

Previous attempts to help developers with debugging[78, 50], which will
be discussed in Section 6.1, tried to minimize the context a developer needs
to analyze. Intuitively, with a good idea where to look, the developer can
concentrate on a few lines of code, rather than search the entire program for a
flaw. This also applies to input minimization techniques: A smaller input often
means a faster program run, which simplifies the analysis of program states,
simply because there is a smaller number of (intermediate) program states.

The same argument can be used for Alhazen. The tool identifies those
control forms in the grammar, and potentially even properties of the associated
substrings of the input, that are connected to the bug. In Section 4.1,I will analyze
which fraction of the program input space is deemed irrelevant by Alhazen.

However, this is not the full story of fixing a bug: When a software developer
attempts to fix a bug, it is important that they understand the root cause of the
bug. If the developer attempts a fix without deep understanding of the problem,
the fix rarely meets quality standards. Common problems are:

Treating Symptoms A bug fix which treats a symptom only hides the conse-
quences of a bug, rather than fixing it.

Incomplete Fixes An incomplete fix solves one instance of the problem, but
other inputs which trigger the same problem still do so.

Regression Bugs A regression bug is a bug which is introduced during a fix.
While the fix may solve the original problem, it introduces a new problem
at the same time.

When considering the usefulness of Alhazen in the context of debugging, a
natural question is whether Alhazen’s diagnosis helps in identifying this root
cause. This question can only be answered in a user study. In the remainder of
this chapter, I will discuss the design of such a user study, and perform two pilot
studies to refine the proposed design. The general design was developed within

107

108 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Sven Fackert’s master thesis, which I advised. I then refined the design based
on his findings, and conducted a larger pilot study, which uncovered further
design problems. In this chapter, I use ’we’ to report about findings and actions I
performed together with Sven Fackert, and ’I’ for work that I performed myself.

This chapter concludes by describing an improved design, which can be used
to conduct a user study in future work.

4.1 Focusing on Small Parts of the Input Space
As described in the introduction, previous attempts at automated debugging
focused on minimizing the search space for the software developer. In this
section, I will apply the same idea to Alhazen. My research question for this
section is thus:

1. Which part of the program input space is part of Alhazen’s diagnosis?

This is relevant, as developers can ignore every part of the program input
space which is not part of the diagnosis. Alhazen deemed it irrelevant.

Obviously, this evaluation does not really indicate that Alhazen is useful in
debugging. Many more factors are relevant. As an example, the decision trees
may be hard to interpret, or the relationship between input structure and inner
workings of the program may be too complex for the information provided by
Alhazen to be useful. However, if one accepts the assumption that debugging
is easier if the program input space that needs to be considered is smaller, this
evaluation gives a first indication of usefulness.

4.1.1 Characterizing the Search Space
If I want to show that Alhazen reduces the search space, I need to be able to
measure the size of this search space. Previous approaches to minimize the
search space in debugging actually minimized an existing input. They can be
evaluated by reporting the number of characters that are not in the input any
more. Alhazen uses a grammar to describe which parts of the input structure
are important. Therefore, counting characters would not do my approach justice.
Even if Alhazen is used as a generator, it generates more than one test. So, the
length of which of those tests should be considered?

Instead, I will characterize the search space in terms of the features: A large
grammar belongs to a program with very diverse inputs, and lots of variation
in possible program runs. Such a large grammar also uses lots of features.
Therefore, I will use the number of features as an approximation of search space
size.

Table 4.1 shows the size of the grammars for all subjects. JerryScript and
Closure both accept JavaScript as inputs, still, I list sizes per subject, and not per
grammar. The reason is that even subjects with the same grammar may have
different numbers of features. This is caused by the rewrite in Section 2.4, which
adds additional alternatives, and therefore enlarges the grammar. In generel,
the grammars are quite different:

Ignoring the calculator example (17 features), NetHack (62 features) and
genson 120 (63 features) are smallest. The largest grammar is the one for Closure
3178, which has 1939 features.

4.1. FOCUSING ON SMALL PARTS OF THE INPUT SPACE 109

subject to
ta
l#

of
fe
at
ur

es

#
of

m
ax

-c
ha

r(
)

#
of

m
ax

-c
ha

r-
le
ng

th
()

#
of

m
ax

-q
u-

le
ng

th
()

#
of

m
ax

-n
um

er
ic
()

#
of

ex
is
ts
()

NetHack 62 2 9 1 1 49

calculator 17 2 3 0 1 11

closure 1978 1919 218 614 4 25 1058
closure 2808 1881 218 612 6 25 1020
closure 2842 1899 218 612 6 25 1038
closure 2937 1890 218 612 5 26 1029
closure 3178 1939 218 613 5 25 1078
closure 3379 1886 218 612 6 25 1025

find 07b941b1 1172 0 100 0 8 1064
find 091557f6 1179 0 100 0 8 1071
find dbcb10e9 1168 0 100 0 8 1060
find ff248a20 1178 0 100 0 8 1070

genson 120 63 5 16 1 3 38

grep 3220317a 1083 2 84 0 8 989
grep 3c3bdace 1085 2 83 1 8 991
grep 5fa8c7c9 1083 2 84 0 8 989
grep 7aa698d3 1085 2 84 0 8 991
grep c96b0f2c 1087 2 84 0 8 993

jerryscript 3267 1914 218 612 6 25 1053
jerryscript 3276 1881 218 613 5 26 1019
jerryscript 3286 1915 218 613 5 25 1054
jerryscript 3297 1897 218 614 4 25 1036
jerryscript 3389 1971 218 614 4 25 1110
jerryscript 426 1895 218 612 6 25 1034

rhino 385 1197 9 370 8 23 787
rhino 386 1192 9 370 8 23 782

Table 4.1: Number of features in the grammars used

110 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

〈A〉 → 〈B〉+ is the same as 〈A〉 → 〈B〉 | 〈B〉 〈A〉

〈A〉 → 〈B〉* is the same as 〈A〉 → "" | 〈B〉 〈A〉

〈A〉 → 〈B〉? is the same as 〈A〉 → "" | 〈B〉

Figure 4.1: Alternate ways to write quantifications.

Grammars of the same size can differ in the kind of features. While ex-
ists() are prevalent for all grammars, there is a difference nevertheless. For the
JavaScript grammars on Closure, about 11% of the features are max-char().
In contrast, the find grammar has no max-char() at all. This indicates that
there are no productions which derive an infinite number of words (see how
I remove structural correlations in Section 2.6.2). find is a tool which can be
used to search for files within the file system. Intuitively, one would expect that
file names, supplied to find as search terms, are unrestricted within the find
grammar. However, the grammar for find generates not only find invocations,
but also a script which generates some directory structure to search in. In order
tomake sure that the file names find searches actually exist within this structure,
the grammar restricts the allowed file names – and therefore, search terms –
to a predefined set. But then, the question which file name was choosen is an
exists(), and there are no max-char().

Another observation is that max-qu-length() are seldom among all gram-
mars. It seems that grammar authors avoid quantifications. A quantification
can always be written with a recursive rule, as Figure 4.1 illustrates. Therefore,
there is no language which requires quantification within its grammar. For
Closure, JerryScript, genson and Rhino, I got my grammars from Havrikov
and Zeller [31], who translated them from the ANTLR grammar repository[54],
or the JavaScript> specification[36] respectively. The formalism used in the
JavaScript specification does not allow for quantifications. The specification
therefore uses an alternative way to write such structures everywhere. This may
have prompted the translator not to use quantifications either. For find and
grep, there are simply not that many elements which can be repeated.

4.1.2 Evaluation
In the last section, the search spacewas characterized in terms of features derived
from the grammar. But then, the number of features used in the decision tree is
the portion of the search space which a user of Alhazen can concentrate on. In
this section, I will look at how large that portion of the search space.

Table 4.2 gives data on shape and features used in the decision trees. All
data is presented as an average over four runs in the twoInputs configurations. I
got this data from the same runs I used in Section 3.3.3.

First, let’s have a look at the size of the trees. The first column in Table 4.2
gives the average number of nodes, the second column gives the average number
of leaves. The relationship of the size of the grammar to the size of the tree is
not clear. Trees for the JavaScript grammar, which has the highest number of
features with about 2000, have between 10 and 20 nodes. However, the grep and
find bugs, which have a grammar with about 1000 features, have between 20
and 30 nodes. Within this experiment, smaller grammars generate larger trees.

4.1. FOCUSING ON SMALL PARTS OF THE INPUT SPACE 111

subject av
er
ag

e
#
of

tr
ee

no
de

s

av
er
ag

e
#
of

tr
ee

le
av

es

av
er
ag

e
#
of

fe
at
ur

es

av
er
ag

e
#
of

m
ax

-c
ha

r(
)

av
er
ag

e
#
of

m
ax

-c
ha

r-
le
ng

th
()

av
er
ag

e
#
of

m
ax

-q
u-

le
ng

th
()

av
er
ag

e
#
of

m
ax

-n
um

er
ic
()

av
er
ag

e
#
of

ex
is
ts
()

NetHack 4.0 2.5 1.25 0.0 1.25 0.0 0.0 0.0

calculator 5.0 3.0 2.0 0.0 0.0 0.0 1.0 1.0

closure 1978 19.5 10.25 9.0 1.0 2.0 0.0 0.0 6.0
closure 2808 17.5 9.25 7.75 0.0 3.0 0.25 0.0 4.5
closure 2842 13.5 7.25 6.25 0.5 3.5 0.0 0.0 2.25
closure 2937 17.0 9.0 7.75 1.25 3.0 0.0 0.0 3.5
closure 3178 11.5 6.25 5.25 0.5 0.75 0.0 0.25 3.75
closure 3379 16.0 8.5 7.5 0.25 1.5 0.0 0.0 5.75

find 07b941b1 21.0 11.0 7.5 0.0 2.25 0.0 0.0 5.25
find 091557f6 5.5 3.25 2.25 0.0 1.5 0.0 0.0 0.75
find dbcb10e9 16.5 8.75 7.25 0.0 1.5 0.0 0.25 5.5
find ff248a20 20.0 10.5 7.5 0.0 2.25 0.0 0.0 5.25

genson 120 3.0 2.0 1.0 0.0 0.0 0.0 0.0 1.0

grep 3220317a 20.0 10.5 9.5 0.0 0.75 0.0 0.25 8.5
grep 3c3bdace 4.0 2.5 1.5 0.0 0.25 0.0 0.0 1.25
grep 5fa8c7c9 18.5 9.75 7.0 1.75 1.25 0.0 0.0 4.0
grep 7aa698d3 17.5 9.25 7.75 0.25 1.25 0.0 0.25 6.0
grep c96b0f2c 30.0 15.5 11.25 1.5 2.0 0.0 0.5 7.25

jerryscript 3267 12.5 6.75 5.75 0.0 1.0 0.0 0.0 4.75
jerryscript 3276 11.0 6.0 5.0 0.0 2.25 0.0 0.0 2.75
jerryscript 3286 9.5 5.25 4.25 0.25 0.25 0.0 0.0 3.75
jerryscript 3297 14.5 7.75 6.75 0.5 3.0 0.0 0.0 3.25
jerryscript 3389 10.5 5.75 4.75 0.0 0.75 0.0 0.0 4.0
jerryscript 426 13.0 7.0 6.0 0.75 1.25 0.0 0.0 4.0

rhino 385 9.5 5.25 4.25 0.0 2.0 0.5 0.0 1.75
rhino 386 13.0 7.0 6.0 0.0 2.5 0.0 0.0 3.5

Table 4.2: Average size of the decision trees generated by Alhazen in the twoIn-
puts configuration, together with the average number of features used.

112 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

There are, however, some outliers. The trees for grep 3c3bdace have 4 nodes
on average, so the one shown in Figure 3.15 is slightly smaller than average.
However, Alhazen does not create unreasonably large trees for a bug like this.

This raises the question why the tree for grep c96b0f2c is so extremely large.
Further investigation shows that the reason is in the grammar. Grep can be
configured to use a different locale than the system’s default. This is donewith an
environment variable, which, in the grammar, is modeled as an alternative over
all available locales. Now, grep c96b0f2c depends on the locale, and therefore
the decision tree contains a cascade of nodes which check for the exists() of
many of those locales. For this bug, even the original bug report gives four
different inputs which trigger the bug.

Table 4.3 gives the relation between the number of features used in the
grammar, and in the decision tree. Ignoring the calculator, which is really just an
example, the search space for all subjects is reduced to 2%, or even less. The least
significant reduction is for NetHack, however, NetHack has just 62 features.
Therefore, even a reduction to 1 feature would be 1.6%. On this subject, 2% are
therefore close to the maximal possible reduction. Looking at all subjects again,
software developers can reduce the input variety they need to reason about in
debugging a lot.

Alhazen reduces the search space by at least 98%.

4.2 Preparing the User Study
The result from the previous section is encouraging, however, a real user study
is required to see whether those advantages materialize in reality. This study is
supposed to answer the following research questions:

1. Do the test cases, generated by Alhazen, help developers to fix bugs faster?

2. Does the diagnosis, generated by Alhazen, help developers to fix bugs
faster?

3. Do the test cases, generated by Alhazen, help developers to provide better
fixes?

4. Does the diagnosis, generated by Alhazen, help developers to provide
better fixes?

The design for the study was developed and refined in four phases:

Initial Design In this phase, we developed the objective of the user study, and proposed
a design for a study that can answer the research questions. Results from
this phase will be presented in Section 4.2.2.

Pre-pilot Study Within the pre-pilot, we tested the proposed design with 25 participants.
The results, including the problems with the design we discovered, will
be described in Section 4.2.3.

Design Revision Building on the collected experience, we revised the study design. The
changes will be described and discussed in Section 4.2.4.

4.2. PREPARING THE USER STUDY 113

subject av
er
ag

e
#
of

fe
at
ur

es
in

th
e
de

ci
si
on

tr
ee

#
of

fe
at
ur

es
in

th
e
gr

am
m
ar

Re
m
ai
ni
ng

Se
ar

ch
Sp

ac
e

NetHack 1.25 62 2.0%

calculator 2.0 17 11.8%

closure 1978 9.0 1919 0.5%
closure 2808 7.75 1881 0.4%
closure 2842 6.25 1899 0.3%
closure 2937 7.75 1890 0.4%
closure 3178 5.25 1939 0.3%
closure 3379 7.5 1886 0.4%

find 07b941b1 7.5 1172 0.6%
find 091557f6 2.25 1179 0.2%
find dbcb10e9 7.25 1168 0.6%
find ff248a20 7.5 1178 0.6%

genson 120 1.0 63 1.6%

grep 3220317a 9.5 1083 0.9%
grep 3c3bdace 1.5 1085 0.1%
grep 5fa8c7c9 7.0 1083 0.6%
grep 7aa698d3 7.75 1085 0.7%
grep c96b0f2c 11.25 1087 1.0%

jerryscript 3267 5.75 1914 0.3%
jerryscript 3276 5.0 1881 0.3%
jerryscript 3286 4.25 1915 0.2%
jerryscript 3297 6.75 1897 0.4%
jerryscript 3389 4.75 1971 0.2%
jerryscript 426 6.0 1895 0.3%

rhino 385 4.25 1197 0.4%
rhino 386 6.0 1192 0.5%

Table 4.3: Search space reduction by Alhazen.

114 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Pilot Study In the pilot study, I tested the revised design with 38 participants. The
results can be found in Section 4.2.6.

The first two phases, initial design and pre-pilot were carried out by Sven
Fackert, as part of his master thesis[18]. I advised him throughout the process.

4.2.1 Measuring Repair Quality

Research questions 3 and 4 investigate whether the quality of the provided fixes
improves when the developers have test cases or diagnosis available respectively.
This brings up the question how repair quality can be measured.

In general, a repair is successful if it fixes the bug. However, it is a common
problem in quality assurance that the program behavior cannot be checked
entirely, as verification is impractical in many cases. Therefore, the success of
repair is usually estimated based on success of a set of test cases, exercising the
behavior for specific points of the input space.

Definition 21: Successful repair
A repair is successful if the resulting fix passes all tests.

For our study, itmeans thatwe get a boolean variablewhich indicateswhether
a repair was successful. For a boolean variable, a chi-squared[64] test indicates
whether the frequency of successful repairs in different participant groups are
significantly different.

This definition, however, does not allow to reason about different levels of
repair quality. There is no notion of one repair being better (or worse) than
another repair. A different approach to measurements of repair quality was
presented by Yi et al. [74]. They establish a correlation between repair quality in
automated repair approaches, and classical test suite adequacy metrics like code-
coverage. To this end, they utilized multiple test suites, each with a different
value for some coverage metric, and derived an automated fix for each of those
test suites. Then, they used the union of all test suites to check whether the
repair fixes the bug. Within their work, regression ratio is defined as follows:

Definition 22: Regression ratio as defined by Yi et al. [74]
The regression ratio for set of repair attempts is defined as

regression ratio = # of failed repairs
#total number of repairs

A repair is considered successful if it passes all tests, just as defined before.
Then, the fraction of successful repairs for a specific value of a coverage metric
is calculated.

Mind that they have more than one repair for each value of a coverage metric.
This means they do not need to measure the quality of a single repair, but the
quality of a group of repairs. Within the user study, each participant suggests
a repair, and we are interested into a quality measure for every single repair.
Therefore, this definition is not directly applicable.

4.2. PREPARING THE USER STUDY 115

t1 t2 t3 quality
r1 pass pass pass 1
r2 fail pass pass 0.66
r3 fail pass fail 0.33
r4 fail fail pass 0.66
r5 fail fail pass 0.33

Table 4.4: Three test cases, three repairs and the repair quality for each.

We can, however, apply the same idea to measure the quality of a single
repair. That is, we define quality as the fraction of tests passed.

Definition 23: Repair Quality
The quality of a repair is defined as

quality = # of passed tests
of tests

At first glance, this looks like a continuous scale. A repair which passed 5
out of 10 tests is 0.1 better than a repair which passes 4 out of 10 tests. However,
this is intuition is misleading: The quality value gives no indication of which
subset of the test cases passes. Let’s say we have three tests t1, t2 and t3. There
are five repairs, r1 to r5. Table 4.4 shows which repair passes which tests.

Let’s look at the tests first: t1 is passed by just one repair, while t2 is passed
by three repairs, and t3 is passed by four repairs. One could say that t1 is more
difficult than t2, which is more difficult than t3. But then, can we really say that
the quality difference between r1 and r2 is the same as the difference between r2
and r3? Does passing the most difficult test mean the same increase in quality as
passing the least difficult test? This example shows that quality allows to order
the repairs, but it cannot be compared directly. Even repairs with equal quality
may not in fact be equally good. r3 passes just one test, namely t2. The same
is true for r5, which passes no test but t3. Therefore, r5 and r3 have the same
repair quality, however, t3 is easier than t2, so, this notion may be misleading.

Quality data is not continuous, but ordinal at best. The value hides some
of the underlying complexity.

The question which metric is more appropriate, frequency of successful
repairs within a group or quality, is somewhat philosophical. One can argue
that a repair which does not fix the bug entirely, and still fails some test cases, is
useless. Following this argument, the quality value is meaningless: Any quality
lower than 1 is insufficient. On the other hand, one can also argue that the
program behaves correctly for a larger part of the input space, and therefore
there is some improvement.

Within the user study, I will examine quality in both definitions: As a binary
successful repair variable, as well as the ordinal quality value.

116 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Within the pre-pilot study As mentioned before, the pre-pilot study was
conducted by Sven Fackert as part of his master thesis. Within the thesis, Fackert
worked with regression ratio, defined like this:

Definition 24: Regression ratio as defined by Fackert [18]
The regression ratio of a repair is defined as

regression ratio = # of failed tests
of tests

A test is either passed or failed, and therefore it is easy to see that

regression ratio = 1 − quality

All observations about quality hold for regression ratio just as well. I decided
to use quality in the thesis, and used the mentioned formula to a convert data
from the pre-pilot study, because it is more intuitive to have a higher-is-better
metric, such as quality.

4.2.2 Initial Design

We first evaluated our study design in a pre-pilot with 25 participants. This
pre-pilot will be described in this section.

Overview of the Study Design

In order to answer our research question, wewant to observe the time taken to fix
a bug. We want the participants to be knowledgeable in Python programming,
therefore, we perform a pre-screening. As part of this pre-screening, participants
have to answer 10 questions about Python programming, and solve three small
programming task. Participants who got at least 9 out of the 13 problems correct
where invited for the main study. We raffled off a 15 e amazon voucher among
the participants of the pre-screening.

The participants which passed the pre-screening where assigned to 1 out of
4 groups in a round-robin fashion.

The d0t0 group serves as control group: How do software developers per-
form on our tasks without any debugging aid? With the othe rgroups, we test
three different treatments: Alhazen’s diagnosis, the generated tests, or both.

Participants first received a training task, to make sure they know how to
use the infrastructure of the user study. After that, we presented them with
four programming tasks in the Python programming language. The details of
task selection, and the tasks themselves will be given in Section 4.2.2. After
each task, participants answered a questionnaire about the task, and the per-
ceived usefulness of Alhazen. After the last task, participants where asked
additional questions about their impression of Alhazen. The questionnaires
will be described in Section 4.2.2.

4.2. PREPARING THE USER STUDY 117

Participant Groups within the User Study
Within the user study, the participants are assigned to one of the following
groups:

d0t0 The control group receives neither Alhazen’s diagnosis, nor gen-
erated test cases. Therefore, they debug based on just a single test
case.

d1t0 The diagnosis group received Alhazen’s diagnosis, but not the gen-
erated test cases.

d0t1 The test group received the generated test cases, but not Alhazen’s
diagnosis.

d1t1 The test and diagnosis group received both, generated test cases and
Alhazen’s diagnosis.

Figure 4.2: Overview over the participant groups within the user study.

Technical Setup

During the study, participants need to fix bugs, and we need to be able to
measure time. Due to the COVID-19 pandemic, and also due to the high number
of participants, it wasn’t possible for us to conduct the study on site. Therefore,
we decided to use a customized version of JupyterNotebook[38]. This tool allows
developers to write Python code in the browser, run it and examine outcomes.
It does not contain a traditional debugger, which means that participants did
not have such a tool at their disposal. We customized jupyter to allow for time
measurements and to include the questionnaires before and after each task.

Tasks

The tasks within the user study are supposed to model real-world bugs, that
developersmight encounter in their dailywork. At the same time, they need to be
solvable by Alhazen, and they need to be in the Python programming language.
In Section 3.3.3, I explained how the Rhino 385 bug cannot be diagnosed by
Alhazen. It would be pointless to use such a bug in the user study. The result
would just be further proof for a known limitation of Alhazen.

Setting up Alhazen includes to write a grammar for the program under
test, write a predicate of interest and run the tool. These tasks require some
understanding of grammars and Alhazen’s operation. They cannot be solved
within 15 minutes. Also, I assume that, if Alhazen is used professionally, at
least the grammar writing would be caried out once, and reused. But then, the
time spend on grammar writing is of limited concern. Therefore, we decided
not to include those steps in the user study.

Furthermore, I decided not to use real bugs. Those would be in a large
software system, and participants would need to know a lot of context about
those systems. Since learning the general structure of the code and other project-
specific information would take most of the participant’s time, effects caused by

118 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Alhazen may be clouded. Also, it would be very difficult to recruit participants
who are willing to spend more than one hour on such a study, which means that
each of the four tasks may take at most 15 minutes, preferably less. Therefore, I
decided to use four toy tasks, modeled after real-world bugs.

I examined three sources to find suitable tasks:

1. The debugging book[76] is an online resource which teaches current de-
bugging techniques. The material includes examples, that are used to
demonstrate these techniques.

2. I looked at the bug tracker for Ansible[4]. Ansible is an IT automation
tool, that can be used to automate repetitive administration tasks. Ansible
is written in Python, and among the top repositories with Python code
on github. Within the Ansible repository, I looked at the 50 most recent
merge request 1 which were labeled as bugfix, and were neither labeled as
documentation nor contained the words ”Update” and ”version” in the
title.

3. I looked at the bug tracker for Django[20]. Django is a web framework
which is written in Python, and used for many projects. Just as Ansible, it
is one of the top Python projects on github. Within the Django repository,
I looked at merge requests where the title started with ”Fixed”, followed
by the reference number of a bug report.

For the Django and Ansible repositories, I wrote a quick, one line summary
of the changes. Afterwards, I sorted the bugs into categories, based on the one
line summary.

As an example, merge request #73947[3] in Ansible fixes a problem with
automated configuration of machines running Amazon Linux. Ansible tries
to detect the used kernel version and fails, because old versions of Amazon
Linux used a naming scheme that was not supported. My one-line summary
for this bug was ”missing special case in string parsing”. Later, I sorted this
bug into the category ”Missing Special Case”. Bug #14179[10] in Django was a
crash when the Origin Header in a http request contained an invalid host. My
one-line summary was ”missing special case, missing host”, as the fix indicates
that Django should just ignore this case. I rated this as ”Missing Special Case”
as well. All bug numbers, one-line summaries and categories can be found in
Appendix A.

After this analysis, I came up with the following artificial bugs:

RemoveHTML The code for this task is used as an example within the debug-
ging book[76]. The code in question is supposed to remove HTML tags from a
string, however, it contains a bug which makes it fail if there are quotes in the
input.

uname The uname task parses the output of the uname facility to obtain version
number, kernel specifier and other properties of the system it is running on.
The code contains a bug where kernel version numbers that do not include a
patch number cannot be parsed. This artificial bug is inspired by merge request

1Merge Requests are how developers contribute code to the ansible project.

4.2. PREPARING THE USER STUDY 119

#73947[3] in ansible. As in the merge request, a regex which decomposes a
kernel identifier does not handle a special case.

RPN The RPN task consists of a function which accepts a string with a mathe-
matical expression in reversed polish notation, and returns the result of evaluat-
ing this expression. The bug is within the handling of the "+" operator. For this
operator, the code does not increase an index which is used to access the string.
This causes an endless loop, which is terminated as soon as the internal stack of
the implementation is empty.

This taskwas inspired by the ”Incorrect Communicationwith Other Program
Parts” category. While the program in the task is too small to have other program
parts, merge requests in this category often added or removed method calls
which informed other program parts about program state (e.g. as part of the
Observer pattern[22]). The missing update of an index is – in essence – a similar
type of bug.

Lists The Lists task is a parser for Lists of numbers in Lisp notation. It would
fail to parse the digit 9, due to incorrect API usage of the Python standard API.

Questionnaires

In addition to raw performance numbers, we want to collect the subjective
feedback of the participants towards Alhazen. In order to do so, we use two
different questionnaires:

1. The Task-Questionnaire is used after each task, and contains questions
specific to the tasks.

2. The Final Questionnaire is used at the end of the study, and contains
questions about Alhazen in general.

In the following, I will describe each questionnaire.

Task Questionnaire The task questionnaire aims to collect feedback for this
specific task. We asked participants who were presented with the Alhazen
diagnosis (groups d1t1 and d1t0) these questions:

1. The diagnosis was useful.

2. The diagnosis was easy to understand.

Those questions aim at identifying potential problems with how the diagnosis
is framed.

Participants in groups d0t1 and d1t1 were also asked about the tests:

3. The additional tests were useful.

With this question, we attempt to find out whether Alhazen’s test cases
contribute to fixing the bug. We did not ask about the understandability of
the test cases, as we did with the diagnosis, because test cases are standard
instruments in debugging, and written in Python.

120 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

For all questions about the diagnosis as well as about the tests, participants
gave their answers in a 7-element Likert scale[44], choosing between ’Strongly
disagree’ and ’Strongly agree’ in 7 steps.

Within the Task Questionnaire, participants also had the option to give
additional remarks about the task in a free-text form. Also, they were asked
whether they had any interruptions while solving the task. Interruptions would
mean that our time measurement is not reliable.

Final Questionnaire In the final questionnaire, we attempt to collect the par-
ticipant’s final thoughts about Alhazen. In order to do so, we adapted the
Technology Acceptance Model (TAM)[14]. Participants in the d1t0 and d1t1 are
supposed to answer 10 questions:

1. Using the outputs from Alhazen in my job would enable me to accomplish
tasks more quickly.

2. Using the outputs from Alhazen would improve my job performance.

3. Using the outputs fromAlhazen in my job would increase my productivity.

4. Using the outputs from Alhazen would enhance my effectiveness on the
job.

5. Using the outputs from Alhazen would make it easier to do my job.

6. I would find the outputs from Alhazen useful in my job.

7. Learning to use the outputs from Alhazen would be easy for me.

8. Using the outputs from Alhazen would be clear and understandable.

9. It would be easy for me to become skillful at using the outputs from
Alhazen.

10. I would find the outputs from Alhazen easy to use.

The TAM, as found in literature, contains two more questions:

11. I would find it easy to get the Alhazen Diagnosis to do what I want it to
do.

12. I would find the Alhazen Diagnosis to be flexible to interact with.

We decided not to ask those, as we did not give participants the chance to
actually use Alhazen, and therefore they would not be able to answer those
questions.

4.2.3 Conducting the Pre-Pilot
We posted an invitation to the study in several groups that are frequented by
Python developers on Facebook, Reddit and LinkedIn. During the pilot study, we
used only small to medium-sized groups, as we wanted to be able to announce
the full study, which requires more participants, in larger groups later. We also

4.2. PREPARING THE USER STUDY 121

Recruitment Step Participants Ratio to previus step
Potential Audience 85000
Visited Study Page 165 0.19%
Completed Screening Test 42 25.45%
Passed Screening Test 30 71.43%
Invited to second part 30 100.00%
Completed all tasks 25 83.33%
Completed without interruptions 21 84.00%

Table 4.5: Conversion rate for the invitation to the pre-pilot study. This data is
taken from Sven Fackert’s master thesis[18].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
points

0

2

4

6

8

pa

rti
cip

an
ts

Screening Test Results

Figure 4.3: Histogram of screening test results within the pre-pilot study (data
collected by Sven Fackert in his master thesis).

contacted personal acquaintances – mostly fellow students who transitioned to
industry positions – and asked them to participate.

Table 4.5 shows the number of participants in each step. The groups we
posted in had roughly 85000 members in total. Out of those, 0.19% visited the
start page of the study, and 42 (25.45%) completed the screening test. We counted
participants who did not answer the demographical questions on the last page
of the screening test as participants who did not complete the screening test.
This means that 123 potential participants either did not even start the screening
test, or did not finish it. As those participants did not interact with the web page
further, we have no data that may help to diagnose why the conversion rate is
this low at that point.

30 of the remaining 42 participants passed the screening test. Participants
were expected to get at least 9 out of 13 points in the screening test.

Figure 4.3 shows the distribution of achieved results. There is a large group
of people, 10 in total, who scored between 0 and 5 points. Those are clearly
under-performers. For this group, the screening test serves its purpose: It
keeps people with insufficient Python knowledge from participating. Within

122 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Group mean std
d0t0 1254.43 435.62
d0t1 568.24 321.61
d1t0 609.30 376.86
d1t1 651.56 632.22

(a) RemoveHTML

Group mean std
d0t0 954.08 296.14
d0t1 647.83 225.85
d1t0 1660.01 1949.24
d1t1 608.76 606.45

(c) Lists
Group mean std
d0t0 1007.62 713.30
d0t1 1174.94 597.00
d1t0 1289.87 478.36
d1t1 711.54 1080.21

(b) uname

Group mean std
d0t0 858.79 882.33
d0t1 658.46 362.57
d1t0 556.30 314.64
d1t1 405.08 258.14

(d) RPN

Table 4.6: The mean and standard deviation of the time spend per task (in
seconds) within the pre-pilot study.

the second group, 4 participants are excluded because they had between 6 and 9
points. However, it is clear that there is a strong difference between the number
of people who scored 9, and 8 points respectively. Therefore, the threshold of 9
is choosen correctly.

We invited the 30 participants who scored more than 9 points to participate
in the study, and 25 of them actually did. Out of those, 4 participants reported in-
terruptions. We excluded the data from those participants from further analysis,
as the time measurements are imprecise.

The pre-pilot study shows that our recruitment strategy is valid, but the
conversion rates are low.

Additionally, several of our announcement posts were deleted on Facebook.
Administrators of Facebook groups do not seem to like this kind of posts.

Analysis of Pre-Pilot Study Results

As mentioned in Section 4.1, the main focus of the pre-pilot study was on testing
the study design, rather than collecting data on Alhazen. Therefore, the analysis
of the data concentrates on possible shortcomings of the infrastructure, rather
than findings about Alhazen.

Table 4.6 shows the time spend per task for the individual groups. Looking
at this data, it is striking how large the standard deviations are. In some cases,
the standard deviation is higher than the mean (d1t1 with uname, d1t0 with
Lists), in other cases extremely close to the mean (d1t1 with RemoveHTML,
d0t0 with RPN, d1t1 with Lists).

However, the task durations in Table 4.6 indicate that we reached one of our
design goals: Participants spend on average 10 minutes per task, which is the
time that we were aiming for when we designed the tasks. However, completing
the study still took about an hour, which means that the 15 e amazon vouchers
we handed out are below the pay professional software developers expect. The
low conversion rate may be linked to this.

4.2. PREPARING THE USER STUDY 123

Group Repair Quality
0.56 0.89 1.00

d0t0 0 2 2
d0t1 1 1 3
d1t0 0 1 1
d1t1 0 8 6

(a) RemoveHTML

Group Repair Quality
0.50 1.00

d0t0 1 3
d0t1 1 4
d1t0 0 2
d1t1 1 13

(c) Lists

Group Repair Quality
0.00 0.18 0.55 0.73 0.91

d0t0 0 2 0 1 1
d0t1 1 1 0 3 0
d1t0 1 0 0 0 1
d1t1 2 2 2 5 3

(b) uname

Group Repair Quality
0.30 1.00

d0t0 0 4
d0t1 1 4
d1t0 0 2
d1t1 1 13

(d) RPN

Table 4.7: Results for Repair Quality as collected in the pre-pilot study.

The compensation per participant should be increased.

Table 4.7 shows the repair quality for all tasks. As observed in Section 4.2.1,
repair quality is an ordinal variable. Therefore, I treat the data as categorial
values, and give the frequency for each observed value, in each group. The
number of categories differs for the different tasks: For uname, there are five
different values in total, and no participant provided a fully functional repair.
For the other tasks, there are not as many different values, just 2 for Lists and
RPN, and 3 for RemoveHTML. This indicates that the tasks do not give enough
room for errors. We can confirm this by looking at the individual submissions.
For both the Lists and the RPN task, all participants either provided a correct
fix, or did something ridiculous.

If the regression ratio is to be evaluated, the tasks Lists and RPN need to
be reworked.

In addition to the regression ratios and task durations, we also collected
free-text remarks from participants. Upon review of those remarks, we made
the following observations:

Technical Problems Two participants reported technical difficulties: In one case, the participant
wrote ”My kernel broke and I was not able run tests anymore :-(”. The
kernel is the component in a jupyter notebook which executed the Python
code, so the participant was obviously aware of the technical basis for our
infrastructure. However, looking at the logs, we cannot confirm whether
the kernel actually caused problems. Another participant wrote: ”On
the second task, after fixing the code, the test cases gave no output. Test
cases should show pass to indicate succesful fixes.” This may again point
to a crashed kernel, but also to a lack of feedback on passed tests in the
user interface. I observed the second problem as well, and I assume that
missing feedback in the UI lead the first participant to believe their kernel

124 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

had crashed.

It should be made sure that each test case always gives feedback.

Unclear task description For the uname task, several participants wrote statements such as ”It was
unclear if the specifier and the ’patch’ version should be stored together
or as a separate field as provided in my solution. ”, ”expected output not
clear” or ”The problem was not the debugging itself, but that I had too few
information about what the program should do.” Obviously, participants
cannot be expected to fix a bug if they don’t know the expected behavior.

The uname task lacked information about the expected output dur-
ing the pre-pilot study.

4.2.4 Refining the Study Design
The pre-pilot study in the previous section highlighted some problems with the
study design. In this section, I will detail the changes done to the infrastructure
and tasks, before the pilot study was undertaken. The first finding was about
the regression ratio in the Lists and RPN tasks.

Fo
rr

ef
er
en

ce

See Section 4.2.3

If the regression ratio is to be evaluated, the tasks Lists and RPN need to
be reworked.

In order to address this problem, both tasks were replaced.

RPN 2 The RPN task was replaced with a new task, RPN 2. While this task is
a calculator that accepts inputs in reversed polish notation as well, the bug is
different. Within the old RPN task, the bug was a missing update of an index, in
an attempt to mirror the ”Incorrect Communication with Other Program Parts”
category of bugs. In the new task, the code will instead increment the index by
1 after a number was parsed. The index needs to be incremented while parsing
a number, as it has to point to the next character after the number when number
parsing finishes. Therefore, participants may believe that it is correct to add 1 at
this point. However, the code updated the index as part of a loop earlier.

Lists The Lists task was replaced with a new task which sums up a list of
numbers. However, it cannot handle negative numbers when reading the input
from a string. This is an example for the ”Special Case Missing” category.

The next observation was:

Fo
rr

ef
er
en

ce

See Section 4.2.3

The compensation per participant should be increased.

Participants each receive a 30 e amazon voucher. The voucher which is
raffled to participants of the screening test was replaced with a 30 e voucher as

4.2. PREPARING THE USER STUDY 125

well.
In Section 4.2.3, it was not entirely clear whether the problem encountered

by the participants was a crash within jupyter’s kernel, or a lack of feedback in
the user interface. To address this, I made sure that all tests always give visible
feedback, and we changed the infrastructure to give participants an option to
restart the jupyter kernel. Obviously, only participants who know jupyter well
enoughwill be able to recognize a kernel failure as such. Participants who do not
know jupyter likely still cannot recover from a crashed kernel. As explained in
the previous section, I consider it much more likely that the participant mistook
a lack of visible feedback for a crashed kernel.

Within the uname task, all tests were rewritten to contain more information
about the expected output. This also means that tests created by Alhazen
were recreated. While the version used in the pre-pilot study just generated
inputs, and checked for a program crash, the new version used a construction-
based oracle (see Section 1.4) to be able to provide meaningful assertions to the
participants.

Estimating the required number of participants

Another important factor is the number of participants per group that will
be invited to the study. This number is subject to several constraints: On the
one hand, a larger number of participants means more statistical power, and
more reliable results. On the other hand, the low conversion rate reported in
Section 4.2.3 indicates that it will be difficult to collect a high number of data
points. Also, with a compensation of 30 e per participant, the available funding
becomes a limiting factor. Therefore, the number of participants invited should
be large enough to gain statistical power, but at the same time small enough to
be practical.

The number of participants required for a given level of statistical significance
can be calculated, based on estimates of the observed statistics. I am going to
estimate those numbers based on the data observed during the pre-pilot study.

Sample Size Estimation for Task Duration First, I am going to estimate the
required number of participants for research questions 1 and 2, which are con-
cerned with the task duration. Table 4.6 shows the observed mean and standard
deviations for the task durations. I estimate that the effect size will be strong2.
This means that the value of Cohen’s d (see Cohen [11]) will be at least 0.8.

Each of the groups d0t0, d1t0, d0t1 and d1t1 can be compared with each
other group. Those comparisons are symmetrical, meaning that a comparison
of d0t0 to d1t0 gives the same result as a comparison of d1t0 to d0t0. The effect
size is always calculated as a comparison of one group to another, so, with four
groups, there are 6 comparisons. The effect size table, as given by Cohen [11],
can be used to see the number of participants required to get an effect size of
0.8, assuming the real study gives the same means and standard deviations as
observed within the pre-pilot study. Table 4.8 gives Cohen’s d and the estimated
number of participants required for each of the six comparisons.

2this is commonly done for studies of this kind.

126 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

group 1 group 2 Cohen’s d #participants
d0t0 d1t0 1.48 9.00
d0t0 d0t1 1.58 9.00
d0t0 d1t1 0.95 17.00
d1t0 d0t1 0.11 393.00
d1t0 d1t1 -0.07 1571.00
d0t1 d1t1 -0.13 393.00

median 205.00

(a) RemoveHTML
group 1 group 2 Cohen’s d #participants
d0t0 d1t0 -0.40 99.00
d0t0 d0t1 -0.23 175.00
d0t0 d1t1 0.27 175.00
d1t0 d0t1 0.19 393.00
d1t0 d1t1 0.54 45.00
d0t1 d1t1 0.43 64.00

median 137.00

(b) uname
group 1 group 2 Cohen’s d #participants
d0t0 d1t0 0.34 99.00
d0t0 d0t1 0.23 175.00
d0t0 d1t1 0.51 45.00
d1t0 d0t1 -0.28 175.00
d1t0 d1t1 0.48 64.00
d0t1 d1t1 0.70 33.00

median 81.50

(c) RPN
group 1 group 2 Cohen’s d #participants
d0t0 d1t0 -0.36 99.00
d0t0 d0t1 1.03 12.00
d0t0 d1t1 0.57 45.00
d1t0 d0t1 0.52 45.00
d1t0 d1t1 0.54 45.00
d0t1 d1t1 0.06 1571.00

median 45.00

(d) Lists

Table 4.8: Estimated number of participants necessary, based on observed task
durations.

4.2. PREPARING THE USER STUDY 127

Task p-
Va

lu
e

Eff
ec

tS
iz
e

#
of

pa
rt
ic
ip
an

ts

re
qu

ir
ed

#
of

pa
rt
ic
ip

an
ts

(s
tr
on

g
eff

ec
t)

re
qu

ir
ed

#
of

pa
rt
ic
ip

an
ts

(o
bs

er
ve

d
eff

ec
t)

RemoveHTML 0.93 0.08 26 15.05 1683.37
uname 1.00 26 15.05
RPN 0.68 0.14 26 15.05 496.38
Lists 0.68 0.14 26 15.05 491.60

Table 4.9: Estimated number of participants based on frequency of successful
repairs, together with the statistics observed in the pre-pilot study.

Based on task duration, the estimates range from 9 participants per group,
to detect a difference between d0t0 and d1t0 for the RemoveHTML task, to 1571
to detect a difference between d1t0 and d1t1 for the RemoveHTML task. The
median of the estimated number of participants required for the RemoveHTML
task is 205, signifying that I would require 205 participants to be able to get an
effect size of 0.8 for 3 out of 6 comparisons. Those numbers assume that standard
deviation and mean within the full study are the same as within the pre-pilot
study.

Sample Size Estimation for Frequency of Successful Repairs For research
questions 3 and 4, there are two options on how to define quality (see Sec-
tion 4.2.1). I will deal with quality as frequency of successful repairs first. This
definition assumes that a repair is always either successful, or failed. Therefore,
repair success is a binary variable, and the only meaningful statistic is howmany
participants per group provided a successful repair. Statistical significance for
this kind of variable is checked with a chi-squared test which compares the
frequency of successful repairs within each group.

For this kind of tests, the number of participants required can be estimated
as described by Cohen [11], Table 4.9 shows those estimates. The first three
columns give p-Value, effect size and number of participants within the pre-pilot
study. Those results hold no surprises: The p-Values are high, and therefore
none of the results is statistically significant. The effect sizes are small. For the
uname task, no participant provided a correct solution. This was most likely
caused by the incomplete task description. With a frequency of 0, calculations
for effect size cannot be performed, as they require a division by this frequency.
The fifth column gives the estimate on the required number of participants, and
it holds a surprise: According to those results, we require 16 participants, but
the pre-pilot study had 26 participants already. Still, the data is not statistically
significant, as one can see from the huge p-values. The reason is my assumption
about the effect size: I assume an effect size of 0.8. However, the observed effect

128 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Fo
rr

ef
er
en

ce

See Section 4.2.1

Definition 23: Repair Quality
The quality of a repair is defined as

quality = # of passed tests
of tests

sizes in the pre-pilot study are all below 0.2. The last column of Table 4.9 shows
the required number of participants, calculated based on the observed effect
size. They are orders of magnitude higher, and not within the range where we
could expect to have this number of participants in the study.

Sample Size Estimation for Repair Quality Estimating the required number
of participants based on repair quality requires careful attention: As remarked
in Section 4.2.1, repair quality is not continuous. Therefore, I have to treat it as a
categorial variable, and apply a chi2 test, just as in the previous section.

Table 4.10 shows the obtained estimates. The first observation is that the
effect sizes are higher than for frequency-based evaluation. However, the effects
are still weak. Then, the p-Values are somewhat lower, but still not statistically
significant. As observed before, this is the best we can hope for in the pre-pilot
study. The estimates on number of participants required are in the same order
as for frequency-based evaluations, if at all, there is a tendency for them to be
somewhat lower.

Conclusion Based on task duration, quality and frequency of successful re-
pairs, estimates indicate that I require a number of participants which is higher
than practical. However, the data I based my estimates on was collected in the
pre-pilot study, and we already observed some problems with this data. Most
notably, the uname task did not define the expected outcomes, and therefore
participants were confused. It is likely that the data collected from this task is in-
valid, and should not be used for estimating the number of required participants.
For the RPN and Lists tasks, I observed that the tasks were either solved suc-
cessfully, or not at all. Therefore, the quality for those tasks are likely unusable
as well. Still, 377 participants for a difference in quality in the RemoveHTML
task seems impractical.

Looking at the estimates based on task duration, Table 4.8 also gives the
median for each task. This indicates that about 200 participants per group
would be enough to get a meaningful value for half the comparisons. This is
still not practical.

Another option is to concentrate on one comparison. If I want to detect
the difference between d0t0 and d1t1, which is certainly the most interesting, I
require 17 (RemoveHTML), 175 (uname), 45 (RPN) and 45 (Lists) participants
per group. This leads to a total of 350 participants (two groups, 175 participants
each). However, due to the problems with the uname task, it is questionable
whether this data is reliable. Assuming that the estimates for RPN and Lists are
more realistic, I can detect a significant difference for this comparison with 50

4.2. PREPARING THE USER STUDY 129

Task p-
Va

lu
e

Eff
ec

tS
iz
e

#
of

pa
rt
ic
ip
an

ts

re
qu

ir
ed

#
of

pa
rt
ic
ip

an
ts

(o
bs

er
ve

d
eff

ec
t)

RemoveHTML 0.51 0.18 26.00 377.74
Machine-Info 0.64 0.18 26.00 536.02
RPN 0.68 0.14 26.00 496.38
List 0.68 0.14 26.00 491.60

Table 4.10: Estimated number of participants based on repair quality, together
with the statistics observed in the pre-pilot study.

participants per group. This number works for the d0t0 against d1t1 comparison
on RemoveHTML, RPN and Lists, and gives us some room, 5 additional partici-
pants per group, in case our estimates where slightly off. Using 50 participants
per group means that I will not be able to see statistically significant differences
in repair quality or frequency of successful repairs, but the estimated number
of required participants for quality comparisons is more than 100 in almost all
cases, which I consider unpractical.

I will therefore attempt to recruit 50 participants per group in the pilot study.

4.2.5 Conducting the Pilot Study
As for the pre-pilot, I posted invitations for participants on Facebook, Reddit
and LinkedIn. This time, I also used twitter, posting on @DomSteinhoefel,
@bjrnmath, @debugging_book, @FuzzingBook and @AndreasZeller 3. As for
the pre-pilot, posts were deleted immediately on Facebook and Reddit. I also
used the mailing lists of our previous courses on debugging and cybersecurity
to contact our former students. This is a controversial decision, as I was aiming
to recruite professional software developers, and those of our students who still
use their university mail addresses are most likely not professional software
developers yet.

I did not record which of our postings attracted how many participants.
However, the postings were done about a week apart from each other, so I
can estimate which posting attracted how many participants based on the date
they took the test. Considering this data, LinkedIn, the @debugging_book,
@FuzzingBook and @AndreasZeller account on twitter as well as the student
mailing lists had the highest conversion rates. This is not necessarily precise. The
postings on the student mailing lists and the @AndreasZeller twitter account
were done on the same day, so my timing-based method is insensitive for a

3I’d like to use the opportunity to thank Dominic Steinhöfel, Björn Mathis and Andreas Zeller for
promoting the user study.

130 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Recruitment Step Participants Ratio to previous step
Visited Study Page 269
Completed Screening Test 62 23%
Passed Screening Test 58 93%
Invited to Second Part 58 100%
Completed all Tasks 38 65%

Table 4.11: Conversion rate for the invitation to the pilot study.

difference between those. Also, participants may have clicked a link on another
platform or account days after the initial posting. Especially on the twitter
accounts, those tweets stayed the most recent – and therefore topmost – entry
for several days.

Table 4.11 shows the total number of participants, and how far into the
process they went. Comparing to the pre-pilot, there is a noteable change in
passing rates for the screening test: 93% of the participants did pass. 3 out of
the 4 participants who failed provided no answers at all, or at least no answer
to most of the questions. It is reasonable to assume that those did not intent to
participate in the first place.

As for the difference to the pre-pilot study, we can only assume that our first
call for participation reached and motivated some people who did not meet
the requirements. This probably happened when recruiting among personal
acquaintances 4.

The call for participation reaches and motivates professional developers
only, therefore the screening test is mostly pointless.

In contrast to the pre-pilot, the time used for the screening test was measured.
We did not instruct participants to solve the screening test without interruptions,
and we did not ask whether they had interruptions afterwards, so the times
may not be precise. Participants took 17 minutes on average to solve all three
programming problems. The standard deviation was about 14 minutes, with a
minimum at about 3 minutes, and a maximum of about 67 minutes.

Table 4.11 gives a number of 38, or 65%, who finished the study. This number
means participants who finished all tasks. All 58 participants who were invited
for the second part started the first task, but some dropped out later.

All in all, this shows that it is problematic to find a sufficient number of
participants: Despite thousands of people who saw the call for participation on
twitter and LinkedIn, only 269 people visited the start page of the study. Even
if it is quite impressive to see that 13% finish the study, it will not be possible
to get to a sizeable number of participants this way. We stopped accepting
additional participants one week after the last twitter post, with no expectation
of additional participants.

The currently employed recruitment strategy does not generate the re-
quired number of participants.

4All participants remained anonymous, so we cannot be sure.

4.2. PREPARING THE USER STUDY 131

Task #
pa

rt
ic
ip
an

ts
outliers interruptions re

m
ai
ni
ng

#
pa

rt
ic
ip
an

ts

to
ta
lr

em
ov

ed

RemoveHTML 42 1 3 38 4
Machine Info 40 1 6 33 7
RPN 2 36 1 8 28 9
Lists 38 2 4 32 6

Table 4.12: Participants that were removed in cleaning per task.

We either need more recruitment channels, say more LinkedIn groups or
additional high-reach twitter accounts, or a new strategy entirely.

4.2.6 Analysis of Pilot Study Results

As in the pre-pilot, the main objective of data analysis is to find potential prob-
lems with the study design. Therefore, I will look at each task individually,
and report on the observations. Due to the low number of participants, the
data collected in the pilot study is not statistically significant. The only type of
data that may provide meaningful insights is the free text additional remarks
collected from the participants. Those may provide some insights into how
participants use Alhazen, as well as problems with the study design.

Data Cleaning

As far as data is shown within the following sections, the data was cleaned
beforehand. Table 4.12 gives information on the number of cleaned data points.
There were three main reasons for removing data points.

For some participants, I observed that the code they handed in was identical
to the original task code. Those participants hit the submit button without
modifying the code at all. I discarded them from further analysis.

Participants were asked whether they completed the tasks without interrup-
tions. If not, they were asked to report on the interruptions. Each participant
who reported that there had been an interruption was removed from the dataset
for this task. The fourth column of Table 4.12 gives the number of participants
who reported interruptions.

Furthermore, I removed outliers within the time measurements. Participants
who were more than 2.5 standard deviations away from the mean task dura-
tion were remove from the dataset for this task. The threshold, 2.5 standard
deviations, was decided upon before data collection started. The number of
participants removed for this reason is shown in column three of Table 4.12.

132 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Task 1: RemoveHTML

The RemoveHTML task is taken from the debugging book[76]. The code at-
tempts to remove HTML markup from a string. It has a bug concerning the
handling of quotation marks.

For the RemoveHTML task, 3 participants were removed from the dataset
because they reported an interruption while working on the task. Then, 1
participant had to be removed because theywere considered an outlier, according
to the threshold given in Section 4.2.6.

8 out of 38 participants provided additional remarks. Out of those, three
complained about a lack of documentation:

1. I have never used these Markdown, therefore it was a bit difficult to unter-
stand, what I should do

2. did not get precisely

3. Might need more information in the question as one way to pass the test
is to comment out line checking for quotes

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

All in all, I don’t think this is a reason to change the task. As the internet,
and programming tasks in the context of the internet, are ubiquitous nowadays,
participants who do not understand this requirement will be rare. The third
participant got the point: The single test case that the groups d0t0 and d1t0
got can in fact be passed by commenting out those lines. Indeed, 4 participants
provided a solution which just commented those two lines. Missing test cases or
incomplete specification are a standard problem in software engineering, and if
Alhazen helps developers to realize a missing test or incomplete specification,
this would be good. Therefore, presenting some incomplete specifications is in
line with the scientific objectives of our study.

Test cases and task descriptions within the user study may provide an
incomplete specification.

The data on achieved quality is shown in Figure 4.4.
In Section 4.2.1, I discussed that quality data needs to be treated as a ordi-

nal value, which is why I count participants per achieved quality, rather than
averaging. Due to the low number of participants, this data is not statistically
significant. There are three different quality values: One participant reached
a quality of 0.81. This participant, for some reason, replaced a quotation mark
with a space, therefore handling spaces instead of quotes. All four participants
who reached a score of 0.88 just commented the lines that contain the handling
of quotes. Finally, 34 participants provided a correct solution. This is a problem
in itself: More variety in the quality of the solution, leads to a more powerful
statistical test. Three different quality values are not sufficient here.

Tasks should be designed to allow for incomplete fixes.

One of the participants who provided a correct solution, wrote:

4.2. PREPARING THE USER STUDY 133

0.
81

0.
88

1.
00

Quality

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f p
ar

tic
ip

an
ts

0

2

9

0

1

8

0

2

6

1

0

9

group
d0t0
d1t0
d0t1
d1t1

Figure 4.4: A histogram of quality for the RemoveHTML task within the pilot
study. While the numbers on top of the bars give absolute values, the bars are
scaled relative to the size of the largest group.

4. reading the original source was already sufficient for finding the error so
here Alhazen was only used to check that my modification was indeed the
needed fix

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

Therefore Alhazen gave them additional trust in the correctness of their
reasoning. Also, they provided a correct fix, so they were not lead to believe
that it would be correct to just remove the handling of quotes entirely. However,
the participant was in the d1t1 group, and therefore also had additional tests at
their disposal. Still, this participant found Alhazen somewhat useful.

Another participant realized that they made a mistake after handing in:

5. oh no I realized my mistake now... ’>’ chars within attributes of strings...

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

This is a correct observation, but came too late. Apparently the participant
clicked ”Submit”, while they were still thinking about the task.

One participant reported the usage of an external tool:

6. It was great yeah solved it on my editor and pasted it

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

Copy and paste of codemay take somemore time than solving in the browser
directly, but in a remote study, we cannot prevent participants from doing this. I
don’t think it is a problem.

Finally, one participant points at a flaw in our design. They wrote:

7. I remembered the function (although not the problem/solution) from the
Debugging Book

134 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

In hindsight, it was a terrible decision to use a task from the book, and recruit
among our students, who were aware of the book because we use it in our
courses. 26 of the 34 participants who provided a correct solution gave the
solution that can be found in the debugging book. However, I consider it very
unlikely that 26 participants came from our students. Looking at the timeline,
some participants provided this solution before we send the call for participation
to our students. Also, it is not surprising to see this solution a couple of times:
It is the correct solution, after all. We are unable to decide whether participants
arrived at the correct solution on their own, or copied it from somewhere else.

Tasks should not be publicly available before the study is started.

Let’s have a look at what other participants who achieved a quality of 1.0 did.
One participants provided a fix that is too complicated. They added a condition
which is always true to an if statement. The test cases cannot detect this, because
there is no program run where this condition would be false.

One participant split an if with a conjunction within its condition into two if
statements. This leads to some code duplication, because the else case needs to
be duplicated, but is a correct solution. The last participant added an additional
else if case to an if statement, which, again, is unreachable, as the condition
is always false.

Whilemany of the solutions are identical, some are semantically identical, but
bear marks of working participants: One participant added a print statement,
indicating the use of print line debugging. Several participant added comments
to the source code, likely to aid their understanding. Other solutions are, again,
just identical. We cannot be sure how much ”cheating” took place.

In the current design, we cannot reliably detect whether participants
submitted their own work, or copied from somewhere else.

For completenes, I provide the data on task duration in Figure 4.5. Due to
the low number of participants, this data is inconclusive, and not statistically
significant.

In addition to time and quality measurements, we also asked participants
about the perceived usefulness of Alhazen’s diagnosis, and test cases. Data for
the RemoveHTML task can be found in Figure 4.6. The questions about useful-
ness of tests and diagnosis respectively were only asked to those participants
who saw tests or diagnosis, or both. Only those participants were considered for
the calculation of mean, median and standard deviation. As for task duration,
the number of participants is too small to draw any conclusions from this data.
The task was in general perceived as easy, and there was no problem in under-
standing the diagnosis. This data gives no reason to question the usefulness of
our questionnaire.

The questionnaires provide meaningful information.

4.2. PREPARING THE USER STUDY 135

Task 2: uname

Within the uname task, participants were asked to fix a piece of code which
extracts operating system information, like version number, kernel name and ar-
chitecture, from a string. For this task, I was able to use data from 10 participants
in the d0t0 group, 4 for d0t1, 9 for d1t0 and 8 within d1t1.

As for the previous task, I am going to discuss the additional remarks made
by the participants. Doing so quickly shows a problem with the task. 11 partici-
pants reported problems related to regex. One participant even made a rather
puzzeling statement:

1. The bug, if I found correctly, was in the regex expression and not in the
program!

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

This indicates that they do not think that the regular expression is a part of
the program. I consider this a misconception, similar to a statement like ”The
bug was not in the program, but in the source code (of the program)”.

Then, some participants indicated the use of external tools:

2. Didnt have much experience on Regex strings. But after reading a bit, I
check online tools to test the given regex string and I could see that it doesnt
matches with the input. I tried to fix the regex string, but the program still
doesnt work.

3. I haven’t used regex in ages and used https://regexr.com/ to better under-
stand the one presented

4. using classic external regex101 to test regex is faster than try/error

5. At first I didn’t notice that the minus was wrongly inside the capture group.
I used print to find out why the RELEASE assertion failed and noticed it
immediately afterwards.

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

This is understandable, as those tools provide better insights into the func-
tioning of a regex than traditional debuggers. However, it may mean that the
data we collect is not about Alhazen, but about those external tools.

The largest group, however, are those participants who expressed an unfami-
larity with regex:

6. I am familiar with regex but not much with Python regex. I think that the
difficult in identifying this bug comes more from knowing or not knowing
Python regex rather than other issues

7. I am not used to this regex match

8. I had to look up everything about regexes b/c i *m not familiar with regexes.

9. Regex refresher was required, especially how to use + and ?

10. Had a hard time with regex! Quite confusing at times.

136 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

11. It was easy to figure out that something was wrong with the regular
expressions, but resolving it takes some familiarity of it.

12. Just testing the limits of my regex ability really. Also the correct behavour
is not completely unambiguous which makes things a bit tricky.

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

This shows an unfamiliarity with the technology: + and ?, which one partici-
pant reported as unfamiliar, are basic operators, and, most likely, the very first
concepts any training material about regexes mentions.

Make sure participants know all concepts used in the task’s code.

However, the last participant points to a problem that became more evident
when I examined the submitted solutions: The task did not specify how the
code should handle some situations. While, as I explained in my discussion of
the RemoveHTML task, some amount of vagueness is acceptable, this task did
not describe how the code should handle invalid inputs. Several participants
provided code which would accept malformed version strings, however, there is
no agreement on what a version string looks like between different kernels 5, so
the question what is malformed is debatable already. Then, with no information
about how the code should react in this situation, the participants could do
nothing but ignore this. Participants who accepted malformed strings still
achieved a quality score of 1.0. It is not easy to add tests which fail with those
repairs. They would test for expectations that the participants were not aware
of. I would need to describe the expected behavior in more detail. But then, it
becomes much easier to spot the bug.

The tasks within the pilot study where hard to solve, as the expected
behavior was not always obvious, or fully specified.

All quality data can be seen in Figure 4.7. There are 7 different values for
this task, which is a lot more variety than for the previous task. However, it is
unclear whether this actually means that the task gave enough opportunities for
incomplete fixes, or is just an artifact caused by the participants’ unfamilarity
with regex.

Two participants indicated that they found the task more difficult than the
previous one:

13. It took time to find which expression was causing the errors.

14. It took me a bit longer to solve it for the other test cases too, the first test
case was easy to solve. but the rest were kind of tricky

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

This also reflects in the data from the questionnaire, which can be found in
Figure 4.8. The statement ”This task was very easy” met more disagreement
than for the previous task.

Finally, some participants expressed their opinions on Alhazen:
5e.g. the Darwin kernel of Mac OS X has other conventions than the Linux kernel

4.2. PREPARING THE USER STUDY 137

One participant concludes that more test cases, or examples, are more helpful
than Alhazen.

15. examples would have been better

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

This is reflected by the replies to the questionnaire: The participants agree
or strongly agree with the statement that the additional tests were useful.

Another participant feels that the diagnosis was wrong:

16. The diagnosis detected a too short version string instead of a missing
second dot version as the problem. Also, it did not mention that the minus
(as in ”-RELEASE”) was also a problem

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

Alhazen’s diagnosis indeed indicates that the length of the version string is
the problem. The point is that within the training data, and within all examples
generated by the feedback loop, only long version strings have a second dot
in them. This is mandated by the grammar: A dot can only appear after three
characters.

The last two point to another problem with the task:

17. I suppose there were two bugs in the code and Alhazen’s hint was only
useful to find one of the two

18. Alhazen lead me to the first of the two bugs.

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

Indeed, there were two problems in the task: The code failed on a patch
version after the minor version number (that is, a second dot in the version
number), and it failed, because it added a minus to its output in some situations.

The diagnosis and the test cases should be about one malfunction only.

This also reflects in the questionnaires: The usefulness and understandability
of the diagnosis was rated as mostly neutral.

For completeness, I give data on task duration in Figure 4.9. This data is not
statistically significant.

Task 3: RPN 2

The RPN 2 task is a calculator which accepts inputs in reversed polish notation.
The bug is that it misses operators after numbers if there is no space in between.
The Alhazen diagnosis is:

1. The program fails if: The second operand in an expression is not followed
by a whitespace, and the input is longer than 3 characters.

138 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

The first part is correct. The second part, the restriction on the input length,
is true because I need an expression with an operator, and therefore at least two
operands (1 character each, separated by a space), and an operator. The smallest
possible input which triggers this bug has 4 characters. The diagnosis would be
easier to understand, if Alhazen were to point out that an operator is required,
however, the structure of the grammar means that there is no exists(Operator),
but only four exists() for +, *, \and - respectively. Alhazen delivers a shorter
explanation by (ab-)using the coincidental correlation ofmax-char-length(input)
with the existence of an operator.

For this task, I have usable data from 10 participants in the d0t0 group, 5
participants in d0t1, 7 participants in d1t0 and 6 participants in d1t1.

As for all other tasks, this means that the data is not statistically significant. I
am therefore looking at additional remarks only.

As with the previous task, some users express that they are unfamiliar with
the topic.

1. A refresher on RPN would be helpful

2. didnt get it

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

Two others also point out that this task is difficult for someone who does not
know reversed polish notation.

3. lucky I know how stacks & RPN calculator work :)

4. I was familiar with the topic -> easier

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

For this task, one participant reported a technical problem:

5. Somehow the ”run test”-button disappeared. Hopefully the passing result
still came through (the pos+1 in parse_num was the culprit)

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

I can confirm that this participant submitted a working – and correct – solu-
tion. Still, the infrastructure may need somemore testing. However, the problem
of setting up this tool is not an easy one: All participants use different browsers
or operating systems, and even if the code is flawless, network problems may
still be a source of problems. Therefore, I have to accept that some datapoints
are not useable due to technical problems in the end. In addition to this, some
participants need to be dropped because they had interruptions, or trigger the
outlier threshold (see Section 4.2.6). This has consequences for the required
number of participants.

The number of participants invited should be sufficient to be able to discard
some participants due to technical or other problems.

For the RPN 2 task, one participants commented on the correct solution.

4.2. PREPARING THE USER STUDY 139

6. The solution was a double incrementation of pos in parse_num.

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

This statement is correct. There was a double increment within the code to
parse numbers, skipping the character immediately after the number.

As with the RemoveHTML task, this was spotted by most participants.
Which, again, leads to a sparse quality landscape. Figure 4.10 shows just two
quality levels. Just as the RemoveHTML task, this task does not give enough
possibilities to make mistakes.

Still, two participants expressed problems with this task:

7. It’s quite difficult for me to comprehend the debugging for this specific
question. No matter how much I try to understand it, Whoever wrote this
code isn’t to be allowed near corporate environments as a developer, it’s
quite poorly written. I’m sorry no offence but i couldn’t understand it as
an intermediate developer.

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

I am in no position to judge the code quality, as I wrote it myself. However,
just one other participant expressed similar concerns, and I myself consider the
code probably not my best work ever (I had to cause a bug on purpose, after
all), but reasonable.

The second participant wrote:

8. I took me a while to parse the code but after I used print to see what is
pushed to and popped from the stack, I found the issue quite quickly when
I noticed that the result of the addition was not pushed to the stack.

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

This sounds less like a complaint about the code, and more like a story about
debugging. The participant reports the use of print statements, as a debugging
helper. As this participant was in the d0t0 group, this cannot be seen as a
statement on the quality of the diagnosis or tests.

However, participants did express their opinions about either of those:

9. I could not understand the diagnosis at first, but when i completed the
task it made more sense

10. That would have taken forever without the test cases

11. I am not sure what was meant by the input length restriction

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

The second participant reports that the test cases were helpful. As the third
participant points out, the input length restriction is an artifact of Alhazen’s
algorithm: The shortest possible behavior triggering input has 4 characters, and
for Alhazen, using this coincidental correlation is the easiest way to express
this. Maybe the comment by the first participant, that they only understood the
diagnosis after fixing the bug, points in the same direction: When the developers
do not know the grammar and are unaware of the concept of coincidental
correlations, diagnosis which contain one are confusing for them.

Finally, the last two participants report on their debugging strategies:

140 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

12. Using breakpoints here would be helpful, although i understand that
jupyter notebook is useful for coding in the browser

13. The buggy subroutine was the last one I checked

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

One of them points out that they were looking for traditional debugging
tools, the second one just has a classical debugging story. The bug is always in
the last subroutine one looks at6.

For completeness, Figure 4.11 and Figure 4.12 give the task duration and
questionnaire results for the RPN 2 task. This data is not statistically significant.
The questionnaire data indicates – as for the previous task – that participants
were more happy with the tests than with the diagnosis.

Task 4: Lists

Within the Lists task, participants were asked to debug a piece of code which
sums up a list of numbers, given as a string.

For this task I had 10 participants within the d0t0 group, 5 participants within
the d0t1 group, 7 participants within d1t0 and 6 participants within d1t1.

As for the other tasks, the number of participants per group is slightly unbal-
anced. The reason for this are random effects: The conversion rates were slightly
different between the groups (but the difference is not statistically significant),
and outliers and interruptions happened at different rates within the groups.
For such a small sample size, this has to be expected.

Within our infrastructure, participants were assigned to a group when the
invitation to the second part was sent. Unfortunately, the system cannot know
the conversion rate per group, or howmany data points will be discarded, at this
point in time. Therefore, I suggest to assign later: If the assignment only happens
when a participant accepts the invitation, the effect of different conversion rates
can be balanced. If the system can even check whether data is usable, it could
just assign another participant to a group whenever a data point is invalid.

The infrastructure for a user study should be able to assign participants to
groups as late as possible.

However, all those effects are purely random, therefore a higher number of
participants may balance this automatically.

For the Lists task, 6 participants provided an additional remark.
One participant wrote:

1. so strange ways of doing simple stuff :) but fun!

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

Thinking about this, I, as someone who deals with parsing every now and
then7, found the way how the code works straight forward. After reading this
comment, I realized that it would have been easier to split the string at spaces

6That is, mostly, because one stops looking after finding it
7e.g. in two chapters of this dissertation

4.2. PREPARING THE USER STUDY 141

with a library function and then convert each part afterwards. I guess everyone
is influenced by his training and experience. However, this may provide an
insight into task design.

Tasks should be reviewed by an experienced developer other than the
person who designed them, to check for code quality and obvious issues.

One participant reports a technical problem:

2. A warning that the first run takes forever would have been nice. For a few
minutes I wasn’t sure whether the server died on me

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

There was no such warning because it never occured in my testing. I suspect
that the server may have been overloaded occasionally, or that the connection
may have been unstable. As time-taking is implemented client-side, the results
are still valid. However, long execution times may lead to higher-than-necessary
task durations.

During the study, the server performance should be monitored.

However, as mentioned before it will be impossible to rule out all technical
difficulties.

One participant, again, reported on using a different debugging tool:

3. I printed the number before yielding it and then found the issue quickly.

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

Also, several participants reported satisfaction with the Alhazen diagnosis.

4. This time, the diagnosis was quick and easy to understand

5. This was easier thanks a lot for this. I’m just an intermediate cse junior
year student and this seemed doable because of the diagnosis

6. Alhazen’s diagnosis directly pointed me to right function to check and
from there the bug was easy to notice

All participant remarks are printed as given by the participants, including all spelling and grammar errors.

Alhazen is perceived as useful on this task. This result also reflects in the
questionnaire results, shown in Figure 4.13. Perceived usefulness of both the
diagnosis and tests, as well as readability of the diagnosis, are excellent. Still,
those results are not statistically significant.

Figure 4.14 indicates another good property of this task: It has six different
quality levels.

One participant achieved a quality of 0. They changed the correct function,
but their fix does not even make sense syntactically. There is one execution
path where the function does not have a return value, despite the fact that it is
supposed to have one. Many programming languages would consider this a
syntactical mistake, and refuse to compile.

142 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

All participants who achieved a quality of 0.5 made a rather curious mistake:
The original code would extract numbers from the input string, and use Python’s
builtin mechanism to convert those strings to integers. The code, however, did
not account for negative numbers. A leading minus sign lead to a parsing error.
Participants who achieved a quality of 0.5 double-compensated. They checked
for a leading minus themselves, and then multiplied the number by -1, in an
attempt to make it a negative number. However, after extracting the entire
number from the string, Python’s builtin mechanism handles the minus quite
readily. Therefore, the multiplication by -1 re-introduced the same problem.

The participant who achieved a quality of 0.75 re-wrote the entire number-
parsing, and missed the fact that numbers can have more than one digit. This is
interesting: For the uname task, I observed that some solutions were wrong, but
not considered as such, as the expected format of the inputs was unclear, and
therefore it was not clear whether this was indeed a mistake by the participants.
For this task, the input format is decimal numbers. A format every developer is
familiar with. Therefore, I can consider this solution wrong, despite the fact that
all test cases the participants saw, evenwithin the t1 groups, had only single-digit
numbers.

The test cases contained another hidden gem: Numbers cannot only start
with minus sign, but also with a plus sign. Given that there was no test cases
which indicated this, it might be over-the-top to expect that developers realize
this when fixing such a bug. Still, developers who achieved a quality of 0.92
fixed the problem correctly, but did not extend the code to support numbers
prefixed with a plus as well. Many of them also parsed things like "1-9" as a
single number, which would fail when Python’s builtin mechanism was used to
convert those numbers. However, I did not consider this an error, as the task
description did not specify whether numbers were required to be separated by
spaces, and how invalid numbers should be treated.

Finally, several participants achieved a quality of 0.83. This value could be
achieved in different ways: Two participants supported single-digit numbers
only, just as the one with a quality of 0.75, but realized that numbers cannot
only start with a - sign, but also with a + sign. One participant fails with a
weird error message on numbers prefixed with two minus signs. I did allow
participants to consider this an error and throw an exception, however, this
participant generated an error which my oracle code did not handle.

All in all, this is the task with the most diverse quality of fixes.

Use tasks with input formats that are even more well-established than
HTML.

For completeness, Figure 4.15 gives the task duration for this task. The data
is not statistically significant.

4.2.7 P-Hacking
As mentioned before, none of the results of the pilot study are statistically
significant. However, this may not only depend on the data, but also on the
analysis deployed. All analyses I deployed so far were decided on up-front,
that is, before the first participant started the study. In this section, I will do
some analyses that were not defined up-front. This is scientifically unsound.

4.2. PREPARING THE USER STUDY 143

The problem is that almost any dataset contains some seemingly interesting
correlations or observations. However, many of those are just random effects,
and not generalizable to other data sets. Therefore, reporting observations in
data that were not expected beforehand runs the risk of false positives. With
this caution in mind, I will engage in this type of analysis here.

Are some participants just slower?

One noteworthy point about the data collected in the study is the huge stan-
dard deviation for task duration. Within several groups and task, the standard
deviation is so large that some participants seem to solve the problems twice
as fast as others. Within the pilot study, I also collected the time taken for the
three programming questions within the screening test. Participants required
on average 893.63 seconds to solve those programming questions, with a stan-
dard deviation of 619.03. Therefore, the distribution of screening test duration
looks quite similar to the durations observed for the tasks. It seems that some
developers are just faster than others all the time. This is in line with earlier
results on individual differences in performance on debugging problems[62].
However, if this holds, participants who were fast in the screening test should be
fast for the tasks just as well. Statistically speaking, there should be a correlation
between screening test duration and task duration.

I checked for two different correlations: Pearson’s correlation coefficient[56]
is a value between -1 and 1 which assumes its extreme values if there is a linear
relationship between two variables. Spearman’s rank correlation coefficient[66]
is between -1 and 1 as well, however, it assumes its extreme values if there is
a monotonic function that describes the relationship between two variables.
Therefore, I check for both, linear and non-linear relationships.

It is likely that participants in the d1 and t1 groups are somewhat slower, as
they need to process additional information, the diagnosis or test cases respec-
tively. Therefore, I checked correlation for each task and each group. The full
data can be found in Table 4.13. The table gives the number of participants per
group and task in its first column. Those numbers are small, and correlation
coefficients are unlikely to be statistically significant. However, the mean of the
Pearson’s correlation coefficients is 0.40, with a standard deviation of 0.46. This
is too small to assume a linear relationship between screening test duration and
task duration. Spearman’s correlation coefficients are 0.37 on average with a
standard deviation of 0.35. Therefore, I cannot assume a non-linear relationship
either. Those results do not support the hypothesis that individual developers
just are working at different speeds.

Time taken for the screening test has no relationship to time taken on the
tasks.

Does more time spend lead to better quality?

Reading and understading test cases or a diagnosis takes time. But then, if the
participants spend additional time thinking about the problem, do they deliever
higher quality? If this is the case, there should be a correlation between quality
and task duration.

144 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Task Group # participants pearson spearman
RemoveHTML d0t0 12 0.17 0.43
RemoveHTML d1t0 9 0.91 0.40
RemoveHTML d0t1 9 0.87 0.63
RemoveHTML d1t1 10 -0.10 0.21

uname d0t0 11 0.05 0.29
uname d1t0 9 0.62 0.28
uname d0t1 9 0.91 0.83
uname d1t1 8 -0.06 0.17

RPN 2 d0t0 11 0.04 0.24
RPN 2 d1t0 8 0.98 0.95
RPN 2 d0t1 8 0.86 0.90
RPN 2 d1t1 7 -0.14 -0.21

Lists d0t0 11 0.41 0.05
Lists d1t0 9 0.89 0.25
Lists d0t1 9 0.49 0.75
Lists d1t1 8 -0.36 -0.12

Table 4.13: Pearon and Spearman Rank correlation coefficient for screening test
and task duration.

Task Group # participants spearman
RemoveHTML d0t0 11 -0.37267799624996495
RemoveHTML d0t1 8 -0.2519763153394848
RemoveHTML d1t0 9 -0.2738612787525831
RemoveHTML d1t1 10 0.4107919181288746

uname d0t0 10 -0.4061811972299616
uname d0t1 5 0.2581988897471611
uname d1t0 9
uname d1t1 9 0.6468665190255972

RPN 2 d0t0 10
RPN 2 d0t1 5
RPN 2 d1t0 7 -0.6123724356957945
RPN 2 d1t1 6 0.3927922024247863

Lists d0t0 10 0.24219967151691824
Lists d0t1 7 0.6424452109375584
Lists d1t0 8 -0.6546536707079771
Lists d1t1 7 0.40768712416360564

Table 4.14: Pearon and Spearman Rank correlation coefficient for quality and
task duration.

4.2. PREPARING THE USER STUDY 145

Table 4.14 shows this data. Some table cells stay empty: In those cases, the
correlation coefficients could not be calcuated, because the quality data did
not have enough levels. Here, I used spearman’s rank correlation coefficient,
because quality is ordial, rather than rational. Most of the correlation coefficients
are small. There are just three outliers: The d1t0 shows a moderate to strong
downhill effect for the Lists and RPN 2 tasks. For those tasks, participants who
took more time delievered lower quality. However, this result is based on just
8 and 7 participants respectively, and cannot be seen as a larger trend. The
third outlier is d1t1 on unname, which shows the expected effect. However,
with 15 experiments who do not, it is safe to say that this is not a reliable result.
Moreover, just 7 out of 16 experiments show the expected trend. All in all, this
data is inconclusive, but discouraging. The low number of participants means
that all of this could be random effects.

Enlarging the data set

In the pilot and pre-pilot, the RemoveHTML task was identical. This means that
the data for this task could be combined into one, larger data set. Scientifically,
this is a venturous endeavor. It is only valid if we recruited from the same
populations for both studies. However, the screening test results between pre-
pilot and pilot were qute different, indicating that we did not. Therefore the
data may be incompatible.

Combining the data set nevertheless, I have data from 66 participants. After
cleaning the data as described in Section 4.2.6, 52 participants remain. 19 out of
those participated in the prepilot, the remaining 33 data points were collected
in the pilot study.

Figure 4.16 shows the combined data for task duration. Obviously, the most
relevant question is whether any of this is statistically significant. Figure 4.17
gives, among other data, the p-values for each comparison. Those values were
calculated with a standard t-test. Still, no comparison is statistically significant.

Let’s have a look at repair quality. The data can be found in Figure 4.18. I
used a chi2 test to calculate p-values and effect sizes. Again, no comparison is
statistically significant.

Estimating the required number of participants

In Section 4.2.4, I used data from the pre-pilot to provide an estimate on the
required number of participants. In this section, I’ll repeat the same calculations,
using the combined data from pilot and pre-pilot study for the RemoveHTML
task.

The sample size estimates for task duration can be found in Figure 4.17.
Numbers are in between 72 and 7748. This, again, means that the recruitment
strategy used in the pilot study would not have been capable of generating
enough data.

Figure 4.19 shows the p-values and sample size estimates based on quality.
In contrast to Section 4.2.4, I calculated this based on quality only, and not based
on the frequency of successful repairs. Please observe, from Figure 4.18, that
all but the d0t0 and d1t1 groups have just two levels of quality nevertheless,
and therefore the result is identical to the one I would get with a frequency

146 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

comparison. As mentioned before, none of the results is statistically significant
as is. Comparisions require in between 422 and 898 participants.

The original sample size estimation, 50 participants per group, was too
low.

4.3 Proposed Design for a User Study
At first glance, this chapter of my dissertation reports on a failure: I provided
no insights on the usefulness of Alhazen as a debugging tool. The data is not
statistically significant, and even if it were, the effects are negligible. However,
this chapter does provide insights into why the user study was insufficient to
show the usefulness of Alhazen. Therefore, I will use the lessons learned to
draft a study that would be capable of answering my research questions about
Alhazen. This study can be carried out in future work.

4.3.1 Recruitment Strategy
In Section 4.2.5, I observed

Fo
rr

ef
er
en

ce

See Section 4.2.5

The currently employed recruitment strategy does not generate the re-
quired number of participants.

Therefore, the recruitment strategy needs to be changed. Platforms like
Fiverr8 or upwork9 allow for the hiring of freelance software developers. As I
already gave amazon vouchers to the participants, the study would not be more
expensive if such a service is used to recruit participants. Also, it stands to reason
that platforms which are used to hire developers in the first place, and tasks
which are similar to the usual offers on those platforms, attract developers more
easily. Therefore, I suggest to use such a platform for participant recruitment.

When doing so, another observation has to be considered:

Fo
rr

ef
er
en

ce

See Section 4.2.7

The original sample size estimation, 50 participants per group, was too
low.

This is alarming, as it would be close to impossible, even on Fiverr or upwork,
to recruit large groups of participants. However, I am going to suggest significant
changes to the task design in the next section. For those new tasks, the sample
size estimates may not be applicable. Therefore, I suggest to conduct another
pilot study, and re-calculate the sample size estimates with values from the new
pilot.

When deciding on the number of participants for the study, there is another
factor to consider:

8https://www.fiverr.com
9https://www.upwork.com/

4.3. PROPOSED DESIGN FOR A USER STUDY 147
Fo

rr
ef
er
en

ce

See Section 4.2.6

The number of participants invited should be sufficient to be able to discard
some participants due to technical or other problems.

Table 4.12 shows howmany participants were removed as outliers or because
they reported interruptions for each task. I removed between 6 and 10 partici-
pants, that is between 15% and 26% of all participants. Therefore, about a 25%
more participants than estimated should be invited to participate. This does not
consider the number of participants who were invited, but did not take part.

4.3.2 Within Subject versus Between Subject

In the pilot study, participants were assigned to a group, and this assignment
meant whether they saw test cases or a diagnosis for all tasks. This is a ”be-
tween subject” design, as subjects are compared to each other. However, huge
standard deviations may result from individual differences between developers.
Therefore, I suggest to switch to a ”within subject” design. In this design, a
participant receives diagnosis and tests for some tasks, but not for all. Then,
their performance on different tasks can be compared. This means that individ-
ual differences can be ignored – they affected performance on both tasks – but
complicates task design: If one task is substancially simpler than another task,
this may hide effects from Alhazen. Therefore, it should be randomized which
treatment is provided to which participant on which task.

4.3.3 Task Design and Screening Test

Even after reworking the tasks for the full study (see Section 4.2.4), there were
some problems with the tasks. Those were:

Fo
rr

ef
er
en

ce

See Section 4.2.6

Test cases and task descriptions within the user study may provide an
incomplete specification.

Fo
rr

ef
er
en

ce

See Section 4.2.6

The tasks within the pilot study where hard to solve, as the expected
behavior was not always obvious, or fully specified.

In other words: The level of detail given in task descriptions needs to be bal-
anced carefully. Too much details may render Alhazen’s diagnosis superfluous.
Also, real-world debugging tasks seldomly come with multi-page documents
about expected program behavior. Too little details makes it hard to judge par-
ticipant submissions for quality, as it is unclear whether a problem is a bug, a
misunderstanding or this behavior was considered unspecified and therefore
irrelevant by the participant.

Then, there is another requirement for the tasks:

148 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Fo
rr

ef
er
en

ce

See Section 4.2.6

Tasks should be designed to allow for incomplete fixes.

I therefore suggest a completely different setup: Participants should receive
a rather large program, in the 1000 to 3000 lines range. Then, they are asked to
debug five bugs within this program, one after another.

1. A rather simple bug, which forces them to review large parts of the code
base (warm-up task)

2. One bug where they receive just one test case (similar to the d0t0 group in
the pilot study)

3. One bugwhere they receive Alhazen’s test cases (similar to the d0t1 group
in the pilot study)

4. One bug where they receive Alhazen’s diagnosis (similar to the d1t0
group in the pilot study)

5. One bug where they receive Alhazen’s diagnosis and test cases (similar
to the d1t1 group in the pilot study)

It should be randomizedwhich bugs is presented with which treatment to which
participant.

With this design, the buggy code is presented in a larger context. Parts of
the specification can be inferred from this context, which means that we can test
for precise behavior, while at the same time not provide too much details in the
task description. Also, a larger context makes it simpler to provide bugs which
allow for incomplete fixes.

While designing this larger program, and three to four tasks in the context of
this program, the other insights from pilot and pre-pilot should be considered.
Those were:

Fo
rr

ef
er
en

ce

See Section 4.2.6

The diagnosis and the test cases should be about one malfunction only.

Fo
rr

ef
er
en

ce

See Section 4.2.6

Make sure participants know all concepts used in the task’s code.

Fo
rr

ef
er
en

ce

See Section 4.2.6

Tasks should be reviewed by an experienced developer other than the
person who designed them, to check for code quality and obvious issues.

4.4. CONCLUSION 149
Fo

rr
ef
er
en

ce

See Section 4.2.6

Tasks should not be publicly available before the study is started.

However, using a larger program likely creates a new problem: When partic-
ipants work on the first task, they do not know the code base well. Therefore,
this task likely takes longer than usual: The time includes time that is used
to learn the code base. Subsequent tasks on the same code base tak less time,
because participants know the code base already. This learning effect may cloud
the influence of Alhazen on the time that participants need to fix the bugs.
My suggested study design counters this effect in two ways. Firstly, the first
task helps participants to learn the code base, but is not measured. Therefore,
the second task already profits from learning, and the learning effect has less
influence on differences between tasks 2, 3, 4 and 5. Second, the order of tasks 2
to 5 is fixed, but it is randomized which task receives which treatment: Some
participants get test cases and diagnosis for the first bug, while other have just
one test on the first bug, but have the diagnosis available for one of the other
problems. This way, tasks which profit stronger from learning effects have the
treatment for some, but not all participants, which allows for compensation of
the learning effect statistically.

I also observed:

Fo
rr

ef
er
en

ce

See Section 4.2.5

The call for participation reaches and motivates professional developers
only, therefore the screening test is mostly pointless.

When recruiting on freelancer platforms, it is very likely that we again re-
cruit professional developers only, therefore I assume that no screening test is
necessary. However, the warm-up task can at the same time be used to identify
low-performing participants.

Lastly, there was an observation about cheating:

Fo
rr

ef
er
en

ce

See Section 4.2.6

In the current design, we cannot reliably detect whether participants
submitted their own work, or copied from somewhere else.

Small syntactical changes, like randomizing function order, or renaming
variables and functions can be applied to the code. This way, participants who
outright copied from someone else can be identified. Also, a larger program
makes it less likely that fixes made by different developers are absolutely identi-
cal. This simplifies the detection of copied solutions.

4.4 Conclusion
In Section 4.1 I showed how developers can focus on smaller parts of the input
space, thanks to Alhazen. Unfortunately, those advantages did not materialize

150 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

in the user study. However, shortcomings in the design of the study, most notably
the insufficient number of participants, are likely to be the cause. Therefore, I
presented an improved study design in Section 4.3. I am hopeful that this design,
if implemented, provides more usable data on Alhazen’s merit.

4.4. CONCLUSION 151

d0t0 d0t1 d1t0 d1t1
0

500

1000

1500

2000

du
ra

tio
n

[s
ec

on
ds

]

(a) A box plot of task duration for the RemoveHTML task within the pilot study.
group # participants median [s] mean [s] std
d0t0 11 218.78 318.41 210.05
d0t1 8 264.47 507.84 745.10
d1t0 9 629.73 816.37 695.74
d1t1 9 461.75 596.73 616.63

(b) A statistics on task duration for the RemoveHTML task within the pilot study.

Figure 4.5: Task Duration within the RemoveHTML Task.

152 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Strongly disagree
Disagree

Somewhat disagree
Neutral

Somewhat agree
Agree

Strongly agree

The additional test cases were useful.

The diagnosis was easy to understand.

The diagnosis was useful.

The task was very easy.

(a) A box plot of perceived usefulness of the RemoveHTML task within the pilot study.

question #
pa

rt
ic
ip
an

ts

median mean std
The additional test cases were useful. 8 5.00 4.75 1.16
The diagnosis was easy to understand. 18 4.50 4.28 1.45
The diagnosis was useful. 18 4.00 3.94 0.94
The task was very easy. 37 4.00 3.78 1.03

(b) A statistics on perceived usefulness for the RemoveHTML task within the pilot study.

Figure 4.6: Perceived usefulness within the RemoveHTML Task.

4.4. CONCLUSION 153

0.
00

0.
18

0.
27

0.
55

0.
73

0.
91

1.
00

Quality

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f p
ar

tic
ip

an
ts

0

9

0 0 0 0

1

0

9

0 0 0 0 00 0

1

0

1

0

3

1 1

0

1 1 1

4

group
d0t0
d1t0
d0t1
d1t1

Figure 4.7: A histogram of quality for the uname task within the pilot study.
While the numbers on top of the bars give absolute values, the bars are scaled
relative to the size of the largest group.

154 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Strongly disagree
Disagree

Somewhat disagree
Neutral

Somewhat agree
Agree

Strongly agree

The additional test cases were useful.

The diagnosis was easy to understand.

The diagnosis was useful.

The task was very easy.

(a) A box plot of perceived usefulness of the uname task within the pilot study.

question #
pa

rt
ic
ip
an

ts

median mean std
The additional test cases were useful. 4 6.00 5.25 1.50
The diagnosis was easy to understand. 17 3.00 3.06 1.56
The diagnosis was useful. 17 3.00 3.06 1.14
The task was very easy. 31 3.00 3.03 1.47

(b) A statistics on perceived usefulness for the uname task within the pilot study.

Figure 4.8: Perceived usefulness within the uname Task.

4.4. CONCLUSION 155

d0t0 d0t1 d1t0 d1t1
0

500

1000

1500

2000

2500

3000

du
ra

tio
n

[s
ec

on
ds

]

(a) A box plot of task duration for the uname task within the pilot study.
group # participants median [s] mean [s] std
d0t0 10 387.18 375.64 146.49
d0t1 4 1228.65 1426.64 1052.99
d1t0 9 792.39 1082.69 676.78
d1t1 8 621.15 983.78 874.47

(b) Statistics on task duration for the uname task within the pilot study.

Figure 4.9: Task Duration within the uname Task.

156 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

0.
00

0.
92

1.
00

Quality

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f p
ar

tic
ip

an
ts

0 0

10

0

1

6

0 0

5

1

0

5

group
d0t0
d1t0
d0t1
d1t1

Figure 4.10: A histogram of quality for the RPN 2 task within the pilot study.
While the numbers on top of the bars give absolute values, the bars are scaled
relative to the size of the largest group.

4.4. CONCLUSION 157

d0t0 d0t1 d1t0 d1t1
0

500

1000

1500

2000

du
ra

tio
n

[s
ec

on
ds

]

(a) A box plot of task duration for the RPN 2 task within the pilot study.
group # participants median [s] mean [s] std
d0t0 10 734.04 883.12 597.74
d0t1 5 467.75 534.07 505.32
d1t0 7 825.73 848.33 463.88
d1t1 6 202.75 254.43 193.95

(b) Statistics on task duration for the RPN 2 task within the pilot study.

Figure 4.11: Task Duration within the RPN 2 Task.

158 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Strongly disagree
Disagree

Somewhat disagree
Neutral

Somewhat agree
Agree

Strongly agree

The additional test cases were useful.

The diagnosis was easy to understand.

The diagnosis was useful.

The task was very easy.

(a) A box plot of perceived usefulness of the RPN 2 task within the pilot study.

question #
pa

rt
ic
ip
an

ts

median mean std
The additional test cases were useful. 5 6.00 5.20 1.30
The diagnosis was easy to understand. 13 4.00 4.15 1.41
The diagnosis was useful. 13 4.00 3.92 1.61
The task was very easy. 28 3.00 3.18 1.39

(b) A statistics on perceived usefulness for the RPN 2 task within the pilot study.

Figure 4.12: Perceived usefulness within the RPN 2 Task.

4.4. CONCLUSION 159

Strongly disagree
Disagree

Somewhat disagree
Neutral

Somewhat agree
Agree

Strongly agree

The additional test cases were useful.

The diagnosis was easy to understand.

The diagnosis was useful.

The task was very easy.

(a) A box plot of perceived usefulness of the Lists task within the pilot study.

question #
pa

rt
ic
ip
an

ts

median mean std
The additional test cases were useful. 7 6.00 5.29 1.11
The diagnosis was easy to understand. 15 5.00 4.93 1.49
The diagnosis was useful. 15 5.00 4.87 1.46
The task was very easy. 32 5.00 4.78 1.31

(b) A statistics on perceived usefulness for the Lists task within the pilot study.

Figure 4.13: Perceived usefulness within the Lists Task.

160 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

0.
00

0.
50

0.
75

0.
83

0.
92

1.
00

Quality

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f p
ar

tic
ip

an
ts

0

1

0

1

8

00 0 0

1

6

1

0

2

1

0

2 2

1 1

0

1

3

1

group
d0t0
d1t0
d0t1
d1t1

Figure 4.14: A histogram of quality for the Lists task within the pilot study.
While the numbers on top of the bars give absolute values, the bars are scaled
relative to size of the largest group.

4.4. CONCLUSION 161

d0t0 d0t1 d1t0 d1t1
0

500

1000

1500

2000

du
ra

tio
n

[s
ec

on
ds

]

(a) A box plot of task duration for the Lists task within the pilot study.
group # participants median [s] mean [s] std
d0t0 10 201.66 314.56 370.92
d0t1 7 265.83 452.12 546.84
d1t0 8 244.47 523.98 716.97
d1t1 7 201.39 158.93 77.93

(b) Statistics on task duration for the Lists task within the pilot study.

Figure 4.15: Task Duration within the Lists Task.

162 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

d0t0 d0t1 d1t0 d1t1
0

500

1000

1500

2000

(a) A box plot of task duration for the RemoveHTML task, combining data from pilot
and pre-pilot study.

group # participants median mean std
d0t0 14 335.75 516.13 481.60
d0t1 11 272.75 541.35 648.27
d1t0 11 629.73 778.72 639.11
d1t1 14 347.91 571.89 625.79

(b) Statistics on task duration for the RemoveHTML task, combining data from pilot and
pre-pilot study.

Figure 4.16: Task Duration within the RemoveHTML Task, combining data from
pilot and pre-pilot study.

4.4. CONCLUSION 163

Group 1 Group 2 p-
Va

lu
e

Eff
ec

tS
iz
e

Description Po
w
er

re
qu

ire
d
#
of

pa
rt
ic
ip
an

ts

d0t0 d1t0 0.25 0.47 small to medium 0.20 72
d0t0 d0t1 0.91 0.05 small 0.05 7748
d0t0 d1t1 0.79 0.10 small 0.06 1576
d1t0 d0t1 0.40 0.37 small to medium 0.13 117
d1t0 d1t1 0.42 0.33 small to medium 0.12 148
d0t1 d1t1 0.91 0.05 small 0.05 6802

Figure 4.17: Sample size estimation and p-values on task duration for the Re-
moveHTML task, combining data from pilot and pre-pilot study.

0.
75

0.
81

0.
88

1.
00

Quality

0.0

0.2

0.4

0.6

0.8

1.0

pa

rti
cip

an
ts

1

0

3

10

0 0

2

9

0 0

3

8

0

2

3

9

group
d0t0
d1t0
d0t1
d1t1

Figure 4.18: The observed quality values for repairs on the RemoveHTML task,
combining data from the pre-pilot and pilot studies.

164 CHAPTER 4. DEBUGGING WITH INPUT FEATURES

Group 1 Group 2 p-value Effect Size Description #
of

pa
rt
ic
ip
an

ts

re
qu

ire
d
#
of

pa
rt
ic
ip
an

ts

d0t0 d1t0 0.64 0.13 small 25 868
d0t0 d0t1 0.65 0.13 small 25 898
d0t0 d1t1 0.38 0.19 small 28 532
d1t0 d0t1 1.00 0.00 very small 22
d1t0 d1t1 0.39 0.19 small 25 422
d0t1 d1t1 0.42 0.19 small 25 456

Figure 4.19: Sample size estimation and p-values on quality for the Remove-
HTML task, combining data from pilot and pre-pilot study.

Chapter 5

Targeted Carving

The previous chapters showed how input features can be used for debugging.
In this chapter, I will turn towards testing. When I argued why Alhazen can be
helpful for developers, I made the assumption that developers can concentrate
their debugging efforts on a smaller part of the program under investigation
when they know which input parts are relevant for a bug. In this chapter, I will
investigate whether automated testing tools can focus their effort on specific
program parts, by focusing on specific parts of the inputs.

The main idea is to identify a program part which deals with a specific input
part, and generate a unit test for this part of the program, based on an analysis
of a system test that exercised the entire program. This unit test can be analyzed
independent of the surrounding system, and then the result of this analysis can
be used to improve the system test.

Of course the system test could be analyzed and improved directly, however,
unit test analysis is much faster than system test analysis. Therefore, analysing
on the unit-level holds the promise of a performance boost over a system-level
analysis. Therefore, I refer to the tool I develop in this chapter as a system test
booster

The tool, which is called Basilisk, is based on three techniques:

Carving [16] generates unit tests from observations of system test executions.
Within Basilisk, I use carving to generate unit tests for the functions that
process the relevant input parts.

Unit Analysis Next, I use existing tools to analyse the unit tests. This analysis
yields additional unit tests, which describe border behavior of the code
under test. Those are the cases that Alhazen needs to learn from.

Lifting transforms the unit tests, generated by carving and refined by symbolic
execution, into system-level inputs. Lifting was developed by me.

For unit test analysis, I will examine two different techniques: Symbolic
execution[8] executes a program symbolically, and therefore builds a set of
constraints which describe inputs that reach a specific program part. When my
new technique is used with Klee at the unit level, I call it Basilisk. Fuzzing[49]
uses randomly generated inputs to find those which trigger crashes, or achieve
new coverage. Combinung my technique with libfuzzer at the unit-level, I call
it Fuzzilisk.

165

166 CHAPTER 5. TARGETED CARVING

〈start〉 → 〈function〉 "(" 〈number〉 ")"

〈function〉 → "tan" | "cos" | "sin" | "sqrt"

〈number〉 → /-?[0-9+](.[0-9+])?/

Figure 5.1: The input grammar for a simple calculator.

I will also investigate whether Basilisk can be combined with Alhazen.
Consider the running example. Alhazen is supposed to find out that "sqrt(x)"
fails for all x <= 0. Alhazen does so by repeated trials: The initial inputs are
"sqrt(-9)" and "sqrt(900)", which leads to the hypothesis that "sqrt(x)"
fails for all x <= 445. Alhazen cut the search space in half, similar to how a
binary search would find the correct value1. This process is repeated, until the
partition of the input space that the decision tree describes cleanly separates
behavior-triggering and non-behavior-triggering runs. This process is rather
costly: Alhazen needs several tries until the decision boundary is finally found.
If Basilisk can indeed focus on the program part which processes "-9", it should
be able to find this boundary value much faster.

The implementation presented in this section is just a prototype. There clearly
are some design decisions that I would take differently if I were to build this tool
again. Those will be discussed in Section 5.7.1. However, it still yields results
that show that this approach should be considered.

5.1 Motivating example
In this section, I will describe the basic operation of Basilisk with an example. I
will do so in the context of Alhazen, such that the chapter already motivates
the integration of both tools, however, keep in mind that Basilisk may be useful
on its own already. I will again use the running example I used earlier: The
calculator.

The calculator accepts inputs as described by the grammar in Figure 5.1.
Those are function invocations like "sqrt(9)" or "tan(22)". It crashes if in
"sqrt(x)", x is smaller or equals 0.

Alhazen initially receives two inputs "sqrt(900)", and "sqrt(-9)". The
second one fails, the first one does not. As in the previous chapters Alhazen
starts by forming an initial hypothesis. It claims that all inputs with a number
below "-445" fail. While this is not the correct boundary value, this hypothesis
is still correct, at least in a sense: It explains all observations made so far, it is
just not precise.

Alhazen further extracts a predicate set, just as before. In this case the
predicate sets are

• {max-numeric(〈number〉) < 445}; and

• {max-numeric(〈number〉) ≥ 445}.

1In fact, the test point – "445" – is selected by the decision tree learner. It happens to be half way
between "-9" and "900", as it would be in a binary search, but the algorithm is not binary search.

5.2. BACKGROUND 167

For each predicate set, Basilisk now analyses the input and sees that the
hypothesis considers a part of it only: The 〈number〉 is addressed, but not the
〈function〉. Therefore, Basilisk assumes that 〈number〉 is the relevant part of the
input, and decides to further modify this part of the input. For each predicate
set, it identifies a sample input which fulfills this predicate set. In the example,
there are only two sample inputs, and therefore "sqrt(-9)" is used for the first
predicate set, and"sqrt(900)" for the second.

Basilisk now carves unit tests from the execution of those samples. Carving
was pioneered by Elbaum et al. [16]. It works in the following way: Basilisk
executes the samples obtained from Alhazen. During the execution, it observes
function calls within the program under test. The calculator program starts by
reading the input sample from a file. Then, it passes the expression, as a string,
to a function named eval. eval identifies the function and calls parse_number
to extract the argument and convert it to a numeric value. Then, eval invokes
msqrt. This function finally computes the square root, and contains the bug.
Basilisk generates a unit test for each of those functions. Each unit test consists
of two parts. First, it (re-)generate the memory contents at the time of function
invocation, and then it invokes the functionwith the same arguments as observed
during the execution on the input sample. For the example, Basilisk generates:

1. a unit test for eval with the argument "sqrt(-445)",

2. a unit test for parse_number with the argument "-445)",

3. a unit test for msqrt with the integer argument -445,

Afterwards, Basilisk uses a symbolic execution engine, Klee[8], to analyze
each of those unit tests. Symbolic execution identifes an input for each execution
path within the function under test.

1. For eval, Klee gives "sqrt(-40)", "sqrt(-445)" and "sqrt(-448)".

2. For parse_number, Klee gave "-40)", "-445)" and "-448)".

3. For msqrt, I obtain 2147483647, and 0.

Basilisk uses those values to generate new system tests, a process I call lifting.
Within the example, it generates the input samples "sqrt(-40)", "sqrt(-445)",
"sqrt(-448)", "sqrt(2147483647)", and "sqrt(0)".

Those new sample inputs are quite informative for Alhazen. "sqrt(0)"
shows exactly the decision boundary, and "sqrt(2147483647)" indicates an
upper bound for the value of the argument. Using those new samples, Alhazen
can immediately generate a better hypothesis.

5.2 Background
Besides Carving, there are several enabling technologies for Basilisk. The first is
unit-level analysis: Basilisk generates unit tests, which would be useless without
techniques to analyse them, and suggest new parameter values. The first two
subsections of this section present fuzzing and symbolic execution, the unit-level
analysis techniques I am going to use in this thesis. The last section presents
LLVM, the framework I used in the implementation of carving for Basilisk.

168 CHAPTER 5. TARGETED CARVING

Listing 5.1: Buggy code to find the square root of an integer.
1 // This function checks whether expr starts with a given string,
2 // and, if so, increases the expr pointer.
3 bool match(char **expr, const char *expected) {
4 size_t i = 0;
5 for(;expected[i] != '\0';i++) {
6 if((*expr)[i] != expected[i]) return false;
7 }
8 *expr += i;
9 return true;

10 }

*expr symbolic
expected "sqrt"

(a) Initial program state

*expr symbolic
expected "sqrt"
i 0

(b) Program state after executing
size_t i = 0.

*expr[0] != "s"
expected "sqrt"
i 0

(c) First program state after evaluating
*expr[0] != expected[0].

*expr[0] == "s"
expected "sqrt"
i 0

(d) Second program state after evaluat-
ing *expr[0] != expected[0].

Table 5.1: Execution states in a symbolic execution of Listing 5.1.

5.2.1 Symbolic Execution
A key element of Basilisk is symbolic execution. Symbolic execution is used to
generate new test inputs, exercising previously undiscovered execution path
within the program. Symbolic execution divides program values in two groups:

Concrete values are handled as in any other type of execution.

Symbolic values are treated as modifiable; Instead of executing, the execution
engine collects constraints on how they are used. Later on, a constraint
solver can be used to get concrete values for symbolic values, which exercise
a specific program path.

Let’s illustrate this with an example. Consider the function match, displayed
in Listing 5.1. This function checks whether a string starts with a given pattern.
For the example, assume that expr is a pointer to symbolic memory, while
expected in the concrete value "sqrt". This program state is shown in Table 5.1a.
The program now executes the first statement of the function, size_t i = 0.
This introduces a new variable, named i and with the value 0, as can be seen in
the next program state in Table 5.1b. The execution now proceeds to evaluate
the condition for the for loop. It finds that expected[0] is "s", and therefore
expected[0] != '\0'. The program enters the loop body, and evaluates the
expression (*expr)[i] != expected[i]. Here, *expr[0] is a symbolic value.

5.2. BACKGROUND 169

Therefore, the execution engine generates two states. The first state, shown
in Table 5.1c, records the formula expr[0] != 's', and, as there is a return
statement within the body of the if statement, terminates the function. The
second state, shown in Table 5.1d, records the formula expr[0] == 's' and
goes on to execute i++. If symbolic execution goes on for a couple more steps,
the resulting formula is *expr[0] == "s" ∧ *expr[1] == "q" ∧ *expr[2] ==
"r" ∧ *expr[3] == "t". As a result, a constraint solver would generate the
value "sqrt", and therefore an input which executes the for loop to its entirety.
However, at the same time, symbolic execution also generates the formulas
*expr[0] != "s" and *expr[0] == "s" ∧ *expr[1] != "q" and *expr[0] ==
"s" ∧ *expr[1] == "q" ∧ *expr[2] != "r" and *expr[0] == "s" ∧ *expr[0]
== "q" ∧ *expr[0] == "r" ∧ *expr[0] != "t". If for each of those formulas,
one input is generated, and match is executed with all those inputs, all possible
execution path are exercised.

This example hints at one weakness of symbolic execution. Symbolic exe-
cution reasons about all execution path of a program. However, especially in
the context of loops, programs can have many execution path. Just think about
an if statement in the body of a loop. In the example, I showed how an if
statement generates two new program states that symbolic execution needs to
consider. Within the example, one branch of the if leads to a return statement.
If both branches allow another iteration of the loop to follow, it means that there
are 2i states for a loop with i iterations. This leads to exponential growth in the
number of program states to consider, and therefore in the runtime of a symbolic
execution engine. This problem is knwon as path explosion.

Klee

In this thesis, I am using Klee[8]. Klee is a symbolic execution engine for
the C language. At its time, Klee provided a number of optimizations over
state-of-the-art symbolic execution engines.

Compact State Reresentation As explained when I introduced the path explo-
sion problem, symbolic execution engines need to keep track of thousands,
if not hundreds of thousands, of program states. Klee meets this challenge
with an in-memory representation which favors re-use. A memory-object-
level copy-on-write mechanism allows for a compact representation of
memory states.

Query Optimisation The authors of Klee observed that the time spend on
constraint solving dominates the runtime of the symbolic execution itself.
Therefore they implemented a number of query simplifications, as well as
caching techniques to find solutions faster.

State Scheduling A key question within symbolic execution is which state to
execute next. With an if statement, should the engine investigate the true
branch or the false branch? What if there is still a branch from a previous
if statement to be considered? The Klee authors treat the problem like a
tree search, and implemented two new heuristics to tackle the problem.

Those optimizations allow Klee to scale to programs that were previously
impossible to execute symbolically.

170 CHAPTER 5. TARGETED CARVING

5.2.2 Fuzzing
Fuzzing was introduced by Miller, Fredriksen, and So [49]. The main idea is
very simple: Provide the program under test with random data, and see whether
it crashes. At first glance, this is silly. Noone provides programs with random
data, so all crashes found during fuzzing would be crashes that never happen
in production. However, programs need to stand up to user errors, and, if
they expose an interface to untrusted parties, for example by exposing it to the
internet, they may be targets for attacks. Programs need to be hardened against
malformed inputs, no matter whether those were generated by user error or
ill intent. Every crash may be exploitable, or, in multi-user systems, cause a
service disruption for other users. Therefore, software developers usually fix
every crash that can be triggered with an input given to a public interface of
their program.

Fuzzing has seen quite some development in recent years. Fuzzers can
be characterized by several characteristics. The first question is how much
information they have about the program under test.

Black-box fuzzers have no information about the program under test at all.
This class includes Radamsa, and Miller’s original work.

White-box fuzzers perform analysis of the program under test. Examples in-
clude tools like RedQueen[5], which uses program analysis to solve some
program constraints symbolically.

Gray-box fuzzers are somewhere in between white- and black-box fuzzers.
While no formal definition exists, the term is usually used to say that
a fuzzer does use information from program analysis, but that the anal-
ysis is very basic. An example for this is AFL, which collects coverage
information.

The second question is how the fuzzer derives new inputs:

Random input generation derives new inputs at random, without any infor-
mation. The aforementioned paper by Miller, Fredriksen, and So [49] is
an example for this appraoch.

Mutational input generation derives new inputs by mutations of existing in-
puts. Tools like Radamsa[32] and AFL[75] are examples for this.

Search-based input generation uses a search algorithm, for example an evo-
lutionary algorithm([75]) or gradient descent([43]), to decide which
mutations to apply to existing inputs.

In this thesis, I am going to use a fuzzer called Radamsa[32]. This fuzzer is a
mutational, black-box fuzzer. Basilisk itself can be interpreted as a white-box
fuzzer, using unit-level analysis as a means to generate new inputs.

Unit-level Fuzzing

Fuzzing also appears in my thesis as a unit-level analysis technique. While
fuzzing at the unit-level has been done before, for example by Pacheco and Ernst
[52], it suffers from a conceptual problem. Unit-level interfaces are typically not

5.3. CARVING C PROGRAMS 171

externally accessible. Consequently, malformed inputs are not a concern: Other
layers of the system can filter them before they cause harm. In contrast to system
level interfaces, unit-level interfaces are not a target for attack, or user error. But
then, unit-level fuzzing suffers a high false positive rate. Every crashing input
may be unrealistic, in the sense that it could never go into the unit within the full
system. Basilisk solves this problem, because it can validate unit-level inputs by
lifting them to the system level. Only if the generated system test fails, it will
be reported to the developer. Therefore, Basilisk, just as all other variants of
system-level fuzzing, has a false positive rate of zero.

5.2.3 Low-Level Virtual Machine
Basilisk is built on top of the Low-Level virtual machine (LLVM)[41]. Despite
its name, LLVM is not a virtual machine, but a compiler construction framework.
It is used in compilers such as the C compiler clang, the compiler for the rust
programming language, or Nvidia’s Cuda compiler [12]. Compilers built on top
of LLVM first translate the program into an intermediate representation, called
LLVM IR. Then, optimizations can be applied to this representation. That means
that LLVM optimizations can be reused for different programming languages.

LLVM IR is a representation of the program in static-single assignment form
(SSA) [13]. This means that each variable, called a register, can be assigned only
onces. Therefore it is easy to reason about which values are in which register
when, a property that makes it especially easy to implement optimisations and,
as I will do in this thesis, instrumentations.

5.3 Carving C Programs
Elbaum et al. [16] presented carving as a way to generate unit tests out of system
tests. Carving observes function invocations within the system test, and uses
those invocations as unit tests. Elbaum et al. [16] present two variants of carving:

State-Based Carving extracts exactly one function invocation, and writes all its
inputs into the test as concrete values.

Action-Based Carving chooses one function invocation as well, but uses more
of the observed function calls to construct all required input values.

In the following, I will present both approaches in more detail.

5.3.1 Carving Approach
When executing a system test, the program performs a sequence of function
invocations. Those invocations form a tree: Each function is a child of the func-
tion which invoked it. Also, each function accepts inputs, and returns outputs:
Concrete values, which may be results of computations in other functions, and
pointers to memory areas. All this forms the execution graph of a program.

Definition 25: Execution Graph
An execution graph is a directed, acyclic graph where each function invo-
cation within a program execution and each memory area used by the

172 CHAPTER 5. TARGETED CARVING

program is represented as a node. If, during the execution, function A
invoked function B, there is an edge from the node labeled with A to the
node labeled with B. If a memory area M is returned by A, there is an edge
from A to M, if it is used as an input to A, there is an edge from M to A. If a
memory area M contains a pointer to a memory area M2, there is an edge
from M to M2.

Listing 5.2 shows an excerpt from the calculator which serves as an example
The program accepts a file name as input, and evaluates the expression within
the file. The code listing does not include any error handling or validity checks
for the input.

Listing 5.2: Code for the calculator example. Some error handling and function
bodies were removed for readability.

1 // helper function to read all text from a file
2 // left out for readability
3 char *read_all_text(char *path) ...

5 // This function checks whether expr starts with a given string,
6 // and, if so, increases the expr pointer.
7 bool match(char **expr, const char *expected) {
8 size_t i = 0;
9 for(;expected[i] != '\0';i++) {

10 if((*expr)[i] != expected[i]) return false;
11 }
12 *expr += i;
13 return true;
14 }

16 // this function parses a number from expr,
17 // and increases the expr pointer afterwards
18 int32_t parse_number(char **expr) {
19 int32_t number = 0;
20 int32_t factor = 1;
21 if(*expr[0] == '-') {
22 (*expr)++;
23 factor = -1;
24 }
25 char *start = *expr;
26 for(;'0' <= *expr[0] && *expr[0] <= '9';(*expr)++) {
27 int32_t digit = *expr[0] - '0';
28 number *= 10; number += digit;
29 }
30 return number*factor;
31 }

33 int32_t msqrt(int32_t x) {
34 x = max(x, 0);
35 int32_t approx = -1;
36 int32_t guess = x / 2;
37 while(approx != guess) {
38 approx = guess;
39 guess = (approx + x / approx) / 2;

5.3. CARVING C PROGRAMS 173

40 }
41 return approx;
42 }

44 int32_t eval(char *input) {
45 int32_t (*f)(int32_t) = NULL;
46 char** expr = &input;
47 // check which function it is
48 if(match(expr, "sqrt")) {
49 f = msqrt;
50 } else if(match(expr, "sin")) {
51 f = msin;
52 } else if(match(expr, "cos")) {
53 f = mcos;
54 } else if(match(expr, "tan")) {
55 f = mtan;
56 }
57 if((*expr)[0] != '(') return -1;
58 (*expr)++;
59 // read the number
60 char *s = *expr;
61 int32_t number = parse_number(expr);
62 if((*expr)[0] != ')') return -1;
63 (*expr)++;
64 // calculate and return the result
65 return f(number);
66 }

68 int main(int argc, char **argv) {
69 char *text = read_all_text(argv[1]);
70 int32_t result = eval(text);
71 free(text);
72 printf("result: %d\n", result);
73 return 0;
74 }

When the program is invoked with the argument in.expr, and the text
"sqrt(900)" in the file in.expr, the execution graph in Figure 5.2 is obtained.
The main function, in Line 68 of the code, is represented as node F1 in the graph.
It can be seen in the code that it takes two inputs: The number of arguments
argc and a pointer to the arguments, argv. Within the execution graph, argc is
not visible, because it is a value, not a pointer. argv is a pointer to an array of
pointers. The array itself is represented by the node M0. It contains pointers to
the program name argv[0] and the string "in.expr", which is argv[1]. In the
memory graph, those are represented by edges to nodes M1 and M2.

main calls read_all_text (Line 69), therefore there is an edge to node F2 in
the graph. read_all_text receives "in.expr" as an argument. In the program,
this is a pointer to M2. Therefore, an edge from M2 to F2 exists. read_all_text
reads the entire text from the file, and returns a pointer to a new memory area,
represented by node M3 in Figure 5.2. This memory area is returned by F2, and
hence there is an edge fromF2 toM3. evaluses match to check the function name
(Line 48, node F3). match, however, does not receive a pointer to "sqrt(900)",
but a pointer to a pointer. This is done because match also advances the position

174 CHAPTER 5. TARGETED CARVING

M0: argv

M1: ”calc” M2: ”in.expr”

F1: main F2: read_all_text

M3: ”sqrt(900)”M4: expr

F3: eval M5: ”sqrt”

F4: match

F5: parse_number

F6: msqrt

Figure 5.2: Execution graph for the program in Listing 5.2.

of this pointer to the next character that needs to be processed by eval. Therefore,
memory area M4 contains a pointer to M3, represented by an edge from M4 to
M3. Then, there is an edge from M4 to F3, indicating that match receives this
pointer. As second argument, match receives the string to compare with, "sqrt".
This is a constant in the source code, and therefore a pointer to the program’s
data section, represented by an edge from memory area M5. During execution,
match updates the pointer it received as first argument, this, however, just means
the value in the memory area changes. It does not generate new memory area.
Therefore, F5 and F6, the subsequent calls to parse_number (Line 61) and msqrt
(Line 65) still receive the same memory area, and their nodes have incoming
edges from M4 just as well. Both parse_number and msqrt finally return an
integer, but this is not visible within the execution graph, as it is call by value,
not call by reference.

Carving a unit test means to slice the execution graph: A function invocation
can be replayed by executing the same function, with the same inputs. Each
input is represented as an edge, and there are two ways to handle edges in
carving:

Recording the input value can be recorded in the original execution, and used
in the test execution. Within Basilisk this is done for all values.

Recreation If the edge represents that a memory area returned by a function
call A is used within B, the edge can be traversed backwards: A can be
called in the test, and the memory area can be passed through. All input
values for the call to A need to be created within the test, which means that
incoming edges for A need to be recorded or recreated as well.

5.3. CARVING C PROGRAMS 175

Listing 5.3: A test obtained from the execution graph in Figure 5.2 via state-based
carving.

1 void state_based_test() {
2 char *n1 = (char *) malloc(5);
3 strncpy(n1, "900)", 5);
4 parse_number(&n1);
5 }

Listing 5.4: A test obtained from the execution graph in Figure 5.2 via action-
based carving.

1 void action_based_test() {
2 char *n1 = read_all_text("in.expr");
3 char *n2 = &n1;
4 match(n2, "sqrt");
5 parse_number(n2);
6 }

Elbaum et al. [16] present an approach which is based on recording only,
they call it state-based carving. They also present action-based carving, which is
based on recreating only.

Within the example, a state-based test for parse_number can be found in
Listing 5.3. The function under test, parse_number is invoked in Line 4. Before
that, all input values are constructed by allocating memory, and directly setting
the values recorded in the execution graph. This means that the generated test
calls just one function: the function under test. Input values are constructed
based on the observations.

In contrast, action-based carving generates the test in listing 5.4. In this test,
parse_number is invoked in Line 4. The parse_number node in the execution
graph has one input: the memory area M4. M4 contains a pointer to M3, and it
is also used in F4, match. M3 is returned by F2 read_all_text. F2 receives M2
as an input, and M2 is a system-level input. Therefore, the test contains the call
to read_all_text, as well as the call to match. n2 is set up to be a pointer to n1,
corresponding to M4 and M3 respectively. The second argument to match is a
constant within the program, and therefore it is used as is.

5.3.2 Implementation of Carving
In this section, I describe how to carve C programs. In order to do so, I need to
construct the execution graph of a program execution. Building an execution
graph requires three different kinds of information:

The Call Graph is a sub-graph of the execution graph.

The Program Memory contains all memory areas used by the program. Infor-
mation about the memory is required to build the memory nodes within
the execution graph.

176 CHAPTER 5. TARGETED CARVING

Method Arguments are not strictly a part of the execution graph, however, they
are required in order to re-generate a function invocation, and therefore
need to be recorded.

The main mechanism that I use to collect this information are probes. Probes
are additional instructions, inserted into the program under test. Every time
a probe is executed, it reports data to a supervisor process. This way, the pro-
gram execution generates a trace, a list of the probes triggered, and information
reported.

My implementation of carving is based on LLVM[41]. It works in two phases.
At instrumentation-time, I insert probes into the program, and create a file which
I call the structure file. The structure file contains information on types used
in the program, the functions that exist, and their signature, as well as global
variables. This file is read by the supervisor process, which uses the information
on types to calculate their in-memory sizes, the information on functions and
their signatures is used to interpret the data onmethod invocations correctly, and
the information on global variables is used to identify those variables correctly.
Basilisk assigns each function and each global variable a unique id. Those ids
are used to identify such objects within the traces.

The instrumented program is compiled to machine code with the standard
LLVM compiler. At runtime, Basilisk sends information about which probes
where triggered to the supervisor process.

The trace for an execution of the program in Listing 5.2 can be found in
Table 5.2. Within the trace, I replaced the ids of functions and global variables
with the function and variable names for better readability. Instead of going
through the trace top to bottom, I will describe the individual probes (or events)
ordered by their functionality.

Obtaining the Call Graph

The first challenge is to report the call graph. This is done with two events:
Called and Return. Within Table 5.2, event 31 is a Called event. It reports that
the main method has been invoked. After that, there is another Called event at
position 37. This one reports that read_all_text was invoked. The trace did
not yet contain a Return for main, and therefore I know that read_all_text
was invoked by main. This means there is an edge from the call graph node
for main to read_all_text. This corresponds to Figure 5.2, where the nodes F1
and F2 are connected. The return event for read_all_text is event 50. Then,
in event 51, there is a Called event for eval. This means that read_all_text
returned before eval was called, but main did not. Therefore, the node for eval
(F3 in Figure 5.2) is connected to main, but not to read_all_text. In general,
nodes are connected if the corresponding methods are active at the same time.
The program behaves as if the call graph were visited in a depth-first traversal,
outputing Called events when a node is entered, and Return events when all
children were visited. It is easily possible to re-create the call graph from this
representation. The only difficulty lies in multi-threading. If more than one
thread sends events, each thread behaves in the way described before, and care
has to be taken to make sure that events are not mixed up. For this reason, each
event contains the thread id of the generating thread.

5.3. CARVING C PROGRAMS 177

Parameter Values

For carving, Basilisk also needs concrete values for all parameters. Those are
reported with P* events. Within Table 5.2, I can observe PInt events, for integer
parameters, and PPtr events for pointer parameters.

The first PInt event within the example is event 32. The data associated with
this event indicates the function and thread that the value belongs to, in order
to enable associations of the events with the call graph, as well as the concrete
value (2) and the parameter id. Parameters are numbered starting at 0, the
parameter id of 0 therefore indicates that this is the argc parameter of the main
function. Event 36, a PPtr event, reports that the second argument to main is
the pointer 140730708315240. Other events reported about the memory contents
at this location. They will be explained in Section 5.3.2.

The implementation also supports PDouble events, for floating-point num-
bers, and PArea events, for cases where an entire memory region is passed by
value, rather than by pointer. Those do not appear within the example, as they
are not required for the example program.

Return Values

Return values are reported with the P* events, just as parameters. However,
they have negative parameter ids. A simple case of this can be seen in event
48 within Table 5.2. This event reports the return value for the read_all_text
function, a pointer to memory addres 140730708322148. The id is -1, indicating
a direct return value.

If a function argument is a pointer to a pointer, the function may modify
this pointer, and use this as another return value. Within the example, the
function match updated the pointer within its first argument to indicate where
the matched string ends. This is reflected in the trace: Event 63 is a PPtr event
with a parameter id of -2, indicating a value returned via the first parameter. As
for parameters, the concrete contents of memory areas pointed to are reported
with other methods.

Live Coverage Information

Basilisk supports two variants of obtaining coverage data. Traces can contain an
event for each basic block of the program, or LLVM’s LCOV can be used, and
updated with live reporting of coverage data. This feature is not strictly required
for Basilisk itself, but the tool was used in other projects which required this

LLVM IR splits functions into basic blocks. Each basic block contains a
sequence of instructions with no branch or return instructions, such that the
control-flow graph of a function is a graph of basic blocks. When Basilisk reports
a function entry (as in event 66), it also reports the first basic block which is
being reported. After that, it supports a NEXT_BB event, which reports every time
a new basic block is entered. Due to performace considerations, this was turned
off for Basilisk runs within this thesis 2. It can be used to calculate instruction,
block, branch coverage and linear code sequence and jump coverage (LCSAJ).
To my knowledge, mine is the only tool which can report LCSAJ coverage of a C
program. The hefty performance overhead may be the reason for this.

2For this reason, there are no such events in Table 5.2

178 CHAPTER 5. TARGETED CARVING

As a more performant option, Basilisk can also report live data from LCOV.
LCOV creates a bit set where each bit corresponds to one edge of the control-flow
graph of the program. It sets those bits to 1 when the corresponding edge is
executed, effectively reporting branch coverage. Instruction coverage or basic
block coverage can be reported from this data. Basilisk reports the total length of
this bit set with an AllCounters event (event 41 within the example), and then
uses a BitCounter event to report the counters for the edges within a specific
method, every time a method returns. This allows the calculation of coverage
while the program is running, rather than reporting coverage only after the
program terminated.

Reporting Memory Objects

Now comes the hard part: I need to report each memory object accessed by the
program under test. Memory objects can be in three different memory areas:

• The data section of the program binary contains memory that is allocated
to a global variable.

• The call stack contains variables allocated as local variables within a func-
tion.

• The program heap contains memory objects that were allocated with the
malloc and free functions of the C standard library.

All three can be found in the example:

Data Section Source code constants are compiled to global variables within
LLVM. Therefore, the second argument to match, "sqrt", is a pointer to a
value in the data section.

Call Stack The first argument to match, on the other hand, is a pointer to a
pointer. The pointer can be foundwithin the call frame of the eval function,
and therefore the pointer points into the call frame.

Program Heap The output of read_all_text is a pointer to a memory area on
the heap. It was allocated with the malloc library function, and it is free’d
with the free function within eval.

In general, Basilisk returns memory objects with the Area event. This can be
seen, for example, in event 47. This event reports that the value "sqrt(9)\n"
can be found at memory address 29225952. The same memory address is used
when event 48 reports the return value of read_all_text. Another example is
event 58, which reports that the value of the global variable .str.1 is "sqrt\0".
Within Table 5.2, I use the name of a global variable instead of a numeric memory
address whenever possible.

However, I can only create such events when the length of a memory object
is known. Otherwise, I would not be able to access the value, as accesses outside
the bounds of a memory object lead to access violation errors.

This is easiest3 for memory objects on the heap. Those are created via the
malloc library function, and later on, destroyed via the free library function.

3easiest, not easy

5.3. CARVING C PROGRAMS 179

Within the process of the program under test, Basilisk’s instrumentation keeps
a map of addresses and the length of the memory objects at those addresses.
Memory objects are entered into the map on calls of malloc, and removed when
free is called.

When a pointer is encountered, this map can be queried to get the length of
the memory event pointed to. Then, it is known how much memory can savely
be accessed, and reported in the Area event. Pointers can also point into such a
memory object. As an example, the pointer returned by match, and reported in
Area event 62, points four bytes after the start of the memory area which was
reported by event 52. This means that the map built by Basilisk cannot be an
associative map. It needs to be able to answer queries for the largest key smaller
than a search value. Within my implementation, I used an AVL tree[2].

The supervisor process also needs to know whether an Area event refers
to a new memory area, or contains updated values for an existing one. While
invocations of malloc do not send an event, it can be assumed that there was a
mallocwhen the first Area event for a memory area arrives, invocations of free
need to be reported. Otherwise, a newly (m)allocated memory object may be
confused with one that is free’d already. For that reason, the instrumentation
also delivers events for free. One such Free event can be seen as event 94 in
Table 5.2. It corresponds to the invocation of free within eval in Listing 5.2.

Memory objects on the call stack are only slightly more complicated. Within
LLVM, such memory objects are allocated via the alloca instruction of LLVM
IR. When alloca is invoked, I add the memory area to the map, just as I did
for malloc calls. After that, there is no need for special treatment when an Area
event is triggered. However, there are no free invocations for such memory
areas. Instead, they are implicitly free’d when the function they were allocated
in returns. For that reason, I clear them from the map when the function returns,
and the Return event contains the bottom and top addresses of the function’s
call frame. The supervisor process uses this information to avoid confusion of
old, and newly allocated stack objects, just as it uses the free event for heap
memory.

Last are global variables. Those can, in theory, be found at instrumentation
time. They are contained in the program source code. However, their memory
addresses are only known at runtime. Basilisk’s instrumentation informs the
supervisor about them with the Global event, several of which can be found at
the beginning of Table 5.2. Their length can be found at instrumentation time,
and therefore they can be added to themap right when the program starts. There
is no equivalento to the Free event, as global variables exist until the program
terminates.

Basilisk also issues global events for all functions in the program. Those
also contain the memory address of a function, and can be used to recognize
function pointers when those appear within function arguments.

Recursion In some cases, it is not enough to report the content of a memory
area. In the example, this can be seen for the second argument of the main
function. argv is an array of pointers. Basilisk needs to create the structure that
is formed by M0, M1 and M1 in Figure 5.2. This is done with three Area events.
Event 33 corresponds to M0. It is at memory address 140730708315240, and
contains the values 140730708322111 and 140730708322148. Both are memory

180 CHAPTER 5. TARGETED CARVING

addresses themselves. During instrumentation, Basilisk saw that the type of
the variable is i8**, a pointer to a pointer. Therefore, it inserts code which
recursively dumps the content of the memory area. At runtime, it queries the
map for the length of the memory area at address 140730708315240. It receives
the answer that the length is 16. The type, known at instrumentation time, is
i8**. Therefore Basilisk knows that each member of this memory area is 8 bytes
long, and can calculate that there are 2 members within an area of length 16. At
instrumentation time, Basilisk determined that the type of those members is
i8*, and therefore a pointer type. It generates the Area events for the memory
areas that both pointers point to. The members of those areas have the type i8,
so no further recursive events is required. If the type were i8***, or a pointer
to a struct which has a pointer member, Basilisk would recursively dump all
reachable memory. In the example, events 34 and 35 contain the strings that are
arguments to the main function.

A limitation of this process is that Basilisk needs to be able to determine
that memory contains a pointer based on the LLVM type of memory object at
instrumentation time. If this is not possible, Basilisk will not invoke recursive
dumping.

Table 5.2: The event sequence generated when execution Listing 5.2.

1 Global name: .str
address: 5071819

2 Area address: .str
value: "r\0"

3 Global name: .str.1
address: 5126502

4 Area address: .str.1
value: "sqrt\0"

5 Global name: .str.2
address: 5126507

6 Area address: .str.2
value: "sin\0"

7 Global name: .str.3
address: 5073229

8 Area address: .str.3
value: "cos\0"

9 Global name: .str.4
address: 5126511

10 Area address: .str.4
value: "tan\0"

11 Global name: .str.5
address: 5126515

5.3. CARVING C PROGRAMS 181

12 Area address: .str.5
value: "No number!\n\0"

13 Global name: .str.6
address: 5126527

14 Area address: .str.6
value: "Could not identify function!\n\0"

15 Global name: .str.7
address: 5126557

16 Area address: .str.7
value: "Wrong number of arguments\n\0"

17 Global name: .str.8
address: 5126584

18 Area address: .str.8
value: "result: %d\n\0"

19 Global name: fsize
address: 4997264

20 Global name: read_all_text
address: 4997616

21 Global name: match
address: 4998144

22 Global name: parse_number
address: 4998784

23 Global name: abs
address: 4999600

24 Global name: msqrt
address: 4999952

25 Global name: msin
address: 5000512

26 Global name: mtan
address: 5000768

27 Global name: mcos
address: 5001024

28 Global name: eval
address: 5001280

29 Global name: main
address: 5002512

30 All Counters length: 41

182 CHAPTER 5. TARGETED CARVING

31 Called
threadId: 140040092858304
function: main
basicBlock: 0

32 PInt

threadId: 140040092858304
function: main
parameterId: 0
value: 2

33 Area address: 140730708315240
value: { 140730708322111, 140730708322148}

34 Area address: 140730708322111
value: "calc_instr\0"

35 Area address: 140730708322148
value: "in.expr\0"

36 PPtr

threadId: 140040092858304
function: main
parameterId: 1
pointer: 140730708315240

37 Called
threadId: 140040092858304
function: read_all_text
basicBlock: 0

38 Area address: 140730708322148
value: "in.expr\0"

39 PPtr

threadId: 140040092858304
function: read_all_text
parameterId: 0
pointer: 140730708322148

...

47 Area address: 29225952
value: "sqrt(9)\n"

48 PPtr

threadId: 140040092858304
function: read_all_text
parameterId: -1
pointer: 29225952

49 BitCounters threadId: 140040092858304
function: read_all_text

50 Return

threadId: 140040092858304
function: read_all_text
frameBottom: 140730708314816
frameTop: 140730708314656

5.3. CARVING C PROGRAMS 183

51 Called
threadId: 140040092858304
function: eval
basicBlock: 0

52 Area address: 29225952
value: "sqrt(9)\n"

53 PPtr

threadId: 140040092858304
function: eval
parameterId: 0
pointer: 29225952

54 Called
threadId: 140040092858304
function: match
basicBlock: 0

55 Area address: 140730708314688
value: { 29225952 }

56 Area address: 29225952
value: "sqrt(9)\n"

57 PPtr

threadId: 140040092858304
function: match
parameterId: 0
pointer: 140730708314688

58 Area address: .str.1
value: "sqrt\0"

59 PPtr

threadId: 140040092858304
function: match
parameterId: 1
pointer: 5126502

60 PInt

threadId: 140040092858304
function: match
parameterId: -1
value: -1

61 Area address: 140730708314688
value: { 29225956 }

62 Area address: 29225956
value: "(9)\n"

63 PPtr

threadId: 140040092858304
function: match
parameterId: -2
pointer: 140730708314688

64 BitCounters threadId: 140040092858304
function: match

184 CHAPTER 5. TARGETED CARVING

65 Return

threadId: 140040092858304
function: match
frameBottom: 140730708314608
frameTop: 140730708314448

66 Called
threadId: 140040092858304
function: parse_number
basicBlock: 0

67 Area address: 140730708314688
value: "\FFFD\FFFD\0001\0\0\0\0"

68 Area address: 29225957
value: "9)\n"

69 PPtr

threadId: 140040092858304
function: parse_number
parameterId: 0
pointer: 140730708314688

70 PInt

threadId: 140040092858304
function: parse_number
parameterId: -1
value: 9

71 Area address: 140730708314688
value: { 29225958 }

72 Area address: 29225958
value: ")\n"

73 PPtr

threadId: 140040092858304
function: parse_number
parameterId: -2
pointer: 140730708314688

74 BitCounters threadId: 140040092858304
function: parse_number

75 Return

threadId: 140040092858304
function: parse_number
frameBottom: 140730708314608
frameTop: 140730708314416

76 Called
threadId: 140040092858304
function: msqrt
basicBlock: 0

77 PInt

threadId: 140040092858304
function: msqrt
parameterId: 0
value: 9

5.3. CARVING C PROGRAMS 185

78 Called
threadId: 140040092858304
function: abs
basicBlock: 0

79 PInt

threadId: 140040092858304
function: abs
parameterId: 0
value: -5

80 PInt

threadId: 140040092858304
function: abs
parameterId: -1
value: 5

81 BitCounters threadId: 140040092858304
function: abs

82 Return

threadId: 140040092858304
function: abs
frameBottom: 140730708314448
frameTop: 140730708314352

83 Called
threadId: 140040092858304
function: abs
basicBlock: 0

84 PInt

threadId: 140040092858304
function: abs
parameterId: 0
value: 1

85 PInt

threadId: 140040092858304
function: abs
parameterId: -1
value: 1

86 BitCounters threadId: 140040092858304
function: abs

87 Return

threadId: 140040092858304
function: abs
frameBottom: 140730708314448
frameTop: 140730708314352

88 PInt

threadId: 140040092858304
function: msqrt
parameterId: -1
value: 4

89 BitCounters threadId: 140040092858304
function: msqrt

186 CHAPTER 5. TARGETED CARVING

90 Return

threadId: 140040092858304
function: msqrt
frameBottom: 140730708314608
frameTop: 140730708314448

91 PInt

threadId: 140040092858304
function: eval
parameterId: -1
value: 4

92 BitCounters threadId: 140040092858304
function: eval

93 Return

threadId: 140040092858304
function: eval
frameBottom: 140730708314816
frameTop: 140730708314608

94 free address: 29225952

95 PInt

threadId: 140040092858304
function: main
parameterId: -1
value: 0

96 Area address: 140730708315240
value: { 140730708322111, 140730708322148}

97 Area address: 140730708322111
value: "calc_instr\0"

98 Area address: 140730708322148
value: "in.expr\0"

99 PPtr

threadId: 140040092858304
function: main
parameterId: -3
pointer: 140730708315240

100 BitCounters threadId: 140040092858304
function: main

102 Return

threadId: 140040092858304
function: main
frameBottom: 140730708315008
frameTop: 140730708314816

5.3.3 Parameterizing Unit Tests
If unit-level analysis is supposed to find better input values for test cases, the
tests need to be parameterized, where unit-level analysers are allow to choose
new values for the parameters. In this section, I will explain how to introduce
parameters into a carved unit test.

Carved tests are, basically, subgraphs of the execution graph. The test in

5.3. CARVING C PROGRAMS 187

M0: argv

M1: ”calc” M2: ”in.expr”

F1: main F2: read_all_text

M3: ”sqrt(900)”M4: expr

F3: eval M5: ”sqrt”

F4: match

F5: parse_number

F6: msqrt

Figure 5.3: Execution graph for the program in Listing 5.2, with the test case in
Listing 5.3 highlighted.

Listing 5.3 is a subgraph of the execution graph in Figure 5.2. Figure 5.3 high-
lights the nodes which form the test. For parameterization, I start by introducing
additional nodes, one for each input. This is superfluous for command line
parameters: Those are present as arguments to the main function anyways. For
other inputs, for example the contents of a file read by the program under test,
there may not be such a node. I introduce new nodes for all cases, because the
new nodes are different from existing nodes: They are parameters. All such
nodes represent byte sequences. Even if the input is, e.g. an integer, it will be
represented as a byte sequence at this point. I routinely allow the byte sequences
to be three bytes longer than what I observed in the system test. The reason is
that especially byte sequences which are interpreted as strings usually allow for
additional characters. I choose the value 3, because it allows Basilisk to discover
whether longer sequences are permitted, but does not lead to a combinatorical
explosion within the search space for symbolic execution.

Then, I check for similarity between the newly introduced nodes and existing
memory segments and values. At this point, I check for byte similarity with
memory areas and values, but also for encodings. As an example, "900" is given
to the calculator as part of the string "sqrt(900)", but the integer parameter
900 would still be recognized as similar. In the same way, the byte sequence
0x84030000 would be recognized as the 32-bit integer representation of 900.
Basilisk now replaces the recognized values and segments of memory areas
with data it copied from the newly introduced nodes. If the similarity was based
on an encoding of the data, methods which convert the encodings are added in
between.

Consider a test for msqrt as an example. The graph for this example is trivial:

188 CHAPTER 5. TARGETED CARVING

P1: symbolic value

Fn: itoa

F6: msqrt

Figure 5.4: The parameterized test case for msqrt.

msqrt has just one parameter, the integer 900, which is not represented in an
execution graph, because it is a value, and not a pointer to a memory area.
Figure 5.4 shows the graph for the resulting test case. The node labeled with
P1 is the parameter for the input. It has no concrete value, but represents a
parameter which can be filled by unit-level analysis later. A subsequence of this,
starting at the fifth character, is fed into itoa. This function converts a string
into an integer. itoa is not part of the original program, it was introduced by
parameterization, to convert the byte sequence into an integer, which can then
be fed into the function under test, msqrt. The test chooses a substring starting
at the fifth character of the symbolic input, because within the original input,
"sqrt(900)", the string which corresponds to the parameter to msqrt, "900",
starts at the fifth character.

5.3.4 Lifting Unit-Level Values to the System-Level
Unit-level analysis finds new values for the parameters in a test. Those can
then be turned into a new system test: Each system-level input corresponds
to one of the newly introduced memory areas within the unit test. The new
value that unit-level analysis proposes for this input can be used to replace the
corresponding input in the system test. In some cases, ony parts of the parameter
were used in the unit test. For example, within the example test for msqrt, only
"900" is used, whereas the whole input is "sqrt(900)". In this case, only the
segment which was used is replaced with a new value.

5.4 Evaluation
In my evaluation, I attempt to answer the following research questions:

1. How much overhead does Basilisk’s instrumentation generate?

2. How do the system tests generated by Basilisk and Fuzzilisk compare
against system tests from Radamsa (Section 5.4.3)?

3. Does unit-level fuzzing save time, in comparison to system-level fuzzing
(Section 5.4.5)?

5.4.1 Performance of Basilisk
Basilisk performs compile-time instrumentation, and runtimemonitoring. While
compile-time instrumentation itself does not lead to increased runtimes, it may

5.4. EVALUATION 189

mean that some compiler optimizations are not possible any longer. Runtime
monitoring happens at runtime4, and therefore has some runtime overhead.
Both effects mean that the program under test is a lot slower when Basilisk is
used. In this section, I will quantify this effect.

In order to do so, I ran 5 of the subjects I used with Alhazen earlier. I used
the two test inputs from the twoInputs configuration, ran each 100 times, and
measured the runtime.

I used three different configurations:

Uninstrumented The subject is run with no instrumentation, and no monitor-
ing.

Coverage The subject only emits the Called and BitCounter and AllCounters
events.

Carving The subject emits all events used for carving.

Afterwards, I calculated the mean of the runtime for the Uninstrumented con-
figuration, and a slowdown for the other configurations

Definition 26: Slowdown
Let r̄u be the arithmetic mean of the runtime for the Uninstrumented
configuration, and rt be the runtime for one run with configuration t, the
Slowdown st for this run is defined as rt

r̄u
.

Using this definition, the mean of the slowdown for the Uninstrumented
configuration is always 1 5. Therefore, results for other configurations can be
interpreted as ”Executing configuration c takes s̄c times as long as executing the
uninstrumented subject.”

The results for all subjects can be found in Figure 5.5, as well as Table 5.3 to
Table 5.7. The ’test’ column lists the id of the test being executed. Those are 0
and 1 for most subjects, but, for technical reasons, different for grep.

Slowdowns range from barely noticeable, for the calculator, to more than 20x,
for jq. The standard deviation for jq is smaller than for the other subjects. The
reason is that I ran all subjects with a timeout of 1 second per test run, which
was triggered by jq on almost all runs. Therefore, the 20x slowdown on jq is at
best a lower bound of the real slowdown.

4hence the name
5

r̄u =
1
n

n∑
i=0

riu and s̄u =
1
n

n∑
j=0

rju

r̄u

and therefore

s̄u =
1
n

n∑
j=0

rju
1
n

∑n
i=0 riu

=
1
n

n∑
j=0

n

1
rju∑n
i=0 riu

=
n∑

j=0

rju∑n
i=0 riu

=
∑n

j=0 rju∑n
i=0 riu

= 1

190 CHAPTER 5. TARGETED CARVING

subject config test Slowdown runtime
mean std mean std

calculator Carving 0 1.00 0.05 0.11 0.01
calculator Carving 1 1.83 2.02 0.00 0.00

calculator Carving total 1.41 1.48 0.06 0.06

calculator Coverage 0 0.99 0.02 0.11 0.00
calculator Coverage 1 1.72 2.72 0.00 0.00

calculator Coverage total 1.36 1.95 0.06 0.06

calculator Uninstrumented 0 1.00 0.22 0.11 0.02
calculator Uninstrumented 1 1.00 2.85 0.00 0.00

calculator Uninstrumented total 1.00 2.02 0.06 0.06

Table 5.3: Mean of the slowdown for all configurations on the calculator.

Basilisk’s instrumentation leads to a slowdown of more than 20x.

The reason for the extreme slowdown for jq is in the implementation. jq has
1169 functions in 108165 lines of code. While grep has more code, 191093 lines,
it has just 478 functions. This means that for jq, the instrumentation reports a
lot more function calls, which means more Called events. Also, parameters are
dumped for each function call, so more function calls means more parameter
reporting events as well. As a result, jq generates 349129.5 events on average 6,
while grep 6d952be emits just 36975 events.

In addition to this, jq moves rich structures, rather than simple strings or
values. This means that more Area events are required. Area events contain
more data than other events, and therefore require more transmission time.

All in all, it has to be observed that Basilisk leads to a dramatic slowdown.
This may be acceptable for runs that serve to generate examples to learn from,
but would be inacceptable even for test runs.

5.4.2 Evaluation Subjects
Basilisk is designed toworkwith programs under test written in C. Also, Basilisk
requires instrumentation within the subjects, and, due to the fact that Basilisk is
implemented based on LLVM, it requires the subjects to be compiled to LLVM
IR rather than machine code. No program is distributed in this format, and
therefore I had to compile all subjects from source, using the clang compiler.
This proofed to be difficult. Most programs are distributed with a build script
that assumes the GCC compiler, and while some build systems make it easy
to use a different compiler, not all do, and not all projects use an off-the-shelf
build system in the first place. In addition to the battle against custom build
scripts that were not prepared for usage with a different compiler or custom

6Over 100 runs. As all runs perform the same operations, all runs should generate the same
number of events, however, the timeout may trigger earlier for some runs.

5.4. EVALUATION 191

subject config test Slowdown runtime
mean std mean std

jq Carving 0 19.27 0.01 1.00 0.00
jq Carving 1 19.21 0.04 1.00 0.00

jq Carving total 19.24 0.04 1.00 0.00

jq Coverage 0 19.26 0.00 1.00 0.00
jq Coverage 1 19.20 0.00 1.00 0.00

jq Coverage total 19.23 0.03 1.00 0.00

jq Uninstrumented 0 1.00 0.06 0.05 0.00
jq Uninstrumented 1 1.00 0.05 0.05 0.00

jq Uninstrumented total 1.00 0.06 0.05 0.00

Table 5.4: Mean of the slowdown for all configurations on jq.

compiler options, some programs used gcc-specific language extensions, and
would not compile with LLVM/clang. Even after winning the battle against
the build system, programs which use a custom memory allocation mechanism
are often incompatible with Basilisk’s instrumentation. In the end, I found 6
programs which I can use with Basilisk:

• Four of the subjects are part of GNU coreutils, a collection of standard
command line tools which is used, e.g. on Linux. The cut program reads
text from a file and outputs substrings, as specified by the user. The paste
program can be used to merge lines from different text files. The tac
command reads a file and outputs it in reversed order. b2sum computes a
message digest, some kind of checksum, from an input file.

• sed is a stream editor that applies a list of user-specified commands on its
input and outputs the resulting text.

• The last subject is the dc program. dc is a programming language with
arbitrary-precision floating-point arithmetic. dc uses reverse polish nota-
tion, where the operator follows its operands: "1 2 +" yields the output
3. dc has registers, which can be used as variables.

In Table 5.9, I report the lines of code for each subject. Especially for the
programs from GNU coreutils, the source code repositories do contain additional
code. I counted only lines of code that are in functions that are reachable from
the main method of the respective program.

5.4.3 System Testing
In this section, I answer research question 1, namely, how Basilisk compares to
another system test generator.

For this experiment, Basilisk and Fuzzilisk are integrated with Radamsa.
My Basilisk and Fuzzilisk implementation than invoked Radamsa, to generate

192 CHAPTER 5. TARGETED CARVING

subject config test Slowdown runtime
mean std mean std

grep 6d952be Carving 0 10.22 0.64 0.05 0.00
grep 6d952be Carving 1 1.00 0.00 0.50 0.00

grep 6d952be Carving total 5.61 4.64 0.28 0.23

grep 6d952be Coverage 0 1.45 0.71 0.01 0.00
grep 6d952be Coverage 1 1.00 0.01 0.50 0.00

grep 6d952be Coverage total 1.22 0.55 0.26 0.25

grep 6d952be Uninstrumented 0 1.00 0.43 0.01 0.00
grep 6d952be Uninstrumented 1 1.00 0.01 0.50 0.00

grep 6d952be Uninstrumented total 1.00 0.30 0.25 0.25

Table 5.5: Mean of the slowdown for all configurations on grep 6d952be.

10 additional system tests for each seed test. Then, they carve unit tests from all
system tests. Afterwards I select the unit test for the function that still contains
most uncovered code, and the process of parameterizing, unit-level analysis and
lifting is applied to this test. Once this is done, the next unit test will be selected
and processed. Generated system tests are executed immediately.

In my experiments, I used a time limit of 15 minutes. My prototype runs
each system test directly after creating it, so the output is coverage information.
Radamsa only generates test inputs. For that reason, comparing directly is not
fair. While, for my tool, the time limit includes test executions, Radamsa needs
additional time to execute the generated system tests.

In order to mitigate this difference, I had Radamsa generate system tests in
batches of 10 tests each and executed each batch before generating the next one,
until the time limit was exceeded. This means that for Radamsa, as for Basilisk
and Fuzzilisk, system test execution time is included in the time limit. I repeated
each run 5 times, with 5 different random seeds. I supplied all three tools with
the same, hand-written seed tests.

For Fuzzilisk, both the unit-level analysis and system-level fuzzing is ran-
domized. For Basilisk, unit-level analysis is deterministic, but system-level
testing is still randomized. For all subjects, I measure the branch coverage over
time.

Coverage

Table 5.10 summarizes the branch coverage obtained, as a mean over five runs.
In all subjects but dc, the coverage achieved by Basilisk improves over Radamsa
alone, showing a clear benefit of the boosting of system-level tests with unit-level
test generators.

For all subjects but dc, the Basilisk booster of system-level test generation
(Radamsa) and unit-level test generation (Klee) increases coverage over

5.4. EVALUATION 193

subject config test Slowdown runtime
mean std mean std

grep 8f9106c Carving 0 10.18 0.78 0.05 0.00
grep 8f9106c Carving 3 1.16 0.15 0.13 0.02

grep 8f9106c Carving total 5.67 4.56 0.09 0.04

grep 8f9106c Coverage 0 1.39 0.52 0.01 0.00
grep 8f9106c Coverage 3 1.00 0.04 0.12 0.00

grep 8f9106c Coverage total 1.20 0.42 0.06 0.05

grep 8f9106c Uninstrumented 0 1.00 0.47 0.01 0.00
grep 8f9106c Uninstrumented 3 1.00 0.13 0.12 0.01

grep 8f9106c Uninstrumented total 1.00 0.34 0.06 0.06

Table 5.6: Mean of the slowdown for all configurations on grep 8f9106c.

Radamsa alone between 5% (cut) and 59% (sed).

dc, being an arbitrary-precision calculator, stores numbers as strings of bytes,
which my implementation cannot associate with input fragments and thus
neither map nor lift. This claim is further supported by Table 5.11, showing that
Basilisk analyzes just one unit test for dc. All other tests had no parameterizable
inputs.

Non-standard data representations of strings and numbers, as in dc, need
special implementations for mapping and lifting.

Coverage Over Time

Does the increased coverage also translate into time savings? Figure 5.6 shows
a plot of the branch coverage achieved over time for paste. The diagrams list
time on the x-axis, and the coverage achieved so far by Basilisk or Radamsa
respectively on the y-axis. This is a typical representative; the other subjects
show similar plots. All plots an be found in Appendix B.

Basilisk initially has worse coverage than Radamsa. This is due to the extra
overhead of carving. However, for all subjects, there is a point in time when
Basilisk outperforms Radamsa. Typically, this happens at about 8 minutes. Note
that Basilisk’s coverage after 8 minutes also outperforms Radamsa coverage after
15 minutes. This means that with Basilisk, one can achieve the same coverage in
about half of the time. Again, dc is the exception.

In my experiments, Basilisk achieves the same coverage as Radamsa in
about half the time.

Figure 5.7 shows coverage over time for sed. This is the only case where
coverage does not increase slow and steady, but in amassive jump. sed accepts an

194 CHAPTER 5. TARGETED CARVING

subject config test Slowdown runtime
mean std mean std

grep c32c042 Carving 0 8.29 0.77 0.04 0.00
grep c32c042 Carving 4 11.59 4.52 0.06 0.02

grep c32c042 Carving total 9.94 3.63 0.05 0.02

grep c32c042 Coverage 0 1.45 0.53 0.01 0.00
grep c32c042 Coverage 4 1.27 0.64 0.01 0.00

grep c32c042 Coverage total 1.36 0.59 0.01 0.00

grep c32c042 Uninstrumented 0 1.00 0.58 0.01 0.00
grep c32c042 Uninstrumented 4 1.00 0.76 0.01 0.00

grep c32c042 Uninstrumented total 1.00 0.67 0.01 0.00

Table 5.7: Mean of the slowdown for all configurations on grep c32c042.

subject config test Slowdown runtime
mean std mean std

grep 70e2361 Carving 0 9.77 0.50 0.05 0.00
grep 70e2361 Carving 2 16.10 9.05 0.10 0.05

grep 70e2361 Carving total 12.94 7.14 0.07 0.04

grep 70e2361 Coverage 0 1.36 0.50 0.01 0.00
grep 70e2361 Coverage 2 1.27 0.69 0.01 0.00

grep 70e2361 Coverage total 1.32 0.61 0.01 0.00

grep 70e2361 Uninstrumented 0 1.00 0.67 0.01 0.00
grep 70e2361 Uninstrumented 2 1.00 1.35 0.01 0.01

grep 70e2361 Uninstrumented total 1.00 1.06 0.01 0.01

Table 5.8: Mean of the slowdown for all configurations on grep 70e2361.

Table 5.9: Evaluation subjects

Subject LoC Functions
b2sum 1228 115 checksum calculation
paste 662 79 text processor
tac 987 111 text processor
dc 1997 136 arbitrary-precision calculator
cut 1346 127 text processor
sed 2715 215 text processor

5.4. EVALUATION 195

Carving Coverage Uninstrumented

0

5

10

15

20

(a) calculator

Carving Coverage Uninstrumented

0

5

10

15

20

(b) jq

Carving Coverage Uninstrumented

0

5

10

15

20

(c) grep 6d952be

Carving Coverage Uninstrumented

0

5

10

15

20

(d) grep 8f9106c

Carving Coverage Uninstrumented

0

5

10

15

20

(e) grep c32c042

Carving Coverage Uninstrumented

0

5

10

15

20

(f) grep 70e2361

Figure 5.5: Slowdown for each subject and configuration.

Table 5.10: Coverage reached by system tests for each subject.

ImprovementSubject Basilisk Fuzzilisk Radamsa (Basilisk)

b2sum 41.57% 30.60% 34.87% 1.19
paste 41.93% 38.32% 37.28% 1.12
tac 33.55% 31.98% 29.92% 1.12
dc 19.13% 19.13% 35.73% 0.54
cut 22.58% 21.36% 21.61% 1.05
sed 30.62% 24.36% 19.24% 1.59

Table 5.11: Functions covered in unit tests.

Subject # functions Basilisk Fuzzilisk

b2sum 204 17 12
paste 152 21 9
tac 177 18 9
dc 154 1 3
cut 205 37 7
sed 290 38 12

196 CHAPTER 5. TARGETED CARVING

0 200000 400000 600000 800000
time [ms]

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

paste

basilisk
radamsa

Figure 5.6: Coverage over time for Basilisk and Radamsa on paste

input language, which consists of several commands. The jump happens when
Basilisk (or to be precise, Klee) discovers the q command, which terminates
sed. It proceeds to generate a lot of tests which contain q and thereby covers
a lot of new code. Radamsa did not manage to trigger the q command in my
experiments.

Symbolic Testing vs. Random Testing

Fuzzilisk, with a unit-level random fuzzer, outperforms Radamsa only on paste
and tac, and is never better than Basilisk, with Klee inside; it also covers fewer
functions. This shows a clear benefit of using symbolic testing techniques at the
unit level.

At the unit level, symbolic testing (Basilisk with Klee) consistently cov-
ers more code than random testing (Fuzzilisk).

5.4.4 Lifting Performance

Table 5.12 shows how many tests were lifted to the system level within Fuzzilisk.
This number is rather low, less than 1% of the tests in total. The percentage of
effective lifts is even lower. I counted a test as effective if it increases coverage in
the program under test. This means that Fuzzilisk in fact tries many execution
paths that do not lead to new coverage, or crashes. It would be impractical to test
all those execution paths with system tests. These numbers shed a light on the
usefulness (or better: non-usefulness) of unguided random tests at the function
level, and motivate their lifting into a system test to validate their results.

5.4. EVALUATION 197

0 200000 400000 600000 800000
time [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
ve

ra
ge

sed
basilisk
radamsa

Figure 5.7: Coverage over time for Basilisk and Radamsa on sed

Table 5.12: Unit Tests selected for lifting in Fuzzilisk

Subject # Unit Tests # Lifted Tests % lifted % effective

b2sum 9005075.20 53.40 0.0007% 0.0001%
paste 4654504.60 37.60 0.0008% 0.0002%
tac 2543487.80 35.20 0.0014% 0.0003%
dc 475426.60 14.20 0.0030% 0.0000%
cut 1167711.00 29.60 0.0026% 0.0002%
sed 4656782.00 105.20 0.0023% 0.0008%
total 3750497.87 45.87 0.0012% 0.0003%

Table 5.13: Effectiveness of lifting in Basilisk

Subject # Lifted Tests % effective

b2sum 876.40 3.9049%
paste 757.80 3.6158%
tac 870.60 2.2169%
dc 266.60 0.0000%
cut 393.40 2.5420%
sed 670.00 12.3893%
totals 639.13 4.5322%

198 CHAPTER 5. TARGETED CARVING

Table 5.14: Speed advantage of System Tests vs. Unit Tests

Subject Median Runtime[ms] Mean
System Tests Unit Tests speed-up

b2sum 39 2 1165.00
paste 114 0 1196.30
tac 160 4 1393.43
dc 1620 0 5005.40
cut 32 0 281.21
sed 98 0 1684.92
total 73 0 495.06

In my experiments with Radamsa and a unit-level fuzzer, less than 0.001%
of random function invocations that increase coverage or cause failures
also do so when lifted back to the system level.

Being a symbolic tester, Klee always executes multiple program path at
the same time, and only reports those that trigger a bug or cover new code.
Thereby, the full number of unit tests, as given in Table 5.12, is not available
for the combination of Radamsa and Klee (which I call Basilisk). Table 5.13
thereby only gives the number of lifted tests (path reported by Klee), and the
effectiveness.

Also, Basilisk gives a different picture here: Except for dc, all subjects show
a lifting effectiveness above 2%, with a maximum of 12% for sed. This again
provides evidence for the hypothesis that Fuzzilisk’s performance is mainly a
problem with the unit-level fuzzing tool.

In my experiments with Radamsa and Klee, 4.53% of paths at unit level
that increase coverage or cause failures also do so when lifted back to the
system level.

5.4.5 Unit Testing

Unit tests typically run much faster than system tests, as they execute much less
code. Table 5.14 shows how much faster they are within my Fuzzilisk prototype.
On average, a unit test is 495 times faster than a system test for the same program.
This means that if I want to test one single function only (say, because it has
recently changed), I can save a huge amount of time, or spend the same time on
more thorough testing.

The carved unit tests run several orders of magnitude faster than the
original system test.

This result is important. In Section 5.4.1, I found that:

5.5. COMMUNICATING INTEREST IN INPUT PARTS 199
Fo

rr
ef
er
en

ce

See Section 5.4.1

Basilisk’s instrumentation leads to a slowdown of more than 20x.

Still, Basilisk outperforms Radamsa. The reason is the speed difference
between system-level and unit-level analysis: Klee can examine tens of unit-
level path in the time that Radamsa needs for one system test. Therefore, the tests
that are lifted, and actually executed on the system-level, are more effective than
what Radamsa does. As long as the speed up of unit-level analysis, compared to
system test executions, is larger than the slowdown for instrumentation, Basilisk
is effective.

5.5 Communicating Interest in Input Parts
In this section, I will attempt to integrate Basilisk into Alhazen. As described
within Section 5.1, the idea is that Basilisk can identify decision borders, and
inform Alhazen, by providing test cases which exactly mark the border of a
decision. In order to do so, Basilisk needs to focus on those parts of the input
which are considered relevant by Alhazen. Those parts will be considered as
symbolic within the symbolic execution later on.

Alhazen expresses interest in input parts by making them part of the hypoth-
esis. In Section 3.1, I showed how Alhazen’s hypothesis, the decision trees, are
turned into predicate sets. Each predicate set corresponds to one decision path
within the tree. A decision tree learner only generates tree path which belong to
an observed sample. That is because the learner only forms a hypothesis about
parts of the input space where at least one witness, that is one sample, exists.
Therefore, I can identify one sample for each predicate set. This only holds if
the generation of additional predicate set to explore beyond the known parts of
the search space, described in Section 3.1.3, is not used. For this reason, I do not
use this process when I use Basilisk.

Basilisk subsequently uses the grammar to obtain a parse tree for the sample.
As in the entire thesis, this parse tree may be ambiguous. If it is, I choose one
of the parse trees at random. Then, I identify the non-terminals that are used
within the predicate set for this sample. Next, I obtain the leaf word of the tree,
and mark every part that was derived from a node labeled with a non-terminal
present in the predicate set as symbolic.

The parse tree for the running example, "sqrt(900)", is shown in Figure 5.8.
The predicate set for this sample is {max-numeric(〈number〉) >= 445}. There-
fore, the only relevant non-terminal symbol is 〈number〉. As can be seen in the
parse tree in Figure 5.8, the leaf word for 〈number〉 is "900". Therefore, this part
of the input sample is marked as symbolic.

5.5.1 Search Space Exploration
At first, one might get the impression that this means that Basilisk won’t be able
to explore those areas. However, Basilisk only receives information about the
non-terminal symbols used. Basilisk does not learn about the concrete predicate.

200 CHAPTER 5. TARGETED CARVING

Predicate set: {max-numeric(〈number〉) >= 445}

Input: "sqrt(900)"

Parse tree:

〈function〉 "(" 〈number〉 ")"

〈function〉

"tan" | "cos" | "sin" | "sqrt"

"sqrt"

"(" 〈number〉

"900"

")"

Symbolized input: "sqrt(900)"

Figure 5.8: This example shows which parts of the input become symbolic for a
given input and predicate set. Symbolic parts are underlined.

Listing 5.5: A unit test for msqrt, carved from the calculator in Listing 5.2.
1 void state_based_test() {
2 msqrt(900);
3 }

Therefore, Basiliskwill explore all variations of this value, and therefore generate
values outside the area defined by the tree.

5.5.2 Limitations of Basilisk
When combined with Alhazen, Basilisk occupies the role of the generator
presented in Chapter 3. It is used within the feedback loop to generate new
samples to learn from.

In Section 3.1.3 I explained how Alhazen needs samples outside the known
parts of the search space. In this section, I reported that I do not use the mecha-
nism that was introduced to generate those. At first glance, this is a disadvantage
for Basilisk.

However, there is an important difference between Basilisk and the generator
from the previous section: While the previous generator made use of the entire
hypothesis, including values, Basilisk looks at the used nonterminals only. That
is, for a predicate sets {max-numeric(〈A〉) < 10}, Alhazen’s generator would

Listing 5.6: The unit test in Listing 5.5, with "900" made symbolic.
1 void state_based_test() {
2 int32_t i = symbolic_int();
3 msqrt(i);
4 }

5.6. EVALUATION 201
Fo

rr
ef
er
en

ce

See Section 2.7.3

Definition 14: Coincidental Correlation
If, due to properties of the generator algorithm, the values of two features
always correlate, I call this coincidental correlation.

only generate samples with 〈A〉 smaller than 10, and the additional predicate
set helps to explore samples with 〈A〉 larger than 10 as well. Basilisk ignores the
comparison, and generates values for 〈A〉 that exercise all branches it discovers
in the code. Introducing a predicate set {max-numeric(〈A〉) ≥ 10}, as I did for
Alhazen, would therefore be unneccessary. Basilisk, which is deterministic
and ignores the comparison operator and constant, would generate the same
samples twice.

This, however, also poses a threat. If Alhazen, in the next iteration, changes
nothing but the constants and operators in the tree, Basilisk generates the same
samples again. This may mean that Alhazen encounters a dead end: It receives
no further evidence to refine its hypothesis, just more data it already knew.

5.6 Evaluation
In this section, I will evaluate Basilisk as a part of Alhazen. This means that Al-
hazen uses a different set of training samples within the feedback loop. Instead
of following the structure of the tree, sample generation follows the structure of
the code now. The effect of this is unclear: In the introduction, I showed how
the relevant sample can be found earlier, therefore, it can be expected that Al-
hazen comes up with a correct hypothesis faster. This leads to my first research
question:

1. Do Basilisk-generated samples lead to faster hypothesis learning?

The samples generated with Basilisk, in contrast to the ones generated with
Alhazen’s own generator, outline the decision boundaries within the code. This
means that it is possible that the hypothesis does as well, and precision and
accuracy improve. Therefore, my second and third research question are:

2. Do Basilisk-generated samples lead to more precise hypothesis?

3. Do Basilisk-generated samples lead to more accurate hypothesis?

Alhazen originally used the same generator algorithm within the feedback
loop and for its generator. This means that coincidental correlations affect both
processes. If the feedback loop learned a coincidental correlation, rather than
a real cause, the generator would generate the same coincidental correlation,
leading to high precision and accuracy for Alhazen as a geneartor. Therefore, I
examine whether Alhazen still does well as a generator when Basilisk is used
within the feedback loop.

4. Can Alhazen serve as a generator when Basilisk was used in training?

202 CHAPTER 5. TARGETED CARVING

max-numeric(value) <= 0.5

BUG

yes

NO_BUG

no

Figure 5.9: Final tree for Alhazen with Basilisk as a generator.

5.6.1 Evaluation Setup
I ran Alhazen with Basilisk as a generator with the same parameters as in
Section 3.3. I also re-ran experiments with Alhazen’s own generator, because the
subjects are slightly different (see Section 5.4.2). In contrast to the experiments
in the previous chapter, I removed duplicate samples in between iterations. That
is, when Basilisk generated a sample that was identical to a sample generated in
a previous iteration, I removed that sample. The timeout was again 1 hour or 40
iterations, whatever happened first. I also terminated when no new sample was
generated in an iteration.

5.6.2 Looking at the Calculator
In this section, I will do a close analysis of the results for one subject, the cal-
culator. The calculator is not a real subject, but was written as an example. It
should be familiar to the reader, as it has been used as an example throughout
the thesis.

Running on the calculator, Alhazen terminates after 2 iterations, because
the second iteration generated only samples that were known from previous
iterations. The final tree is shown in Figure 5.9. It, correctly, points out that the
crash happens when the value is smaller or equals 0.5. The calculator accepts
only integers, so 0.5 is as close to the real value as Alhazen can get. However,
there is a crucial fact missing: The crash only happens when the function is
sqrt.

It is easy to understand why: The initial samples provided where:

5.6. EVALUATION 203

1 sqrt(-900)
2 sin(4)

Alhazen’s initial hypothesis was that the crash happens when 〈value〉 is smaller
than -445. As only 〈value〉 is used in the predicate set, Basilisk marks only the
value as a parameter. There are two path in the tree, and therefore two predicate
sets, which means that Basilisk attempts to modify both samples. The newly
generated samples are

1 sqrt(0)
2 sqrt(3)
3 sqrt(1)
4 sqrt(-900)
5 sin(4)
6 sqrt(-900000)
7 sqrt(2)

While there are quite a few new samples for sqrt, there is no new sample
for sin. That is because the code for sin does not contain branching. The
existing sample reaches all code reachable via sin, and therefore Basilisk, or
more precisely Klee, doesn’t feel it necessary to generate more samples. But
then, Alhazen does not learn that there are no crashes with sin and a small
value, and therefore it does not include this in its hypothesis.

The next hypothesis is the final hypothesis already, which again contains
predicates over 〈value〉 only. Basilisk again uses only the value as a parameter,
and cannot generate new information.

This is exactly the problem I expected in Section 5.5.2. However, in this section
I suspected that it happens due to the fact that Basilisk does not use values.
This example would not profit from using values: Basilisk found the decision
boundary perfectly, it got Alhazen from the hypothesis 〈value〉 <= −445 to
〈value〉 <= 0.5 within just one iteration. Further refinement of the hypothesis
requires to look at a different non-terminal, rather than more values.

Despite the dead end Basilisk encountered, it reached the correct decision
boundary with just one iteration. This is a lot faster than with Alhazen’s own
generator.

Basilisk can help to find numeric boundary values faster, but runs the risk
of missing other constraints.

5.6.3 Do Basilisk-generated samples lead to faster hypothesis
learning?

With the result from the previous section, let’s have a look at howmany iterations
Alhazen with Basilisk uses in general. While the research question asked
about runtime, I am looking at the number of iterations instead. Basilisk, as
explained before, is not a highly optimized implementation of the underlying
idea. Looking at execution time therefore would likely not yield a relevant result:
Instead of recognizing merit of the idea, I would rediscover shortcomings of
the implementation. Therefore, I decided to compare the number of iterations,
rather than the execution time.

204 CHAPTER 5. TARGETED CARVING

subject configuration basilisk search-based
mean std mean std

calculator kpath 2.50 1.00 40.00 0.00
calculator sets 2.75 0.96 35.00 10.00
calculator twoInputs 2.50 0.58 31.75 13.38

grep 3220317a kpath 2.00 0.00 2.50 0.58
grep 3220317a sets 1.00 0.00 11.50 2.08
grep 3220317a twoInputs 2.00 0.00 15.50 7.90

grep 5fa8c7c9 kpath 3.50 1.00 34.00 6.98
grep 5fa8c7c9 sets 1.00 0.00 39.50 1.00
grep 5fa8c7c9 twoInputs 2.00 0.00 38.50 3.00

grep 7aa698d3 kpath 2.00 0.00 3.00 1.41
grep 7aa698d3 sets 1.00 0.00 5.00 1.83
grep 7aa698d3 twoInputs 2.00 0.00 27.75 13.30

grep c96b0f2c kpath 2.25 0.50 11.25 11.95
grep c96b0f2c sets 1.50 1.00 4.00 0.82
grep c96b0f2c twoInputs 2.00 0.00 20.50 12.87

jq kpath 2.50 0.58 40.00 0.00
jq sets 1.00 0.00 26.50 3.32
jq twoInputs 2.00 0.00 32.00 10.61

total kpath 2.46 0.78 21.79 17.66
total sets 1.38 0.82 20.25 14.98
total twoInputs 2.08 0.28 27.67 12.38

Table 5.15: Number of iterations per subject and configuration.

The data can be found in Table 5.15. All values are averaged over 4 runs. For
the search-based generator, Alhazen performs between 20.25 (sets) and 27.67
(twoInputs) iterations on average. In this experiment, I stopped the feedback
loop as soon as no new samples were generated. The sets configuration, which
receives the highest number of samples from the start, reaches this point first.
This does not mean that those runs exercised the entire search space. The search
spaces in this experiment are that large that they cannot be examined entirely. It
means that Alhazen exercised a sufficient number of samples from the relevant
part of the search space.

Basilisk performs on average between 1.38 (sets) and 2.46 (kpath) iterations.
This is smaller by a factor of almost 10 when compared to the search-based
generator. This confirms what I observed on the calculator in the previous
section.

Basilisk generates no new information after just a few iterations.

It remains to see whether all subjects behave as the calculator does, and miss
large parts of the search space.

5.6. EVALUATION 205

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

total
73.2 %
61.5 %
60.7 % Alhazen Alhazen0 Basilisk

0.0 0.2 0.4 0.6 0.8 1.0

calculator

grep 3220317a

grep 5fa8c7c9

grep 7aa698d3

grep c96b0f2c

jq

100.0 %

59.1 %

90.0 %

68.3 %

70.1 %

94.5 %

54.5 %

71.4 %

61.9 %

63.1 %

61.3 %

40.2 %

66.7 %

65.2 %

61.7 %

60.8 %

59.9 %

47.8 %

twoInputs precision

Figure 5.10: Precision of Alhazen in the twoInputs configuration.

5.6.4 Precision and Accuracy of Basilisk-generated hypothesis

In the previous section, I found that Alhazen requires less iterations with
Basilisk as a generator. However, it was not clear whether it performs bet-
ter, or just faster. Therefore, I need to have a look at the data for the next research
questions.

Figure 5.10 shows precision for all subjects. Even for Alhazen, those values
are not as good as those in Section 3.3.1. The reason is the new termination
criterion. If there is no new sample in an iteration, the version of Alhazen I used
in Chapter 3 still performs another iteration. Alhazen has no new information
for the next iteration, but the decision tree learner receives a new random seed
7. Therefore, it generates a different decision tree, and has a new chance to
generate additional samples. Within this section, I terminated the feedback
loop as soon as an iteration generated no new samples. This leads to less data
to learn from, and lower precision. Except for grep 3220317a, Alhazen still

7A new random seed is derived from a master seed for each iteration, different runs of Alhazen
use different master seeds

206 CHAPTER 5. TARGETED CARVING

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

total
73.4 %
66.3 %
66.5 % Alhazen Alhazen0 Basilisk

0.0 0.2 0.4 0.6 0.8 1.0

calculator

grep 3220317a

grep 5fa8c7c9

grep 7aa698d3

grep c96b0f2c

jq

100.0 %

59.1 %

93.7 %

72.4 %

68.5 %

78.4 %

54.2 %

76.2 %

66.8 %

70.1 %

67.1 %

36.9 %

75.0 %

73.3 %

69.0 %

67.6 %

66.0 %

47.7 %

twoInputs accuracy

Figure 5.11: Accuracy of Alhazen in the twoInputs configuration.

outperformsAlhazen0, so the idea of a feedback loop still works. On this subject,
Basilisk even outperforms Alhazen. For all other subjects, Basilisk performs
worse than Alhazen. Even Alhazen0 is better than Basilisk in most cases. This
means that samples generated with Basilisk solidify wrong believes within the
tree, rather than helping to disproof them.

Data on accuracy, in Figure 5.11, confirms this result. Except for grep
3220317a, Alhazen outperforms both other tools. Basilisk outperforms Al-
hazen0 on two subjects, jq and grep 5fa8c7c9, proofing that it can generate
valuable information. But then, Alhazen0 still outperforms on three subjects.

Basilisk on its own is not a suitable generator for Alhazen.

However, for jq, Basilisk performs at least better than Alhazen0. With this
result, I can conform my observation on the calculator example: Basilisk can
generate some information fast, butmisses other important pieces of information.
Likely, a tool which uses Basilisk, and switches to Alhazen’s search-based
generator as soon as Basilisk generates no new samples anymorewould combine

5.7. CONCLUSION 207

advantages of both approaches. However, evaluating this approach is out of
scope for this thesis.

5.7 Conclusion
In this section, I will take a final look at the results achieved by Basilisk. The
first section will take a closer look at the implementation, before the results are
summarized in the last section.

5.7.1 The Design of Basilisk
The slowdown observed in Section 5.4.1 shows that my Basilisk implementation
is not fit for real-world usage. However, if it is decided which functions to carve
out before the test is executed, it would not be necessary to dump everything.
Events could only be emitted for relevant program parts. In theory, this leads to
a massive speed-up for Basilisk, I cannot tell whether it does in practise, because
I never tried.

An evenmore optimal implementation could stop the execution of the system
test, similar to a breakpoint in a debugger, at the invocation of a function and
perform unit tests within the context of the original program. This would
eliminate the need to carve altogether, and is done by tools such as RedQueen[5]
or Driller[68]. It would, however, also mean that developers cannot inspect the
carved unit tests manually.

5.7.2 Summary
In this chapter, I introduced Basilisk. Basilisk realizes the idea of a system
test booster: It carves system tests from unit test executions, performs unit-level
analysis of the carved tests, and lifts the results to the system level. In doing so, it
reaches more code than system-level random testing. Moreover, it does so faster.
However, there is a catch: If program-internal datastructures are beyond what
Basilisk can understand, Basilisk fails.

When combined with Alhazen, Basilisk results are ambiguous. While in-
dividual examples show that the basic idea works, the possible advantages do
not materialize. That is, Basilisk analyses individual units and lifts the analysis
results successfully, but Alhazen can not learn from them. The reason is that
Basilisk focuses on a specific part of the input space, and ignores everything else.
In doing so, it misses important information. Future work should investigate
whether Basilisk can be combined with Alhazen’s own generator.

208 CHAPTER 5. TARGETED CARVING

Chapter 6

Closing Remarks

In this section, I’ll conclude my thesis by reflecting on the insights, and com-
menting on my contributions to the questions raised in the introduction. In
Section 6.1, I will compare my contributions to work others have done in the
same field.

6.1 Related Work
In this section, I’ll take a look at work that is related to Alhazen. The related
work is organized into six sections:

1. Section 6.1.1 looks at work which attempts to automatically generate gram-
mars. Those could be used with Alhazen, and therefore simplify the
setup.

2. One component of Alhazen is a grammar-based input generator. Sec-
tion 6.1.2 looks at other approaches for grammar-based input generation.

3. A possible use case for Alhazen is to use Alhazen as a debugging aid.
Section 6.1.3 looks at other approaches which can be used this way. The
work on abstract failure-inducing inputs by Gopinath et al. [25] is closely
related to Alhazen, and therefore has its own section.

4. Section 6.1.5 looks at specification mining, a technique which generates
models for program behavior.

5. Lastly, I’ll consider techniques which are related to Basilisk’s approach of
symbolic analysis of subprograms.

6.1.1 Grammar Mining
Alhazen utilises a grammar for dissecting the program inputs. Features are
defined based on parse trees, and therefore grammars. As for other grammar-
based approaches, finding a suitable grammar — or writing one from scratch —
may be difficult. Also, a grammar may need to be updated when the program
under test evolves and the input format changes. Research on Grammar Mining

209

210 CHAPTER 6. CLOSING REMARKS

attempts to extract grammars automatically. It therefore simplifies the setup of
Alhazen.

Bastani et al. [6] use a black-box approach. They construct a context-free lan-
guage which contains all observed input words. Afterwards, they apply a num-
ber of operations, adding quantifications or turning literals into more permissive
regex, which generalize the candidate language. Afterwards, grammar-based
test generation is used to check whether the relaxed grammar still describes the
program behavior. Clearly, the obtained grammar can be used with Alhazen,
however, there is also conceptual overlap between their tool and Alhazen. Both
tool use a feedback loop to refine their models, and both tools generate a model
which describes the observations. However, the details are quite different. While
Alhazen uses its feedback loop to refine a model over an existing grammar, Bas-
tani et al. [6] refine the grammar itself. Thus their approach, using a context-free
grammar as model, offers different expressiveness than Alhazen, which ex-
presses its hypothesis in terms of features. Also, they attempt to generate an
input grammar for the entire program, rather than just explaining part of its
behavior.

White-box approaches take a different approach to the same problem: They
observe internal program behavior, namely control-flow (e.g. Autogram [35])
or dynamic data-flow(e.g. mimid [23]), and derive a grammar from those in-
teractions. Control-flow based algorithms in this group work with parsers that
are written as recursive-descent parsers, and use the control-flow properties of
those parsing algorithms to derive a grammar. Data-flow based algorithms use
the structure of program internal data structures, and assume that it has some
resemblance to the input structure. Both are dynamic analysis, and therefore
require input samples. Mathis et al. [47]1 present a generator algorithm which
uses data-flow, the same information that AutoGram uses, to guide sample
generation. Those samples reach good coverage of the parser under test, and are
therefore particularly well suited for white-box approaches to grammar mining.

As with Bastani et al. [6], those approaches generate a grammar, and there-
fore offer different expressiveness than Alhazen. For both approaches, it is
unclear whether they can be restricted to the analysis of failing inputs. They rely
on the analysis of internal data structures or control-flow. If program execution
terminates before internal data structures are initialized, or the control-flow
happened, both approaches cannot generate a model. Therefore, their models
always describe the entire input space. They are a good fit for obtaining a gram-
mar for a program under test, and applying Alhazen with this grammar for
bug diagnosis.

6.1.2 Grammar-based Input Generation
One component of Alhazen is a grammar-based input generator, which gener-
ates inputs that fulfill given predicates. This section examines previous work on
grammar-based input generation.

Havrikov and Zeller [31] defined a grammar-based coverage metric, k-path,
and developed an algorithm which generates test suites that fulfill this criterion.
The inner search of my algorithm, presented in Section 3.2.4, was heavily in-
fluenced by this work. Havrikov and Zeller [31] use the grammar graph and

1The author of this thesis is one of the ”et al.”

6.1. RELATED WORK 211

the distance within the grammar graph to reach targets just as I do, however, I
extended the algorithm to be able to handle max-char(), max-qu-length() and
max-char-length() predicates, as well as the ability to handle negated exists()
predicates. Also, I added the outer search to solve cases that the approach cannot
handle on its own.

Pavese et al. [55] use probability distributions to sample context-free gram-
mars for input samples. I used their approach — with a different probability
distribution — to generate training data for Alhazen. The details are described
in Section 2.5.3.

There is more work which generates input samples from a context-free gram-
mar. As an example, Hodován, Kiss, and Gyimóthy [33] generate from the
grammar randomly. This is suprisingly difficult, as one needs to make sure that
the random process terminates eventually.

All three works present grammar-based generation algorithms. However, to
my knowledge, my algorithm was the first one which can fulfill predicates over
the grammar while generating samples.

Shortly after my work, Gopinath, Nemati, and Zeller [24] published their
work on Input Algebras. Input Algebras formalize operations on grammar.
Therefore properties like ”The phone number needs to start with +1” can be
expressed as formulas, and those formulas can be applied as a grammar transfor-
mation, which yields a grammar that generates samples that fulfil this property
only. This approach is interesting, and if Alhazen’s features can be expressed as
formulas like this, it offers a different option for sample generation. However,
Input Algebras can only express syntactic properties. Expressing a property like
”The number needs to be below 121” would be hard, as it is hard to come up
with a grammar which can parse numbers below 121 only2.

Another interesting approach is thework by Steinhoefel and Zeller [67]. They
present a language, called ISLa, which allows to express syntactic properties on
top of a context-free grammar. They also provide a solver, using an SMT solver
within, to fulfil this kind of constraints. Again, this is an interesting alternative
to Alhazen’s generator.

6.1.3 Debugging Aid
In Chapter 4, I positioned Alhazen as a tool which can help in debugging. This
section examines related work in this area.

A popular approach to aid developers in debugging is input reduction. The
main idea is that a smaller input leads to a shorter program run, which is easier
to analyse with traditional debugging tools such as breakpoints and manual
analysis of program states. The goal of those approaches therefore is to determine

2But possible:
〈number〉 → "1" 〈s21〉 | 〈num2〉

〈num2〉 → 〈zero-digit〉 | 〈digit〉 〈zero-digit〉

〈s21〉 → 〈digit1〉 〈zerodigit〉 | "2" 〈digit1〉

〈digit1〉 → "1" | "0"

〈digit〉 → /[1-9]/

〈zero-digit〉 → /[0-9]/
Beware of this grammar, I have not tested it.

212 CHAPTER 6. CLOSING REMARKS

a subset of the input which still reproduces the failure. I used a similar idea
when I looked at input space reduction in Section 4.1.

Zeller and Hildebrandt [78] uses a binary search-like process. They remove
half of the input in each step, until removing any more character from the input
means that the failure does not occur any longer. Later approaches combine this
idea with grammars[50, 69], using information from the grammar to determine
which parts of the input can be left out.

There are some similarities between Alhazen and this work. Both work on
system-level inputs, and both use repeated testing, Alhazen within its feedback
loop and delta debugging-based approaches as a means to test whether an input
can be reduced. However, there are also some differences. First of all, Alhazen
is quite different in the output it provides. Delta debugging provides a reduced
input. That is, exactly one input, and this input, while smaller, may still not
contain obvious clues to the reason of the bug. Alhazen provides a model. This
can be used to generate more inputs, and also, it may highlight the important
properties of those inputs. Most notably, if there are several inputs with the
same size which trigger the bug, Alhazen can discover all of them and include
their information content in the model. A delta debugging-based approach
cannot do that. Another difference between Alhazen and delta-debugging is
that Alhazen can also work without the feedback loop, relying on preexisting
inputs only. While performance is lower, this may still be useful in situations
where the program under analysis cannot be executed with generated inputs
easily.

Statistical fault localization[65] attempts to highlight the code locationswhich
are most likely to contain the bug. That is, they execute failing test cases and
monitor which lines of code get executed. The programmingmistake needs to be
somewhere in those lines, as a bug cannot manifest unless the lines containing
it are executed. Statistical fault localization tools attempt to establish a statis-
tical correlation between code locations and program failures. There is some
discussion about whether this is useful for programmers[53], but some works
show the usefulness of those approaches for automated program repair[42, 73].
Alhazen also uses observations from many program runs to establish statistical
associations with program failures. However, while statistical fault localization
tools associate failures with code locations, Alhazen associates input features
with failures. Input features may be easier to interpret than code locations,
especially if the user lacks context knowledge about the program under test. A
second difference lies in Alhazen’s feedback loop. Alhazen can systematically
generate tests which indicate whether a hypothesis is correct. It uses this to
refine its hypothesis.

Havrikov, Kampmann, and Zeller [30] shows how an extension of Alhazen
can be used to link input features to code locations. In future work, this approach
and unmodified Alhazen could be combined to identify code locations for a
bug.

All statistical debugging tools need a large number of test cases to establish
meaningful statistical associations, and, also in future work, Alhazen might be
used to generate those test cases.

Rößler et al. [61] also use test generation to come up with evidence that
refutes a pre-existing believe, but their hypothesis is based on internal program
state, rather than input features. While Alhazen gives a diagnosis such as ”The
failure occurs if x is smaller than 0”, Rößler et al. [61] only point to locations

6.1. RELATED WORK 213

〈Expression〉 → 〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉

〈UnaryExpression〉 → 〈Literal〉 | 〈Invocation〉

〈Invocation〉 → 〈Function〉 "(" 〈Expression〉 ")"

〈Function〉 → "sqrt" | "cos" | "tan" | "sin"

〈Literal〉 → /[1-9][0-9]*/

Figure 6.1: A more complex grammar for a calculator. This is the same grammar
as in Figure 3.2.

within the program code. Therefore, the advantage of their tool over statistical
debugging is just the embedded test generator. It might be interesting to see
whether the tests generated by Alhazen are equally good at pinpointing the
bug location when they are used with a statistical debugging tool. All in all, I
think that software developers will be grateful for any piece of information they
can get, so combining Alhazen with statistical debugging, or the tool by Rößler
et al. [61], may be beneficial.

There are approaches which work with concrete models of why a program
fails. Johnson, Brun, andMeliou [37] attempt to find tests which refute a hypoth-
esis on what causes a software behavior, but their approach to test generation is
purely random. They just hope that by chance a meaningful test is generated.
In contrast, Alhazen can explore systematically, and create inputs with the
required properties directly.

Chen et al. [9] use a decision tree learner to determine which component in
a large web application causes a specific failure. While this uses the same model
as Alhazen, a decision tree, it has a different objective: Instead of predicting
what is the cause of the bug, they predict which component is likely to contain
the failure.

6.1.4 Abstracting Failure-Inducing Inputs

The approach which is most closely related to Alhazen is DDSET[25], which
the author of this thesis contributed to. DDSET starts with a parse tree, and
replaces subtrees in the parse tree with trees that are rooted in the same control
form. Therefore, the trees still fulfill the requirements laid out by the grammar.
If the behavior of interest still occurs, DDSET marks this node as abstract. If the
behavior does not occur any longer, it marks the node as concrete. After repeating
this process several times, all nodes are marked as concrete or abstract. Within
the tree of concrete nodes, abstract nodes can be replaced. Therefore, the tree
captures the structure of behavior-triggering inputs.

Let’s illustrate this with an example. I will again use a calculator which
reads inputs as described by the grammar in Figure 6.1. This calculator fails
on the input "tan(90) + 5 + 7". The parse tree for this input can be found in
Figure 6.2.

DDSET starts at the root node. It replaces the existing node with a new node
which is labeled with the same control form. For the example, assume that it
goes with the 〈UnaryExpression〉 that has "9" as a leaf word. Now, the leaf word

214 CHAPTER 6. CLOSING REMARKS

〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉

〈Expression〉 "+" 〈Expression〉

〈Expression〉

〈UnaryExpression〉

〈Invocation〉

〈Function〉

"tan"

"(" 〈Expression〉

〈UnaryExpression〉

〈Literal〉

"90"

")"

"+" 〈Expression〉

〈Expression〉 "+" 〈Expression〉

〈Expression〉

〈UnaryExpression〉

〈Literal〉

"5"

"+" 〈Expression〉

〈UnaryExpression〉

〈Literal〉

"7"

Figure 6.2: The parse tree for "tan(90) + 5 + 7" within Figure 6.1. For the
sake of readability and size, this figure leaves out some nodes that would be
labeled with alternations or concatenations.

〈UnaryExpression〉 | 〈Expression〉 "+" 〈Expression〉

〈Expression〉 "+" 〈Expression〉

〈Expression〉 "+" 〈Expression〉

〈Expression〉 "+" 〈Expression〉

〈Expression〉 "+" 〈Expression〉

Figure 6.3: The abstract failure inducing input derived by DDSET. Abstract
nodes are gray.

6.1. RELATED WORK 215

of the entire tree is "9"3. The behavior of interest does not occur with "9", so
DDSET marks the root node as concrete. Next, DDSET attempts to replace the
children of this node one after another. It starts with the left-most child, and
replaces "tan(90)" with "7". This is possible because both expressions have
a parse tree which is rooted in 〈Expression〉. The bug still occurs, so DDSET
marks the left child as abstract. The algorithm goes on to replace the remaining
children, one after another, and observes that it cannot replace 〈Expression〉 "+"
〈Expression〉, but both children of this node. In the end, it removes the children of
all abstract nodes, and obtains the tree in Figure 6.3. While this is an incomplete
parse tree, it can also be written as a string: 〈Expression〉 "+" 〈Expression〉 "+"
〈Expression〉. The authors of DDSET call such a string an abstract failure-inducing
input. Concrete failure-inducing inputs can be obtained from such an abstract
failure-inducing input by filling in the non-terminals with some valid leaf word.

Similar to Alhazen, DDSET provides a model which describes a set of
behavior-triggering inputs. In this, DDSET and Alhazen share their motivation.
Both perform program executions to test preliminary versions of their mod-
els, and use the observations to refine them. However, their expressiveness is
complementary.

Let’s assume we would apply Alhazen to the example I just presented. Al-
hazen can provide the information that a "+" needs to be in a behavior-triggering
input, however, it cannot express that there need to be two "+". Alhazen fails
at structural properties like this. At the same time, consider what happens
when DDSET is applied to my initial example for Alhazen. That example was
a calculator which fails for the input "sqrt(0)". Alhazen would provide the
information that the calculator fails if within "sqrt(x)", it is x ≤ 0. DDSET
cannot interpret "0" numerically, it can only try to replace it with arbitrary sub-
trees. Therefore, DDSET’s abstract failure-inducing input would in the end be
"sqrt(0)", which is not abstract at all. Alhazen and DDSET deal with different
properties of the input: DDSET excels at analysing structural properties. At the
same time, Alhazen works best for semantic properties. In future work, both
approaches should be combined.

6.1.5 Specification Mining
Specification mining attempts to provide a specification for the analysed pro-
gram, which is similar to Alhazen, as a specification can be seen as an expla-
nation for the behavior of the program. This section will look at some of those
approaches in more detail.

One of the first approaches in specification mining was Daikon[17]. Daikon
infers dynamic invariants, that is, properties which hold for every observed pro-
gram run. If, within a set of program runs, the argument x to sqrt(x) is always
positive, Daikon infers the invariant x ≥ 0. Daikon’s invariants are derived
from predefined templates: It starts by instantiating those templates with the
variables in the program, and then discards those which are not fulfilled by one
of the observations. Alhazen also derives a model which describes all observed
program runs. While Daikon is limited by the pre-defined patterns, Alhazen
is limited by the expressiveness of decision trees. Also, Alhazen works at a
different level. Instead of function arguments, Alhazen reasons about properties

3DDSET replaced the root, after all

216 CHAPTER 6. CLOSING REMARKS

of the program input. This means that Alhazen’s model can be used to infer
additional program inputs. This is rather difficult with Daikon invariants, as
the relationship of variable values to program inputs is unknown.

Galeotti et al. [21] extend the idea of Daikon for dynamic loop invariant
detection. They assume that there is a postcondition for a function, and are
looking for an invariant for a loop within this function. In this situation, they
relax Daikon’s reliance on predefined templates for the invariant, by using
syntactic mutations of the postcondition as invariant candidates. Their work also
features a feedback loop: They attempt to generate additional tests, rejecting
more of the invariant candidates, by running a test generator. This idea is
conceptually similar to Alhazen’s feedback loop, but does not attempt to provide
something human-readable. On the contrary, they explicitly want to use those
loop invariants in automated verification.

6.1.6 Unit Analysis of Subprograms
The key idea for the Basilisk generator is to limit symbolic execution to subpro-
grams, and make the input parts which are relevant to Alhazen’s hypothesis
symbolic. The first part, limiting symbolic execution to subprograms, has been
explored by other authors before.

When generating random inputs, or even when using a coverage-based
feedback-driven mechanism, it is often difficult to solve tests for precise val-
ues, such as checksums or magic numbers. Aschermann et al. [5] overcome
this problem by stopping program execution at this point in time, and finding
symbolic solutions. Just as Basilisk, they use correspondence between input
values and values observed in the program run to decide which parts are to be
made symbolic. However, in difference to Basilisk, they do not generate unit
tests. Instead, they solve symbolic constraints directly. This also means that the
symbolic part of their execution rarely solves more than one comparsion. In
constrast, Basilisk solves an entire program unit symbolically.

Stephens et al. [68] separates the program in compartments, anduses concolic
execution, that is, symbolic execution in parallel to non-symbolic execution, to
solve conditions at the compartment boundaries, while traditional fuzzing is
used within the compartments. Similar to RedQueen, this allows to combine
the strength of symbolic analysis and fuzzing, the differences lie mostly in the
technical implementation. While RedQueen solves individual comparisons, and
takes the decision what is symbolic based on input correspondance, Driller
uses tracing to find out which values need to be considered as symbolic. As
mentioned in Section 5.7.1, both approaches avoid the overhead of generating
an execution graph, which gives them a better performance than Basilisk.

6.2 Threats to Validity
As all scientific work, the work presented in this thesis has some threats to
validity.

The first question is whether results can be generalized to other subjects.
Our subjects are written in two programming languages, Java and C, and read
different input formats. Somy evaluation set is quite diverse. However, Alhazen
can only diagnose bugs if the diagnosis can be expressed in terms of its features.

6.2. THREATS TO VALIDITY 217

The thesis showed this in Section 2.7.1, when I observed that the condition for
Rhino 385 and Closure 2808 cannot be expressed, because they are context-
sensitive. This is a general limitation of Alhazen. In Section 6.3, I discuss how
to extend the set of features Alhazen supports.

Also, the results may depend on the grammar used. In Section 4.1.2, I
described how properties of the grammar, in this case whether repetitions are
written as quantifications or not, influence the results. Similar properties of the
grammar could have an effect as well. All my grammars come from fuzzing
campaigns, mostly the one by Havrikov and Zeller [31]. So similarities of the
grammars cannot be ruled out.

The second question concerns internal validity. In Section 2.5.3, in tandem
with the grammar rewrite in Section 2.4, I described how the shortest deriva-
tion close-off can, under some circumstances, lead to more behavior-triggering
samples than the probabilistic generator itself would generate. In Section 2.7.3, I
describe how the same effect leads to better performance for Alhazen0 in the
sets configuration. The bad results for Alhazen0 as a generator, presented in Sec-
tion 2.7.2, proves that the effect is sizeable. In fact, if Alhazen0’s own generator
is modified to use a shortest-derivations for tie-breaking (rather than minimal
length), the generator precision of Alhazen0 as evaluated in Section 2.7.2, in-
creases by 40%! This is an example for coincidental correlation: Within the
probabilistic generator, coincidental correlation means that some failing sam-
ples do not fail due to probabilistic generation, but due to the chosen close-off.
If Alhazen’s generator has the same coincidental effect, and favors the same
control forms, those effects add up and lead to unrealistic high accuracy and
precision. This is especially true for the sets configuration, which has the same
bias in training and verification sets.

Within the original paper on Alhazen[39], only results for the sets configu-
ration where given. The paper lists a possible bias within the training data as a
possible threat to validity, however, at the time the authors, which include the
author of this thesis, did not realize how severe the problem in fact was. Most
notably, Alhazen used a shortest derivation length close-off at this point in time,
so even samples generated by Alhazen’s own generator had the aforementioned
bias. When I realized how severe the bias is, I replaced the close-off within
Alhazen with a close-off based on minimal length, as described in Section 3.2.4.
The results in Section 3.3 were obtained with the new close-off, and are therefore
free of this bias.

This bias is quite visible as soon as one starts to perform a qualitative analysis,
as in Section 2.7.3 and Section 3.3.3. I discovered no evidence of further biases
when I did so. However, I cannot be sure whether there are more, yet undis-
covered, effects of coincidental correlation that lead to better-than-deserved
results.

As with all work that develops new tools, programming mistakes in my code
may lead to wrong results. I took great care to rule out mistakes. My code
includes 216 automated test cases, which I used to check for correctness after
every code change. I carefully analysed logfiles for each run, and checked for
evidence of unexpected behavior. The codewas reused byHavrikov, Kampmann,
and Zeller [30], and their analysis helped to find and fix further implementation
hickups.

All in all, I took all reasonable measures to ensure that the results are valid
and sound.

218 CHAPTER 6. CLOSING REMARKS

6.3 Future Work
My work on Alhazen opens the door for tools which automatically find the
reason behind a program failure. Still, Alhazen itself is just a prototype which
showcases the idea. Improvements are necessary for a real-world deployment.

The first obvious improvement is the feature selection: Right now, Alhazen is
incapable of expressing relationships between different input parts. I described
that in Section 2.7.3, when I observed that Alhazen0 cannot diagnose the Rhino
385 bug, because it requires two variables with the same name. While Alhazen
can, for example, express that a specific character within a variable name causes
a problem, it cannot express that two input parts need to be identical. This
limitation needs to be lifted: There are too many bugs which require something
like this in their explanation for Alhazen to be useful if this restriction persists.
This problem can be tackled in two ways: With a stronger machine-learning
approach, or with more advanced features.

Some extensions to the features used by Alhazen are straight forward: I
already have max-char-length(), introducing a feature min-char-length(), which
argues about the minimal length of a control form, rather than the maximal
length, would be easy.

As discussed in Section 6.1.4, DDSET[25] and Alhazen are complementary
in the input properties they argue about: DDSET is restricted to structural
properties, while Alhazen excels at semantic properties. A connection between
Alhazen and DDSET is therefore a natural extension: One could use patterns as
features, use Alhazen to learn semantic properties as soon as the pattern has
been found, or train both approaches in tandem on the same training data.

However, there are more advanced methods to phrase features. Within the
machine-learning community, there is some work on graph embeddings[60].
As parse trees are essentially graphs, those approaches may lend themselves as
a better way to learn from parse trees.

The generator presented in this thesis is extendable: If a new feature is
introduced, a new r′ needs to be defined, and integrated into rP . Then, the
generator can generate samples with specific values for those features. However,
the generator has a clear drawback, and that is feature interaction. If one predi-
cate asks for a property for a subtree of the generated parse tree, and another
predicate asks for another property in the same subtree, I often see problems:
Both predicates are greedy independently. They don’t know about each other,
and each tries to push the inner search in its preferred direction, rather than
agreeing on a direction. This means that the outer search needs to come in
action, and explore several options for this part of the tree. Adding more feature
types, and more predicate types, could intensify this problem, and mean that
the generator cannot find samples within reasonable time any longer. Future
work should check whether Gopinath, Nemati, and Zeller [24]’s Input Algebras
or Steinhoefel and Zeller [67]’s ISLa provide preferable behavior in this type of
situations. Basilisk, the approach presented in Chapter 5, should be considered
as well.

It should also be investigated whether decision trees are the best machine-
learning approach for my use case. Decision trees are easy to understand, but
not very powerful. It stands to reason that another approach, for example a
SVM[70] or a neural network[26] could be more successful. This is, however, in
no way guaranteed: As described in Section 2.6.3, Decision Trees are a natural

6.4. CONCLUSION 219

fit for the kind of data Alhazen has. So maybe another tree-based approach
would be the right fit. Clearly, experimentation is required to find out which
machine-learning approach performs best in the context of Alhazen.

However, replacing themachine-learning approach used inAlhazen is not an
easy task: Section 3.1 describes how I extract the predicates for the generator from
the decision tree. This approach relies on the structure of the tree. Therefore,
a machine-learning approach which does not provide such a structure cannot
be used within Alhazen. A different generator may be able to use the internal
representation of another machine-learning approach, or work without access
to the internal representation at all. However, this does not apply to any of the
work mentioned previously. Luckily, there is quite some work on explainable
machine learning. This work aims to provide an explanation for why a model
provides the prediction it does provide, even if the model itself doesn’t. A
tool like SHAP[46] or LIME[72] could be used to derive predicate sets that the
generator can then solve.

6.4 Conclusion

In this thesis, I presented Alhazen. Alhazen is a tool for automated debugging:
Based on as little as two failing samples, it generates a hypothesis for why the
program fails.

Chapter 1 presented three use cases for Alhazen. The tool can predict
program behavior, generate additional inputs and help to understand program
behavior.

I developed Alhazen in two steps: In Chapter 2, I presented Alhazen0. This
tool can already generate reasonable explanations for program behavior, but
requires a huge number of input samples.

In Chapter 3, I extended Alhazen0 to Alhazen. The newly added component
is a sample generator. Together with the hypothesis learner, this generator
generates the samples that Alhazen learns from. This means that Alhazen no
longer requires such an extensive sample set. It can now learn from just two
input samples.

With respect to predicting program behavior, I can conclude that

Fo
rr

ef
er
en

ce

See Section 3.3.1

Learning from just two inputs, Alhazen achieves a precision of 90.8% and
an accuracy of 88.6% over all subjects.

This is an excellent result: Alhazen recognizes a large part of the behavior-
triggering samples correctly. Therefore, Alhazen could be used to filter inputs
before they reach the program under test, and potentially avoid some failures.
Be aware, however, that Alhazen is not perfect: Such a solution should only be
used as a temporary measure. A software developer still needs to provide a real
fix for the problem.

For generating additional inputs, I conclude

220 CHAPTER 6. CLOSING REMARKS

Fo
rr

ef
er
en

ce

See Section 3.3.2

89.2% of the samples generated trigger or don’t trigger the behavior as re-
quested. 65.2% of the samples generated trigger the behavior, if requested.

Alhazen can, therefore, be used to generate additional input samples. Those
can be used as a regression test suite to verify a fix, or as additional samples for
some automated program repair technique. Just having more samples available
may make debugging a lot easier.

The findings about Alhazen’s usefulness in debugging are inconclusive:
The user studies performed in Chapter 4 have too little participants. They
can, however, inform the design of a user study. I proposed such a design in
Section 4.3.

Chapter 5 explores whether unit-level program analysis can be sued to gen-
erate more information for Alhazen. While the combination of system-level and
unit-level analysis is shown to be effective, the combination with Alhazen gives
mixed results: It works in some situations, but not in general. More work is
required to find aworking combination of Basilisk andAlhazen’s own generator.

All in all, Alhazen shows the huge potential of machine learning within pro-
gram understanding. Relations between program input and program behavior
can be discovered and learned from observed behavior. Future work should,
and is already, explore better machine learning approaches, and improve upon
the generator used within Alhazen.

In ten years from now, no software developer should debug without an
artificially intelligent helper.

Appendix A

Bug Classification

Bug reports for ansible can be found at
https://github.com/ansible/ansible/pull/<bug_no>,
where 〈bug_no〉 should be replaced with the number of the bug. For django,

bug reports can be found at
https://github.com/django/django/pull/<bug_no>.
The following list of bug reports I examined is ordered by the categories in

the final classification.

Special Case Missing

Project Bug No. One-line Summary

ansible 73947 missing special case in string parsing

ansible 73809 searching wrong subdir, basically missed a special case

ansible 73776 forgot a case where something does not have the ex-
pected type

ansible 73765 forgot handling of a special case

django 14182 added an assertion, negative number does not work

django 14179 missing special case, missing host

django 14170 missing special case

django 14148 incorrect handling of a special case (empty string)

django 14144 incorrect handling of a special case (empty string)

ansible 74030 missing condition for different modes of execution

221

https://github.com/ansible/ansible/pull/<bug_no>
https://github.com/django/django/pull/<bug_no>

222 APPENDIX A. BUG CLASSIFICATION

Too Much Code

Project Bug No. One-line Summary

ansible 73710 removes a special case

django 14140 removed unnecessary if

django 14152 removed dead code

Error Handling

Project Bug No. One-line Summary

ansible 73963 missing error handling

ansible 74022 added missing error handling

ansible 73804 go on after first error, basically exiting a loop to early
due to error handling

django 14151 added missing error handling

Type Errors

Project Bug No. One-line Summary

django 14196 type error, bytes vs. string

django 14195 type error in combination with error handling

django 14190 wrong access mode when opening a file

django 14149 changed expected type for a parameter

Default Values

Project Bug No. One-line Summary

ansible 73961 wrong default value

ansible 73924 also a variant of wrong default value

django 14167 changing tests only, wrong default values

django 14166 adding a default value

django 14169 changed a string constant

223

Due to Interesting Python Syntax

Project Bug No. One-line Summary

ansible 73808 forgot to empty a list, and therefore didn’t obey depth
limit, dirs[:] = vs. dirs =

ansible 73806 forgot to mutate instead of assign, dirs[:] = vs. dirs =

ansible 74029 wrong indentation

Incorrect Communication with Other Program Parts

Project Bug No. One-line Summary

ansible 73881 improper state update after performing a task

django 14139 fixed incorrect setup (missing call)

django 14124 avoid an additional update (method call too much)

Performance

Project Bug No. One-line Summary

ansible 73951 performance, try to avoid blocking

django 14198 readability, performance optimization

django 14175 test performance

Output Formatting

Project Bug No. One-line Summary

django 14191 re-ordering for better readability of output

django 14174 changing error messages

django 14155 better output formatting

224 APPENDIX A. BUG CLASSIFICATION

Changes to Comments only

Project Bug No. One-line Summary

ansible 73718 identical to #73808

ansible 73714 changes comments only

django 14192 changes comments only

django 14176 comments only

Miscellaneous

Project Bug No. One-line Summary

django 14189 adds missing feature

django 14177 changing test discovery

django 14164 incorrect language code formats

django 14163 fixing tests only

django 14153 fixed a key for a cache

django 14205 adds a test

django 14203 refactoring

django 14199 applies a previous fix to an additional location?

ansible 73863 full qualified name vs. simple name of a plugin

Configuration only

The ansible repository contains configuration files which describe properties of
various plugins. Some of the merge requests made changes to those configura-
tion files only.

Project Bug No. One-line Summary

ansible 73839 fix is in a config file

ansible 73825 fix is in a config file

Documentation Only

Ansible labels merge requests which change only the documentation as such.
Therefore, I could exclude those merge requests from my analysis. For django,
those merge requests have no special label, and therefore I could not exclude
them automatically.

225

Project Bug No. One-line Summary

django 14194 documentation only

django 14183 documentation only

django 14181 documentation only

django 14172 documentation only

django 14171 documentation only

django 14160 documentation only

django 14143 documentation only

django 14133 documentation only

django 14129 documentation only

226 APPENDIX A. BUG CLASSIFICATION

Appendix B

Coverage over Time for
Basilisk

Coverage on all Basilisk subjects over time.

0 200000 400000 600000 800000
time [ms]

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

b2sum

basilisk
radamsa

Figure B.1: Coverage on b2sum

227

228 APPENDIX B. COVERAGE OVER TIME FOR BASILISK

0 200000 400000 600000 800000
time [ms]

0.0

0.1

0.2

0.3

0.4

Co
ve

ra
ge

paste

basilisk
radamsa

Figure B.2: Coverage on paste

0 200000 400000 600000 800000
time [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
ve

ra
ge

tac

basilisk
radamsa

Figure B.3: Coverage on tac

229

0 200000 400000 600000 800000
time [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
ve

ra
ge

dc

basilisk
radamsa

Figure B.4: Coverage on dc

0 200000 400000 600000 800000
time [ms]

0.00

0.05

0.10

0.15

0.20

Co
ve

ra
ge

cut

basilisk
radamsa

Figure B.5: Coverage on cut

230 APPENDIX B. COVERAGE OVER TIME FOR BASILISK

0 200000 400000 600000 800000
time [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
ve

ra
ge

sed
basilisk
radamsa

Figure B.6: Coverage on sed

Bibliography

[1] Twitter @vm_call. Carl Schou on Twitter: After joining … June 22, 2021. url:
https://twitter.com/vm_call/status/1405937492642123782.

[2] M AdelsonVelskii and Evgenii Mikhailovich Landis. An algorithm for the
organization of information. Tech. rep. JOINT PUBLICATIONS RESEARCH
SERVICE WASHINGTON DC, 1963.

[3] Akasurde. Amazon: Fix distribution facts for older release by Akasurde · Pull
Request #73947 · ansible/ansible · GitHub. Nov. 28, 2021. url: https://
github.com/ansible/ansible/pull/73947.

[4] RedHat Ansible.Ansible is Simple IT Automation. Nov. 28, 2021. url: https:
//www.ansible.com/.

[5] Cornelius Aschermann et al. “REDQUEEN: Fuzzing with Input-to-State
Correspondence.” In: NDSS. Vol. 19. 2019, pp. 1–15.

[6] Osbert Bastani et al. “Synthesizing program input grammars.” In: ACM
SIGPLAN Notices 52.6 (2017), pp. 95–110.

[7] Marcel Böhme et al. “HowDevelopersDebug Software—TheDBGBENCH
Dataset.” In: 2017 IEEE/ACM 39th International Conference on Software En-
gineering Companion (ICSE-C). IEEE. 2017, pp. 244–246.

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “Klee: unassisted
and automatic generation of high-coverage tests for complex systems
programs.” In: OSDI. Vol. 8. 2008, pp. 209–224.

[9] Mike Chen et al. “Failure diagnosis using decision trees.” In: International
Conference on Autonomic Computing, 2004. Proceedings. IEEE. 2004, pp. 36–
43.

[10] cjerdonek. Fixed #32578 – Fixed crash in CsrfViewMiddleware when a request
with Origin header has an invalid host. by cjerdonek · Pull Request #14179 ·
django/django · GitHub. Nov. 28, 2021. url: https://github.com/django/
django/pull/14179.

[11] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. 1977. isbn:
978-0-12-179060-8.

[12] NVIDIA Corporation. CUDA LLVM Compiler | NVIDIA Developer. Nov. 29,
2021. url: https://developer.nvidia.com/cuda-llvm-compiler.

[13] Ron Cytron et al. “Efficiently computing static single assignment form
and the control dependence graph.” In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 13.4 (1991), pp. 451–490.

231

https://twitter.com/vm_call/status/1405937492642123782
https://github.com/ansible/ansible/pull/73947
https://github.com/ansible/ansible/pull/73947
https://www.ansible.com/
https://www.ansible.com/
https://github.com/django/django/pull/14179
https://github.com/django/django/pull/14179
https://developer.nvidia.com/cuda-llvm-compiler

232 BIBLIOGRAPHY

[14] Fred D Davis, Richard P Bagozzi, and Paul R Warshaw. “User acceptance
of computer technology: A comparison of two theoretical models.” In:
Management science 35.8 (1989), pp. 982–1003.

[15] Jay Earley. “An efficient context-free parsing algorithm.” In: Communica-
tions of the ACM 13.2 (1970), pp. 94–102.

[16] Sebastian Elbaum et al. “Carving and Replaying Differential Unit Test
Cases from System Test Cases.” In: IEEE Transactions on Software Engineer-
ing 35.1 (2009), pp. 29–45.

[17] Michael D Ernst et al. “The Daikon system for dynamic detection of likely
invariants.” In: Science of computer programming 69.1-3 (2007), pp. 35–45.

[18] Sven Christian Fackert. “A User Study on the Effectiveness of Test-Based
Debugging Diagnoses.” MA thesis. Saarland University, 2021.

[19] George Fink and Matt Bishop. “Property-based testing: a new approach
to testing for assurance.” In: ACM SIGSOFT Software Engineering Notes
22.4 (1997), pp. 74–80.

[20] Django Software Foundation. The web framework for perfectionists with dead-
lines | Django. Nov. 28, 2021. url: https://www.djangoproject.com/.

[21] Juan P Galeotti et al. “Automating full functional verification of programs
with loops.” In: CoRR, abs/1407.5286 (2014).

[22] Erich Gamma et al. Elements of reusable object-oriented software. Vol. 99.
Addison-Wesley Reading, Massachusetts, 1995.

[23] Rahul Gopinath, Björn Mathis, and Andreas Zeller. “Mining Input Gram-
mars from Dynamic Control Flow.” In: Proceedings of the ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE) 2020. 2020.

[24] Rahul Gopinath, Hamed Nemati, and Andreas Zeller. “Input Algebras.”
In: 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE. 2021, pp. 699–710.

[25] RahulGopinath et al. “Abstracting failure-inducing inputs.” In:Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 2020, pp. 237–248.

[26] Kevin Gurney. An introduction to neural networks. CRC press, 2018.
[27] Mark Harman. “Automated patching techniques: the fix is in: technical

perspective.” In: Communications of the ACM 53.5 (2010), pp. 108–108.
[28] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the

heuristic determination of minimum cost paths.” In: IEEE transactions on
Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[29] Nikolas Havrikov. NullPointerException · Issue #386 · mozilla/rhino · GitHub.
July 28, 2021. url: https://github.com/mozilla/rhino/issues/386.

[30] Nikolas Havrikov, Alexander Kampmann, and Andreas Zeller. “From In-
put Coverage to Code Coverage: Systematically Covering Input Structure
with k-Paths.” In: ACM Transactions on Software Engineering and Methodol-
ogy (Feb. 2022). url: https://publications.cispa.saarland/3572/.

https://www.djangoproject.com/
https://github.com/mozilla/rhino/issues/386
https://publications.cispa.saarland/3572/

BIBLIOGRAPHY 233

[31] Nikolas Havrikov and Andreas Zeller. “Systematically covering input
structure.” In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 2019, pp. 189–199.

[32] Aki Helin. Radamsa. https://gitlab.com/akihe/radamsa.
[33] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. “Grammarinator: a

grammar-based open source fuzzer.” In: Proceedings of the 9th ACM SIG-
SOFT international workshop on automating TEST case design, selection, and
evaluation. 2018, pp. 45–48.

[34] Jörg Hoffmann and Bernhard Nebel. “The FF planning system: Fast plan
generation through heuristic search.” In: Journal of Artificial Intelligence
Research 14 (2001), pp. 253–302.

[35] Matthias Höschele and Andreas Zeller. “Mining Input Grammars from
Dynamic Taints.” In: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE 2016. Singapore, Singapore:
ACM, 2016, pp. 720–725. isbn: 978-1-4503-3845-5. doi: 10.1145/2970276.
2970321. url: http://doi.acm.org/10.1145/2970276.2970321.

[36] ECMA International. ECMAScript; 2022 Language Specification. Nov. 20,
2021. url: https : / / raw . githubusercontent . com / tc39 / ecma262 /
master/spec.html.

[37] Brittany Johnson, Yuriy Brun, and AlexandraMeliou. “Causal Testing: Un-
derstanding Defects’ Root Causes.” In: Proceedings of the 2020 International
Conference on Software Engineering. 2020.

[38] Project Jupyter. Project Jupyter. Nov. 28, 2021. url: https://jupyter.org/.
[39] Alexander Kampmann et al. “When does my Program do this? Learning

Circumstances of Software Behavior.” In: ESEC/FSE 2020. June 2020. url:
https://publications.cispa.saarland/3107/.

[40] Dongsun Kim et al. “Automatic patch generation learned from human-
written patches.” In: 2013 35th International Conference on Software Engi-
neering (ICSE). IEEE. 2013, pp. 802–811.

[41] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimization.”
See http://llvm.cs.uiuc.edu.MA thesis. Urbana, IL: Computer Science
Dept., University of Illinois at Urbana-Champaign, Dec. 2002.

[42] Claire Le Goues et al. “Genprog: A generic method for automatic software
repair.” In: Ieee transactions on software engineering 38.1 (2011), pp. 54–72.

[43] libFuzzer: a library for coverage-guided fuzz testing. https://llvm.org/doc-
s/LibFuzzer.html. LLVM Compiler Infrastructure.

[44] Rensis Likert. “A technique for the measurement of attitudes.” In: Archives
of psychology (1932).

[45] Kenneth Lorber. NetHack 3.6.6: NetHack Home Page. Dec. 23, 2021. url:
https://www.nethack.org/.

[46] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting
Model Predictions.” In: Advances in Neural Information Processing Systems
30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–4774.
url: http://papers.nips.cc/paper/7062-a-unified-approach-to-
interpreting-model-predictions.pdf.

https://doi.org/10.1145/2970276.2970321
https://doi.org/10.1145/2970276.2970321
http://doi.acm.org/10.1145/2970276.2970321
https://raw.githubusercontent.com/tc39/ecma262/master/spec.html
https://raw.githubusercontent.com/tc39/ecma262/master/spec.html
https://jupyter.org/
https://publications.cispa.saarland/3107/
https://www.nethack.org/
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

234 BIBLIOGRAPHY

[47] Björn Mathis et al. “Parser-directed fuzzing.” In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. 2019, pp. 548–560.

[48] Phil McMinn. “Search-based software test data generation: a survey.” In:
Software testing, Verification and reliability 14.2 (2004), pp. 105–156.

[49] Barton P. Miller, Louis Fredriksen, and Bryan So. “An Empirical Study of
the Reliability of UNIX Utilities.” In: Commun. ACM 33.12 (Dec. 1990),
pp. 32–44. issn: 0001-0782. doi: 10.1145/96267.96279. url: http://doi.
acm.org/10.1145/96267.96279.

[50] Ghassan Misherghi and Zhendong Su. “HDD: hierarchical delta debug-
ging.” In: Proceedings of the 28th international conference on Software engineer-
ing. 2006, pp. 142–151.

[51] Hoang Duong Thien Nguyen et al. “Semfix: Program repair via semantic
analysis.” In: 2013 35th International Conference on Software Engineering
(ICSE). IEEE. 2013, pp. 772–781.

[52] Carlos Pacheco and Michael D Ernst. “Randoop: Feedback-directed Ran-
dom Testing for Java.” In: Companion to the 22Nd ACMSIGPLANConference
on Object-oriented Programming Systems and Applications Companion. Vol. 2.
OOPSLA ’07. New York, NY, USA: ACM, 2007, pp. 815–816. isbn: 978-
1-59593-865-7. doi: 10.1145/1297846.1297902. url: http://doi.acm.
org/10.1145/1297846.1297902.

[53] Chris Parnin andAlessandroOrso. “Are automated debugging techniques
actually helping programmers?” In: Proceedings of the 2011 international
symposium on software testing and analysis. 2011, pp. 199–209.

[54] Terence Parr et al.GitHub - antlr/grammars-v4: Grammars written for ANTLR
v4; expectation that the grammars are free of actions.Nov. 20, 2021. url: https:
//github.com/antlr/grammars-v4.

[55] Esteban Pavese et al. “Inputs from Hell: Generating Uncommon Inputs
from Common Samples.” In: arXiv preprint arXiv:1812.07525 (2018).

[56] Karl Pearson. “VII. Note on regression and inheritance in the case of two
parents.” In: proceedings of the royal society of London 58.347-352 (1895),
pp. 240–242.

[57] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[58] Yuhua Qi et al. “The strength of random search on automated program
repair.” In: Proceedings of the 36th International Conference on Software Engi-
neering. 2014, pp. 254–265.

[59] Baishakhi Ray et al. “On the” naturalness” of buggy code.” In: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE. 2016, pp. 428–439.

[60] Arnold L Rosenberg. “Issues in the study of graph embeddings.” In: Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science. Springer.
1980, pp. 150–176.

[61] Jeremias Rößler et al. “Isolating failure causes through test case genera-
tion.” In: Proceedings of the 2012 international symposium on software testing
and analysis. 2012, pp. 309–319.

https://doi.org/10.1145/96267.96279
http://doi.acm.org/10.1145/96267.96279
http://doi.acm.org/10.1145/96267.96279
https://doi.org/10.1145/1297846.1297902
http://doi.acm.org/10.1145/1297846.1297902
http://doi.acm.org/10.1145/1297846.1297902
https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4

BIBLIOGRAPHY 235

[62] Harold Sackman, Warren J Erikson, and E Eugene Grant. “Exploratory
experimental studies comparing online and offline programming perfor-
mance.” In: Communications of the ACM 11.1 (1968), pp. 3–11.

[63] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. In-
troduction to information retrieval. Vol. 39. Cambridge University Press
Cambridge, 2008.

[64] Skipper Seabold and Josef Perktold. “statsmodels: Econometric and statis-
tical modeling with python.” In: 9th Python in Science Conference. 2010.

[65] Higor A de Souza,Marcos L Chaim, and Fabio Kon. “Spectrum-based soft-
ware fault localization: A survey of techniques, advances, and challenges.”
In: arXiv preprint arXiv:1607.04347 (2016).

[66] Charles Spearman. “The proof and measurement of association between
two things.” In: (1961).

[67] Dominic Steinhoefel and Andreas Zeller. “Specifying Input Constraints.”
[68] Nick Stephens et al. “Driller: Augmenting fuzzing through selective sym-

bolic execution.” In: NDSS. Vol. 16. 2016. 2016, pp. 1–16.
[69] Chengnian Sun et al. “Perses: Syntax-guided Program Reduction.” In:

ICSE ’18. Gothenburg, Sweden: ACM, 2018, pp. 361–371. isbn: 978-1-4503-
5638-1. doi: 10.1145/3180155.3180236. url: http://doi.acm.org/10.
1145/3180155.3180236.

[70] Shan Suthaharan. “Support vector machine.” In: Machine learning models
and algorithms for big data classification. Springer, 2016, pp. 207–235.

[71] Philip H Swain and Hans Hauska. “The decision tree classifier: Design
and potential.” In: IEEE Transactions on Geoscience Electronics 15.3 (1977),
pp. 142–147.

[72] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “” Why Should
I Trust You?”: Explaining the Predictions of Any Classifier.” In: arXiv
e-prints (2016), arXiv–1602.

[73] Westley Weimer et al. “Automatically finding patches using genetic pro-
gramming.” In: 2009 IEEE 31st International Conference on Software Engi-
neering. IEEE. 2009, pp. 364–374.

[74] Jooyong Yi et al. “A correlation study between automated program repair
and test-suite metrics.” In: Empirical Software Engineering 23.5 (2018),
pp. 2948–2979.

[75] Michał Zalewski. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.
[76] Andreas Zeller. The Debugging Book. Retrieved 2021-10-13 13:24:19+02:00.

CISPA Helmholtz Center for Information Security, 2021. url: https://
www.debuggingbook.org/ (visited on 10/13/2021).

[77] Andreas Zeller. Why programs fail: a guide to systematic debugging. Elsevier,
2009.

[78] Andreas Zeller and Ralf Hildebrandt. “Simplifying and isolating failure-
inducing input.” In: IEEE Transactions on Software Engineering 28.2 (2002),
pp. 183–200.

https://doi.org/10.1145/3180155.3180236
http://doi.acm.org/10.1145/3180155.3180236
http://doi.acm.org/10.1145/3180155.3180236
https://www.debuggingbook.org/
https://www.debuggingbook.org/

	Problem Statement
	Thesis Structure
	How to read this thesis?
	Motivating Example
	Behavior of Interest and Predicate of Interest
	General-Purpose Predicates of Interest
	Specific Predicates of Interest

	State of the Art
	Debugging
	Automated Program Repair

	Learning Explanations for Program Behavior
	Context-Free Grammars
	Representing a Grammar as a Graph
	Ambiguity
	Increasing the Probability of Behavior-Triggering Samples
	Evaluation Setup
	Evaluation Metrics
	Subjects
	Generating Test Data
	Generating Training Data

	Creating Hypothesis
	Feature Extraction
	Feature Selection
	Decision Trees

	Evaluation
	As Predictor
	As Generator
	Analysis of Individual Cases

	Conclusion

	Refining Hypothesis with a Feedback Loop
	Generating Predicate Sets
	Extracting Predicates from the Trees
	Simplifying the Predicate Sets
	Exploring Beyond known Search Space Areas
	Breaking Correlations

	Generating Grammar Words
	More Properties of Control Forms
	Rewriting the Grammar for Excludes
	Checking Feasibility
	Greedily Searching for Candidate Trees
	Searching the space of all possible trees

	Evaluation
	As Predictor
	As Generator
	Analysis of Individual Cases

	Conclusion

	Debugging with Input Features
	Focusing on Small Parts of the Input Space
	Characterizing the Search Space
	Evaluation

	Preparing the User Study
	Measuring Repair Quality
	Initial Design
	Conducting the Pre-Pilot
	Refining the Study Design
	Conducting the Pilot Study
	Analysis of Pilot Study Results
	P-Hacking

	Proposed Design for a User Study
	Recruitment Strategy
	Within Subject versus Between Subject
	Task Design and Screening Test

	Conclusion

	Targeted Carving
	Motivating example
	Background
	Symbolic Execution
	Fuzzing
	Low-Level Virtual Machine

	Carving C Programs
	Carving Approach
	Implementation of Carving
	Parameterizing Unit Tests
	Lifting Unit-Level Values to the System-Level

	Evaluation
	Performance of Basilisk
	Evaluation Subjects
	System Testing
	Lifting Performance
	Unit Testing

	Communicating Interest in Input Parts
	Search Space Exploration
	Limitations of Basilisk

	Evaluation
	Evaluation Setup
	Looking at the Calculator
	Do Basilisk-generated samples lead to faster hypothesis learning?
	Precision and Accuracy of Basilisk-generated hypothesis

	Conclusion
	The Design of Basilisk
	Summary

	Closing Remarks
	Related Work
	Grammar Mining
	Grammar-based Input Generation
	Debugging Aid
	Abstracting Failure-Inducing Inputs
	Specification Mining
	Unit Analysis of Subprograms

	Threats to Validity
	Future Work
	Conclusion

	Bug Classification
	Coverage over Time for Basilisk

