
INVESTIGATING MODEL EXPLANATION OF BUG REPORT ASSIGNMENT
RECOMMENDERS

FARJANA YEASMIN OMEE
BSc in Computer Science & Engineering, Shahjalal University of Science and

Technology, Sylhet, Bangladesh, 2011

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Farjana Yeasmin Omee, 2022

INVESTIGATING MODEL EXPLANATION OF BUG REPORT ASSIGNMENT
RECOMMENDERS

FARJANA YEASMIN OMEE

Date of Defence: November 22, 2022

Dr. John Anvik Associate Professor Ph.D.
Thesis Supervisor

Dr. Wendy Osborn Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. Yllias Chali Professor Ph.D.
Thesis Examination Committee
Member

Dr. John Sheriff Assistant Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

This dissertation is dedicated to my family and close friends, especially my parents, who

helped me achieve my academic goals.

iii

Abstract

Software projects receive a lot of bug reports, and each bug report needs to be triaged.

An objective of the bug report triaging process is to find an appropriate developer who

can fix the reported bug. As this process can be time-consuming and requires a lot of

effort, researchers have implemented recommender systems using a variety of algorithms

to automate this process. Although using these recommender systems has a number of

benefits, there are still many obstacles to overcome. A key obstacle is that commonly

used algorithms are black-box, making it difficult for practitioners to comprehend how the

models make decisions. Lack of explainability results in a lack of trust and transparency in

the recommendations.

This work investigates approaches that lead to visually explainable bug report assign-

ment recommender systems. First, we developed and compared six different recommender

systems using three distinct machine learning algorithms: Random Forest (RF), MLP Clas-

sifier and Bidirectional Neural Networks (BNN) and two different feature extraction tech-

niques: TF-IDF and Word2Vec. Second, we examine the use of WordNet to improve rec-

ommender accuracy. Third, we explore the explanation of a bug report assignment recom-

mender using the feature-based local model LIME. Finally, we assess the use of a positive-

negative horizontal bar chart, feature table, and word cloud to explain the recommender

systems visually.

Our analytical analysis indicates that the optimum approach for developing a bug report

assignment recommender system uses TF-IDF with RF and visually explains the recom-

mendation with a word cloud and LIME as a local model.

iv

Acknowledgments

First and foremost, I want to express my gratitude to Almighty Allah for providing me with

the opportunity, knowledge, and strength to start and successfully complete this research.

I want to convey my profound gratitude to Dr. John Anvik, my research supervisor, for

giving me the opportunity to do research and for his helpful advice during this process. It

could not have been completed without his leadership, support, and commitment. Working

and learning under his direction was a great privilege and honour. I am extremely grateful

for what he has offered me. I also want to thank him for his friendship, understanding, and

excellent sense of humour.

I also like to thank the members of my thesis committee, Dr. Wendy Osborn, Dr. Yllias

Chali, and Dr. John Sheriff, for their thoughtful comments, advice, and encouragement.

In addition, I want to convey my thanks to all of the Sibyl lab members who helped me,

directly or indirectly, to finish the research work.

Finally, I would like to express my sincere gratitude for my family’s love and support.

They are the reason I am the person I am today.

v

Contents

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Research Questions . 3
1.2 Contributions . 3
1.3 Outline . 4

2 Background 5
2.1 Bug Reports . 5
2.2 Bug Report Triaging Workflow . 6
2.3 Machine Learning Algorithm . 6

2.3.1 Random Forests . 6
2.3.2 Artificial Neural Network . 7
2.3.3 Deep Neural Network . 8
2.3.4 Multi-layer Perceptron . 9
2.3.5 Bidirectional LSTM . 11

2.4 Feature Selection Algorithms . 12
2.4.1 TF-IDF (Term Frequency-Inverse Document Frequency) 12
2.4.2 Word2Vec . 14
2.4.3 WordNet . 14

2.5 Explanation . 14
2.5.1 Local Model . 16
2.5.2 RuleFit . 16
2.5.3 LIME . 17
2.5.4 PyExplainer . 18

2.6 Visualization . 18
2.6.1 Word Cloud . 18
2.6.2 Bar Chart . 19
2.6.3 Positive-Negative Horizontal Bar Chart 20
2.6.4 Feature Table . 21

2.7 Summary . 21

vi

CONTENTS

3 Related Work 22
3.1 Bug Report Assignment Recommender Creation Techniques 22
3.2 Use of WordNet in Recommendation Systems 24
3.3 Explanation Techniques using Local Model 24
3.4 Recommendation Explanation using Visualization 25
3.5 Summary . 26

4 Approach 27
4.1 Data Source and Preparation . 27
4.2 Data Preprocessing . 28
4.3 Recommender Creation using TF-IDF . 29

4.3.1 TF-IDF (Term Frequency-Inverse Document Frequency) 30
4.3.2 Random Forest . 31
4.3.3 MLP Classifier . 31
4.3.4 Bidirectional LSTM Neural Network 32
4.3.5 Testing . 33
4.3.6 Local Model . 34
4.3.7 Word Cloud . 35

4.4 Recommender Creation using Word2Vec 35
4.4.1 Word2Vec . 36
4.4.2 WordNet . 37

4.5 Summary . 37

5 Evaluation 39
5.1 Recommender System Accuracy . 39

5.1.1 RQ#1: Which classifier gives us better accuracy: Random Forest
(RF), Multi-layer Perceptron (MLP) or Bidirectional Neural Net-
work (BNN)? . 40

5.1.2 RQ#2: Which feature extraction approach gives us better accuracy:
TF-IDF or Word2Vec? . 41

5.1.3 RQ#3: Does using WordNet improve the accuracy? 43
5.2 Explaining Assignment Recommendations 45

5.2.1 RQ#4: Which local model explanation approach, feature-based or
rule-based, provides better explanations? 45

5.2.2 RQ#5: Which visualization method appears to best support ex-
planations of assignment recommendation: word cloud, positive-
negative horizontal bar chart or feature table? 47

5.3 Summary . 47

6 Discussion 49
6.1 Limitations of PyExplainer . 49
6.2 Problems explaining Word2Vec Recommender Systems 50
6.3 Creation of a bug report assignment recommender system 50
6.4 Recommendations for visualization of explanation 50
6.5 Threats to Validity . 52

vii

CONTENTS

7 Conclusion 53
7.1 Future Work . 54

Bibliography 55

A Appendix 59

B Appendix 65

viii

List of Tables

3.1 An overview of the various machine learning-based bug triaging techniques
that have been studied, outlining their characteristics and methods, as well
as their experimental results. 23

4.1 Data set details. 28

5.1 Average accuracy(%) over the cross-validation for Rank - 1, 5 and 10 are
reported for all classifiers. 40

5.2 Average runtime for all the classifiers uses TF-IDF as a feature extractor. . . 41
5.3 Average accuracy over the cross-validation for Rank - 1, 5 and 10 are re-

ported with or without using WordNet as a filter for RF. 45
5.4 Average (%) of synonyms used in RF while filtering with WordNet. 45

ix

List of Figures

2.1 An example of a bug report . 6
2.2 An example of a bug report triage workflow 7
2.3 Example of a DNN for a Bug Report Assignment Recommender Systems . 9
2.4 One hidden layer MLP . 10
2.5 A Bidirectional LSTM . 12
2.6 Local Model . 16
2.7 Example of word cloud visualization for a recommendation system 19
2.8 Example of bar charts . 19
2.9 Example of a Positive-Negative Horizontal Bar Chart 20
2.10 Example of a Feature Table . 21

4.1 Data splitting for 10-fold cross-validation 29
4.2 The flow diagram for bug report assignment recommendation using TF-IDF 30
4.3 The flow diagram of the Bug Triage using Word2Vec 36

5.1 Mozilla Firefox: CV10 average accuracy: TF-IDF Vs Word2Vec 42
5.2 Mozilla Core: CV10 average accuracy: TF-IDF Vs Word2Vec 42
5.3 Google Chrome: CV10 average accuracy : TF-IDF Vs Word2Vec 43
5.4 Top 1, 5 and 10 Accuracy: With WordNet Vs Without WordNet 44
5.5 LIME Explanation for TF-IDF . 46
5.6 Visual Explanation for a Bug Report . 48

6.1 LIME Explanation for Word2Vec . 51

A.1 Bug Report - 1 : LIME Explanation for TF-IDF 59
A.2 Bug Report - 2 : LIME Explanation for TF-IDF 60
A.3 Bug Report - 3: LIME Explanation for TF-IDF 61
A.4 Bug Report - 4: LIME Explanation for TF-IDF 62
A.5 Bug Report - 5: LIME Explanation for TF-IDF 63
A.6 Bug Report - 6: LIME Explanation for TF-IDF 64

B.1 Visual Explanation for Bug Report 1 . 65
B.2 Visual Explanation for Bug Report 2 . 66
B.3 Visual Explanation for Bug Report 3 . 67
B.4 Visual Explanation for Bug Report 4 . 68
B.5 Visual Explanation for Bug Report 5 . 69
B.6 Visual Explanation for Bug Report 6 . 70
B.7 Visual Explanation for Bug Report 7 . 71
B.8 Visual Explanation for Bug Report 8 . 72

x

LIST OF FIGURES

B.9 Visual Explanation for Bug Report 9 . 73
B.10 Visual Explanation for Bug Report 10 . 74
B.11 Visual Explanation for Bug Report 11 . 75
B.12 Visual Explanation for Bug Report 12 . 76
B.13 Visual Explanation for Bug Report 13 . 77
B.14 Visual Explanation for Bug Report 14 . 78
B.15 Visual Explanation for Bug Report 15 . 79

xi

Chapter 1

Introduction

Identifying an appropriate developer who can fix a reported bug is one of the tasks of a

bug-triaging process. A classification problem that uses the bug title and description as

input and maps it to one of the available developers can be used to build an automatic

bug-triaging technique. Researchers have proposed different recommender systems using

different machine learning algorithms to improve accuracy, such as Neural Network [1],

Random Forest [2], Support Vector Machines (SVM)[2] [3] [4] and Naive Bayes [2] [3] [4]

[5] [6]. Most of these recommender systems used TF [3] [6] [7], TF-IDF [4] [5] [8], and

Word2Vec [1] for feature extraction.

Despite recent developments in this area, decision-making based on Artificial Intel-

ligence (AI)/Machine Learning (ML) systems requires explanations and must adhere to

privacy rules. According to Article 22 of the General Data Protection Regulation (GDPR)

[9] of the European Union, each algorithmic decision that impacts an individual or group

must be justified. Recent research raises questions regarding the lack of software analytics

in software engineering that can be explained [10]. According to the practitioners, analyti-

cal models in software engineering must be explainable [10]. When creating AI/ML-based

systems, Miller [11] also contends that human factors should be considered. Consequently,

it is imperative to use Explainable Software Analytics, a collection of AI/ML techniques

that generate precise predictions while also being able to explain such predictions.

Researchers usually produce global explanations, which are explanations that condense

the conclusions of predictions made by black-box AI/ML learning algorithms. Model-

1

1. INTRODUCTION

specific explanation techniques of machine learning techniques can produce such global

explanations (e.g., a variable importance analysis for random forests and an ANOVA anal-

ysis for logistic regression). These methods for model interpretation have been used in

earlier studies to comprehend the connection between investigated variables and results.

Such broad justifications, however, cannot support an individual model’s prediction

based on experimental or fictitious evidence. Serious errors could hamper the use of soft-

ware analytics in industrial operations of decision and policy-making caused by a lack of

explanation of the predictions made by such analytical models [10].

For determining each metric’s contribution to the prediction of an instance according

to a trained model, model-agnostic techniques such as LIME [12], and PyExplainer[13]

have recently been proposed to explain the prediction of black-box AI/ML algorithms [14].

However, to the best of our knowledge, no formal introduction or empirical evaluation of

such strategies for the bug report assignment recommender system has occurred.

To address this challenge, this work focuses on implementing an explainable bug re-

port assignment recommender system which can recommend a developer and then create

an explanation of the recommendation for a bug report. For this investigation, we first

implement and compare three recommender systems using different algorithms: Random

Forests and two types of neural networks, specifically Multilayer Perceptrons (MLP) and

Bidirectional Neural Networks (BNN). Then we try to improve the accuracy of the rec-

ommender systems by using WordNet as a filter. At first, all these recommender systems

used Word2Vec for feature selection. However, when we tried to create a feature-based

local model using LIME, we discovered that using Word2Vec for the recommender system

makes it challenging to explain the results. Therefore, we investigated the use of TF-IDF

instead of Word2Vec for feature selection and explained the results using LIME. We also

tried to implement a rule-based local model using PyExplainer. However, we could not do

that since our feature set’s dimensionality was incompatible with it. Finally, we compared

LIME, which uses a positive-negative horizontal bar chart and feature table to explain the

2

1.2. CONTRIBUTIONS

result, with the use of a word cloud for visualization of the explanation.

1.1 Research Questions

The following are the research questions for this work:

• RQ#1: Which classifier gives us better accuracy: Random Forest (RF), Multi-layer

Perceptron (MLP) or Bidirectional Neural Network (BNN)?

• RQ#2: Which feature extraction approach gives us better accuracy: TF-IDF or Word2Vec?

• RQ#3: Does using WordNet improve the recommender accuracy?

• RQ#4: Which local model explanation approach, feature-based or rule-based, pro-

vides better explanations?

• RQ#5: Which visualization method appears to best support explanations of assign-

ment recommendation: word cloud, positive-negative horizontal bar chart or feature

table?

1.2 Contributions

This thesis makes the following contributions:

• We investigate six bug report assignment recommender systems utilizing two differ-

ent feature extraction approaches, TF-IDF and Word2Vec, along with three global

models, RF, MLP, and BNN.

• Examining whether or not WordNet improves recommender accuracy when used as

a filter in a bug report assignment recommender system.

• Studying the use of a feature-based local model system (LIME) to explain the global

models created using RF, MLP and BNN.

3

1.3. OUTLINE

• Assessing the use of a word cloud, a positive-negative horizontal bar chart, and a

feature table to visually explain the results of the local model.

• An analytical evaluation of three global models (RF, MLP, BNN) to determine which

creates a more accurate bug report assignment recommender.

• A comparison of the accuracy and level of explanation provided by the two feature

extraction techniques, TF-IDF and Word2Vec.

1.3 Outline

The rest of this thesis proceeds as follows. Chapter Two provides background infor-

mation on bug reports, bug report triaging workflow, different recommender creation algo-

rithms, feature extraction and visualization techniques. Chapter Three presents previous re-

search on the bug report assignment recommender systems, the use of WordNet to improve

recommender accuracy, explaining global models using different local models and various

visualization techniques. In Chapter Four, we provide details about the two approaches we

used for creating bug report assignment recommender systems and the visualization of rec-

ommendation explanation. Chapter Five presents the results of our evaluations to answer

our research questions. Finally, we discuss our findings in Chapter Six before making our

concluding remarks and discussing future directions of study in Chapter Seven.

4

Chapter 2

Background

This section discusses bug reports, bug report triaging workflow, different recommender

creation algorithms, feature selection, explanation and visualization techniques, specifically

Neural Network, Random Forest, Word2Vec, LIME and WordCloud.

2.1 Bug Reports

A bug is a mistake, fault, or failure that leads to an inaccurate or unexpected outcome

in software development. Software bugs basically refer to situations when the program

is not functioning as intended. A bug report, sometimes referred to as a change request

or issue report, is a document that details the behaviour caused by a software defect. An

effective way for users and developers to communicate is through a bug report. A bug

report’s identifier, a description of the issue (typically in the form of a title), instructions

for reproducing the issue, report creation time, and its current status are among the various

pieces of information a bug report contains. A bug report may include attachments or

links to other related reports. Figure 2.1 shows an example of a bug report from Google

Chrome1 which has various information such as title, description, reported by and when,

owner, comments and status.
1https://bugs.chromium.org/p/chromium/issues/detail?id=1371447

5

2.3. MACHINE LEARNING ALGORITHM

Figure 2.1: An example of a bug report

2.2 Bug Report Triaging Workflow

The process of screening, prioritizing, and assigning a developer to a bug report is called

bug report triage. An important goal of a bug triaging procedure is to find an appropriate

developer for a given bug report who may be able to solve the bug. Each project has

a different approach to handling bug triaging. In general, triaging a bug report includes

ensuring it contains enough details for developers, such as the steps to reproduce. Before

exerting significant effort, the triager should ensure the bug has not already been reported.

Figure 2.2 shows an example bug triaging procedure.

2.3 Machine Learning Algorithm

As we use Random Forest and neural networks in our work, we describe these particular

algorithms and explain the two types of neural networks we use.

2.3.1 Random Forests

A decision tree is a technique that forms a tree-like structure. It has three components:

decision nodes, leaf nodes, and the root node. This algorithm divides a training dataset into

branches, segregating it into other branches until a leaf node is attained.

A Random Forest is a machine learning technique that can be used to solve regression

and classification problems [15]. It utilizes an ensemble learning method that combines

many classifiers to provide solutions to complex problems. A random forest algorithm

6

2.3. MACHINE LEARNING ALGORITHM

Figure 2.2: An example of a bug report triage workflow

contains many decision trees. The ‘forest’ is trained through bagging or bootstrap aggre-

gating. Bagging or bootstrap aggregation is a powerful ensemble method that Leo Breiman

proposed in 1994 to prevent overfitting [16]. It combines the predictions of several base

learners to create a more accurate output [17]. This algorithm generates the outcome based

on the predictions of the decision trees. For classification problems, the random forest

output is the class chosen by the most trees. For regression tasks, the mean or average

prediction of the individual trees is returned.

2.3.2 Artificial Neural Network

Artificial Neural Networks (ANN) are relatively simple electronic networks of neurons

based on the brain’s neural structure. An ANN process records one at a time and learns

by comparing its classification with the actual classification of the instance. The errors

resulting from an instance’s classification are fed back into the network and used to modify

7

2.3. MACHINE LEARNING ALGORITHM

the results for further iterations.

A neuron in an artificial neural network contains:

1. A set of input values (x) and associated weights (w).

2. A function (g) that sums the weights and maps the results to an output (y).

The neurons in the network are organized into three layers: input, hidden and output.

The input layer is composed not of total neurons but consists of the record’s values that

are transmitted to the next layer of neurons, which is the hidden layer. In the hidden layer,

artificial neurons take a set of weighted inputs and produce an output through an activation

function. A traditional artificial neural network has one or two hidden layers to process data.

The final layer, with one node for each class, is the output layer. A single pass through the

network assigns values to the output nodes, and the record is assigned to the class node with

the highest value. [18]

2.3.3 Deep Neural Network

A Deep Neural Network (DNN) is an extension of the traditional artificial neural net-

work (ANN). ANN uses one or two hidden layers to process data, whereas DNN uses sev-

eral hidden layers between the input and output layers. DNN combines the computations

performed by several layers.

Figure 2.3 shows an example of a DNN for a bug report assignment recommender sys-

tem. The input layer in Figure 2.3 is the layer on the left, and it takes as inputs the TF-IDF

values for the features‘Bug Report’:.25 (network),.11 (also),.07 (update) through to .01

(get) from the table. Then, multiple hidden layers use an activation function to create an

output from a set of weighted inputs from the earlier levels. The rightmost layer, known as

the output layer, takes the values from the last hidden layer and converts them into output

values that correspond to the appropriate developer names from the table called ‘List of

Developers’.

8

2.3. MACHINE LEARNING ALGORITHM

Figure 2.3: Example of a DNN for a Bug Report Assignment Recommender Systems

2.3.4 Multi-layer Perceptron

Multi-layer Perceptron is a type of DNN that learns the following function by training

on a dataset.

f (.) : Rm→ Ro

Here,

m→ number of dimensions for input

o→ number of dimensions for output

MLP can learn a non-linear function estimator for either classification or regression

9

2.3. MACHINE LEARNING ALGORITHM

from a feature set X = x1,x2, ...,xm and a target y. Figure 2.4 shows a one-hidden layer

MLP with scalar output [19].

Figure 2.4: One hidden layer MLP

The leftmost layer is the input layer, xi|x1,x2, ...,xn, which represents the input features.

At first, each neuron in the hidden layer transforms the values from the previous layer with

a weighted linear summation w1x1 +w2x2 + ...+wnxn, followed by a non-linear activation

function g(.) : R→ R− like the hyperbolic tan function. Then the output layer receives the

values from the last hidden layer and transforms them into output values [19].

10

2.4. FEATURE SELECTION ALGORITHMS

2.3.5 Bidirectional LSTM

The LSTM (Long short-term memory)2 based models are an extension of Recurrent

Neural Networks (RNNs), which address the vanishing gradient problem. The LSTM mod-

els extend the RNNs’ memory to enable them to keep and learn long-term dependencies of

inputs. This memory extension can remember information over a more extended period,

thus enabling reading, writing, and deleting information from their memories. The LSTM

memory is called a ‘gated’ cell, where the word gate is inspired by the ability to preserve

or ignore the memory information. An LSTM model captures important input features and

preserves this information over a long time. The decision to delete or preserve the informa-

tion is based on the weight values assigned during the training process. Hence, an LSTM

model learns what information is worth preserving or removing [20].

The bidirectional LSTMs are an LSTM model extension in which two LSTMs are ap-

plied to the input data. In the first round, an LSTM is applied on the input sequence (i.e.,

forward layer). In the second round, the reverse form of the input sequence is fed into the

LSTM model (i.e., backward layer). Applying the LSTM twice enhances the model’s ac-

curacy by improving the learning of long-term dependencies [20]. A previous study proved

that the bidirectional networks are significantly better than the standard ones in many fields

[21]. The structure of a Bidirectional LSTM layer with a forward and a backward LSTM

layer is illustrated in Figure 2.5.

As the forward LSTM layer output sequence
→
h , is obtained typically as the unidirec-

tional one, the backward LSTM layer output sequence
←
h , is calculated using the reversed

inputs from time t−1 to t−2 . These output sequences are then fed to σ function to com-

bine into an output vector yt [22]. Similar to the LSTM layer, a vector can represent the

final output of a Bidirectional LSTM layer, Yt = [yt−n,,yt−1].

2A type of recurrent neural network capable of learning long-term data dependencies.

11

2.4. FEATURE SELECTION ALGORITHMS

Figure 2.5: A Bidirectional LSTM

2.4 Feature Selection Algorithms

We describe TF-IDF and Word2Vec, as we utilize them for feature extraction in our

work. We also describe WordNets, as we use it for data filtering to answer one of our

research questions.

2.4.1 TF-IDF (Term Frequency-Inverse Document Frequency)

The acronym TF-IDF stands for the Term Frequency-Inverse Document Frequency of

records. It can be described as determining how pertinent a word is to a corpus or series of

texts. The meaning increases according to the number of times a word appears in the text,

which is offset by the corpus’s word frequency (dataset) [23].

This term weighting technique gives each word in a document a weight depending on

the frequency of its terms (tf) and the reciprocal frequency of the document (tf) (idf). The

words with higher weight scores are thought to be more important.

The tf-idf weight is computed as

t f − id f (t,d) = t f (t,d)∗ id f (t)

12

2.4. FEATURE SELECTION ALGORITHMS

where, tf is the normalized term frequency, and idf is the inverse document frequency.

The term frequency is the frequency of the word t in document d. We can simply use

the raw count as the term frequency.

The raw count of the frequency:

t f (t,d) = count(t,d)

However, we typically use log10 to flatten the raw frequency. The reasoning for this

is that a word does not become 100 times more likely to be significant to the meaning of

the document by appearing 100 times in it. We also add 1 to the count since we cannot

calculate the log of 0 [24].

The logarithmically scaled frequency:

t f (t,d) = log10(count(t,d)+1)

The inverse document frequency (idf) is defined using the fraction

N/d f (t)

where, N is the total number of documents in the collection, and df(t) is the number of

documents that contain the term t. The higher this weight, the fewer documents in which a

term appears. Terms that appear throughout all documents are given the lowest weight of 1

[24].

Finally, we calculate the term inverse frequency’s logarithm. As a result, the weight of

term t becomes:

id f (t) = log10(N/d f (t))

13

2.5. EXPLANATION

2.4.2 Word2Vec

The Word2Vec tool efficiently implements the continuous bag-of-words and skip-gram

architectures for computing vector representations of words. It constructs a vocabulary

from the training data and then learns its vector representation. The resulting word vector

file is used as a feature in many natural language processing and machine learning applica-

tions [25]. The Word2Vec methods are fast, efficient to train, and readily available online

with static code and pre-trained embeddings. Word2Vec embeddings are static, meaning

that the method learns one fixed embedding for each word in the vocabulary. [24]

2.4.3 WordNet

WordNet is a lexical database designed under program control widely used in natu-

ral language processing. English nouns, adjectives, verbs, and adverbs are organized into

synsets. A synset is a set of synonyms that refer to one concept. It provides an effective

combination of traditional lexicographic information and modern computing. [26]

2.5 Explanation

A definition of explainability or interpretability is the extent to which a person can

comprehend the justifications for a choice or behaviour, according to theories in philosophy,

social science, and psychology [27]. By (1) making the entire decision-making process

clear and understandable and (2) explicitly explaining each choice, AI/ML algorithms can

become more explainable [28]. As a result, research has been conducted to examine how to

explain the choices made by sophisticated black-box models and how to give explanations

in a way that people will find acceptable.

Questions on the inference mechanism of AI/ML systems were divided by Lim et al.

[29] into the following categories: What, Why, Why Not, What If, and How To. To illus-

trate, here are examples of each type of intelligibility question:

• What reasoning underlies the AI/ML models?

14

2.5. EXPLANATION

• Why is a particular class expected for a given instance?

• Why can’t an instance of a different class be predicted?

• How can the system’s prediction for an instance change from one class to another?

• If the values of an instance were to change, what would the system predict?

Prior research has frequently used white-box AI/ML techniques such as decision trees

[30] and decision rules [31]. By closely examining the model components, we can im-

mediately determine how much each metric contributed to the learned results due to the

transparency of such white-box AI/ML methodologies, for instance, the pathways in a de-

cision tree, the coefficients of each measure in a regression model, or the rules in a decision

rule model. On the other hand, white-box AI/ML techniques are often less accurate than

complex black-box AI/ML techniques and frequently generate generic explanations (e.g.

one decision node may cover 100 instances) [14].

Therefore, there are two levels of explainability.

Global Explainability: Using interpretable machine learning techniques (e.g., deci-

sion trees, decision rules, or logistic regression techniques) or intrinsic model-specific tech-

niques (e.g., ANOVA, variable importance) to ensure that the entire prediction and rec-

ommendation process is transparent and understandable. The goal of such intrinsic model-

specific techniques is to provide global explainability. As a result, users can only understand

how the model works globally (e.g., by inspecting a branch of decision trees). On the other

hand, users frequently do not understand why the model makes that prediction.

Local Explainability: Using model-agnostic techniques (e.g., LIME [12], PyExplainer

[13]) to explain software analytics model predictions (e.g., neural network, random forest).

Such model-independent post-hoc techniques can explain each prediction (i.e., an instance

to be explained). Users can then understand why the software analytics models make the

predictions. [14].

15

2.5. EXPLANATION

2.5.1 Local Model

Understanding “Why did the model choose a particular outcome for a particular in-

stance?” and “Why did the model choose a particular outcome for a group of Instances?” is

the key. We treat a model as a black box and are not concerned with its underlying structure

or the presumptions it makes for local interpretability. To understand prediction decisions

for a single datapoint, we focus on that datapoint and investigate a local subregion in our

feature space around it, attempting to understand model decisions for that point based on

this local region. Local data distributions and feature spaces may behave very differently

and provide more accurate explanations than global interpretations. An illustration of a

local model interpretation is shown in Figure 2.6.

Figure 2.6: Local Model

2.5.2 RuleFit

The RuleFit algorithm [32] learns a sparse linear model with the original features and

several new feature decision rules that capture interactions between the original features.

The algorithm automatically generates features from decision trees. Each tree path is trans-

formed into a decision rule by combining the split decisions into a rule. These trees are

16

2.5. EXPLANATION

trained to predict the outcome of interest to ensure that the splits are meaningful for the

prediction. Any algorithm, such as a random forest that generates many trees, can be used

for RuleFit. Each tree is decomposed into decision rules used as additional features in a

sparse linear regression model (Lasso). RuleFit, which helps identify linear terms and rules

necessary for the predictions, can be used to measure the importance of a feature. With

the help of the regression model’s weights, feature importance is determined. For the orig-

inal features, the significance metric can be aggregated. Additionally, partial dependence

charts are introduced to display the average change in prediction caused by changing a

feature. Any model can be utilized with the partial dependence plot, a model-agnostic tech-

nique. However, sometimes RuleFit creates many rules that get a non-zero weight in the

Lasso model, and the interpretability degrades with an increasing number of features in the

model. [33]

2.5.3 LIME

LIME (Local Interpretable Model-agnostic Explanations) [12] is a technique that suc-

cessfully explains any classifier’s predictions by learning an illustratable model locally

around the prediction. It is used to interpret individual predictions of black-box machine

learning models. Instead of training a global surrogate model, LIME focuses on training

local surrogate models to explain individual predictions. LIME tests the predictions de-

pending on variations of the data given into the ML model. It generates a new dataset

consisting of perturbed samples and the corresponding predictions of the black-box model.

This dataset trains an interpretable model weighted by the proximity of the sampled in-

stances to the instance of interest. The learned model should be a good local estimation

of the ML model predictions, but it does not have to be an excellent global estimation.

This kind of accuracy is also called local fidelity. LIME works differently for different

data types, such as; text data, tabular data, and image [33]. The output of LIME is a list

of explanations that reflect every feature’s contribution to the prediction of a data sample

17

2.6. VISUALIZATION

that provides local interpretability. It also determines which feature changes will impact the

prediction most [34].

2.5.4 PyExplainer

PyExplainer [13] is a rule-based model-agnostic model. It utilizes a local rule-based

regression model, which learns the associations between the synthetic instances’ character-

istics and the black-box model’s predictions. Given a black box model and an instance to

explain, it performs the following key steps to generate an explanation: [35]

• Generates synthetic neighbours around the instance to be explained using the crossover

and mutation techniques.

• Obtains the predictions of the synthetic neighbours from the black-box model.

• Builds a local rule-based regression model.

• Generates an explanation from the local model for the instance to be explained.

2.6 Visualization

We describe the three visualization strategies examined in this work. First, we describe

the word cloud visualization. Next, we describe the two visualizations used by LIME: a bar

chart and a feature table.

2.6.1 Word Cloud

A word cloud visualizes text data, typically depicting free-form text’s keyword metadata

(tags). The tags usually are single words, and the importance of each tag is shown with font

size. This format is helpful for quickly perceiving the most prominent terms. A bigger font

size for a term is means the term has more significant weight or occurs more frequently

[36]. Figure 2.7 shows an example of using a word cloud visualization.

18

2.6. VISUALIZATION

Figure 2.7: Example of word cloud visualization for a recommendation system

2.6.2 Bar Chart

A bar chart, often known as a bar graph, is a visual representation of categorical data

that uses rectangular bars with heights or lengths that are proportionate to the values they

represent. The bars can be plotted either vertically or horizontally. A vertical bar chart may

also be referred to as a column chart. Figure 2.8 shows an example of two types of bar

charts.

Figure 2.8: Example of bar charts

19

2.6. VISUALIZATION

2.6.3 Positive-Negative Horizontal Bar Chart

To interpret and identify both positive and negative data values in a bar chart, this visu-

alization splits a bar chart into two halves using the y-axis. The positive data is presented

from the axis to the right, much like in a typical horizontal bar chart. On the other hand, the

negative data is given on the left-hand side of the axis. The y-axis is zero at the beginning

of the bars, with the highest value being on the far right and the lowest value on the left.

The legend for the bars is presented on the sides opposite the bars across the y-axis. Figure

2.9 shows an example of a positive-negative horizontal bar chart.

Figure 2.9: Example of a Positive-Negative Horizontal Bar Chart

20

2.7. SUMMARY

2.6.4 Feature Table

A feature table is a table that shows a list of features together with the weights assigned

to each one. A feature table in a recommender system shows each feature’s impact on

a particular choice. Figure 2.10 is an example of a feature table. Each row in Figure

2.10 represents a feature with its corresponding weight, and each colour represents which

features impact which choice.

Figure 2.10: Example of a Feature Table

2.7 Summary

This chapter presented the definition of a bug report, the bug report triage process, the

details of various machine learning algorithms, feature selection, explanation, and visu-

alization techniques, especially for global models like the Neural Network and Random

Forest that we used in our implementation.

21

Chapter 3

Related Work

It is challenging for practitioners to comprehend how the models used for bug report as-

signment recommendations arrive at a choice because the majority of such research uses

black-box models, such as neural networks and random forests. As these works focus more

on accuracy than on explanation, the adoption of such recommender systems suffers signif-

icantly from a lack of explainability since it fosters a lack of confidence and transparency.

This section discusses the previous research related to the bug report assignment rec-

ommender system, the use of WordNet for improving accuracy, explaining global models

using different local models and various visualization techniques.

3.1 Bug Report Assignment Recommender Creation Techniques

Table 3.1 presents a list of significant related works on bug triaging. The table is an

extension of the one presented in Mani et al. [1], representing the work chronologically

from 2010 to 2016. Our version extends this previous table to include works until 2021.

A majority of previous techniques used the summary/title and description [3] [4] [6]

[37] because they are available at the time of ticket submission and do not change during a

ticket’s lifetime. Bhattacharya et al. [5] use additional attributes such as product, compo-

nent, and the last developer activity to shortlist developers. Shokripour et al. [38] used code

information for improved performance. Bastian et al. [39] identify developers’ expertise

using StackOverflow and keywords from bug descriptions.

From Table 3.1, we observe the use of many different feature models, such as term-

22

3.1. BUG REPORT ASSIGNMENT RECOMMENDER CREATION TECHNIQUES

Table 3.1: An overview of the various machine learning-based bug triaging techniques that
have been studied, outlining their characteristics and methods, as well as their experimental
results.

Paper Information used Feature extracted Approach Dataset Performance

Bhattacharya et

al., 2010 [5]

title, description, keywords,

product, component, last developer

activity

TF-IDF + bagof- words
Naive Bayes +

Tossing graph

Eclipse# 306,297

Mozilla# 549,962

Top#5 accuracy 77.43%

Top#5 accuracy 77.87%

Tamrawi et al., 2011 [37] title, description terms
A fuzzy-set feature

for each word

Eclipse# 69829 Top#5 accuracy 68.00%

Anvik et al., 2011 [3] title, description normalized TF

Naive Bayes, EM,

SVM, C4.5, nearest neighbor,

conjunctive rules

Eclipse# 7,233

Firefox# 7,596

Top#3 prec. 60%, recall

3%

Top#3 prec. 51%, recall

24%

Xuan et al., 2012 [4] title, description
TF-IDF, developer

prioritization

Naive Bayes, SVM
Eclipse# 49,762

Mozilla# 30,609

Top#5 accuracy 53.10%

Top#5 accuracy 56.98%

Shokripour et al. 2013 [38] title, description, detailed source code info
weighted unigram

noun terms

Bug location prediction

+ developer expertise

JDT-Debug# 85

Firefox# 80

Top#5 accuracy 89.41%

Top#5 accuracy 59.76%

Wang et al., 2014 [7] title, description TF Active developer cache
Eclipse# 17,937

Mozilla# 69,195

Top#5 accuracy 84.45%

Top#5 accuracy 55.56%

Xuan et al., 2015 [6] title, description TF
feature selection

with Naive Bayes

Eclipse# 50,000

Mozilla# 75,000

Top#5 accuracy 60.40%

Top#5 accuracy 46.46%

Badashian et al., 2015 [39]

title, description, keyword,

project language, tags from

stackoverflow, github

Keywords from

bug and tags

Social expertise with

matched keywords

20 GitHub projects,

7144 bug reports

Top#5 accuracy 89.43%

Jonsson et al., 2016 [8] title, description TF-IDF
Stacked Generalization of a

classifier ensemble

Industry# 35,266 Top#1 accuracy 89%

Mani et al., 2018 [1] title, description Word2Vec

Attention-based deep

bidirectional recurrent

neural network

(DBRNN-A) + Softmax

Chromium# 383,104

Core# 314,388

Firefox# 162,307

Top#10 accuracy 47.0%

Top#10 accuracy 43.3%

Top#10 accuracy 55.8%

Tanaz S et al., 2021 [2] description, component Lemmatizer

Tossing Graph +

Multinomial Naive Bayes

Random Forest

SVM

Eclipse# 2,868,000

Top#10 accuracy 62.3%

Top#10 accuracy 66.7%

Top#10 accuracy 65.6%

23

3.4. RECOMMENDATION EXPLANATION USING VISUALIZATION

frequency (TF), normalized TF, TF-IDF, n-grams and Word2Vec. Various classifiers, such

as Neural Network [1], Random Forest [2] , SVM [2] [3] [4] and Naive Bayes [2] [3] [4] [5]

[6] were also used. Some compare the accuracy between different types of classifiers using

the same dataset [1] [2]. However, to our knowledge, no previous work has compared the

accuracy between Neural Network and Random Forest algorithms.

3.2 Use of WordNet in Recommendation Systems

Recommender systems accuracy has been shown to improve using WordNet for fea-

ture extraction. Haifa et al. used WordNet synsets to enrich a content-based recommender

system [40]. Bernardo et al. used WordNet for improving user modelling in a web docu-

ment recommender system [41]. However, the use of WordNet for bug report assignment

recommendations has not been explored.

3.3 Explanation Techniques using Local Model

The use of local explanation allows practitioners to understand better the reasons behind

the predictions of the ML models [42]. LIME [12] is one of the model-agnostic techniques

that have been widely adopted to address various software engineering problems and other

domains. For example, recent work [43] [44] uses LIME for explaining line-level defect

predictions. Jiarpakdee et al. [42] found that LIME effectively explains the predictions of

file-level defect prediction models.

However, LIME has the following limitations. First, LIME’s neighbourhood generation

process is suboptimal. Second, the approximation of the LIME local models to the predic-

tions of the global model is suboptimal. Third, the explanations generated by LIME are not

specific to an instance to be explained. To solve these limitations, Pornprasit et al. proposed

a rule-based model-agnostic technique called PyExplainer [13]. We described LIME and

PyExplainer in detail previously (see Sections 2.5.3 and 2.5.4).

24

3.4. RECOMMENDATION EXPLANATION USING VISUALIZATION

3.4 Recommendation Explanation using Visualization

Explainability is essential for recommendation systems, and researchers are trying to

implement different types of explainable techniques for recommender systems. Saeed et

al. enhanced the explainability of the social recommendation system using 2D graphs, and

word cloud visualizations [45].

Ninghao et al. implemented an explainable recommender system by resolving learning

representations. The authors first analyze the IOM (Input data format, Output attribution,

and Middle-level representations) elements that benefit model interpretability and then pro-

pose a more transparent representation learning module model. The proposed model con-

siders all three elements above, and the data is formatted as a graph. According to different

source types and factors, the model resolves information passing in graph convolution ac-

cording to different source types and factors [46].

Bhyan et al. investigated visualization for explaining bug report assignment recom-

menders and found that developers prefer visual explanations. Seventy-five percent of par-

ticipants in their user study stated that the visual explanations increased their understanding

of the assignment recommendations and helped them trust the process [47].

Deep neural networks (DNNs) have become indispensable machine learning tools. As

a black-box model, it is not easy to diagnose what aspects of the model’s input drive the

decisions of a DNN. In real-world domains, from law enforcement to healthcare, such

diagnosis is essential to ensure DNN decisions are driven by aspects appropriate for its

use. Therefore, developing the methods and studies enabling the explanation of a DNN’s

decisions has blossomed into an active, broad area of research. Gabrielle et al. wrote a

field guide to explore the space of explainable deep learning aimed at those inexperienced

in the field [48]. It introduces three simple dimensions defining the space of foundational

methods that contribute to explainable deep learning, discusses the evaluations for model

explanations, places explainability in the context of other related deep learning research

areas, and finally elaborates on user-oriented explanation designing, and potential future

25

3.5. SUMMARY

directions on explainable deep learning [48].

Alvin et al. proposed neural-backed decision trees (NBDTs) that improved the accuracy

and interpretability of modern neural networks by drawing unique insights from the hier-

archy. They also confirm that humans trust NBDTs over saliency and illustrate how path

entropy can be used to identify ambiguous labels [49].

3.5 Summary

Although recommenders for bug report assignments have been well studied, NN and

RF have never been compared. Word2Vec with NN was used in the majority of research

studies, however, TF-IDF with NN had never been investigated in the context of bug report

assignment recommenders. WordNet has been utilized in a number of recommender sys-

tems in the past, but never in bug report assignment recommenders. Researchers have used

the local models (LIME and PyExplainer) in several works to explain the global models (RF

and NN), which have not yet been investigated for a bug report assignment recommender

system. Although work on visually explaining bug report assignment recommender has

been previously done, these techniques have not been applied to recommenders created

using RF and NN.

26

Chapter 4

Approach

The methods for developing explainable bug report assignment recommender systems are

presented in this section. First, we integrated three different global models: Random For-

est, MLPClassifier, and Bidirectional Neural Network, with two different feature selection

techniques: TF-IDF and Word2Vec, to create several recommender systems. Then we in-

troduce the use of a local model, specifically LIME, to explain recommendations. Finally,

we used three different visualization techniques to present the results visually. The source

code is available on GitHub 3.

4.1 Data Source and Preparation

In our research, we used the data set gathered by Mani et al. [1]. In their study, Mani

et al. used bug reports from three different projects. Table 4.1 lists the specifics of the

datasets they gathered. Every bug report has fields like ‘title’, ‘description’, ‘owner’ or

‘assigned-to’, and ‘reported time’. The only fields we used in our research were ‘title’,

‘description’, and ‘owner’ or ‘assigned-to’. After collecting these bug reports with the

required fields, all bug reports must have their features extracted and labelled. In every

instance, the text content of the bug’s title and description are merged to extract features,

and the terms ‘owner’ or ‘assigned-to’ are utilized to label the bug. Google Chromium

considered the developer listed in the ‘owner’ field the ground truth assignment class for

the specific bug. Mozilla’s developer in the ‘assigned-to’ field is considered the ground

3https://github.com/fyomee/bug triaging with visual explanation

27

4.2. DATA PREPROCESSING

truth assignment class during categorization.

Table 4.1: Data set details.

Data Source Mozilla Firefox Mozilla Core Google Chromium
Date Range July 1999 - June 2016 April 1998 - June 2016 August 2008 - July 2016
Bug Reports ID:10954 - ID:1278030 ID:91 - ID:1278040 ID:2 - ID:633012

Total Bug Reports 162,307 314,388 383,104
Bugs For Learning Feature 138,093 186,173 263,936

Bugs for classifier 20,417 35,000 20,000

We downloaded data from Mani et al.’s site 4 and fixed some JSON formatting-related

issues, such as NULL handling. Every bug report has an owner, title and description, which

are unstructured. In our research, we considered the threshold for the minimum number

of training samples per class as 20. However, we could not run the complete datasets for

Chromium and Mozilla Core due to memory issues 5. Therefore, we used the first 20,000

bug reports from Chromium and 35,000 from Mozilla Core as our dataset. The summary

of the datasets is provided in Table 4.1.

4.2 Data Preprocessing

After combining the title and description field content for every bug report, this un-

structured data is first processed by removing URLs, hex codes, stack trace information

and converting all text to lowercase. Then the text is tokenized, and stop words are re-

moved. We experimented with the use of stemming and lemmatization; however, we found

that these steps did not improve the accuracy of the created recommenders.

When creating the training and testing datasets for evaluation, a 10-fold cross-validation

model proposed by Betternburg et al. [50] is followed to remove the training bias. The data

is arranged in chronological order. Typically, the developers in an open source project

change over time; hence, chronological splitting ensures that the training and testing sets

have overlapping developers [1]. We split the data into eleven partitions. Except for the first

4http://bugtriage.mybluemix.net/
5Experiments were run on a MacBook with a 2.6GHz 6 core intel core i7 processor and 32GB 2667 MHz

DDR4 memory, running macOS Big Sur version 11.6.8.

28

4.3. RECOMMENDER CREATION USING TF-IDF

Figure 4.1: Data splitting for 10-fold cross-validation

one, all the folds are used as a testing set with the cumulation of previous folds for training,

as shown in Figure 4.1.

We ensure that all the classes appearing in the testing set appear in the training set. At

the same time, additional classes in the training data are unavailable in the testing set. In

other words, for every developer in the testing data sets, the classifier is trained with other

bugs fixed by the same developer.

4.3 Recommender Creation using TF-IDF

We use TF-IDF (term frequency-inverse document frequency) to create a word vector

for each bug report. The flow diagram in Figure 4.2 highlights the significant steps we used

in creating a recommender system using TF-IDF. The flow of employing a local model is

highlighted in the figure using blue text.

29

4.3. RECOMMENDER CREATION USING TF-IDF

Figure 4.2: The flow diagram for bug report assignment recommendation using TF-IDF

4.3.1 TF-IDF (Term Frequency-Inverse Document Frequency)

We use TfidfVectorizer with the following tuned parameters from sklearn 6:

• min df = 5

Ignores words with a document frequency lower than the given threshold.

• use idf = true

We set this as true for enabling inverse-document-frequency reweighting.

Then we implement three global models using Random Forest, Bidirectional Neural

6https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.TfidfVectorizer.html

30

4.3. RECOMMENDER CREATION USING TF-IDF

Network and Multi-layer Perceptron Classifier.

4.3.2 Random Forest

We use RandomForestClassifier from sklearn 7.

Instead of allowing each classifier to vote for a single class like in the original publica-

tion [51], the scikit-learn method combines classifiers by averaging their probabilistic

predictions. [52]

The tuned parameter settings we used to customize this classifier are the following:

• n estimators = 1000

The number of trees in the forest.

• max depth = 300

The maximum depth of the tree.

4.3.3 MLP Classifier

MLPClassifier in sklearn 8 implements a multi-layer perceptron (MLP), using gra-

dient descent for training, and backpropagation is used to calculate the gradients. It min-

imizes the Cross-Entropy loss function for classification, giving a vector of probability

estimates P(y|x) per sample x. Using Softmax as the output function, MLPClassifier pro-

vides multi-class classification. The model supports multi-label categorization, allowing

samples to belong to many classes. The raw output is processed using a logistic function

for each class. The rounding of the output is used to determine the value of the predicted

class [19].

We trained MLP with two arrays: the first one is a training sample represented as float-

ing point feature vectors size of X(n samples,n f eatures), and the second one is the target

7https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
8https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier.html

#sklearn.neural network.MLPClassifier

31

4.3. RECOMMENDER CREATION USING TF-IDF

values (class labels) size of y(n samples,) for the training samples. After training/fitting,

the model predicts labels for new samples.

We used the following tuned parameters for customizing the models [53]:

• hidden layer sizes = 150

• solver = adam 9

We used adam as a solver, which is the default because it works relatively better for

large datasets [53].

4.3.4 Bidirectional LSTM Neural Network

In this model, we utilize bidirectional LSTM (long-short-term memory), a technique

that allows any neural network to store sequence data in both forward and backward direc-

tions. A bidirectional LSTM differs from a conventional LSTM in that input flows in both

ways. We can direct input to flow in either a forward or a backward direction using the

standard LSTM.

We first create a sequential model from the Keras 10 library. Then we add a Bidirectional

class with an LSTM layer.

The LSTM layer used the following tuned parameter settings 11:

• units = 1024

The dimensionality of the output space.

• activation = tanh

We used the default activation function hyperbolic tangent (tanh).

• recurrent activation = sigmoid

We used the sigmoid function as the function for the recurrent step.

9adam refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba
10https://keras.io/guides/sequential model/
11https://keras.io/api/layers/recurrent layers/lstm/#lstm-class

32

4.3. RECOMMENDER CREATION USING TF-IDF

• use bias = True

We set this as true to ensure the layer uses a bias vector.

Then we added a dropout layer with a rate of 0.5. 12

Finally, we added a dense layer with the following arguments 13:

• units = len(class)

The dimensionality of the output space. We used class length as a unit.

• activation = softmax

After creating the model, during the compilation, we used the following arguments 14:

• optimizer =rmsprop

We use RMSprop as an optimizer from Keras 15.

• loss = categorical crossentropy

We used categorical crossentropy as a loss function.

• metrics = accuracy

We used accuracy as a callable function with the signature result equal fn(y true,

y pred).

Then we trained the model with three-dimensional training data (n samples, n timesteps,

n features) and the target class with batch size = 32, with 5, 6, and 10 epochs 16 for

Mozilla Core, Mozilla Firefox and Google Chrome, respectively 17.

4.3.5 Testing

After creating and training these models, we calculated accuracy using the test set. The

results from this step are presented in Chapter 5.
12https://keras.io/api/layers/regularization layers/dropout/
13https://keras.io/api/layers/core layers/dense/
14https://keras.io/api/models/model training apis/
15https://www.tensorflow.org/api docs/python/tf/keras/optimizers/RMSpropr
16Each iteration of the specified x and y data constitutes an epoch.
17https://keras.io/api/models/model training apis

33

4.3. RECOMMENDER CREATION USING TF-IDF

4.3.6 Local Model

To explain the recommendation result, we implement the local model using LIME [12].

We tried to implement the local model using Pyexplainer [13] as well; however, during the

implementation, we discovered issues with its use for our application (see Section 6.1 for

details). Our implementation procedure is as follows:

1. Construct an explainer. For both the Random Forest and MLP classifier, we construct

a LimeTabularExplainer with the following tuned parameters [54]:

• training data: NumPy 2d array

• mode: classification

• training labels: the names of developers.

• feature names: list of words corresponding to the columns in the training data.

• class names: list of developers, ordered according to whatever the classifier

uses.

And for a bidirectional neural network, we construct a RecurrentTabularExplainer

with the following tuned parameters [54]:

• training data: NumPy 3d array with shape (n samples, n timesteps, n features)

• mode: classification.

• training labels: the names of developers.

• feature names: list of words corresponding to the columns in the training data.

• class names: list of developers, ordered according to whatever the classifier

uses.

• discretize continuous: We set it as true to ensure all non-categorical features

will be discretized into quartiles.

34

4.4. RECOMMENDER CREATION USING WORD2VEC

2. Use the constructed explainer with the predict function of the predictive model to

explain any instance. We implement explain instance using the following tuned

parameters18:

• data row: 2d numpy array, corresponding to a row.

• classifier fn: classifier prediction probability function, which takes a NumPy

array and outputs prediction probabilities. For ScikitClassifiers, this is

classifier.predict proba.

• top labels: If not none, ignore labels and come up with explanations for the K

labels that have the highest chance of being correct, where K is this parameter.

• num features: maximum number of features present in explanation.

3. Visualise the generated LIME explanation. We used a function called show in notebook

for visualizing the explanation [54].

4.3.7 Word Cloud

Using the WordCloud package and the feature frequencies produced by the local model

LIME, we made a word cloud image to visually explain the bug report assignment recom-

mender systems.

4.4 Recommender Creation using Word2Vec

The flow diagram in Figure 4.3 highlights the significant steps we took in creating a

recommender system using Word2Vec. With the exception of the data extraction and fil-

tering stage, it is comparable to the TF-IDF technique. In the case of the TF-IDF dataset,

we first filtered the information by determining the minimum length of the text string and

eliminating any unwanted owners from the test datasets. We then extracted features using

18https://lime-ml.readthedocs.io/en/latest/lime.html

35

4.4. RECOMMENDER CREATION USING WORD2VEC

the filtered training datasets. While in Word2Vec, the feature is first extracted using un-

triaged bug reports with training datasets, and the data is subsequently filtered by deleting

words that are not included in the Word2Vec vocabulary list. The unwanted owner was then

removed from the testing datasets once we verified the minimal length of the text string.

Figure 4.3: The flow diagram of the Bug Triage using Word2Vec

4.4.1 Word2Vec

In our data split mechanism, the classifier testing data is unseen and cannot be used for

training the Word2Vec model. Therefore we used untriaged 19 bug reports from the training

data set for training the model.

For creating this model, we use the gensim library [55] with the following tuned pa-

rameters:
19Bug reports which are not assigned to any developer.

36

4.5. SUMMARY

• sentences: A list of lists tokens.

• vector size = 300

Dimensionality of the word vectors.

• window = 5

Maximum distance allowed within a sentence between the present and anticipated

words.

• min count = 5

Ignores all words with a total frequency lower than this.

We get the vocabulary list from the Word2Vec model, which we use for filtering the

training and testing datasets.

4.4.2 WordNet

We experimented with the use of WordNet. Figure 4.3 uses green text to emphasize the

use of WordNet, which we included during the filtering process. In this stage, words that

are not part of the Word2Vec vocabulary list are removed from the data. Before eliminating

terms that are not in the vocabulary list, we use the synsets and lemma names functions

from NLTK to find their synonyms. If any of the synonyms appear in the vocabulary, we

keep them. Later, we used that synonyms vector to construct the average feature vector for

a bug report.

After that, we implemented three global models: Random Forest, MLP Classifier and

Bidirectional Neural Network. We explained the results with the local models and word

cloud as described in Section 4.3.

4.5 Summary

This chapter presented the approaches used in our investigation. First, we constructed

six bug report recommender systems using two separate feature extractors, TF-IDF and

37

4.5. SUMMARY

Word2Vec, along with three global models: Random Forest, MLP Classifier, and Bidirec-

tional Neural Network. Then, we tried to increase the accuracy by including WordNet as

a filter. Finally, we implemented a local model using LIME, which provided two types of

visual explanation and created a word cloud to explain each model.

38

Chapter 5

Evaluation

This chapter presents the results of our evaluations for answering our research questions.

Recall that our research questions are:

• RQ#1: Which classifier gives us better accuracy: Random Forest (RF), Multi-layer

Perceptron (MLP) or Bidirectional Neural Network (BNN)?

• RQ#2: Which feature extraction approach gives us better accuracy: TF-IDF or Word2Vec?

• RQ#3: Does using WordNet improve the recommender accuracy?

• RQ#4: Which local model explanation approach, feature-based or rule-based, pro-

vides better explanations?

• RQ#5: Which visualization method appears to best support explanations of assign-

ment recommendation: word cloud, positive-negative horizontal bar chart or feature

table?

We will provide our findings for RQ#1, RQ#2 and RQ#3 in Section 5.1. Section 5.2

will present our findings to answer RQ #4 and RQ#5.

5.1 Recommender System Accuracy

The trained recommender system assigns each developer a probability value for a spe-

cific bug report, indicating their association with it. The Top-K accuracy evaluation metric,

which measures the proportion of bug reports for which the actual developer is listed in the

39

5.1. RECOMMENDER SYSTEM ACCURACY

Top-K recommendation, is used to compare the trained recommenders. Different classes,

or groups of developers, are used throughout the cross-validation (CV) approach. As a re-

sult, the classes used for training and testing during CV#1 differ from those used for CV#2.

Therefore, to evaluate the actual accuracy, we report the average accuracy of the Top-1,

Top-5, and Top-10 cross-validation sets to understand the variance introduced in the model

training [56].

For our three different datasets, Mozilla Firefox, Mozilla Core and Google Chromium,

accuracy for Random Forest (RF), Multi-layer Perceptron (MLP) and Bidirectional Neural

Network (BNN) classifiers are reported in Table 5.1.

Table 5.1: Average accuracy(%) over the cross-validation for Rank - 1, 5 and 10 are reported
for all classifiers.

Rank Top-1 Top-5 Top-10
Classifiers RF MLP BNN RF MLP BNN RF MLP BNN

Mozilla Firefox TF-IDF 15.55 14.85 17.35 36.54 36.58 39.08 48.75 48.82 48.81
Word2Vec 11.24 12.82 14.29 29.66 33.05 34.1 41.28 45.66 44.76

Mozilla Core TF-IDF 19.52 18.12 21.18 42.99 41.54 45.65 54.08 53.41 56.33
Word2Vec 14.63 15.1 19.19 35.12 38.48 42.1 46.86 51.08 52.48

Google Chromium TF-IDF 17.01 17.03 17.83 35.96 35.85 36.53 45.14 44.17 44.69
Word2Vec 11.03 11.53 12.65 26.91 28.46 27.74 34.95 37.71 35.06

5.1.1 RQ#1: Which classifier gives us better accuracy: Random Forest (RF), Multi-

layer Perceptron (MLP) or Bidirectional Neural Network (BNN)?

From Table 5.1, we can see in most cases, a Bidirectional Neural Network(BNN) gives

us better accuracy. For both the Mozilla Firefox dataset using TF-IDF and Word2Vec,

the Top-10 accuracy MLP Classifier gives us the best result with 48.82% and 45.66%,

respectively, where the accuracy when using BNN is 48.81% and 44.76%. However, in both

cases, the accuracy between the approaches is less than 1%. We found that BNN always

gives us the best accuracy for all three of the Top-Ks examined for Mozilla Core. For the

Google Chrome dataset, when using TF-IDF, Random Forest gives us the best accuracy

for the Top-10 (45.14%), and BNN gives us the next best accuracy (44.69%). However,

the difference between these two recommenders is <0.5%. Using Word2Vec, the MLP

40

5.1. RECOMMENDER SYSTEM ACCURACY

classifiers give us better accuracy for Top-5 and Top-10, which are 28.46% and 37.71%,

respectively, while the accuracy given by BNN is 27.74% and 35.06%. The difference

between these results for Top-5 is 0.72%, and Top-10 is 2.65%.

Also, we can see from our results that which classifier gives us a better result depends

on the dataset we used. However, the accuracy when using a particular approach, such as

TF-IDF or Word2Vec, is almost similar for the different classifiers.

While implementing any neural network, such as MLP or BNN, is more complicated

than RF, when using TF-IDF, the accuracy provided by RF was found to be similar to the

best accuracy produced by either BNN or MLP, with the highest difference between the two

being less than 3%. Table 5.2 shows that the training times for MLP and BNN are always

three to five times and fifteen to twenty-six times longer than those for RF, respectively.

As a result, we recommend that RF may be a better choice for creating such recommender

systems.

Table 5.2: Average runtime for all the classifiers uses TF-IDF as a feature extractor.

Classifiers RF MLP BNN
Mozilla Firefox 27.29 sec 134.99 sec 708.91 sec
Mozilla Core 77.47 sec 423.99 sec 1370.74 sec

Google Chromium 90.01 sec 304.79 sec 1434.64 sec

5.1.2 RQ#2: Which feature extraction approach gives us better accuracy: TF-IDF

or Word2Vec?

The average CV10 accuracy for three separate datasets is shown in Figures 5.1, 5.2 and

5.3. Accuracy(%) is plotted on the y-axis, and Top-K rank is plotted on the x-axis. The

green line shows accuracy when using Word2Vec as a feature extraction method, whereas

the blue line shows accuracy when using TF-IDF as a feature extraction approach. From

these figures and Table 5.1, we can see that using TF-IDF results in better accuracy.

41

5.1. RECOMMENDER SYSTEM ACCURACY

(a) Random Forest (b) MLP Classifier

(c) Bidirectional Neural Network

Figure 5.1: Mozilla Firefox: CV10 average accuracy: TF-IDF Vs Word2Vec

(a) Random Forest (b) MLP Classifier

(c) Bidirectional Neural Network

Figure 5.2: Mozilla Core: CV10 average accuracy: TF-IDF Vs Word2Vec

42

5.1. RECOMMENDER SYSTEM ACCURACY

(a) Random Forest (b) MLP Classifier

(c) Bidirectional Neural Network

Figure 5.3: Google Chrome: CV10 average accuracy : TF-IDF Vs Word2Vec

5.1.3 RQ#3: Does using WordNet improve the accuracy?

To answer this research question, we ran an experiment with the three datasets using

Word2Vec with RF by setting the random state20 as 1. In this way, we ensured that the

data model was the same for “with WordNet” and “without WordNet” experiments.

The Top-1, 5, and 10 accuracies for three separate datasets with and without WordNet

are displayed in Figure 5.4. Accuracy(%) is plotted on the y-axis, and Top-K rank is plotted

on the x-axis. Accuracy with or without using WordNet as a filter is shown by the green

and blue bars, respectively. We can see from this figure and Table 5.3 that the accuracy is

almost similar with and without the use of WordNet as a filter. Some datasets benefit from

WordNet’s improved accuracy, whereas others do not. However, in both cases, the accuracy

20Controls the sampling of the features to take into account when determining the optimum split at each
node (if max features < n features), as well as the randomization of the bootstrapping of the samples, used to
build trees (if bootstrap=True). For consistent results across several function calls, pass an int [57].

43

5.1. RECOMMENDER SYSTEM ACCURACY

difference is smaller than 0.25%. We can therefore conclude that adding WordNet as a filter

has no impact on the accuracy of bug report assignment recommender systems.

(a) Mozilla Firefox (b) Mozilla Core

(c) Google Chromium

Figure 5.4: Top 1, 5 and 10 Accuracy: With WordNet Vs Without WordNet

Further analysis revealed that the utilization of WordNet’s synonyms is less than 5%

for the three datasets we used in this study. The reason may be that WordNet contains few

44

5.2. EXPLAINING ASSIGNMENT RECOMMENDATIONS

Table 5.3: Average accuracy over the cross-validation for Rank - 1, 5 and 10 are reported
with or without using WordNet as a filter for RF.

Rank Mozilla Firefox Mozilla Core Google Chromium
With

WordNet
Without
WordNet

With
WordNet

Without
WordNet

With
WordNet

Without
WordNet

Top-1 11.37 11.53 14.43 14.49 11.23 11.21
Top-5 29.5 29.49 35.17 35.26 26.84 26.62

Top-10 41.23 41.21 46.66 46.67 34.91 34.71

of the words frequently found in bug reports. Table 5.4 shows the average percentage of

synonyms used per dataset.

Table 5.4: Average (%) of synonyms used in RF while filtering with WordNet.

Datasets Average Synonyms Used(%)
Training Testing

Mozilla Firefox 5.39 4.38
Mozilla Core 3.41 2.92

Google Chromium 1.27 1.15

5.2 Explaining Assignment Recommendations

This section presents the results of our assessment of explaining the results using dif-

ferent local models and different visualizations.

5.2.1 RQ#4: Which local model explanation approach, feature-based or rule-based,

provides better explanations?

To answer RQ#4, we choose LIME [12] as a feature-based approach and PyExplainer

[13] as a rule-based approach. However, we discovered some limitations with PyExplainer,

which prevented us from completing that portion of our investigation (see Section 6.1 for

details). Therefore, we were only able to investigate the use of LIME and present our results

of applying LIME to explain bug report assignment recommendations.

We examined the results for 6 randomly selected bug reports (see Appendix A) using an

RF classifier trained using TF-IDF. Figure 5.5 is representative of these results, with Figure

45

5.2. EXPLAINING ASSIGNMENT RECOMMENDATIONS

(a) Bug Report

(b) LIME Explanation

Figure 5.5: LIME Explanation for TF-IDF

5.5(a) being the bug report description used and Figure 5.5(b) being the results from LIME.

Figure 5.5(b)’s left side displays prediction probabilities using a vertical bar chart for the top

4 developers. The remaining developer names are grouped as “Others”. The figure’s central

bar chart, known as a positive-negative horizontal bar chart, displays the contributions of the

features for the prediction, which corresponds to the linear model’s weights. On the right

side, the values for the features are given with a colour code to indicate their relevance for

specific developers. The colour coding is consistent across sections. It contains the values

of the top 5 variables, the same as the vertical bar chart. The features displayed by LIME,

such as “properties,” “css,” “inspector,” and “parent,” are members of the token list derived

from the bug report shown in Figure 5.5(a). As a result, the user can make connections

between the words of a particular bug report and the developers that LIME suggests.

46

5.3. SUMMARY

5.2.2 RQ#5: Which visualization method appears to best support explanations of as-

signment recommendation: word cloud, positive-negative horizontal bar chart

or feature table?

We generated three visualizations: a positive-negative horizontal bar chart, a feature

table and a word cloud. The positive-negative horizontal bar chart and feature table were

generated using LIME, and we created the word cloud using WordCloud package and fea-

ture frequencies generated by LIME. We examined the results for 15 randomly selected

bug reports (see Appendix B) from the three datasets we used in our project. Figure 5.6 is

representative of these results. Figure 5.6, respectively show these visualizations in turn.

Based on our analysis of these figures, we noticed that although the positive-negative hori-

zontal bar chart and feature table provide detailed information, they take a user more time

and effort to comprehend which features are the most crucial for a recommendation. Since

our feature size is limited to 50, we found that an image employing a word cloud enables

the user to quickly comprehend the more pertinent features.

5.3 Summary

Based on the analysis of our evaluation results, we found that employing TF-IDF and

Random Forest to develop a bug report assignment recommender system would be the

best option, giving almost identical accuracy to the use of NN but requiring less training

time. Due to the lack of software industry-related words in WordNet’s lexical database,

using WordNet has less impact on accuracy. For providing an explanation of the recom-

mendations, a word cloud image was determined to be the best for giving a user a general

understanding. If the user wants to dive deeper, a positive-negative bar chart and feature

table could be made available.

47

5.3. SUMMARY

(a) Bug Report (b) Word Cloud Image

(c) LIME Explanation

Figure 5.6: Visual Explanation for a Bug Report

48

Chapter 6

Discussion

This chapter presents a discussion of the limitations discovered with using PyExplainer for

bug report assignment recommendations, our recommendations for explanation visualiza-

tion and threats to validity.

6.1 Limitations of PyExplainer

In conducting our investigation of the local model explanation, we selected PyExplainer

as representative of a rule-based approach. However, we were not able to complete this

investigation due to two discovered limitations with PyExplainer: a limit on the number of

rules and a lack of support for recommender creation using BNN.

We used textual information, such as the title and description, from a bug report as our

dataset. When we run this dataset through PyExplainer, it produces more than 15 rules

due to the vast amount of features it contains. However, combining positive and negative

rules, PyExplainer only supports up to 15 Top-K rules [58]. Therefore the limitation on the

number of rules makes it inappropriate for use with a text classification problem. If instead

of using bug report text as the feature set, the attributes of the bug report were used, then

PyExplainer may work.

Additionally, because PyExplainer only supports the supervised classification models

from sklearn [59], we were unable to train our third recommender system (BNN), which

was provided by the keras library.

49

6.4. RECOMMENDATIONS FOR VISUALIZATION OF EXPLANATION

6.2 Problems explaining Word2Vec Recommender Systems

As a feature extraction method, we employed Word2Vec, which can identify a word’s

context inside a document, semantic and syntactic similarity, and relationship to other word

sets. The Word2Vec models learn word associations using a neural network model. There-

fore, Word2Vec based its recommendations on words that are similar but not necessarily

the same as those in the bug report text. Consequently, there is a disconnect between the

explanation of the recommendation and the bug report. Figure 6.1(b) shows how features

from the LIME explanation, such as “ubuntu,” “users,” “true,” and “option,” are not present

in the token list for the actual bug report, which is shown in Figure 6.1(a). As this discon-

nect does not occur with the use of TF-IDF, this technique was used when answering RQ#4

and RQ#5.

6.3 Creation of a bug report assignment recommender system

Based on the analysis of our evaluation results, we concluded that the best option would

be to use TF-IDF and Random Forest to create a bug report assignment recommender sys-

tem. This approach provides nearly identical accuracy as BNN while requiring less training

time. Furthermore, Random Forest is less computationally expensive than Neural Net-

works.

6.4 Recommendations for visualization of explanation

In their work, Bhyan et al. [47] investigated the use of three visualizations to explain

the results of a Multinomial Naive Bayes classifier for bug report assignment. The three

visualizations examined were a pie chart, bar chart, and data table. According to their

user study, there was a slight preference for the stacked bar chart over the pie chart, and

participants also thought the data table to be more informative than the pie chart. Based on

this work, we chose to investigate the use of feature tables, bar charts, and word clouds in

our experiments.

50

6.5. THREATS TO VALIDITY

(a) Bug Report

(b) LIME Explanation

Figure 6.1: LIME Explanation for Word2Vec

Similar to their results, we concluded that users could obtain a general impression of

which features are more significant from the word cloud image. If the user wants a more

detailed rationale, this can be done by looking at the positive-negative horizontal bar chart

and feature tables. As a result, we recommend that the user be given a word cloud image to

give them a broad explanation but that a positive-negative horizontal bar chart and feature

table be made available for when the user wants to drill down more.

51

6.5. THREATS TO VALIDITY

6.5 Threats to Validity

In this experiment, during the CV10 process, we were unable to ensure that the develop-

ers who fixed at least a predetermined number(5/10/20) of bug reports were only included in

the training and testing datasets. This may have impacted the accuracy of the recommender

systems.

We were unable to train recommenders using the entire dataset for Google Chrome

and Mozilla Core due to memory limitations. This may have affected the accuracy of the

recommenders. This may be especially true for MLP and BNN, as NN is known to have

increased accuracy with more data.

When assessing the usefulness of different visualizations, we performed the assessment

ourselves. A more thorough investigation involving a user study is needed to answer this

research question more confidently.

52

Chapter 7

Conclusion

The goals of bug report triage are to evaluate, prioritize and assign the reports. A project

member validates the bug reports according to the severity of the defect and assigns a de-

veloper to fix it if needed. For a given bug report, identifying an appropriate developer who

could potentially fix the bug is a critical but time-consuming task. If the project receives a

large number of bug reports daily, this process becomes overwhelming.

Researchers have investigated implementing different recommender systems to auto-

mate the bug report assignment process, which recommends an appropriate developer for a

particular bug report. Such recommenders can help the project member to save their efforts.

However, most of these systems used black-box models, which can have better accuracy.

As a result, not knowing the rationale for a recommendation makes it difficult for the user

to trust the process. Bhyan et al. investigated visualization for explaining bug report assign-

ment recommenders and, from their user study, found that the visual explanations increased

developers’ understanding and helped them trust the process [47]. This dissertation further

investigates the visualization of assignment recommendations.

In our work, we found that BNN created a more accurate bug report assignment recom-

mender than MLP and RF. However, as the difference in accuracy between RF and the NN

models was slim, we recommend using RF as it trains more quickly. We also found that

the use of WordNet has no significant impact on bug report assignment recommender ac-

curacy. Finally, we found that using TF-IDF instead of Word2Vec leads to better accuracy

and explanation.

53

7.1. FUTURE WORK

We tried to implement two local models, LIME and PyExplainer. However, we found

that PyExplainer has limitations that make it unsuitable for use with the commonly used

text-classification approach for bug report assignment recommender.

We compared images representing bug reports and their corresponding explanation us-

ing the visualizations produced by LIME (positive-negative horizontal bar chart and feature

table) and word cloud. From this, we determined that the positive-negative horizontal bar

chart and feature table generated by LIME give us more detailed information. However, as

it takes time to understand which features are more important, we concluded that a word

cloud image is better, as the user can understand easily and quickly which features are more

important.

7.1 Future Work

Although we implemented three recommender systems and tried to explain them using

LIME and word cloud, a number of future research directions were identified:

• Due to memory limitations, we were unable to use the entire dataset for Mozilla Core

and Google Chromium for training, which can be done in future.

• Instead of using bug report text as the feature set, the attributes of the bug report can

be used to implement PyExplainer as a local model.

• Extending PyExplainer to use a library that supports BNN.

• In the future, we can do a user study to determine how much this visualization ac-

tually helps the user. To do that, we can construct the recommender system with an

explanation targeted to a certain project and test its effectiveness by asking predefined

questions.

54

Bibliography

[1] S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring the effectiveness of
deep learning for bug triaging,” CoRR, vol. abs/1801.01275, 2018.

[2] R. T. S, S. M. Patil, M. S, D. M, P. C. B. H, and D. S. K. S, “Recommendation of right
developer for bug detection,” High Technology Letters, vol. 27, p. 507–514, 2021.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage: Recommenders
for development-oriented decisions,” ACM Trans. on SE and Methodology, vol. 20,
2011.

[4] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug repositories,”
In International Conference on Software Engineering, p. 25–35, 2012.

[5] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and multi-feature
tossing graphs to improve bug triaging,” In International Conference on Software
Maintenance, pp. 1–10, 2010.

[6] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu, “Towards effective bug
triage with software data reduction techniques,” IEEE Transactions on Knowledge
and Data Engineering, vol. 27, p. 264–280, 2015.

[7] S. Wang, W. Zhang, and Q. Wang, “Fixercache: unsupervised caching active devel-
opers for diverse bug triage,” In ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, p. 25, 2014.

[8] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson, “Automated
bug assignment: Ensemble-based machine learning in large scale industrial contexts,”
Empirical Software Engineering, vol. 21, p. 1533–1578, 2016.

[9] G. D. P. Regulation, “Regulation (eu) 2016/679 of the european parliament and of
the council of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data and repealing
directive 95/46,” Official J. Eur. Union, vol. 59, no. 3, pp. 1–88, 2016.

[10] H. K. Dam, T. Tran, and A. Ghose, “Explainable software analytics,” Proc. Int. Conf.
Softw. Eng.: New Ideas Emerg. Results, pp. 53–56, 2018.

[11] K. W. Miller and D. K. Larson, “Agile software development: Human values and
culture,” IEEE Technol. Soc. Mag., vol. 24, no. 4, pp. 36–42, 2005.

55

BIBLIOGRAPHY

[12] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining the
predictions of any classifier.,” Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining. ACM, 2016.

[13] C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M. Fu, and P. Thongtanuname, “Py-
explainer: Explaining the predictions of just-in-time defect models,” In Proceedings
of the International Conference on Automated Software Engineering (ASE), 2021.

[14] J. Jiarpakdee, C. K. Tantithamthavorn, H. K. Dam, and J. Grundy, “An empirical
study of model-agnostic techniques for defect prediction models,” IEEE Transactions
on Software Engineering, vol. 48, no. 1, pp. 166–185, 2022.

[15] L. Breiman, “Random forests,” Machine Learning, vol. 45.

[16] L. Breiman, “Bagging predictors,” Machine Learning, 1996.

[17] https://www.knowledgehut.com/blog/data-science/
bagging-and-random-forest-in-machine-learning.

[18] https://www.solver.com/xlminer/help/neural-networks-classification-intro.

[19] https://scikit-learn.org/stable/modules/neural_networks_
supervised.html.

[20] S. Siami-Namini, N. Tavakoli, and A. Namin, “The performance of lstm and bilstm
in forecasting timeseries,” In Proceedings of the 2019 IEEE International Conference
on Big Data (Big Data), Los Angeles, CA,USA, p. 3285–3292, 2019.

[21] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional
lstm and other neuralnetwork architectures,” Neural Netw., 2005.

[22] Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Deep bidirectional and unidirectional lstm re-
current neural network for network-wide traffic speed prediction,” ArXiv, vol. arX-
iv/1801.02143, 2018.

[23] https://www.geeksforgeeks.org/understanding-tf-idf-term-frequency-inverse-document-frequency.

[24] D. Jurafsky and J. H. Martin, Speech and Language Processing. 2021. 3rd ed. draft.

[25] https://code.google.com/archive/p/word2vec/.

[26] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM,
vol. 38, p. 39–41, 1995.

[27] T. Miller, “Explanation in artificial intelligence: insights from the social sciences,”
Artificial intelligence, vol. 267, no. 1, p. 1–38, 2019.

[28] Z. C. Lipton, “The mythos of model interpretability: in machine learning, the concept
of interpretability is both important and slippery,” Queue, vol. 16, no. 3, p. 31–57,
2018.

56

BIBLIOGRAPHY

[29] B. Y. Lim, Q. Yang, A. M. Abdul, and D. Wang, “Why these explanations? selecting
intelligibility types for explanation goals,” IUI Workshops, 2019.

[30] S. French, “Decisionanalysis,” Wiley StatsRef: Statistics Reference Online, Hoboken,
NJ, USA:Wiley, 2014.

[31] J. R. Quinlan, “Simplifying decision trees,” Int. J. Man-Mach. Stud., vol. 27, no. 3,
pp. 221–234, 1987.

[32] J. H. Friedman and B. E. Popescu, “Predictive learning via rule ensembles,” The An-
nals of Applied Statistics, vol. 2, p. 916–954, 2008.

[33] C. Molnar, Interpretable Machine Learning. 2019.

[34] https://towardsdatascience.com/understanding-model-predictions-with-lime-a582fdff3a3b.

[35] C. Tantithamthavorn and J. Jiarpakdee, Explainable AI for Software Engineering.
Monash University, 2021. Retrieved 2021-05-17.

[36] https://en.wikipedia.org/wiki/Tag_cloud.

[37] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy set-based auto-
matic bug triaging: Nier track,” In International Conference on Software Engineering,
p. 884–887, 2011.

[38] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so complicated? simple
term filtering and weighting for location-based bug report assignment recommenda-
tion,” In Working Conference on Mining Software Repositories, pp. 2–11, 2013.

[39] A. S. Badashian, A. Hindle, and E. Stroulia, “Crowdsourced bug triaging,” In Inter-
national Conference on Software Maintenance and Evolution, pp. 506–510, 2015.

[40] H. Alharthi and D. Inkpen, “Content-based recommender system enriched with word-
net synsets,” in CICLing, 2015.

[41] B. Magnini and C. Strapparavar, “Using wordnet to improve user modelling in a web
document recommender system,” In Proceedings of the NAACL 2001 Workshop on
WordNet and Other Lexical Resources, 2001.

[42] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and J. Grundy, “An empirical study
of model-agnostic techniques for defect prediction models,” IEEE Transactions on
Software Engineering (TSE), 2020.

[43] C. Pornprasit and C. Tantithamthavorn, “Jitline: A simpler, better, faster, finer-grained
just-in-time defect prediction,” in Proceedings of the International Conference on
Mining Software Repositories (MSR), 2021.

[44] S. Wattanakriengkrai, P. Thongtanunam, C. Tantithamthavorn, H. Hata, and K. Mat-
sumoto, “Predicting defective lines using a model-agnostic technique,” IEEE Trans-
actions on Software Engineering (TSE), 2020.

57

BIBLIOGRAPHY

[45] S. Amal, M. Adam, P. Brusilovsky, E. Minkov, and T. Kuflik, “Enhancing explain-
ability of social recommendation using 2d graphs and word cloud visualizations,”
International Conference on Intelligent User Interfaces, pp. 21–22, 2019.

[46] N. Liu, Y. Ge, L. Li, X. Hu, R. Chen, and S.-H. Choi, “Explainable recommender
systems via resolving learning representations,” ACM International Conference on
Information and Knowledge Management, p. 895–904.

[47] S. A. Bhyan and J. Anvik, “Evaluating visual explanation of bug report assignment
recommendations,” International Conference on Software Engineering & Knowledge
Engineering, 2021.

[48] N. Xie, G. Ras, M. van Gerven, and D. Doran, “Explainable deep learning: A field
guide for the uninitiated,” ArXiv, vol. abs/2004.14545, 2020.

[49] A. Wan, L. Dunlap, D. Ho, J. Yin, S. Lee, S. Petryk, S. A. Bargal, and J. Gonzalez,
“Nbdt: Neural-backed decision tree,” in ICLR, 2021.

[50] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate bug reports con-
sidered harmful ... really?,” In International conference on Software maintenance,
p. 337–345, 2008.

[51] Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[52] https://scikit-learn.org/stable/modules/ensemble.html#forest.

[53] https://scikit-learn.org/stable/modules/generated/sklearn.neural_
network.MLPClassifier.html#sklearn.neural_network.MLPClassifier.

[54] https://lime-ml.readthedocs.io/en/latest/lime.html.

[55] https://radimrehurek.com/gensim/models/word2vec.html.

[56] R. K. et al, “A study of cross-validation and bootstrap for accuracy estimation and
model selection.,” 17th Inter. Conf. on Eval. and Assess. in SE, vol. 14, p. 1137–1145,
1995.

[57] https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html.

[58] https://github.com/awsm-research/PyExplainer/blob/master/
pyexplainer/pyexplainer_pyexplainer.pypyexplainerTutorial.

[59] https://github.com/awsm-research/PyExplainer/blob/master/TUTORIAL.
ipynb.

58

Appendix A

LIME Explanation for a Bug Report
Assignment Recommender System using
TF-IDF

(a) Bug Report - 1

(b) LIME Explanation

Figure A.1: Bug Report - 1 : LIME Explanation for TF-IDF

59

A. FIGURE:EXPLANATION

(a) Bug Report - 2

(b) LIME Explanation

Figure A.2: Bug Report - 2 : LIME Explanation for TF-IDF

60

A. FIGURE:EXPLANATION

(a) Bug Report - 3

(b) LIME Explanation

Figure A.3: Bug Report - 3: LIME Explanation for TF-IDF

61

A. FIGURE:EXPLANATION

(a) Bug Report - 4

(b) LIME Explanation

Figure A.4: Bug Report - 4: LIME Explanation for TF-IDF

62

A. FIGURE:EXPLANATION

(a) Bug Report - 5

(b) LIME Explanation

Figure A.5: Bug Report - 5: LIME Explanation for TF-IDF

63

A. FIGURE:EXPLANATION

(a) Bug Report - 6

(b) LIME Explanation

Figure A.6: Bug Report - 6: LIME Explanation for TF-IDF

64

Appendix B

Visual Explanation for Bug Report
Assignment Recommender System

(a) Bug Report - 1 (b) Word Cloud Image

(c) LIME Explanation

Figure B.1: Visual Explanation for Bug Report 1

65

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 2 (b) Word Cloud Image

(c) LIME Explanation

Figure B.2: Visual Explanation for Bug Report 2

66

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 3 (b) Word Cloud Image

(c) LIME Explanation

Figure B.3: Visual Explanation for Bug Report 3

67

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 4 (b) Word Cloud Image

(c) LIME Explanation

Figure B.4: Visual Explanation for Bug Report 4

68

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 5 (b) Word Cloud Image

(c) LIME Explanation

Figure B.5: Visual Explanation for Bug Report 5

69

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 6 (b) Word Cloud Image

(c) LIME Explanation

Figure B.6: Visual Explanation for Bug Report 6

70

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 7 (b) Word Cloud Image

(c) LIME Explanation

Figure B.7: Visual Explanation for Bug Report 7

71

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 8 (b) Word Cloud Image

(c) LIME Explanation

Figure B.8: Visual Explanation for Bug Report 8

72

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 9 (b) Word Cloud Image

(c) LIME Explanation

Figure B.9: Visual Explanation for Bug Report 9

73

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 10 (b) Word Cloud Image

(c) LIME Explanation

Figure B.10: Visual Explanation for Bug Report 10

74

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 11 (b) Word Cloud Image

(c) LIME Explanation

Figure B.11: Visual Explanation for Bug Report 11

75

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 12 (b) Word Cloud Image

(c) LIME Explanation

Figure B.12: Visual Explanation for Bug Report 12

76

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 13 (b) Word Cloud Image

(c) LIME Explanation

Figure B.13: Visual Explanation for Bug Report 13

77

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 14 (b) Word Cloud Image

(c) LIME Explanation

Figure B.14: Visual Explanation for Bug Report 14

78

B. FIGURE:VIS-EXPLANATION

(a) Bug Report - 15 (b) Word Cloud Image

(c) LIME Explanation

Figure B.15: Visual Explanation for Bug Report 15

79

