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Abstract

Electrooculography (EOG) is the measurement of eye movements
using surface electrodes adhered around the eye. EOG systems can be
designed to have an unobtrusive form-factor that is ideal for eye tracking
in free-living over long durations, but the relationship between voltage
and gaze direction requires frequent re-calibration as the skin-electrode
impedance and retinal adaptation vary over time. Here we propose
a method for automatically calibrating the EOG-gaze relationship by
fusing EOG signals with gyroscopic measurements of head movement
whenever the vestibulo-ocular reflex (VOR) is active. The fusion is
executed as recursive inference on a hidden Markov model that accounts
for all rotational degrees-of-freedom and uncertainties simultaneously.
This enables continual calibration using natural eye and head movements
while minimizing the impact of sensor noise. No external devices like
monitors or cameras are needed. On average, our method’s gaze estimates
deviate by 3.54° from those of an industry-standard desktop video-based
eye tracker. Such discrepancy is on par with the latest mobile video eye
trackers. Future work is focused on automatically detecting moments of
VOR in free-living.
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Introduction

The negatively charged retina and positively charged cornea of the human eye maintain
a dipole electric field that can be measured with surface electrodes adhered to the
skin around the eye. Such measurement is called electrooculography (EOG) and has
established utility in the diagnosis of retinal dysfunction (Walter et al., 1999), detection
of fatigue (Ko lodziej et al., 2020; Tag et al., 2019), and human-computer interaction
(Barea et al., 2002; Lv et al., 2010). As depicted in Figure 1, the voltage measured
across the electrodes varies with eye rotation. Therefore, through proper calibration,
EOG can be used to estimate the orientation of the ocular axis (gaze).

Figure 1: Voltage data obtained by EOG, and its relation to eye movements. Eye
movements are correlated with changes in voltage measured by the surface electrodes.
The electrode configuration shown was used in this work, but is not the only option.

The typical calibration method requires a laboratory setup where gaze direction
is known by experimental construction or measured externally with a camera-based
video eye tracker. The recorded EOG voltages, paired with known gaze directions, are
used to fit a polynomial (Manabe et al., 2015) or battery model (Barbara et al., 2019).
Once fit, the model can be used to estimate new gaze directions from just EOG.

However, the validity of the calibration is limited to the environmental conditions
in which it was performed. Sweat alters the skin-electrode impedance, which plays a
major role in the gain/scale of the measured signal (Huigen et al., 2002). The light-
adapted state of the retina also affects the measurement scale. In fact, the comparison
of saccadic voltage amplitudes in light versus dark yields the Arden ratio, a medical
diagnostic that nominally ranges from 1.7 to 4.3 (Constable et al., 2017). Therefore,
in long duration data collections, the laboratory-based calibration must be repeatedly
performed to maintain gaze estimate accuracy over time.

There have been many efforts to extend calibration validity by careful removal
of baseline drift (Barbara et al., 2020a) or consideration of the statistics of saccades
(Hládek et al., 2018), but these techniques still rely on the constancy of a laboratory
calibration of scale (be it polynomial coefficients or battery model parameters). Thus,
given the inevitability of sweat and lighting changes in free-living conditions, EOG-
based eye tracking has been limited to laboratories and relatively short durations
between re-calibrations. This is unfortunate because EOG provides a form-factor
that is ideal for long-duration use and mobile situations where other eye tracking
technologies have cumbersome size, weight, and power requirements.

To enable EOG-based eye tracking in free-living conditions, the calibration process



should require no external references, happen continually, and impose little to no
additional burden on the user. Toward this end, we have revisited a calibration
method that leverages the vestibulo-ocular reflex (VOR) – the instinctual, brainstem-
mediated stabilization of gaze during head movement (Fetter, 2007). Take for example
that during VOR, the gaze is fixed, so if the head rotates to the right, then the
eye will counter-rotate to the left. Measurements of head movement during a VOR
contain angular information about eye movement that can be used to calibrate EOG.
Our proposed solution requires the simultaneous collection of EOG and head rotation
measurements, but no cameras or external equipment.

The use of head rotation for VOR-based EOG calibration was first proposed in
(Mansson and Vesterhauge, 1987) and further validated in (Hirvonen et al., 1995).
However, their method requires careful decoupling of pitching (vertical) and yawing
(horizontal) head rotation, thereby restricting the calibration to a lab setting in which
the wearer could be instructed to make orthogonal nodding motions in sequence.

To enable calibration with natural head movements, we propose a hidden Markov
model that accounts for all rotational degrees-of-freedom simultaneously and does not
assume the exact positions of the electrodes. Furthermore, by executing the calibration
as recursive Bayesian estimation, it can be run continually whenever a new moment
of VOR occurs and provide a measure of uncertainty in its gaze estimates. At an
algorithmic level, our approach is similar to the extended Kalman filter used for EOG-
based gaze estimation in (Barbara et al., 2020b), but theirs does not utilize head
movements for lab-free calibration.

Methods

EOG signal calibration and 3D gaze estimation are performed jointly as recursive
Bayesian estimation on a hidden Markov model. A two-channel EOG system and
three-axis gyroscope affixed to the wearer’s head provide the input signals to the
inference. All variables of the model are listed in Table 1. The two components of the
baseline vector b and the two rows of the projection matrix A each correspond to the
two channels of the EOG, though this model can easily be extended to more channels.
Note that gaze is expressed as a 3D direction vector rather than a pair of angles.

Table 1: Modeled random variables. Each is a function of time and the underlying
probability space. The unit-sphere S2 is represented as {g ∈ R3 | ⟨g, g⟩ = 1}. I.e., gaze
is handled as a 3D direction vector rather than a pair of angles. When the wearer’s
VOR is engaged, r is 1, else it is 0.

Variable Symbol Range

Gyroscope Angular Velocity Reading ω R3

Gaze Direction (in gyroscope coordinates) g S2

EOG Projection Matrix (or “Scale”) A R2×3

EOG Baseline Vector (or “Bias”) b R2

EOG Voltage Readings v R2

VOR Activity Boolean r {0, 1}



Time is discretized into small steps of duration ∆t ∈ R+ dictated by the gyroscope
sampling rate, which, in our validation study, was 512 Hz. This sampling rate was
selected to be high enough to capture oculomotor features; it is not a requirement
of the model. The graph in Figure 2 depicts the relationships between the model
variables across each time-step.

Indicated by the red arrows, the gaze rate of change (g to g′, i.e. eye movement) is
driven by the gyroscope angular velocity readings (ω, i.e. head movement) and whether
or not the wearer’s VOR is engaged (r). Indicated by the green and blue arrows, the
EOG calibration coefficients (A and b) are assumed to evolve independently of the
gaze and each other. This is because their drift is governed by e.g. retinal adaptation
rather than gaze changes or head movement. Finally, the purple arrows indicate that
the EOG voltage readings (v) at each time-step are specified by the gaze direction and
EOG calibration coefficients at that same time-step.

Figure 2: Dynamic Bayesian network for the model. Each node represents a variable
and each arrow represents a conditional dependency (color-coded to match Table 2).
The shaded nodes are the “hidden” states to be inferred, while the clear nodes are
observed. The lighter dotted arrows indicate that this structure repeats for all time-
steps (t+ n∆t ∀n ∈ N). Note that the arrows connecting g, A, and b to v are passing
underneath the nodes that they cross without arrowheads.

Table 2: Probabilistic specification of each dependency shown graphically in Figure 2.
The operator [·]× expresses a 3-vector as a skew-symmetric matrix, the exponential of
which is efficiently computed via the Rodrigues rotation formula.

Gaussian Mean Covariance

p(g′ | g, r, ω) e−r∆t[ω]× g
(
rCω + (1− r)Cg

)
∆t

p(A′ | A) A CA∆t

p(b′ | b) b Cb∆t

p(v | g,A, b) Ag + b Cv



The corresponding conditional probability distributions are all modeled as Gaus-
sians with parameters defined in Table 2. The conditional distribution of g′ switches
between two modes based on whether the wearer’s VOR is engaged or not. If r is
0, then the gaze evolution is modeled as a random-walk of covariance Cg∆t, which
provides a “tuning knob” to smooth-out gaze estimates by controlling how much
probability is placed on large gaze changes between time-steps. If r is 1, then the
gaze is assumed to counter-rotate the angular velocity measured by the gyroscope.
The uncertainty in this relationship is encoded by the covariance Cω and is due to
the gyroscope’s inherent noise, as well as the small, transient lag of the VOR (i.e.,
physiological latency between head and eye rotations). The trace of Cω should be
much less than that of Cg. Although existing research on saccadic oculomotor behavior
points to non-Gaussian models (Engbert et al., 2011; Ro et al., 2000), we selected a
Gaussian model with large uncertainty because it makes fewer assumptions about the
nature of the non-VOR periods.

The EOG calibration parameters A and b are modeled as random-walks of
covariance CA∆t and Cb∆t respectively. The mean of p(v | g,A, b) essentially defines
the role of A and b in the model: they dictate how gaze is projected / transformed
into EOG readings (with noise of covariance Cv). Thus the electrical properties of the
eye’s dipole and the EOG (including their drift over time) are all encoded by A and b.
Our results were obtained using an affine relation E[v | g,A, b] = Ag+b. However, this
readily generalizes to f(g;A) + b where f can be any function (e.g., the battery model
used in Barbara et al. [2019]). Note that even when using Ag, the model is linear in g
as a 3D unit-vector, not as two polar angles, so the nonlinearity of 3D dipole rotation
is always captured.

As posed, the only full-state nonlinearity in the model is the product of A and
g in E[v | g,A, b]. Thus, a nonlinear extension of the Kalman filter is advisable for
performing approximate inference of the hidden states. This can be the extended
Kalman filter, unscented Kalman filter, or even the Rao-Blackwellized particle filter.
Satisfactory results have been obtained with the extended Kalman filter, shown
schematically in Figure 3. The only non-standard piece of the implementation is re-
normalizing g after each Kalman-update by “shedding” its magnitude onto A. That
is, to assign A ← |g|A and then g ← g/|g|. This is because the Kalman-update does
not respect g ∈ S2. One could treat |g| = 1 as an observation with no uncertainty,
but the magnitude-shedding trick exploits the Ag product more efficiently.

Validation

As a proof-of-concept of the algorithm capability, a validation study was performed.
Four subjects participated in the study (2 male, 2 female). All subjects provided
written informed consent prior to participation. The experimental protocol was
approved by the Committee on the Use of Humans as Experimental Subjects, the
Institutional Review Board for MIT, as well as the Air Force Human Research
Protections Office.

Our proposed methodology operates solely on raw gyroscope readings, EOG
voltages, and the knowledge of when VOR is occurring. To assess the accuracy
of the system, we compared the corresponding gaze estimates with those obtained
by an independent, high-quality video-based eye tracker. Each trial was separated
into a VOR-phase during which the calibration coefficients can be learned, followed
immediately by a saccade-phase during which gaze estimation relies on what was



Figure 3: Block diagram expressing the signal path for an extended Kalman filter
applied to our model. The ϵ∗ are Gaussian white-noise variables introduced to express
the corresponding covariances C∗ algebraically in state-space equations.

learned during the VOR-phase. The VOR boolean r was set to 1 for the VOR-phase
and 0 for the saccade-phase and any blinking.

During the VOR-phase, the subject fixed their gaze on a stationary target 7m away.
It was important to use a target sufficiently far away to minimze the effect of head
translation during VOR (Lappi, 2016; Raphan and Cohen, 2002). While maintaining
fixation, the subject rotated their head in an arbitrary fashion for 30s.

During the saccade-phase, the subject placed their head on a chin rest roughly
60cm away from a computer monitor equipped with a Tobii Pro Nano video-based
eye tracker (Tobii Technology, Stockholm, Sweden). On the otherwise blank screen,
a 0.25°-diameter circular target jumped from point-to-point in a clockwise fashion,
tracing out a square. The jumps consisted of small and large jump sizes. The subject
tracked the target with saccadic eye movements, and example of which is shown in
Figure 4. For all subjects, while eye tracking of both eyes were collected, only data
from the right eye was used.

Over both phases, our methodology was run on the EOG voltage and gyroscope
data streams from a Shimmer Sensing System (Shimmer Sensing, Dublin, Ireland).
The Shimmer device was affixed to an elastic headband and configured to record
biopotential signals in double-differential form at 512 Hz. One pair of electrodes was
placed above the eyebrow and below the eye, while the other pair was placed on the
medial and lateral edges of the eye (see Figure 1). For all subjects, the right eye was
used. The ground electrode was placed on the right mastoid bone (bony landmark
behind the ear). Thus, the five-lead system yielded two channels of voltage data. Note
that our model does not require nor assume this experimental configuration.

An extended Kalman filter was used for approximate inference on the hidden
Markov model. “Learning” of A and b during the VOR-phase is shown in Figure 5. The



Figure 4: Experimental protocol for the saccade phase of each trial. (A) Pattern
followed by the target stimulus on the screen. The numbers indicate the order of the
jumps. (B) Data obtained by the video-based eye tracker, color-coded by time with
blue being the start of the trial and red being the end.

mean of g was arbitrarily initialized to [1, 0, 0]⊺ and the initial means of all components
of A and b were drawn from N (0, 1e−3). The state covariance was initialized to 25 ·I11
where In refers to an n × n identity matrix. The following covariances were used for
the model: Cω = 1e−9 · I3, Cg = 1e2 · I3, CA = 1e−6 · I6, Cb = 1e−2 · I2, and
Cv = 1e−3 · I2. They were chosen by tuning on the very first trial, and then used
without any adjustment across all trials and subjects. The tuning did not reference
the video-based eye tracker data.

The video-based and EOG-based gaze estimates are in different coordinate systems
with an unknown relationship. To compare them, we transformed them into angular
displacements by computing the angle between the gaze directions at every time t
and t + h for small step-size h. An example is shown in Figure 6. Specifically, we
define angular displacement as δ(t) = cos−1

〈
g(t), g(t + h)

〉
and angular speed as

Ω(t) = δ(t)/h, where 50ms was used for h. The saccadic eye movements made it easy
to synchronize and compare the two timeseries by examining the root-mean-squared
(RMS) discrepancy between the video-based and EOG-based angular displacement
peaks (saccade amplitudes).

In the single trial shown in Figure 6, the RMS error is 2.73°±1.92°. The full set
of errors across all subjects and trials are summarized in Table 3. The averages of
the subjects are computed as the mean (± standard deviation) of errors across the
trials for that subject. If the trial errors are pooled together, the average error across
subjects is 3.54° ± 0.71°.

Discussion

The full hidden state {g,A, b} (gaze, scaling coefficients, and baseline) is continuously
inferred through both the VOR and saccade phases, but the lack of VOR in the
saccade phase decouples gaze from the gyroscope. During the saccade-phase, the eye
rotation random-walk covariance Cg is the dominant source of uncertainty. This causes
the saccade-phase gaze estimates to essentially be derived from the A and b means
at the end of the prior VOR-phase. In this regard, one can think of the inference
as calibrating during VOR and then using that calibration during non-VOR (e.g.,



Figure 5: Example time series for a trial’s VOR-phase. The top two plots show the
EOG and gyroscope data. The bottom two plots show the state estimate trajectories
for the EOG calibration A and b. The shading indicates one standard-deviation of the
inferred posterior. Within 5 seconds of arbitrary VOR motion, the posterior variances
reach a small steady value, indicating convergence from arbitrary initial conditions to
consistent state tracking.

saccades and smooth pursuits). The variances of A and b grow most rapidly during
non-VOR, preparing them for “recalibration” during the next VOR window.

As can be seen in Figure 5, the amount of VOR data needed to calibrate is small;
the means of A and b converge after just a few seconds (hence why each trial need
not exceed one minute). After this convergence, A and b continue to be tracked,
thereby continually accounting for both EOG scale and baseline drift through time.
In contrast, existing EOG-based eye trackers only estimate scale once at the start
of a trial (via external reference like a camera) and use a low-pass filter to mitigate
the effects of baseline drift, rather than explicitly estimating it through model-based
inference.

The fusion of EOG and VOR information can only identify gaze direction up to
an unknown but static rotational offset from anatomical coordinates. Meaning, there
is no way to ensure that a gaze of say [1, 0, 0]⊺ corresponds to anatomically “looking
forward” without an external reference to observe gaze in anatomical coordinates at
least once. Therefore, our performance analyses have focused on angular displacements
of the eye, which do not depend on choice of coordinates.

Angular displacements have merit in their own right as consistent features for
physiological analysis over time and within subjects. For example, change in the
saccade main sequence (the relationship between saccade speed and duration) is
indicative of levels of fatigue (Di Stasi et al., 2010), cognitive workload and attention
(Di Stasi et al., 2013), as well as clinical conditions such as traumatic brain injury



Figure 6: Comparison of the video-based and EOG-based gaze estimates during the
saccade-phase. The top two plots show the gaze estimates themselves, which are
in different coordinate systems. The bottom plots show the angular displacements
and speeds over a sliding window of 50ms. Unlike the gaze estimates which cannot
be compared component-to-component, the angular displacements are coordinate-free
and can thus be compared to assess performance. The discrepancy for this trial is
2.73°±1.92° RMS between video-based and EOG-based angular displacement peaks.

(Caplan et al., 2016). Nonetheless, if absolute gaze direction in anatomical coordinates
is needed, it would suffice to externally measure gaze once in anatomical coordinates to
determine the alignment, or to ensure that the subject is looking in a known anatomical
direction (e.g. forward) upon initialization. This was not performed in the present
study as the concept here is the development of a calibration method that is non-
intrusive to the user.

While our current methodology treats VOR detection (r) as an observable / known,
it is possible to extend this same framework to the case where it is another jointly
inferred hidden state. However, the introduction of a binary state complicates the
use of an extended Kalman filter for inference. Generally speaking, VOR detection
is a matter of correlating eye movement and head movement data. While, existing
literature demonstrates the capability to detect VOR using a feature-driven approach
(Vidal et al., 2011), caution must be taken in situations where the eye continues to
move smoothly, but is not in a state of VOR.

For example, during VOR cancellation, which occurs when VOR and smooth
pursuit interact (Johnston and Sharpe, 1994), the eye and head continue to move
smoothly, but that period should not be used for our calibration. An approach that



Table 3: RMS (± standard deviation) discrepancies between the video-based and
EOG-based angular displacement peaks during each saccade-phase. If all trials are
pooled across subjects, the average discrepancy is 3.54 ± 0.71. All units are degrees.

Trials Subject 1 Subject 2 Subject 3 Subject 4
1 3.19 ± 2.92 4.82 ± 3.80 3.69 ± 3.30 3.02 ± 2.46
2 3.25 ± 2.15 4.58 ± 2.93 3.45 ± 2.88 2.95 ± 1.08
3 2.99 ± 2.73 4.36 ± 4.46 3.26 ± 1.98 2.73 ± 1.92
4 2.91 ± 3.14 4.41 ± 2.66 3.80 ± 2.69 3.40 ± 2.64
5 2.94 ± 3.22 4.89 ± 2.78 3.48 ± 3.01 2.60 ± 1.14

Average 3.05 ± 0.15 4.61 ± 0.24 3.54 ± 0.21 2.94 ± 0.31

uses just correlation between head and eye velocity may classify VOR cancellation
as a window of VOR. Further, VOR detection and our calibration method may not
perform as intended in cases of clinical dysfunction that impairs VOR (Gordon et al.,
2014). In ongoing work, our group is developing algorithms to detect VOR.

The example angular displacement results in Figure 6 show a trend of the EOG-
based estimates being less than the video-based estimates. This bias was consistent
across trials, leading us to believe that the dominant source of error is unmodeled
structure rather than sensor noise. For example, our model does not explicitly account
for the possibility of VOR induced by translation (rather than rotation) of the head,
nor the offset between the eye and the center of head rotation. Instead, it assumes
that they are both zero (or equivalently, that the gaze target point is infinitely far
away), and encodes the inaccuracy of that assumption in the covariance Cω.

There is also the possibility that some of the error is due to the compared video-
based eye tracker itself. Though the Tobii system advertises an accuracy of 0.3°,
independent investigations report a less ideal result of 2.46° when chin position and
lighting are not tuned for maximum performance (TobiiPro, 2018; Clemotte et al.,
2014). Since the video eye tracking data was defined as “truth” in our validation
study, any error introduced from the video eye tracker itself was incorrectly attributed
to the model’s performance.

Moreover, there is a difference between the accuracies of desktop and mobile video
eye trackers. For example, the HTC Vive Pro Eye (HTC Corporation, Taoyuan,
Taiwan) was independently reported to have an accuracy of 4.16° - 4.75° (Sipatchin
et al., 2021), and the Microsoft Hololens 2 is reported to have 1.5° - 3° (Microsoft,
2021). The current methodology is focused on free-living (i.e., mobile) eye tracking
and calibration. Rather than compare the accuracy of the model’s performance to gold-
standard desktop systems, the comparison to mobile (e.g., VR system) eye trackers is
more appropriate. Thus, an error of 3.54° would be par for mobile eye trackers.

Conclusion

To calibrate EOG signals in free-living without needing a reference video eye tracker,
we have developed a model that relates EOG and head movement signals under
the assumption of VOR. This model is ideal for inference via extended Kalman
filtering. Doing so yields simultaneous and continual estimation of gaze direction
and the EOG calibration coefficients. The quality of these estimates was validated by



computing angular displacements over a pattern of saccades and comparing them to
those computed by a video-based eye tracker. On average, the two approaches differed
by 3.54°. Our methodology enables mobile gaze estimation with just an EOG and
gyroscope, poised for long-duration use in free-living.
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