FOR INTERLISP
Norbert Eidisinger
Institut far Informatik 1
Postfach 6380
D-7500 Karlsruhe 1

—
a.
w
(]
=
o
(]
wi
-
>
o
(=)
=
(&)
-
-
<€
=
(82
<C
[0 4
a.
<

Auewus9 "\ ‘| aynisey 00S-a Auewusn "M ‘L uuog 00€S Q
08€9 Yoepsoq 9 Z1B|4-18UNING-UOA-BYLIDG OEHE -
aynusjiey| 1ejisiaaiun uuog 3ejisisAiun
| dljew.oju] anj Innsu| 111 J13ewioju) inj 3msu) -:mn

Interner Bericht
Nr. 23/82

Institut far Informatik 1
Universitdt Karlsruhe
Postfach 6380
D-7500 Karlsruhe 1

A PRAGMATIC MODULE CONCEPT
FOR INTERLISP

Norbert Eisinger
Institut far Informatik 1
Postfach 6380
D-7500 Karlsruhe 1

I+

Abstr

¢

This report describes a module concept for Interlisp which
evolved during several years of implementation experience. Far
from claiming any theoretical contribution to Lisp the concept
is meant to be a practical tool which facilitates the design and
impLementation of Llarge software systems in Interlisp and which:
has established its usefuilness during a Long time of application.

Contents

Page
T INEPrOCQUCETION .yespsansssussonessns sams sawe smme wme wmy = mm 4
2. Identifier Conventionscccevececccacccacananns 5
3. Extensions to the Interlisp MAKEFILE Conventions 7
4. Automatic Module Analysisc.eceerenreccncncnncnns ?
D - MACTOE commenmpmsams s 86 o ome o i e e oo o0 wm e sme ®ew 1
6. Commenting Conventionsccccceeeeccccercenccncncns 13
7. Programming Conventionsccecirnenncecnnceannns 15
8. RBfBronces ...secremrcnpaammsssnspasnisiscssanidssnsasssn 17
A. Appendix: List of all SAVEFILE Commands 18
B. Appendix: Example of an Analysed Module 20

1. Introduction

A Large program is normally partitioned 1into smaller units
called modules, which are seperately implemented and tested and
then integrated. In order to clearly distinguish the modules and
to avoid clashes it is useful to adopt some conventions for the
choice of identifiers. This is particularly important in Langua-
ges Like Interlisp [E751, [S811, [T74], where all functions and
atoms are freely accessiblLe in the entire system.

As a result of these conventions and because of the attempt
to write the programs as self explaining as possible, identifiers
tend to become somewhat Lengthy, which renders them prone to
misspelling errors.

Along with misspelling errors Lisp programs often contain a
number of other trivial errors, Like omitted quotes or misplaced
parantheses in functions with nonstandard syntax <(e.g. COND,
SELECTQ, PROG)>. In Lisp such errors cannot be detected statically
but result in run time errors, typically "unbound atom"” or "unde-
fined function"”.

In this paper we describe a concept which

(a) facilitates the grouping of Lisp functions and variables
into modules,

(b) allows for machine supported detection of trivial errors.

The concept is a by-product of the development of a Llarge
theorem proving system [BEHSSW811 implemented in Interlisp. In
the course of several years of 1implLementation efforts it was
constantly adapted to the needs arising from day to day implemen-
tation problems. This means that the ideas presented here have
been implemented and used for quite some time and that the empha-
sis is more on practical merits than on theoretical foundations.

Yet another consequence is that this report does not present
the work of an inidividual, but rather the collective experience
of a lLarge research group which evolved during a long period of
time.

2. Identifier Conventions

With each module we associate a module indicator consisting
of a few (usually two or three) alphanumeric characters. This
indicator 1is used as a prefix to identifiers denoting functions
or variables of the module. The prefix 1is separated from the
rest of the identifier by a special character depending on the
role the identifier plays within the module.

The most important identifiers in a module are the names of
its functions. We distinguish between interface functions which

may be called from outside, and interpal functions which are
used only 1inside the module. AlLL function names begin with the
module indicator followed by a hyphen for interface functions or

an equality sign for internal functions.

To make matters more concrete, Let us consider a fictive
module called PROTOCOL. As module indicator we choose the string
"PR". For this module we might define some 1interface functions,
say PR-OPEN()>, PR-CLOSE()>, and PR-PROTOCOL(DATA). The Latter
might call some internal functions, say PR=PRINT.HEADER(DATA),
PR=PRINT.COMPONENT:1(DATA), and PR=PRINT.COMPONENT:2(DATA). As
can be seen from these examples we use dots and colons for fur-
ther structuring the identifiers.

With this convention each function name indicates the module
it belongs to and the way it is used by this module. In particu-
Lar there can be no name clashes between functions of different
modules (unless, of course, the module indicators are not unique;
but this should be easy enough to overcome). '

The next important class of identifiers is that of variable
names. Many modules need variables whose values remain unchanged
between calls. These variables can be considered as representing
the module state.

The obvious Lisp solution is to use the top level values of
atoms for this purpose. HWe introduce the notion of a common
variable, 1i.e. a Lisp atom associated with a module, whose top
Level value may be manipulated by functions of this module (and

only by these). The names of common variables begin with the

module 1indicator followed by an asterisk.

In our PROTOCOL module, for instance, we might use a common
variable PRxPRINT.FORMAT, whose value 1is defined by PR-OPEN and
used by PR=PRINT.COMPONENT:1 AND PR=PRINT.COMPONENT:Z2.

Now there are four distinct types of variables that can
occur in a function definition:

(a) Local variables, which are used within ah embracing LAMBDA
or PROG expression defining the identifier;

(b) common variables, which are free variables 1in conformity
vith the above conventions;

(c) global variables, which are non common free variables and

vhich are defined 1in another module function calling the
given one;

(d) external variables, which are free variables that are neither

common nor global.

Global variables are very unpleasant to have around and we
try to avoid them. In most cases they can be eliminated by provi-
ding sufficiently many arguments for subfunctions.

The distinction between the remaining two types of free
variables (common and external) 1is pure convention. As we access
common variables only from inside the module they belong to, and
since 1information between modules is passed by calling interface
functions, external variables need not occur very often either.
Their major source is the Interlisp system itself, which contains
pLenty of variables and functions for various control purposes.

In general a module physically corresponds to a file. Hence
ve chose to extend the Interlisp function MAKEFILE in order to
impLement the supporting system of our module concept.

MAKEFILE takes as its first argument the name of the file we
vant to create and as a second argument an indicator whether the
file content is to be fast or pretty printed.

The information as to what actually constitutes the file
content is determined in a somewhat tricky way: The atom obtained
by concatenating the file name with "COMS" is expected to have
as its top level value a List of MAKEFILE commands. These 1in
turn are Lists.

Examples of MAKEFILE commands are:

(FNS f1 ... fn) save the definitions of functions f1 ... fn}
(YARS v1 ... vn) save the top Level values of atoms v1 ... vn.

Thus if we want to create a file called TEST.EXAMPLE-1 con-
taining the definitions of functions F00 and FIE and the value
of the atom VEE, we write:

(RPAQQ TEST.EXAMPLE-1COMS ((FNS FO0O0 FIE) (VARS VEE)))
(MAKEFILE (QUOTE TEST.EXAMPLE-1) (QUOTE PRETTY))

For details concerning MAKEFILE refer to [T741].

Now for our module concept we extend the MAKEFILE mechanism.
We wuse a function called SAVEFILE which takes the name of a file
as 1its first argument. The file content is determined in the
same way as with MAKEFILE, but besides the MAKEFILE commands
some additional commands are available.

The most important of those is (FCT f1 ... fn). Physically
it has the same effect as (FNS f1 ... fn), but logically it
defines f1 ... fn as functions of a module. In particular func-
tions saved with FCT can be analysed before saving, if desired.

In order to define common variables of a module we use the
command (COMMON v1 ... vn). When lLoaded the vi are 1initialized
with NIL, regardless of the values they had at save time. Other
initial values may be defined by writing (vi expi) instead of
vi, 1d.e. the syntax 1is similar to the variable definition part
of PROG.

Thus the expressions that save the above mentioned PROTOCOL
module on a file called EXAMPLE.PROTOCOL are the following:

(RPAQQ EXAMPLE.PROTOCOLCOMS
((FCT PR-OPEN PR-CLOSE PR-PROTOCOL)
(FCT PR=PRINT.HEADER
PR=PRINT.COMPONENT:1 PR=PRINT.COMPONENT:2)
(COMMON PRxPRINT.FORMAT)))
(SAYEFILE (QUOTE EXAMPLE.PROTOCOL))

4. Automatic_Module_ Analysis

Functions whose names occur in an FCT command may be analy-
sed. This means that before each function a header 1is printed
containig, among others, the following information:

(a) The wusage, 1i.e. 1interface or internal, depending on the
character after the module indicator.

(b) The names of the module functions calling the given function.

(c) The names of the module functions called by the given func-
tion.

(d) The names of all external functions called by the given one.
External functions are those that are neither part of the
module nor of the Interlisp system itself.

(e) AlLL global, common, and external variables used by the given
function, further classified as read only, write only, or
read/write access.

(f) Various warnings, e.g. if an internal function is not called
by any other function, or if an 1incorrect number of arguments
is used, or if RETURN 1is used outside of PR0G, etc.

In addition to this a cross reference List can be computed
and printed on the file together with the module. For each com-
mon, external, or global variable the cross reference List indi-
cates the names of all module functions using it and for global
variables also the name of the function where it 1is defined.

This 1information 1is very useful to find the trivial errors
mentioned at the beginning. It turns out that they almost inva-
riably cause some unexpected external variables or external
function calls to occur. In general a quick glance by the pro-
grammer to the headers and the cross reference List will suffice
to indicate whether or not something went wrong.

It should be mentioned that violations to the conventions
have no effect other than warnings in the function headers. The

- 10 -

vholLe idea is not to enforce anything but to provide a means
that facilitates programming. Those wishing to circumvent the
conventions do not have to go through much trouble to do so.

Another remark concerns the hacking tricks experienced Lisp
programmers among the readers will wundoubtedly have come up
wvith. O0f course, there are arbitrarily cumbersome ways to call a
function or to access a variable 1in Lisp, and of course it is
virtually hopeless to try to statically detect all of them. But
the cases that can be analysed by our present -+implementation
cover most of the practically relevant problems and are not too
restrictive to a reasonable programming style.

Here are some examples of function calls and variable acces-
ses that are not properlty detected and should be avoided (F00 1is
a function, VAR a variable):

(SET (PACK (QUOTE (Y A R))) 5)
(EYAL (LIST (QUOTE SETQ) (QUOTE YAR) 5))
(APPLY (QUOTE F00) VAR)

11

Interlisp provides three types of macro definitions: open
macros, substitution macros, and computed macros. The macro
definitions are stored under the property MACRO of the function
names. For details refer to [T74].

Now it just so happens that virtually all open macros of a
typical modute are equal to the respective function definition,
and most substitution macros are equal to the CDR of their func-
tion definition. In other words, if we save both function and
macro definition on a file, there will be a significant degree
of redundancy.

The major problem with this redundancy, however, is not the
increased storage requirement, but rather the tremendous diffi-
culty to ensure that changes to the modulLe are performed 1in a
consistent way. Minor changes to functions are necessary very
frequently. If a programmer changes a function without simulta-
neously updating the corresponding macro definition, the whole
module becomes inconsistent. Unfortunately such 1inconsistencies
are hard to detect and cause erroneous system behaviour only
after compilLation.

In order to alleviate this problem we decided to automatical-
Ly derive macro definitions from function definitions. For that
purpose we introduced some additional SAYEFILE commands:
(OMACS f1 .. fn) 1indicates that the function definitions of
f1 ... fn may be used as macro definitions for these functions.
The onlLy effect the command has on the file content 1is a messagé
in the respective function header.

Since the macro definitions are not saved, they do not exist
unless explicitely created by the wuser. For this purpose we
provide a special service function which simply performs

(PUT f1 (QUOTE MACRO) (GETD f1))

for each fi occuring in an OMACS command. Normally this happens
onLy right before compilation, such that the macros exist only
when they are really needed. Thus we save the storage that would

12

otherwise be required for the macros, and, more 1importantly, we
ensure that the macro definitions correspond to the Latest ver-
sion of the function definitions.

For substitution macros an analogous command 1is provided,
namely (SMACS f1 ... fn). The difference to (OMACS f1 ... fn) 1is
onLy that the CDR of each function definition constitutes the
macro definition.

Computed macros and the rare cases where open or substitution
macros differ from the function definition are covered by the
command (MACS f1 ... fn). The macros have to exist at save time
and are stored on the file. A message 1in the function header
reminds the programmer that updates have to 1include the macro
definition.

13

Every programmer knows 1in principle that a program to be
used 1in a lLarge system is useless without documentation. But it
requires an enormeous amount of goodwill and discipline to write
and update the documentation in parallel with the program 1itself.
This 1is particuiarly true 1in a university environment, where
software development depends Largely on students and research
assistants and not on permanently employed professional program-
mers. In order to Lower the psychological threshold for constant-
Ly updating the documentation we decided to keep the documenta-
tion and the program together.

The function headers resulting from the module analysis. are
regarded as part of the documentation, although they are created
automatically. This syntactic information is very useful for the
understanding of a module, but not sufficient. MWe also need
semantic information Like the functional specification which has
to be provided by the programmer.

For this purpose we use comments 1in a fairly standardized
format. A comment in Interlisp is a List whose first element is
an asterisk. We write comments in the format

vhere the dots represent arbitrary characters. The usage of
strings facilitates the formatting of the comment texts by the
programmer.

For each module function we have several comments which can
be considered as paragraphs of a text and which describe various
aspects of the function.

It states the admissible values of the function’'s arguments as
well as expected values of free variables or other data wused by
the function.

The YALUE paragraph describes the value the function returns

depending on the dinput values. The description is sufficiently

._14_

detailed to make the syntactic structure of the value obvious.
If the value of the function is not relevant (i.e. it works by

side effect only), the comment is:

(x "VALUE: UNDEFINED. "

The EEEECT paragraph describes all side effects caused

The REMARK paragraph contains additional hints that may

relevant for the programmer, e.g. which other functions
affected if the given one is modified.

If these descriptions are too abstract, please refer
appendix B. The examples given there should help to clarify
commenting conventions.

x).

by

be
are

to
the

- 15 -

7. Programming_Conventions

The major convention with respect to programming style 1is
that the readability and understandability of the programs have
higher priority than anything else. Consequently we avoid tricks
Like: '

(a) usage of operators for control purposes, e.g. (AND X Y)
instead of (COND (X Y));

(b) usage of default values, e.g. (SETQ X) 1instead of
(SETQ X NIL);

(c) usage of global variables instead of function arguments;

(d) access to modules by other means than calls of finterface
functions.

A very useful tool for the test phase is a parameter check
for 1interface functions. For each module we have a special func-
tion switching the module’'s check mode on or off. When the check
mode 1is switched on, alLl 1interface functions of the module are
modified such that they perform extensive admissibility and
plausibility checks on their arguments whenever invoked. Any non
admissible argument will cause an error break.

With this facility errors can be detected at a very early
stage, lLong before subsequent errors would cause a Lisp break.
Consequently the errors are much easier to trace back to their
real origins.

The function modifications are based on the Interlisp ADVISE
package, such that no efficiency is Lost while the check mode 1is
turned off. The check mode can be switched on or off by calling
({module indicator>-CHECK ON)> or (<module indicator>-CHECK OFF)
respectively. Thus 1in the PROTOCOL example the function calls
would be (PR-CHECK ON) or (PR-CHECK OFF).

Another wuseful debugging aid 1is a trace mode. Using the
ADVISE package we modify certain module functions such that they
print all information necessary to understand the dynamic beha-

16

viour of the module.

The reason for having an additional trace besides the stan-
dard Lisp trace 1is that it allows for a better selection and
formatting of the data to be printed. Furthermore the module
trace has to be considered from the earliest design stages,
vhich tends to improve the overall structure of the module.

The module trace 1is switched on or off in a similar way as
the modute check, 1i.e. for the PROTOCOL module the calls would
be (PR-TRACE ON) or (PR-TRACE OFF).

.17

CBEHSSW811] K.Bldsius, N.Eisinger, A.Herold, J.Siekmann, G.
Smolka, C.Walther:
The Markgraf Karl Refutation Procedure
Proc. IJCAI-81, Yancouver BC, 1981

CE75] B.Epp:
INTERLISP Programmierhandbuch
Institut fur deutsche Sprache, Mannheim, 1975

£S811 Siemens AG (D.Kolb, K.Hess):
INTERLISP Benutzerhandbuch
Bestellnr. U?0015-J-217-1, Fachgebiet D AP MP 2,
Manchen, 1981

[T741 W.Teitelman:
INTERLISP Reference Manual
Xerox Palo Alto Research Center, 1974

18

A. Appendix: List of all SAVEFILE Commands

In addition to all MAKEFILE commands the following commands
are available:

(FCT f1 ... fn) Defines f1 ... fn as module functions
that may be analysed.

(COMMON v1 ... vn) Defines v1 ... vn as common variables of
the module. The vi are initialized with
NIL, 1if they are atomic. Other initial
values can be defined wusing (vi expri)
instead of vi.

(EXPR 81 ... sn) The S-expressions s1 ... sn are printed
on the file and evaluated at Lload time.
Equivalent to the MAKEFILE command
(P s1 ... sn).

(MACS f1 ... fn) The macro definitions of functions
f1 ... fn are saved on the file and a
message 1indicating the macro type is
printed in the respective function header.
Except for this message the effect is
Like with the MAKEFILE command
(PROP MACRO f1 ... fn).

(OMACS f1 ... fn) Indicates that the function definitions
of f1 ... fn are also used as open macro
definitions. The only effect on the file
content 1is a message in the function
header. The information 1is wused by the
service function CREATE.IMPLICIT.MACROS
which actually creates the macro defini-
tions.

(SMACS f1 ... fn) Similar to (OMACS f1 ... fn) but using
CDR of the function definitions as substi-
tution macros.

19

Possible calls of SAVEFILE are:

(SAVEFILE file)

(SAVEFILE file T)

(SAVEFILE file T T)

(SAVEFILE file T T T)

Save and analyse module, print cross
reference List and function headers,
pretty print all S—-expressions.

Suppress cross reference List.

Suppress cross reference List and analy-
sis.

Suppress cross reference List, analysis,
and pretty print, i.e. save the file as
fast as possible.

B. Appendix: Example_of_an_Analysed Module

(FILEHEADER EXAMPLE.RANDOM.GENERATORS

(DATE "18-AUG-82 16:43:03")

(FORMAT PRETTYDEF)

(FILENAME EXAMPLE.RANDOM.GENERATORS)
(SOURCE-DATE "18-AUG-82 16:43:04")
(PREYIOUS-SOURCE-DATE "18-AUG-82 14:28:34")

(PRETTYCOMPRINT EXAMPLE.RANDOM.GENERATORSCOMS)
(RPAQQ EXAMPLE.RANDOM.GENERATORSCOMS
((COMMON RNDXRANDOM)
(FCT RND-INIT)
(FCT RND-EQUAL.DISTRIBUTION

RND-EXPONENTIAL.DISTRIBUTION)

(FCT RND=EQUAL.DISTRIBUTION:0,1:)))

& ook ok ok K ok K oK sk ok sk K ok K ok 3k oK K ok oK oK K SR K s oK KK KK KK K K KK K K KK K K K K K oK K K KK KK KKK KK KK K K K

X

XX X X X X X »

CROSSREFERENCE LIST

TABLE OF ALL G L 0 B AL - VARIABLES
C OMMO N - VARIABLES
EXTERNAL - VYARIABLES
WHICH ARE USED IN THIS MODULE.

COMMON VARIABLES:

YARIABLE:

ACCESS:

USED IN:

ACCESS:
USED IN:

WRITE-ONLY
RND-INIT

READ-WRITE
RND=EQUAL.DISTRIBUTION:0,1:

b

X

X

»® » ¥

»

21

EEKEKKEKKKEKKEKKK KKK KKK K KL KKK KKK KKK KKK KKK KKK KKK KK KKK KKK KKK KKK K KX

b

X

X

END OF CROSSREFERENCE—LIST

X

X

X

KEKEKKKEEKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK R KKK KKK KKK KKK KKK X

x)

(RPAQ RNDXRANDOM NIL)
(X XEKKKKIKKKKKKKK KK KKK KKK KK KKK K KKK I KKK I KKK KKK K KKK KKK KKK KKK KKK KK

RND-INIT

INTERFACE

COMMON VARIABLES

WRITE-ONLY: RNDXRANDOM

18-AUG-82 NORBERT EISINGER

NIL OR A REAL NUMBER IN [0,1].

INITIALIZES RNDXRANDOM WITH THE STARTVALUE,
IF IT IS NOT NIL, OTHERWISE WITH A REAL

IN [0,11 DEPENDING ON THE CPU TIME USED
BEFORE THE CALL OF THIS FUNCTION.

x

X

X

% USAGE:

X

X

X

X

X

)

(DEFINEQ

<RND-INIT

<LAMBDA (STARTYALUE)

(x "EDITED:
(x "INPUT:
(x "EFFECT:
(x "
(x "
(x "
(x "YALUE:

)

UNDEFINED.

(RPAQ RNDx*RANDOM (COND

<(NULL STARTYALUE)
(ABS (SIN (CLOCK 2>

(T STARTVALUE>>

X

b 4

»

»

X X X K

X)
x)
x)
X)
x)
X)

x)

(% KKK KKAKRKKKKEKKKKKKKK KK KK KKK KKK KKK KK KKK KKK KKK KK KKK KKK KKK KKK

X

» X X x

USAGE:
CALLS:

RND-EQUAL .DISTRIBUTION

INTERFACE
RND=EQUAL.DISTRIBUTION:0,1:

X

¥ X X »x

22

X _ X
X— R ———————— ——————— e X
)

(DEFINEQ

<RND-EQUAL .DISTRIBUTION
<LAMBDA (A B)

(x "EDITED: 18-AUG-82 NORBERT EISINGER "ox)
(x "INPUT: TWO REAL NUMBERS, A NOT GREATER THAN B. "ox)
(x "YALUE: A PSEUDO RANDOM NUMBER OBEYING A PSEUDO "ox)
(x " [A,BI-EQUAL DISTRIBUTION. "ox)

(PLUS A (TIMES (DIFFERENCE B A)
(RND=EQUAL.DISTRIBUTION:0,1:>>
)

CEP 332333833333 33 3333333333333 83333353333 RPLTPREL SRS

x X
X RND-EXPONENTIAL.DISTRIBUTION x
X e e X
X USAGE: INTERFACE X
X CALLS: RND=EQUAL.DISTRIBUTION:0,1: X
X X
X e %

)
(DEFINEQ

<RND-EXPONENTIAL.DISTRIBUTION
<LAMBDA <LAMBDA>

(x "EDITED: 18-AUG-82 NORBERT EISINGER "ox)
(x "INPUT: A REAL NUMBER. "ox)
(x "VALUE: A PSEUDO RANDOM NUMBER OBEYING AN " ox)
(x " EXP(LAMBDA) DISTRIBUTION. "ox)
(x "REMARK: USES THE INYERSE FUNCTION METHOD. "ox)
(MINUS (QUOTIENT (LOG (RND=EQUAL.DISTRIBUTION:O0,1:))
LAMBDA>>

)
(X XXKXKKKK KK KK EKE KKK KEKE KKK KKK KL KL EE KL KK KK KL KL RK KKK KKK KKK KKK

X X
RND=EQUAL.DISTRIBUTION:0,1: x
___________________________ "

USAGE: INTERNAL x

CALLED BY: RND-EQUAL.DISTRIBUTION x
RND-EXPONENTIAL.DISTRIBUTION

XX X X X

- 23 -

COMMON VARIABLES

READ-WRITE: RNDxRANDOM

)
(DEFINEQ

<RND=EQUAL.DISTRIBUTION:0,1:
<LAMBDA NIL

(x
(x
(x
(x
(x
(x
(%
(x
(x

(%

"EDITED:
“INPUT:
“VALUE:

"EFFECT:

"REMARK:

18-AUG-82 NORBERT EISINGER

NO ARGUMENTS. THE VALUE OF RNDx*RANDOM IS
EXPECTED TO BE A REAL NUMBER IN [O0,1].

A REAL NUMBER IN [O0,11, SUCH THAT REPEATED
CALLS PRODUCE A SEQUENCE OF EQUALLY
[0,11~-DISTRIBUTED PSEUDO RANDOM NUMBERS.
YALUE OF RNDXRANDOM IS CHANGED TO THE
FUNCTION VALUE.

USES THE MULTIPLICATION METHOD WITH A
FACTOR OF 5xx7.

(PROG ((FACTOR (TIMES 5 555 5 5 5 0.1E-5))

STOP

HELP)

(SETQ HELP (FTIMES FACTOR RNDxRANDOM))
(RPAQ RNDxXRANDOM (FDIFFERENCE HELP (FIX HELP)))
(RETURN RNDXRANDOM>>

-X

x)
x)
X)
x)
x)
x)
x)
x)
x)

x)

