

PHYSICAL CHEMISTRY 2014

12th International Conference on Fundamental and Applied Aspects of Physical Chemistry

The Conference is dedicated to the 25. Anniversary of the Society of Physical Chemists of Serbia

September 22-26, 2014 Belgrade, Serbia

ISBN 978-86-82475-30-9

Title: PHYSICAL CHEMISTRY 2014 (Proceedings)
Editors: Ž. Čupić and S. Anić
Published by: Society of Physical Chemists of Serbia, Studenski trg 12-16, 11158, Belgrade, Serbia
Publisher: Society of Physical Chemists of Serbia
For Publisher: S. Anić, President of Society of Physical Chemists of Serbia
Printed by: "Jovan" Priting and Publishing Company; 200 Copies;
Number of pages: 6+ 441; Format: B5; Printing finished in September 2014.

Text an Layout: "Jovan"

Neither this book nor any part may be reproduced or transmitted in any form or by any means, including photocopying, or by any information storage and retrieval system, without permission in writing from the publisher.

200 - Coppy priting

PHYSICAL CHEMISTRY 2014

12th International Conference on Fundamental and Applied Aspects of Physical Chemistry

Organized by The Society of Physical Chemists of Serbia

in co-operation with_

Institute of Catalysis Bulgarian Academy of Sciences

Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences

Faculty of Physical Chemistry, University of Belgrade, Serbia

Institute of Chemistry Technology and Metallurgy, University of Belgrade, Serbia

Vinča Institute, University of Belgrade, Serbia

Institute of General and Physical Chemistry, Serbia

Faculty of Pharmacy, University of Belgrade, Serbia

International Organizing Committee

Chairman:	S. Anić (Serbia)
Vice-chairman:	M. Gabrovska (Bulgaria)
	V. A. Sadvkov (Russia)

Members:

N. Cvjetičanin (Serbia), S. N. Blagojević (Serbia), M. Daković (Serbia), T. Grozdić (Serbia), D. Jovanović (Serbia), M. Kuzmanović (Serbia), D. Marković (Serbia), J. Marković-Dimitrić (Serbia), B. Milosavljević (USA), M. Mojović (Serbia), N. Ostrovski (Serbia), I. Pašti (Serbia), M. Petković (Serbia), A. Popović-Bjelić (Serbia), B. Simonović (Serbia), D. Stanisavljev (Serbia), B. Šljukić (Serbia), N. Vukelić (Serbia), V. Vukojević (Sweden)

International Scientific Committee

Chairman:	Ž. Čupić (Serbia)
Vice-chairmans:	V. N. Parmon (Russia)
	S. Rakovsky (Bulgaria)

Members:

B. Adnađević (Serbia), S. Anić (Serbia), A. Antić-Jovanović (Serbia), G. Bačić (Serbia), A. Kelarakis (Greece), R. Cervellati (Italy), V. Dondur (Serbia), Ivan Gutman (Serbia), S. D. Furrow (USA), K. Hedrih (Serbia), M. Jeremić (Serbia), A. V. Knyazev (Russia), Lj. Kolar-Anić (Serbia), V. Kuntić (Serbia), Z. Marković (Serbia), S. Mentus (Serbia), Š. Miljanić (Serbia), M. Perić (Serbia), M. Plavšić (Serbia), D. M. F. Santos (Portugal), G. Schmitz (Belgium), I. Schreiber (Czech), P. Sevčik (Slovakia), B. C. Simionescu (Romania), N. Stepanov (Russia), D. Todorović (Serbia), M. Trtica (Serbia), V. Vasić (Serbia), D. Veselinović (Serbia)

Local Executive Committee

Chairman: S. Blagojević Vice-chairmans: A. Ivanović-Šašić

Members:

P. Banković, N. Bošnjaković, J. Dostanić, A. Đerić, A. Ignjatović, A. Jović, N. Jović-Jovičić, D. Lončarević, J. Krstić, J. Maksimović, V. Marković, M. Milenković, S. Maćešić, V. Marković, B. Nedić, N. Potkonjak, D. Ranković, M. Stević, M. Žunić, M. Ristić,

EFFICIENT SEPARATION OF Tc-99 FROM AQUEOUS SOLUTION USING PINECONE ACTIVATED CARBON

Z. Sandić ^{1,2}, M. Momčilović ², M. Mirković ², M. Radović ², D. Stanković ², Lj. Suručić ³, and <u>D. Maksin</u> ²

 ¹University of Banja Luka, Faculty of Science, 78000 Banja Luka, Mladena Stojanovića 2, Bosnia and Herzegovina (Republic of Srpska).
 ²University of Belgrade, Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade, Serbia. (dmaksin@vinca.rs)
 ³University of Belgrade, Faculty of Forestry, Kneza Višeslava 1, Belgrade,

Serbia.

ABSTRACT

Sorption of radioactive ⁹⁹Tc-pertechnetate onto activated carbon prepared from pinecones was investigated. The parameters of contact time and Tc-99 concentration were varied. It was established that the sorption half-life, $t^{1/2}$, was very short ~ 2.2 min, thus making this sorbent an excellent candidate for immediate pollution remediation, which is very important in the case of nuclear accidents. The kinetic data were found to follow closely the pseudosecond-order (PSO) kinetic model. Boyd model established the sorption dependence only on film diffusion. The partitioning/distribution coefficient, K_d , attained was 2729 cm³ g⁻¹. The equilibration time was 3 h at room temperature (T=298 K).

INTRODUCTION

High surface area, remarkable sorption capacity and efficient regeneration are among the most important characteristics of the non-hazardous porous activated carbon sorbent [1]. Diverse surface organic functional groups (ionized in solution depending on pH) are responsible for surface reactivity of activated carbon.

Tc-99 is among many hazardous radioisotopes often detected in the environment, being a long life (2.13 x 10^5 years) pure β -emitter and has a specific activity of 629.0 MBq g⁻¹. It is produced in large amounts by nuclear fission of ²³⁵U or ²³⁹Pu in nuclear reactors. The predominant form of Tc-99 under oxic conditions in surface and ground waters is pertechnetate oxyanion (⁹⁹TcO₄⁻), which is poorly sorbed by natural materials, highly soluble in water, and thus readily mobile in the environment [2]. Activated carbon has been demonstrated to retain ⁹⁹TcO₄⁻ efficiently in deionized water and the solutions of various electrolytes [3,4]. The high cost of

commercially produced activated carbon prompted research on novel, more efficient, low-cost, locally available and renewable activated carbonaceous materials. In this paper, pinecone-activated carbon was tested as sorbent for ⁹⁹TcO₄, using an easily measurable metastable nuclear isomer Tc-99m, rapidly decaying to Tc-99. Kinetic data for Tc(VII) removal was collected and fitted to kinetic models, and K_d was evaluated.

EXPERIMENTAL

Powdered activated carbon was derived by thermal-chemical process from the ground pinecones collected from Cair Park in Niš, Serbia; the BET surface area (S_{BET}) measurement of the sample was made by nitrogen adsorption at 77 K using Sorptomatic 1990 (Thermo Fisher Scientific, USA), the surface functional groups and pH_{PZC} were determined using the procedures described previously [1]. ^{99m}TcO₄ sodium solution was eluted from ⁹⁹Mo/^{99m}Tc generator (Vinča Institute of Nuclear Sciences). ^{99m}TcO₄⁻ uptake from aqueous solutions was monitored at room temperature (T=298K) in static experiments. 10 mg of sorbent was contacted with 4 cm³ of ^{99m}Tc-pertechnetate aqueous solution at unadjusted pH. A blank experiment (no sorbent) was prepared in the same manner. At predetermined time intervals, solid phase was separated from the solutions by centrifugation: 5 min 3000 rpm (Heraeus-Christ Labofuge III Centrifuge, 6000 Max RPM, American Laboratory Trading, Inc.). From each vial (blank and sorbent containing), 100 mm³ aliquots were taken and residual radioactivity was measured in supernatant solution. The specific activity of pertechnetate eluate was determined by a Capintec CRC-15ß dose calibrator and adjusted by adding saline solution to 4.35 GBq dm⁻³. All ^{99m}Tc supernatant analyses were carried out using a $2\pi\gamma$ -solid-state scintillation detector (LKB Wallac 1282 Compugamma, Finland) with autosampler. Relative measurements of sorbed radioactivity were obtained using the following equation (R-sorbed pertechnetate activity (%), R_b -measured activity of reference or blank aliquot (cpm), R_s -activity of the supernatant aliquot (cpm)):

 $R = \frac{R_b - R_s}{R_b} \cdot 100\%$ The sorption isotherms were measured by mixing 10 mg of activated carbon with 4 cm³ sodium pertechnetate solution with the specific activity ranging from 11.9 to 95.6 GBq dm⁻³. The equilibration time was 3 h.

RESULTS AND DISCUSSION

The characteristics of pinecone-activated carbon are given in Table 1. As known, predicting the rate at which sorption takes place in a given system is one of the critical factors in sorption system design. To the best of our knowledge, there is an obvious lack of literature regarding modeling the

G-04-P

kinetics of ⁹⁹Tc removal. Here, the kinetics of ^{99m}TcO₄ sorption on pinecone activated carbon was examined using two kinetic models: PSO [5] and Boyd model with Reichenberg approximation [6] (Table 2), where Q_{eq} and Q_t denote the amounts of sorbed pertechnetate anions at equilibrium and at time *t*, respectively, k_2 - the rate constant of PSO sorption, $h=k_2Q_{eq}^2$ - the initial rate constant, *F* - the fractional attainment of equilibrium at time *t*, *n* - an integer defining infinite series solution and *Bt* - a mathematical function of *F*.

The correlation coefficient (R^2) for PSO model was equal to 0.999 suggesting that the ^{99m}TcO₄⁻ sorption on activated carbon obeyed PSO model (Table 3), indicating chemisorption involving valence forces through sharing or exchange of electrons between activated carbon functional groups and ^{99m}TcO₄⁻ [5].

 Table 2 Kinetic models.

Kinetic	Equation		Ref.	obt
model				fit
PSO	$\frac{t}{t} = \frac{1}{t} + \frac{1}{t}$	$h = k_2 O^2$	[5]	agr
	$\overline{Q}^{-}\overline{k_2Q_e^2}^{+}\overline{Q_e}^{\iota}$	11 1122e		this
	2-20			aha

Boyd
equation
$$F = 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-n^2 Bt\right)$$
 [6]

l'al	b	le 1	.]	Re	levant	t C.	haract	teris	tics	of
		na	00	na	onting	to.	doorl	1 0 n	[1]	

pinecone activatea	caroon [1].
pH _{PZC}	3.06
S_{BET} , m ² g ⁻¹	1094
Surface functional	
groups, mmol g ⁻¹	
Carboxylic	1.742
Lactonic	0.723
Phenolic	0.493
	a calc

 Q_e and Q_e^{calc} values obtained for PSO model fit showed excellent agreement confirming this assumption. The very short $t_{1/2}$ as well as very high *h* and Q_e values suggest that this activated carbon can be regarded as

a highly efficient sorbent for ⁹⁹Tc. The Boyd plot does not pass through the origin in the shape of a straight line, thus implying that the process is film-diffusion controlled [6].

In an attempt to avoid toxic radiation doses, the equilibrium investigation was limited to the linear isotherm part [4]. K_d (cm³ per g) was calculated according to the equation $S = K_dC$, where S represents the sorbed Tc activity on sorbent surface (GBq per g of activated carbon) and C is the equilibrium specific Tc activity (GBq per dm³ of solution). The Oak Ridge National Laboratory investigated several synthetic resins for ⁹⁹TcO₄⁻ removal from

contaminated wastewater and also found linear adsorption isotherms, with

 K_d values ranging from 902 cm³ g⁻¹ to 2370 cm³ g⁻¹ [7]. Holm et al. found the maximum K_d in the order of 10⁶ cm³ g⁻¹ at pH 2±4 for activated carbon; the equilibrium time was ca. 5 h, at room temperature, from deionized water [3]. Gu and associates found that K_d of ⁹⁹TcO₄⁻ exceeded 27000 cm³ g⁻¹ when actual groundwater was used, as well as 12000 cm³ g⁻¹ when background solutions of 0.01 M CaCl₂ and Na₂SO₄ were treated, after overnight equilibration [4].

Table 3. PSO kinetic

CONCLUSION

model parameters.				
$Q_{\rm e}, {\rm GB~g}^{-1}$	1.71			
$t_{1/2}, \min$	2.2			
$Q_{\rm e}^{\rm calc}$, GB g ⁻¹	1.71			
k_2 , g GB ⁻¹ min ⁻¹	0.351			
$h, GB g^{-1} min^{-1}$	1.024			
R^2	0.999			

Activated carbon prepared from pinecones was investigated as a sorbent of radioactive ⁹⁹TcO₄. Very short $t^{1/2}$ (~ 2.2 min) indicated that this sorbent can be an excellent candidate for immediate pollution remediation. The kinetic data adhered closely to PSO kinetic model, suggesting chemisorption. Boyd model verified

the sorption dependence only on film diffusion. The partitioning/distribution coefficient K_d , found was 2729 cm³ g⁻¹, after 3 h equilibration time at room temperature (*T*=298 K).

ACKNOWLEDGEMENT

This work was supported by the Ministry of Education, Science and Technological Development Republic of Serbia (Grants no. TR 37021 and III 43009).

REFERENCES

- M. Momčilović, M. Purenović, A. Bojić, A. Zarubica, M. Ranđelović, Desalination 2011, 276, 53–59.
- [2] K. Wildung, M. McFadden, T. R. Garland, J. Environ. Qual., 1979, 8, 156-161.
- [3] E. Holm, T. Gäfvert, P. Lindhal, P. Roos, Appl. Radiat. Isot. 2000, 53, 153-157.
- [4] B. Gu, K.E. Dowlen, L. Liang, J.L. Clausen, Sep. Technol., 1996, 6, 123-132.
- [5] Y.S. Ho, J. Hazard. Mater., 2006, B136, 681-689.
- [6] X. Hu, J. Wang, Y. Liu, X. Li, G. Zeng, Z. Bao, X. Zeng, A. Chen, F. Long, J. Hazard. Mater., 2011, 185, 306–314.
- [7] W.D. Bostik, P.E. Osborne, D.E. Beck, D.H. Bunch, R.L. Fellows, G.F. Sellers, J.L. Shoemaker, K.T. Bowser, D.T. Bostick, Oak Ridge K-25 Site, Martin Marietta Energy Systems, Inc. for the U. S. Department of Energy, 1995, <u>http://www.osti.gov/scitech/servlets/purl/95161</u>.