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Introduction 
Since touchless input is not only convenient but also 

hygienic, the Covid-19 pandemic has led to a rise in 

demand for touchless human-machine interaction in the 
public space. Especially in high-traffic fast-food restau-
rants and public transportation ticket offices, touchless or-
dering and ticketing systems are needed to prevent the 
transmission of viruses. Touchless gaze-based input repre-
sents a promising method for interaction in touchless hu-
man-machine interaction (HMI) systems.  

In daily life, humans use their eyes mainly to obtain 
information, but methods have been also developed to use 
eye as an input modality in HMI. For example, various in-
terfaces have been developed which let users control 
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websites (Menges, Kumar, Müller, & Sengupta, 2017), en-
ter text (Feng, Zou, Kurauchi, Morimoto, & Betke, 2021; 
Lutz, Venjakob, & Ruff, 2015; Majaranta & Räihä, 2002) 
or PIN codes (Best & Duchowski, 2016; Cymek et al., 
2014) with their eyes. Poitschke, Laquai, Stamboliev, and 
Rigoll (2011) demonstrated that gaze-based interaction 
can be superior over conventional touch interfaces in the 
automotive environment. For public displays, gaze-input 
has multiple advantages. First, gaze input facilitates touch-
less interaction with the interface, which prevents the 
transmission of e.g., viruses through touch between multi-
ple users. Second, gaze input can prevent shoulder surfing 
and ensures user privacy when using public displays. 
Third, as the price of commercial eye tracker devices is 
decreasing, it presents a cost-efficient input method. More 
recently, gaze estimation has been conducted on off-the-
shelf consumer hardware such as webcams (Liu, Lee, Ra-
jan, Sluzek, & McKeown, 2019; X. Zhang, Sugano, & 
Bulling, 2019). This makes gaze estimation technically 
and economically feasible for all devices that include a 
front camera, such as cellphones, tablets, and laptops. 
Thus, using gaze input is no longer limited by high hard-
ware costs and can be used to benefit a much larger user 
group. 

Despite these advances, gaze-based interaction is still 
facing a number of challenges that need to be considered 
in the design of interfaces: 

1) The “Midas touch” problem (Jacob, 1990)—Search-
ing and selecting an interactive item are not always clearly 
separated. It can be challenging to distinguish a user just 
looking at an object on a screen from the intention of the 
user to select that object. 

2) The calibration requirement—The process is consid-
ered time-consuming. Users need to re-calibrate multiple 
times per day to ensure the eye tracking quality (Feit et al., 
2017). To enable gaze interaction on a public display, the 
system should attempt to avoid or shorten the calibration 
process to improve user acceptance and experience. 

3) The noise come from user—Noise in eye tracking 
data always accompanies in gaze-based interaction, such 
as head movement (Kowler, 2011) and drift (Robinson, 
1968). Those noise affect the accuracy and precision of the 
eye tracking data. 

To address the aforementioned challenges, we propose 
a novel gaze interface, which can be built using an off-the-
shelf webcam. The “Midas touch” and noise problems are 

addressed through high spatial separation of interactive 
display elements, while the calibration requirement is 
achieved through a brief one-point calibration. The contri-
butions of this work are as follows: 

1) We present a touchless gaze input method with low 
spatial accuracy for eye tracking data, i.e., without per-
sonal calibration, using a single off-the-shelf camera; 

2) We develop a vending-machine gaze interface proto-
type (GaVe) (as shown in Figure 1), where the visual 
search area and the interactive buttons are spatially sepa-
rated, i.e., content items are displayed in the center of the 
screen, with interactive buttons placed at the edges to re-
duce eye movement and head movement during visual 
search; 

3) We conduct a user study with the functional GaVe 
interface and evaluate the usability of the interface. Rele-
vant parameters, i.e., size of the central visual search area, 
distance from a user to the screen, and the duration of 
dwell time, are compared and analyzed. The main findings 
are summarized in a design guideline. 

  
Figure 1. Visualization of ordering on a vending machine with 
gaze interaction in the real-world application. 

Related work 
Gaze interaction 
Human gaze can contain complex information about a 

person’s interests, hobbies, and intentions (Kowler, 2011). 
To leverage this information, eye tracking technologies are 
applied to measure eye positions and movements. They 
have been widely used in medical, marketing, and psycho-
logical research. Moreover, with the help of eye tracking, 
eye has been transformed into an alternative input modal-
ity for controlling or interacting with other digital devices 
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(Jacob, 1990). Today, there are multiple, functionally dif-
ferent ways to use eye as an input modality. The most pop-
ular gaze-only designs are summarized in the following 
paragraphs. 

Dwell-based gaze interaction People's perception of a 
stable visual information is achieved by fixation (Mar-
tinez-Conde, Macknik, & Hubel, 2004). In dwell-based 
gaze interaction, fixation duration, i.e., dwell time, is used 
to activate an action and the eye position is used to replace 
the mouse cursor on the screen. Dwell-based gaze interac-
tion is subject to the “Midas touch” problem, i.e., a diffi-
culty to distinguish between information intake and object 
selection on a display. To address the “Midas touch” prob-
lem, a time-based threshold is set for the selection of an 
object. Only if this pre-defined dwell-time threshold has 
been reached, will the corresponding action be triggered. 
Generally, the setting for the dwell-time threshold varies 
from 200ms to 1000ms (Majaranta, Ahola, & Spakov, 
2009; Majaranta & Räihä, 2002; Møllenbach, Hansen, & 
Lillholm, 2013). Hence, prior to the implementation of in-
terfaces, an assessment of dwell time thresholds for a spe-
cific task can be necessary. Thanks to the straightforward 
function and its easy implementation, dwell-based gaze in-
teraction has become one of the most popular gaze inter-
action methods (Majaranta, Ahola, & Spakov, 2009; Maja-
ranta & Räihä, 2002; Mott, Williams, Wobbrock, & Mor-
ris, 2017). High tracking accuracy emerges as an addi-
tional challenge for dwell-based gaze interaction systems, 
as the method relies on a relatively high accuracy to cor-
rectly register the spatial location of the fixated object on 
the display. Hence, a calibration of the tracking system is 
needed and the size and spatial separation of the interactive 
items in the display can influence detection performance 
(Ware & Mikaelian, 1986). 

Blink-based gaze interaction In blink-based systems, 
the action of closing ones’ eyes is used to trigger an action 
in the interface. To prevent unintentional triggering of ac-
tions through involuntary blinks, only voluntary blinks are 
used for gaze interaction. Frequently, voluntary blinking is 
defined over blink-duration (Grauman, Betke, Lombardi, 
Gips, & Bradski, 2003), with blinks over 200ms registered 
as voluntary (Ashtiani & MacKenzie, 2010) or using sin-
gle eye closure as a trigger method (Ramirez Gomez, 
Clarke, Sidenmark, & Gellersen, 2021). Similar to the 
dwell-based gaze interaction method, eye position is used 
to control the cursor on the device’s screen and its 

performance is similarly influenced by the accuracy of eye 
tracking. 

Gesture-based gaze interaction Differing from the 
above two methods, gesture-based gaze interaction utilizes 
intentional saccades to trigger actions on a display. Sac-
cades occur when the human gaze voluntarily or reflex-
ively “jumps” from a fixated point to a desired end point 
(Duchowski, 2017). Eye gestures are defined as an ordered 
sequence of intentional saccades (Drewes & Schmidt, 
2007). They consist of different “paths” of saccades which 
can be mapped to specific interaction commands. Eye ges-
ture-based interaction has several advantages over dwell- 
and blink-based gaze interaction. Firstly, eye gestures can 
distinguish intentional interaction commands from unin-
tentional commands, thus effectively solving the “Midas 
touch” problem. Secondly, compared to dwell-based inter-
action, the control area of eye gestures does not rely on the 
exact position of gaze data, just on the relative position be-
tween starting and end points of saccades. However, there 
is a considerable disadvantage of gesture-based methods. 
Users of this interaction method need to learn and remem-
ber the defined gaze gestures before using them. This 
heavily limits its applicability in public displays. 

Pursuit-based gaze interaction Smooth pursuit eye 
movements occur when the eyes follow a moving object. 
Pursuit-based interaction is established by matching the 
trajectories of eye-movement to moving object trajectories 
on a display (Vidal, Bulling, & Gellersen, 2013). Different 
types of trajectories can be used, e.g., circular trajectories 
(Esteves, Velloso, Bulling, & Gellersen, 2015; Niu et al., 
2021), linear trajectories (Porta, Dondi, Pianetta, & Can-
toni, 2021; Zeng, Neuer, Roetting, & Siebert, 2022; Zeng 
& Roetting, 2018; Zeng, Siebert, Venjakob, & Roetting, 
2020), and irregular trajectories such as an object’s outline 
(Sidenmark, Clarke, Zhang, Phu, & Gellersen, 2020). In 
comparison to the other gaze interaction methods men-
tioned above, pursuit-based gaze interaction does not re-
quire precise gaze coordinates or personal calibration for a 
robust gaze-based interaction. As a dynamic interface, pur-
suit-based interaction is much different from existing hu-
man-machine interfaces. We need to consider the user ac-
ceptance when designing pursuit-based interfaces. 

Gaze estimation using a webcam 
Eye tracking relies on technology that can register eye 

position and eye movement. Most eye tracking devices 
combine a camera and infrared light (IR) sources to 
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estimate the gaze position, using the IR light to position 
the eyes in relation to the camera. 

Recently, off-the-shelf cameras have been used to esti-
mate eye positions (D. Hansen, Hansen, Nielsen, Johan-
sen, & Stegmann, 2002; Papoutsaki, Laskey, & Huang, 
2017). Some studies developed interaction systems using 
gaze direction detection to enter text (C. Zhang, Yao, & 
Cai, 2018; X. Zhang, Kulkarni, & Morris, 2017) or PIN 
(Khamis, Hassib, Zezschwitz, Bulling, & Alt, 2017). How-
ever, while results are promising, the spatial accuracy of 
off-the-shelf camera gaze estimation is still relatively low. 
The gaze estimation error is around 5-6° for model-based 
methods and 2-4° visual angle for appearance-based esti-
mation methods (X. Zhang et al., 2019). To circumvent the 
low spatial accuracy problem, Hansen et al. (2002) pro-
pose to utilize large interactive items. 

In addition to the accuracy problem, the time needed 
for calibration may affect a user’s acceptance and experi-
ence. This motivates researchers to design applications 
that work without personal calibration, such as using 
smooth-pursuit movements based on the front-facing cam-
era of a tablet Eyetell (Bafna, Bækgaard, & Paulin Hansen, 
2021). This calibration-free design is appealing when it 
comes to the use of public displays. Thus, to facilitate the 
implementation and public displays of vending ordering, 
in this work, we focus on developing a dwell-based gaze 
interface without a lengthy calibration process using an 
off-the-shelf camera. 

Methods 
Weighing the advantages and disadvantages of availa-

ble gaze-based interaction systems, we implemented a 
dwell-time based gaze interaction system with a brief (2-
second) one-point calibration. It is characterized by ease 
of understanding and implementation. Our system is im-
plemented on an off-the-shelf webcam and uses facial 
landmarks and a shape-based method to estimate the direc-
tion of gaze.  

 
Figure 2. The image processing pipeline for gaze estimation in 
GaVe. 

As shown in Figure 2, the gaze estimation module consists 
of the following parts: (1) face detection, (2) iris position 

and pupil center detection, (3) estimating the ratio of each 
pupil center, (4) one-point calibration, and (5) the five gaze 
directions estimation, i.e., right, left, up, down, and center. 
Steps 1 and 2 use the 68-point face detection method im-
plemented by the open-source Python Dlib library (Lamé, 
2019), resulting in an initial rough estimation of a user’s 
pupil center. In steps 3-5, we optimize the gaze estimation 
to detect five gaze directions using one-point calibration. 
In the following, we explain our method in detail.  

(1) Face detection The Dlib’s 68-point facial landmark 
is used to detect a frontal face. In the face detection, 12 
points are used for detecting eyes (6 points for each eye). 
As shown in Figure 3, the point landmarks 36-41 are for 
detecting the left eye and the point landmarks 42-47 are for 
detecting the right eye. 

 

Figure 3. An example of eye-landmarks detected using the 
Python Dlib library. 

(2) Iris position and pupil center detection After 
having identified the areas containing the eyes using the 
Dlib’s 68-point facial landmark, we further partitioned the 
eye image into the left-eye and right-eye images. The two 
images were then analyzed individually for detecting their 
corresponding iris positions. There is a sharp boundary be-
tween the sclera and the iris, so the corresponding limbus 
can be easily obtained by image processing (Holmqvist et 
al., 2011). A bilateral filter is used to filter and erode the 
image in order to smooth it and enhance the color of the 
iris (Tomasi, & Manduchi, 1998). Both eye images are 
converted into a binary mask—the iris contours are de-
noted in black color, in order to distinguish the iris from 
the other parts of the eye. The center coordinates of the 
pupil for each eye are finally derived as the centroid of the 
iris contour by calculating the image moments. 

(3) Calculating the ratio of pupil center The ratio of 
the pupil center is calculated based on its center position 
in relation to the edge positions that the pupil can normally 
reach. The following formula denotes the calculation of 
the horizontal ratio of the left pupil: 

ℎ!"#$%_'()# =
*+*!"#

*!$%+*!"#
	                   (1) 

where x is the center x-coordinate of the left pupil extracted 
from the above steps and xmax and xmin are the maximum 
and minimum values of the eyelid edge, that the pupil can 
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reach. The value of hratio_left is the horizontal ratio for left 
eye which ranges from 0 to 1. When the ratio is close to 1, 
it means that the participant is looking in the leftmost di-
rection. When the ratio is close to 0, it means that the par-
ticipant is looking in the rightmost direction. When the ra-
tio is close to 1, it means that the participant is looking in 
the leftmost direction. When the ratio is close to 0, it means 
that the participant is looking in the rightmost direction. 
The points 36 and 39 correspond to the corners of the left 
eye. Here, the x coordinate of point 36 is used for xmin and 
the x coordinate of point 39 is xmax. 

Based on the observation that the pupil rarely reaches 
the eyelid edge denoted by the landmark positions, e.g., p36 

and p39, we optimized the maximum and minimum values 
using a pilot study. Seven participants (4 males and 3 fe-
males) were asked to record their pupil movement by ori-
enting to the eyelid edge. They were asked to keep their 
head still while facing a display screen in front of them, 
and then to look left, right, up and down as far as they 
would. We recorded the data for each direction and calcu-
lated the average hratio and vratio. The mean of the hratio is 
0.28 when participants look rightmost and 0.87 when they 
look leftmost. These two values are used as hratio_min and 
hratio_max. The vertical ratio is calculated in the similar way 
as the horizontal. In the vertical direction, the points 37 and 
38, 40 and 41 refer to the upper and lower eyelids of the 
left eye, respectively, where 𝑦,$- = (𝑦./ + 𝑦.0)/2  and 
𝑦,"* = (𝑦12 + 𝑦13)/2. The average ratios are 0.48 when 
gazing at the top and 0.95 when gazing at the bottom. 
These two values are used as vratio_min and vratio_max. Thus, 
we re-normalize the ratios using the data from pilot study 
(see formula 2 for left pupil). 

ℎ!"#$%_'()#_%4#$,$5(6 =
7&$'"(_*+,'+7&$'"(_!"#

7&$'"(_!$%+7&$'"(_!"#
      (2) 

The final horizontal ratio of the pupil center is the av-
eraged value of both the left and right eyes. It should be 
noted that the right eye is estimated using the same 
method. 

ℎ!"#$%_)$-"' =
7&$'"(_*+,'_(-'"!".+/+7&$'"(_&"01'_(-'"!".+/

8
 (3) 

With the optimized minimum and maximum ratios ac-
quired from the pilot study, we were able to extend the 
original gaze tracking method for the vertical direction. 

(4) One-point calibration Calibration is the process of 
mapping the local eye coordinates obtained from the eye-
tracker/camera to a specific point on the display (resolu-
tion 1920 × 1080 pixels). For GaVe, we use a one-point 
calibration to simplify the process, and ensure a short cal-
ibration time during walk-up-and-use scenarios. The cali-
bration is visualized in Figure 4. At the start of the calibra-
tion, a red point is displayed in the center of the screen. 
Since the blink rate is 17 blinks/min at rest (Bentivoglio et 

al., 1997), that is, on average, people blink once every 3-4 
seconds, so we took two seconds to ensure both the quality 
of the collected data and comfortability. After two sec-
onds, the point turns green. The participants are instructed 
to keep their heads still and look at the red point until it 
turns green. Figure 4 shows the process of calibration, the 
coordinates of the calibration point, xscreen, yscreen, are (960, 
540) on the screen. For example, one participant’s data 
produces a detected horizontal and vertical ratio, denoted 
as hc, vc, of (0.56, 0.51), respectively. These individual hc, 
vc-ratios are set as the central point of the screen for the 
individual user. It should be noted that the hc, vc ratios vary 
slightly across users. 

(5) Gaze direction estimation The one-point calibra-
tion results in the horizontal and vertical ratio of the central 
point hc, vc. According to the data from our pilot study, the 
individual ratio of the central point can vary slightly 
around the actual central point of the screen.  

 
Figure 4. Illustration of the one-point calibration process for one 
participant. 

In the pilot study mentioned in step (3), after complet-
ing the first task, i.e., looking at four directions as far as 
possible, all the participants completed another task of 
looking at the four targets on the screen (top, bottom, left, 
and right) and midpoint for one-point calibration in turn, 
the ratios were recorded. We found a central space, more 
precisely, it is a rectangle-like space (see Figure 5).  

 
Figure 5. Visualization of the different functional zones on the 
GaVe display for one participant’s data during the pilot study. 
The blue points are the ratios recorded for four targets, and the 
red point is the horizontal and vertical ratio of the central point 
hc, vc after one-point calibration. 
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The width and length of the rectangle are denoted as w 
and l. Based on the pilot study, we calculated the approxi-
mate ratios of w and l in relation to the actual width and 
height of the screen. We found that 0.4 and 0.2 are the 
proper values to suit all participants. Therefore, we 
adopted these values for our final mapping from the gaze 
position to the screen position. More specifically, the total 
area of the screen was partitioned into the center (the rec-
tangular region), left, right, up, and down. When the gaze 
was mapped in the corresponding area on the target screen, 
a gaze event, i.e., “look right”, “look left”, “look up”, “look 
down” and “look center” would be detected.  

Interface 
The stages of the selection process of GaVe are visual-

ized in Figure 6. All menu items are located in the center 
of the screen. As shown in Figure 6 (a), there are four clus-
ters in the initial interface, arranged in the four directions 
up, down, left, and right. In each of the four clusters, three 
items are grouped, e.g., the top cluster combines a pizza, a 
burger, and a hot dog. When the system detects that the 
user is looking towards the center of the interface, i.e., the 
inactive area within the rectangle defined in Figure 5, no 
action is triggered and the interface shows the cluster se-
lection screen (Figure 6(a)). GaVe stays this initial inter-
face, as long as no looking up, down, left, or right is de-
tected 

Four arrows are located outside of the central area. 
Once a user’s gaze is detected in one of the four interactive 
directions (defined in Figure 5) the corresponding arrow is 
marked with a gray circle, as real-time visual feedback. If 
the user continuously focuses on an arrow for longer than 
a predefined time threshold, the circle around the arrow 
turns red to confirm the selection. 

The system has a two-stage project selection process: 
Cluster and item selection. For example, the target item 
(“chicken drumstick”) is presented in the middle of the 
screen in Figure 6. 

Cluster selection The first stage of cluster selection is 
illustrated in Figure 6(a-c). In Figure 6 (a), the user selects 
the lower cluster consisting of “chicken drumstick-chips-
popcorn” by looking at the down arrow. As shown in Fig-
ure 6 (b), the down button is highlighted with a gray circle 
to show that this button is in focus. As shown in Figure 6 
(c), if the user continuously looks at this button for a pre-
defined time threshold, the circle turns red to confirm the 
first stage of the cluster selection. 

 

 
Figure 6. The two-stage item-selection process of choosing an 
item in GaVe. The user first selects a target cluster and then 
selects the desired item from the cluster. The gray circle in the 
figure is the real-time feedback on which item the user is looking 
at, and the red circle is the feedback about the confirmation of a 
selection. The semi-transparent item is the given target. The gray 
magnifying glass marks the detected eye position, which does not 
appear in real interactions. 

Item selection The second stage of item selection is 
illustrated in Figure 6(d-f). In this stage, the items in the 
selected cluster are expanded, as shown in Figure 6 (d). To 
help the user keep track of items in each cluster, the item 
located on the right side of the original cluster is also dis-
played on the right side in this stage. The same goes for the 
item originally located on the left side of the cluster, it is 
moved to the left side in the item-selection stage. The item 
originally located in the middle of the cluster is moved 
down to the bottom position. In the top position, a back 
button appears, allowing users to go back to the cluster 
stage. In Figure 6 (e), the target “chicken drumstick” is lo-
cated on the left. As the selection continues, the user needs 
to look at the left side of the interface. Again, the gray cir-
cle gives feedback to the user that the left side of the inter-
face is detected. As the final step, Figure 6 (f) shows the 
confirmation interface when the target item (“chicken 
drumstick”) is selected. If a time of 10 seconds in the se-
lection process of one interface stage is exceeded, the sys-
tem will reset to the initial cluster-selection screen, and 
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jump to the next target item. The previous item-selection 
task is then registered as a missed selection. 

User study 
To explore the usability of the GaVe interface, we im-

plemented the interface in a stylized vending machine, us-
ing a webcam to register participants’ gaze. In the study, 
we experimentally varied the threshold for dwell time that 
triggers an action, the distance from the user to the screen, 
and size of the central area for the vending machine to 
identify the optimal setup for the interface. 

Participants 
In total 22 participants were recruited for the experi-

ment (13 males, 9 females, mean age: 28.1 years, ranging 
from 23 to 40 years). Ten of they wore glasses and 3 par-
ticipants wore contact lenses. The remaining 9 participants 
did not wear visual aids. Most of the participants had no 
experience with eye tracking and gaze interaction. 

Apparatus 
A 15.6” laptop with Intel Core i5-7300HQ 2.8GHz and 

8GB RAM was used for the registration of participants 
gaze and for displaying the GaVe interface on its 
1920×1080 pixels screen. The embedded webcam has a 
resolution of 1080p. At a distance of 45cm from the par-
ticipant to the screen, 44 pixels correspond to 1° visual an-
gle. An external light source (20W Halogen Lamp) was set 
directly behind the webcam, as shown in the Figure 7 to 
ensure adequate ambient lighting. 

 
Figure 7. The experiment setup.  

Experiment design 

The study used a three-factorial within-subjects design. 
The independent variables are: 

• Size of central area (small, medium, large) 

• Distance from user to screen (45,	55,	65cm) 
• Dwell time threshold (0.5,	0.8,	1.0,	1.2s) 

The pilot study suggested that the ratio of the central 
area was 0.4 in the horizontal and 0.2 in the vertical direc-
tions. Thus, the central area measured by the ratio relative 
to the screen size in horizontal and vertical directions is set 
to 0.16×0.09 (small), 0.2×0.12 (medium), and 0.24×0.16 
(large), respectively. Estimated at 45 cm from the screen, 
the range of visual angle in horizontal and vertical direc-
tions is set to 10.72°×7.74°, 13.4°×10.32°, and 
16.08°×13.76°	corresponding to the above central area in 
each size. In total, there are 36 (3×3×4) different combined 
conditions, and each condition was repeated 4 times for 
each participant. This yielded a total number of 3168 trials. 

The participants’ performance was assessed through 
objective and subjective criteria. The objective criteria in-
cluded task completion time and error rate. The task com-
pletion time is defined as the time that participants take to 
complete a trial, i.e., to finish the selection of a given target 
item. Errors are registered when participants select an item 
that is not the current target item, or they are unable to in-
teract with the system for a predefined time, i.e., no action 
(cluster/item selection) is registered after 10s. The error 
rate is calculated as the fraction of the number of trials reg-
istered as errors divided by the total number of trials. 

The subjective experience of participants was assessed 
after completion of the experiment. The participants were 
asked three questions: 1) Which is the most comfortable 
distance for you? 2) At what distance do you think you can 
select the target most accurately? 3) How would you eval-
uate this gaze interaction system? 

Procedure 
The experiment was conducted in eye tracking labora-

tory of the Chair of Human-Machine Systems at the Tech-
nical University of Berlin. Before the experiment, all par-
ticipants signed an informed consent form and answered a 
demographic questionnaire. After this, the participants 
were given a short introduction to the system and received 
an explanation on how to use it. The participants were in-
structed to select a given target item as accurately and 
quickly as possible. The given target item was displayed 
in the central area of the interface in a semi-transparent 
form. Each experiment condition included four trials, i.e., 
repeated four times. All participants performed the exper-
iment in a seated position to adjust and stabilize the inter-
action distance. The order of the distance conditions was 
controlled among participants to avoid a frequent change 
of the seated position. Half of the participants were tested 
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in the order from far to near, and the other half in the order 
from near to far. Under each distance, the orders of the 
conditions in terms of the central area size and dwell time 
were randomized across participants to prevent the occur-
rence of effects of sequence. After completing the task for 

all conditions, the participants were asked to answer the 
three open questions listed above. During the experiment, 
the participants were allowed to rest when one condition 
was finished. The experiment lasted approximately 30 
minutes. 

Table 1. Mean and standard deviation for task completion time and error rate across different experimental conditions (user to 
screen distance; dwell time; central area size). 
Distance 

 
Dwell 
time Task completion time Error rate 

(cm) (s) Large Medium Small Large Medium Small 
  M SD M SD M SD M SD M SD M SD 

45 0.5 4.55 1.17 4.21 1.28 3.86 1.20 0.32 0.28 0.35 0.26 0.43 0.33 
 0.8 5.38 1.44 6.11 1.77 5.82 2.28 0.26 0.31 0.16 0.25 0.24 0.25 
 1.0 7.32 1.44 6.90 1.61 6.95 1.74 0.18 0.25 0.07 0.22 0.16 0.29 
 1.2 9.21 1.91 8.66 2.03 8.59 1.93 0.27 0.33 0.16 0.27 0.24 0.25 

55 0.5 4.45 1.55 4.51 2.51 4.34 1.66 0.40 0.38 0.43 0.39 0.40 0.31 
 0.8 6.23 1.82 5.69 1.68 5.92 2.04 0.20 0.27 0.33 0.29 0.49 0.34 
 1.0 8.21 2.34 7.24 1.71 7.44 2.40 0.34 0.33 0.16 0.24 0.15 0.31 
 1.2 9.21 2.28 9.72 2.51 8.91 1.86 0.39 0.32 0.33 0.34 0.38 0.33 

65 0.5 4.55 2.30 4.78 2.71 5.27 1.69 0.61 0.38 0.59 0.33 0.56 0.42 
 0.8 5.95 2.60 5.42 2.13 5.34 1.81 0.41 0.36 0.45 0.41 0.41 0.38 
 1.0 8.33 2.30 8.34 2.31 7.76 1.96 0.49 0.35 0.39 0.32 0.43 0.36 
 1.2 8.87 2.00 9.40 2.21 9.87 2.62 0.56 0.34 0.43 0.32 0.48 0.37 

Results 
In the following, the objective measures of the user 

study will be presented, followed by the subjective 
assessment by the participants. A three-way repeated-
measures ANOVA (3*3*4) was conducted for the data 
analysis. The Shapiro-Wilk test and Q-Q-Plot were used to 
validate the assumption of data normality. We used the 
Greenhouse–Geisser correction when the Mauchly’s 
sphericity test indicates that the data does not fulfill the 
sphericity assumption. Moreover, Bonferroni correction 
was applied for post-hoc pairwise comparison. 

For task completion time and error rate, detailed 
results are presented in Table 1 for all experimental 
conditions. A detailed analysis of this finding is given in 
the following subsections. It can be observed that at the 
distance 45cm from the user to the screen with the one-
second dwell time and the medium-sized screen central 
area, the participants achieved the minimum error rate with 
a relatively short task completion time (highlighted in 
boldface with an underline). 

Task completion time 
Figure 8 visualizes the task completion time for 

different distances to the screen and different dwell time 
conditions.  

 
Figure 8. The average task completion time. The error bars 
represent the standard deviation in each condition. The striped 
bars are the task completion time after removing the duration of 
the dwell time. 
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It can be observed that task completion time is closely 
associated with the dwell time—the task completion time 
increased alongside the dwell time set in the conditions. To 
further analyze the impact of the task completion time 
under different distance conditions, we removed the fixed 
duration of the dwell time. The results are illustrated by the 
black striped bars within the original bar plots in Figure 8. 
Even after removing the fixed duration of the dwell time 
for activating an action, we still found that the task 
completion time is longer for the dwell time conditions of 
1.0 and 1.2s than that of 0.5 and 0.8s. 

There was a significant main effect of dwell time 
(F(2.05,43.14) = 153.15,p < .001). The pairwise compari-
sons show that all comparisons between conditions were 
significant, i.e., between 0.5&0.8s, 0.5&1.0s, 0.5&1.2s, 
0.8&1.0s, 0.8&1.2s, and 1.0&1.2s. No significant main ef-
fect was found for the size of the central area (F(2,42) = 
0.81,p = .45) and distance from the user to the screen 
(F(2,42) = 3.16,p = .05). Furthermore, we found no two-
way and three-way interaction of factors. 

Error rate 
Since the Shapiro-Wilk test shows that the error rate is 

not normally distributed (p < .05), we applied an Align 
Rank Transform (Wobbrock, Findlater, Gergle, & Hig-
gins, 2011) before the repeated ANOVA. 

As shown in Figure 9(a), the error rate decreased when 
the dwell time increased from 0.5 to 1.0s, and reached its 
lowest at 1.0s. The error rate rose once again when the 
dwell time was longer (1.2s). The error rate is lower for 
shorter distances at all dwell time levels. In terms of error 
rate, the dwell time (F(3,735) = 15.02,p < .001) and dis-
tance from the user to screen (F(2,735) = 48.75,p < .001) 
had a significant effect. The difference is significant be-
tween 0.5&0.8s (p < .001), 0.5&1.0s (p < .001), 0.5&1.2s 
(p < .01), and 1.0&1.2s (p < .001); and significant differ-
ences in terms of the distance were found between 
45&55cm, 45&65 and 55&65 (p < .001). However, there 
was no significant difference regarding the size of the cen-
tral area (F(2,735) = 1.77,p = 0.17). 

We found an interaction effect between the dwell time 
and the size of the central area (p < .05) with respect to the 
error rate. Namely, the error rate at the 0.5s dwell time is 
significantly higher than that at the 1.0s dwell time for both 
the small-sized area condition (p < .01) and the medium-
sized area condition (p < .001). 

We further analyzed the error rate by distinguishing be-
tween missed detections (Figure 9(b)) and false detections 
(Figure 9(c)). A false detection was registered when the 
selected item is not the given target item. A missed 

detection is registered when a participant does not activate 
an action within the predefined time frame of 10s. Figure 
9(b) and (c), visualize how the false detection rate—the 
fraction of the false scenarios over the total number of tri-
als—decreases gradually from 0.5 to 1.2s of the dwell 
time, while the missed detection rate increases gradually 
from 0.5 to 1.2s.  

Figure 9. The average error rate, false detection rate and missed 
detection rate, error bars represent the standard deviations. 
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Subjective evaluation 
Besides the objective variables, i.e., task completion 

time and error rate, we also collected subjective feedback 
from the participants. In terms of the comfortable distance 
to the screen, 55% of the participants thought that the 
smallest distance of 45cm was the most comfortable con-
dition to accomplish the given tasks, while 32% of the par-
ticipants considered that the most comfortable distance 
was 55cm, and only the remaining 13% chose 65cm. In 
terms of system accuracy, 91% of participants felt that the 
system was most accurate at 45cm, while only 9% of the 
participants preferred the distance of 55cm, and no partic-
ipant perceived the largest distance of 65cm as the most 
accurate one. Asked about their general evaluation of the 
system, many participants considered that this gaze inter-
face was innovative. One participant from the medical spe-
cialty mentioned that this touchless interaction was hy-
gienic, and gave the interactive system a highly compli-
mentary remark. 

Discussion 
The need for touchless input modality is particularly in-

creasing during Covid-19 pandemic. The aim of this study 
was to design a webcam-based gaze interface for touchless 
human-computer interaction on public displays. We devel-
oped a gaze-based interface for a vending machine, in 
which the interaction is triggered by the gaze direction es-
timation registered through a webcam. User can complete 
an input with a short calibration at the low spatial accuracy 
of eye tracking. Compared to traditional eye-tracking de-
vices, our method has a lower device cost. 

A controlled laboratory experiment was conducted to 
study the usability of the system and to comprehensively 
assess optimal system parameters. From the user study, we 
found that the GaVe interface is effective and easy to use 
for most participants, even for participants wearing contact 
lenses and glasses. All participants were able to use the 
system after a short introduction. 

The result of user study showed that there was a marked 
increase in the task completion time when the dwell time 
became longer, even when accounting for the longer wait 
times during the dwell-time based trigger. One possible 
reason for this result is that the excessive duration of dwell 
time strains the eyes, which in turn increases the difficulty 
of the dwell-based selection (Majaranta, Ahola, & Spakov, 
2009). There were more selections that had been inter-
rupted by a failure to maintain a fixation on the target for 
the required dwell time. The user needs to try for a longer 

time to successfully select the target. The error rate of the 
selection task decreased from 0.5 to 1.0s and reached the 
lowest point under the condition of 1.0s. Then, the error 
rate slightly rose up with a longer dwell time (1.2s). To 
further analyze error rates, we divided errors into false de-
tections and missed detections. As the dwell time threshold 
increases, the false detection rate also decreases, in con-
trast, the missed detection rate increases. Based on the 
combined results above, overall, 0.8−1.0s is an optimal pa-
rameter range for the interface design. For the previous re-
sults based on eye-tracker, dwell time of 0.7-1s is consid-
ered sufficient (Majaranta, Aula, & Räihä, 2004), and the 
optimal range for both methods is quite compatible.  

In most cases, the closer distance setting resulted in 
lower task completion times and error rates. Consistent 
with the objective evaluations, about half of the partici-
pants rated 45cm as the most comfortable distance, fol-
lowed by 55cm. The vast majority (approx. 90%) of par-
ticipants felt that the accuracy is higher at a distance of 
45cm, compared to the other two distance conditions. 

Although there were no significant differences in terms 
of the size of the central area in relation to the task com-
pletion time and error rate, the descriptive results show that 
the medium-sized central area condition achieved slightly 
shorter task completion time and lower error rate than that 
of the small- and large-sized central area conditions. 

To apply the GaVe interface in real-world applications, 
future research should consider, first, the screen size. The 
display used in this study is relatively small. A larger 
screen size is expected to improve the correct detection 
rate. Second, head movement was not fully considered in 
our interface design, potentially limiting the real-world use 
of the interface, where head movements should be consid-
ered during gaze estimation to achieve a more robust inter-
action. In addition, individual height differences between 
users can also affect the usability of the system. This can 
be optimized by the automatic adaptation of camera height 
to a user’s height to improve both face detection and gaze 
estimation, as well as user experience. This study focuses 
on a preliminary webcam-based gaze interaction design us-
ing a public vending machine as a user case, however, the 
whole system needs to be more refined, such as basket, 
payment. Last but not least, since eye movement data re-
veals implicit information of user, such as biometric iden-
tity, emotional state, interests etc., the privacy implications 
of eye tracking should be considered when using such 
method in public display (Kröger, Lutz, & Müller, 2019) 

Conclusion 
In this paper, we conducted a proof-of-concept study for 

a hands-free input method based on gaze estimation using 
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a webcam. GaVe interface was designed based on dwell 
time using this proposed method. Users can easily interact 
with the gaze-based interface after a 2s one-point calibra-
tion. As a touchless control modality, this interface design 
can improve the hygiene of using public displays, espe-
cially during the COVID-19 pandemic. 

Based on the results of the user study, we draw the fol-
lowing conclusions for the design of public gaze-based in-
terfaces: (1) A moderate distance needs to be considered. 
In this experiment, a user to interface distance between 
45cm and 55cm is preferred and supports more robust de-
tection, (2) the dwell time threshold could be set to 
0.8−1.0s, and (3) the size of the central area of the interface 
could be chosen as medium size, i.e., 13.4°×10.32° (at 
45cm). In addition, our research can provide guidance on 
structuring the interface design for touchless ordering ser-
vices in similar applications, such as ticket vending ma-
chines, automatic coffee machines, and parking meters, as 
the number of selectable items can be decreased by insert-
ing additional selection rounds. 

Ethics and Conflict of Interest 

The author(s) declare(s) that the contents of the article 
are in agreement with the ethics described in http://bib-
lio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html and 
that there is no conflict of interest regarding the publica-
tion of this paper.  

Acknowledgements 

The publication of this article was funded by the Open 
Access Fund of Leibniz Universität Hannover. 

 

References 
Ashtiani, B., & MacKenzie, I. S. (2010). Blinkwrite2: An 

improved text entry method using eye blinks. In Pro-
ceedings of the 2010 symposium on eye-tracking re-
search & applications (p. 339–345). New York, NY, 
USA: Association for Computing Machinery. 

Bafna, T., Bækgaard, P., & Paulin Hansen, J. P. (2021). 
Eyetell: Tablet-based calibrationfree eye-typing using 
smooth-pursuit movements. In Acm symposium on 
eye tracking research and applications. New York, NY, 
USA: Association for Computing Machinery. 

Best, D. S., & Duchowski, A. T. (2016). A rotary dial for 
gaze-based pin entry. In Proceedings of the ninth bien-
nial acm symposium on eye tracking research & appli-
cations (p. 69–76). New York, NY, USA: Association 
for Computing Machinery. 

Bentivoglio, A. R., Bressman, S. B., Cassetta, E., Carretta, 
D., Tonali, P., & Albanese, A. (1997). Analysis of 
blink rate patterns in normal subjects. Movement dis-
orders, 12(6), 1028-1034 

Cymek, D. H., Venjakob, A. C., Ruff, S., Lutz, O. H.-M., 
Hofmann, S., & Roetting, M. (2014). Entering pin 
codes by smooth pursuit eye movements. Journal of 
Eye Movement Research, 7(4), 1. 

Drewes, H., & Schmidt, A. (2007). Interacting with the 
computer using gaze gestures. In Ifip conference on hu-
man-computer interaction (pp. 475–488). 

Duchowski, A. T. (2017). Eye tracking methodology: The-
ory and practice (3rd ed.). Springer. 

Esteves, A., Velloso, E., Bulling, A., & Gellersen, H. 
(2015). Orbits: Gaze interaction for smart watches us-
ing smooth pursuit eye movements. In Proceedings of 
the 28th annual acm symposium on user interface soft-
ware & technology (p. 457–466). New York, NY, 
USA: Association for Computing Machinery. 

Feit, A. M., Williams, S., Toledo, A., Paradiso, A., Kul-
karni, H., Kane, S., & Morris, M. R. (2017). Toward 
everyday gaze input: Accuracy and precision of eye 
tracking and implications for design. In Proceedings of 
the 2017 chi conference on human factors in compu-
ting systems (p. 1118–1130). New York, NY, USA: 
Association for Computing Machinery. Retrieved from 
https://doi.org/10.1145/3025453.3025599 

Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. 
(2004). The role of fixational eye movements in visual 
perception. Nature reviews neuroscience, 5(3), 229-
240. 

Feng, W., Zou, J., Kurauchi, A., Morimoto, C. H., & 
Betke, M. (2021). Hgaze typing: Head-gesture assisted 
gaze typing. In Acm symposium on eye tracking re-
search and applications. New York, NY, USA: Asso-
ciation for Computing Machinery. 

Grauman, K., Betke, M., Lombardi, J., Gips, J., & Bradski, 
G. R. (2003). Communication via eye blinks and eye-
brow raises: Video-based human-computer interfaces. 
Universal Access in the Information Society, 2(4), 
359–373. 



Journal of Eye Movement Research Zeng, Z., Liu, S., Cheng, H., Liu, H., Li, Y., Feng, Y., & Siebert, F. (2023) 
16(1):2 GaVe: A webcam-based gaze vending interface using one-point calibration 

  12 

Hansen, D. W., Hansen, J. P., Nielsen, M., Johansen, A. 
S., & Stegmann, M. B. (2002). Eye typing using mar-
kov and active appearance models. In Sixth ieee work-
shop on applications of computer vision, 2002.(wacv 
2002). proceedings. (pp. 132–136). 

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., 
Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: 
A comprehensive guide to methods and measures. 
OUP Oxford. 

Jacob, R. J. K. (1990). What you look at is what you get: 
Eye movement-based interaction techniques. In Pro-
ceedings of the sigchi conference on human factors in 
computing systems (p. 11–18). 

Khamis, M., Hassib, M., Zezschwitz, E. v., Bulling, A., & 
Alt, F. (2017). Gazetouchpin: Protecting sensitive data 
on mobile devices using secure multimodal authentica-
tion. In Proceedings of the 19th acm international con-
ference on multimodal interaction (p. 446–450). New 
York, NY, USA: Association for Computing Machin-
ery. 

Kröger, J. L., Lutz, O. H. M., & Müller, F. (2019, August). 
What does your gaze reveal about you? On the privacy 
implications of eye tracking. In IFIP International 
Summer School on Privacy and Identity Management 
(pp. 226-241). Springer, Cham. 

Kowler, E. (2011). Eye movements: The past 25 years. Vi-
sion research, 51(13), 1457–1483. 

Lamé, A. (2019). GazeTracking - Eye tracking library eas-
ily implementable to your projects. 
https://github.com/antoinelame/GazeTracking. 

Liu, Y., Lee, B.-S., Rajan, D., Sluzek, A., & McKeown, 
M. J. (2019). Camtype: assistive text entry using gaze 
with an off-the-shelf webcam. Machine Vision and Ap-
plications, 30(3), 407–421. 

Lutz, O. H.-M., Venjakob, A. C., & Ruff, S. (2015). 
Smoovs: Towards calibration-free text entry by gaze 
using smooth pursuit movements. Journal of Eye 
Movement Research, 8(1), 2. 

Majaranta, P., Aula, A., & Räihä, K. J. (2004, March). Ef-
fects of feedback on eye typing with a short dwell time. 
In Proceedings of the 2004 symposium on Eye tracking 
research & applications (pp. 139-146). 

Majaranta, P., Ahola, U.-K., & Spakov, O. (2009). Fast 
gaze typing with an adjustable dwell time. In Proceed-
ings of the sigchi conference on human factors in com-
puting systems (p. 357–360). New York, NY, USA: 
Association for Computing Machinery. 

Majaranta, P., & Räihä, K.-J. (2002). Twenty years of eye 
typing: Systems and design issues. In Proceedings of 
the 2002 symposium on eye tracking research & appli-
cations (pp. 15–22). New York, NY, USA: ACM. 

Menges, R., Kumar, C., Müller, D., & Sengupta, K. 
(2017). Gazetheweb: A gaze-controlled web browser. 
In Proceedings of the 14th web for all conference on 
the future of accessible work. New York, NY, USA: 
Association for Computing Machinery. 

Møllenbach, E., Hansen, J. P., & Lillholm, M. (2013). Eye 
movements in gaze interaction. Journal of Eye Move-
ment Research, 6(2), 1–15. 

Niu, Y., Li, X., Yang, W., Xue, C., Peng, N., & Jin, T. 
(2021). Smooth pursuit study on an eye-control system 
for continuous variable adjustment tasks. International 
Journal of Human–Computer Interaction, 0(0), 1-11. 

Mott, M. E., Williams, S., Wobbrock, J. O., & Morris, M. 
R. (2017). Improving dwell- based gaze typing with 
dynamic, cascading dwell times. In Proceedings of the 
2017 chi conference on human factors in computing 
systems (pp. 2558–2570). 

Papoutsaki, A., Laskey, J., & Huang, J. (2017). 
Searchgazer: Webcam eye tracking for remote studies 
of web search. In Proceedings of the 2017 conference 
on conference human information interaction and re-
trieval (pp. 17–26). 

Poitschke, T., Laquai, F., Stamboliev, S., & Rigoll, G. 
(2011). Gaze-based interaction on multiple displays in 
an automotive environment. In 2011 ieee international 
conference on systems, man, and cybernetics (pp. 543–
548). 

Porta, M., Dondi, P., Pianetta, A., & Cantoni, V. (2021). 
Speye: A calibration-free gaze-driven text entry tech-
nique based on smooth pursuit. IEEE Transactions on 
Human-Machine Systems, 1-12. 

Ramirez Gomez, A. R., Clarke, C., Sidenmark, L., & Gel-
lersen, H. (2021). Gaze+ hold: Eyesonly direct manip-
ulation with continuous gaze modulated by closure of 
one eye. In Acm symposium on eye tracking research 
and applications (pp. 1–12). 



Journal of Eye Movement Research Zeng, Z., Liu, S., Cheng, H., Liu, H., Li, Y., Feng, Y., & Siebert, F. (2023) 
16(1):2 GaVe: A webcam-based gaze vending interface using one-point calibration 

  13 

Robinson, D. A. (1968). The oculomotor control system: 
A review. Proceedings of the IEEE, 56(6), 1032–1049. 

Sidenmark, L., Clarke, C., Zhang, X., Phu, J., & Gellersen, 
H. (2020). Outline pursuits: Gaze-assisted selection of 
occluded objects in virtual reality. In Proceedings of 
the 2020 chi conference on human factors in compu-
ting systems (p. 1–13). New York, NY, USA: Associ-
ation for Computing Machinery. 

Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for 
gray and color images. In Sixth international confer-
ence on computer vision (IEEE Cat. No. 98CH36271) 
(pp. 839-846). IEEE. 

Vidal, M., Bulling, A., & Gellersen, H. (2013). Pursuits: 
Spontaneous interaction with displays based on smooth 
pursuit eye movement and moving targets. In Proceed-
ings of the 2013 acm international joint conference on 
pervasive and ubiquitous computing (p. 439–448). 
New York, NY, USA: Association for Computing Ma-
chinery. 

Ware, C., & Mikaelian, H. H. (1986). An evaluation of an 
eye tracker as a device for computer input2. In Pro-
ceedings of the SIGCHI/GI conference on Human fac-
tors in computing systems and graphics interface (pp. 
183-188). 

Wobbrock, J. O., Findlater, L., Gergle, D., & Higgins, J. J. 
(2011). The aligned rank transform for nonparametric 
factorial analyses using only anova procedures. In Pro-
ceedings of the sigchi conference on human factors in 
computing systems (p. 143–146). New York, NY, 
USA: Association for Computing Machinery. 

Zeng, Z., Neuer, E. S., Roetting, M., & Siebert, F. W. 
(2022). A one-point calibration design for hybrid eye 
typing interface. International Journal of Human–
Computer Interaction, 1–14. 

Zeng, Z., & Roetting, M. (2018). A text entry interface us-
ing smooth pursuit movements and language model. In 
Proceedings of the 2018 acm symposium on eye track-
ing research & applications (pp. 69:1–69:2). New 
York, NY, USA: ACM. 

Zeng, Z., Siebert, F. W., Venjakob, A. C., & Roetting, M. 
(2020). Calibration-free gaze interfaces based on linear 
smooth pursuit. Journal of Eye Movement Research, 
13(1),3. 

Zhang, C., Yao, R., & Cai, J. (2018). Efficient eye typing 
with 9-direction gaze estimation. Multimedia Tools 
and Applications, 77(15), 19679–19696. 

Zhang, X., Kulkarni, H., & Morris, M. R. (2017). 
Smartphone-based gaze gesture communication for 
people with motor disabilities. In Proceedings of the 
2017 chi conference on human factors in computing 
systems (pp. 2878–2889). 

Zhang, X., Sugano, Y., & Bulling, A. (2019). Evaluation 
of appearance-based methods and implications for 
gaze-based applications. In Proceedings of the 2019 
chi conference on human factors in computing systems 
(pp. 1–13). 


