
DETECTING PLANNING CONVERSATIONS IN BUG REPORTS

RAFAT BIN ISLAM
Bachelor of Science, American International University of Bangladesh, 2018

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Rafat Bin Islam, 2022

DETECTING PLANNING CONVERSATIONS IN BUG REPORTS

RAFAT BIN ISLAM

Date of Defence: December 14, 2022

Dr. John Anvik Associate Professor Ph.D.
Thesis Supervisor

Dr. Yllias Chali Professor Ph.D.
Thesis Examination Committee Member

Dr. Wendy Osborn Associate Professor Ph.D.
Thesis Examination Committee Member

Dr. Howard Cheng Associate Professor Ph.D.
Chair, Thesis Examination Committee

Dedication

To my parents for all their support and sacrifices

iii

Abstract

Software developers refer to bug reports as a reliable source of information. However, these

bug reports are written in the form of conversations among developers and often become

long depending on the complexity of the issue, necessitating a significant amount of time

and effort to locate the desired information. Prior work focused on tagging the different

types of information in the bug reports. However, their work did not identify Plans. In

our work, we focus on retrieving Plans from bug reports and labeling them with a Plan

Labeller. First, we analyzed bug reports to identify which section contains Plans. Then

we examined three methods to detect Plans. Based on that, we found keywords and key-

phrases to be the best approach. We applied lists of keywords and key-phrases iteratively

to randomly selected bug reports to construct a list of keywords and key-phrases that can

identify Plans in a bug report.

iv

Acknowledgments

First and foremost, I would like to thank the Almighty Allah for giving me the opportunity

to undertake this research and for His countless blessings.

I want to express my sincere gratitude to my supervisor, Dr. John Anvik. The way

he treated me made me feel like he was not only my supervisor but also my guardian.

Whenever I ran into any trouble or had questions about my research, he was always there

to help me and guide me. I am very grateful to my supervisory committee members, Dr.

Wendy Osborn and Dr. Yllias Chali, for their valuable feedback and time.

I want to thank my family for all their support and encouragement throughout my years

of study. I am very grateful to my sister and brother-in-law for their countless support and

guidance during my stay in Canada.

Lastly, I also want to thank the members of the Sibyl Lab for their encouragement and

thoughtful comments on my research work.

v

Contents

Dedication iii

Abstract iv

Acknowledgments v

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Contribution of This Work . 4
1.2 Organization . 4

2 Related Work 5
2.1 Bug Report Summarization . 5

2.1.1 Tagged Based Approaches . 6
2.2 Information Extraction From Bug Reports 6

2.2.1 Pattern Based Approaches . 6
2.2.2 Key-phrase Based Approaches . 8
2.2.3 Keyword Based Approaches . 9

2.3 Summary . 11

3 Creating A Plan Labeller 12
3.1 Plan Labeller . 12
3.2 Plan Detection Process . 13

3.2.1 Location of Plans in Bug Reports 14
3.2.2 Detecting Sentences with Plan . 16
3.2.3 Categorization . 16

3.3 Plan Identification Refinement . 17
3.4 Summary . 18

4 Results and Evaluation 19
4.1 Data source . 19

4.1.1 Rastkar’s Dataset . 20
4.1.2 The MSR Dataset . 20

4.2 Bug Report Sections With Plans . 23
4.3 Plan Identification . 24

vi

CONTENTS

4.3.1 Patterns . 24
4.3.2 Key-phrases . 25
4.3.3 Keywords . 25
4.3.4 Summary . 26

4.4 Refining The Plan Detection Approach . 27
4.4.1 Evaluation Metrics . 27
4.4.2 First Iteration Results . 28
4.4.3 Second Iteration Results . 29
4.4.4 Third Iteration Results . 31
4.4.5 Discussion . 32

4.5 Keywords And Key-phrases Categorization 33
4.6 Final List of Keywords and Key-phrases 35
4.7 Threats to Validity . 35
4.8 Summary . 36

5 Implementation of the Plan Labeller 38
5.1 An Automated Approach . 38

5.1.1 Applying The Automated Approach 39
5.1.2 Results of Applying The Automated Approach 40

5.2 Discussion . 40
5.3 Summary . 41

6 Conclusion 42
6.1 Future Work . 43

Bibliography 44

A List of all Keywords 48

vii

List of Tables

4.1 Commonly Used Keywords and Key-phrases 26
4.2 Precision, Recall and F1 Score from the iterations 33
4.3 Keyword And Key-phrase Categories . 34
4.4 Final List of Keywords And Key-phrases With Category 36

5.1 Precision, Recall and F1 Score of the Automated and Manual Approach . . 41

viii

List of Figures

3.1 Defining Plans . 13
3.2 Proposed Approach. 14
3.3 Plan detection Process . 15

4.1 General format of the bug reports captured from Galappaththi et al’s [11]
work. 21

4.2 A sample from the Rastkar et al.’s [30, 31] dataset 22
4.3 An example of Plan in bug description. 24
4.4 An example of Plan in comments. 25
4.5 Detecting keywords from the bug comments 27
4.6 The results of first Iteration . 28
4.7 The results of second Iteration . 29
4.8 The results of third Iteration . 31
4.9 Number of Keywords And Key-phrases Used Each Iteration 35

5.1 A labeled bug report by the Plan Labeller 39
5.2 The result of automated approach . 40

ix

Chapter 1

Introduction

Bug reports are frequently consulted software artifacts because they contain valuable infor-

mation such as a detailed description of the bug and a list of developer comments discussing

how to reproduce or repair the bug. Developers and users refer to the bug reports for in-

dications of whether a similar issue has been fixed in the past, to determine if the report is

a duplication of prior issues, or to gather the information necessary to reproduce the bug.

These bug reports are stored in a issue tracking system, where developers’ and users’ reports

refer to both submitting unexpected behavior of software and requesting additional func-

tionality. This issue tracking system serves as a means of communication between users

and developers, allowing them to discuss potential ways of addressing issues or finding a

solution.

However, bug reports are not designed to be easily readable [24]. Depending on the

complexity of the bug report, the quantity of information and size of the report vary [2].

Some are small and straightforward, including a few pieces of information in a handful

of sentences. While others are lengthy and complex, contain a wide variety of informa-

tion, including long conversations between developers and users. Similar to posts on social

media [19], bug reports also include discussion sections where developers and users can

post their contributions as comments. These comments consist of numerous paragraphs of

informal conversation and opinions about a problem that needs to be fixed or addressed,

questions regarding the issue, and even attachments such as patches or screenshots. After

each new comment, there is a chance that the conversation will become more complicated,

1

1. INTRODUCTION

leaving the readers to keep track of all the new contexts on their own. Therefore, each bug

report might end up with tens of comments and thousands of sentences. Keeping track of

each comment and finding the desired information from those comments is not easy, and,

in general, it consumes a substantial amount of time.

Given the time-consuming nature of reading and comprehending full bug reports, bug

report summaries are a newly emerging area of study that might greatly benefit many de-

velopers in speeding up the bug-fixing process. In an effort to find solutions to these issues,

a number of research studies [16, 21, 22, 24, 30] have presented methodologies and strate-

gies for summarizing bug reports. On the basis of the method used to generate summary

statements [31], text summarization can be characterized as either abstractive or extractive.

Abstract summarizing is a technique for creating summaries based on the meaning of the

original text, whereas extractive summarizing is a technique for generating summaries by

extracting a paragraph or sentence from the original text. These strategies can be catego-

rized as either supervised or unsupervised learning.

Despite the fact that these bug summarizing strategies assisted developers and users in

comprehending the core topic of the bug report without reading the entire report and in

locating the needed information with the least effort, they still had certain downsides. For

instance, supervised learning-based techniques rely significantly on the training dataset,

necessitating a significant amount of manual labor to create the annotated training dataset.

As a result, several researchers have concentrated on developing unsupervised learning-

based bug report summaries to minimize the need for labor-intensive manual labeling of

data. Unsupervised techniques, on the other hand, are sensitive to word frequency [21]

and are prone to including repetitive sentences representing a similar topic in the summary,

resulting in biased findings. In addition to this, one of the most significant problems with

bug summarization was that older methods frequently missed information that was either

essential or valuable, and the summaries that were created by these methods did not provide

any kind of user interaction that would allow users to view customized summaries based on

2

1. INTRODUCTION

the information requirements that they had.

To deal with previous research issues of creating fixed-size summaries and the lack of

user interaction to create bug summaries according to desired information, Galappaththi

et al.[11] introduced a tag-based approach to automatically annotate the contents of a bug

report. Such an approach can be used to provide an interface which will allow bug report

users to find and interact with the bug report to meet their task-specific information needs

without restricting the summaries to a fixed size. However, this summarization approach

was found to need some improvements in delivering more accurate automated summaries

to bug report users. Due to the fact that different users are interested in distinct types

of information, a set of labelling modules was developed to discern the content or intent

of comments in bug report comments. Among those sets of labelling modules, the Plan

Labeller was one of the labelling modules that they introduced. However, they identified

the Plan Labeller as part of their future work and elected not to incorporate this module

into their work.

In this thesis, we focus on implementing the Plan Labeller for bug reports, which will

help developers and users to create tag-based summaries. To achieve our goal, we identify

sentences from bug reports containing Plans (also known as suggestions or solutions)

and label those sentences with the Plan Labeller. Then we will examine the bug reports

to determine which sections include Plans, and we investigate the use of three strategies

based on discourse patterns, key-phrases, and keywords for identifying Plans in bug report

sentences. Our work seeks to answer the following research questions:

• RQ1: Which part of the bug report contains Plan?

This research question aims to understand whether Plan is an essential part of bug

reports, where it is frequently described, and how it is provided in bug reports.

• RQ2: What is the best approach among discourse patterns, key-phrases, or keywords

for identifying Plans?

3

1.2. ORGANIZATION

This research question aims to determine, among these three possible strategies,

which one is most effective at detecting Plans in sentences.

• RQ3: What is the minimal set of items for identifying Plans?

This research question aims to understand, based on the identified strategy, what is

a possible minimal list of items that will be good enough to identify Plans in bug

reports.

1.1 Contribution of This Work

The contributions of this thesis are as follows:

• We came up with corpus of 126,308 bug reports derived from the MSR 2014 Chal-

lenge dataset, where each of the bug report comprises the bug id, bug title, bug de-

scription, bug comments, and the participants’ names.

• We created a 1,149 manually annotated datasets of bug report sentences identifying

which sentences contain Plans.

• We produced a fifty-one list of keywords and key-phrases that can be used to detect

Plans bug reports.

1.2 Organization

The rest of this thesis proceeds as follows. In Chapter 2, we provide prior work on

finding desired information from bug reports using different approaches. Chapter 3 presents

our mythology of the proposed approach, where we will investigate different sections of bug

reports to identify Plans and examine possible approaches to identify Plans. In Chapter 4,

we present the outcomes of our investigation and discuss the performance of our approach.

In Chapter 5, we present the implementation of the Plan Labeller. We conclude our

study and outline future work in Chapter 6.

4

Chapter 2

Related Work

This chapter summarizes prior research based on bug report summarization including three

techniques: patterns, key phrases, and keywords, and it discusses how useful these ap-

proaches could be in retrieving information from bug reports, classifying documents, and

summarizing bug reports.

2.1 Bug Report Summarization

Rastkar et al. [30] proposed an automated bug report summarizing approach using

supervised learning. Considering that bug reports are often written in a dialog fashion, they

applied minutes and email threads summarizing algorithms to bug reports. They compiled

handwritten summaries of thirty-six bug reports for assessment and training purposes. In

their work, Jiang et al. [16] analyzed duplicated bug reports, discovered that there is a

linguistic similarity between the duplicates and the original bug reports, and presented a

bug report summary approach utilizing the PageRank algorithm using this relation.

In addition to supervised approaches, various unsupervised approaches were employed

for summarizing. Mani et al. [26] suggested a method for reducing noise from bug reports,

and using four types of unsupervised learning-based algorithms to analyze bug reports.

Lotufo et al. [24] also suggested an unsupervised summarizing approach that made use of

language similarities in bug reports by employing the PageRank algorithm. Li et al. [21]

presented a deep learning-based strategy for summarization. Similarly, Liu et al. [22] also

suggested a deep-learning-based technique for sentence summarization that assesses the

5

2.2. INFORMATION EXTRACTION FROM BUG REPORTS

believability score.

2.1.1 Tagged Based Approaches

In the past, few researchers have also used tags or labels for bug report summarization.

For instance, Boris et al. [4] proposed PorchLight, a tag-based interface using customiz-

able query expressions that enables triagers to investigate, work with, and assign bugs in

bug report groups. In their work, tags were primarily employed to label bug reports with

common features and to create an effective interface for bug report triage. Song et al. [33]

presented the Bee (Bug Report Analyzer) tool to help developers by organizing bug reports

through the automatic detection and classification of terms to describe observed behavior,

expected behavior, and actions to reproduce. In their study, they relied mostly on labels

and comments in the bug report to notify reporters of missing components. Huai et al. [14]

developed seven intention categories (Bug Description, Fix Solution, Opinion Expressed,

Information Seeking, Information Giving, Meta/Code, and Emotion Expressed) and exam-

ined the relationship between bug report summaries and sentence intents. They primarily

employed these intents to categorize the sentences of a bug report based on their intentions.

Besides that, in many bug tracking systems, like the Google Chrome bug repository, bugs

are labeled with the seven different categories of security, crash, regression, performance,

usability, polish, and cleanup.

2.2 Information Extraction From Bug Reports

We present three strategies including patterns, key-phrases, and keywords, and discuss

how these approaches were used in extracting information from bug reports by previous

researchers.

2.2.1 Pattern Based Approaches

Patterns are linguistic rules that encapsulate sentences’ syntax and semantics [5]. Pat-

terns generate a set of rules that can be used to retrieve information from documents and

6

2.2. INFORMATION EXTRACTION FROM BUG REPORTS

categorize sentences according to the rules. Patterns are utilized in several applications,

most notably document classification, information retrieval, and neural networks.

Chaparro et al. [5] conducted research in which they detected information from bug

reports using patterns. For their study, they concentrated mostly on bug descriptions and

combed through them to identify observed behavior, expected behavior, and steps to re-

produce. In order to do this, they manually analyzed reports from several bug tracking

systems and developed 154 discourse patterns that can uniquely identify observed behav-

ior, expected behavior, and steps to reproduce from bug report descriptions. Their research

has shown that these patterns are extremely beneficial for identifying important information

in bug reports. Even if developers submit bug reports in a free-form text format, it is still

feasible to identify relevant information using specific patterns.

Sun et al. [35] proposed in their research an IR-based approach for bug localization that

extracts bug patterns from version-related bug reports. Based on the information retrieval

technique, they utilize version-related defect patterns to localize version-related defects.

Then they retrieved the defect patterns of comparable bugs and ranked suspicious code

based on the defect patterns and source code. Their empirical findings demonstrate that

their strategy outperforms previous IR-based strategies.

In their work, Zhao et al. [37] proposed a hybrid classification method that employs

linguistic patterns and machine/deep learning approaches to detect performance issue re-

ports automatically. They created a comprehensive set of 80 heuristic linguistic patterns

from developer-tagged performance concerns on the Apache Jira Platform. Then, based

on these linguistic patterns, sentence-level and issue-level learning features were developed

for training effective machine/deep learning classifiers.

Chawla et al. [6] proposed an automated approach that is capable of automatically clas-

sifying bug reports as functional bugs, security bugs, refactoring enhancements, etc. In their

work, they used term frequency-inverse document frequency (TF-IDF) and latent semantic

information (LSI) techniques for automatic bug labeling. Their research reveals that using

7

2.2. INFORMATION EXTRACTION FROM BUG REPORTS

semantically related words acquired through LSI in combination with terms retrieved using

TF-IDF improves the outcome of automatic labeling.

Even though these pattern-based approaches were very useful in classifying documents

and retrieving information from bug reports, they still had some downsides. This pattern-

based technique necessitates the identification of a set of rules and agreement on the patterns

by a number of coders or researchers. Besides that, researchers have to spend a lot of time

validating the patterns. Therefore, these approaches are very time-consuming and require a

lot of manual effort.

2.2.2 Key-phrase Based Approaches

Keyphrases are a group of words that encapsulate the paragraph’s main points. The

primary objective of keyphrase extraction is to select a phrase that represents the primary

substance of a text [34]. The key phrase makes information simple to manage, classify, and

retrieve [23]. Application areas of keyphrase extraction include natural language processing

(NLP), document categorization [15], information retrieval [1], and document indexing

[10].

In their research, Jindal et al. [17] proposed a technique for bug report summarizing that

makes use of both keyword-based features and sentence-based features to help retrieve the

pertinent information. Rapid Automatic Keyword Extraction (RAKE) and term frequency-

inverse document frequency (TF-IDF) were the two methods that they used for the extrac-

tion of keyword-based features. In their method, RAKE was used to extract phrases from

the text, while TF-IDF was utilized to extract unigram words. In RAKE, each word is given

a score based on how often it appears in a sentence. To compute the score of each keyword

or keyword phrase, they computed the sum based on the content words in a text. Later,

they utilized the extracted keyword and sentence features to develop rules, and based on the

rules, they selected sentences to create an extractive summary.

He et al. [13] developed a deep learning-based method for determining and explaining

8

2.2. INFORMATION EXTRACTION FROM BUG REPORTS

the validity of bug reports using only textual data. In their methodology, Convolutional

neural network (CNN) was utilized to capture the contextual and semantic characteristics

of bug reports. By backtracking CNN, they extracted valid bug report key phrases. Then,

they manually analyzed key phrases and summarized valid bug report patterns from three

aspects: Attachment, Environment, and Reproduce categories. Finally, based on these pat-

terns and some related statistics, they provided reporters with suggestions on describing

valid bug reports.

Roy and Rossi [18] suggested a strategy for feature selection that improves the predic-

tive accuracy of severity prediction models. The development of features based on textual

components and bi-grams, as well as the training of the Naive Bayes (NB) classifier with

Mozilla and Eclipse data, demonstrated that the feature selection strategy improved the

accuracy of predictions.

The disadvantages of key-phrase based techniques include the fact that, even when a

key-phrase extraction technique is used, it still requires a lot of effort and necessitates cal-

culating the frequency of phrases in order to identify them.

2.2.3 Keyword Based Approaches

Keywords are a subset of a document’s words that describe the document’s meaning

[36]. Since the keyword is the smallest unit that can express the meaning of a document,

it can be utilized by a variety of text mining applications, such as automatic indexing, au-

tomatic summarization, automatic classification, automatic clustering, automatic filtering,

topic identification, and tracking. Therefore, keyword extraction can be regarded as the

foundational technique for all document processing automation.

In their work on the automatic categorization of software bug reports, Otoom et al.

[28] proposed a distinctive feature set based on the occurrences of particular keywords.

They identified 15 keywords related to non-bug issues such as enhancement, improvement,

and refactoring as the feature set. Using this feature set, they accurately classified newly

9

2.2. INFORMATION EXTRACTION FROM BUG REPORTS

submitted bug reports into corrective or perfective classifications.

Peters et al. [29] presented Filtering And Ranking SECurity (FARSEC), a method for

reducing the mislabeling of security bug reports using text-based prediction models. Their

strategy is based on the fact that mislabeling is caused by the presence of security-related

keywords in both security and non-security bug reports. Based on this discovery, they cre-

ated a mechanism for automatically identifying keywords and ranking bug reports based on

their likelihood of being classified as security bug reports (SBRs). Last but not least, they

utilized FARSEC to decrease the presence of security-related terms. Prior to constructing

prediction models, their methodology finds and eliminates non-security bug reports con-

taining security-related keywords. With their approach, the class imbalance problem and

the amount of mislabeled security flaws were drastically decreased.

Ekanayake et al. [9] in their research focused on the development of classification mod-

els for bug severity in unbalanced learning settings based on keywords. For their approach,

they focused on the developer description of bug reports. Using the Rapid Keyword Ex-

traction (RAKE) algorithm, they extracted keywords from the developer descriptions of

bug reports. Then, the keywords were converted into numerical attributes, and combined

with severity levels to construct datasets. They used these datasets and attributes to train

classification models. The prediction skill of the models was evaluated using Area Under

Recursive Operative Characteristics Curves (AUC) as the models were exposed to more

skewed environments.

Badashian et al. [32] proposed a Bug Assignment (BA) approach in which their method

constructs the expertise profile of project developers based on the textual elements of the

bugs they have fixed in the past. Unlike traditional methods, however, their method consid-

ers only the programming keywords in these bug descriptions, with Stack Overflow serving

as the vocabulary for these keywords. According to their technique, current expertise is

more important than past expertise, hence their method measures the relevance of a de-

veloper’s skill depending on how recently they have addressed a bug with keywords com-

10

2.3. SUMMARY

parable to the bug at hand. They used Stack Overflow as a vocabulary of technical terms

to determine the significance and specificity of keywords, and they combined them with

the recency of developers’ work in a scoring mechanism for BA. Their approach based on

the textual elements shows that their model notably enhances the assignee recommendation

accuracy.

Previous studies have shown the viability of using keyword-based techniques for a vari-

ety of text-mining tasks, including automated categorization and summarization. However,

finding the ideal selection of keywords for a particular research activity is challenging.

It still takes manual labor to examine and locate the proper collection of keywords, even

when an algorithm is employed to extract keywords. Therefore, it is an extremely time- and

labor-intensive strategy.

2.3 Summary

This chapter presented prior work on bug report summariztion and prior use of three

possible strategies, specifically patterns, key-phrases, and keywords, which we investigate

for our approach to identifying Plans in bug reports.

11

Chapter 3

Creating A Plan Labeller

We begin this chapter with defining what a Plan is and an overview of how we will identify

a technique for detecting Plans in bug reports. Then we present the details of our approach.

3.1 Plan Labeller

A Plan is a comprehensive proposal for accomplishing something or a strategy for

achieving a target [7]. In a software development context, a Plan is when developers create

a solution for a problem, or propose a solution concept or recommendation. Therefore, in

the context of our approach, identifying Plan as a Solution or Suggestion will make

it conceptually simpler to identify Plan from sentences, as shown in figure 3.1. When a

developer or user lacks sufficient confidence in their proposed idea, we can recognize a

statement as a Suggestion. For example, in figure 3.1, “Try changing the parameter, it

might fix your issue”. Looking at “might fix”, we can conclude that there is a possibility

that the problem won’t be resolved. On the other hand, for a Solution, the developer is

sufficiently certain that their idea will work. For example, in figure 3.1, “Just change the

parameter, it is working.” Looking at “Just change”, we may conclude that it will resolve

the problem.

Our approach for identifying Plans from bug reports involves identifying a technique

for labelling sentences that contain a Plans. We will initially examine bug reports from a

data collection and identify sentences with Plans. From these sentences, a set of items will

be found, either discourse patterns, key-phrases or keywords. The list of items will then

12

3.2. PLAN DETECTION PROCESS

be validated and refined by iteratively applying the identified technique to other bug report

subsets from the dataset.

We divide the proposed approach into two sections: the first discusses the approach for

finding Plans, and the second discusses Plan identification refinement process. The first

section utilizes the initial dataset, which helps to identify the initial list of items. For the

second section, this initial list of items will be applied to the new dataset for validation, and

during each iteration, the list of items will be updated or modified based on the performance

of each iteration on the new dataset. Figure 3.2 shows the steps of our proposed approach.

Figure 3.1: Defining Plans

3.2 Plan Detection Process

First, in order to identify Plans from bug reports, we discuss the various aspects of

the bug reports that will be analyzed to find Plans. Then, we will discuss techniques for

identifying Plans from sentences and the possible ways of categorizing the items used to

detect Plans. Figure 3.3 demonstrates the procedure of identifying Plans.

13

3.2. PLAN DETECTION PROCESS

Figure 3.2: Proposed Approach.

3.2.1 Location of Plans in Bug Reports

First, we seek to understand what information bug reports contain, and which portion

of the reports developers utilize to provide Plans.

A bug report facilitates communication between users and software developers regard-

ing software flaws or feature requests. It includes a wide range of information, such as

the report’s identification number, its current state, the report’s title, its description, and the

conversations between users and developers to determine potential solutions or directions

for resolving the issue. Typically, the report’s title, description, and conversations between

users and developers contain all the descriptive information regarding the bug report. There-

fore, we will examine the Bug Title, Bug Description, and Bug Comments sections of each

bug report to determine the existence of Plans. This investigation will help to find the

answer of our RQ1.

Bug Report Title

The title contains a short summary of the problem, giving the reader a general idea of

the bug. The title’s information is presented in such a manner that the user or developer

does not have to read the complete report to understand the problem. The title is just a noun

phrase or words referring to the reports’ topics [20].

14

3.2. PLAN DETECTION PROCESS

Figure 3.3: Plan detection Process

Bug Report Description

The description provides concise information about the defect. This information may

include possible software faults or problems, as well as requests for software features or

upgrades. If the reported issue is a bug or defect, the developers offer three crucial pieces

of information: the actual outcome, intended behavior, and reproducibility methods. Alter-

nately, if the issue pertains to feature requests or additions, they propose actions to enhance

the software or advice on how to implement the requested feature.

Bug Report Comments

When developers have an opinion or information to share, they post a comment. For

example, developers provide comments when the description’s information is unclear to

them or missing some information. Even if they can identify the issue, developers may

provide a solution or instruction to solve it. These comments also include stack traces, links

to other sources, and even off-topic phrases such as “Thanks for the help”, and “Hello, I

15

3.2. PLAN DETECTION PROCESS

hope you’re doing well.”

3.2.2 Detecting Sentences with Plan

After analyzing the corpus to determine which sections of bug reports include Plans,

we move to finding sentences containing Plans. We investigate three approaches for locat-

ing Plans in bug report sentences which will help to answer our RQ2 regarding finding the

possible approach for identifying Plans.

The first of these approaches is examining sentences and searching for a set of rules to

discover Plans. Chaparro et al.’s [5] research demonstrated that developers follow well-

defined standards in their descriptions to explain observed behavior, expected behavior,

and steps to reproduce in the descriptions. Therefore, using a set of rules or patterns, it is

possible to find important information in bug reports.

The second approach is examining the sentences to determine the use of key-phrases

meaning a sequence of one or more words occurring together to identify Plans. In their

method of sentence-based text summarization, Jindal et al. [17] demonstrated the use of

both keywords and key-phrases to extract sentences from software defect reports. Their

work shows that it is possible to use key-phrases to extract essential information from bug

reports.

The last approach is examining the sentences and identifying a list of keywords, mean-

ing a number of specific words, used for expressing Plans in sentences. While searching

for a keyword in a sentence, the root form of the keyword will be identified and extracted,

given that keywords can have different forms.

Regardless of which approaches will help to identify Plans from bug reports, stack

traces, codes, and comments with quoted sentences will be ignored for the approach.

3.2.3 Categorization

Regardless of which of the three techniques for identifying Plans is used, the patterns,

key-phrases, or keywords will be categorized. We describe our categorization approach in

16

3.4. SUMMARY

the context of the use of keywords.

If a keyword is from the same bug report section as other keywords, they will be grouped

together. A distinct list of keywords will be generated depending on the section of the bug

report from which they were extracted. For instance, if the keyword is from the “Bug Report

Comments” section, it will be grouped with the other keywords from the same location.

The keywords will next be grouped based on whether they appear in a single sentence

or in multiple sentences. The number of sentences used will reflect the complexity of the

Plan, with simple Plans appearing in a single sentence and complex Plans appearing in

multiple sentences.

Lastly, keywords will be categorized based on their meaning and the manner in which

developers use them to describe their Plans. For instance, if the keywords are used to

describe similar intentions, they will be categorized together.

3.3 Plan Identification Refinement

To refine our Plan identification approach and to find the answer to RQ3 regarding

which set of items will be minimal for identifying Plans, we randomly select reports from

a dataset such that we have a 95% confidence level. Then, we apply the results of the

previous iteration and examine them. We keep repeating the process until the improvement

between iterations is minimal, or until a certain number of iterations have been completed.

During each iteration, the Plan identification approach will be refined based on four

criteria: first, if the approach results in patterns, key-phrases, or keywords that are too

generic or common. These would result in detecting too many sentences as Plan, leading

to many false positives. Second, if some of them are not contributing frequently in detecting

Plan, they will be considered too specialized. Third, if multiple items apply to the same

sentence, we will remove one of them or try to combine them. Finally, if the collection of

items is missing a lot of sentences with Plan, we will identify and introduce new items to

our list for the next iteration.

17

3.4. SUMMARY

3.4 Summary

In this chapter, we defined the meaning of Plans and introduced our approach for de-

tecting Plans from bug reports. Then, we focused on the Plan detection process, which

consists of a number of steps. The first step is examining different aspects of the bug reports

to determine which section contains Plans. Then, we presented three possible techniques

to detect sentences with Plans. Lastly, we described the ways of categorizing the items to

find Plans. At the end, we focused on refining the Plan identification process, where we

discussed our iteration process and after each iteration, how we would refine the items.

18

Chapter 4

Results and Evaluation

In this chapter, first, we discuss the data sources we used for our investigation. Then,

we present the results of our investigation of which parts of a bug report contain Plans.

Next, we present the results from our investigation of how to identify Plans in bug reports.

Finally, we present the outcome of iteratively refining the Plan identification approach.

4.1 Data source

For our approach, we used bug reports from two different data sources, such as: Rastkar

et al.’s [30, 31] dataset and the Mining Software Repositories (MSR) dataset [12]. For our

approach, we first wanted to investigate whether it was possible to find Plans in a bug

report or not. Since the approach of identifying Plans from sentences has never been done

before, we wanted to start with a smaller dataset that contains bug reports from a wide

variety of projects so that we could analyze them within a short period of time and identify

lists of items with a lot of variation. Therefore, to identify Plans location in bug reports and

to find out which of the three approaches, whether patterns, key-phrase or keywords, can be

used to extract Plans, we use Rastkar et al.’s [30, 31] dataset. For conducting iterations and

refining the Plan identification process, we use the MSR dataset. The MSR 2014 Challenge

data collection was selected to verify the accuracy of the items used for Plan identification

over a wide range of bug reports.

19

4.1. DATA SOURCE

4.1.1 Rastkar’s Dataset

We chose to use the bug report corpus curated by Rastkar et al.’s [30, 31] to investigate

where developers provide Plans and how to identify them. The choice of using this corpus

was made for two reasons. To begin with, the dataset contains bug reports from a broad

variety of different projects. It was essential for our approach to make use of a dataset of this

kind in order to determine a set of keywords that are capable of generating precise results for

bug reports taken from a wide range of sources. Second, the dataset was previously utilized

by Galappaththi et al. [11] and other researchers [25, 26] for a bug summary approach,

meaning that the dataset’s content has already been validated.

The corpus consists of thirty-six (36) bug reports with a total 2,361 sentences collected

from four distinct open-source projects (nine reports from each project), including Mozilla,

Eclipse, KDE, and Gnome. All the bug reports are stored in XML format. Each of the

reports contains information such as the Bug Id to indicate which particular bug report is

currently being accessed, Title, which provides short detail regarding the issue, and all

the Comments to show the conversation between the developers.

Figure 4.1 shows the schema of Rastkar et al.’s [30, 31] corpus taken from Galappaththi

et al’s [11] work. Each bug report’s comments are presented in a format resembling a

conversation between two or more individuals who take turns talking [11]. Therefore, each

comment is considered a turn, and each turn includes the contributor’s name, the time the

comment was made, and the text of the individual sentences from the entire comment. One

thing to note, the first comment is always the description of the bug reports. No distinct

attributes were used to differentiate descriptions from the comments. Figure 4.2 represents

a sample from the Rastkar et al.’s [30, 31] dataset.

4.1.2 The MSR Dataset

To assess the effectiveness of our approach, the prime requirement is a corpus of bug

reports. For this, a corpus of bug reports from the Mining Software Repositories (MSR)

20

4.1. DATA SOURCE

Figure 4.1: General format of the bug reports captured from Galappaththi et al’s [11] work.

2014 Challenge [12] was selected. The dataset includes ninety projects and their forks for

the most popular programming languages on GitHub. The corpus consist of 126,308 bug

reports with 583,794 comments (6,572,498 sentences). The data for each project includes

problems, pull requests, organizations, followers, and labels.

The dataset from the MSR 2014 Challenge [12] is available in two distinct formats: a

MongoDB database dump and a MySQL database dump. We chose to utilize the MongoDB

database dump.

Data Processing and Extraction

The MongoDB database dump contains sixteen distinct data tables, including commit

comments, issue comments, repo labels, and many others. Each table contains a wide va-

riety of information from different parts of the bug reports. However, only the “issues”

and “issue comments” data tables include the information required for our investigation.

The “issues” table contains a summary statement of the bug and the titles, and the “is-

sue comments” table contains the discussion in the form of comments made by the partici-

pants.

21

4.1. DATA SOURCE

Figure 4.2: A sample from the Rastkar et al.’s [30, 31] dataset

To access those tables from the MongoDB database, we use Pymongo [27]. From both

of the tables we extracted the following information:

• The bug “Id”, a bug identification number.

• The bug “ Id”, a unique identification number generated by MongoDB.

• The bug “Title,” a summary of the issue.

• The “User,” name of the participants who contributed in the bug report.

• The “body,” a summary statement of the bug and the description or the comments

made by the developers.

22

4.2. BUG REPORT SECTIONS WITH PLANS

At the end, we combined both tables, along with the properties that were extracted, and

saved the results in a new table. From there, with the help of NLTK [3], we split all the text

of the bug description and comments into sentences. Developers sometimes provide Plans

using multiple sentences, especially when the problem is complex. If it is kept in paragraph

format, annotating them with the Plan Labeller will be a difficult task to achieve.

We extracted 126,308 bug reports in JSON format, where each bug report has a “title,”

“participant’s name,” “description,” and “comments” for that particular bug report.

4.2 Bug Report Sections With Plans

To understand which portion of the reports developers utilize to provide Plans, we man-

ually analyzed Bug Reports Title, Bug Reports Description, and Bug Reports Comments

from Rastkar’s dataset.

Bug Reports Title

As the intent of the title is to provide a short description of the issue so that the reader

does not have to read the entire report to understand the issue, after examining the bug

report titles, we found that the Plan does not appear there.

Bug Report Description

After analyzing the bug descriptions, we found that bug descriptions sometimes con-

tain Plans, especially if the bug report is regarding feature requests or enhancements. In

addition to the actual outcome, expected behavior, or steps to reproduce in bug descrip-

tion defect-related reports, developers even include their ideas or ways to solve the issue.

Figure 4.3 shows an example of a bug report description that contains Plans.

Bug Report Comments

After going through the comments of the bug reports, we found that comments do con-

tain Plan, but the way they are provided varies. Figure 4.4 shows an example of a bug

23

4.3. PLAN IDENTIFICATION

Figure 4.3: An example of Plan in bug description.

report comment which contains Plans.

After examining the different sections of bug reports, we found that Bug Description

and Bug Comments contains Plan which provides an answer to our RQ1.

4.3 Plan Identification

In order to detect Plans in bug reports sentences, we investigated three possible ap-

proaches beginning with the most general and narrowing to the most specific. These ap-

proaches are patterns, key-phrases and keywords.

4.3.1 Patterns

We began our investigation by examining discourse pattern-based approach for extract-

ing Plans from sentences, similar to that used by Chaparro et al.’s [5]. As developers utilize

a free-form text format, we were unable to find a set of rules or patterns that uniquely iden-

tify Plans.

24

4.3. PLAN IDENTIFICATION

Figure 4.4: An example of Plan in comments.

4.3.2 Key-phrases

Next, we examined a key-phrase based method for identifying sentences containing a

Plan. However, identifying key-phrases was challenging since developers use a different

set of key-phrases depending on the issue. Each bug has a unique Plans and to express

that, developers hardly use the same key-phrases. In spite of that, we were able to identify

some key-phrases to detect Plans.

4.3.3 Keywords

Lastly, we examined the sentences from bug reports and found that developers use a

specific list of keywords to express Plans. While extracting a keyword from a sentence,

we extract the root form, given that keywords can have different forms. We have seen that

sometimes developers do not express their Plan using a single sentence. Especially when

the problem is complex and requires multiple sentences to express, they use multiple sen-

tences, or even enumerated lists or paragraphs, to address it. They link those sentences using

25

4.4. REFINING THE PLAN DETECTION APPROACH

Table 4.1: Commonly Used Keywords and Key-phrases

Keyword Name Example
Work If you add the below snippet it will work and solve the issue.
Fix One possible fix is just change the parameter.

I Think Rather than add multiple ways to do the same thing in the main
repo I think it’s best if this one remains a separate project.

Should Be You should be overriding to param in order to change the url.
However Naming them doesn’t resolve the issue however, ‘environment =

environment()‘ is the only way I can see it working at the moment.
Therefore Therefore I propose following syntax for global functions:

“‘@covers ::function name”’.

conjunctive adverbs such as However, Therefore, and Since to add multiple sentences.

Therefore, we have also extracted some of the keywords, which will be able to detect both

sentences rather than one sentence which does not contain the full Plans. Figure 4.5 shows

an example of detecting keywords from the bug’s comments.

4.3.4 Summary

Although we were able to identify some key-phrases, we found that they were insuffi-

cient to detect Plans in general. Therefore, we focused on a keyword-based strategy that

incorporates both individual keywords and key-phrases. This result provides an answer to

our RQ2.

We identified seventy-three unique items, including single keywords, key phrases, and

a few conjunctive adverbs. Among the keywords, we found that WORK, JUST and FIX are

the most commonly used keywords, I THINK and SHOULD BE are the most commonly used

key-phrases, and HOWEVER, THEREFORE are the most commonly used conjunctive adverbs.

Table 4.1 shows an example of the most used keywords and key-phrases from the Rastkar

et al.’s [30, 31] dataset.

26

4.4. REFINING THE PLAN DETECTION APPROACH

Figure 4.5: Detecting keywords from the bug comments

4.4 Refining The Plan Detection Approach

To test the accuracy of our identified keywords and key-phrases, we extracted 126,308

bug reports from the MSR dataset [12]. From there, for each iteration, we randomly select

383 bug reports (95% confidence level) and apply the identified keywords and key-phrases

to these bug reports. Based on the outcome of the iteration, the keywords and key-phrases

are analyzed and refined.

4.4.1 Evaluation Metrics

We assessed the effectiveness of a keyword and key-phrase set using three performance

metrics: Precision, Recall, and F-score. For our approach, we defined True Positive (TP)

as “Number of Sentences containing Plans correctly identified by the Plan Labeller”,

False Positive (FP) as “Number of Sentences not containing Plans but identified as Plan by

the Plan Labeller” and False Negative (FN) as “Number of sentences containing Plans

missed by the Plan Labeller.” F1-score indicates the harmonic mean of precision and

recall depicts the overall performance of the proposed approach.

27

4.4. REFINING THE PLAN DETECTION APPROACH

Precision =
TruePositive

TruePositive+FalsePositive

Recall =
TruePositive

TruePositive+FalseNegative

F1− score =
2(Precision∗Recall)
Precision+Recall

4.4.2 First Iteration Results

For the first iteration, we used the seventy-three keywords and key-phrases that we

identified from examining the Rastkar’s dataset and applied them to a randomly selected

383 bug reports from the MSR dataset. To better comprehend the efficacy of keywords and

key-phrases, we separated the iterations into two sections: one for the description and the

other for the comments. Figure 4.6 shows the result of first iteration.

Figure 4.6: The results of first Iteration

The description part from the 383 bug reports contained a total of 1,264 sentences. Our

keyword and key-phrase set correctly identified 430 sentences (34%) as having Plans. The

incorrectly identified sentences were 401 sentences 32%. This indicates that the keywords

and key-phrases set misidentified a large number of sentences as Plan that do not include

Plans. The number of sentences with Plan that were not identified was lower, which was

only 26 (around 2%) out of the 1,264 sentences.

The comment part of all 383 bug reports had a total of 3,429 sentences. Using the

keyword and key-phrase set, 1,277 sentences (37%) were correctly identified as a Plan.

The incorrectly labeled sentences were 833 sentences (24%), and the number of missed

28

4.4. REFINING THE PLAN DETECTION APPROACH

sentences was 94 (around 3%).

Discussion

Examining the precision and recall, we observed that the keyword and key-phrase set

had a high recall for both descriptions and comments. However, precision was found to

be in the 50-60% range. To determine the cause of the lower precision, we analyzed all of

the false positives (sentences incorrectly identified as Plan) and determined that the ma-

jority of the keywords and key-phrases initially identified by Rastkar’s dataset were far too

generic, meaning they are also used to express other concepts in bug reports. Therefore, we

removed twenty of the keywords and key-phrases that were incorrectly labeling sentences.

We also studied the false negatives (sentences missed by the keywords and key-phrases)

and discovered three additional keywords Keep, Might, and Wonder, which we feel will

assist in identifying Plans.

4.4.3 Second Iteration Results

For the second iteration, we used fifty-six keywords and key-phrases after removing

twenty keywords and adding three new keywords from the first iteration. This keyword

set was applied to a new set of randomly selected 383 bug reports from the MSR dataset.

Figure 4.7 shows the result of second iteration.

Figure 4.7: The results of second Iteration

After using the revised keyword and key-phrase set, we observed that out of 1,199

sentences of bug descriptions, 398 sentences (33%) were correctly identified sentences from

the first iteration and 209 sentences (17%) were not. If we compare it with the first iteration,

the number of correctly identified sentences dropped from 34% to 33%, but the the number

29

4.4. REFINING THE PLAN DETECTION APPROACH

of incorrectly identified sentences decreased from 32% to 17%. Even though the correctly

identified sentences decreased by 1%, incorrectly identified sentences decreased to almost

half which means our list of keywords and key-phrases detects Plans more accurately than

the first iteration. However, the missed sentences have drastically increased to 119 (10%),

whereas for the first iteration, it was just 26 sentences (2%).

The comment part of all 383 bug reports had a total of 2,931 sentences. From there,

841 sentences (29%) were correctly identified as Plan. Similar to the description part of

our second iteration, the incorrectly identified sentences has decreased here as well, to 460

sentences (16%). Compare to the comment part of the first iteration, the correctly identi-

fied dropped from 37% to 29%, but most importantly, the incorrectly identified sentences

dropped significantly from 24% to 16%. Even though, the number of missed sentences rose

to 8% from 3%, overall the updated list of keywords and key-phrases also performed better

here.

Discussion

After calculating the precision and recall, we saw that the precision had grown for both

the description and the comments, where it was around 65% for the description and 64%

for the comments. In contrast to the initial iteration, the recall for both descriptions and

comments reduced dramatically. To determine the reason for the lower recall, we analyzed

and found that it was due to the increased number of missed sentences containing Plans.

To balance that, we went through the missed ones and added two new key-phrases, Can you

or You Can, and I think. Among these two, I Think was omitted after the first iteration,

but after analyzing the missed sentences, we discovered that it helps more in detecting Plan

than the incorrect one. Therefore, we reintroduced this key-phrase in order to improve the

recall. Even though the precision was increased, we still analyzed the incorrectly detected

sentences and discovered seven keywords and key-phrases, such as Make sure, Update,

Close, Attempt, Bug, Check, and Show, which were responsible for detecting incorrect

30

4.4. REFINING THE PLAN DETECTION APPROACH

sentences. Therefore, we removed seven and added two, which we believe will help identify

Plans more accurately.

4.4.4 Third Iteration Results

For the third iteration, we used fifty-one keywords and key-phrases after removing seven

and adding two new to the list from the second iteration. These were applied to a newly

selected random set of 383 bug reports. Figure 4.8 shows the result of the third iteration.

Figure 4.8: The results of third Iteration

After applying the new keywords and key-phrase, we observed that, out of 1,205 bug

description sentences, 313 (26%) were successfully labelled as Plan, whereas 178 (15%)

were incorrectly identified. This indicates that the ratio of incorrectly identified sentences

has reduced by 2%, as well as the correctly identified by 7%. However, fewer Plan sen-

tences were missed in the third iteration compared to the second as the incorrectly identified

sentence rate dropped to 7%. This means that the updated set of keywords and key-phrases

can find more of the sentences that were missed in the second iteration. However, this

comes at a cost of a lower correctly identified sentence rate.

The comment portion from the selected 383 reports has a total of 3,537 sentences. From

there 1017 (29%) sentences were correctly identified as Plan and 476 (13%) sentences were

not. Compare to the second iterations, comment part, the number of correctly identified sen-

tences is similar in both iterations. However, the incorrectly identified sentences dropped

3%. Even the number of missed sentence dropped, from 8% to 6%. This indicates that our

updated set of keywords and key-phrases worked even better then iteration two.

31

4.4. REFINING THE PLAN DETECTION APPROACH

Discussion

After assessing the precision and recall, we found that the precision for comments has

grown to 68%, while the precision for descriptions has declined to 63%. However, the

recall has risen for both the description and the comments compared to the second iteration,

although these are still lower than the first iteration. From the third iteration, we can see

that the list of keywords and key-phrase is performing well, as total precision is the best of

the three iterations, and the total recall is rising.

4.4.5 Discussion

Table 4.2 shows the precision, recall, and F1 score of each iteration. After three itera-

tions, our keyword or key-phrase set has an F1 score of 73%, which means they were able

to detect Plan relatively effectively.

Looking at Iteration one, we see that the precision was the lowest of the iterations,

and the recall was the highest. The main reason for these results is that the keywords or

key-phrases we used, which were identified from Rastkar’s dataset were too general. The

Rastkar’s dataset was comparatively smaller then those of the MSR dataset, so the data

would not represent as many variations in how Plans are expressed.

If we compare the results between iteration two and iteration three, overall the precision,

recall and F1-score rose in a stable way. Based on the performance of iteration three, we

believe we have identified the minimal list of keywords and key-phrases which can identify

Plans from sentences. Therefore, we did not continue further iterations.

During our iterations, we identified three keywords that appeared in both sentences that

were and were not Plans. In the second iteration, we wanted to remove these keywords but

found that doing so will have a significant negative effect. The performance improvements

for Iteration three show that these keywords are more helpful than harmful. For example,

we can see that in the sentence “Unfortunately, this will not work in the current version

of Requests, which insists you have both a netloc (e.g., hostname) and a path.” from Bug

32

4.5. KEYWORDS AND KEY-PHRASES CATEGORIZATION

Table 4.2: Precision, Recall and F1 Score from the iterations

Iterations Title Precision Recall F1 Score
Description 51.74% 94.29% 66.82%

1st Iteration Comments 60.52% 93.14% 73.34%
Total 58.04% 93.43% 71.60%
Description 65.56% 76.98% 70.81%

2nd Iteration Comments 64.64% 78.80% 71.02%
Total 64.93% 77.68% 70.74%
Description 63.74% 79.44% 70.72%

3rd Iteration Comments 68.11% 83.15% 74.88%
Total 67.03% 82.25% 73.86%

#6762208, the word “Work” helps identify a Plan, but in the sentence “Works all right on

Nexus 4 running 4.3.” from Bug #13627177, it does not.

4.5 Keywords And Key-phrases Categorization

Having determined the set of keywords and key-phrases for detecting Plans, we started

categorize them.

Initially, we analyzed the keywords and key-phrases to determine if they came from the

same source so that we could categorize them accordingly. We observed that developers use

the same set of keywords and key-phrases to describe Plans in both descriptions and com-

ments; they do not use a different set of keywords and key-phrases in different parts of the

reports. Therefore, we were unable to differentiate keywords and key-phrases depending

on their source and group them for use in a particular part of a bug report.

Then, we divided the keywords and key-phrases into two categories based on how

they appear in the sentences. The first category is Sentence Level, and the other one is

Paragraph Level. Sentence Level keywords and key-phrases express a Solution or

Suggestion in a single sentence, whereas Paragraph Level keywords and key-phrases

require multiple sentences to express it. Most of the keywords and key-phrases are part

of the Sentence Level category (91%), and a few are part of the Paragraph Level,

33

4.6. FINAL LIST OF KEYWORDS AND KEY-PHRASES

Table 4.3: Keyword And Key-phrase Categories

Category Name Reason For Naming
Alternative When developers have more than one plan.
Clarification When developers have additional information to provide

for a better understanding plan.
Command When the developer is confident enough about the plan.
Conclusion When developers have a plan, but it might cause some

issues with the software later.
Desire When the developer has an idea for the plan but does not

know how to do it.
Judgement When developers provide a plan based on judging oth-

ers’ plans.
Noise When developers use a common word to express both

plans and normal statements.
Phrase When developers use more than one word, that occurs

together to express a plan
Reference Whenever developers refer to documents or links for

Plans
Solution When the developer has the exact plan and is confident

enough that it will work.
Suggestion When the developer has an idea for a plan but is unsure

whether it will work,

category (9%). Also, we identified some keywords and key-phrases that are part of both

categories (8%).

Lastly, we applied a card sorting technique [8] to categorize keywords and key-phrases

into different groups based on their meaning and how developers use them to describe their

Plans. Five individuals participated in the card sorting [8] and arrived at eleven categories.

For example, the Reference category contains six keywords Duplicate, Patch, Attach,

Include, Read, Document and these keywords mainly appear whenever someone refers to

something like documents or links. Similarly, another category, called Noise, contains key-

words that appear in both sentences, which includes Plan, and those that do not. Table 4.3

shows the names of all eleven categories and the reason for their naming.

34

4.7. THREATS TO VALIDITY

4.6 Final List of Keywords and Key-phrases

During each iteration, a different set of keywords and key-phrases was used to test the

performance of our Plan identification process. Figure 4.9 shows the number of keywords

utilized in each iteration. After examining all iterations, fifty-one keywords were found

that effectively identify Plans in a sentence, which answers our RQ3. Table 4.4 shows the

fifty-one keywords and key-phrases with their category. A complete list of all keywords

and key-phrases used in our investigation for each iteration can be found in Appendix A.

Figure 4.9: Number of Keywords And Key-phrases Used Each Iteration

4.7 Threats to Validity

In this work, we evaluated the effectiveness of our approach based on our manual la-

belling. Due to time constraints, we were not able to perform an external validation of our

iteration result. Conducting such a validation is a next step. It will help to reduce any errors

made during manual labeling and will possibly generate a more accurate annotated dataset.

During each iteration, numerous sentences were detected as a Plan by our keywords and

key-phrases, but in some cases it was difficult for us to decide whether they were actually

35

4.8. SUMMARY

Table 4.4: Final List of Keywords And Key-phrases With Category

Category Name Keywords and Key-phrases
Alternative However, Instead, Other, Although, Whether, Otherwise

Clarification In Addition, For Example, Option, Because, Actual
Command Improve, Make, Found, Implement, Create, Approach, Change,

Keep, Select
Conclusion In fact, Since, Therefore

Desire Want, Need, Miss, Support
Judgement Possible, Reasonable, Probably, Seem, Easy, Wonder, Agree,

Might, Far
Noise Work, Just, Fix
Phrase I Think, Can-Could You/ You Can-Could

Reference Patch, Attach, Include, Read, Document, Duplicate
Solution Solve, Solution, Resolve

Suggestion Suggest

part of a Plan or not. We defined a Plan as a Suggestion or Solution. However, after

going through the bug reports, the question arises of whether we should always count a

Suggestion or Solution as a Plan. We found cases where a Suggestion or Solution is

not directly related to the particular bug report, and it could be difficult to decide whether we

should consider the sentence as part of a Plan. For example from Bug #6126149, we found

the sentence “Do not report issues on github\nPlease use the XBMC f orum\n\nPlease

close.” and in Bug #2573248, the sentence “This can be closed since it was fixed.” These

types of sentences are Suggestion or Solution but they are not Plans about the particular

bug report.

4.8 Summary

In this chapter, we began with presenting the data sources we used for our approach. We

used Rastkar’s dataset for our initial Plan identification process. From there, we identified

the location of Plans in a bug report and found that developers use a certain list of key-

words and key-phrases for expressing Plans in sentences. Then, we used the MSR 2014

Challenge dataset for our Plan identification refinement process. From there, for each itera-

36

4.8. SUMMARY

tion, 383 bug reports were randomly selected and the list of keywords and key-phrases was

improved. After three iterations, we arrived at fifty-one list of keywords and key-phrase

and the results showed that this list is effective at identifying Plan in sentences. Lastly,

we divide the keywords and key-phrases into eleven categories based on their meaning and

how they appear in a sentence.

37

Chapter 5

Implementation of the Plan Labeller

This chapter describes our implementation of a Plan Labeller based on the results from

chapter 4. Later, we present the results of the implementation.

5.1 An Automated Approach

Our manual approach of detecting Plans from bug reports revealed that it is possible to

identify sentences with Plans using a set of keywords and key-phrases. Our study indicated

that developers use a relatively limited set of keywords and key-phrases to express Plans

in bug reports. The results from the manual approach motivates the need for an automatic

approach to detect sentences with Plans in bug reports. Therefore, we developed and tested

an automatic approach for implementing the Plan Labeller, using regular expressions.

The Plan Labeller uses regular expressions to detect if sentences from bug descrip-

tions or bug comments contain a Plan or not. The regular expressions encode our final list

of items, the keywords and key-phrases explicitly found to refer Plans. The label Plan

is assigned to a sentence if it contains any of the fifty-one keywords or key-phrases, such

as “approach,” “patch,” and “work”. During the implementation, we did not perform stop

words removal as some of the key-phrases include stop words.

While examining the bug reports, we identified various types of sentences that con-

tain Plan. For example “This patch should fix GimpZoomPreview to handle layers with

offsets with selections.” (from bug report GIMP #156905). Therefore, we use the regular

expression .*patch.* to identify such sentences. Similarly, we have generated regular

38

5.1. AN AUTOMATED APPROACH

expressions for the other keywords and key-phrases which can uniquely identify a sentence

with Plans.

5.1.1 Applying The Automated Approach

To test the accuracy of the automated approach, we randomly selected fifty bug reports

from the MSR dataset that were not previously used in our work. For each bug report, the

Plan Labeller goes through the sentence of the bug description and bug comments, and,

using the regular expression, it will try to match one or more of the fifty-one keywords and

key-phrases. If any of the sentences contain a keyword or key-phrase that matches with

our regular expression, the Plan Labeller will label it as plan:1 otherwise label it as

plan:0. Figure 5.1 shows an example of a labeled bug report by the Plan Labeller from

the MSR dataset.

Figure 5.1: A labeled bug report by the Plan Labeller

39

5.3. SUMMARY

Figure 5.2: The result of automated approach

5.1.2 Results of Applying The Automated Approach

Figure 5.2 shows the results of applying this automated approach. The description part

of the 50 bug reports contained a total of 99 sentences, and our automated Plan Labeller

correctly identified 32 sentences (32%) as Plan and 17 sentences (17%) were incorrectly

identified as Plan. Since the number of incorrectly identified sentences is almost half as

the correctly identified ones, this indicates that the Plan Labeller is performing well.

Similarly, the comment part of all 50 bug reports had a total of 287 sentences. Using

the automated Plan Labeller, 69 sentences (24%) were correctly identified as a Plan and

the incorrectly labeled sentences were 38 sentences (13%). Similar to the description part,

these results indicate that the Plan Labeller also performed well here.

5.2 Discussion

Table 5.1 shows the precision, recall, and F1 score of both the automated and man-

ual approaches. For the automated approach, we used fifty bug reports, whereas, for the

manual approach (3rd iteration), we used 383 bug reports. However, if we compare the

outcomes of the automated and manual approaches, we can observe that the precision and

recall for both are practically the same at about 65% and 76%, respectively. The outcome

demonstrates that the final list of items we determined using the manual technique is pre-

cise enough to be used for the automated approach. Therefore, with the help of the final

list of keywords and key-phrases, our regular expression-based Plan Labller is capable

of achieving satisfactory accuracy.

40

5.3. SUMMARY

Table 5.1: Precision, Recall and F1 Score of the Automated and Manual Approach

Approach Title Precision Recall F1 Score
Description 65.30% 71.11% 67.64%

Automated Comments 64.48% 79.31% 71.07%
Total 64.47% 76.51% 69.97%
Description 65.56% 76.98% 70.81%

Manual Comments 64.64% 78.80% 71.02%
Total 64.93% 77.68% 70.74%

5.3 Summary

In this chapter, first, we introduced a regular expression-based automated approach for

implementing a Plan Labeller. Then, we presented the results of applying this imple-

mentation of the approach. Finally, we compared the results with our manual approach and

found the results were almost identical with regard to precision and recall.

41

Chapter 6

Conclusion

In this work, we focused on identifying Plan in sentences of bug reports. The purpose of

our study is to help users find the Solution or the Suggestion within the wide variety

of information found in a bug report. This means that users or developers do not have to

read each and every comment or description to find Plans. Our work sought to answer

three research questions. First, we aimed to determine which sections of bug reports in-

clude Plans. To find the solution, we examine the Bug Title, Bug Description, and Bug

Comments. From this, we found that developers express Plan using Bug Description and

Bug Comments.

Next we analayzed the Bug Description and Bug Comments to determine whether any

particular patterns, key-phrases, or keywords are used to express the Plan. We discovered

that developers utilize a list of keywords and key-phrases to express Plan and that it is

possible to identify Plan in sentences using these keywords and key-phrases. To determine

the minimal list of keywords and key-phrases, we performed three iterations of applying

the keywords and key-phrases to a set of bug reports and refined the keywords and key-

phrases based on performance throughout each iteration. In the end, we examined 1,149

bug reports containing 13,565 sentences, which we manually labeled with Plan to derive

a set of fifty-one keywords and key-phrases. We believe that our empirical results indicate

that, in general, this set of keywords and key-phrases achieves sufficient precision and recall

scores for practical use. This keyword and key-phrase set provides a good first step in the

direction towards detecting Plans from sentences of bug reports, which will allow users to

42

6.1. FUTURE WORK

create tag-based summaries more accurately.

6.1 Future Work

We have identified some future directions for this work.

During our study, we conducted three iterations to find the right set of keywords and

analyzed how well they were able to detect Plans from the bug reports. The empirical

results indicate that, in general, this set of keywords achieved sufficient precision and recall

scores for practical use. However, doing more iterations may result in a better performing

keyword set.

One of our goals in this work was to find out if it is possible to detect Plans from bug

reports. We followed a manual approach where iterations, refining keywords, and even

labeling were done manually. This approach is similar to that used by genetic algorithms.

An investigation could be done that examines the results of using such algorithms to create

the keyword set automatically.

As previously mentioned, Galappaththi et al. [11] in their work did not include the

Plan Labeller to capture sentences with the Plan from bug reports. Their tag-based

approach was lacking in providing a customizable summary with Plan to the users. Our

keyword-based approach of detecting Plans could be integrated into Galapptahi et al.’s

[11] tag-based approach.

43

Bibliography

[1] Hiteshwar Azad and Akshay Deepak. Query expansion techniques for information
retrieval: a survey. 08 2017.

[2] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and
Thomas Zimmermann. What makes a good bug report? In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, page 308–318, New York, NY, USA, 2008. Association for
Computing Machinery.

[3] Bird, Steven, Edward Loper, and Ewan Klein. Natural language processing with
python: Natural language toolkit. https://www.nltk.org/#natural-language-toolkit,
2009. Accessed: 2022-10-09.

[4] Gerald Bortis and André van der Hoek. Porchlight: A tag-based approach to bug
triaging. In 2013 35th International Conference on Software Engineering (ICSE),
pages 342–351, 2013.

[5] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. Detecting missing information in
bug descriptions. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, page 396–407, New York, NY, USA, 2017.
Association for Computing Machinery.

[6] Indu Chawla and Sandeep K Singh. Automatic bug labeling using semantic informa-
tion from lsi. In 2014 Seventh International Conference on Contemporary Computing
(IC3), pages 376–381, 2014.

[7] Dictionary.com. The basic definition of plan with synonym and list of other idioms
and phrases with plan. https://www.dictionary.com/browse/plan. Accessed: 2022-10-
08.

[8] Joseph Downs. Card sorting: your complete guide towards card sorting approach.
https://www.justinmind.com/blog/card-sorting/. Accessed: 2022-10-07.

[9] Jayalath Ekanayake. Bug severity prediction using keywords in imbalanced learning
environment. Int. J. Inf. Technol. Comput. Sci.(IJITCS), 13:53–60, 2021.

[10] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, and Craig G. Nevill-
Manning. Domain-specific keyphrase extraction. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, IJCAI ’99, page 668–673,
San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

44

BIBLIOGRAPHY

[11] Akalanka Galappaththi and John Anvik. Automatic sentence annotation for more
useful bug report summarization. In MSc Thesis, Lethbridge, Alta.: University of
Lethbridge, Department of Mathematics and Computer Science, 2020.

[12] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, pages 233–236, Pis-
cataway, NJ, USA, 2013. IEEE Press.

[13] Jianjun He, Ling Xu, Yuanrui Fan, Zhou Xu, Meng Yan, and Yan Lei. Deep learning
based valid bug reports determination and explanation. In 2020 IEEE 31st Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pages 184–194, 2020.

[14] Beibei Huai, Wenbo Li, Qiansheng Wu, and Meiling Wang. Mining intentions to
improve bug report summarization. In SEKE, volume 2018, pages 320–363, 2018.

[15] Anette Hulth and Beáta Megyesi. A study on automatically extracted keywords in text
categorization. In ACL, 2006.

[16] He Jiang, Najam Nazar, Jingxuan Zhang, Tao Zhang, and Zhilei Ren. Prst: A
pagerank-based summarization technique for summarizing bug reports with dupli-
cates. International Journal of Software Engineering and Knowledge Engineering,
27(06):869–896, 2017.

[17] Shubhra Goyal Jindal and Arvinder Kaur. Automatic keyword and sentence-based
text summarization for software bug reports. IEEE Access, 8:65352–65370, 2020.

[18] Nivir Kanti-Singha Roy and Bruno Rossi. Towards an improvement of bug severity
classification. In 2014 40th EUROMICRO Conference on Software Engineering and
Advanced Applications, pages 269–276, 2014.

[19] Won Kim, Ok-Ran Jeong, and Sang-Won Lee. On social web sites. Information
Systems, 35(2):215–236, 2010. Special Section: Context-Oriented Information Inte-
gration.

[20] Andrew Ko, Brad Myers, and Polo Chau. A linguistic analysis of how people describe
software problems. pages 127–134, 01 2006.

[21] Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li. Unsupervised deep bug
report summarization. In 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC), pages 144–14411, 2018.

[22] Haoran Liu, Yue Yu, Shanshan Li, Yong Guo, Deze Wang, and Xiaoguang Mao. Bug-
sum: Deep context understanding for bug report summarization. In Proceedings of the
28th International Conference on Program Comprehension, ICPC ’20, page 94–105,
New York, NY, USA, 2020. Association for Computing Machinery.

[23] Zhiyuan Liu, Chen Liang, and Maosong Sun. Topical word trigger model for
keyphrase extraction. In COLING, 2012.

45

BIBLIOGRAPHY

[24] Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki. Modelling the ‘hurried’ bug
report reading process to summarize bug reports. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pages 430–439, 2012.

[25] Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki. Modelling the ‘hurried’
bug report reading process to summarize bug reports. Empirical Softw. Engg.,
20(2):516–548, apr 2015.

[26] Senthil Mani, Rose Catherine, Vibha Singhal Sinha, and Avinava Dubey. Ausum:
Approach for unsupervised bug report summarization. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
FSE ’12, New York, NY, USA, 2012. Association for Computing Machinery.

[27] MongoDB. Pymongo: The official mongodb driver for synchronous python applica-
tions. https://www.mongodb.com/docs/drivers/pymongo/. Accessed: 2022-10-08.

[28] Ahmed Fawzi Otoom, Sara Al-jdaeh, and Maen Hammad. Automated classification
of software bug reports. In Proceedings of the 9th International Conference on Infor-
mation Communication and Management, ICICM 2019, page 17–21, New York, NY,
USA, 2019. Association for Computing Machinery.

[29] Fayola Peters, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh. Text filtering and
ranking for security bug report prediction. IEEE Transactions on Software Engineer-
ing, 45(6):615–631, 2019.

[30] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. Summarizing software artifacts:
A case study of bug reports. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, page 505–514, New York,
NY, USA, 2010. Association for Computing Machinery.

[31] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. Automatic summarization of bug
reports. IEEE Transactions on Software Engineering, 40(4):366–380, 2014.

[32] Ali Sajedi-Badashian and Eleni Stroulia. Vocabulary and time based bug-assignment:
A recommender system for open-source projects. Software: Practice and Experience,
50, 04 2020.

[33] Yang Song and Oscar Chaparro. Bee: A tool for structuring and analyzing bug re-
ports. ESEC/FSE 2020, page 1551–1555, New York, NY, USA, 2020. Association
for Computing Machinery.

[34] Chengyu Sun, Liang Hu, Shuai Li, Tuohang Li, and Ling Chi. A review of unsu-
pervised keyphrase extraction methods using within-collection resources. Symmetry,
12:1864, 11 2020.

[35] Xiaobing Sun, Wei Zhou, Bin Li, Zhen Ni, and Jinting Lu. Bug localization for version
issues with defect patterns. IEEE Access, 7:18811–18820, 2019.

46

BIBLIOGRAPHY

[36] Chengzhi Zhang, H. Wang, Y. Liu, Dan Wu, Y. Liao, and B. Wang. Automatic key-
word extraction from documents using conditional random fields. 4:1169–1180, 06
2008.

[37] Yutong Zhao, Lu Xiao, Pouria Babvey, Lei Sun, Sunny Wong, Angel A. Martinez,
and Xiao Wang. Automatically identifying performance issue reports with heuris-
tic linguistic patterns. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering, ESEC/FSE 2020, page 964–975, New York, NY, USA, 2020. Association
for Computing Machinery.

47

Appendix A

List of all Keywords

48

A. LIST OF ALL KEYWORDS

49

A. LIST OF ALL KEYWORDS

50

