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Editorial

Graphene for Electronics
Eugene Kogan

Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel; eugene.kogan@biu.ac.il

Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a
two-dimensional (2D) honeycomb lattice. Graphene’s unique properties of thinness and
conductivity have led to global research into its applications as a semiconductor. With the
ability to conduct electricity well at room temperature, graphene semiconductors could
easily be implemented into the existing semiconductor technologies and, in some cases,
successfully compete with the traditional ones, such as silicon. Research has already shown
that graphene chips are much faster than existing ones made from silicon. The world’s
smallest transistor was manufactured using graphene. Flexible, wearable electronics may
take advantage of graphene’s mechanical properties, as well as its conductivity, to create
bendable touch screens for phones and tablets, for example.

On the other hand, the physics of graphene and graphene-based systems has inspired
the application (and development) of many advanced theoretical methods, including those
outside the scope of traditional condensed matter physics. Graphene thus turned into the
favorite benchmark of theorists. Fundamental studies go hand in hand with the applied
ones and, in some cases, the former even opened doors to possible applications.

Graphene has already led to substantial progress in the development of the current
electronic systems due to its unique electronic and thermal properties, including its high
conductivity, quantum Hall effect, Dirac fermions, high Seebeck coefficient and thermo-
electric effects. It paves the way for advanced biomedical engineering, reliable human
therapy, and environmental protection. This suggests substantial improvements in current
electronic technologies and applications in healthcare systems.

This Special Issue of Nanomaterials covers recent studies, both theoretical and exper-
imental, that advance our understanding of graphene and may be relevant to graphene
electronics. With the growing number of flexible electronics applications, environmentally
friendly ways of mass-producing graphene electronics are required. Kralj and coworkers [1]
present a scalable mechanochemical route for the exfoliation of graphite in a planetary ball
mill with melamine to form melamine-intercalated graphene nanosheets.

Field-effect transistors have attracted significant attention in chemical sensing and
clinical diagnosis, due to their high sensitivity and label-free operation. Huang and
coworkers [2] present the study of a scalable photolithographic process of fabrication
of the graphene-based ion-sensitive field-effect transistor (ISFET) arrays.

The study of electronic transport in the lowest Landau level of disordered graphene
sheets placed in a homogeneous perpendicular magnetic field, a long-standing and cum-
bersome problem which defied a conclusive solution for several years, is presented in the
paper by Sinner and Tkachov [3].

The paper by Berman et al. [4] contains theoretical analysis of Bose-Einstein conden-
sation and superfluidity of dipolar excitons, formed by electron-hole pairs in spatially
separated gapped hexagonal layers.

The electrical properties of polycrystalline graphene grown by chemical vapor de-
position are determined by grain-related parameters, such as average grain size, single-
crystalline grain sheet resistance, and grain boundary resistivity. Park et al. [5] have
observed that the material property, graphene sheet resistance, could depend on the device
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dimension and developed an analytical resistance model based on the cumulative distribu-
tion function of the gamma distribution, explaining the effect of the grain boundary density
and distribution in the graphene channel.

Electric devices have evolved to become smaller, more multifunctional, and increas-
ingly integrated. When the total volume of a device is reduced, insufficient heat dissipation
may result in device failure. A microfluidic channel with a graphene solution may replace
solid conductors for simultaneously supplying energy and dissipating heat in a light emit-
ting diode (LED). Chung et al. [6] designed, using a graphene solution, an automated
recycling system that reduces the necessity of the manual operation of the device.

Silkin and coworkers [7] present a detailed first-principles investigation of the response
of a free-standing graphene sheet to an external perpendicular static electric field.

The tunneling of electrons and holes in quantum structures plays a crucial role in study-
ing the transport properties of materials and the related devices. A new two-dimensional
Dirac material, 8-Pmmn borophene, hosts tilted Dirac cone and chiral, and anisotropic
massless Dirac fermions. Kong et al. [8] adopted the transfer matrix method to investi-
gate the Klein tunneling of massless fermions across the smooth NP junctions and NPN
junctions of 8-Pmmn borophene.

The process of formation of carbon nanoscrolls with non-uniform curvatures is worthy of
a detailed investigation. Lin et al. [9] present the first-principles method suitable for studying
the combined effects due to the finite-size confinement, the edge-dependent interactions, the
interlayer atomic interactions, the mechanical strains, and the magnetic configurations.

In the paper by Krasovskii [10], angle-resolved photoemission from monolayer and
bilayer graphene is studied based on an ab initio one-step theory.

In the paper by Do [11] and coworkers, by introducing a generalized quantum-kinetic
model which is coupled self-consistently with Maxwell and Boltzmann transport equations,
the authors elucidate the significance of using input from first-principles band-structure
computations for an accurate description of ultra-fast dephasing and the scattering dynam-
ics of electrons in graphene.

In summary, this Special Issue presents several examples of the latest advancements
on graphene science. We hope the readers will enjoy these articles and find them useful for
their research.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Conductive Inks Based on Melamine Intercalated Graphene
Nanosheets for Inkjet Printed Flexible Electronics
Magdalena Kralj 1,†, Sara Krivačić 2,†, Irena Ivanišević 2 , Marko Zubak 2, Antonio Supina 3, Marijan Marciuš 4,
Ivan Halasz 1 and Petar Kassal 2,*

1 Division of Physical Chemistry, Rud̄er Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
2 Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19,

10000 Zagreb, Croatia
3 Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia
4 Division of Materials Chemistry, Rud̄er Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
* Correspondence: pkassal@fkit.hr
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Abstract: With the growing number of flexible electronics applications, environmentally benign
ways of mass-producing graphene electronics are sought. In this study, we present a scalable
mechanochemical route for the exfoliation of graphite in a planetary ball mill with melamine to form
melamine-intercalated graphene nanosheets (M-GNS). M-GNS morphology was evaluated, revealing
small particles, down to 14 nm in diameter and 0.4 nm thick. The M-GNS were used as a functional
material in the formulation of an inkjet-printable conductive ink, based on green solvents: water,
ethanol, and ethylene glycol. The ink satisfied restrictions regarding stability and nanoparticle size;
in addition, it was successfully inkjet printed on plastic sheets. Thermal and photonic post-print
processing were evaluated as a means of reducing the electrical resistance of the printed features.
Minimal sheet resistance values (5 kΩ/sq for 10 printed layers and 626 Ω/sq for 20 printed layers)
were obtained on polyimide sheets, after thermal annealing for 1 h at 400 ◦C and a subsequent
single intense pulsed light flash. Lastly, a proof-of-concept simple flexible printed circuit consisting
of a battery-powered LED was realized. The demonstrated approach presents an environmentally
friendly alternative to mass-producing graphene-based printed flexible electronics.

Keywords: mechanochemistry; graphene nanosheets; conductive ink; inkjet printing; printed electronics

1. Introduction

Flexible electronic devices manufactured by printing techniques on various substrates,
such as paper, polymers, and textiles, have recently gained tremendous attention [1,2].
Unlike traditional silicon-based production techniques—often described as costly and
complicated—printing offers faster, simpler, as well as environmentally and economically
beneficial production possibilities [3,4]. Numerous examples include printed electronic
circuits [5], displays [6], radio frequency identification tags (RFIDs) [7], thin-film transistors
(TFTs) [8], and sensors [9]. Among different printing techniques, inkjet printing offers
several advantages in the publishing and graphics industries [10]. This non-contact addi-
tive manufacturing technique is based on the selective ejection of individual drops of a
liquid material (ink) from the nozzle upon thermal or pressure pulse [11]; this makes it
easily adaptable for mass production. The arrival of inkjet printing outside the scope of
classical application came with the development of nanoparticle-based inks with functional
properties, especially electrical conductivity [2,12].

Printable inks are based upon a careful selection of the ink components, including the
functional material and (a combination of) solvents and stabilizers [13]. Metal nanoparti-
cles [14–16], conductive polymers [17,18], and carbon nanomaterials [19–21] are the most
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used functional components in electrically conductive inks. When formulating inks, rhe-
ological properties must be carefully tailored to ensure proper jetting. In the case of
nanoparticle-based inks, additional restrictions regarding nanoparticle size and ink stability
are imposed; these all prevent nozzle clogging.

Even though metal nanoparticles—due to their excellent conductivity—are among
the most commonly used materials, a growing interest is being devoted to carbon (nano)-
materials [22]. Inkjet-printed carbon nanomaterials have therefore been used in the devel-
opment of flexible and wearable electronics [23,24], sensors [25,26], and film heaters [27].
Considering its intriguing and unique physicochemical properties, such as large surface
area, exceptional thermal stability, excellent electrical conductivity, high electron mobility,
superior mechanical strength, flexibility, and undemanding chemical functionalization,
graphene has attracted attention as a promising functional material in the production of
flexible electronic components [28]. To achieve greater concentration in an ink, without
the reaggregation of the (nano)particles of the functional material, a suitable solvent based
on adequate solubility parameters should be selected; and/or a stabilizing agent should
be employed [29,30]. Common solvents for carbon (nano)material-based inks, such as
N-methyl-2-pyrrolidone (NMP), N-cyclo-2-pyrrolidone, dimethylformamide (DMF), and
dimethylsulfoxide (DMSO), are either expensive, chemically harsh, toxic, and/or difficult
to remove post-printing due to their high boiling points [30,31]; thus, their use is not
recommended [31–33]. However, environmentally compatible solvents often require the
additional use of stabilizers, such as polymers and surfactants. For example, graphene sus-
pensions in cyclohexanone and terpineol have been stabilized with ethyl-cellulose [34,35];
in water [36] and ethylene glycol [37] with the stabilizing agent sodium dodecyl sulfate
(SDS) [38]; and in ethanol, ethanediol, propanetriol, and deionized water along with sodium
carboxymethyl cellulose (CMC) [39].

Different synthetic routes toward graphene have been thoroughly investigated since
its discovery. These include the two main approaches: the top-down (TD) approach and
the bottom-up (BU) approach [28,32,40,41]. BU approaches, based on the nucleation of a
carbon precursor, are generally expensive and time-consuming. On the other hand, in the
TD approach, carbonaceous materials (such as graphite) are cut into nano-sized particles
by physicochemical processes, which pave the road to the mass production of graphene.
TD approaches include the famous Hummers’ method and liquid-phase exfoliation (LPE)
of graphite [42–44]. Yet, these have major limitations, such as the need for harmful and
complex pretreatments, high energy consumption, low yields, agglomeration tendency, low-
stability in polar solvents, high precursor costs, or the need for special equipment [41,45].

Clearly, a facile, sustainable, reproducible, and low-cost route for the large-scale
preparation of graphene nanosheets (GNS) with minimal surface defects is required to
satisfy the growing industry requirements. For this reason, methods of mechanochemistry
have become attractive as they often provide quick and quantitative reactions of solids,
even on a large scale, while according with the principles of Green Chemistry [46]. There
are numerous examples of mechanochemical synthesis and modification of monodisperse
nanoparticle systems in a solvent-free environment [47–49]. As recently demonstrated,
graphite can be exfoliated through non-covalent interactions with melamine (1,3,5-Triazine-
2,4,6-triamine) in a ball milling process under solid, i.e., dry conditions [50]; this is in
contrast to the exfoliation of graphite with melamine in aqueous media [51–54].

We present here a facile, scalable, and green method for the development of inkjet
printable conductive graphene-based inks. We have adopted a mechanochemical route
for the exfoliation of graphite with melamine to form melamine-intercalated graphene
nanosheets (M-GNS). The M-GNS were used as the conductive material in the formulation
of an inkjet printable ink, with the aid of polymeric dispersants in green solvents (water,
ethanol, ethylene glycol). The electrical properties of the printed features were evaluated
and post-print processing optimized, to yield flexible printed electronic circuits.
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2. Materials and Methods
2.1. Materials

Graphite flakes (G) having particle sizes 200–300 µm were purchased from Graphe-
nea, San Sebastian, Spain and melamine from Alfa Aesar, Kandel, Germany. Ethanol
(absolute) and 2-propanol were obtained from Gram-Mol, Zagreb, Croatia, ethylene glycol
from Sigma-Aldrich, St. Louis, MO, USA, and terpineol (mixture of isomers) from Alfa
Aesar, Kandel, Germany. All the chemicals were of analytical grade and were used as
received. Melamine intercalated graphene nanosheets (M-GNS, 1–2 sheets) were obtained
by a mechanochemical route and can be used without additional purification. Aqueous
solutions were prepared with deionized water (Millipore Milli-Q, specific conductivity
0.059 µS cm–1). Commercial polymeric stabilizing agents Solsperse 12000S and Solsperse
20000 were supplied by Lubrizol, Wickliffe, OH, USA. Surface mount light-emitting diodes
for the proof of concept experiment were from Kingbright Electronic Co, New Taipei City,
Taiwan; they were glued to the printed conducting traces using a conductive glue, Wire
Glue, Anders Products, Melrose, MA, USA.

2.2. Mechanochemical Synthesis of Melamine-Intercalated Graphene Nanosheets (M-GNS)

Single- and double-layer melamine-intercalated graphene nanosheets (M-GNS) were
obtained by neat grinding in a ball to powder ratio mb:mp = 1:12.7. The process was
performed at room temperature using a planetary ball mill PULVERISETTE 6 operating
at 500 rpm, in a 50 mL stainless steel jar equipped with 12 stainless steel balls (m = 4 g;
d = 10 mm). Graphite flakes (m = 0.5 g), melamine (m = 2.5 g), and dry ice (m = 0.8 g) were
milled in a mass ratio m(G):m(I):m(M) = 1:1.6:5 for 48 h in periods of 1 h milling, followed
by 10 min of resting. The product was a black free-flowing powder that could be easily
collected from the jar using a spatula.

2.3. Preparation of M-GNS Inks

M-GNS inks were prepared by dispersing the powdered product in various solvents
using a Sonopuls Serie 2000.2 tip-sonicator, with the addition of Solsperse stabilizers.
The sonication was performed for 15 min at 25% amplitude of the initial power of 70 W.
The physical properties of the as-prepared formulations, including viscosity and surface
tension, were measured with a micro-Ostwald viscosimeter 516 13/Ic, SI Analytics GmbH,
(Mainz, Germany) and KRÜSS K6 tensiometer (Hamburg, Germany), respectively. All the
measurements were performed at room temperature (23 ± 2 ◦C).

2.4. Inkjet Printing of M-GNS Inks and Post-Printing Processing

Inkjet printing was performed using a Fujifilm Dimatix DMP-2850 (Tokyo, Japan) drop-
on-demand printer, which utilizes 16 nozzles with a diameter of 21 µm and a nominal drop
volume of 10 pL. The experimental printing parameters were optimized to achieve continu-
ous conductive features of the deposited ink on the selected substrates: PI (Kapton, DuPont,
Wilmington, NC, USA, d = 25 µm); and clear PET (Melinex 505, DuPont, Wilmington, NC,
USA, d = 125 µm). The printed patterns for characterization were 8 mm × 8 mm squares
designed in Dimatix Drop Manager Software 3.0, Fujifilm, Tokyo, Japan.

To improve electrical conductivity, the printed squares were processed both thermally
and photothermally using intense pulsed light (IPL). For thermal processing, the specimens
were placed in a furnace (Demiterm, Estherm d.o.o., Sveta Nedelja, Croatia) at different
temperatures for 1 h. For IPL processing, the jetted patterns were set approximately 1 cm
from the flash lamp (Xenon, Wilmington, NC, USA, LH-912) of a Xenon X-1100 IPL system.
A series of experiments were performed to find the optimal energy at 2500 V.

2.5. Characterization

Powder X-ray diffraction data were collected on a Aeris bench-top diffractometer,
Panalytical, Almelo, Netherlands, with Ni-filtered CuKα radiation obtained from an X-ray
tube operating at 7.5 mA and 40 kV, in the 2θ range of 5–70◦ (step size of 0.027166◦, 7.65 s
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per step). Thermogravimetric measurements were performed with a Shimadzu, Kyoto,
Japan, DTG-60H analyzer at a heating rate of 10 ◦C min−1 from room temperature to
1000 ◦C in a stream of nitrogen, for bulk M-GNS samples and the prepared ink; and from
room temperature to 1000 ◦C in a stream of oxygen for the polymeric stabilizers. Scanning
electron microscopy (SEM) imaging was performed on a Jeol, Tokyo, Japan, JSM-7000F
field emission scanning electron microscope, operating at 10 kV; while energy-dispersive
X-ray spectroscopy (EDX) analysis was performed on an Oxford Instruments, Abingdon,
UK, INCA 350 spectrometer coupled with the FE-SEM. Atomic force microscopy (AFM)
micrographs were obtained by NanoWizard 4 ULTRA AFM, Bruker, Billerica, MA, USA
in AC mode. Samples for AFM were prepared by diluting the stock solutions to a given
concentration of 10−3 mg/mL and spin coating on a freshly exfoliated mica substrate
before drying at 70 or 150 ◦C in a Biobase Bov-30V Lab high-temperature vacuum oven
for 2 h. Fourier-transform infrared attenuated total reflectance (FTIR-ATR) spectra in
KBr tablets were recorded on a PerkinElmer, Waltham, MA, USA, SpectrumTwo L1600400
spectrometer equipped with a diamond cell in the range of 4000−450 cm−1 with a resolution
of 8 cm−1. UV–Vis spectroscopy of the conductive ink was performed with a Shimadzu,
Kyoto, Japan, UV-1280 UV–Vis spectrometer. The absorption spectra were recorded in the
range 320–800 nm after diluting to 1:100 to assure a meaningful absorbance range. Particle
size distribution (PSD) was determined using a Zetasizer Ultra (Malvern Panalytical,
Malvern, UK) based on a He-Ne laser (λ = 632.8 nm) and a thermostated sample cell. The
sample dilution was ϕ = 1:33, accounting for the graphene refractive index of 1.957. Before
measurement, the sample was equilibrated for 120 s at 25 ◦C ± 0.1 ◦C. The intensity of
the scattered light was converted into contribution per number of particles within the
measured sample volume. Zeta-potential measurements of the M-GNS ink formulation
were carried out using the aforementioned instrument and the same thermostated sample
cell. The ZS Xplorer v1.00, Malvern Panalytical, Malvern, UK software was used for data
analysis. The sheet resistance of the printed samples was measured before and after both
thermal and IPL processing using a four-point probe (Ossilla, UK).

3. Results and Discussion
3.1. Synthesis and Characterization of Melamine-Intercalated Graphene Nanosheets

For the synthesis of the conducting nanoparticles, we adopted melamine-induced
exfoliation in a planetary ball-mill that produces melamine intercalated single and two-
layered graphene nanosheets (M-GNS). The role of melamine is to aid the exfoliation of
graphite by noncovalent interactions, and prevent re-aggregation of the graphene sheets
into a graphitic structure. Melamine has an aromatic core that interacts with the π-system
of graphene; however, multiple melamine molecules can form extended 2D networks
via hydrogen bonding, and this improves the exfoliation and stabilization of GNS [50].
The synthesized M-GNS were thoroughly characterized to determine their composition,
morphology, and thermal properties. The Fourier-transform infrared attenuated total
reflectance (FTIR-ATR) spectrum of M-GNS exhibits bands characteristic of melamine,
while the absence of any additional bands demonstrates that the sample was pure (Figure 1).

Scanning electron microscopy (SEM) was used to evaluate the formation, size distribu-
tion, and morphology of the M-GNS; while EDX analysis provided additional information
about the elemental composition of the sample. Figure 2 shows the morphology and
elemental structure of the raw M-GNS sample. It is noticeable that melamine, after under-
going a grinding process, is present in the sample (evidenced by the significant nitrogen
amount). A wide particle size distribution is also observed. The morphology corresponds
to previously examined mechanochemically treated carbon materials [55].
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Figure 1. Fourier-transform infrared (FTIR) spectra for the raw sample of melamine-intercalated
graphene nanosheets (M-GNS).
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Figure 2. (a,b) Scanning electron microscopy (SEM) images and (c,d) energy-dispersive X-ray (EDX)
spectra of the raw M-GNS.
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Topological and morphological studies via atomic force microscopy (AFM) were
conducted primarily to visualize the surface structure of the M-GNS and height profiles
with and without melamine present in the sample. The AFM image (Figure 3a) shows
melamine layers with a lateral dimension of 200 nm. On the other hand, after thermal
annealing at 130 ◦C in a vacuum oven, the larger melamine flakes were removed by
sublimation and only smaller graphene nanosheets remained (Figure 3b,c). The average
diameter of the GNS was determined to be around 14 nm. AFM height measurements
revealed an average height of 0.3–0.65 nm corresponding to single- and double-layer GNS.

Figure 3. Atomic force microscopy (AFM) images and cross-section analysis of the M-GNS dispersed
in a mixture of ethanol:water:EG = 0.50:0.45:0.05. The sample was spin-coated on freshly cleaved
mica substrates and was dried in a vacuum oven for 2 h at (a) 70 ◦C and (b,c) 130 ◦C.

The prepared M-GNS were heated from room temperature to 1000 ◦C to determine
their thermal stability. It has been reported that melamine decomposition takes place in
three stages, undergoing progressive endothermic condensation during heating; with the
release of ammonia and forms products, such as melam, melem, and melon [56]. Products
of thermal decomposition of melamine are thermally more stable than melamine. Finally,
graphitic carbon nitride, g-C3N4 is produced under further heating [57,58].

As expected, a typical differential weight loss in several regions was observed (Figure 4).
The first stage covered the regions of maximum weight loss corresponding to the character-
istic mass loss at the range of 300–400 ◦C. This is associated with melamine condensation
to melam (a short-lived intermediate) and further condensation to melem [57]. At higher
temperatures (around 400–600 ◦C), the condensation reaction slowly progresses; at first,
it yields melon and then, graphitic carbon nitride [59,60]. Finally, thermal decomposition
of graphitic carbon nitride takes place in the range of 600–750 ◦C [61]; whereas additional
changes in weight loss were not observed, proving good thermal stability of GNS. The
residual mass of GNS amounts to 18.6%, which is in good agreement with the initial mass
ratio of graphite to melamine during the mechanochemical exfoliation.
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Figure 4. Thermogravimetric analysis (TGA) curve showing the mass loss profile of M-GNS.

3.2. Preparation and Characterization of M-GNS Inks

The M-GNS were dispersed in green solvents using an ultrasonic probe to form
conductive inks for inkjet printing. We focused on less harmful polar solvents (water and
alcohols) and aimed to formulate an ink compatible with substrates commonly used in
printed electronics—PET and PI. Graphene is known to form stable dispersions in solvents
with a similar surface energy to itself [62]. When adopting solvents of incompatible
surface energy, there is a requirement for stabilizers that adsorb to graphene nanosheets
during the homogenization step [36]. In this way, the stability of the ink is improved
and the shelf life is significantly extended. Commercially available Solsperse polymeric
hyperdispersants—steric stabilizers with anchor groups optimized for strong adsorption to
the particle surface—were used for this purpose. We evaluated the stability of the M-GNS
in several solvents and their mixtures (see Supplementary Materials, Figure S1). Ultimately,
the selected composition of the ink was 2 mg/mL of the M-GNS dispersed in a solvent
mixture consisting of ethanol:water:ethylene glycol = 0.50:0.45:0.05 by volume; with the
addition of 0.36 mg/mL of Solsperse 20000 and 0.04 mg/mL of Solsperse 12000S stabilizers.
The prepared ink is shown in Figure 5a. This composition demonstrated good wetting of
PET and PI substrates, with no observable coffee ring effect after drying.

The bottleneck of a piezoelectric drop-on-demand inkjet process is the development of
stable, single droplets without the formation of satellite (secondary) droplets [63]. This can
be achieved by tuning the inks composition and its physical properties, including viscosity,
density, and surface tension. The droplet formation behavior is often characterized by Z,
a dimensionless inverse Ohnesorge (Oh) number [11,64], Z =

√
γρa/η; where ρ, η, γ, and

a are the density, dynamic viscosity, surface tension, and dimensional parameter of the
printer, respectively. Low Z-values (<4) indicate possible difficulties in fluid ejection due
to the high viscosity, whereas a higher Z-value (>13) suggests the formation of satellite
droplets or, at least, uncontrollable ink leakage [2]. The requirements for inkjet printable
fluids include low viscosity (4–30 mPa s) and relatively high surface tension (around
~35 mN m−1) [11]. Our ink formulation had a measured Z-value of 7.7, indicating excellent
suitability for jetting.

The second major requirement of nanoparticle-based inks is nanoparticle size and
suspension stability. A maximum nanoparticle size of about 200–500 nm (1% of the nozzle
diameter) is generally suggested, along with the necessary stability against aggregation
and sedimentation [12]. Failure to meet either of these requirements can cause the clogging
of printer nozzles. Dynamic light scattering (DLS) analysis was performed to determine the
particle size distribution of the fabricated M-GNS ink based on the number of scattering
particles, Figure 5b.
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Figure 5. (a) The M-GNS ink after 24 h at rest after preparation; and (b) a histogram of the prepared
M-GNS ink from Dynamic light scattering (DLS) measurements, recorded in an aqueous medium
with a sample dilution of ϕ = 1:33.

The histogram in Figure 5b shows that the sample contains particles of different sizes,
resulting in an average hydrodynamic particle diameter of d = 173.7 nm; this corresponds to
the size of melamine sheets observed in the AFM measurements (Figure 3a) and indicates
that the nanoparticles are small enough for printing without clogging. The stability of the
conductive inks was evaluated using zeta-potential measurements. Particle dispersions
with zeta-potential values of±20–30 mV are generally assumed to be moderately stable [65].
The measured ζ-potential of the M-GNS ink was –25.7 mV, indicating moderate stability of
the prepared graphene particles in the solution phase [66]. The stability of real systems is
determined by the relationship between attractive van der Waals forces (information that is
not detectable with ζ-potential measurements) and electrostatic repulsive forces between
particles (provided by the zeta-potential). Accounting for that, dispersions with a lower
absolute zeta-potential than that generally acknowledged should not be discarded in terms
of colloidal stability [67].

The long-term stability of the ink was additionally evaluated by optical absorption
spectroscopy. We collected UV–Vis spectra of freshly prepared ink and compared it
to those taken up to 32 days post-formation. Graphene has an absorbance maximum
at ~270 nm [68–70]; however, this part of the spectrum is affected by absorption of the
Solsperse 20000 stabilizer. Solsperse 12000S, on the other hand, has very strong absorbance
in the visible part of the spectrum (Figure S2); while its lowest absorbance is at λ = 514 nm.
Therefore, 514 nm was chosen as the wavelength for monitoring graphene absorbance
reduction as a function of ink instability over time, Figure 6. As can be seen from Figure 6b,
sedimentation is strongest within the first 6 h. However, the absorbance at 514 nm does
not fall below 91% of the initial value; this indicates good short-term stability for single-
day printing. In the following days, the absorbance decreases more slowly; it reaches a
minimum at 66% of the initial value after 32 days. On the 34th day of the ink storage,
we tip-sonicated the ink for 1 min (25% amplitude) and regained the initial absorbance
value (100%). This indicates that although the ink shows moderate stability over prolonged
periods, the maximum stability can be recovered after only one minute of ultrasonication.
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Figure 6. (a) A comparison of UV–Vis spectra recorded immediately after ink preparation (day 0),
and 1, 4, 25 and 32 days post-preparation (dilution: 100×); (b) the normalized view of the absorp-
tion at 514 nm (dilution: 100×); (b) inset sedimentation of the ink within the first six hours after
ink preparation.

3.3. Inkjet Printing and Post-Printing Processing

The printing process starts with optimizing the printing parameters, which include
the following: waveform, applied voltage, drop spacing, jetting frequency, cartridge height,
number of printed layers, cartridge temperature, and platen temperature. The printing
was performed at a moderate temperature of 55 ◦C and low jetting frequency. The other
optimized printing parameters are shown in Table S1. For characterization, 8 × 8 mm
squares were printed on polyethylene terephthalate (PET) and polyimide (PI) sheets; this
is due to these substrates being commonly used in printed electronics [12,71]. Multiple
layers of the conductive ink were printed (Figure 7), which is a practical way of increasing
conductivity. The printed samples were characterized by sheet resistance measurements
(RS) with a four-point probe. The printed films were not electrically conductive up to three
layers. At five layers, the measured sheet resistance was 4.27 ± 0.87 MΩ/sq (SD) and
further decreased with additional layers. Nevertheless, such high sheet resistances are
inadequate for most printed electronics applications; moreover, increasing the number
of printed layers becomes pointless beyond a certain number of layers, since this greatly
increases printing duration. Conductivity is instead commonly increased by removal of
non-conducting ink components, usually by thermal post-print processing [72].

We exposed the printed squares to thermal annealing in order to improve the electrical
conductivity via the removal of melamine and polymeric stabilizers. As presented in
Figure 4, most of the melamine thermally decomposes at temperatures of up to 400 ◦C.
The polymeric stabilizer Solsperse 20000 decomposes at somewhat lower temperatures
(Figure S4); while Solsperse 12000S is more stable, but present in minuscule amounts.
Therefore, the printed squares on PI were processed for 1 h at different temperatures, up to
400 ◦C (Figure 7b). The sheet resistance decreased gradually with temperature from the
initial value of around 2.0 ± 0.9 MΩ/sq (SD), down to 44 ± 6 kΩ/sq (SD) at 400 ◦C. The
thermal processing also benefited the homogeneity of the printed features, as evidenced by
the decreasing standard deviations of measured sheet resistances.

To gain better insight into the morphology and topology of the printed features,
SEM and AFM analysis were performed before and after thermal annealing at 400 ◦C
(Figure 8). The surface morphology of the printed pattern before annealing is rough and
inhomogeneous. We observed large melamine crystals (larger than 10 µm in diameter),
which disrupt the electrical conductivity (Figure 8a). The SEM picture of the printed
pattern after thermal annealing confirms a significant enhancement of the film quality and
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removal of melamine crystals due to thermal decomposition (Figure 8d,e). Accordingly,
AFM measurements revealed a decrease in film thickness after annealing, along with a
decrease in surface roughness (Figure 8c,f). The surface roughness parameter Ra (average)
decreased from 580.6 nm to 216.0 nm, while the Rq (quadratic average) decreased from
789.1 nm to 289.1 nm.

 

Figure 7. (a) The different number of printing passes of the conductive ink on a PET and PI substrate;
(b) the sheet resistance of printed squares on PI, after thermal annealing at different temperatures.
Error bars represent one standard deviation (n = 6); red diamond indicates the sheet resistance value
after intense pulsed light (IPL) annealing at the energy of 700 J; examples of flexible printed electronics
using 10 layers (c) and 20 layers (d) of the M-GNS ink.

In addition to thermal processing, we evaluated intense pulsed light (IPL) as a way
of photothermal processing. IPL uses very short high-energy pulses of visible light; it
thereby diminishes the thermal stress on the sensitive polymeric substrate, which makes it
highly compatible with printed flexible electronics [73]. Graphene-based materials are great
candidates for IPL annealing due to their high absorption coefficient in the visible part of
the spectrum [74,75]. Nevertheless, the sheet resistance of printed squares was reduced
only to around 43% of the initial value after exposure to 600 J (Figure S5). A further increase
in IPL energy caused an increase in resistance, suggesting that the conductive film was
damaged during the annealing process. This can be attributed to the formation of gaseous
products (ammonia) of melamine decomposition [58] in very short time intervals, leading
to the removal of graphene from the substrate. Therefore, IPL in itself is not an optimal
processing technology for this kind of conducting ink containing melamine. However,
we exposed the previously thermally annealed samples (at 400 ◦C) to IPL energies of
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700 J. This combined processing procedure resulted in the lowest sheet resistances of only
5.0 ± 0.3 kΩ/sq (SD) for 10 printed layers (shown in Figure 7b) and 626 ± 106 Ω/sq (SD)
for 20 printed layers. As can be seen from Table S2, the measured sheet resistances are
comparable to, or better than, those obtained in similar studies and for a comparable
number of printing passes. While printed metal nanoparticle inks can yield the lowest
sheet resistances, in some cases less than 1 Ω/sq [12], in the case of graphene inks, sheet
resistances are usually larger than 1 kΩ/sq for a single digit number of printed layers.
Increasing the number of printing passes reduces the sheet resistance below the value of
1 kΩ/sq, which is usually observed at 20 passes or more (Table S2). Such resistivities are
sufficient for different printed electronics applications [23]. Finally, as a proof-of-concept
experiment, we constructed simple flexible LED circuits; we constructed the circuits by
printing 10 and 20 layers of the conductive ink on PI, either as plain 2 mm wide conducting
traces or in the shape of our institution logo (Figure 7c,d). The printed traces were annealed
in the same way as previously optimized, by combining thermal and IPL processing. The
attached surface mount LEDs were successfully powered from a single 9 V battery.

 

Ω Ω

Ω
Ω

Ω

Figure 8. SEM (under different magnification) and AFM images of the M-GNS film on a PI substrate:
(a–c) before annealing; and (d–f) after annealing at 400 ◦C.

4. Conclusions

We described here a novel mechanochemical synthesis of melamine-intercalated
graphene nanosheets; we suggest it as a potential approach for large-scale preparation of
graphene, which would comply with the basic principles of green chemistry. The prepared
M-GNS were used as a functional material for the formulation of a stable graphene-based
ink, suitable for inkjet printing. The printing process was optimized to generate electri-
cally conductive patterns on flexible PET and PI substrates. A combination of thermal
and photonic (IPL) annealing reduced the electrical resistance of the printed patterns by
three orders of magnitude. The presented procedure is both scalable and environmentally
friendly; in addition, it represents a starting point in the development of graphene-based
printed flexible electronics.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano12172936/s1, Figure S1: Stability in different solvents; Figure S2: Ab-
sorption spectra of stabilizers and ink formulation; Figure S3: Unsuccessful printing example;
Figure S4: Thermogravimetric analysis; Figure S5: Effect of intense pulsed light on sheet resis-
tance; Table S1: Optimized printing parameters; Table S2: An overview of relevant literature. Refer-
ences [31,35–37,39,76–80] were cited in Supplementary Materials.
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Abstract: Field-effect transistors have attracted significant attention in chemical sensing and clinical
diagnosis, due to their high sensitivity and label-free operation. Through a scalable photolithographic
process in this study, we fabricated graphene-based ion-sensitive field-effect transistor (ISFET) arrays
that can continuously monitor sodium ions in real-time. As the sodium ion concentration increased,
the current–gate voltage characteristic curves shifted towards the negative direction, showing that
sodium ions were captured and could be detected over a wide concentration range, from 10−8

to 10−1 M, with a sensitivity of 152.4 mV/dec. Time-dependent measurements and interfering
experiments were conducted to validate the real-time measurements and the highly specific detection
capability of our sensor. Our graphene ISFETs (G-ISFET) not only showed a fast response, but also
exhibited remarkable selectivity against interference ions, including Ca2+, K+, Mg2+ and NH4

+. The
scalability, high sensitivity and selectivity synergistically make our G-ISFET a promising platform for
sodium sensing in health monitoring.

Keywords: ion-selective field-effect transistor; graphene; sodium ions; real-time monitoring

1. Introduction

Sodium ions are important indicators for monitoring and evaluating health status
owing to their important role in homeostasis and maintaining the proper functions of the
nervous system [1–3]. For instance, the total sodium level in cognitively normal brain
tissues is around 35–45 mM, and 12–21 mM in healthy muscle tissue [4–6]. Deviation of
sodium concentrations in the human body is related to its hydration status, which can
be used as an indicator for health monitoring [7,8]. Thus, rapid, reliable and real-time
monitoring of sodium ions has been an increasing interest in the fields of precision medicine
and personalized healthcare [1,9,10]. To date, solid-contact ion-selective electrodes (ISE)
are the most commonly used platforms for ion sensing, due to their low cost, accuracy, and
simple operation [11–15]. However, ISEs have drawbacks, including the relatively high
detection limit and narrow detection range, e.g., 10−4 or 10−5 M for specific ions [16–19].

Recently, field-effect transistors (FET) have gained increasing attention in ion sensing,
offering the prospect of simple, rapid, cost-effective, and label-free detection [20,21]. The
FET biosensors hold tremendous promise for label-free detection of target molecules with
high accuracy and selectivity, without the usage of fluorescent, isotopic, or electrochemical
labeling [22,23]. In combination with an ion-selective membranes (ISM), ion-sensitive
field-effect transistors (ISFETs) are promising for ion sensing with enhanced sensitivity, and
reduced sensor sizes and response times, providing the possibility to integrate them with
flexible electronics [24–28].
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Graphene is a 2D material with unique material properties, such as high carrier mo-
bility (up to 106 cm2/V·s) [29], high conductivity [30], excellent mechanical strength,
etc. [30,31]. Taking advantage of all these features combined, we have fabricated G-
ISFETs that offer high sensitivity, selectivity and real-time monitoring of sodium ions. The
graphene channel was grown by atmospheric pressure chemical vapor deposition (CVD),
and transferred to pre-patterned electrodes, followed by a scalable photolithographic pro-
cess. The graphene FETs (GFETs) were then functionalized with a sodium ionophore to
specifically capture the target sodium ions. A broad range of sodium concentrations, from
10−8 to 10−1 M, which covers the sodium concentration in tissues, was detected, with a
sensitivity of 152.4 mV/dec. We further conducted time-dependent measurements and
control experiments to demonstrate the capability of real-time monitoring with high selec-
tivity. The high performance of our G-ISFET makes it a promising platform for the real-time
monitoring of sodium ions for health monitoring through physiological liquids.

2. Materials and Methods
2.1. Graphene Synthesis

The monolayer graphene film was synthesized using a chemical vapor deposition
system (Lindberg/Blue M™ Mini-Mite™ Thermo Scientific Co., Waltham, MA, USA). The
copper foil (Alfa Aesar, #13382, Haverhill, MA, USA) was cleaned by sonication in 5.4%
HNO3 for 1 min and then rinsed in DI water twice, followed by drying with high-pressure
nitrogen gas. The cleaned foil was then transferred into the quartz tube. The furnace was
heated to 1050 ◦C with a constant flow of 500 sccm Ar and 30 sccm H2 and then annealed
for 5 min. The 5 sccm-diluted CH4 (0.5% in Ar) was introduced as a carbon source, and the
growth time was 1 h. Lastly, the furnace was rapidly cooled to room temperature under
the H2 and Ar atmosphere.

2.2. GFET Sensor Array Fabrication

The sensor fabrication process was summarized in Figure S1. First, the electrode
pattern was defined on a 4-inch p-doped SiO2 (285 nm)/Si wafer by standard photolithog-
raphy. The contact metallization was 8 nm Cr/45 nm Au, deposited by e-beam evaporation.
Monolayer graphene was then transferred onto the pre-patterned SiO2/Si chip using a
“bubbling” transfer method. Briefly, a layer of polymethylmethacrylate (PMMA) was
spin-coated on the graphene-Cu foil, followed by baking at 105 ◦C for 2 min and then
slowly immersed into a 50 mM NaOH aqueous solution [32]. By applying a 15 V voltage,
the graphene/PMMA film was peeled off from Cu foil by the hydrogen bubbles formed
on the copper surface. The film was washed with DI water thrice and transferred onto the
electrode chip. The chip was air-dried and then baked at 150 ◦C for 2 min before removing
the PMMA with acetone. The graphene/electrode chip was then spin-coated with PMGI
(Micro Chem Corp., Newton, MA, USA) and a S1813 (Shipley) photoresist bilayer and
exposed using an ABM aligner. Graphene outside the channels was removed by O2 plasma
etching. The remaining photoresist on graphene channels was stripped by Remover PG
(Micro Chem Corp., Newton, MA, USA), acetone, and IPA. Finally, the GFET arrays were
annealed in Ar/H2 forming gas at 225 ◦C to remove photoresist residues.

2.3. Ionophore Membrane Preparation

Selectophore grade sodium ionophore X (4-tertbutylcalix [4]arene-tetraacetic acid
tetraethyl ester), sodium tetrakis [3,5-bis(trifluoromethyl) phenyl] borate (Na-TFPB), 2-
nitrophenyl octyl ether (2-NPOE), tetrahydrofuran (THF), and poly (vinyl chloride) (PVC)
were purchased from Sigma-Aldrich. The ionophore membrane was prepared by mixing
1 mg sodium ionophore X, 47.2 mg PVC, 90.7 µL 2-NPOE, and 0.29 mg Na-TFPB [33].
The mixture was dissolved in 1 mL THF and sonicated for 1 h, then stored at 4 ◦C for
further usage.
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2.4. Material Characterization

Micro-Raman measurements were performed by using WiTec Alpha 300 system with
a laser excitation wavelength of 532 nm. An atomic force microscope (AFM, Icon Bruker,
Tucson, AZ, USA) was used to characterize the height increase during the fabrication process.

2.5. Solution Preparation

Sodium chloride (NaCl), potassium chloride (KCl), magnesium chloride (MgCl2),
calcium chloride (CaCl2) and ammonium chloride (NH4Cl) anhydrous salts with >99%
purity were obtained from Sigma Aldrich. The desired concentrations were carefully
prepared and diluted with de-ionized water (18.2 MΩ cm, Milli-Q® 3 UV Water Purification
System). The sweat sample was collected from a cycling volunteer at different sporting
times, and stored in −20 ◦C refrigerator before testing.

2.6. Electrical Measurement

The 285 nm-thick SiO2 served as the gate dielectric, and the highly p-doped silicon
substrate acted as the back-gate electrode. No liquid gate was applied in this study. The
I-Vg characteristic measurements were performed after each functionalization step. The
probe station (FormFactor MPS 150, Livermore, CA, USA) was equipped with a customized
probe card, allowing 100 devices to be measured simultaneously. The Keithley 2400 source
meter was used to apply a bias voltage (V = 0.1 V), and the gate voltage was applied using
the Keithley 6517 model. A Python program was developed to conduct the measurement
and collect data.

3. Results and Discussion

Figure 1a shows an optical image of a GFET fabricated by the photolithographic
process. The monolayer graphene film was synthesized on a copper foil using chemical
vapor deposition, followed by a hydrolysis bubble transfer onto a SiO2/Si chip with
prefabricated Cr/Au electrodes to create an array of 100 GFETs. The graphene channel,
as shown in Figure 1b, was defined by photolithography and oxygen plasma etching.
The GFET chip was then annealed in an Ar/H2 atmosphere to remove any photoresist
residues on the graphene channels [34]. The high quality of the as-fabricated GFETs was
verified by the negligible D peak (~1345 cm−1) in the Raman spectrum (Figure 1c) [35].
The height of the GFET channel was ~0.5 nm, and there was a ~5 µm height increase after
the immobilization of the sodium ionophore membrane. The Raman spectrum and AFM
image together confirm the high quality of the as-grown CVD graphene, even after the
photolithographic process.

As seen in Figure 2, the current-back gate voltage (I-Vg) measurements show good
device-to-device uniformity across the 100 arrays. The Dirac voltage and carrier mobility
were extracted by fitting the hole branch of the I-Vg curve to the following equation [36,37]:

σ−1(Vg

)
=
[
µcg

(
VD −Vg

)]−1
+σ−1

s (1)

where cg is the gate capacitance per unit area (12.1 nF cm−2 for the 285 nm thick SiO2),
µ is the hole carrier mobility, σs is the saturation conductivity when Vg approaches −∞.
The narrow distribution of the Dirac point voltage (6.3 ± 4 V) and hole carrier mobility
(2400 ± 600 cm2 V−1 s−1) indicates a low doping effect induced by the fabrication process.
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The as-fabricated GFETs were then functionalized with the prepared sodium selective
membrane, as shown in Figure 3. Briefly, the sodium ionophore X was dissolved and mixed
with ion-selective membrane (ISM) cocktails (see Materials and Methods). An amount of
25 µL of the solution was drop-cast on the GFET surface, followed by air-drying overnight,
to obtain the G-ISFET. The I-Vg characteristics was measured after the ionophore deposition,
where the deposition of the ionophore leads to a negative Dirac point shift (Figure 2d).
During sensing, the intrinsic structure of ionophore X, namely the calix [4] arenes, provides
a scaffold with an optimum cavity for the complexation of sodium ions [38,39]. The
captured ion in the sodium-selective membrane resulted in a surface potential change and
the Dirac voltage shift in the characteristics curve.

A real-time measurement of the drain-source current through the ISM without the
graphene channel against different sodium solutions (10−5, 10−3, and 10−1 M) was con-
ducted, as shown in Figure S2, and the leaking current between the source and drain
electrodes was found at the sub-nA level, which did not affect our study. The G-ISFET
was tested against a series of sodium concentrations, from 10−8 to 10−1 M, to confirm
the sensor response. The ion sensitive membrane provided a cation exchange site and
created a barrier that prevented nonspecific ions from reaching the sensing surface. As a
result, only sodium ions were able to permeate and pass through the selective membrane
to reach the ISM–graphene interface. Accordingly, the sodium ion accumulation on the
graphene surface caused a doping effect. This G-ISFET response is shown in Figure 4. A
fixed bias voltage of 100 mV was applied during the sensing measurements. As the sodium
concentrations increased, there was a consistent trend of negative shifts in the transport
curves. This Dirac point shift was attributed to the increase in the electron concentration on
the graphene’s surface, due to the accumulation of positively charged Na+ ions, thereby
driving the Fermi level closer to the charge neutrality point through chemical gating, and
consequently decreasing the Dirac point. The dependence of VD on varying Na+ values is
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plotted in Figure 4b, where the dotted line represents a linear fit. The slope of calibration fit-
ting reflects the sensitivity of the G-ISFET, i.e., 152.4 mV/dec. The sensitivity is comparable
to that of recent reports (see Table S1) [20,36,40], presumably attributed to the atomically
thin nature of the graphene and the scalable fabrication of high-quality sensor arrays based
on CVD graphene.
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Figure 4. (a) Transport characteristic curves of G-ISFET against different Na+ concentrations from
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We next investigated the real-time response of G-ISFET against various sodium con-
centrations, by measuring IDS versus sensing time with a fixed gate voltage (Vds = 100 mV).
As shown in Figure 5a, the source-drain current decreased with the increasing Na+ con-
centration, in agreement with the n-doping effect by positively charged Na+ ions. The
linear response in IDS is plotted in Figure 5b, and the fitting indicates a response of
2.2 ± 0.08 µA/dec, consistent with previously reported ISFETs [41–43].
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Selectivity is a crucial factor in evaluating the performance of an ion sensor. We further
carried out interference experiments to verify the effectiveness of our G-ISFET. As shown
in Figure 6, several non-specific ions were tested, including Ca2+, K+, Mg2+ and NH4

+, and
the relative Dirac point shift was plotted. In sharp contrast to the large Dirac voltage shift
for sodium ions, the as-fabricated G-ISFET displays a negligible response to the interfering
ions, indicating that the ion-selective membrane specifically captured the target ions, and
possessed excellent selectivity against nonspecific ions. We also performed measurements
with a real sample, i.e., human sweat. As shown in Figure 6b, the source-drain current
decreased with the increasing concentration of sodium ions (from 47.91 mM to 49.62 mM).
This result confirmed the high selectivity and rapid response of the G-ISFET, which offers a
pathway toward health evaluation through sweat.
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4. Conclusions

We developed a graphene-based ISFET, incorporated with an ion-selective mem-
brane, that can selectively detect sodium ions with high sensitivity. We grew large-area,
high quality monolayer graphene by chemical vapor deposition, followed by a scalable
photolithographic process, to fabricate the GFETs. The as-fabricated GFETs were then
functionalized with sodium ionophore to sensitively capture sodium ions. We detected
sodium ions with a wide range of concentrations, from 10−8 to 10−1 M, and achieved a
sensitivity of 152.4 mV/dec, comparable to previously reported ISFET sensors. Neverthe-
less, the back-gate architecture of G-ISFET eliminates the usage of reference electrodes,
offering a way to miniaturize the ISFET device. We further conducted time-dependent
measurements and interfering experiments to demonstrate the real-time response and
selectivity capabilities of our G-ISFETs, showing a fast response to changes in concentration,
and exhibiting excellent selectivity against interference ions, including Ca2+, K+, Mg2+

and NH4
+. The scalability, sensitivity and selectivity synergistically make our G-ISFET a

promising candidate for sodium sensing in health monitoring.
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Abstract: Electronic transport in the lowest Landau level of disordered graphene sheets placed in a
homogeneous perpendicular magnetic field is a long-standing and cumbersome problem which defies
a conclusive solution for several years. Because the modeled system lacks an intrinsic small parameter,
the theoretical picture is infested with singularities and anomalies. We propose an analytical approach
to the conductivity based on the analysis of the diffusive processes, and we calculate the density of
states, the diffusion coefficient and the static conductivity. The obtained results are not only interesting
from the purely theoretical point of view but have a practical significance as well, especially for the
development of the novel high-precision calibration devices.

Keywords: low-dimensional semimetals; electronic transport in graphene; quantum hall effect

1. Introduction

Two-dimensional (2d) electronic systems in general and their transport properties in
particular have been in the focus of intense research for several decades. In such systems,
the effects due to quantum interference are strong and give rise to the interesting and
rather unintuitive phenomena, as for instance various facets of the quantum Hall effect.
Yet another effect on the transport that is supposed to be strong in 2d arises from the
disorder which is always present in realistic materials. In conventional 2d electron systems,
which are characterized by a parabolic and isomorphic spectrum, the presence of the
disorder is widely believed to lead to the destructive interference of electronic quantum
waves and consequently to the suppression of the electronic transport through the system
on macroscopic scales. This phenomenon is usually called the Anderson localization of
electronic wave functions, and it has received much of attention in the past [1–4]. This
picture was challenged with the discovery of the unconventional behavior of electrons in
the transition between Hall plateaux in quantum Hall systems. The experimental evidence
from this observations points to the principal possibility for the existence of a metallic
state in 2d systems under special conditions [5]. However, a real change of paradigm
occured with the discovery of metallic states in graphene [6–8] and in a number of further
low-dimensional systems, which is collectively known as the topological insulators [9–16].
A feature common to all these systems is the presence of the so-called nodes in the band
structure and the linearity of the spectrum in the vicinity of these nodes. Despite being
pristine 2d systems, they reveal a finite dc conductivity, which is very robust against
disorder and thermal fluctuations.

The theoretical approach to the electronic transport of disordered electron gases is a
rather formidable and cumbersome undertaking. Because the translational symmetry in the
system is explicitly broken by the randomness, the usual methods of the theoretical analysis,
which are mainly built around the duality between the position and momentum space
representations and the special role of the Fourier transformation as the diagonalization
tool for the quadratic Hamiltonians, no longer work. Therefore, the main idea behind
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every analytical approach to the macroscopic disordered systems is to reintroduce the
translational invariance into the system by mapping the initial problem, which usually
neglects the electron–electron and electron–phonon interactions from the outset, by a
kind of an averaging operation on an effective interacting model in which the scattering
of individual electrons on the randomly distributed potentials is approximated by the
interaction operators expressed in terms of bilineals of second quantization operators.
However, in practical terms, such an averaging procedure works well only under a weak
disorder assumption, which guarantees a well-formed saddle-like shape of the free energy
functional. In this case, the main effects caused by the disorder are taken into account by
the summation of all contributions in partial diagrammatic channels [2–4,17–30].

In magnetic fields, the quantum mechanics of charge carriers with a linear spectrum
specific for graphene is governed by an interplay of the intrinsic and magnetic-field-induced
Berry curvatures. Several aspects of this physics remain widely untouched, though. For
instance, relatively little is known about the role of disorder and its interplay with the
magnetic field. The overall progress in this area has been slow because of the technical chal-
lenges, which are considerable even by the standards of the community [31–35]. A number
of issues make the disordered electrons in the homogeneous perpendicular magnetic field
look differently than the situation without a magnetic field. Due to the freedom of the
gauge choice, the problem can be approached in a number of ways, which differ very much
in details and in the outer appearance. The popular choice of the central gauge has the
advantage that the solutions of the Schrödinger equation are states localized in the position
space. Therefore, one can do computations in the position space in an exact manner.

The envisaged problem is notoriously difficult because the model lacks a small ex-
pansion parameter [36]. This inevitably leads to divergent expansion series. A powerful
method developed to keep such divergences under control is the renormalization group.
In the past, our understanding of the physics of disordered metals and semiconductors
profited vastly from the various combinations of variational and perturbative techniques
with the renormalization group, c.f. Refs. [1–3,25–27] and Refs. [37–39]. However, in the
central gauge picture, there is no continuous variable to be sliced off by iterations in order
to obtain the renormalization group equations. Of course, one can use a different gauge,
which allows for a description in terms of states localized in one direction and propagating
in the other. The price to pay is the loss of exactness, which is too costly to give up. In this
paper, we develop a diagrammatic approach to the conductivity of the two-dimensional
disordered electron gas in a strong magnetic field in a central gauge picture. While these
series can still be wrapped up exactly for the single-particle propagators, as it was im-
pressively demonstrated by Wegner in Ref. [32], additional technical issues make elusive
every attempt of applying these techniques with the same success to the two-particles
propagators. The available divergent series cannot be directly plugged into the Kubo
formula without some not a priori obvious regularization or resummation. Hence, the
usual way to approach the conductivity is via the Einstein relation and correspondingly via
the notion of diffusion [40–42]. Because the corresponding statistical averages require nor-
malization with respect to the vacuum fluctuations [43], this provides a tool of estimating
the measurable quantities by means of some kind of analytical continuation [34,35,44,45].

To make our approach function, it relies on the information from the perturbative
expansion. Therefore, we perform the exact computations of the perturbative series to
the very high order. We identify the exact asymptotics of the two-particles propagator
functions and approach the diffusion coefficient via the mean squared displacement using
these asymptotics. It turns out that the behavior at longer time is dominated by the
higher-order elements and tends toward a stationary state. On the sublaying time scales
though, there is a large region with linear time dependence, which is characteristic of the
diffusion. To approach this regime, we propose a self-consistent equation of motion for
the mean squared displacement and extract the diffusion coefficient from there. With the
obtained diffusion coefficient and density of states, we find via the Einstein relation a
universal expression for the static conductivity in the lowest Landau level. All the system
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becomes metallic within a parameter window around the eigenvalues of the Hamiltonian
of the clean system. With increasing disorder, this parameter window becomes broader.
Numerically, the conductivity of disordered gapless and undoped graphene is very close to
the experimentally established values.

The structure of this paper is as follows: In Section 2, we briefly discuss the main
facts about the tight-binding Hamiltonian on the honeycomb lattice, its eigenvalues and
eigenstates, and introduce the effective continuous model. In Section 3, we elaborate on
the topological properties of the Hamiltonian and its eigenstates. In Section 4, we proceed
with the consideration of the effective Hamiltonian, which describes the graphene in a
strong external magnetic field and evaluates the single-particle propagator of the clean
system in Section 5. In Section 6, we evaluate the Kubo–Greenwood formula for the dc
conductivity of the clean gapless and chemically neutral graphene off and in an external
magnetic field. In Section 7, we approach the single-particle propagator of the disordered
system and discuss the Wegner’s exact solution and the exact density of states. In Section 8,
we give our result for the two-particles propagator and for the mean squared displacement.
Finally, in Section 9, we extract the diffusion coefficient from the equation of motion of the
mean squared displacement and with that the static conductivity.

2. Tight-Binding and Effective Hamiltonian of Graphene

First, we briefly review the main spectral and topological properties of the tight-
binding Hamiltonian on a honeycomb lattice. In second quantization, it reads

HTB = −t ∑
〈rr′〉

(c†
r dr′ + d†

r′cr) , (1)

where c and d (c† and d†) denote the annihilation (creation) operators acting on the lattice
sites of each sublattice of the honeycomb lattice, respectively. The nearest neighbor positions

are a1 = a(0,−1), a2,3 =
a

2

(
±
√

3, 1
)

, where a denotes the lattice spacing. The tight-
binding Hamiltonian Equation (1) is translationally invariant and is diagonalized by a

Fourier transform, giving the eigenvalues E± = ±E = ±
√

h2
1 + h2

2 and the respective
eigenstates of the first-quantized Hamiltonian

|v±〉 = ±
1√
2E

[(h1 − ih2) ,±E]T, (2)

with h1 = −t
3

∑
i=1

cos(ai · k) and h2 = −t
3

∑
i=1

sin(ai · k). The eigenvalues of the tight-binding

Hamiltonian vanish at nodal points at the corners of the hexagonal Brillouin zone. Each of
the corners contributes with the fraction 1/3 to the total number of cones, which therefore is
2. At chemical neutrality, i.e., for Fermi energy laying precisely at nodal points, there is no
extended Fermi surface, and it became common to talk about Fermi points or semimetals.
Close to the Fermi points, the fermion dispersion is linear and therefore describes massless
Dirac particles, cf. Figure 1. The two Dirac cones are not exactly equivalent though, but
they differ by a subtle notion of chirality. The states corresponding to each of two cones can
be thought of as the chiral partners of each other. The total chirality of the tight-binding
Hamiltonian is therefore zero. Being interested in the physics at low energies, it is usually
sufficient to use the effective low-energy Hamiltonian

H = ∆0Σ03 + ǫ0Σ00 − iv(D+∇− +D−∇+), (3)

where ∇± = ∂x ± i∂y. To describe the 4× 4 matrix body of the Hamiltonian, it is useful to
introduce the Dirac matrices Σab = σa ⊗ σb, a, b = 0, 1, 2, 3, with σa=1,2,3 denoting the Pauli
matrices in their usual representation and σa=0 being the two-dimensional unity matrix.
The first index refers to the valley and the second refers to the sublattice degree of freedom.
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With that, D± = 1/2[Σ01 ± iΣ02] follows. The band gap ∆0 in pristine graphene is usually
attributed to the spin–orbit coupling and has the size of roughly 10−3 meV [11], but it
can also be considered as a free parameter available for fine tuning. Finally, the chemical
potential ǫ0 is an adjustable quantity.

-

4 Π

3 3

4 Π

3 3

k2

-1

1

2

3

Energy

Figure 1. Spectrum of the tight-binding model along the line k1 = 0 with two Dirac cones at the
corners of the Brilloun zone. The energy axis is scaled in units of the hopping parameter between
nearest-neighbors t.

3. Topological Chern Number

The phase of the wave function plays a crucial role for the properties of the related
physical system. It is associated with a topological invariant called the Chern number and
is ultimately responsible for the robust macroscopic properties, such as for instance the
famous universal conductance. The Chern number is defined as a contour integral [46]

C =
1

2π

∮

C
d~k · ~A(k) (4)

over the so-called Berry vector potential ~A(k) = −i〈v±|~∇k|v±〉 along any closed path
in the reciprocal space. Here, |v±〉 denotes an eigenstate of the Hamiltonian defined in
Equation (2). The Berry vector potential corresponding to the completely filled band of
the full tight-binding Hamiltonian is shown in Figure 2. It appears to have the shape of a
double vortex centered around the nodal points of the spectrum and demonstrates nicely
the difference in chirality of the Dirac cones by whirling in opposite directions. The total
Chern appears as the sum of Chern numbers from each eigenstate. Therefore, the total
Chern number of the pristine graphene is zero, but this might change if a fundamental
symmetry of the Hamiltonian is broken, e.g., by applying a magnetic field.
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-
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Figure 2. The circulation of the Berry vector potential corresponding to the occupied band of the full
half filled tight-binding model in the reciprocal space with visible vortex-like structures around the
position of the nodal points.

4. The Effective Hamiltonian in Strong Magnetic Field

In strong magnetic fields, we replace the usual derivatives by the covariant ones
∂µ → ∂µ + iAµ, with the vector potential A related to the magnetic field via ∇× A = B.

Here, we use the central gauge A = B/2(−y, x, 0)T, the choice which makes analytical cal-
culations particularly convenient. Introducing complex coordinates z = x + iy, z̄ = x− iy,
and corresponding derivatives ∂z = (∂x − i∂y)/2, ∂z̄ = (∂x + i∂y)/2, with the properties
∂zz = ∂z̄ z̄ = 1, ∂z z̄ = ∂z̄z = 0, we get∇− → 2∂z + k2z̄ = A,∇+ → 2∂z̄ − k2z = A†, where

k2 =
eB

2h̄
=

1
ℓ2 . (5)

where ℓ = 1/k is referred to as the magnetic length. The operator A annihilates the functions

ϕn(r) =
k√
π

(kz̄)n

√
n!

e−
k2
2 zz̄ (6)

i.e., Aϕn(r) = 0, for every positive integer n. The Gaussian part of Equation (6) guarantees
the localization in the position space and makes it possible to carry out an integration in
the position space exactly. The holomorphic part of Equation (6) contains only powers of
z̄, and therefore, the wave function itself is manifestly chiral, which can be linked to the
induced Berry curvature. The difference in the intrinsic Berry curvature discussed around
Equation (4) is in the absence of the partner state with the opposite chirality, which reflects
the explicit time-reversal symmetry breaking by an external magnetic field. The Hilbert
space of the lowest Landau level is infinitely degenerate; i.e., n can assume every positive
integer value between zero and infinity. In this notation, the Hamiltonian becomes

H = ∆0Σ03 − ǫ0Σ00 − iv
(
D+A +D−A†

)
. (7)

The ground state (i.e., the eigenstate in the lowest Landau level) suffices the condition

iv
(
D+A +D−A†

)
ψ = 0, (8)
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which suggests two solutions:

ψ+,n(r) = ϕn(r)




0
1
0
0


, ψ−,n(r) = ϕn(r)




0
0
1
0


, (9)

which correspond to two valley polarization. The respective eigenvalues of the Hamil-
tonian for each spin projection in the lowest Landau level are found from the stationary
Schrödinger equation

Hψ = Eψ, (10)

which yields for both spectral branches (or Landau sublevels) [47]

E± = −ǫ0 ± ∆0, (11)

i.e., the spectrum of both Dirac electron species consists of two flat bands irrespective of
the strength of the magnetic field. Moreover, in chemically neutral and gapless graphene,
the spectrum in the lowest Landau level is at zero [48].

5. Single-Particle Propagator in the Lowest Landau Level

The advanced (+) or retarded (−) Green’s function in the lowest Landau level can be
calculated using the spectral representation

G±r,r′ ∼
∞

∑
n=0

ϕn(r)ϕ̄n(r
′) ∑

s=±

Ps

E− Es ± 0+
, (12)

where Es are the eigenvalues of the Hamiltonian for each spin projection in the lowest
Landau level, as shown in Equation (11), and the normalization will be fixed later. The
projectors P± on the spin space

P+ =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 and P− =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 (13)

are idempotent and orthogonal matrices with properties P+P− = 0, P+P+ = P+,
P−P− = P−. The summation over all n yields

∞

∑
n=0

ϕn(r)ϕ̄n(r
′) =

k2

π
e−

k2
2 (|z|2+|z′ |2)

∞

∑
n=0

(k2z̄z′)n

n!
=

k2

π
e−

k2
2 (|z|2+|z′ |2−2z̄z′), (14)

which then gives for the Green’s function [32,49]

G±r,r′(E) =
k2

2π
e−

k2
2 (|z|2+|z′ |2−2z̄z′) ∑

s=±

Ps

E− Es ± 0+
. (15)

Notably, the local Green’s function (r = r′) is a coordinate independent constant. The
propagator is normalized this way in order to satisfy the usual sum rule

∓
∞∫

−∞

dE

π
Im trG±r,r(E) =

k2

π
=

eB

h
, (16)

where the trace operator acts only on the spin space. Equation (16) gives the number of
the elementary flux quanta φ0 = h/e per unit volume. In the real-time representation, the
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Green’s function represents a simple collection of undamped harmonic functions with the
period determined by the eigenenergies of the lowest Landau level modes

G±r,r′(t) = ∓i
k2

2π
e−

k2
2 (|z|2+|z′ |2−2z̄z′) ∑

s=±
Pse±iEst, (17)

and the initial time is assumed to be at zero. The Green’s function is totally separable on
the space-time.

For the case of chemically neutral gapless graphene, the Green’s function becomes
particularly simple [49]:

G±rr′(E) =
k2

2π

1
E± i0+

e−
k2
2 (|z|2+|z′ |2−2z̄z′)[P+ + P−], (18)

i.e., in the real-time representation, it is just a step function θ(t).

6. Static Conductivity of the Pristine Graphene vs. the Lowest Landau Level

The static conductivity of the clean system can be evaluated from the Kubo–Greenwood
formula [28,29,34,35,50]:

σdc
µµ =

e2

h
lim
E→0

E2 tr
∫

d2r r2
µ G+

r,0(E)G−0,r(E). (19)

We first evaluate this expression for the pristine graphene without a magnetic field.
The Green’s function of such system reads

G±r,r′(E) =
∫

d2q

(2π)2 e−iq·(r−r′)[±iEΣ00 + q · J]−1 =
∫

d2q

(2π)2 e−iq·(r−r′)G±(q), (20)

where
Jµ =

∂H

∂qµ
(21)

denotes the current operator, while the second power of the position operator can be
written as

r2
µ = − ∂2

∂q2
µ

∣∣∣∣∣
q=0

e−iq·r. (22)

Therefore, the Kubo–Greenwood formula changes to

σdc
µµ =

e2

h
lim
E→0

E2 tr
∫

d2q

(2π)2 JµG−q (E)G+
q (E)JµG+

q (E)G−q (E). (23)

Taking into account

G±q (E)G∓q (E) =
1

q2 + E2 , (24)

we then get to

σdc
µµ =

e2

h
lim
E→0

∫
d2q

(2π)2
4E2

[q2 + E2]2
, (25)

with 4 being the trace of the unity matrix. Assuming an infinitely large upper cutoff, we
finally get for the conductivity a universal number

σdc
µµ =

1
π

e2

h
, (26)

which is the famous universal conductivity of graphene [6]. Remarkably, this result is also
valid for the case of weakly disordered Dirac electron gas [30,51–53].
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For the calculation of the static conductivity in the lowest Landau level of clean gapless
and undoped graphene, we employ the Green’s function shown in Equation (18). Here, we
can evaluate the Kubo–Greenwood formula directly in the position space

σdc
µµ =

e2

h

(
k2

2π

)2

lim
E→0

E2
∫

d2r r2
µe−k2r2 2

E2 =
1

4π

e2

h
, (27)

where 2 is the trace of the matrix P+ + P−. In addition, here is the conductivity of a
universal number, but its magnitude is only a quarter of the clean graphene. It is obvious
that this result is solely due to the presence of the zero mode in the spectrum of the
gapless and chemically neutral graphene. A slightest doping or a smallest spectral gap
would destroy this dc conductivity. Because of this fragility, we can think of the resulting
Equation (27) as an anomaly in the parametric space of infinitely small thickness. In
analogy to the situation without a magnetic field, we expect the widening of this line by
disorder [53].

7. Single-Particle Propagator Renormalization Due to the Disorder

The disorder is introduced in the form of the fluctuating chemical potential v(r), which
couples in the spin space to the unity matrix Σ00, with the white noise correlator:

〈vr〉g = 0, 〈vr1
vr2
〉g = gδr1r2

. (28)

The averaged propagator reads

Ḡ±r1r2
= 〈[(G±)−1 + vΣ00]

−1
r1r2
〉g. (29)

To perform the disorder average perturbative, we expand the propagator in powers of
v. Because of the properties of the disorder correlator Equation (28), all terms with an odd
number of potentials v vanish. The series then becomes

Ḡ±r1r2
= 〈G±r1r2

+ G±r1x1
vx1

G±x1x2
vx2

G±x2r2
+ G±r1x1

vx1
G±x1x2

vx2
G±x2x3

vx3
G±x3x4

vx4
G±x4r2

+G±r1x1
vx1

G±x1x2
vx2

G±x2x3
vx3

G±x3x4
vx4

G±x4x5
vx5

G±x5x6
vx6

G±x6r2
· · · 〉g. (30)

Here, the summation over repeating indices is understood.
The Green’s function shown in Equation (15) is spanned by the spin projectors Ps.

Therefore, only the disorder diagonal in the spin space is of importance. In addition to the
randomly fluctuating chemical potential considered here, these might include the randomly
fluctuating gap, which couples to Σ03, the random “chiral” chemical potential (Σ30), or the
random “chiral” mass (Σ33). Each product of these matrices with Ps projects them bar the
sign back onto Ps again. Therefore, the perturbative series shown in Equation (30) does
not depend on a particular disorder type, and our analysis is generic and disorder type
independent.

The exact Green’s function of disordered electrons in the lowest Landau level was
obtained by Wegner in Ref. [32] in the distinctly separable form

Ḡ±rr′(E) =
k2

π
e−

k2
2 (|r|2+|r′ |2−2r̄r′) ∑

s=±
F±s (E)Ps. (31)

The frequency-dependent part of the Green’s function evaluated to the order g3 by
evaluation of the diagrams shown in Figure 3 reads

F±s (E) =
1
2

1
E− Es

[
1 +

E2
g

[E− Es]
2 +

5
2

E4
g

[E− Es]
4 +

37
4

E6
g

[E− Es]
6 · · ·

]
, (32)
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where E2
g = gk2

4π . The expansion coefficients 1, 1, 5/2, 37/4... are precisely those of the
Wegner’s exact solution [32]. They are determined as expansion coefficients of the function

− ∂

∂a
log

[
2π√

b
e−

a2
b

∫ ∞

a√
b

dt e−t2

]
. (33)

in powers of b/a2. Following [32], we find for the frequency-dependent part of the dressed
single-particle propagator

F±s (E) = ηs(E)∓ iρs(E), (34)

with the following explicit expressions for the real

ηs(E) =
1

Eg




2
π

eν2
s

∫ νs

0
dt et2

1 +
(

2√
π

∫ νs

0
dt et2

)2 − νs


, (35)

and imaginary parts [33,34]

ρs(E) =
1√
πEg

eν2
s

1 +
(

2√
π

∫ νs

0
dt et2

)2 . (36)

They depend on the dimensionless energy

νs =
E− Es

Eg
, where E2

g =
gk2

4π
. (37)

2

2

22

Figure 3. Perturbative processes contributing to the dressing of the single-particle propagator due to
the disorder to order g1 (one diagram), g2 (three diagrams), and g3 (fifteen diagrams). Some of the
diagrams of order g3 should be counted twice because of the degeneracy due to the mirror symmetry
with respect to the imaginable vertical axis, which is accounted for by the factors 2 in front of them.
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In the chosen units, the disorder-related energy Eg is a dimensionless quantity, which
is proportional to the ratio of two relevant lengths Eg ∼ lλ/ℓ: the magnetic length ℓ ∼ 1/k
and the disorder related length lλ ∼

√
g. The total density of states

ρ(E) = ∓ 1
π

Im trG±rr(E) =
1

π5/2
k2

Eg
∑

s=±

eν2
s

1 +
(

2√
π

∫ νs

0
dt et2

)2 . (38)

is correctly normalized in accordance with Equation (16). Figure 4 shows the DOS from
Equation (38). For weak disorder strength, the density of states that appears has the form of
two sharp peaks placed symmetrically around the energy eigenvalues in the lowest Landau
level. It is plotted in units of 1

π5/2
k2

Eg
∼ (ℓlλ)

−1, ℓlλ being the parametric volume constructed
from the two specific lengths of the model. The peaks become broader with increasing
disorder strength and overlap with each other until they merge to a single structure.

For the gapless and chemically neutral graphene, both peaks overlap and form a
unique structure around the zero energy

ρ(E) =
2

π5/2
k2

Eg

eν2

1 +
(

2√
π

∫ ν

0
dt et2

)2 , ν =
E

Eg
. (39)

Therefore, at the band center, we get

ρ(0) =
2

π5/2
k2

Eg
. (40)
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Figure 4. Evolution of the DOS of both Landau sublevels defined in Equation (11) (a–d) plotted
in units of the DOS at each suband center 1

π5/2
k2

Eg
with increasing disorder strength as a function

of the dimensionless energy ν. The following quantities are used: ǫ0/t = 0.15, ∆0/t = 0.1 and
Eg/t = 0.01, 0.045, 0.073, and 0.1 in units of the hopping amplitude. Dashed lines emphasize the
position of each eigenvalue.

40



Nanomaterials 2022, 12, 1675

8. Mean Squared Displacement of the Disordered System

The access to the diffusion goes via the mean squared displacement

〈r2
µ(t)〉 =

tr ∑
r

r2
µPr0(t)

tr ∑
r

Pr0(t)
, (41)

where rµ is the position operator and Prr′(t) is the return probability density defined as

Prr′(t) =
∫

dE

2π
e−iEtPrr′(E), (42)

where
Prr′(E) = 〈G+

rr′(E)G−r′r(E)〉g, (43)

is the disorder averaged two-particles propagator. Notably, the numerator of Equation (41)
appears to be essentially the Kubo–Greenwood formula shown in Equation (19). The
relation between the mean squared displacement and diffusion is established via

d

dt

∣∣∣∣
t=0
〈r2

µ(t)〉 = 2D, (44)

where D is the diffusion coefficient. If we would be able to determine the diffusion
coefficient of the disordered system through the direct evaluation of Equation (41), then it
will be possible to compute the conductivity from the Einstein relation (in this particular
form adopted from [29,50])

σ =
e2

h̄
Dρ(E), (45)

where ρ(E) is the density of states discussed in the previous paragraph.
A rigorous evaluation of the full perturbative series for the two-particles propagator

〈G+
r,0G−0,r〉g along the lines of Wegner’s calculations for the single-particle propagator is

principally impossible. Therefore, we need to consider the spatial averages. We evaluate
both expressions from the numerator and denominator of Equation (41) perturbatively.
Evaluation of all perturbative diagrams to order g3, shown in Figure 5 yields for the
expression in the numerator of Equation (41)

tr ∑r r2
µPr0(E) = 1

4π
1

E2
g

∑s=±(2Xs)
2
[

1
2 + (2Xs)

2 + 2(2Xs)
4 + 167

36 (2Xs)
6 + · · ·

(
3
4 (2Xs)

4 + 343
72 (2Xs)

6 + · · ·
)

cos 2φs +
(

139
72 (2Xs)

6 + · · ·
)

cos 4φs + · · ·
]
,

(46)

where

X2
s (E) = E2

g[η
2
s (E) + ρ2

s (E)] and φs(E) = arctan
[

ρs(E)

ηs(E)

]
. (47)

According to Equations (35) and (36), X2
s (E) and φs(E) are dimensionless functions

of the argument νs = (E− Es)/Eg. The analogous computation for the denominator of
Equation (41) yields

tr ∑r Pr0(E) = k2

4π
1

E2
g

∑s=±(2Xs)
2
[
1 + (2Xs)

2 + 3
2 (2Xs)

4 + 13
4 (2Xs)

6 + · · ·
(
(2Xs)

4 + 9
2 (2Xs)

6 + · · ·
)

cos 2φs +
( 5

2 (2Xs)
6 + · · ·

)
cos 4φs + · · ·

]
.

(48)

A reasonable approximation for the two-particles propagator that leads beyond this
partially rigorous result includes all diagrams of the so-called ladder channel. The four
lowest order ladder diagrams are evaluated as [54]
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=
1

4E2
g

(
k2

π

)2

∑
s=±

(2Xs)
2 exp

[
−k2r2

]
, (49)

=
1

4E2
g

(
k2

π

)2

∑
s=±

(2Xs)
4

2
exp

[
− k2r2

2

]
, (50)

=
1

4E2
g

(
k2

π

)2

∑
s=±

(2Xs)
6

3
exp

[
− k2r2

3

]
, (51)

=
1

4E2
g

(
k2

π

)2

∑
s=±

(2Xs)
8

4
exp

[
− k2r2

4

]
, (52)

which suggests the following asymptotics of the two-particles propagator in the form of an
infinite series:

Plad
r0 (E) ≈ 1

4E2
g

(
k2

π

)2

∑
s=±

∞

∑
n=1

(2Xs)
2n

n
exp

[
− k2r2

n

]
. (53)

Using this expression, one can complement Equations (46) and (48) to any order.

Figure 5. Perturbative processes contributing to the dressing of the two-particles propagator up to
the third order in disorder strength. Solid lines denote the fully dressed Wegner’s propagators and
the dashed lines denote the disorder correlators.

9. Equation of Motion for the Mean Squared Displacement

The equation of motion for the mean squared displacement has the form of the second-
order ordinary differential equation

k2 ∂2

∂t2 〈r
2
µ(t)〉 = −E2

g IN

[
N

2
− k2〈r2

µ(t)〉
]

, (54)

where N refers to the order of the perturbative expansion. The expression for the integral
IN can be found in [54]. For our purposes, it is only important that it decreases with
increasing N.

The large-time asymptotics (t≫ tc, tc being some crossover time far in the past, which
can be chosen zero) is given by the solution of the self-consistent equation

〈r2
µ(t)〉> ≈

N

2
ℓ

2 + ℓ
2C exp

[
− t

τ

]
, (55)
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where we introduced the scattering time as

τ ≈ 1√
IN Eg

. (56)

In the limit t→ ∞, the mean squared displacement approaches its upper bound

lim
t→∞
〈r2

µ(t)〉> →
N

2
ℓ

2, (57)

which for N → ∞ lies in the infinity and is therefore never reached. Hence, it can be only
approached from below, which requires C to be negative. If

√
IN is small, then τ is large,

and the regime with linear time dependence should be broad. The diffusion coefficient is
then obtained from

∂

∂t
〈r2

µ(t)〉>
∣∣∣∣
t=tc

= |C| ℓ
2

τ
. (58)

Formally, |C| should follow from the initial condition at t = tc, but for this, we need
to know 〈r2

µ(tc)〉>, which lies far in the past and is therefore forgotten. In order to be a
physical quantity, we demand for D an invariance with respect to N. This is similar to
the version of the renormalization group typically used in the high-energy physics. This
implies

∂

∂N
(
√

IN |C|) = 0, (59)

from where then follows √
IN |C| = const. (60)

Even though this constrain might appear not entirely transparent, it has a natural
analogy in the case of disordered electron gas without a magnetic field. Here, the diffusion
coefficient is determined from the self-consistent Born approximation and appears unchanged
in the partial series, e.g., cooperon or diffuson [22,23]. A comparison with Equation (44)
suggests this constant to be 2. Then, the physical diffusion coefficient becomes

D ≈
Eg

k2 ∼ ℓlλ, (61)

i.e., it is proportional to the parametric volume of the model.
Inserting the density of states from Equation (38) and the diffusion coefficient

Equation (61) into the Einstein relation Equation (45) yields the conductivity. The system
is conducting within a parametric window located around each of the Landau sublevels.
The width of the conducting window is determined by the parameters of the microscopic
model and by the disorder. The transition g → 0 is smooth, and the conductivity degen-
erates to two sharp peaks at the Landau sublevels. With increasing disorder, the peaks
become broader and merge at some point to an amorphous structure. Simultaneously, the
amplitude becomes smaller, signaling the suppression of the conductivity in the strong
disorder limit.

We are now in the position to compute the conductivity at an arbitrary Landau sublevel
defined in Equation (11). The corresponding density of the states is shown in Figure 4. For
weak disorder, the contribution from the other sublevel is negligible, and we get for the
density of states

ρsl(0) ≈
1

π5/2
k2

Eg
. (62)

Using the units of e2/h instead of e2/h̄ adds an extra factor of 2π, i.e.,

σsl = 2πDρSL(0)
e2

h
≈ 2π

π5/2
e2

h
≈ 0.36

e2

h
. (63)
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Numerically, it is close to the dc conductivity in clean graphene off the magnetic field
e2

πh ≈ 0.32 e2

h evaluated in Equation (26), which is valid even for the weakly disordered
systems [30,51–53]. For us, the most interesting limit is the case of the neutral and gapless
graphene, for which a rich empirical knowledge is available. Our estimation would give
for this zero mode

σzm(0) = 2σsl ≈ 0.72
e2

h
. (64)

Respected experimental studies of Ref. [55,56] determine the room-temperature lon-
gitudinal resistivity at the band center in the lowest Landau level as roughly 35 kΩ and
42 kΩ, respectively, which corresponds to (with h/e2 ≈ 25, 812 Ω) to

σexp(0) ≈ 0.614
e2

h
÷ 0.737

e2

h
, (65)

which is surprisingly close to our estimation. The comparison is justified, since the disorder
can be considered as an effective temperature, cf. [57] and references therein.

10. Discussions

The diffusion of electrons in random environments confined to the lowest Landau
level in two spatial dimensions is a long-standing and conceptually challenging problem
of quantum statistical mechanics. Without disorder, the quantum mechanical description
of the problem is simply that of the harmonic oscillator with a discrete, though highly
degenerate spectrum, comprising of the so-called Landau levels. In the strong magnetic
field, the gap between the lowest and the first Landau levels is very large and only the
lowest Landau level is relevant. In this regime, the electrons are distributed between
the stationary Landau orbits in the position space and should stay there forever, thus
forbidding any transport across the sample. This is due to the disorder that the electrons
can move from one Landau orbit to another, producing an observable current. While several
analytical approaches have been developed in the past for systems of disorder electrons
off a magnetic field, a meaningful formulation of the problem in the strong magnetic field
is conceptually difficult, because the problem lacks a small parameter, and therefore, the
perturbative expansions in powers of the disorder potential diverge. At the single-particle
level, the problem has been solved by Wegner [32], who found an exact expression for the
single-particle propagator. The Wegner propagator does not reveal any singularities and
describes a state of the matter without pronounced resonances and consequently without
clearly defined quasiparticles. However, the difficulties aggregate by far if one goes beyond
the single-particle picture and considers processes involving two or more particles.

Our main intention is to calculate the static conductivity of disordered graphene
in a strong magnetic field. In the lowest Landau level, the spectrum of the gapless and
chemically neutral graphene Hamiltonian has zero energy, which are the consequence of
its band topology and responsible for the exceptional transport properties under normal
conditions. The spectral gap or fluctuations of the Fermi energy due to the hopping
between second-nearest neighbors on the honeycomb lattice split this zero mode in two
sublevels. Surprisingly, the static conductivity of the clean system evaluated from the Kubo–
Greenwood formula gives a conductivity within infinitely thin parametric windows around
the zero mode. One would expect that the disorder broadens this window to considerable
sizes. However, because the perturbative series for the two-particles propagator diverges,
a naive use of the Kubo formula fails. Therefore, we approach the conductivity via the
Einstein relation, which requires the knowledge of the density of states and of the diffusion
coefficient. While the former is known from the Wegner’s solution, the latter is not. To
deal with such divergences, we develop an analytical approach based on a self-consistent
equation for the mean square displacement, which allows one to directly extract the
diffusion coefficient and static conductivity.

Following the line of Wegner’s exact considerations, we determine the general ex-
pression of the density of states of graphene. With a gap, the density of states of weakly
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disordered graphene represents two sharp peaks centered around each of the sublevels.
For the case of gapless and chemically neutral graphene, both peaks coalesce to a single
one with twice the height. The diffusion coefficient is extracted from the time evolution of
the mean squared displacement. The latter tends toward a stationary state, which would
reestablish the situation we observe in the clean system with all electrons distributed be-
tween stationary orbits. However, our findings suggest an infinitely large time needed
for the system to arrive in this state. At the intermediary time scales, the mean squared
displacement behaves lineary in time from which the diffusion coefficient is extracted.
The combination of the density of states and diffusion coefficient, known as the Einstein
relation, gives a universal, i.e., disorder independent value for the static conductivity. At
the band center of the lowest Landau level, we find for the conductivity a universal value
∼ 0.72 e2/h, which is surprisingly close to the established results for the conductivity of
the disordered Dirac electrons. In the subsequent work, we intend to extend our analysis
to higher Landau levels and to address the Hall conductivity with the aim of arriving at an
effective description of a kind of the Chern–Simons theories .

The quantum Hall effect has long become the standard tool for high-precision mea-
surements and adjustments [58]. With our clearly laid out prediction for the dc conductivity
in the lowest Landau level of graphene, we have provided a benchmark for prospective
graphene-based metrological standardization devices.
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Abstract: We predict Bose-Einstein condensation and superfluidity of dipolar excitons, formed by
electron-hole pairs in spatially separated gapped hexagonal α− T3 (GHAT3) layers. In the α− T3

model, the AB-honeycomb lattice structure is supplemented with C atoms located at the centers of the
hexagons in the lattice. We considered the α− T3 model in the presence of a mass term which opens a
gap in the energy-dispersive spectrum. The gap opening mass term, caused by a weak magnetic field,
plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system. The band
structure of GHAT3 monolayers leads to the formation of two distinct types of excitons in the GHAT3
double layer. We consider two types of dipolar excitons in double-layer GHAT3: (a) “A excitons”,
which are bound states of electrons in the conduction band (CB) and holes in the intermediate band
(IB), and (b) “B excitons”, which are bound states of electrons in the CB and holes in the valence
band (VB). The binding energy of A and B dipolar excitons is calculated. For a two-component
weakly interacting Bose gas of dipolar excitons in a GHAT3 double layer, we obtain the energy
dispersion of collective excitations, the sound velocity, the superfluid density, and the mean-field
critical temperature Tc for superfluidity.

Keywords: Bose-Einstein condensation; superfluidity; dipolar exitons

1. Introduction

The many-particle systems of dipolar (indirect) excitons, formed by spatially separated
electrons and holes, in semiconductor coupled quantum wells (CQWs) and novel two-
dimensional (2D) materials have been the subject of numerous experimental and theoretical
studies. These systems are attractive in large part due to the possibility of Bose-Einstein con-
densation (BEC) and superfluidity of dipolar excitons, which can be observed as persistent
electrical currents in each quantum well, and also through coherent optical properties [1–5].
Recent progress in theoretical and experimental studies of BEC and superfluidity of dipolar
excitons in CQWs have been reviewed in [6]. Electron-hole superfluidity in double layers
can occur not only in the BEC regime, but also in the Bardeen-Cooper-Schrieffer (BCS)-BEC
crossover regime [7].

A number of experimental and theoretical investigations have been devoted to the BEC
of electron-hole pairs, formed by spatially separated electrons and holes in a double layer
formed by parallel graphene layers. These investigations were reported in [8–13]. Both BEC
and superfluidity of dipolar excitons in double layers of transition-metal dichalcogenides
(TMDCs) [14–18] and phosphorene [19,20] have been discussed, because the exciton binding
energies in novel 2D semiconductors are quite large. Possible BEC in a long-lived dark
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spin state of 2D dipolar excitons has been experimentally observed for GaAs/AlGaAs
semiconductor CQWs [21].

Recently, the electronic properties of the α− T3 lattice have been the subject of the
intensive theoretical and experimental investigations due to its surprising fundamental
physical properties as well as its promising applications in solid-state devices [22–35]. For
a review of artificial flat band systems, see [36]. Raoux, et al. [22] proposed that an α− T3
lattice could be assembled from cold fermionic atoms confined to an optical lattice by means
of three pairs of laser beams for the optical dice lattice (α = 1) [37]. This structure consists of
an AB-honeycomb lattice (the rim) like that in graphene which is combined with C atoms at
the center/hub of each hexagon. A parameter α represents the ratio of the hopping integral
between the rim and the hub to that around the rim of the hexagonal lattice. By dephasing
one of the three pairs of laser beams, one could vary the parameter 0 ≤ α = tan ϕ ≤ 1.
Optically induced dressed states [38], and their tunneling, transport [33,39], and collective
properties [40], as well as α− T3 based nanoribbons [41] have been analyzed. The BEC
and superfluidity of dipolar magnetoexcitons in α− T3 double layers in a strong uniform
perpendicular magnetic field were proposed in [42].

We present the conditions for BEC and superfluidity of a two-component weakly
interacting Bose gas of dipolar excitons, formed by electron-hole pairs in spatially separated
GHAT3 layers. An applied weak magnetic field to this pseudospin-1 monolayer system
results in a Zeeman-type splitting of the energy subbands [43]. This dispersion relation
consists of three bands: CB, IB, and VB. We consider two types of dipolar excitons in a
double-layer of GHAT3: (a) “A excitons”, formed as bound states of electrons in CB and
holes in IB, and (b) “B excitons”, formed as bound states of electrons in CB and holes in
VB. The binding energy of A and B dipolar excitons is calculated. For a two-component
weakly interacting Bose gas of dipolar excitons in a GHAT3 double layer, we obtain the
energy dispersion of collective excitations, the sound velocity, the superfluid density, and
the mean-field critical temperature Tc for superfluidity.

Our paper is organized in the following way. In Section 2, the two-body problem
for an electron and a hole, spatially separated in two parallel GHAT3 monolayers, is
formulated, and the effective masses and binding energies are obtained for two types of
dipolar excitons. The spectrum of collective excitations and the sound velocity for the
two-component weakly interacting Bose gas of dipolar excitons in the double layer of
GHAT3 are derived in Section 3. In Section 4 the superfluidity of the weakly interacting
Bose gas of dipolar excitons in the double layer of GHAT3 is predicted, and the mean-field
critical temperature of the phase transition is obtained. The results of our calculations are
discussed in Section 5. In Section 6 our conclusions are reported.

2. Dipolar Excitons in a Double Layer of α − T3 with a Mass Term

We will consider charge carriers in the conduction band, valence band, and the inter-
mediate band, which corresponds to the flat band in an α− T3 layer without a mass term.
In the presence of a weak magnetic field, the low-energy Hamiltonian of the charge carriers
in a GHAT3 monolayer at the K and K’ points are given by [43]

Ĥλ =




∆ f (k) cos φ 0
f ∗(k) cos φ 0 f (k) sin φ

0 f ∗(k) sin φ −∆


, (1)

where the origin in k-space is defined to be around the K point, k = (kx, ky) and tan θk =

ky/kx, φ = tan−1 α, f (k) = h̄vF

(
λkx − iky

)
= λh̄vFke−iλθk , with λ = ±1 being the valley

index at the K and K’ points, 2∆ is the gap in the energy spectrum of a GHAT3 layer due to
the mass term in the Hamiltonian. In an α− T3 layer honeycomb lattice, there is an added
fermionic hub atom C at the center of each hexagon. Let the hopping integral be t1 between
the hub atom and either an A or B atom on the rim and t2 between nearest neighbors on
the rim of the hexagon. The ratio of these two nearest neighbor hopping terms is denoted
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as t2/t1 = α, where the parameter α satisfies 0 ≤ α ≤ 1. The largest value when α is 1 is for
the dice lattice, whereas its value of 0 corresponds to graphene for decoupled hub from rim
atoms [43].

At small momenta near K and K’ points, the dispersion for the charge carriers in the
conduction band ǫCB(k) is given by the relation [43]

ǫCB(k) ≈ ∆ +
h̄2k2

2mCB
, (2)

where k = p/h̄ and p are the wave vector and momentum of a quasiparticle, mCB is the
effective mass of the charge carriers in the conduction band, given by

mCB =

(
1 + α2)∆

2v2
F

, (3)

where vF is the Fermi velocity in a GHAT3 layer, and ϕ = tan−1 α [43]. At small momenta
near K and K’ points, the dispersion for the charge carriers in the valence band ǫVB(k) is
given by the relation [43]

ǫVB(k) ≈ −∆− h̄2k2

2mVB
, (4)

with mVB the effective mass of the charge carriers in the valence band, given by

mVB =

(
1 + α2)∆
2v2

Fα2
. (5)

At small momenta near K and K’ points, the dispersion for the charge carriers in the
intermediate band, corresponding to the flat band in an α− T3 layer without a mass term,
ǫIB(k) is given by the relation [43]

ǫIB(k) ≈ −
h̄2k2

2mIB
, (6)

where mIB is the effective mass of the charge carriers in the intermediate band, given by

mIB =

(
1 + α2)∆

2v2
F(1− α2)

. (7)

It is worth noting that there are spin degeneracy and valley degeneracy for the energy
of the charge carriers in a GHAT3 layer.

In the system under consideration in this paper, electrons are confined in a 2D GHAT3
monolayer, while an equal number of positive holes are located in a parallel GHAT3
monolayer at a distance D away as demonstrated in Figure 1. This electron-hole system
in two parallel GHAT3 layers is treated as a 2D system without interlayer hopping. Due
to the absence of tunneling of electrons and holes between different GHAT3 monolayers,
electron-hole recombination is suppressed by a dielectric barrier with dielectric constant ǫd

that separates the GHAT3 monolayers. Therefore, the dipolar excitons, formed by electrons
and holes, located in two different GHAT3 monolayers, have a longer lifetime than direct
excitons. The electron and hole are attracted via electromagnetic interaction V(reh), where
reh is the distance between the electron and hole, and they could form a bound state, i.e., an
exciton, in three-dimensional (3D) space. Therefore, to determine the binding energy of

51



Nanomaterials 2022, 12, 1437

the exciton a two-body problem in restricted 3D space has to be solved. However, if one
projects the electron position vector onto the GHAT3 plane with holes and replaces the
relative coordinate vector reh by its projection r on this plane, the potential V(reh) may be
expressed as V(reh) = V(

√
r2 + D2), where r is the relative distance between the hole and

the projection of the electron position vector onto the GHAT3 plane with holes. A schematic
illustration of the dipolar exciton in a GHAT3 double layer is presented in Figure 1. By
introducing in-plane coordinates r1 = (x1, y1) and r2 = (x2, y2) for the electron and the
projection vector of the hole, respectively (where r = r1 − r2), the dipolar exciton can be
described by employing a two-body 2D Schrödinger equation with potential V(

√
r2 + D2).

So that the restricted 3D two-body problem can be reduced to a 2D two-body problem on a
GHAT3 layer with the holes.

The dipolar excitons with spatially separated electrons and holes in two parallel
GHAT3 monolayers can be created by laser pumping with an applied external voltage.
While an electron in the conduction band and a hole in the valence or intermediate band are
excited due to absorption of a photon, voltages are applied with opposite signs to confine
electrons on one layer and holes on another so that dipoles point in one direction only.

In our case, “both” the energy bands and the exciton modes referred to the K-point,
not one to the Γ point and the other to the K point. We note that in the dispersion equations
appearing in [43–46] the origin of the k-space was specified to be around the K point, (and
not the Γ point) as did several authors investigating α− T3. So, our choice of origin not
being the center of the Brillouin zone has precedence. For graphene, the plasmon dispersion
relation and low-energy bands, presented by [47] were both consistently measured from
the K point taken as the origin and not the center of the Brillouin zone.

We consider excitons, formed by an electron and a hole from the same valley, because
an electron and a hole from different valleys cannot be excited by absorption of photon due
to conservation of momentum. The reason is that photons carry momenta much smaller
than the difference between K and K’ in reciprocal space.

D

GHAT3

GHAT3

e

reh

r

h

Figure 1. Schematic illustration of a dipolar excitonin a pair of GHAT3 double layers embedded in
an insulating material.

The effective Hamiltonian of an electron and a hole, spatially separated in two parallel
GHAT3 monolayers with the interlayer distance D has the following form

Ĥex = − h̄2

2me
∆r1 −

h̄2

2mh
∆r2 + V(r), (8)
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where ∆r1 and ∆r2 are the Laplacian operators with respect to the components of the
vectors r1 and r2, respectively, and me and mh are the effective masses of the electron
and hole, respectively. For CV excitons me = mCB and mh = mVB; and for CI excitons
me = mCB and mh = mIB, where mCB, mVB, and mIB are given by Equations (3), (5) and (7),
correspondingly. The problem of the in-plane motion of an interacting electron and hole
forming the exciton in a GHAT3 double layer can be reduced to that of one particle with the
reduced mass µ = memh/(me + mh) in a V(r) potential and motion of the center-of-mass
of the exciton with the mass M = me + mh. We introduce the coordinates of the center-of-
mass R of an exciton and the coordinate of the relative motion r of an electron and hole
as R = (mer1 + mhr2)/(me + mh) and r = r1 − r2, correspondingly. The Hamiltonian Ĥex

can be represented in the form: Ĥex = ĤR + Ĥr, where the Hamiltonian of the motion of
the center-of-mass is ĤR and that of the relative motion of electron and a hole is Ĥr. The
solution of the Schrödinger equation for the center-of-mass of an exciton ĤRψ(R) = Eψ(R)
is the plane wave ψ(R) = eiP·R/h̄ with the quadratic energy spectrum E = P2/(2M), where
P is the momentum of the center-of-mass of an exciton.

We consider electrons and holes to be located in GHAT3 parallel layers, embedded in
a dielectric with the dielectric constant ǫd. The potential energy of electron-hole Coulomb
attraction is

V(r) = − κe2

ǫd

√
r2 + D2

, (9)

where κ = 9× 109 N ×m2/C2, ǫd is the dielectric constant of the insulator (SiO2 or h-BN),
surrounding the electron and hole GHAT3 monolayers, forming the double layer. For the
h-BN barrier we substitute the dielectric constant ǫd = 4.89, while for the SiO2 barrier
we substitute the dielectric constant ǫd = 4.50. For h-BN insulating layers, ǫd = 4.89
is the effective dielectric constant, defined as ǫd =

√
ε⊥
√

ε‖ [14], where ε⊥ = 6.71 and
ε‖ = 3.56 are the components of the dielectric tensor for h-BN [48]. Assuming r ≪ D, we
approximate V(r) by the first two terms of the Taylor series and obtain

V(r) = −V0 + γr2, where V0 =
κe2

ǫdD
, γ =

κe2

2ǫdD3 . (10)

The similar approach has been applied for excitons in TMDC double layers [16,17].
The solution of the Schrödinger equation for the relative motion of an electron and a hole
ĤrΨ(r) = EΨ(r) with the potential (10) is reduced to the problem of a 2D harmonic oscilla-
tor with the exciton reduced mass µ. Following [49,50] one obtains the radial Schrödinger
equation and the solution for the eigenfunctions for the relative motion of an electron and
a hole in a GHAT3 double layer in terms of associated Laguerre polynomials, which can be
written as

ΨNL(r) =
N!

a|L|+1
√

ñ!ñ′!
2−|L|/2sgn(L)Lr|L|e−r2/(4a2) × L

|L|
N (r2/(2a2))

e−iLϕ

(2π)1/2 , (11)

where N = min(ñ, ñ′), L = ñ − ñ′, ñ, ñ′ = 0, 1, 2, 3, . . . are the quantum numbers, ϕ is
the polar angle, and a =

[
h̄/
(
2
√

2µγ
)]1/2 is a Bohr radius of a dipolar exciton. The

corresponding energy spectrum is given by

ENL ≡ Ee(h) = −V0 + (2N + 1 + |L|)h̄
(

2γ

µ

)1/2
. (12)

At the lowest quantum state N = L = 0 as it follows from Equation (12) the ground
state energy for the exciton is given by

E00 = −V0 + h̄

(
2γ

µ

)1/2
. (13)
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The important characteristic of the exciton is the square of the in-plane gyration radius
r2

X. It allows one to estimate the condition when the excitonic gas is dilute enough. One
can obtain the square of the in-plane gyration radius rX of a dipolar exciton [14], which is
expressed as the average squared projection of an electron-hole separation onto the plane
of a GHAT3 monolayer

r2
X ≡

〈
r2
〉
=
∫

Ψ∗00(r)r
2Ψ00(r)d2r =

2π

2πa2

∫ +∞

0
r2e
− r2

2a2 rdr = 2a2. (14)

We consider dipolar excitons, formed by an electron in the conduction band and a
hole in the valence band (CV excitons) and formed by and electron in the conduction band
and a hole in the intermediate valence band (CI excitons). For CV excitons one has

µCV =
mCBmVB

mCB + mVB
=

∆

2v2
F

; MCV = mCB + mVB =

(
1 + α2)2

∆

2v2
Fα2

. (15)

For CI excitons one has

µCI =
mCBmIB

mCB + mIB
=

(
1 + α2)∆

2v2
F(2− α2)

; MCI = mCB + mIB =

(
1 + α2)(2− α2)∆

2v2
F(1− α2)

. (16)

3. The Collective Excitations Spectrum and Superfluidity for the Two-Component
System of Dipolar Excitons

We consider the dilute limit for dipolar exciton gas in a GHAT3 double layer, when
nAa2

B A ≪ 1 and nBa2
B B ≪ 1, where nA(B) and aB A(B) are the concentration and effective

exciton Bohr radius for A(B) dipolar excitons, correspondingly. In the dilute limit, dipolar
A and B excitons are formed by electron-hole pairs with the electrons and holes spatially
separated in two different GHAT3 layers. We will treat the two-component weakly inter-
acting Bose gas of dipolar excitons in a GHAT3 double layer by applying the approach
analogous to the one used for dipolar excitons in a transition metal dichalcogenide (TMDC)
double layer [16,17].

Since the dipolar excitons, formed by the charge carriers in different valleys, are
characterized by the same energy, the exciton states are degenerate with respect to the
valley degree of freedom. Therefore, we consider the Hamiltonian of the weakly interacting
Bose gas of dipolar excitons, formed in a single valley. We will take into account the
degeneracy of the exciton states with respect to spin and valley degrees of freedom by the
introducing the spin and valley degeneracy factor s = 16 below. The Hamiltonian Ĥ of the
2D A and B weakly interacting dipolar excitons can be written as

Ĥ = ĤA + ĤB + ĤI , (17)

where ĤA(B) are the Hamiltonians of A(B) excitons defined as

ĤA(B) = ∑
k

EA(B)(k)a†
kA(B)akA(B) +

gAA(BB)

2S ∑
klm

a†
kA(B)a

†
lA(B)aA(B)maA(B)k+l−m, (18)

and ĤI is the Hamiltonian of the interaction between A and B excitons presented as

ĤI =
gAB

S ∑
klm

a†
kAa†

lBaBmaAk+l−m, (19)

where a†
kA(B) and akA(B) are Bose creation and annihilation operators for A(B) dipolar

excitons with the wave vector k, correspondingly, S is the area of the system, EA(B)(k) ≡
ǫA(B) = ε(0)A(B)(k)+AA(B) is the energy spectrum of non-interacting A(B) dipolar excitons,
respectively, ε(0)A(B)(k) = h̄2k2/(2MA(B)), MA(B) is an effective mass of non-interacting
dipolar excitons, AA(B) is the constant, which depends on A(B) dipolar exciton binding
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energy and the corresponding gap, gAA(BB) and gAB are the interaction constants for the
repulsion between two A dipolar excitons, two B dipolar excitons and for the interaction
between A and B dipolar excitons, respectively.

In dilute system with large interlayer separation D, two dipolar excitons, located at dis-
tance R, repel each other via the dipole-dipole interaction potential U(R) = κe2D2/(ǫdR3).
Following the procedure described in [51], the interaction parameters for the exciton-exciton
repulsion in very dilute systems can be obtained implying the exciton-exciton dipole-dipole
repulsion exists only at the distances between excitons greater than the distance from the
exciton to the classical turning point.

The many-particle Hamiltonian for a weakly interacting Bose gas can be diagonalized
within the Bogoliubov approximation [52], replacing the product of four operators in the
interaction term with the product of two operators. The Bogoliubov approximation is valid
if one assumes that most of the particles belong to BEC. In this case, in the Hamiltonian one
can keep only the terms responsible for the interactions between the condensate and non-
condensate particles, while the terms describing the interactions between non-condensate
particles are neglected.

Following the procedure, described in [16,17], applying the Bogoliubov approxi-
mation [52], generalized for a two-component weakly interacting Bose gas [53,54] and
introducing the following notation,

GAA = gAAnA = gnA, GBB = gBBnB = gnB, GAB = gAB
√

nAnB = g
√

nAnB,

ωA(k) =
√

ε2
(0)A

(k) + 2GAAε(0)A(k), (20)

ωB(k) =
√

ε2
(0)B

(k) + 2GBBε(0)B(k),

one obtains two modes of the spectrum of Bose collective excitations ε j(k)

ε j(k) =

√√√√ω2
A(k) + ω2

B(k) + (−1)j−1
√(

ω2
A(k)−ω2

B(k)
)2

+ (4GAB)
2ε(0)A(k)ε(0)B(k)

2
, (21)

where j = 1, 2. In our approach, the condition G2
AB = GAAGBB holds.

At small momenta p = h̄k, when ε(0)A(k)≪ GAA and ε(0)B(k)≪ GBB, expanding the
spectrum of collective excitations ε j(k) up to the first order with respect to the momentum
p, one obtains two sound modes in the spectrum of the collective excitations ε j(p) = cj p,
where cj is the sound velocity written as

cj =

√√√√ GAA

2MA
+

GBB

2MB
+ (−1)j−1

√(
GAA

2MA
− GBB

2MB

)2
+

G2
AB

MA MB
, (22)

At j = 1, the spectrum of collective excitations is determined by the non-zero sound
velocity c1, while at j = 2 the sound velocity vanishes with c2 = 0. At large momenta,
for the conditions when ε(0)A(k) ≫ GAA and ε(0)B(k) ≫ GBB, one obtains two parabolic
modes of collective excitations with the spectra ε1(k) = ε(0)A(k) and ε2(k) = ε(0)B(k), if
MA < MB and if MA > MB with the spectra ε1(k) = ε(0)B(k) and ε2(k) = ε(0)A(k).

4. Superfluidity of the Weakly-Interacting Bose Gas of Dipolar Excitons

Since when j = 2 the sound velocity vanishes, below we take into account only the
branch of the spectrum of collective excitations at j = 1, neglecting the branch at j = 2.
According to [52,55], it is clear that we need a finite sound velocity for superfluidity. Since
the branch of the collective excitations at zero sound velocity for the collective excitations
corresponds to the zero energy of the quasiparticles (which means that no quasiparticles
are created with zero sound velocity), this branch does not lead to the dissipation of energy
resulting in finite viscosity and, therefore, does not influence the Landau critical velocity.
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This is the reason for eliminating the zero sound velocity case in our considerations here.
The weakly-interacting gas of dipolar excitons in the double layer of GHAT3 satisfies the
Landau criterion for superfluidity [52,55], because at small momenta, the energy spectrum
of the quasiparticles in the weakly-interacting gas of dipolar excitons at j = 1 is sound-like
with the finite sound velocity, c1. In the moving weakly-interacting gas of dipolar excitons
the quasiparticles are created at velocities above the velocity of sound, and the critical
velocity for superfluidity reads as vc = c1. The difference between the ideal Bose gas and
two-component weakly interacting Bose gas of dipolar excitons is that while the spectrum
of ideal Bose gas has no branch with finite sound velocity, the dipolar exciton system under
consideration has one branch in the spectrum of collective excitations with finite sound
velocity at j = 1 due to exciton-exciton interaction. Therefore, at low temperatures, the
two-component system of dipolar excitons exhibits superfluidity due to exciton-exciton
interactions, while the ideal Bose gas does not demonstrate superfluidity.

We defined the density of the superfluid component ρs(T) as ρs(T) = ρ − ρn(T),
where ρ = MAnA + MBnB is the total 2D density of the dipolar excitons and ρn(T) denotes
the density of the normal component. The density ρn(T) of the normal component can be
defined using standard procedure [56]. The assumption that the dipolar exciton system
moves with a velocity u implies that the superfluid component moves with the velocity
u. The energy dissipation at nonzero temperatures T is characterized by the occupancy of
quasiparticles in this system. Since the density of quasiparticles is small at low temperatures,
the gas of quasiparticles can be treated as an ideal Bose gas. In order to obtain the density of
the superfluid component, one can define the total mass flow for a Bose gas of quasiparticles
in the frame, in which the superfluid component is assumed to be at rest, as

J = s
∫

d2 p

(2πh̄)2 p f [ε1(p)− p · u], (23)

where s = 16 is the spin and valley degeneracy factor, f [ε1(p))] = (exp[ε1(p)/(kBT)]− 1)−1

is the Bose-Einstein distribution function for the quasiparticles with the dispersion ε1(p),
and kB is the Boltzmann constant. Expanding the expression under the integral in Equa-
tion (23) up to the first order with respect to p · u/(kBT), one has:

J = −s
u
2

∫
d2 p

(2πh̄)2 p2 ∂ f [ε1(p)]

∂ε1(p)
. (24)

The density ρn of the normal component in the moving weakly-interacting Bose gas of
dipolar excitons is defined as [56]

J = ρnu . (25)

Employing Equations (24) and (25), one derives the normal component density as

ρn(T) = −
s

2

∫
d2 p

(2πh̄)2 p2 ∂ f [ε1(p)]

∂ε1(p)
. (26)

At low temperatures kBT ≪ MA(B)c
2
j , the small momenta (ε(0)A(k) ≪ GAA and

ε(0)B(k)≪ GBB) make the dominant contribution to the integral on the right-hand side of
Equation (26). The quasiparticles with such small momenta are characterized by the sound
spectrum ε1(k) = c1k with the sound velocity defined by Equation (22). By substituting
ε1(k) = c1k into Equation (26), we obtain

ρn(T) =
3sζ(3)
2πh̄2c4

1

k3
BT3, (27)

where ζ(z) is the Riemann zeta function (ζ(3) ≃ 1.202).
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The mean field critical temperature Tc of the phase transition at which the superfluidity
occurs, implying neglecting the interaction between the quasiparticles, is obtained from the
condition ρs(Tc) = 0 [56]:

ρn(Tc) = ρ = MAnA + MBnB . (28)

At low temperatures kBT ≪ MA(B)c
2
1 by substituting Equation (27) into Equation (28),

one derives

Tc =

[
2πh̄2ρc4

1
3ζ(3)sk3

B

]1/3

. (29)

While Bose-Einstein condensation occurs at absolute zero even in a two-dimensional
(2D) system, it is well known that in a 2D bosonic system, Bose-Einstein condensation does
not occur at finite temperature, and only the quasi-long-range order appears. In this paper,
we have obtained the mean-field critical temperature Tc of the phase transition at which
superfluidity appears without claiming BEC in a 2D system at finite temperature. In this
work, we have considered BEC only at absolute zero temperature. The similar approach
has been applied for excitons in TMDC double layers [16,17].

5. Discussion

In this section we now discuss the results of our calculations. In Figure 2, we present
the results for the exciton binding energy Eb(α, ∆, D) for CV and CI excitons as functions of
the gap ∆ for chosen parameter α = 0.6 and interlayer separations D = 25 nm. According
to Figure 2, Eb(α, ∆, D) is an increasing function of ∆, whereas for CV excitons the exciton
binding energy is slightly larger than that for CI excitons.

Figure 2. The exciton binding energy Eb(α, ∆, D) for CV and CI excitons as functions of the gap ∆

for chosen parameter α = 0.6 and interlayer separations D = 25 nm. The lattice constant of α− T3 is
a = 2.46 .

In Figure 3, we present our results for the exciton binding energy Eb(α, ∆, D) for CV
and CI excitons as functions of the parameter α for chosen gap ∆ = 0.5 h̄vF/a and interlayer
separations D = 25 nm. According to Figure 3, Eb(α, ∆, D) does not depend on α for CV
excitons, whereas it is an increasing function of α for CI excitons. At α . 0.7 Eb(α, ∆, D)
for CV excitons is larger than for CI excitons, while at α & 0.7 Eb(α, ∆, D) for CI excitons is
larger than for CV excitons.
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Figure 3. The exciton binding energy Eb(α, ∆, D) for CV and CI excitons as functions of the parameter
α for chosen gap ∆ = 0.5 h̄vF/a and interlayer separations D = 25 nm.

In Figure 4, we present the results of our calculations for the exciton binding energy
Eb(α, ∆, D) for CV and CI excitons as functions of the interlayer separation D for chosen
parameter α = 0.6 and gap ∆ = 0.5 h̄vF/a. According to Figure 4, Eb(α, ∆, D) is a decreasing
function of D, whereas for CV excitons the exciton binding energy is slightly larger than
for CI excitons.

Figure 4. The exciton binding energy Eb(α, ∆, D) for CV and CI excitons as functions of the interlayer
separation D for chosen parameter α = 0.6 and gap ∆ = 0.5 h̄vF/a.

In Figure 5, we present plots of the effective masses for CV and CI dipolar excitons
as functions of the gap ∆ for chosen α = 0.6 for (a) center-of-mass exciton mass M on the
left-hand side and (b) reduced exciton mass µ, on the right. According to Figure 5, both M
and µ for the CV and CI excitons are increasing functions of ∆, while for CV excitons both
M and µ are slightly larger than for CI excitons.

Figure 5. The effective masses of a dipolar exciton for CV and CI excitons as functions of the gap ∆

for chosen α = 0.6 for (a) center-of-mass exciton mass M on the left panel and (b) reduced exciton
mass µ, on the right.
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Figure 6 shows the effective masses of a dipolar exciton for CV and CI excitons as
functions of α for chosen ∆ = 0.5 h̄vF/a for (a) center-of-mass exciton mass M in the left
panel and (b) reduced exciton mass µ, on the right. According to Figure 6, for CV excitons
M is a decreasing function of α, whereas µ does not depend on α. For CI excitons, both M
and µ increase as α is increased. For α . 0.7, both M and µ for CV excitons are larger than
for CI excitons, but when α & 0.7 Eb(α, ∆, D) both M and µ for CV excitons are smaller
than for CI excitons.

Figure 6. The effective masses of dipolar excitons for CV and CI excitons as functions of the hopping
parameter α for chosen gap ∆ = 0.5 h̄vF/a for (a) center-of-mass exciton mass M in the left panel and
(b) reduced exciton mass µ, on the right.

Figure 7 demonstrates the dependence of the sound velocity c ≡ c1 on the hopping
parameter α for chosen ∆ = h̄vF/a, interlayer separations D = 25 nm at fixed concentra-
tions nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2 of A and B excitons, respectively.
According to Figure 7, c does not depend much on α when α . 0.5, while for α & 0.5, the
sound velocity c is a decreasing function of α.

Figure 7. Plot of the sound velocity c ≡ c1 versus α for chosen gap ∆ = h̄vF/a, interlayer separations
D = 25 nm at fixed concentrations nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2 of A and B
excitons, respectively.

In Figure 8, we plot the sound velocity c ≡ c1 versus the gap ∆ for chosen parameter
α = 0.6, interlayer separations D = 25 nm for chosen concentrations nA = 50× 1011 cm−2

and nB = 50× 1011 cm−2 of A and B excitons, respectively. According to Figure 8, the
sound velocity c is a decreasing function of ∆.

In Figure 9, we show the sound velocity c ≡ c1 as a function of the interlayer sepa-
ration D for hopping parameter α = 0.6 and gap ∆ = 0.5 h̄vF/a, for fixed concentrations
nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2 of A and B excitons, respectively. According
to Figure 9, the sound velocity c is an increasing function of D.
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Figure 8. The sound velocity c ≡ c1 versus the gap ∆ for chosen parameter α = 0.6, interlayer
separations D = 25 nm at the fixed concentrations nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2 of
A and B excitons, respectively.

Figure 9. The sound velocity c ≡ c1 versus the interlayer separation D for chosen parameter α = 0.6
and gap ∆ = 0.5 h̄vF/a, at fixed concentrations nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2 of A
and B excitons, respectively.

In Figure 10, we illustrate the dependence of the sound velocity c ≡ c1 on the concen-
trations nA and nB of A and B excitons, respectively for chosen hopping parameter α = 0.6
and gap ∆ = 0.5 h̄vF/a, at fixed interlayer separation D = 25 nm. According to Figure 10,
the sound velocity c is an increasing function of both concentrations nA and nB.

Figure 10. The sound velocity c ≡ c1 versus the concentrations nA and nB of A and B excitons,
respectively, for chosen parameter α = 0.6 and gap ∆ = 0.5 h̄vF/a, at the fixed interlayer separation
D = 25 nm.
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In Figure 11, we present the mean-field phase transition critical temperature
Tc(nA, nB, α, ∆, D) as a function of the parameter α for chosen gap ∆ = 0.5 h̄vF/a, in-
terlayer separations D = 25 nm at the fixed concentrations nA = 50× 1011 cm−2 and
nB = 50× 1011 cm−2 of A and B excitons, respectively. According to Figure 11, Tc is a
decreasing function of α at α . 0.9, while at α & 0.9 the critical temperature Tc is an
increasing function of α.

Figure 11. The mean-field phase transition critical temperature Tc(nA, nB, α, ∆, D) versus the param-
eter α for chosen gap ∆ = 0.5 h̄vF/a, interlayer separations D = 25 nm at the fixed concentrations
nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2 of A and B excitons, respectively.

In Figure 12, we present the mean-field phase transition critical temperature
Tc(nA, nB, α, ∆, D) as a function of the gap ∆ for chosen parameter α = 0.6, interlayer separa-
tions D = 25 nm at the fixed concentrations nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2

of A and B excitons, respectively. According to Figure 12, the criticaltemperature Tc is a
decreasing function of ∆.

Figure 12. The mean-field phase transition critical temperature Tc(nA, nB, α, ∆, D) versus the gap
∆ for chosen parameter α = 0.6, interlayer separations D = 25 nm at the fixed concentrations
nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2 of A and B excitons, respectively.

In Figure 13, we demonstrate the mean-field phase transition critical temperature
Tc(nA, nB, α, ∆, D) as a function of the interlayer separation D for chosen parameter α = 0.6
and gap ∆ = 0.5 h̄vF/a, at the fixed concentrations nA = 50 × 1011 cm−2 and nB =
50 × 1011 cm−2 of A and B excitons, respectively. According to Figure 13, the critical
temperature Tc is an increasing function of D.
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Figure 13. The mean-field phase transition critical temperature Tc(nA, nB, α, ∆, D) versus the inter-
layer separation D for chosen parameter α = 0.6 and gap ∆ = 0.5 h̄vF/a, at fixed concentrations
nA = 50× 1011 cm−2 and nB = 50× 1011 cm−2 of A and B excitons, respectively.

In Figure 14, we present density plots for the mean-field phase transition critical
temperature Tc(nA, nB, α, ∆, D) as a function of the concentrations nA and nB of A and B
excitons, respectively for chosen parameter α = 0.6 and gap ∆ = 0.5 h̄vF/a, at the fixed
interlayer separation D = 25 nm. According to Figure 14, the the critical temperature Tc is
an increasing function of both the concentrations nA and nB.

Figure 14. Density plot for the mean-field phase transition critical temperature Tc(nA, nB, α, ∆, D)

versus the concentrations nA and nB of A and B excitons, respectively, for chosen parameter α = 0.6
and gap ∆ = 0.5 h̄vF/a, at the fixed interlayer separation D = 25 nm.

At a formal level, the weakly interacting Bose gas of A and B dipolar excitons in a
GHAT3 double layer are similar to the two-component weakly interacting Bose gas of
trapped cold atoms in a planar harmonic trap. The spectrum of collective excitations in the
Bogoliubov approximation for dipolar excitons in a GHAT3 double layer is similar to one
for a two-component BEC of trapped cold atoms, studied in [53,54].

The gap parameter ∆, has a dual role, since it appears as chemical potential in the
Hamiltonian, as also in the mass of the excitons through the band curvature. According to
Figures 2 and 12, the dipolar exciton binding energy is an increasing function of the gap ∆,
while is the mean-field phase transition temperature Tc is a decreasing function of the gap
∆. Therefore, there should be an optimal value for ∆, which would correspond to relatively
high Tc at the relatively high dipolar exciton binding energy. The latter condition provides
the formation of the superfluid phase by the relatively stable dipolar excitons.

Note that electron-hole superfluids can be formed not only in the BEC regime but also
in the BCS-BEC crossover regime [7]. Quantum Monte Carlo simulations analyzing the BCS-
BEC crossover regime for electron-hole systems have been performed [57]. In this paper,
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we concentrate on the dilute electron-hole system, which corresponds to the BEC, which
matches experimentally achievable densities in the electron-hole systems in 2D materials.
BCS regime requires higher concentrations beyond the model of weakly interacting Bose
gas. The studies of the BCS regime, and BEC-BCS crossover for an electron-hole superfluid
in a GHAT3 double layer, seem to be a promising direction for future studies.

The considered system of dipolar excitons in a GHAT3 double layer has also a strong
similarity, with photon condensation in a cavity. The collective modes and possibility of
the Kosterlitz-Thouless phase transition to the superfluid phase [58,59] has been studied
for a photon condensation in a cavity in [60]. If we consider only one type of excitons in
a GHAT3 double layer, assuming the concentration of the excitons of another type to be
zero, the expressions for the spectrum of collective excitations reported in this paper can be
reduced to the expressions similar to [60].

The Kosterlitz-Thouless phase transition to the superfluid phase [58,59] can be inferred
from the variation of the superfluid density, which has been computed in this paper.

Note that, in this paper, we did not consider vortices, as within the mean-field ap-
proximation it was assumed that the number of quasiparticles are relatively low. However,
beyond the mean-field approximation, it is possible to consider the properties of vortices in
the system of dipolar excitons. Thus, the dynamical creation of fractionalized vortices and
vortex lattices can be considered by applying the approach, developed for the BEC of cold
atoms in [61].

The Josephson phenomena for two trapped condensates of dipolar excitons can be
studied by applying an approach similar to the one developed for non-Abelian Josephson
effect between two F = 2 spinor Bose-Einstein condensates of cold atoms in double optical
traps [62].

6. Conclusions

This paper is devoted to an investigation of the existence of BEC and superfluidity
of dipolar excitons in double layers of GHAT3 which was proposed and analyzed. We
have derived the solution of a two-body problem for an electron and a hole for the model
Hamiltonian representing double-layer GHAT3. We predict the formation of two types of
dipolar excitons, characterized by different binding energies and effective masses, in the
double layer of GHAT3. We have calculated the binding energy, effective mass, spectrum
of collective excitations, superfluid density, and the mean-field critical temperature of the
phase transition to the superfluid state for the two-component weakly interacting Bose gas
of A and B dipolar excitons in double-layer GHAT3. We have demonstrated that at fixed
exciton density, the mean-field critical temperature for superfluidity of dipolar excitons is
decreased as a function of the gap ∆. Our results show that Tc is increased as a function of
the density n and is decreased as a function of the gap ∆ and the interlayer separation D.

The occupancy of the superfluid state at T < Tc can result in the existence of persistent
dissipationless superconducting oppositely directed electric currents in each GHAT3 layer,
forming a double layer. According to the presented results of our calculations, while the
external weak magnetic field, responsible for the formation of the gap ∆ in the double
layer of α− T3 increases the exciton binding energy, the mean-field transition temperature
to the superfluid phase is increased as the weak magnetic field and ∆ are decreased.
Therefore, the dipolar exciton system in a double-layer of GHAT3 can be applied to engineer
a switch, where transport properties of dipolar excitons can be tuned by an external
weak magnetic field, forming the gap ∆. Varying a weak magnetic field may lead to a
phase transition between the superfluid and normal phase, which sufficiently changes the
transport properties of dipolar excitons.
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Abstract: The electrical properties of polycrystalline graphene grown by chemical vapor deposition
(CVD) are determined by grain-related parameters—average grain size, single-crystalline grain sheet
resistance, and grain boundary (GB) resistivity. However, extracting these parameters still remains
challenging because of the difficulty in observing graphene GBs and decoupling the grain sheet
resistance and GB resistivity. In this work, we developed an electrical characterization method
that can extract the average grain size, single-crystalline grain sheet resistance, and GB resistivity
simultaneously. We observed that the material property, graphene sheet resistance, could depend
on the device dimension and developed an analytical resistance model based on the cumulative
distribution function of the gamma distribution, explaining the effect of the GB density and dis-
tribution in the graphene channel. We applied this model to CVD-grown monolayer graphene by
characterizing transmission-line model patterns and simultaneously extracted the average grain size
(~5.95 µm), single-crystalline grain sheet resistance (~321 Ω/sq), and GB resistivity (~18.16 kΩ-µm)
of the CVD-graphene layer. The extracted values agreed well with those obtained from scanning
electron microscopy images of ultraviolet/ozone-treated GBs and the electrical characterization of
graphene devices with sub-micrometer channel lengths.

Keywords: CVD graphene; polycrystalline; grain size; single-crystalline grain; grain boundary (GB);
GB distribution; sheet resistance; transmission-line model measurement

1. Introduction

Chemical vapor deposition (CVD) is the most effective method for uniformly grow-
ing monolayer graphene on a wafer scale in a reproducible way [1]. However, CVD
graphene can typically be grown as a polycrystalline structure composed of multiple single-
crystalline grains connected by disordered grain boundaries (GBs) [2–6]. Scattering at
the GB (i.e., structural line defect) affects carrier transport, as does scattering within a
single-crystalline grain; thus, both the GB and grain act as major resistive sources in poly-
crystalline graphene [4–6]. Because the electrical properties of graphene are determined by
the competition between these two resistive sources—i.e., relatively high-resistive GB and
low-resistive grain—the average grain size has a significant impact on the electrical proper-
ties [7–10]. Therefore, unlike single-crystalline graphene, whose electrical performance can
be explained only by the sheet resistance of the layer, the performance of polycrystalline
CVD graphene should be explained by a combination of various grain-related parameters,
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such as the average grain size, single-crystalline grains sheet resistance, and GB resistivity.
For this reason, rigorous evaluation of these grain parameters is crucial for the design and
fabrication of CVD-graphene devices.

Accordingly, various techniques for characterizing grain parameters have been actively
studied over the last decade. In the case of grain size, it can be evaluated through structural
characterization and identification of GBs using spectroscopic or microscopic measurements.
For instance, spatial mapping of the Raman peak intensities for graphene (D peak at
~1350 cm−1, G peak at ~1580 cm−1, and 2D peak at ~2690 cm−1) enables the location and
shape of GBs and grains to be identified [11]. This is an effective method for evaluating the
size of individual grains, but estimating the average grain size of CVD graphene across the
entire grown region is difficult because of the limited inspection area and the extremely
slow mapping speed. Instead of mapping the Raman peaks, the GBs with an angstrom-
scale width can be imaged directly by performing an ultraviolet (UV)/ozone treatment
after growing graphene on a Cu substrate. The UV/ozone treatment selectively oxidizes
Cu beneath the GBs through strong chemical reactions with O and OH radicals, allowing
the GBs to be visualized and examined under an optical microscope (OM) or a scanning
electron microscope (SEM) [12,13]. Although this process provides a convenient way to
observe multiple grains and to evaluate their sizes, for a global estimation of the average
grain size, a time-consuming manual process that evaluates the sizes of individual grains
from a large amount of microscopy images covering a wide area of CVD-grown graphene
should accompany it [14].

For the electrical properties of GBs and single-crystalline grains, four-terminal measur-
ement-based evaluation techniques have been widely used. To extract the resistances of
a GB and grain separately using these techniques, the location of the GB should first be
identified with non-destructive transmission electron microscopy (TEM) [6]. An electron-
beam lithography system is then used to fabricate a Hall-bar pattern across two grains
joined by the GB. The sheet resistance of the single-crystalline grain and the resistivity of
the GB can be extracted by performing a series of four-terminal measurements with this
pattern [6]. This technique is significantly useful for understanding the electrical properties
of individual grains and GBs; however, high-level technical skills are required to accurately
estimate the location of the GB and fabricate the Hall-bar pattern aligned well with the GB
location [4]. Furthermore, because of the limited TEM resolution capable of identifying the
GBs, it is difficult to extend this technique to a global evaluation method that can extract the
average grain sheet resistance and GB resistivity from multiple single-crystalline grains and
GBs. As an alternative approach, an electrical characterization technique based on ohmic
scaling law was developed for the global evaluation of these two electrical parameters [4].
In this technique, the average grain sheet resistance and GB resistivity can be extracted
on a large scale by measuring the channel sheet resistance of each CVD-graphene sample
as a function of the average grain size and then fitting it to the ohmic scaling law (i.e., a
simple 1D series-resistance model) [4,5]. However, to apply this technique effectively, it is
necessarily required to investigate the exact average grain size of each graphene sample,
and further, prepare multiple CVD graphene samples with different average grain sizes but
identical average grain sheet resistance and GB resistivity. These requirements may limit
the practical application and an accurate extraction of the average grain sheet resistance
and GB resistivity.

In this paper, we propose for the first time an electrical characterization method for
extracting the average grain size, grain sheet resistance, and GB resistivity of monolayer
CVD graphene simultaneously. For this purpose, we investigate the probability distribution
of the number of GBs depending on the graphene–channel dimension, from which we
develop an analytical resistance model that can explain the relationship between the electri-
cal properties of polycrystalline graphene and its grain parameters. With this resistance
model, we show that the three-grain parameters can be extracted simultaneously with
an accuracy greater than 99% from the dependence of the material’s electrical property
(i.e., sheet resistance) on the channel dimension. To validate the developed resistance model
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and its applicability for parameter extraction, we fabricate a transmission-line model (TLM)
pattern on monolayer CVD graphene and characterize the channel sheet resistance (Rsh)
as a function of channel length (Lch). We show that the average grain size, grain sheet
resistance, and GB resistivity of CVD graphene can be extracted simultaneously from the
analytical resistance model that is fitted to the measured Rsh–Lch curve. The three extracted
values are then compared with those obtained using conventional methods and those
reported in the literature.

2. Materials and Methods
2.1. Graphene Growth and Transfer

After the development of an analytical resistance model, to verify its applicability
for grain-parameter extraction, we synthesized monolayer graphene on a 25-µm-thick
Cu foil (99.8% purity, Alfa-Aesar Inc., Ward Hill, MA, USA) by a thermal CVD system
(TCVD 100, Scientec Inc., Suwon, South Korea). To grow the polycrystalline graphene layer
with uniform-size grains, electropolishing of the Cu surface was first performed in an 85%
phosphoric acid bath using a constant voltage of 1.2 V for 20 min [15]. The polished Cu
foil was then loaded into the CVD chamber and annealed at 1050 ◦C for 1 h with a flow
of Ar (570 sccm) and H2 (100 sccm) for surface treatment. Following the annealing step,
monolayer graphene was grown at 1050 ◦C for 1 h under a chamber pressure of 2 Torr with
a flow of Ar (570 sccm), H2 (100 sccm), and CH4 (2 sccm). The CVD chamber was then
cooled down to room temperature in an Ar environment before the as-grown graphene
sample was finally removed from the chamber.

For device fabrication, CVD-grown monolayer graphene was transferred onto ther-
mally oxidized Si substrates (90-nm-thick SiO2) by the optimized poly (methyl methacry-
late) (PMMA)-mediated transfer method [16]. First, a PMMA solution (495 A4, MicroChem
Inc., Westborough, MA, USA) was spin-coated onto the top side of the graphene-grown Cu
foil at 1000 rpm for 60 s, followed by drying at room temperature for 24 h. The graphene
layer grown on the back side of Cu was etched using O2 plasma ashing (RF power = 30 W,
working pressure = 30 m Torr) for 3 min. The Cu foil was then etched using diluted
ammonium persulfate solution (0.02 M, Sigma Aldrich Inc., St. Louis, MO, USA) at room
temperature for 24 h, after which the remaining PMMA/graphene stack was rinsed repeat-
edly with deionized water. The rinsed PMMA/graphene stack was finally transferred onto
the oxidized Si substrate and the transferred sample was baked at 160 ◦C in a vacuum for
30 min to remove residual water and improve the adhesion between the graphene layer
and the substrate. To minimize the PMMA residue and wrinkles, the PMMA layer was
removed using acetic acid at room temperature for 3 h, followed by annealing at 300 ◦C for
3 h under an ultrahigh vacuum (~10−8 Torr) [16].

2.2. Device Fabrication

To extract the grain parameters of CVD graphene using the developed analytical
resistance model, TLM patterns composed of back-gated field-effect transistors (FETs) with
varying channel lengths (2–100 µm) were fabricated on CVD graphene transferred onto
90-nm-thick oxidized Si substrates. First, channel regions of the FETs were patterned
by i-line mask-aligner lithography (MA6/BA6, Karl Suss Inc., Munich, Germany) with
a positive-tone photoresist (AZ GXR-601, AZ Electronic Materials Inc., Branchburg, NJ,
USA), and graphene channels were defined using O2 plasma etching (30 W, 30 m Torr)
for 2 min. Following the channel definition, the second photolithography process was
performed using an image reversal photoresist (AZ 5214-E, AZ Electronic Materials Inc.)
for source/drain electrode patterning. Then, a 20-nm-thick Pd and 50-nm-thick Au were
sequentially deposited by an electron-beam evaporation system (SRN-200, Sorona Inc.,
Anseong, South Korea) for contact formation, after which the residual photoresist layer and
the metal deposited on top of the photoresist were removed by the lift-off process in a warm
acetone bath. CVD-graphene FETs with sub-micrometer channel lengths (0.18–0.75 µm)
were fabricated using electron-beam lithography (Raith 150-TWO, Raith Inc., Dortmund,

69



Nanomaterials 2022, 12, 206

Germany) and a positive-tone electron-beam resist (AR-P 672.045, Allresist Inc., Strausberg,
Germany). For patterning the graphene channels and source/drain electrodes, electron-
beam conditions of an area dose of 200 µC/cm2, a step size of 5 nm, and an acceleration
voltage of 30 kV were used.

2.3. Characterizations

The electrical characteristics of the fabricated graphene FETs were measured using a
semiconductor parameter analyzer (4156C, Agilent Inc., Palo Alto, CA, USA) in a probe
station under a high vacuum (~10−7 Torr). Before the measurements, the graphene surface
was annealed at 120 ◦C for 3 h in the vacuum probe station to remove any moisture, oxygen,
and photoresist residue, which act as p-type dopants [16–18]. A Raman spectroscope
(inVia reflex, Renishaw Inc., Wotton-under-Edge, UK) with 532-nm excitation was used
to evaluate the material quality of monolayer CVD graphene. The top-view images of
the CVD-graphene surface and fabricated graphene FETs were obtained using a field-
emission SEM (SU8220, Hitachi Inc., Tokyo, Japan) and an OM (BX51, Olympus Inc.,
Tokyo, Japan) system. The GB visualization for estimating the average grain size was
performed in a UV/ozone chamber (PSD-Pro, Novascan Technologies Inc., Boone, IA, USA)
by irradiating a 254-nm UV light with an output power of 20 mW/cm2 under ambient
conditions. The grain sizes of CVD graphene observed in the top-view SEM images after the
UV/ozone treatment were measured using the ImageJ software provided by the National
Institutes of Health, USA. Note that the grain-size estimation from the SEM images was
performed to check the accuracy of the average grain size extracted by the proposed
electrical characterization method.

3. Results and Discussion

To develop a characterization method for extracting the average grain size, grain sheet
resistance, and GB resistivity, it is necessary to investigate the effects of these parameters
on the electrical characteristics of polycrystalline-graphene devices. Thus, we first theo-
retically calculated the channel sheet resistance of polycrystalline graphene as a function
of channel length using a parallel-resistance model [14], and investigated its dependence
on the channel length. For the sheet-resistance computation, the Voronoi tessellation (VT)
method was used to generate 2D polycrystalline structures (Figure 1a), which can depict a
real polycrystalline morphology with non-uniform sizes and shapes of grains [14,19–22].
Because the sizes and shapes of polycrystalline graphene are not uniform, the number of
GBs impeding carrier transport between two electrodes varies with the location in the poly-
graphene channel. This indicates that the sheet resistance of the graphene channel can vary
locally—i.e., the sheet resistance would not be uniform within the polycrystalline channel.
Thus, for rigorous resistance modeling that takes into account the local non-uniformity of
the GB number, the channel width was divided into extremely narrow elements, and the
number of GBs within each width element was counted separately. The resistance of each
width element, which is the sum of the resistances of numerous grains and GBs connected
in series (Figure 1a), was then calculated from the following 1D ohmic scaling law [4]:

∆Ri = RG
sh

Lch

∆Wch
+ ρGB

ni

∆Wch
(1)

where ∆Ri is the resistance of each width element, RG
sh is the average sheet resistance of

single-crystalline grains, ρGB is the average resistivity of GBs, Lch is the channel length, Wch

is the channel width, and ni is the number of GBs within each width element. Subsequently,
the total channel resistance of polycrystalline graphene was calculated from the sum of
the resistances of every width element connected in parallel (Figure 1a). The equation for
calculating the channel resistance as a function of the channel length is as follows:
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1
Rch(Lch)

=
m

∑
i = 1

1
∆Ri

=
m

∑
i = 1

1

RG
sh

Lch
∆Wch

+ ρGB
ni

∆Wch

(2)

where Rch is the channel resistance and m is the number of divided width elements
(=Wch/∆Wch). In this study, the channel width was divided into 105 elements for the
parallel-resistance modeling. Furthermore, to estimate the average channel resistance as a
function of the channel length, we randomly generated 1000 polycrystalline structures with
an average grain size of 5 µm using the VT method and repeated this calculation process
(see Figure S1 for the calculation results of poly-graphene channels with different average
grain sizes of 2.5 and 15 µm). The Wch used in the calculation was 20 µm, and the RG

sh and
ρGB values were 300 Ω/sq and 10.6 kΩ-µm, respectively, which were selected within the
range of those of CVD graphene reported in the literature [4,5]. (The results calculated using
different Wch, RG

sh, and ρGB values are shown in Figure S2). Note also that the source/drain
contact resistance was not taken into account in the resistance modeling and computation
processes. The theoretically calculated average resistance of the poly-graphene channel
(average grain size of 5 µm) simulated using the VT method is shown in Figure 1b. The
channel resistance is directly proportional to the channel length in the long-channel re-
gion (i.e., constant dRch/dLch), whereas the slope (dRch/dLch) varies with the channel
length in the relatively short-channel region (particularly the Lch around the average grain
size). This indicates that the sheet resistance of the polycrystalline channel depends on
the channel dimension, unlike the single-crystalline graphene or other single-crystalline
semiconductors. The average channel sheet resistance (Rsh) as a function of channel length
is shown in Figure 1c. The sheet resistance was calculated from Rch ×Wch/Lch. The channel
sheet resistance is constant for long channels; however, it decreases sharply as the channel
length is reduced below approximately 25 µm. The decrease in channel sheet resistance
is most prominent at channel lengths around the average grain size, which is due to the
significantly lowered probability of the existence of GBs at those channel lengths [14]. This
implies that the GB density and distribution within the channel region play a critical role in
determining the dependence of the channel sheet resistance on the channel length.

As shown in Figure 1, it is critical to estimate the GB density and distribution within
the graphene channel to understand the dependence of the channel sheet resistance on
the channel length. Thus, we investigated the proportion distribution of the number
of GBs depending on the channel length by counting the GB number within narrow
width elements divided into 105. For statistical evaluation, we repeated the process with
1,000 polycrystalline-graphene structures (average grain size of 5 µm) generated randomly
using the VT method, as in the channel resistance calculation. The average histogram
distributions of the proportion of the GB number within the channel region at three different
channel lengths are shown in Figure 2a–c (see Figure S3 for the results at various channel
lengths). The number of GBs within the channel region is limited to 0–3 at channel lengths
less than or equal to the average grain size (i.e., Lch ≤ 5 µm), whereas it is evenly distributed
at the channel length greater than the average grain size. This explains why there is a
significant decrease in sheet resistance at channel lengths near the average grain size
(Figure 1c). We investigated several distribution functions to find a way to estimate such a
proportion distribution without counting the number of GBs and found that the envelope of
the proportional distribution of the GB number follows the continuous probability density
function of the gamma distribution (i.e., gamma PDF) [23]:

GamPDF(x) =
1

βα
∫ ∞

0 uα−1e−udu
xα−1e

− x
β f or x, α, β > 0 (3)

where α·β is the mean and α·β2 is the variance. When α = 3.85 × Lch/lG and β = 0.33
(where lG is the average grain size), it was empirically confirmed that the gamma PDF
agrees well with the envelope of the proportional distribution of the GB number for all
channel lengths (Figure 2 and Figure S3). Furthermore, this observation was also valid
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for poly-graphene channels with different average grain sizes (see Figure S4 and Figure
S5 for lG = 2.5 and 15 µm, respectively). Following this, to obtain the discrete distribution
of the GB number from the continuous gamma PDF, we used the cumulative distribution
function of the gamma distribution (i.e., gamma CDF), which is an integral form of the
gamma PDF as follows:

GamCDF(n) =
∫ n

0 GamPDF(x)dx

=
∫ n

0
1

0.33
3.85Lch

lG
∫ ∞

0 u
(

3.85Lch
lG

−1)
e−udu

x
(

3.85Lch
lG
−1)

e−
x

0.33 dx
(4)

where n is the number of GBs. The proportion distribution of the GB number can be
estimated from GamCDF (n + 0.5) − GamCDF (n − 0.5) with an accuracy greater than 98%
for all channel lengths, as shown in the red symbols of Figures 2 and S3.

Because the proportion distribution of the GB number within the channel region
can now be accurately estimated without counting the number of GBs, we can develop
an analytical resistance model that is more generalized for explaining the dependence
between the sheet resistance and channel length. For this purpose, the divided narrow
width elements (∆Wch) were grouped and rearranged by the number of GBs considering
its proportion within the channel region estimated from the gamma CDF (Figure 3a). The
rearranged width element by the number of GBs (Wch,n) can be expressed as follows:

Wch,n = Wch × {GamCDF(n + 0.5)− GamCDF(n− 0.5)}, Wch =
k

∑
n = 0

Wch,n (5)

where k is the maximum number of GBs existing within the divided width elements. Based
on the rearranged width elements, Equation (2) can then be generalized as:

1
Rch(Lch)

=
k

∑
n = 0

Wch,n

RG
shLch + ρGBn

(6)

Following that, the analytical model for the channel sheet resistance, composed of
the three-grain parameters (lG, RG

sh, and ρGB), can be finally induced as a function of the
channel length:

Rsh(Lch) = Rch(Lch)× Wch
Lch

=





k

∑
n = 0



∫ n+0.5

n−0.5
1

0.33
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0 u

(
3.85Lch
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−1)

e−udu

x
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3.85Lch
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−1)
e
− x

0.33 dx


Lch

RG
sh Lch+ρGBn





−1

(7)

Using the developed analytical resistance model as a fitting function, we estimated
the dependence of the channel sheet resistance on the channel length observed in the
theoretical calculation result, Figure 1c, by adjusting the three unknown fit parameters (i.e.,
lG, RG

sh, and ρGB). As a result, the analytical model was fitted with the calculation result
well, with a fitting accuracy greater than 99.98% (Figure 3b). Note that any predetermined
grain-parameter information is not required in the fitting process. The important aspect of
this result is that the three-grain parameters can be extracted from the analytical resistance
model that is fitted to the Rsh–Lch curve. The three-parameter values provided for the
theoretical sheet-resistance calculation (Figure 1) and those extracted from the best-fitted
analytical model are summarized in Table 1. The result shows that the average grain size,
the sheet resistance of single-crystalline grains, and the resistivity of GBs, can be extracted
simultaneously with a high accuracy (>99%). Likewise, in the theoretical sheet-resistance
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results simulated with different average grain sizes or different grain sheet resistance and
GB resistivity values, it was also confirmed that the three grain parameters can be extracted
with a high accuracy using the analytical model (see Figure S1 and Figure S2). These
results indicate that the proposed method can simultaneously extract the average grain size,
grain sheet resistance, and GB resistivity of polycrystalline graphene from the electrical
characteristics of graphene devices without using any predetermined grain parameter
values, and furthermore, it can be applied to various polycrystalline graphene layers with
different grain sizes, as well as the electrical properties of GBs and single-crystalline grains.

 

∆

μ

Figure 1. Parallel-resistance model for theoretical computation of the sheet resistance depending
on the channel dimension. (a) A schematic of the electrical device with a poly-graphene channel
simulated using the VT method. For poly-graphene resistance modeling, the channel width is divided
into extremely narrow elements (∆Wch = Wch/105). The resistance of the poly-graphene channel is
calculated from the parallel connection of the divided elements. (b) The calculated channel resistance
as a function of channel length for polycrystalline graphene (with an average grain size of 5 µm)
simulated using the VT method. Inset: the calculated channel resistances in relatively short channels
(denoted by the dashed box), which shows that the slope (dRch/dLch) varies with the channel length.
(c) The calculated channel sheet resistance as a function of the channel length. Inset: the calculated
channel sheet resistances in relatively short channels (denoted by the dashed box), which shows that
the sheet resistance decreases significantly as the channel length approaches the average grain size.
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Δ

Figure 2. Histogram distributions of the proportion of the GB number within the channel region
when the channel length is (a) less than the average grain size, (b) equal to the average grain size,
and (c) greater than the average grain size. Each distribution was evaluated by counting the GB
number within narrow width elements divided into 105. The black dashed lines in (a–c) indicate the
locations where the number of GBs changes. For all channel lengths, the envelope of the proportional
distribution of the number of GBs follows the continuous probability density function of the gamma
distribution (gamma PDF), and the discrete proportion distribution of the GB number can be estimated
from the cumulative distribution function of the gamma distribution (gamma CDF) with an accuracy
greater than 98%.

 

Δ

Figure 3. GB distribution-based analytical resistance model for the simultaneous extraction of the
grain parameters (the average grain size, grain sheet resistance, GB resistivity) of polycrystalline
graphene. (a) Considering the proportion distribution of the GB number estimated from the gamma
CDF, the divided width elements (∆Wch) can be grouped and rearranged by the number of GBs.
Based on the rearranged width elements (Wch,n), a sheet-resistance model composed of the three-
grain parameters can be induced as a function of the channel length. (b) The developed analytical
resistance model was used to fit the calculated channel sheet resistance as a function of the channel
length. The sheet-resistance dependence on the channel length can be estimated with a high fitting
accuracy greater than 99.98% by adjusting three fit (i.e., grain) parameters, from which the three-grain
parameters can be extracted from the analytical resistance model fitted to the Rsh–Lch curve.
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Table 1. Comparison of three-grain parameters given for the theoretical calculation with those
extracted by the developed analytical resistance model.

lG (µm) RG
sh (Ω/sq) ρGB (kΩ-µm)

Given parameter 5.0 300 10.6
Extracted parameter 5.02 299.7 10.59

To verify whether the proposed parameter extraction method is practical, we fabricated
TLM patterns on CVD graphene and extracted three-grain parameters by characterizing
the dependence of the channel sheet resistance on the channel length using the analytical
resistance model. For this purpose, we synthesized monolayer graphene through CVD
and transferred it onto thermally oxidized Si substrates (90-nm-thick SiO2) for the device
fabrication. The material and layer quality of as-transferred CVD graphene was then
evaluated using Raman spectroscopy measurements, confirming the defect-free monolayer
graphene with an intensity ratio of 2D to G peaks of ~2.8 (see Figure S6). To characterize the
dependence between the channel sheet resistance and the channel length, the back-gated
graphene FETs with channel lengths of 2–100 µm and a channel width of 20 µm were
fabricated on transferred CVD graphene (Figure 4a) and the total device resistance (at
the charge neutrality point) of the graphene FETs was then measured as a function of
the channel length. To obtain the channel resistance, the source/drain contact resistance
(RC) was separated from the measured total device resistance (Rtot) by using the TLM
method [24]—i.e., Rch = Rtot − 2RC (Figure S7). Thereafter, the channel sheet resistance was
calculated from Rch ×Wch/Lch. The dots in Figure 4b show the channel sheet resistance
as a function of the channel length, obtained from the measurement results of 5–15 FETs
per channel length using the three identical graphene samples grown by the same CVD
run. Note that the dependence between Rsh–Lch is similar to that observed in the theoretical
calculation result (Figure 1c). From such dependence, the three-grain parameters were
extracted simultaneously by the analytical resistance model fitted to the Rsh–Lch curve as
shown by the red line in Figure 4b. The extracted average grain size, the sheet resistance
of single-crystalline grains, and the resistivity of GBs were determined to be ~5.95 µm,
~321 Ω/sq, and ~18.16 kΩ-µm, respectively. The detailed procedure and flow chart for
extracting the three grain parameters from the electrical measurement results using the
analytical resistance model are summarized in Figure S7 and Figure S8, respectively.

To confirm whether the extracted three-parameter values are rational, we compared
the extracted values with those evaluated using conventional methods and those reported
in the literature. First, the GB visualization technique based on UV/ozone treatment was
used to estimate the average grain size of CVD graphene. Figure 4c shows a representative
SEM image of CVD graphene grown on a Cu foil after the UV/ozone treatment. Note
that the UV/ozone-treated GBs were highlighted in yellow to make them more visible
(see Figure S9 for the original image). We evaluated the sizes of 376 grains observed in
multiple SEM images (Figure S9), from which the average grain size was estimated to be
5.88 ± 1.5 µm. This value agrees well with the extracted average grain size from the fitted
analytical resistance model (~5.95 µm). The sheet resistance of single-crystalline grains was
estimated by characterizing TLM patterns composed of short-channel graphene FETs with
Lch of 0.18–0.75 µm (Figure 4d). Because the probability of the GBs existing in these channel
lengths is significantly low, the channel resistance increased in direct proportion to the channel
length, just like in a single-crystalline material. Thus, the sheet resistance of single-crystalline
grains could be estimated using the conventional TLM method [24]—i.e., from the slope
of the measured width-normalized channel resistance as a function of the channel length
(Figure 4e). The estimated grain sheet resistance from this approach was determined as
362 Ω/sq, which is comparable to the average RG

sh extracted from the fitted analytical model
(~321 Ω/sq). The slight difference between the two values may be due to the influence of
one GB that remains within the channel region, even as the channel length decreases, as
shown in the inset of Figure 4e. Accordingly, the grain sheet resistance evaluated using the
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conventional TLM method can be slightly overestimated because of the carrier scattering at the
GB. The extracted GB resistivity from the fitted analytical resistance model (~18.16 kΩ-µm)
was verified by comparing the value with those reported in the literature [4–6,25–28]. A
summary of experimental results for the GB resistivity of CVD graphene that has been
reported in the literature is shown in Figure 4f. Note that all resistivity values shown in the
summary plot were extracted at the charge neutrality point. The average GB resistivity value
in this study is in the range of those reported in the literature to date and is similar to their
average value. Consequently, these validation results support that the extracted three-grain
parameters are within the rational range. Therefore, we can conclude that the proposed
electrical characterization method can extract the average grain size, single-crystalline grain
sheet resistance, and GB resistivity simultaneously using the GB distribution-based analytical
resistance model. This method of simultaneous extraction of the grain-related parameters
from the dependence between Rsh–Lch obtained from simple TLM measurements will provide
a convenient way for the electrical characterization of CVD graphene and its efficient device
applications. Furthermore, it is expected that the proposed method can be extended to various
2D materials with polycrystalline structures.

Ω μ

 

μ

μ Ω
Ω∙μ

μ

μ

μ μ

Figure 4. Experimental verification of the GB distribution-based analytical resistance model and
parameter extraction method. (a) OM images of fabricated TLM patterns comprising the CVD-
graphene FETs with varying channel lengths (Lch of 2–100 µm). (b) Measured channel sheet resistance
as a function of channel length and fitting result using the analytical resistance model. The three-grain
parameters extracted from the fitted model are ~5.95 µm (for the average grain size), ~321 Ω/sq
(for the average grain sheet resistance), and ~18.16 kΩ·µm (for the average GB resistivity). (c) The
representative SEM image of CVD graphene grown on a Cu foil, with UV/ozone-treated GBs
highlighted in yellow. The average grain size estimated from 376 grains is 5.88 ± 1.5 µm. (d) OM and
SEM image of a fabricated TLM pattern comprising the graphene FETs with sub-micrometer channel
lengths (Lch of 0.18–0.75 µm). (e) The measured width-normalized channel resistance as a function of
the channel length, in which the linear slope indicates the sheet resistance of single-crystalline grains
due to the extremely low probability of the presence of GBs within the short-channel regions. Inset:
the histogram distribution of the number of GBs when the channel length is significantly smaller
than the average grain size (Lch = 0.18 µm and lG = 5 µm). (f) Summary of experimental results for
the GB resistivity reported in the literature [4–6,25–28], where all represented resistivity values were
extracted at the charge neutrality point. This summary plot shows that the GB resistivity extracted in
this study falls within the range of the reported resistivity values.
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4. Conclusions

In summary, we demonstrated an electrical characterization method for extracting the
average grain size, grain sheet resistance, and GB resistivity of monolayer CVD graphene
simultaneously. We developed an analytical resistance model to explain the relationship
between the electrical properties of polycrystalline graphene and the channel dimension
by precisely estimating the proportion distribution of the number of GBs within graphene
channels. With the developed analytical resistance model, we showed that the three-grain
parameters can be extracted simultaneously from the dependence of the graphene sheet
resistance on the channel dimension with an accuracy greater than 99%. The proposed
parameter extraction method using the GB distribution-based analytical resistance model
was experimentally verified by characterizing TLM patterns fabricated on monolayer CVD
graphene. The result showed that the average grain size, grain sheet resistance, and GB
resistivity of CVD graphene can be extracted simultaneously with high accuracy from
the analytical resistance model fitted to the measured Rsh–Lch curve. We believe that this
method will be a useful tool for the electrical characterization of CVD graphene and other
polycrystalline 2D materials.
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Abstract: Electric devices have evolved to become smaller, more multifunctional, and increasingly
integrated. When the total volume of a device is reduced, insufficient heat dissipation may result
in device failure. A microfluidic channel with a graphene solution may replace solid conductors
for simultaneously supplying energy and dissipating heat in a light emitting diode (LED). In this
study, an automated recycling system using a graphene solution was designed that reduces the
necessity of manual operation. The optical power and temperature of an LED using this system was
measured for an extended period and compared with the performance of a solid conductor. The
temperature difference of the LED bottom using the solid and liquid conductors reached 25 ◦C. The
optical power of the LED using the liquid conductor was higher than that of the solid conductor after
120 min of LED operation. When the flow rate was increased, the temperature difference of the LED
bottom between initial and 480 min was lower, and the optical power of the LED was higher. This
result was attributable to the higher temperature of the LED with the solid conductor. Moreover,
the optical/electric power transfer rate of the liquid conductor was higher than that of the solid
conductor after 120 min of LED operation, and the difference increased over time.

Keywords: liquid conductor; graphene solution; circulating system; microfluidic channel; tempera-
ture; optical power

1. Introduction

Heat dissipation and electrical conduction are critical considerations in the operation
of an integrated circuit device. Solid metal conductors are typically used for conducting
electricity. Several heat dissipation methods, such as the use of microfluidic devices, are
employed in electric systems. For example, researchers have considered using nanofluids
for cooling electric devices [1,2]. Studies have proposed a thermal contact liquid cooling
system [3] as well as a technique for cooling photovoltaic cell systems through the use
of rotating magnetic fields and ferrofluids [4]. A related study used a system combining
liquid cooling and composite phase change material cooling to dissipate the heat generated
in a battery [5]. Liquid cooling systems have also been applied in central processing units
and laptops [6,7]. Research has revealed various cooling methods for electric devices [8–10].
Some studies have also employed the recycling of various fluids, such as ammonia [11],
CO2 [12], and supercritical water [13] for cooling. Additionally, researchers have introduced
a one-section and two-stepwise microchannel for cooling [14] and a recirculating cooling
water system to reduce energy consumption [15]. Another study considered the cooling
effect of dielectric liquid [16], and yet another reported that a fracture in the neck of the
bond between the solder joint and gold wire after 20 thermal shocks would result in metal
conductors failing at high temperatures [17].

The dissipation of heat in light emitting diodes (LEDs) has been studied extensively.
For example, researchers have investigated the temperature distribution [18] and liquid
cooling systems [19,20] of an LED array. Furthermore, composite coatings composed of
cupric oxide [21] or various heat pipes and heat sinks [22–28] have been employed to
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enhance the heat dissipation of LEDs. Other relevant studies have used a dielectric layer
with an aluminum nitride insulation plate [29] and a dual synthetic jet actuator for heat
dissipation in LEDs [30]. A cooling system with ferrofluid was used in a high-power
LED; the results were compared with those of systems employing air and water working
fluid, and the effect of ferrofluid was the best [31]. A thermoelectric cooler integrated
with a microchannel heat sink was used to control LED temperature [32]. Another study
proposed the energy recycling and self-sufficient application of an LED integrated with
a thermoelectric generator module and electrical fan [33]. Moreover, graphene has been
employed as a novel material in several investigations [34,35]. Some researchers have
considered the thermophysical properties and forced convective heat transfer performance
of graphene [36,37] and reviewed the applications of graphene [38,39]. Researchers have
suggested that the conductivity of water can be improved through the addition of mono
and hybrid nano-additives containing graphene and silica [40] and have developed a
method that integrates graphene nanocapillaries into a micro heat pipe for enhanced LED
cooling [41]. Graphene solutions have been widely applied to increase heat transfer effi-
ciency [42–47], and a higher graphene solution concentration has been demonstrated to
result in greater heat transfer [48,49]. Moreover, some researchers have studied thermal
conductivity and electrical conductivity of graphene nanoplatelets [50,51]. The aforemen-
tioned investigations have concentrated on either dissipating heat or supplying energy but
have not considered the combination of energy supply and heat dissipation. Furthermore,
numerous studies have examined the energy conversion of artificial light [52–55] and
white light LEDs [56–58]. Evidence suggests that the power conversion efficiencies of
solar cells and LEDs are lower than 53.6% [59,60] and that the efficiency of LEDs is 42%
at 30 ◦C, dropping to 30% at 50 ◦C [61]. However, the aforementioned studies focused
predominantly on energy conversion from optical power to electric power; energy con-
version from electric power to optical power has seldom been discussed. The stability
and reliability of an electric apparatus may decrease by 10% when the temperature is
increased by 2 ◦C [62]. In another investigation, a graphene solution was used as a liquid
conductor for dissipating heat and transferring energy; the heat dissipation efficiency was
excellent, but the optical power of an LED with a liquid conductor was lower than that
of an LED with a solid conductor during the first 6 min, and the graphene solution was
recycled manually [63]. According to the aforementioned study, the temperature of the
LED using the liquid conductor was much lower than that of the LED using the solid
conductor. However, the optical power of LEDs using liquid and solid conductors was not
compared over longer periods. Therefore, to supply energy and dissipate heat of an LED
during longer experiments, the graphene solution can be automatically recycled. Such a
system can simultaneously dissipate heat and supply energy as well as improve the LED’s
optical power. The optical power of the LED using the liquid conductor may be higher
than that of the LED using the solid conductor over longer periods. Therefore, in this study,
an automated liquid conductor circulating system was developed and the energy supply
and heat dissipation of an LED was studied over an extended period.

2. Materials and Methods
2.1. Principle of Operation

A liquid conductor that can dissipate heat and conduct electricity simultaneously may
effectively reduce the temperature of electric products and enhance the photoelectricity
transfer efficiency. Related research has indicated that the temperature of an LED using
a liquid conductor is much lower than that of an LED using a solid conductor. Thus,
the effect of the temperature of the LED on its optical power, especially during extended
periods, merits further study.

2.2. Chip Design and Fabrication

Microfluidic channels were fabricated using a microelectromechanical process, as
displayed in Figure 1a,b. The widths of the inlet and outlet of the channel were 0.5 mm,
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and the length of the channel was 20 mm; the distance between the channels was 0.5
and 1 mm, respectively. As displayed in Figure 2a, first, the wafer was cleaned using
acetone and deionized water. Second, the periphery of wafer was coated with Teflon and
baked; the periphery of the wafer was hydrophobic to enhance the photoresist coating. The
silicon wafer was coated with SU8 photoresist with a thickness of approximately 500 µm
at 200 rpm. Subsequently, the wafer was soft baked and the solvent in the photoresist
was removed. The wafer was exposed to define the pattern, and it was baked after
exposure to enhance the linking process of the photoresist. After the wafer was developed,
the developer removed the undefined region. Subsequently, the polydimethylsiloxane
(PDMS) substrate microfluidic channel chip was fabricated. As illustrated in Figure 2b,
the Teflon was coated on the wafer and the PDMS was poured into the wafer; the wafer
was hydrophobic to facilitate the fabrication of the PDMS substrate. The wafer was then
vacuumed to remove the bubbles in the PDMS, and the wafer was heated to solidify the
PDMS. Once the wafer had cooled, the PDMS could be separated from the wafer, and the
PDMS substrate microfluidic channel chip was complete.

Figure 1. Schematics of the LED chip with a microfluidic channel: (a) distance between the channel
d = 1 mm; (b) distance between the channel d = 0.5 mm.
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Figure 2. Fabrication of the microfluidic channels: (a) SU8 mold chip; (b) PDMS substrate microfluidic
channel chip.
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The designated area for a microscope slide (75 × 25 × 1 mm3) was coated with silver
adhesive (OP-901, Double O Technology, Taiwan), as shown in Figure 3a, which was
connected to the microfluidic channel and the LED. The PDMS substrate microfluidic
channel chip and the microscope slide coated with silver adhesive were bonded together
to form the chip. The LED (emission color: white; TY-HNW2-3, TaoYuan Electron Limited,
Taiwan) was placed at the center of the chip. The silver adhesive was coated on the
electrodes of the LED, connecting it with the silver adhesive of the chip. The size of the
liquid recycling reservoir was 75 × 25 × 13 mm3. The area between the needle and the
microfluidic channel was sealed with ultraviolet glue to ensure that the liquid would not
leak. Finally, the chip, the liquid or solid conductor, the liquid recycling reservoir, and the
LED were integrated to form an LED with a liquid circulating system, shown in Figure 3b.

Figure 3. Schematics of the system: (a) image of the microscope slide with silver adhesive; (b) image
of the LED with a liquid circulating system.

2.3. Sample Preparation and Experimental Setup

A graphene solution (Golden Innovation Business Co., Ltd., New Taipei, Taiwan) was
used as the liquid conductor in this study. The size of the graphene particles in the solution
was 100 nm, the solution was deionized water, and the concentration was 500 ppm. The
needle was placed into the microfluidic channel. The graphene solution was fully mixed
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using an acoustic vibrator, and the solution was injected into the needle and microfluidic
channel. The flow rate was regulated using a piezoelectric micropump (CurieJet, PS51I,
Microjet Technology, Hsinchu, Taiwan); the flow rate ranged from 0.01 to 10 mL/min. A
solid conducting nickel-plated steel wire (diameter: 1 mm) was used as the solid conductor.
The power supply system (LPS305, Motech, Tainan, Taiwan) could produce an output
voltage of ± 30 V. The LED system included the power supply, a syringe pump, the chip,
and the graphene solution (or solid conductor). The temperature was measured using
resistance temperature detectors (RTDs; PT 100 series, OMEGA Engineering Inc., Norwalk,
Connecticut, USA), and the optical power of the LED was measured using an optical
power meter (Gentec Electro-Optique Inc., Quebec, Quebec, Canada). The integrated
system (Figure 4) included the LED system, power supply, syringe pump, temperature
data receiver, and optical power sensor. In this study, the temperature and optical power
of the LED were measured over an extended period, and the effect of the temperature on
the optical power was examined.

Figure 4. Schematic of the integrated system.

3. Results and Discussion

In this study, liquid (graphene solution) and solid (nickel-plated steel wire with a
diameter of 1 mm, length of 30 mm) conductors were used. The temperatures at the bottom
of the LED chip and the microfluidic channel were measured. Moreover, the optical power
of the LED under various conditions was measured at a distance of 3 mm from the LED.
The uncertainty analysis results of various parameters are listed in Table 1. Experiments
were performed five times under each set of experimental conditions, and the average error
was less than 20%. The temperatures at the center and four corners were measured, and
the temperature variation was lower than 2 ◦C. Because the temperature at the center of
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the chip bottom was the highest, it was selected to represent the temperature of the LED
chip (Figure 5).

Table 1. Uncertainty analysis of various parameters.

Parameter Instrument Uncertainty

Electric resistance and voltage Digital multimeters 0.1%
Flow rate Piezoelectric pump 0.5%

Temperature Resistance temperature detectors 0.1 ◦C
Optical power Optical power meter 0.5%

Figure 5. Schematic of the temperature measurement points of the LED bottom and
microfluidic channel.

3.1. Energy Supply

The actual voltage of the LED with the graphene solution conductor differed from the
voltage of the power supply. The actual voltages of the LED with the graphene solution
were measured at various power supply voltages (Figure 6). The results indicated that the
voltage of the graphene solution–conductor LED was 2.8 V when the voltage of the power
supply was 5.5 V. The highest operational voltage of the LED was 3 V. Therefore, the actual
voltage of the LED with the solid and liquid conductors was selected as 2.8 V in this study.
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Figure 6. Electric voltages of the LED with the liquid conductor at various power supply
electric voltages.

3.2. Temperature Variation Using Different Conductors

The measured temperatures of the LEDs with solid and liquid conductors are listed
in Figure 7. The temperatures of the LED bottom and the microfluidic channel bottom
increased over time. For the solid conductor, the temperatures of the LED bottom increased
to 58 ◦C at 50 min, and the temperatures increased gradually to 65.5 ◦C at 480 min. The
temperatures of the microfluidic channel bottom increased to 51.5 ◦C at 50 min and contin-
ued to increase gradually to 59.4 ◦C at 480 min. The temperature difference between the
LED bottom and the microfluidic channel bottom was 6–7 ◦C. The measured temperatures
of the liquid conductors (d = 500 and 1000 µm) also increased over time. When d = 1 mm,
the temperatures of the LED bottom and the microfluidic channel bottom increased over
time. The temperatures of the LED bottom increased to 37.2 ◦C at 50 min and continued to
increase gradually to 41 ◦C at 480 min. The temperatures of the microfluidic channel bottom
increased to 28.2 ◦C at 50 min and continued to increase gradually to 30.5 ◦C at 480 min.
The temperature difference between the LED bottom and the microfluidic channel bottom
was 9–10.5 ◦C. When d = 0.5 mm, the temperatures of the LED bottom increased to 36.2 ◦C
at 50 min and increased gradually to 40 ◦C at 480 min. The temperatures of the microfluidic
channel bottom increased to 28 ◦C at 50 min and increased gradually to 30 ◦C at 480 min.
The temperature difference between the LED bottom and the microfluidic channel bottom
was 8.2–10 ◦C. The temperatures of the LED bottom and microfluidic channel bottom were
lowest in the liquid conductor with d = 0.5 mm, but the temperature differences between
these two parts did not differ considerably between the liquid conductors with d = 0.5
and 1 mm. Furthermore, the temperature difference of the LED bottom between the solid
conductor and the liquid conductor reached 25 ◦C. This result emphasizes the temperature
reduction effect of the LED using the liquid conductor.
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Figure 7. Temperatures of the bottom of the LED bottom and channel bottom with various conductors.

The temperature differences of the LED bottom between initial and 480 min using
solid conductor and graphene solution with various flow rates are shown in Figure 8. The
temperature difference using the solid conductor was 35.1 ◦C. The temperature differences
using the graphene solution were 17.2, 13.4, 11.5 and 10.1 ◦C at flow rates of 0, 0.05, 0.2
and 1 mL/min, respectively. When the flow rate was increased, the temperature difference
was lower and the heat dissipation of the graphene solution was excellent. The heat
dissipation of the graphene solution was apparently higher than that of the solid conductor.
At static state, the heat dissipation of the graphene solution was still higher than that of the
solid conductor.

Figure 8. Temperature differences of the LED bottom between initial and 480 min using solid
conductor and graphene solution with various flow rates.
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The temperature decreases of the LED using various cooling methods are shown in
Figure 9. The temperature decrease in the LED with fin only was 3 ◦C, that of the LED
with fan only was 8 ◦C, and that of the LED with fin and fan could be 10 ◦C [22,23]. The
temperature decrease in the LED with heat pipe was larger than 7 ◦C [24–27], that of the
LED with dielectric layer could reach 20 ◦C [29], and it may be larger than 25 ◦C using
a ferrofluid [31]. In this study, the temperature decrease in the LED reached 30 ◦C using
a graphene solution. The temperature decrease in the LED in this study was equal to or
larger than that using other cooling methods.

Figure 9. Temperature differences of LED using various cooling methods.

The thermal conductivity ks of the solid conductor was about 15 W/m·◦C. The
thermal conductivity of graphene was about 5300 W/m·◦C. The thermal conductivity
of the graphene solution kg was about 20–100 W/m·◦C for various concentration for
200–1000 ppm (from graphene solution company, Golden Innovation Business Co., Ltd.,
New Taipei, Taiwan.).

The thermal resistance of a solid conductor can be expressed as follows [64,65]:

Rth,s = 1/(ksA/∆x) (1)

where ∆x is the distance between two locations, and A is the area between two locations.
Consider the convection heat transfer coefficient h, the thermal resistance of a graphene
solution can be expressed as follows:

Rth,g = 1/(kgA/∆x + hA) (2)

The value h of water was 1000–35000 W/m2·◦C for various flow rates [64,65].
Based on the comparison between Rth,s and Rth,g, the thermal resistance of the

graphene solution with flow rate was smaller than that of the solid conductor, and the heat
transfer of the LED was improved.

3.3. Optical Power Variation Using Different Conductors

The optical power at various distances between the LED and the power meter is
displayed in Figure 10. The optical power of the LED did not decrease noticeably when the
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distance was lower than 5 mm. However, it decreased markedly when the distance was
greater than 10 mm. The optical power at a distance of 3 mm from the LED was selected as
the representative value. The optical power of the LEDs measured using solid and liquid
conductors is displayed in Figure 11. The maximum optical power of the LED with the
solid conductor was 30.5 mW at 10 min, and it decreased gradually. The optical power
decreased noticeably after 120 min, and that of the LED with the liquid conductor with
d = 0.5 mm increased gradually before 30 min and stabilized at 29 mW by 200 min. The
optical power of the LED with the liquid conductor with d = 1 mm increased gradually
before 30 min and stabilized at 28.8 mW by 180 min. The optical power of the LED with
the solid conductor was greater than that of the liquid conductor until 90 min. The optical
power difference of the LED with liquid conductors with various d values was small. The
temperature of the LED with the liquid conductor was much lower than that of the LED
with the solid conductor after 30 min (Figure 7). The temperature differences between the
LED bottoms with the liquid and solid conductors increased over time during the first
120 min and then stabilized at approximately 24 ◦C. The optical power of the LED with the
liquid conductor was higher than that of the solid conductor after 120 min, and the optical
power difference was approximately 3 mW after 150 min. This result was attributable to
the higher temperature of the LED with the solid conductor.

Figure 10. Optical power of the LED chip at various distances between the LED and the power meter.
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Figure 11. Optical power of the LED chip with various conductors and distances between channels.

3.4. Comparison of Power Transfer

The liquid pumping power (additional energy) required to pump the graphene solu-
tion is discussed in this section. The liquid pumping power, Pl (W) can be expressed as
follows [44]:

Pl = (∆P) × Q (3)

where ∆P is the pressure drop (kPa), and Q is the flow rate (m3/s).
The maximum flow rate in this study was 1 mL/min (1.67 × 10−8 m3/s) and the

pressure drop was approximately 50 kPa. The pumping power was estimated to be
8.3 × 10−4 mW. Compared with the optical power of the LED (29 mW), the pumping
power was much lower. The overall operational expenditure of the device was unaffected
in this study. Moreover, the volume of the graphene solution in the recycling system was
30 mL and the cost of the graphene solution was approximately USD 60. Thus, the cost
of the graphene solution was not high, and the graphene solution could be automatically
recycled. The cost of the graphene solution did not increase noticeably because it required
no replenishment in this study. Such a system is highly convenient and avoids substantial
increases in the total device cost. Therefore, a graphene-solution microfluidic channel is a
favorable conductor for use in LEDs.

The optical power of the LED using the solid conductor and graphene solution with
various flow rates at 480 min are shown in Figure 12. The optical power of the LED using
the solid conductor was 24.5 mW. The optical power of the LED using the graphene solution
were 25.1, 27.5, 28.2 and 28.8 mW at flow rates of 0, 0.05, 0.2 and 1 mL/min, respectively.
The optical power of the LED using the graphene solution was higher than that of the solid
conductor. When the flow rate was increased, the optical power of the LED was higher, but
the difference was not large.
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Figure 12. Optical power of the LED at 480 min using solid conductor and graphene solution with
various flow rates.

The optical/electric power transfer rate of the LED was also investigated. The electric
currents of the LED using various conductors were measured at 10, 40, 90, 150, and 480 min
of LED operation. The supplied electric power was calculated using the following equation:

Pe = I × V (4)

where Pe is the supplied electric power (mW), I is the electric current (mA), and V is
the voltage (V). The relative optical/electric power transfer rate was calculated using the
following equation:

Rt = Po/Pe (5)

where Rt is the optical/electric power transfer rate, Po is the measured optical power, and
Pe is the supplied electric power. The results are presented in Figure 13. After 10 min of
LED operation, the optical/electric power transfer rates were 50.1%, 35.3%, and 34.7%
for the solid conductor, the liquid conductor with d = 0.5 mm, and the liquid conductor
with d = 1 mm, respectively. At 60 min, the transfer rates were 45.0%, 42.7%, and 41.9%,
respectively. At 120 min, the transfer rates were 40.7%, 46.1%, and 44.8%, respectively.
The optical/electric power transfer rate of the liquid conductor was higher than that
of the solid conductor after 120 min of LED operation. Therefore, the optical/electric
power transfer rate was affected by the temperature of the LED and was improved by the
graphene-solution liquid conductor.
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Figure 13. Optical/electric power transfer rate of the LED chip with various conductors and distances
between channels.

4. Conclusions

This study proposes an automated graphene-solution circulating system that can
efficiently dissipate heat and conduct electricity. The temperature and optical power of an
LED were measured over an extended period. The thermal resistance of graphene solution
with flow rate was smaller than that of the solid conductor, and the heat transfer of the LED
was improved. The difference in temperature of the LED bottom between the LEDs using
liquid and solid conductors reached 25 ◦C. After 120 min of LED operation, the optical
power of the LED with the liquid conductor was higher than that of the solid conductor.
When the flow rate was increased, the temperature difference of the LED bottom between
initial and 480 min was lower, and the optical power of the LED was higher. This result is
attributable to the higher temperature of the LED with the solid conductor. Furthermore,
after 120 min of LED operation, the optical/electric power transfer rate of the liquid
conductor was higher than that of the solid conductor, and the difference between them
increased over time. The graphene-solution automated circulating system is a suitable
conductor for LEDs and is particularly useful for operation over long periods.
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Abstract: We present a detailed first-principles investigation of the response of a free-standing
graphene sheet to an external perpendicular static electric field E. The charge density distribution
in the vicinity of the graphene monolayer that is caused by E was determined using the pseu-
dopotential density-functional theory approach. Different geometries were considered. The cen-
troid of this extra density induced by an external electric field was determined as zim = 1.048 Å
at vanishing E, and its dependence on E has been obtained. The thus determined zim was em-
ployed to construct the hybrid one-electron potential which generates a new set of energies for the
image-potential states.

Keywords: graphene; electric field; valence charge density; image potential; image-plane position;
image-potential states

1. Introduction

The numerous properties of graphene have been intensively investigated after its
experimental realization. Thousands of papers on this material were published. However,
there still remains a simple unanswered question regarding the way in which the induced
charge density is distributed in the vicinity of a graphene monolayer when an external
electric field is applied to the graphene sheet. This topic was addressed, to some degree,
by considering the problem of screening of the electric field induced by point charges
in graphite [1–5]. Specifically, the in-plane distribution of the induced charge has been
actively discussed [5–10]. As for the charge distribution in the direction perpendicular to
the plane of carbon atoms, it was considered as being localized on it [5].

The perpendicular charge distribution was studied by considering two- and multi-
layer graphene films [11–13], though to the best of our knowledge, not for monolayer
graphene. Moreover, regarding the question around the location of its center of mass with
respect to the carbon atoms position, we are unaware of such work for a graphene film of
any thickness. As a matter of fact, this question is important since, for instance, the position
of the centroid of the induced density determines the so-called image-plane position zim,
(here we define the z axis as pointing in the direction perpendicular to the carbon atoms
basal plane) that is a “real position” of a solid surface for many phenomena occurring there.
It determines a “physical” position of a metal surface when an external perturbation is
applied. This problem was widely studied in the case of metal surfaces. In general, this
“real” surface position is different from the spatial localization of the top atomic layer or
a geometrical crystal edge, staying towards the vacuum side [14–18].
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It is usually assumed for a quasi two-dimensional (2D) system that the excess charge is
confined within an infinitesimally thin 2D layer [5,19]. Certainly, this assumption is reason-
able if the relevant distance largely exceeds the atomic scale. However, it is critical to take
into consideration what occurs on the atomic scale. For instance, if one intends to construct
a capacitor by adopting graphene sheets, it would be helpful to determine its “physical
size” which defines its electrical properties and may be different from the geometrical
distance between two graphene layers. Addionally, determination of the spatial localiza-
tion of the charge induced by an external electric field can be important in understanding
the phenomena occurring in field-effect transistors based on 2D materials [20–22].

Knowledge of the position of the center of mass of the induced charge density is
important in many fields of surface science. Thus, it determines the reference plane for
the image-potential felt by an external charge placed in front of a surface. If this charge is
an excited electron with energy below the vacuum level, it can be trapped by this image
potential in a state belonging to an infinite Rydberg -like series [23,24]. The members of
this series are referred to as image-potential states (IPSs).

In the previous work devoted to the IPSs in graphene, it was assumed [25,26] that
zim is located at the carbon atom plane, which seems reasonable owing to the mirror
symmetry of the system. Consequently, all the quantum states should be symmetric or
anti-symmetric with respect to the z = 0 plane. As a result, a double Rydberg -like series of
IPSs was predicted [25] to exist in a free-standing graphene monolayer since two surfaces
are separated by a single atomic layer of matter only.

Up to now, IPSs for a free-standing graphene were not studied experimentally. On the other
hand, numerous measurements were performed on the graphene supported on various metallic
or semiconducting substrates. Usually, the interface distance between the graphene sheet
and the surface atomic layer is such that the conventional single Rydberg series of a whole
system is observed. Thus, in the graphene/metal systems where the graphene atomic layer is
placed closer to the substrate, only a single series of IPSs was observed [27–36]. Nevertheless,
there are cases where the distance separating the graphene and the top surface atomic layer
is sufficiently large so as to realize the two lowest members of the graphene double-IPS series.
In scanning-tunneling microscopy (STM) measurements, evidence for the Stark-shifted first two
members (symmetric and antisymmetric ones) of this series was reported in the Gr/SiC(0001)
system [37,38]. These states were also clearly observed in two-photon photoemission spec-
troscopy experiments [39]. However, in the same system, the splitting of the IPS series was not
confirmed in the Ref. [40]. In the very recent experimental paper, the arguments in favor of
the splitting were presented [41].

For a description of the IPSs in the graphene/substrate systems, a number of poten-
tials have been developed. Indeed, an accurate description of IPSs is a challenge since
the conventional density-functional theory (DFT) calculations do not accurately account for
a correct long-range interaction in front of solid surfaces. One of the approaches consists
of constructing the nonlocal van der Waals functional [42]. Although it does not yield
the correct image potential behavior at long distances away from the 2D sheet, it im-
proves the IPS description. Another input employing a conventional DFT scheme based
on the local-density approximation (LDA) consists of the construction of a hybrid potential
with the same computational cost. Some others use totally model potentials [26,35,43].
Since the binding energies of IPSs are sensitive to the long-range behavior of an effective
potential, a key point is the image-plane position zim with respect to the carbon atom
plane. Upon construction of the model potential in the Ref. [43], the fitting procedure
gave zim = 0.99 Å. This is significantly different from zim = 0 assumed in other publica-
tions [25,26].

Our goal in this work is to determine the zim value for free-standing monolayer graphene
from the direct DFT calculations of redistribution of its valence charge density upon appli-
cation of an external electric field. Subsequently, the thus obtained zim is employed for
the construction of a new hybrid “LDA+image−tail” potential. With this potential a new set
of binding energies for IPSs is obtained and compared with the previous ones.
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The rest of this paper is organized as follows. In Section 2, a brief description of our
calculation method and some computational details are given. In Section 3, we present our
calculated results. A summary and concluding remarks are presented in Section 4.

2. Calculational Methods and Details

The band structure of a graphene monolayer in the absence and presence of an external
electric field of varying intensity was obtained within the LDA by solving the Kohn-Sham
equations employing a home-made band structure computer code [44]. We used norm-
conserving Troullier-Martin pseudopotentials to describe the electron-ion interaction for
the carbon ions [45]. At the iteration stage, the exchange-correlation potential was taken
in the form given in the Refs. [46,47]. For the expansion of the wave functions, a plane-wave
basis set with an energy cutoff of 50 Rydberg was employed. In a self-consistent procedure,
the summation over wave vectors in the irreducible part of the first Brillouin zone (BZ)
was performed over a 48 × 48 × 1 k mesh.

The self-consistent procedure was realized by considering a repeated-slab geometry
with the lateral lattice constant of 2.424 Å. The external electric field applied in the direction
perpendicular to the graphene plane has no translation symmetry. In order to implement
it in the repeated-slab geometry, we added to the Hamiltonian a term corresponding to
the extra charge −σ(z) constant in the x-y plane as shown in Figure 1a. Its z-dependence
is defined by a Gaussian with a decay length of 1 a.u. This extra charge was placed at
a distance of 10 Å from the graphene plane. In order to ensure the neutrality of the system,
the charge +σ was removed from the graphene system. The z variation of the extra poten-
tial added to the system is schematically shown in Figure 1a. One can see that in the gap
between the graphene and the extra charge position, this potential varies linearly from Vg

to Ve with the E = 2πσ slope. The problem with such a geometry is that there is a disconti-
nuity in the potential between the left and right sides. In order to employ the repeated-slab
geometry, we double the unit cell by mirror reflection of the picture of Figure 1a and es-
tablishing the distance between the graphene sheets in 20 Å. The resulting lattice constant
in the perpendicular direction is 40 Å. We performed calculations considering the electric
fields applied to the graphene sheet ranging from −0.4 to 0.5 V/Å with a step of 0.1 V/Å
and keeping the in-plane (1 × 1) geometry for carbon ion positions.
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Figure 1. Schematic illustration of three geometries considered in this work of a graphene sheet
(solid circles) interacting with an external electric charge uniformly distributed in the x-y plane with
density −σ at a chosen distance in the z direction.In the geometry (a) this extra charge is placed on
the right. In the case (b) the charges of the same signs are located on the left and right sides. Panel (c)
illustrates the geometry when the charges of the opposite sings placed on each side.

In other sets of calculations, we considered a geometry when the external electric
field is applied from both sides of the graphene sheet as shown in Figure 1b. In this case,
the unit cell contains only one graphene sheet and a lattice parameter of 20 Å is chosen.
This geometry allows us to investigate the scale on which the charge density distribution
established in graphene can be considered additively. On the other hand, this geometry is
not suitable for the determination of the image-plane position since the resulting system is
symmetric by construction. The third geometry considered in this study is schematically
presented in Figure 1c. In this case, the two planes charged with +σ and −σ are located
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on each side of the graphene sheet that, in turn, is kept neutral. Since the total induced
charge of the graphene is zero, this geometry cannot be used for the determination of
the zim position. Nevertheless, the polarization induced in the carbon atom plane by
the external field can be represented by two charged planes. In such a way, each surface
can be considered as the covers of the different capacitors and charged oppositely.

3. Calculation Results

The electronic structure of graphene around the Fermi level at zero external electric
field is presented in Figure 2 by thick black lines. The carbon-derived bonding and
antibonding π bands are marked as π and π∗, respectively. The two lowest energy bands
above the Fermi level characterized by strong expansion into the vacuum are marked as 1+

and 1−. At energies above the vacuum level, one can notice the quantization of the bands
representing a free-electron continuum due to the finite size of the vacuum interval. In the
same figure, we show how the energy position of all these bands changes when the external
electric field of −0.4 V/Å (blue curves) or 0.4 V/Å (red curves) is applied. One can notice
that the π and π∗ bands experience a shift of almost the same magnitude from the bare
dispersion upon changing the sign of the electric field. On the contrary, the position of
the upper energy bands with a strong expansion of its wave functions into the vacuum
side changes differently for opposite signs.

Figure 2. Electronic band structure of graphene when E = 0 (thick black lines), 0.4 V/Å (thin
red lines), and −0.4 V/Å (thin blue lines) obtained with application of the geometry of Figure 1a.
The Fermi level, EF, is placed at zero energy. The position of the vacuum level, Evac, is shown for
the zero field. The π and π∗ bands are marked by corresponding symbols. The two unoccupied
lowest energy states around the Γ point with strong localization in the vacuum are marked as 1+ and
1− according to the Ref. [25].

3.1. Electric Field Effects

We have examined the way in which the induced charge density profile nind(r, E)
varies with the strength and direction of the applied electric field E. Figure 3 reports
nind(z, E) obtained by averaging nind(r, E) in the x-y plane for the values of E ranging
from −0.4 to 0.5 V/Å. In order to perform a comparison, nind(z, E) is normalized by
the amplitude of E. One can see that its shape deviates qualitatively from the total valence
density depicted by the green solid line. This can be understood, since the total density is
dominated by the σ bands that have a maximum at z = 0. On the contrary, the induced
density is generated mainly by π bands. Additionally, one can observe that the shape of
the induced density only slightly depends on the sign and the magnitude of E. In general,
we observe that at larger E, the shapes of nind(z, E) are almost the same. However, upon
reduction of the E amplitude, the variations in nind(z, E) gradually increase (hardly notice-
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able in Figure 3). This has consequences in the calculated centroid of the induced charge
density versus E, defined as

zim(E) =

∫
z nind(z, E)dz∫
nind(z, E)dz

(1)

and presented in Figure 4. Linear interpolation gives a value of 1.048 Å for zim(E = 0).
Curiously, by constructing a model potential to describe IPSs measured experimentally
in graphene/substrate systems, a very close value of 0.99 Å was established for zim
in graphene monolayer [43]. A similar value was chosen for the crystal border in graphene
in the Ref. [48]. We expect that the value of zim obtained here should not be affected signifi-
cantly by the presence of the substrate once the valence electronic structure of graphene is
not modified strongly by the substrate. In Figure 4, one can notice that upon approaching
the E = 0 limit, zim(E) starts to deviate from the linear behavior. Moreover, this deviation
is different for negative and positive E. In the former case, zim shifts downward, whereas
in the latter case it is shifted upward. This can be explained by the fact that with reduction
in the magnitude of E, the size of the Fermi surface shrinks and the possible calculation
oscillations increase. For comparison, in the insert of Figure 4, we present the way in which
zim(E) varies with E in a free-standing Al(111) monolayer. Since, for Al, the Fermi surface
is large because there are three valence electrons, the deviation from the linear behavior
is small.

When we apply an external electric field to the graphene sheet from both sides accord-
ing to the scheme depicted in Figure 1b, the induced charge density has a symmetric shape
owing to the mirror symmetry. Its shape can be reproduced very well by superimposing
that of Figure 3 onto a reflection of itself, thereby demonstrating that the response is addi-
tive. It means that once one knows how the electronic system of a graphene sheet responds
to an external electric field applied from one side, the response to a more complex external
perturbing field can be readily evaluated.

Figure 3. The valence charge density of graphene averaged in the x-y plane (green thick line) and
induced charge densities generated by an applied electric field E for the color-coded values shown
in the insets. The induced density for E = θ × 0.1 V/Å is normalized by the value of |θ|. The origin
of the z direction is taken as the carbon atom position. The image plane position zim at 1.048 Å
is marked by vertical arrow (the positive value is due to the application of the electric field from
the right side).
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Figure 4. Dependence of the image plane position zim(E) in graphene versus the electric field E

amplitude (red circles and solid line). The linear interpolation is shown by a blue dashed line.
The insert shows the way in which zim(E) depends on E in the case of an Al(111) monolayer.

Clearly, in the symmetric case (Figure 1b), the calculated centroid of the induced charge
density is placed at z = 0. However, knowing that each side responds independently
to external electric fields applied from both the respective sides, the resulting charge
distribution can be described in the electrostatic limit by two planes charged with the same
signs and located at z = −zim and z = zim. We believe that this picture should hold for
a case when the valence electronic system is perturbed in a photoemission experiment, for
example. In this case, an excited electron is promoted above the Fermi level. If its kinetic
energy is lower than the work function, it can be trapped in the discrete IPSs whose number
is two times larger than in the conventional Rydberg series of the hydrogen atom [25].

In the case of the geometry described in Figure 1c, the charge redistribution in the neu-
tral graphene caused by placing it inside a capacitor can be represented at the electrostatic
level by two charged planes with the opposite signs located at z = −zim and z = +zim.
Moreover, we found that the shape of the calculated induced density is also reproduced
very well by employing the charge density distributions obtained for the positive and
negative Es reported in Figure 1a. Since the calculated induced densities and the fitting
results are very similar we do not include such a figure.

3.2. Image-Potential States

In our numerical calculations devoted to IPSs, the perpendicular lattice constant was
increased up to 80 Å which allowed us to obtain convergent energies for the six lowest-
energy members of the series. As it was mentioned previously, IPSs cannot be properly
described with the use of conventional DFT calculations since the long-ranged image-
potential on the vacuum side is not reproduced correctly. Additionally, the tight-binding
methods are not inherently desired for its description [49,50]. Indeed, such states are
a result of screening by the valence electron system of an external point charge placed
in front of a system. This many-body information is not contained in the one-particle DFT
Hamiltonian. In order to overcome this problem, maintaining the computational cost at
the DFT level, we constructed a hybrid “LDA+image−tail” potential V(r) which replaces
the LDA local exchange-correlation potential term Vxc(r) in the DFT Hamiltonian. At |z|
smaller than a certain zo value this potential coincides with Vxc(r). For |z| > zo, it has
the following form:
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V(r) = −1− A(x, y) · e−λ(x,y)·|z−sgn(z)·zim|

4|z− sgn(z) · zim|
. (2)

The parameters A(x, y) and λ(x, y, ) are defined from the smoothness conditions
for V(r) and its derivative at the matching planes |z| = zo. In this work, these parame-
ters depend on the x and y coordinates, since Vxc(x, y, z) still has a small corrugation at
the matching plane. The only parameter left is zo which is unknown. In the following,
we present results for three values of zo to show the sensitivity of the image-potential state
energies to it.

Figure 5. The LDA potential averaged in the x-y plane as a function of the z distance is shown
by the thin dashed line. Hybrid “LDA+image−tail” potentials for zim = 0, 1.048, −1.048 Å with
the matching plane at z0=1.6 a.u. are presented as thick dotted, dashed, and solid lines, respec-
tively. The corresponding bare image potentials are shown by thin dotted, dashed, and solid lines,
respectively. Insert: Hybrid “LDA+image−tail” potentials constructed for zim = −1.048 Å with
the matching planes z0 = 1.6, 2.1, and 2.6 Å are represented by thick solid, dashed, and dashed-dotted
lines, respectively.

In Figure 5, the thick dashed line shows the hybrid “LDA+image−tail” potential
averaged in the x-y plane constructed with zim = 1.048 Å and zo = 1.6 Å. One can see
how at distances z larger than zo it evolves from the averaged LDA potential (thin long-
dashed line) to the image-potential defined as −1/4(z− zim) (thin dashed line). Notice
that the potentials we construct here and employ for the band structure calculations are
symmetric according to the z = 0 plane. Here, we show its behavior for positive z only.
For comparison, in Figure 5 by thick dotted line, we show the hybrid potential constructed
for zim = 0 and zo = 1.6 Å of the Ref. [25]. One can see that the hybrid potential constructed
with zim = 1.048 Å is noticeably lower for z larger than zo. This results in larger binding
energies of IPSs. This is confirmed by the values obtained at the center of the BZ as
reported in Table 1. One can see that the binding energy of the lowest-energy symmetric 1+

state increases from the 1.47 eV of the Ref. [25] to 1.58 eV here. Almost the same change
is experienced by the antisymmetric 1− state. For the states with larger numbers, this
shift is notably smaller. Certainly, as n is increased this difference is gradually reduced.
With zim = 1.048 Å by employing zo larger than 1.6 Å we encountered a problem with
the construction of the hybrid potential. Beyond this value for zo, the two matching
conditions for the hybrid potential cannot be fulfilled since the image potential with
zim = 1.048 Å is located too far away on the right-hand side of the LDA potential, as seen
in Figure 5. Notice that the downward shift of the IPSs is observed over a whole BZ.
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Nevertheless, this does not significantly affect the interaction of IPSs with the scattering
resonances [51] around the K point.

Table 1. Binding energies (in eV) of the image-potential states in graphene obtained with the hybrid
potentials constructed with zo = 1.6 Å and zim = 1.048 and zim = 0 Å. In the case of zim placed at
−1.048 Å the energies are obtained for three values of the matching plane position zo. Last line
presents the values of the states obtained in the LDA calculation [25].

zim(Å) zo(Å) 1+ 1− 2+ 2− 3+

1.048 1.6 1.58 0.84 0.29 0.21 0.12

0 1.6 1.47 0.72 0.25 0.19 0.11

−1.048
1.6 1.43 0.64 0.21 0.16 0.10
2.1 1.30 0.52 0.19 0.15 0.11
2.6 1.27 0.49 0.20 0.15 0.10

LDA 1.17 0.25 - - -
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Figure 6. Schematic illustration of the charges created in the vicinity of a graphene monolayer.
The carbon atom plane is located at z = 0. The charge distribution in an image-potential state with
the centers of gravity on the positive and negative sides according to the graphene plane located at z

and −z are represented by two point charges as shown by blue circles A and A′. The positive charge
density generated in graphene in response to this external perturbation is represented by red areas B
and B′ centered at zim and −zim, respectively. As a result, the negative point charge A interacts with
its own image charge C, negative charge A′, and positive charge B′.

The approach described above for construction of a hybrid “LDA+image−tail” po-
tential is an adoption of the conventional image-potential picture employed for solid
surfaces [52]. It can also be safely applied for sufficiently thick films as well. However,
in a film consisting of just a single atomic layer, the situation might be different. In such
a system, in a photoemission experiment, an excited electron can occupy a quantum state
with the charge density symmetrical with respect to the atom plane, contrary to what
occurs for solids where only a single surface is involved. The presence of two independent
surfaces was indeed taken into account in our model presented above. Nevertheless, let us
consider the situation from another point of view by applying a simple image-potential
picture in a different way. In this case, we will replace an excited electron with some spatial
charge density distribution by two point charges having 1

2 e located at distances z and −z
as denoted by A and A′, respectively, in Figure 6. In the graphene sheet, these two point
charges create the screening charges B and B′ whose centers of gravity are located at zim
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and −zim, respectively. The spacial arrangement of these screening charges should be
such to ensure efficient screening and avoid any charge current. Assuming the distance
z is large, let us account for the interaction between the charge A with real charges A′,
B, and B′. The interaction of A with the charge B can be replaced by interaction with its
image point charge C with positive sign located at −z + 2zim, like it occurs at a metal
surface. The interaction with a point charge A′ is obviously a Coulomb-like one. However,
the interaction with a charge B′ is not obvious. The space distribution of this part of the total
screening charge is such as to screen the point charge A′. Therefore, since z is large, for
a point charge A, it can be considered as a point charge located at −zim. Counting all
these three contributions at the first order in 1/z, the resulting potential takes the form
V(z) = −1/4|z + zim|, that is, it looks like a charge A interacting with a point charge
located at z = −zim. A factor of four in the denominator is due to a fractionally charged
electron with half its charge representing the A and B′ charges. Clearly, this latter model
might be reasonable for IPSs with high numbers n. However, it may not be good for n = 1+

since the maximum of its wave function is localized [25] around 2 Å, that is, being very
close to the zim = 1.048 Å position.

Based on this picture, we constructed a hybrid “LDA+image−tail” potential for which
zim is placed at −1.048 Å. This potential with the matching plane at zo = 1.6 Å is shown as
the thick solid line in Figure 5. Our calculated energies for the five lowest image-potential
states are reported in Table 1. Comparing them with those obtained for zim = 0 and
zim = 1.048 Å we observe a significant reduction of the binding energies, especially for
n = 1. Varying zo, we do not encounter problems with construction of the hybrid potential,
contrary to the situation with zim = 1.048 Å. For completeness, in Table 1, we report
the image-potential energies obtained with zo = 2.1 and 2.6 Å as well. The respective hybrid
potentials are reported in the insert of Figure 5. One can see that the effect of the variation
in the potential caused by changing zo on the states n = 1+ and n = 1− is substantial.
Thus, for the lowest-energy image-potential state the binding energy may vary from 1.58
to 1.27 eV depending on the values of zim and zo. Indeed, one can see how by increasing zo,
the value for the state 1+ is approaching the energy of 1.17 eV for the surface state [53,54]
obtained in the LDA calculation [25]. However, for the state 1−, it is not the case.

We believe, the measurements of energies of free-standing graphene will provide im-
portant information on its screening properties. It may contribute to establishing a detailed
picture of what is going on there due to an external perturbation. So far, all the experiments
on IPSs were performed on supported graphene. Sensitivity of the image-potential states to
the environment where graphene was kept was significant. Our findings point out that they
can also provide important information about free-standing graphene screening properties.

4. Conclusions

In this theoretical study we have reported the detailed charge density distribution
produced in free-standing graphene by external static electric fields with three geometries.
The image-plane position was established. Surprisingly, it is rather large, located at 1.048 Å
outside the carbon atom plane. Using this information, we constructed a new potential
felt by an electron excited to the image-potential states. We checked several kinds of
such a potential, demonstrating sensitivity of the energies of the lowest image-potential
states to the details of this potential. It would be of interest to obtain the experimental
information, such as from the photoemission spectroscopy, on the image-potential state
energies for free-standing graphene. We believe that the experimentally determined image-
potential energies will be extremely helpful for development of a more detailed picture for
the graphene potential and how it reacts to the external perturbation on the atomic scale.

Our data on zim gives support to the value used for construction of an effective
potential in the graphene/substrate systems [43]. Such potentials can be developed for
the study of IPSs and interface states in a large class of molecular layers with the π-π
interaction similar to graphene [55–59]. Moreover, the information on the image-plane
position can be useful for the construction of effective potentials in the systems with

107



Nanomaterials 2021, 11, 1561

more complex geometries like fullerens and nanotubes, where the nearly-free states and
the super-atomic orbitals, a subject of intense ongoing research, are inherently linked to
IPSs in a flat graphene layer [60–67]. We believe that such a study as ours will not only be
restricted to the carbon atoms case, since image-potential states can be realized in many
other quasi-2D systems of current interest, like phosphorene, silicene and germanene [68],
borophene [69], MXenes [70–72], and molecular overlayers on graphene [73].
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surface electrons on graphene layers and islands. Phys. Rev. B 2012, 85, 081402(R). [CrossRef]
30. Armbrust, N.; Güdde, J.; Jakob, P.; Höfer, U. Time-resolved two-photon photoemission of unoccupied electronic states of

periodically rippled graphene on Ru(0001). Phys. Rev. Lett. 2012, 108, 056801. [CrossRef]
31. Nobis, D.; Potenz, M.; Niesner, D.; Fauster, T. Image-potential states of graphene on noble-metal surfaces. Phys. Rev. B 2013,

88, 195435. [CrossRef]
32. Niesner, D.; Fauster, T. Image-potential states and work function of graphene. J. Phys. Condens. Matter 2014, 26, 393001. [CrossRef]
33. Craes, F.; Runte, S.; Klinkhammer, J.; Kralj, M.; Michely, T.; Busse, C. Mapping image potential states on graphene quantum dots.

Phys. Rev. Lett. 2013, 111, 056804. [CrossRef] [PubMed]
34. Achilli, S.; Tognolini, S.; Fava, E.; Ponzoni, S.; Drera, G.; Cepek, C.; Patera, L.L.; Africh, C.; del Castillo, E.; Trioni, M.I.; et al.

Surface states characterization in the strongly interacting graphene/Ni(111) system. New J. Phys. 2018, 20, 103039. [CrossRef]
35. Lin, Y.; Li, Y.-Z.; Sadowski, J.T.; Jin, W.-C.; Dadap, J.I.; Hybertsen, M.S.; Osgood, R.M., Jr. Excitation and characterization of image

potential state electrons on quasi-free-standing graphene. Phys. Rev. B 2018, 97, 165413. [CrossRef]
36. Tognolini, S.; Achilli, S.; Ponzoni, S.; Longetti, L.; Mariani, C.; Trioni, M.I.; Pagliara, S. On- and off-resonance measurement of

the Image State lifetime at the graphene/Ir(111) interface. Surf. Sci. 2019, 679, 11–16. [CrossRef]
37. Bose, S.; Silkin, V.M.; Ohmann, R.; Brihuega, I.; Vitali, L.; Michaelis, C.H.; Mallet, P.; Veuillen, J.Y.; Schneider, M.A.; Chulkov, E.V.;

et al. Image potential states as a quantum probe of graphene interfaces. New J. Phys. 2010, 12, 023028. [CrossRef]
38. Sandin, A.; Pronschinske, A.; Rowe, J.E.; Dougherty, D.B. Incomplete screening by epitaxial graphene on the Si face of 6H-

SiC(0001). Appl. Phys. Lett. 2010, 97, 113104. [CrossRef]
39. Takahashi, K.; Imamura, M.; Yamamoto, I.; Azuma, J.; Kamada, M. Image potential states in monolayer, bilayer, and trilayer

epitaxial graphene studied with time- and angle-resolved two-photon photoemission spectroscopy. Phys. Rev. B 2014, 89, 155303.
[CrossRef]

40. Gugel, D.; Niesner, D.; Eikhoff, C.; Wagner, S.; Weinelt, M.; Fauster, T. Two-photon photoemission from image-potential states of
epitaxial graphene. 2D Mater. 2015, 2, 045001. [CrossRef]

41. Ambrosio, G.; Achilli, S.; Pagliara, S. Resonance intensity of the n = 1 image potential state of graphene on SiC via two-photon
photoemission. Surf. Sci. 2021, 703, 121722. [CrossRef]

42. Hamada, I.; Hamamoto, Y.; Morikawa, Y. Image potential states from the van der Waals density functional. J. Phys. Chem. 2017,
147, 044708. [CrossRef] [PubMed]

43. Armbrust, N.; Güdde, J.; Höfer, U. Formation of image-potential states at the graphene/metal interface. New J. Phys. 2015,
17, 103043. [CrossRef]

44. Silkin, V.M.; Chulkov, E.V.; Sklyadneva, I.Y.; Panin, V.E. Self-consistent pseudopotential calcualtion of the aluminum energy
spectrum. Soviet Phys. J. 1984, 27, 762–767. [CrossRef]

45. Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006. [CrossRef]
46. Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569. [CrossRef]

109



Nanomaterials 2021, 11, 1561

47. Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B

1981, 23, 5048–5079. [CrossRef]
48. Krasovskii, E.E. Ab initio theory of photoemission from graphene. Nanomaterials 2021, 11, 1212. [CrossRef]
49. Kogan, E.; Nazarov, V.U.; Silkin, V.M.; Kaveh, M. Energy bands in graphene: Comparison between the tight-binding model and

ab initio calculations. Phys. Rev. B 2014, 89, 165430. [CrossRef]
50. Kogan, E.; Silkin, V.M. Electronic structure of graphene: (Nearly) free electron bands versus tight-binding bands. Phys. Status

Solidi B 2017, 254, 1700035. [CrossRef]
51. Nazarov, V.U.; Krasovskii, E.E.; Silkin, V.M. Scattering resonances in two-dimensional crystals with application to graphene. Phys.

Rev. B 2013, 87, 041405. [CrossRef]
52. Chulkov, E.V.; Silkin, V.M.; Echenique, P.M. Image potential states on metal surfaces: binding energies and wave functions. Surf.

Sci. 1999, 437, 330–352. [CrossRef]
53. Posternak, M.; Balderischi, A.; Freeman, A.J.; Wimmer, E.; Weinelt, M. Prediction of electronic interlayer states in graphite and

reinterpretation of alkali bands in graphite intercalation compounds. Phys. Rev. Lett. 1983, 50, 761–764. [CrossRef]
54. Posternak, M.; Balderischi, A.; Freeman, A.J.; Wimmer, E. Prediction of electronic surface states in layered materials: Graphite.

Phys. Rev. Lett. 1984, 52, 863–866. [CrossRef]
55. Tsirkin, S.S.; Zaitsev, N.L.; Nechaev, I.A.; Tonner, R.; Höfer, U.; Chulkov, E.V. Inelastic decay of electrons in Shockley-type

metal-organic interface states. Phys. Rev. B 2015, 92, 235434. [CrossRef]
56. Armbrust, N.; Schiller, F.; Güdde, J.; Höfer, U. Model potential for the description of metal/organic interface states. Sci. Rep. 2017,

7, 46561. [CrossRef]
57. Eschmann, L.; Sabitova, A.; Temirov, R.; Tautz, F.S.; Kruger, P.; Rohlfing, M. Electric and thermoelectric transport in graphene and

helical metal in finite magnetic fields. Phys. Rev. B 2019, 100, 125155. [CrossRef]
58. Marks, M.; Armbrust, N.; Güdde, J.; Höfer, U. Impact of interface-state formation on the charge-carrier dynamics at organic-metal

interfaces. New J. Phys. 2020, 22, 093042. [CrossRef]
59. Stalberg, K.; Shibuta, M.; Höfer, U. Temperature effects on the formation and the relaxation dynamics of metal-organic interface

states. Phys. Rev. B 2020, 102, 121401. [CrossRef]
60. Feng, M.; Zhao, J.; Petek, H. Atomlike, hollow-core-bound molecular orbitals of C60. Science 2008, 320, 359–362. [CrossRef]
61. Zhao, J.; Feng, M.; Yang, J.; Petek, H. The superatom states of fullerenes and their hybridization into the nearly free electron bands

of fullerites. ACS Nano 2009, 3, 853–864. [CrossRef] [PubMed]
62. Dutton, G.J.; Dougherty, D.B.; Jin, W.; Reutt-Robey, J.E.; Robey, S.W. Superatom orbitals of C60 on Ag(111): Two-photon

photoemission and scanning tunneling spectroscopy. Phys. Rev. B 2011, 84, 195435. [CrossRef]
63. Zhao, J.; Zheng, Q.J.; Petek, H.; Yang, J.L. Nonnuclear nearly free electron conduction channels induced by doping charge

in nanotube-molecular sheet composites. J. Phys. Chem. A 2014, 118, 7255–7260. [CrossRef]
64. Gumbs, G.; Balassis, A.; Iurov, A.; Fekete, P. Strongly localized image states of spherical graphitic particles. Sci. World J. 2014,

2014, 726303. [CrossRef]
65. Knorzer, J.; Fey, C.; Sadeghpour, H.R.; Schmelcher, P. Control of multiple excited image states around segmented carbon nanotubes.

J. Chem. Phys. 2015, 143, 204309. [CrossRef]
66. Johansson, J.O.; Bohl, E.; Campbell, E.E.B. Super-atom molecular orbital excited states of fullerenes. Philos. Trans. R. Soc. A 2016,

374, 20150322. [CrossRef]
67. Shibuta, M.; Yamamoto, K.; Guo, H.L.; Zhao, J.; Nakajima, A. Highly dispersive nearly free electron bands at a 2D-assembled C60

monolayer. J. Phys. Chem. C 2020, 124, 734–741. [CrossRef]
68. Borca, B.; Castenmiller, C.; Tsvetanova, M.; Sotthewes, K.; Rudenko, A.N.; Zandvliet, H.J.W. Image potential states of germanene.

2D Mater. 2020, 7, 035021. [CrossRef]
69. Kong, L.J.; Liu, L.R.; Chen, L.; Zhong, Q.; Cheng, P.; Li, H.; Zhang, Z.H.; Wu, K.H. One-dimensional nearly free electron states

in borophene. Nanoscale 2019, 11, 15605–15611. [CrossRef]
70. Khazaei, M.; Ranjbar, A.; Ghorbani-Asi, M.; Arai, M.; Sasaki, T.; Liang, Y.Y.; Yunoki, S. Nearly free electron states in MXenes. Phys.

Rev. B 2016, 93, 205125. [CrossRef]
71. Jiang, X.; Kuklin, A.V.; Baev, A.; Ge, Y.Q.; Ågren, H.; Zhang, H.; Prasad, P.N. Two-dimensional MXenes: From morphological to

optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. [CrossRef]
72. Wang, M.Y.; Khazaei, M.; Kawazoe, Y.; Liang, Y.Y. First-principles study of a topological phase transition induced by image

potential states in MXenes. Phys. Rev. B 2021, 103, 035433. [CrossRef]
73. Wella, S.A.; Sawada, H.; Kawaguchi, N.; Muttaqien, F.; Inagaki, K.; Hamada, I.; Morikawa, Y.; Hamamoto, Y. Hybrid image

potential states in molecular overlayers on graphene. Phys. Rev. Mater. 2017, 1, 061001. [CrossRef]

110



nanomaterials

Article

Oblique and Asymmetric Klein Tunneling across Smooth NP
Junctions or NPN Junctions in 8-Pmmn Borophene

Zhan Kong 1, Jian Li 1, Yi Zhang 1, Shu-Hui Zhang 2,* and Jia-Ji Zhu 1,*

Citation: Kong, Z.; Li, J.; Zhang, Y.;

Zhang, S.-H.; Zhu, J.-J. Oblique

and Asymmetric Klein Tunneling

across Smooth NP Junctions or NPN

Junctions in 8-Pmmn Borophene.

Nanomaterials 2021, 11, 1462.

https://doi.org/10.3390/

nano11061462

Academic Editors: Filippo Giannazzo

and Eugene Kogan

Received: 10 April 2021

Accepted: 28 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Science and Laboratory of Quantum Information Technology, Chongqing University of Posts
and Telecommunications, Chongqing 400065, China; kongz2021@163.com (Z.K.); jianli@cqupt.edu.cn (J.L.);
zhangyia@cqupt.edu.cn (Y.Z.)

2 College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
* Correspondence: shuhuizhang@mail.buct.edu.cn (S.-H.Z.); zhujj@cqupt.edu.cn (J.-J.Z.)

Abstract: The tunneling of electrons and holes in quantum structures plays a crucial role in studying
the transport properties of materials and the related devices. 8-Pmmn borophene is a new two-
dimensional Dirac material that hosts tilted Dirac cone and chiral, anisotropic massless Dirac fermions.
We adopt the transfer matrix method to investigate the Klein tunneling of massless fermions across
the smooth NP junctions and NPN junctions of 8-Pmmn borophene. Like the sharp NP junctions of
8-Pmmn borophene, the tilted Dirac cones induce the oblique Klein tunneling. The angle of perfect
transmission to the normal incidence is 20.4◦, a constant determined by the Hamiltonian of 8-Pmmn

borophene. For the NPN junction, there are branches of the Klein tunneling in the phase diagram.
We find that the asymmetric Klein tunneling is induced by the chirality and anisotropy of the carriers.
Furthermore, we show the oscillation of electrical resistance related to the Klein tunneling in the NPN
junctions. One may analyze the pattern of electrical resistance and verify the existence of asymmetric
Klein tunneling experimentally.

Keywords: Klein tunneling; borophene; Dirac fermions

1. Introduction

Two-dimensional (2D) materials have been the superstars for their novel proper-
ties in condensed matter physics since its first isolation of graphene in 2004 [1]. Right
now, the booming 2D materials family includes not just graphene and the derivatives of
graphene but also transition metal dichalcogenides (TMDs) [2–4], black phosphorus [5–8],
indium selenide [9–11], stanene [12,13], and many other layered materials [14,15]. Among
these 2D materials, the so-called Dirac materials host massless Dirac fermions, always
in the spotlight. Carriers in 2D Dirac materials usually have chirality or pseudospin from
two atomic sublattices. Together with chirality, the linear Dirac dispersion gives rise to
remarkable transport properties, including the absence of backscattering [1,16,17]. Due to
the suppression of backscattering, massless Dirac fermions could tunnel a single square
barrier with 100% transmission probability. This surprising result has been known as Klein
tunneling [16,18–21]. Klein tunneling is the basic electrical conduction mechanism through
the interface between p-doped and n-doped regions. Klein tunneling’s elucidation plays
a key role in designing and inventing electronic devices based on 2D Dirac materials.

Recently, several 2D boron structures have been predicted and experimentally fabri-
cated [22–25]. The 8-Pmmn borophene belongs to the space group Pmmn, which means
an orthorhombic lattice has an mmm symmetric point group (three-mirror symmetry
planes perpendicular to each other) combine with a glide plane at one of the mirror
symmetry planes [22,26]. This kind of structure is the most stable symmetric phase of
borophene and may be kinetically stable at ambient conditions. It revealed the tilted Dirac
cone and anisotropic massless Dirac fermions by first-principles calculations [27,28].These
unique Dirac fermions attracts people to explore the various physical properties such as
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strain-induced pseudomagnetic field [29], anisotropic density–density response [30–33],
optical conductivity [34,35], modified Weiss oscillation [36,37], borophane and its tight-
binding model [37], nonlinear optical polarization rotation [38], oblique Klein tunnel-
ing [39–41], few-layer borophene [42,43], intense light response [44,45], RKKY interac-
tion [46,47], anomalous caustics [48], electron–phonon coupling [49], valley–contrast behav-
iors [50,51], Andreev reflection [52], and so on. The oblique Klein tunneling, the deviation
of the perfect transmission direction to the normal direction of the interface, is induced
by the anisotropic massless Dirac fermions or the tilted Dirac cone [39,53]. However,
the on-site disorder or smoothing of the NP junction interface or the square potential may
destroy the ideal Klein tunneling, which means the sharp interface strongly depends on
high-quality fabrication state-of-the-art technology [54]. Therefore, the detailed discus-
sion of the smooth NP junction and the tunable trapezoid potential would be helpful for
the promising electronic devices based on 2D Dirac materials.

In this paper, we study the transmission properties of anisotropic and tilted massless
Dirac fermions across smooth NP junctions and NPN junctions in 8-Pmmn borophene. Sim-
ilar to the sharp NP junction, the oblique Klein tunneling retains due to the tilted Dirac cone.
This conclusion does not depend on the NP junctions’ doping levels as the normal Klein
tunneling but depends on the junction direction. We show the angle of oblique Klein tunnel-
ing is 20.4◦, a constant determined by the Hamiltonian parameters of 8-Pmmn borophene.
For the NPN junction, there are branches of the Klein tunneling in the phase diagram.
We find that the asymmetric Klein tunneling is induced by the chirality and anisotropy of
the carriers [55]. The indirect consequence of the asymmetric Klein tunneling lies in the os-
cillation of the electrical resistance. The analysis of the pattern of the oscillation of electrical
resistance would help verify the existence of asymmetric Klein tunneling experimentally.

The rest of the paper is organized as follows. In Section 2, we introduce the Hamil-
tonian and the energy spectrum for the 8-Pmmn borophene, the NP and NPN junction’s
potential, and present the transfer matrix method for the detailed derivation of transmis-
sions across the junctions. In Section 3, we demonstrate perfect transmission numerically,
showing that the oblique Klein tunneling in NP junctions and the asymmetric Klein tun-
neling in NPN junctions. Then, we calculate the electrical resistance from the Landauer
formula for the NPN junction. Finally, we give a brief conclusion in Section 4.

2. Theoretical Formalism
2.1. Model

The crystal structure of 8-Pmmn borophene has two sublattices, as illustrated in Figure 1a
by different colors. It is made of buckled triangular layers where each unit cell has eight
atoms under the symmetry of space group Pmmn (No. 59 in [56]), the so-called 8-Pmmn
structure. The tilted Dirac cone emerges from the hexagonal lattice formed by the inner
atoms (yellow in Figure 1a) [28]. This hexagonal structure is topologically equivalent to
uniaxially strained graphene, and the Hamiltonian of 8-Pmmn borophene around one
Dirac point is given by [29,30,36,37].

Ĥ0 = υxσx p̂x + υyσy p̂y + υtI2×2 p̂y (1)

where p̂x,y are the momentum operators, σx,y are 2× 2 Pauli matrices, and I2×2 is a 2× 2
unit matrix. The anisotropic velocities are υx = 0.86 υF, υy = 0.69 υF, υt = 0.32 υF, υF = 106

m/s [29].The energy dispersion and the corresponding wave functions of Ĥ0 are
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Figure 1. (a) Crystal structure of 8-Pmmn borophene. The unit cell of 8-Pmmn borophene contains
two types of nonequivalent boron atoms, the ridge atoms (orange) and the inner atoms (yellow).
(b) The schematic diagram of the smooth NP junction in 8-Pmmn borophene. Note that the true tilted
Dirac cone is along y direction but x direction. (c)The schematic diagram of the smooth NPN junction
in 8-Pmmn borophene. Here, we choose n = 6.25 and m = 12.5 for the numerical calculations.
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Here, λ = ±1, denoting the conduction (+1) and valence (−1) band, respectively.
For 8-Pmmn borophene, the shape of Fermi surface for the fixing energy is elliptical with
eccentricity e determined by υx, υy and υt, which differs from the circular shape with radius
EF/h̄vF of graphene. We can rewrite Equation (2) in following way [39,57]:
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+
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The eccentricity of the Fermi surface can be determined by e =
√

υ2
x − υ2

y + υ2
t /υx.

As a direct consequence, the eccentricity is not depend on the energy and the center of
ellipse is at

h̄kx = 0, h̄ky = − υtEλ,k(
υ2

y − υ2
t

) (6)

Notice that the center of ellipse is not at the origin and it moves with increasing
the Fermi levels. In a NP junction setup, the translation symmetry preserves along the y
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axis, so the ky is always a good quantum number. When the momentum py is given, the px

in different regions of 8-Pmmn borophene NP junction is

px = ± 1
υx

√(
Eλ,k − υt py

)2 −
(
υy py

)2 (7)

Like the graphene NP junction, one can implement a bipolar NP junction or tunable
NPN-type potential barriers in 8-Pmmn borophene by top/back gate voltages, and the po-
tential function of the NP junction (as depicted in Figure 1b) has the form:

UNP(x) =





V0 , x > na/2
2V0x/na , na/2 ≤ x ≤ na/2
−V0 , x < −na/2

(8)

where a = h̄υF/0.04 eV is a unit length and n > 0 ∧ n ∈ R. The NPN junction depicted
in Figure 1c has the form

UNPN(x) =





−V0 , 3na/2 + ma < x
−2V0(x−ma− na)/na , na/2 + ma ≤ x ≤ 3na/2 + ma

V0 , na/2 < x < na/2 + ma
2V0x/na , −na/2 ≤ x ≤ na/2
−V0 , x < −na/2

(9)

where m > 0∧m ∈ R. Next, we will utilize the transfer matrix method to solve the ballistic
transport problem in smooth NP/NPN junctions of 8-Pmmn borophene.

2.2. Transfer Matrix Method

The transfer matrix method is a powerful tool in the analysis of quantum transport of
the massless fermions in 2D Dirac materials [18,58,59]. The central idea lies in that the wave
function in one position can be related to those in other positions through a transfer matrix [60].

We adopt a transfer matrix method to study quantum transport in the smooth NP
or NPN junction in 8-Pmmn borophene. There are two different matrices in transfer
matrix method: one is the transmission matrix and the other is the propagating matrix.
Transmission matrix connects the electrons across an interface and the propagating matrix
connects the electrons propagating over a distance in the homogeneous regions. As we can
see below, the propagating matrix can be derived by the transmission matrix. We define
the transmission matrix T as follows:

T

(
ARm+1

ALm+1

)
=

(
ARm

ALm

)
(10)

where ARm (ALm ) represents the right (left) traveling wave amplitude in m region. The trans-
mission matrix connects the wave function’s amplitude of two different regions. The con-
dition of connecting amplitude coefficients between adjacent regions is the continuity
of the wave functions at the interface. We can treat the smooth potential as the sum of
infinite slices of junctions and figure out the wave function from the Schrödinger equation.
Since the energy dispersion of 8-Pmmn borophene is linear, we only need the continuity
condition of the wave functions at the interface. Then, the transmission matrices T can be
constructed from matrices M of each slice,

M(km+1, xm)

(
ARm+1

ALm+1

)
= M(km, xm)

(
ARm

ALm

)

M(km, xm)
−1M(km+1, xm)

(
ARm+1

ALm+1

)
=

(
ARm

ALm

)

M(km, xm)
−1M(km+1, xm) = T
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Suppose that an n-doped region m is next to a p-doped region m + 1 and carriers go
through from n-doped region to p-doped region like in Figure 2a, the wave functions at
interface can be connected in the way of

ARm+1√
2

(
1

eiθm+1

)
eikz,m+1xm+ikyy +

ALm+1√
2

(
1

−e−iθm+1

)
e−ikz,m+1xm+ikyy

=
ARm√

2

(
1

e−iθm+1

)
e−ikz,mxm+ikyy +

ALm√
2

(
1

−eiθm+1

)
eikz,mxm+ikyy. (11)

Here, we define kx,m(x) and θm as

kx,m(x) =
1

h̄υx

√(
−Um(x) + h̄υtky

)2 −
(
h̄υyky

)2 (12)

eiθm =
kx,m + iγ1ky√

k2
x,m + γ2

1k2
y

(13)

where Um(x) is the doping level in m region and kx may take positive or negative imaginary
values when

(
−Um(x) + h̄υtky

)2−
(
h̄υyky

)2
< 0. The phase eiθm in Equation (11) is defined

as the wave function phase difference between the two sublattices. The sign of the kx

defines the propagating direction of the carriers. Without loss of generality, we can take
only positive imaginary value for the transmission matrix, which means the positive
propagating direction of electrons is defined on right-going state. Here, the potential
profile Um(x) in adjacent regions within NP junction is linear but not rectangular; we treat
the potential as a series of step potential to solve the tunneling problems by the transmission
matrices. For convenience, we choose a = h̄vF/0.04 eV to be the length unit and 0.01 eV to
be the energy unit, where 0.04 eV is the maximum of the doping level.

Figure 2. Potential profile of (a) NP junction, (b) PN junction, (c) NN junction, and (d) PP junction
in each slice of the junctions.

Then, we rewrite the Equation (11) to construct the transmission matrices

(
e−ikx,m+1xm eikx,m+1xm

e−iθm+1 e−ikx,m+1xm −eiθm+1 eikx,m+1xm

)(
ARm+1

ALm+1

)

=

(
eikx,mxm e−ikx,mxm

eiθm eikx,mxm −e−iθm e−ikx,mxm

)(
ARm

ALm

)
.

Therefore, the transmission matrix between m and m + 1 region is

T
n→p
m,m+1 =

(
eikx,mxm e−ikx,mxm

eiθm eikx,mxm −e−iθm e−ikx,mxm

)−1

(
e−ikx,m+1xm eikx,m+1xm

e−iθm+1 e−ikx,m+1xm −eiθm+1 eikx,m+1xm

) (14)
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while the transmission matrices of the carriers going through from p-doped region m to
n-doped region m + 1 and between two n-doped or p-doped region (shown in Figure 2) are

T
p→n
m,m+1 =

(
e−ikx,mxm eikx,mxm

e−iθm e−ikx,mxm −eiθm eikx,mxm

)−1

(
eikx,m+1xm e−ikx,m+1xm

eiθm+1 eikx,m+1xm −e−iθm+1 e−ikx,m+1xm

) (15)

Tn→n
m,m+1 =

(
eikx,mxm e−ikx,mxm

eiθm eikx,mxm −e−iθm e−ikx,mxm

)−1

(
eikx,m+1xm e−ikx,m+1xm

eiθm+1 eikx,m+1xm −e−iθm+1 e−ikx,m+1xm

) (16)

T
p→p
m,m+1 =

(
e−ikx,mxm eikx,mxm

e−iθm e−ikx,mxm −eiθm eikx,mxm

)−1

(
e−ikx,m+1xm eikx,m+1xm

e−iθm+1 e−ikx,m+1xm −eiθm+1 eikx,m+1xm

) (17)

For the case of NPN junction, a trapezoidal potential profile as in Figure 1c, we can also
treat the trapezoidal potential into infinite slices of connected step potentials. The trans-
mission matrices define at the interface between each step potentials. Multiplying all
the transmission matrices would give the propagation matrices,

Tall = Tn→n
0,1 Tn→n

1,2 . . . Tn→n
k−1,kT

n→p
k,k+1T

p→p
k+1,k+2 . . .×

T
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k′−1,k′T

p→p
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p→p
k′′−1,kT

p→n
k′′ ,k′′+1Tn→n
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m−2,m−1Tn→n

m−1,m (18)

Then, we reach the formula

Tall

(
ARm

ALm

)
=

(
AR0

AL0

)
(19)

When incident electrons go from the leftmost side of the NPN junction to the rightmost
side, there are no reflection states in the rightmost side, i.e., ALm = 0. We can connect
the amplitude of incident states to the amplitude of reflection states

(
T11 T12
T21 T22

)(
ARm

0

)
=

(
AR0

AL0

)

ARm

AR0

=
1

T11

Finally, the transmission probability is T = |t|2 =
∣∣ARm /AR0

∣∣2 = |1/T11|2.
There is a trick in constructing the propagation matrices from the transmission matrices.

As shown in Figure 3, the incident states at the left-hand side of the junction have a different
Fermi surface from the transmitted states at the right-hand side in the NP junction. Suppose
the NP junction is sharp. The good quantum number ky should be restricted between the top
dotted green line and the middle dotted green line, since the incident states and the trans-
mitted states are propagating only in this scenario. While supposing the NP junction is
smooth, the Fermi surface in the region of varying potential would shrink to the Dirac point,
and the Eλ,k, aλ,E, bλ,E, and cλ,E from Equation (5) reduce to zero as well. Therefore, kx

vanishes to diverge the transmission matrices when the carriers approaching the NP junction
center. However, we could play a trick by properly segmenting the region of varying potential
and jumping the diverging point. The trick lies in the fact that the carriers would not experience
any singularity when going through an infinitesimal interval around the diverging point. For
instance, the transmission matrix at the Dirac point cannot be well defined with incident states
ky = 0, whereas the carriers are well-defined decay states at the Dirac point. We can ignore
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the decay states of the carriers going through infinitesimal intervals around the Dirac point,
and it would eliminate any possible ambiguity.

Figure 3. Fermi surface at different doped regions ±εdoping. The blue (red) ellipse represents
the electron (hole) Fermi surface in n-doped (p-doped) region. The solid vectors kin (blue) and kout

(red) are the wave vector of incident carriers and transmitted carriers, respectively. The dashed
vectors vKTin (blue) and vKTout (red) are the group velocity of incident carriers and transmitted
carriers, respectively. The green dotted lines indicate the values of the good quantum number ky

posed restrictions for the NP junction and the NPN junction.

3. Results and Discussions

In this section, we present the numerical results for the transmission probability
and electrical conduction of the massless Dirac fermions across the borophene NP junction
and NPN junction.

3.1. The Oblique Klein Tunneling in Smooth NP Junctions

Various smooth NP junctions with fixing n/p doping level but different slopes are
depicted in Figure 4a. We set the length of the varying region in different NP junctions
as 6.25 a, 12.5 a, 25 a, and 50 a, respectively, where a = h̄υF/0.04 eV, and plot the angular
transmission probability for different NP junctions. As shown in Figure 4b, the shaper
the NP junction is, the wider the angular transmission probability spans. This phenomenon
is caused by the decay states in the varying region and is similar to the graphene smooth NP
junction. In the varying region, (−Um(x) + h̄υtky)2− (h̄υyky)2 < 0, so that the propagating
states degenerate to the decaying states when the carriers gradually approach the junction’s
center. Therefore, the transmission probability increases with increasing the slope of
potential in the varying region. If we take ky = 0, i.e., the normal incident case, we can see
the perfect transmission, the Klein tunneling.

Figure 5 shows that the angular transmission amplitude of the k vector is different
from the one of group velocity. The actual incident angle across the junction is based
on the group velocity of carriers. The actual angular transmission probability for group
velocity shown in Figure 5 indicates a rotation of the Klein tunneling, the oblique Klein
tunneling. It means that the perfect transmission does not occur in the normal incident but
with a nonzero angle θK.
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Figure 4. (a) Potential profile of smooth NP junctions and (b) the angular behavior of the transmission
probability for different NP junctions corresponding to different colors at (a).

Figure 5. Angular transmission amplitude for k vector (red) and for group velocity (blue). The doping
level is 0.04 eV and the length of varying region is 6.25 a.

The value of θK can be determined from the elliptical Fermi surface of 8-Pmmn
borophene. The angle for the group velocity is θv = arctan

[
vy

(
ε, ky

)
/vx

(
ε, ky

)]
, where

vy

(
ε, ky

)
and vx

(
ε, ky

)
can be obtained by

vx

(
ε, ky

)
=

∂Eλ,k

h̄∂kx
=

λkxυx√
k2

x + γ2
1k2

y

(20)

vy

(
ε, ky

)
=

∂Eλ,k

h̄∂ky
= υt +

λγ2
1kyυx√

k2
x + γ2

1k2
y

(21)

Combined with above equations and let ky = 0, we can find the angle of Klein
tunneling for group velocity,

θK = arctan
(

υt

υx

)
≈ 20.4◦ (22)

This oblique Klein tunneling can also be found in sharp NP junctions of 8-Pmmn
borophene [39,53].
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3.2. The Asymmetric Klein Tunneling in the Smooth NPN Junctions

The NPN junction, as shown in the Figure 1c, can be seen as a trapezoid potential
barrier. We set the length of the varying regions as 6.25 a and the length of the flat potential
barrier as 12.5 a.

In Figure 6, we plot the transmission probability depending on different doping levels
and ky. Note that n- and p-regions have the same absolute value of doping level. We can
see the Klein tunneling in several branches. The number of branches increases by lifting
the doping level, which could also be observed in the graphene NPN junctions [16,18].
We can see the Klein tunneling is asymmetric. The asymmetric Klein tunneling results
from the carriers’ chirality and anisotropy [61]. It is not surprising to see it here because
the carriers of 8-Pmmn have both chirality and anisotropy.

Figure 6. (a) Transmission probability versus the doping level and the ky in NPN junction. Blue lines
denote the forbidden zone, where transmission probability vanishes, and there are only the decaying
states in the p-doped region. (b) The transmission probability depending on ky when the doping
level is 4× 0.01 eV.

The blue lines in Figure 6a denote the forbidden zones, where the transmission probability
vanishes. The equation of the boundary of the forbidden zone is ky = ±εdoping/h̄(υt + υy).
There are two types of the forbidden zone: (I) the no-incident zone and (II) the vanishing
transmitted zone. In the no-incident zone ky ≥ εdoping/h̄(υt + υy), there is no incident states
since the parameters ky and doping level is beyond the Dirac cone; in the vanishing transmitted
zone ky ≤ −εdoping/h̄(υt + υy), the transmitted carriers severely decay in the region of barrier.

Next, we fix the bottom edge and the height of the trapezoid potential (NPN junction)
and plot the transmission probability versus the potential’s top edge. When the top edge’s
length varies from 0 to the bottom edge’s length, the NPN junction experiences a change from
triangle potential to trapezoid potential and finally to a square potential. We can see from
Figure 7, the number of branches increases with increasing the top edge’s length. It is some-
how counterintuitive that the square potential favors Klein tunneling more than the triangle
potential. The reason is that the carriers would have more chances to degenerate to decaying
states when incident into a slope of potential, in fact, a smooth NP junction.
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Figure 7. Transmission probability depends on top edge of the trapezoid potentials. The top edge
varies from 0 to 24 a and the bottom edge is fixed as 25 a. The height of the trapezoid potentials or
the absolute value of n/p doping level is fixed as 0.04 eV.

3.3. The Electrical Resistance of the Smooth NPN Junctions

One can create the NPN junction by implementing a design with two electrostatic
gates, a global back gate and a local top gate. A back voltage applied to the back gate could
tune the carrier density in the borophene sheet, whereas a top voltage applied to the top
gate could tune the density only in the narrow strip below the gate. These two gates can be
controlled independently [62].

To clarify the effect of the Klein tunneling on the transport property, here, we discuss
the electrical conduction of the NPN junction in 8-Pmmn borophene. In the ballistic
regime, we apply the Landauer–Buttiker formula G = 2e2MT/h to calculate the electrical
conductance [63]. In our setup, the Landauer formula can be written as [64]

G f et =
4e2

h
∑
ch.

Tch ≈
4e2

h

∫ ky max

ky min

dky

2π/W
T
(
ky

)
(23)

where ky max = εdoping/h̄(υt + υy) and ky min = εdoping/h̄(υt − υy).
We choose the width of the junction W = 10 µm and calculate the electrical resistance by

the Landauer formula. To reveal the link of the resistance with the Klein tunneling, we plot
the transmission probability versus the doping level in Figure 8a and the resistance depending
on doping levels in Figure 8b. We can see the resistance oscillation when increasing the doping
level from 0 to 0.08 eV. The oscillation pattern indicates the effect of the Klein tunneling. When
the doping level varies from 0 to −0.08 eV, the NPN junction becomes a NNN junction so that
the curves of resistance are flat in the negative doping regime.
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Figure 8. (a) Transmission probability depends on ky and the height of the trapezoid potentials
(doping levels of the NPN junctions). The top edge’s length is 12.5 a and the bottom edge’s length is
25 a. The doping level of n-doped region (outside the NPN junction) is set −0.04 eV. (b) The electrical
resistance of the NPN junction depending on the doping level.

4. Conclusions

This work investigates the transport properties of massless fermions in the smooth
8-Pmmn borophene NP and NPN junctions by the transfer matrix method. Compare with
the sharp junction, the smooth NP junction also shows that the oblique Klein tunneling
induced by the tilted Dirac cones. We can calculate from the parameters of the Hamil-
tonian that the angle of oblique Klein tunneling is 20.4◦. We also show the branches of
the NPN tunneling in the phase diagram, which indicates the asymmetric Klein tunneling.
The physical origin of the asymmetric Klein tunneling lies in the chirality and anisotropy of
the carriers, and we can verify the asymmetric Klein tunneling experimentally by analyzing
the pattern of the electrical resistance oscillation. For the oblique Klein tunneling, we have
discussed the experimental feasibility in detail in our previous study [39]. The present
numerical demonstration in smooth junctions proves the effectiveness of our previous
discussion and favors the observation in future experiments.
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Abstract: How to form carbon nanoscrolls with non-uniform curvatures is worthy of a detailed
investigation. The first-principles method is suitable for studying the combined effects due to the
finite-size confinement, the edge-dependent interactions, the interlayer atomic interactions, the
mechanical strains, and the magnetic configurations. The complex mechanisms can induce unusual
essential properties, e.g., the optimal structures, magnetism, band gaps and energy dispersions.
To reach a stable spiral profile, the requirements on the critical nanoribbon width and overlapping
length will be thoroughly explored by evaluating the width-dependent scrolling energies. A com-
parison of formation energy between armchair and zigzag nanoscrolls is useful in understanding
the experimental characterizations. The spin-up and spin-down distributions near the zigzag edges
are examined for their magnetic environments. This accounts for the conservation or destruction
of spin degeneracy. The various curved surfaces on a relaxed nanoscroll will create complicated
multi-orbital hybridizations so that the low-lying energy dispersions and energy gaps are expected
to be very sensitive to ribbon width, especially for those of armchair systems. Finally, the planar,
curved, folded, and scrolled graphene nanoribbons are compared with one another to illustrate the
geometry-induced diversity.

Keywords: graphene; nanoscroll; first-principle

1. Introduction

Condensed-matter systems purely made up of carbon atoms comprise diamond [1,2],
few-layer graphenes [3–5], carbon nanotubes [6–8], graphene nanoribbons (GNR) [9–12],
nanoscrolls [13–16] and C60-related fullerenes [17–19]. These systems exhibit very rich
physical, chemical, and material properties, mainly owing to their special structural
symmetries and varying dimensionality. Recently, one-dimensional carbon nanoscrolls
(1D CNSs) have attracted much attention for their special geometric structure and electronic
properties [13,14,17,18,20–30]. Each CNS can be regarded as a spirally-wrapped 2D
graphene sheet with a 1D scroll structure. Unlike a carbon nanotube, which is a closed
cylinder, a CNS is open at two edges. Clearly, CNSs possess flexible interlayer spaces
to intercalate or to be susceptible to doping, indicating the high application potentials
in hydrogen storage [24,25,31,32], lithium batteries [26,29,33,34], aluminum batteries [29],
and mechanical devices [26,27]. However, regarding nanoscroll structures, the question
remains whether they are perfectly spiral or not. The previous studies [35,36] on carbon
nanotubes show that the non-cylindrical structures are more prone to exist in the large
diameter cases due to the layer–layer interactions. Such effects are expected to play an
important role in plastic CNSs. In this paper, we investigate the geometric and electronic
properties of non-ideal CNSs, and these predicted results are innovative and interesting.
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CNSs have been successfully produced by the different physical and chemical meth-
ods [13,14,17,18,21,22], including arc-discharge [17], high-energy ball milling of graphite [21].
and the chemical route. However, theoretical researches are rare and only focus on the ideal
CNSs. Their electronic properties are predicted to be similar to those of the flat graphene
nanoribbons, depending on edge structures and ribbon widths. In addition to the edge
and quantum-confinement effects [37], the non-ideal CNSs are significantly affected by the
curvature and stacking effects in terms of the structure stability and the electronic properties.
In the past, many studies about curved ribbons [38–41] and few-layer graphene [42–45]
have shown that the geometric structure is the key factor for the change of physical proper-
ties. The curved surface in CNSs leads to non-parallel 2pz orbitals between the adjacent
carbon atoms in the direction of bending, which results in hybridizations of carbon four or-
bitals [40,46,47]. However, the orbital hybridizations between two locally parallel surfaces
are not found. Different stackings will have an impact on the layer–layer interactions and
the free charge carriers [42,48,49]. These hybrid features in CNSs enable the possession of
versatile and enhanced properties that are more adaptable in future electronic applications.

In this paper, the geometric and electronic properties of non-ideal carbon nanoscrolls
are investigated by the first-principles calculations. This work is the first systematic study
on two different kinds of CNSs with various widths and internal lengths. A new theoretical
framework of charge distribution and the multi-orbital hybridization is implemented to
explain the results. The dependences of formation energy and energy gaps on the internal
length and the width are first obtained. A thorough discussion on electronic properties
has not been published before. The essential properties, including the optimal geometric,
formation energy, charge density, spin configuration, band structure, energy gap, and
density of states, are determined by the completion and cooperation between the curvature
and stacking effects. They possess basic properties similar to that of the flat nanoribbon,
such as the zigzag systems being magnetic materials, three types of energy gaps classified
in the armchair system, and the decreasing energy gaps resulting from the increased ribbon
width. However, the hybrid structure accounts for the distinct properties. For instance,
zigzag systems possess special electronic properties associated with the spin arrangements,
the rule governing the size order of the energy gap is changed in the armchair system, and
disregarding their system types, they all have smaller energy gaps compared with the flat
nanoribbon. The predicted results could be verified by experimental measurements. These
enriched electronic properties let the CNS have potential suitability not only in energy
storage and machine components but also in electronic and spintronic devices.

2. Materials and Methods

The geometric and electronic structures of CNSs were studied by the Vienna ab initio
simulation package [50,51] in the density-functional theory (DFT). The DFT-D2 method [52]
was taken into account in order to describe the weak van der Waals interactions. The
projector augmented wave method was utilized to characterize the electron–ion interactions.
The exchange-correlation energy of the electron–electron interactions was evaluated within
the local-density approximation. The wave functions were expanded by plane waves with
the maximum kinetic energy limited to 500 eV. The k-point sampling is outlined by the
Monkhorst-Pack scheme [53]. The 12× 1× 1 and 300× 1× 1 k-grids in the first Brillouin
zone are, respectively, the settings used for the geometry optimization and band-structure
calculations. The Hellmann–Feynman net force on each atom is smaller than 0.03 eV/Å.
The axis of all nanoscrolls was set to be in the x-direction. In order to avoid interactions
between the scrolled graphene superlattices of the adjacent unit cells, various vacuum
spacings in the z-direction and y-direction are tested and a value of 15 Å is best for accurate
and efficient calculations.
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3. Results and Discussion
3.1. Geometric Properties and Formation Energy

A CNS could be regarded as a rolled-up graphene sheet in the vector direction
R = ma1 + na2, or the (m, n) notation, where a1 and a2 are the basic vectors of a graphene
sheet. Two open edges are saturated by hydrogen atoms (green color balls). Two typ-
ical longitudinal structures, armchair (m, m) and zigzag (m, 0) CNSs were chosen for a
model study, since they exhibit the unique geometric and electronic properties. Moreover,
the optimal structures of CNSs are dependent on the initial conditions, including ribbon
widths and internal lengths. The initial structures are kept at an arch shape, as shown in
Figures 1a and 2a.

armchair CNS

(34,34;7) (34,34;7)

(43,43;9) (47,47;11)

(a) (b)

(c) (d)

Figure 1. For armchair carbon nanoscrolls: the ideal structure of (a) (34, 34; 7) and the optimal
structures of (b) (34, 34; 7), (c) (43, 43; 9); (d) (47, 47; 11).

The ribbon width (Ny) is characterized by the number of dimer or zigzag lines along
the transverse, and the internal length (Nin) only counts the dimer or zigzag lines in the
internal lengths (red balls). Armchair and zigzag CNSs, with their geometric characteristics,
are defined by (Ny,Ny;Nin) and (Ny,0;Nin), respectively.

Before the self-consistent constraint is imposed, the initial arc structure is set to be an
Archimedean spiral, as shown in Figures 1a and 2a, and the carbon atoms on the curved
surface are set to be the hexagonal structure. However, the relaxed optimal structure
becomes less regular, as displayed in Figures 1b and 2b. The internal length (Nin) describes
the ideal geometric structures before optimization, i.e., they only stand for initial condi-
tions. The various initial conditions can result in different optimized geometric structures.
We investigated three kinds of internal lengths for both armchair and zigzag CNSs with
various scroll widths. The Nin-dependent formation energy with various scroll widths
was obtained. The results show that wider CNSs need to have a larger internal length
as an initial condition to form the scroll shape, as shown by Figure 3a,b (discussed later).
In other words, the increased initial Nin leads to different formation energy and critical
formation width. However, the internal length in the optimized geometric structures can
either increase or decrease. Interestingly, different initial Nin results in the same internal
length in the optimized structure, as shown in Figure 1c,d. The (43, 43; 9) and (47, 47; 11)
CNSs, respectively, have their Nin set to be 9 and 11, but their optimized structures exhibit
the same internal length, i.e., the similar overlapping area. It should be noted that the red
balls in Figure 1c,d are referred to their initial conditions.
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zigzag CNS

(18,0;4) (18,0;4) (34,0;6)

(a) (b) (c)

Figure 2. For zigzag carbon nanoscrolls: the ideal structure of (a) (18, 0; 4) and the optimal structures
of (b) (18, 0; 4), (c) (34, 0; 6).

The scroll geometry is sustained by the layer–layer interactions and simultaneously
counterbalanced by strain forces. The reduced overlapping region caused by the insufficient
width will hinder the formation of the scroll. The critical formation width of CNSs strongly
depends on the internal length. Disregarding the periodic edge shape, all the interlayer
distances are between 3.22 and 3.35 Å, which is close to the typical separation of graphene
layers. A deeper understanding shows that all the interlayer configurations in CNSs are
similar to those of the AB-layered carbon systems, owing to the higher cohesive energy
presented in the AB stacking [6,7]. Perceivably, a CNS can be qualified as a stable structure,
being determined by the sufficiently large width and overlapping length.

The formation of CNS is mainly dominated by two critical structure parameters: the
internal length and the scroll width, as shown in Figure 3.
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Figure 3. Formation energy of the scroll widths for (a) armchair CNS and (b) zigzag CNS with
different internal lengths.
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To hold the structure as a scroll, the required formation energy, defined as the energy
difference between the total energy of a CNS and that of a flat GNR, is formulated as
E f or=Eint + Ecur. Eint is the energy originating from the interlayer atomic interactions in
the overlapping region. This term belongs to the binding force with a negative value.
On the other hand, Ecur is the restoration force caused by the mechanic strain with a
positive value. Given that E f or > 0, it is obvious that the strain energy is larger than the
interlayer interactions. In searching for the minimum-width armchair systems, the critical
width, which represents the smallest width to form a CNS with fixed Nin, is found to be
34 associated with the (34, 34; 7) CNS, and its corresponding internal length is Nin = 7.
As the width becomes larger, the corresponding increase of the overlapping region is
responsible for pushing Eint negatively, and Ecur plunges due to its inverse proportionality
to the square of the enlarged effective diameter [40]. Therefore, E f or decreases as the width
increases, as shown in Figure 3a. Within the width range of m = 34 ∼ 36, the interlayer
distances are relatively large near the end of the overlapping region, leading to the weaker
interlayer interactions and thus a smaller and smoother variation in the formation energy.
As for m = 37 ∼ 40, the stacking configurations in the overlapping region are close to a
more stable AB stacking near the open end; therefore, the formation energy decreases more
dramatically. As the width extends to the ranges m = 41 ∼ 46 and m = 47 ∼ 52, they
all begin with a slow change but then evolve into a fast decrease in terms of the energy
variation, i.e., the slope of the curve is gradually decreased in these two intervals. When
the internal length grows, wider critical widths are obtained. Nin = 9 and 11 correspond to
the critical widths m = 43 and 47. To counter the decreased overlapping region, the wider
critical width can reduce the mechanical strain and thus compensate for the loss of the
interlayer interactions in forming the nanoscroll structure. In short, there are two factors
taken into consideration in determining the formation energies of armchair nanoscrolls,
the internal length and the scroll width. With the same internal length, the formation
energy decreases for wider CNSs due to the reduction of mechanical strain. As for the
nanoscrolls with the same width, a long internal length is energetically favored owing to a
stronger interlayer interaction. These findings support the fact that a larger Nin results in a
smaller Ecur, as discussed previously.

The zigzag CNSs are similar to the armchair ones in the width dependence of forma-
tion energy. More specifically, when the minimum internal length is Nin = 4, the small-
est zigzag CNS is (18, 0; 4). The scroll-width-dependent formation energy is shown in
Figure 4b. Similar to what the armchair system has presented, we find a fluctuation in
the dependence on scroll width, signifying that both systems share a common process
during the geometric variation. Nin = 6, 8 and 10 correspond to the critical widths
m = 20, 22 and 23, respectively. With respect to the minimum-width system, the internal
length is smaller in the armchair type than in the zigzag type, meaning that the for-
mer can overcome the larger restoration force caused by the mechanic strain. Therefore,
the armchair CNSs are formed more easily and become more stable than those of the
zigzag type.

3.2. Electronic Properties

The electronic properties of CNSs are deeply affected by edge shapes, widths, curva-
tures, and spin arrangements. An armchair (38, 38; 7) CNS, as shown in Figure 4a, exhibits
a lot of 1D parabolic energy dispersions, in which the occupied valence bands are not
symmetric to the unoccupied conduction bands about the Fermi level (EF = 0).
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Figure 4. Band structures of the armchair system for (a) (38,38;7), (b) (39,39;7), (c) (40,40;7); (d) flat
GNR with m = 38, and zigzag system for (e) (36,0;4); (f) flat GNR with m = 36.

The energy bands are all doubly degenerate for both spin states: spin-up and spin-
down. Each energy dispersion has the local minimum or maximum at kx = 0 and 1 and
also at other wave vectors; that is to say, there are extra band-edge states except those
at kx = 0 and 1. In the vicinity of EF, the highest occupied state (HOS) and the lowest
unoccupied state (LUS) occur at the same wave vector (kx = 0.1), which, thus, leads to a
direct energy gap of Eg = 0.181 eV, as shown in Table 1. Contrarily, the armchair (39,39;7)
CNS (Figure 4b) possesses an indirect energy gap. Associated with this gap are the highest
occupied and the lowest unoccupied states that appear, respectively, at kx = 0.01 and
0.13, and they are separated by a gap size of Eg = 0.112 eV. These two energy bands are
relatively smooth near kx=0 without obvious dispersions. Such 3N-width characteristic
is similar to that of the flat graphene nanoribbon [37]. Both the armchair (40, 40; 7) CNS
with a (3N + 1) width (Figure 4c) and the armchair (38, 38; 7) CNS with a (3N + 2) width
have direct energy gaps. The important differences between them are that the former
has a smaller gap of Eg = 0.323 eV and strongly non-monotonous energy dispersions.
In addition, energy spacing of the kx = 0 state between two energy bands nearest to EF = 0
is higher than the energy gap. Apparently, there are certain important differences among
the 3N- , (3N + 1)- and (3N + 2)-width systems. On the other hand, the CNSs are in sharp
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contrast to the flat GNRs (Figure 4d). The latter possesses a pair of monotonous parabolic
energy dispersions nearest to EF = 0, in which their kx = 0 states determine a direct energy
gap. Moreover, their energy gaps are a bit larger than those of the former, e.g., energy gaps
of the m = 38 systems.

Table 1. The energy gaps, wave vectors of highest occupied state (HOS) and lowest unoccupied state
(LUS), and the 3N type of various systems.

Systems Type Kx of HOS/LUS Energy Gaps

Armchair CNS (38,38;7) 3N+2 0.10/0.10 direct; 0.181 eV
Armchair CNS (39,39;7) 3N 0.01/0.13 indirect; 0.112 eV
Armchair CNS (40,40;7) 3N+1 0.10/0.10 direct; 0.323 eV

Zigzag CNS (36,0;4) N/A 0.67/0.67 direct; 0.180/0.230 eV

Electronic structures of zigzag CNSs are enriched by the anti-ferromagnetic spin
configuration at two edges, as shown in Figure 4e for the (36, 0; 4) CNS. Most of the
energy is doubly degenerate, while there exists the spin-up and spin-down splitting bands
near EF = 0. This could be clearly understood from the spin-up and spin-down charge
distributions in Figure 5 (red and blue colors) since for the distinct spin states, the H-
passivated carbon atoms at each end of the open structure tend to interact differently with
the surrounding atoms.

zigzag CNS

(36,36;4)

Figure 5. The charge distribution of spin-up and spin-down states, indicated by red and blue regions,
respectively.

The four splitting bands have weak energy dispersions, in which they are mainly
contributed to by the local edge atoms. Such bands will determine two kinds of spin-
dependent energy gaps. The energy gaps belonging to the direct type appear approximately
at kx = 2/3. Noticeably, the spin-up gap, 0.18 eV, is smaller than the spin-down gap, 0.23 eV.
In comparison, for a flat GNR, four flat bands are partially degenerate and form two bands
(Figure 4f), since the same end-structure environment in flat GNRs results in no difference
for the edge effects from two ends. Again, the energy gap at kx = 2/3 is a direct one, with
its size being at 0.14 eV.

3.3. Charge Distributions

The charge distribution on CNSs, which is very useful in understanding the hybridiza-
tions of orbitals (or the orbital bondings) and the low-lying energy bands, is significantly
affected by the curved surface [47,54]. The variation of charge distribution created by
subtracting the carrier density of an isolated carbon (a hollow circle) from that of a CNS is
clearly illustrated in Figure 6a,b.
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As for the planar region of the armchair (38, 38; 7) CNS, resembling a flat GNR as
enclosed by the rectangle in Figure 6a, the 2s, 2px, and 2py orbitals of one carbon atom
interact with those of the nearby carbon atoms to form the σ bonds ((I) in orange shades).
The charge densities are concentrated at the bond locations in the middle of the two binding
atoms and significantly lowered for the remaining parts of the carbon atoms to create the
depletion zones, as indicated by the blue shades. Moreover, the 2pz orbitals ((II) in orange
shades) perpendicular to the plane can interact with their nearest neighbors to form the π
bonds. Induced by the curvature effect, there are two main causes that can contribute to the
orbital hybridization. One is that the non-parallel 2pz orbitals can lead to the σ bonds in
addition to the π bonds. Another is the hybridization of four orbitals that is also responsible
for introducing the complex π and σ bonds. Associated with these bond formations are the
serious hybridizations that take place on the internal side of the curved surface, as shown
in (III) and (IV). The direct impact from these hybridizations is reflected in the significant
variation of the low-lying band structure, including the non-monotonic energy dispersions
associated with the strongly hybridized atomic orbitals and the energy gap due to the
kx 6= 0 state (Figure 4a–c). The aforementioned changes to the band structure are in good
agreement with the previous studies on the carbon nanotube and curved GNR. A further
deduction from the curvature effect is that the dumbbell shape of 2pz orbitals makes the
charge distribution thicker on the nanoscroll surface towards the outside but thinner on
the surface towards the inside. These larger 2pz orbitals on the outer surface provide an
ideal environment to bond with H, Li and other atoms, showing the possibilities in energy
storage and electronic nano-devices.

(a)

(38,38;7)

(36,0;4)

(I) (II)

(IV)

(III)

(I)

(II)

(IV)

(III)

(b)

Figure 6. The charge distribution for (a) armchair (38,38;7) CNS; (b) zigzag (36,0;4) CNS. (II) are the
2 pz orbitals and (I) are the other three orbitals. (III) and (IV) are the serious orbital hybridizations.

The zigzag CNS (Figure 6b) and the armchair CNS partially share a similar charge dis-
tribution. In the planar region, they both have their π bonds created by the 2pz orbitals (II)
and their σ bonds formed from the 2s, 2px, and 2py orbitals (I). Unlike the armchair config-
uration, the zigzag orbital hybridization in the curved regions (III and IV) appears to be
weaker due to the longer distance between carbon atoms. As we move to the outer portion
of the nanoscroll, the decreased curvature can reduce the hybridization to a trivial level.
That is to say, the very weak hybridization is presented at the outer section. Speaking of
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the different features of energy bands in the zigzag CNS, the energy bands near EF are
mainly contributed to by the carbon atoms at the two open edges. Given that spin-up and
spin-down states are ignored, the distributions of the charge density at these two edges
almost remain unchanged. Therefore, the energy bands in the zigzag case are not much
different from those presented in the flat GNR.

3.4. Density of States

The main features of DOSs in carbon nanoscrolls are mainly determined by the
complex cooperation relation among the edge structure, total width, and internal length,
as clearly shown in Figure 7a–d.
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Figure 7. Density of states for the (a) (38,7), (b) (39,7) and (c) (40,7) armchair nanoscrolls, and (d) for
the (36,4) zigzag one.

The van Hove singularities only come from the parabolic energy dispersions (band
structures in Figure 4a–c), leading to the square-root pronounced peaks. The valence
and conduction peaks closest to the Fermi level form an energy gap corresponding to a
semiconducting nanoscroll system. The asymmetric peak structures about E = 0 are very
apparent; furthermore, a simple relation in energy spacing of two neighboring prominent
peaks is absent. That is to say, it is very difficult to identify a specific one-to-one corre-
spondence in peak and geometric structures. Both HRTEM and STS need to be utilized
to examine the theoretical predictions on the geometric and electronic properties. There
are no spin-split peaks in armchair nanoscrolls (Figure 7a–c), while they are present in
zigzag systems (blue and red circles in Figure 7d). The energy splittings, which are due
to the partial flat bands at the zone boundary (Figure 7b), are relatively obvious. The
SP-STS examinations on them could provide very useful information on the ferromagnetic
configurations of zigzag nanoscrolls, being in sharp contrast with degenerate behavior
from the anti-ferromagnetic ones of pristine zigzag graphene nanoribbons.

3.5. Comparisons among the Planar, Curved/Zipped, Folded and Scrolled Systems

The flexible carbon honeycomb lattice can be presented in various forms under a
very strong σ bonding. Such structures create the diverse essential properties and thus
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induce important differences among the planar, curved, folded, and scrolled graphene
nanoribbons. For armchair nanoribbons, only parts of the curved systems exhibit the
1D metallic property, mainly owing to the edge–edge interactions [40,41]. Similar behavior
is revealed in the even-zAA stacking of the folded zigzag systems [55]. The valence and
conduction bands, which determine the metallic or semiconducting properties, are very
sensitive to the geometric structure. All the planar and folded armchair systems have the
parabolic bands with direct energy gaps at kx = 0 [55]. However, the curved and scrolled
ones might possess non-monotonous energy dispersions with direct or indirect energy
gaps (Figure 8b).
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Figure 8. The width-dependent energy gaps for (a) armchair carbon nanoscrolls with Nin = 7 and
(b) zigzag systems with Nin = 4.

Those of zigzag systems belong to the partially flat edge-localized bands at kx > 2/3.
An obvious spin splitting appears near the Fermi level when the magnetic environments
are different for spin-up and spin-down states near the open edges, e.g., for folded odd-
zAB and scrolled zigzag nanoribbons. Specifically, only the folded even-zAB stacking
presents a pair of linearly intersecting energy bands at kx ∼ 2/3, as observed in armchair
carbon nanotubes.

The width dependences of energy gaps are greatly enriched by the geometric struc-
tures. There are three categories in the planar and scrolled armchair nanoribbons (Figure 8a),
but six categories in the folded systems. In addition to NA = 3I, 3I + 1, and 3I + 2, the last
ones also depend on the odd/even number of dimer lines, where NA is the ribbon width
and I is an integer. For NA = 3I + 2, the planar systems have the smallest energy gaps
because of the finite-size confinement. However, the opposite is true for the scrolled sys-
tems under the combined effects. In comparisons among the various pristine systems,
the highest energy gaps are revealed in the even-aAA′ folded armchair nanoribbons of
NA = 6I + 4. As for zigzag nanoribbons, only the scrolled and odd-zAB folded systems
present the spin–split energy gaps. The width-dependent declining behavior is obvious
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except for the folded even-zAB stacking systems with the strong edge–edge interactions.
Furthermore, the wave-like fluctuation comes to exist in the scrolled systems.

4. Conclusions

After the self-consistent field is solved, the stable structure is determined by the
equilibrium between the ribbon width and the scroll surface. If the internal length or the
layer–layer overlapping area is too small, the nanoscroll structure will not be sustainable.
In consequence, the typical cross-section of the ideal scroll becomes more oval. For armchair
CNSs, the minimum (critical) internal length is Nin = 7. Given an internal length smaller
than the critical length, the optimal structure will be restored back to the shape where
the internal length is critical. With respect to each internal length, there exists a stable
structure with the minimum ribbon width. Assuming that the ribbon width is less than
the minimum value, the scroll structure will collapse to the flat graphene nanoribbon due
to the insufficient layer–layer interactions. Such interaction will lead to the AA stacking
configuration, which provides larger interaction forces, and the average interlayer distance
is about 3.35 Å. For a group of CNSs with a small deviation about the curvature radius,
all the formations will result in the same internal length in order to maintain the AA stacking
configuration. On the other hand, for the zigzag systems, the critical internal length is
Nin = 4, and the optimal configuration is AB stacking with an average interlayer distance
of ∼3.2 Å. Such stacking configuration is the same as that in the bilayer graphene and
nanoribbon. As compared with armchair CNSs, zigzag CNSs possess larger curvature radii,
and layer–layer interactions. Therefore, zigzag CNSs can form with a smaller width ribbon.

The formation energy (∆E) is mainly dominated by the bending energy and the
interlayer interaction. The competition between the bending energy and the interlayer
interaction would determine the two critical structure parameters: the internal length and
the ribbon width. Note that the E f or’s are greater than zero because the bending energy
is always larger in magnitude than the interlayer interaction. For the armchair systems,
three kinds of Ny-dependences of ∆E are found, and the ∆E’s increase with the ribbon
width. The relationship is attributed to the increased layer–layer interactions with the
larger overlapping areas, yet the decreased bending energies with the larger curvature
radius. Hence, the critical ribbon widths of Nin = 7, 9, and 11 are, respectively, 34, 43,
and 47. As for the zigzag system, it presents similarities to the armchair type regarding
the energy dependence. However, there are some differences since they are not rolled
in the same manner. The zigzag systems possess larger curvatures and stronger layer–
layer interactions owing to the AB stacking configuration. As the width increases, the
energy decays faster in the AB stacked zigzag system than in the AA stacked armchair
system so that the formation energy can easily and quickly reach the deeper negative levels.
In conclusion, the lower total energy makes CNS more stable than the flat nanoribbon, and
the critical ribbon widths of Nin = 4 and 9 are, respectively, 18 and 20.
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Abstract: Angle-resolved photoemission from monolayer and bilayer graphene is studied based
on an ab initio one-step theory. The outgoing photoelectron is represented by the time-reversed
low energy electron diffraction (LEED) state Φ∗LEED, which is calculated using a scattering theory
formulated in terms of augmented plane waves. A strong enhancement of the emission intensity is
found to occur around the scattering resonances. The effect of the photoelectron scattering by the
underlying substrate on the polarization dependence of the photocurrent is discussed. The constant
initial state spectra I(k||, h̄ω) are compared to electron transmission spectra T(E) of graphene, and the
spatial structure of the outgoing waves is analyzed. It turns out that the emission intensity variations
do not correlate with the structure of the T(E) spectra and are caused by rather subtle interference
effects. Earlier experimental observations of the photon energy and polarization dependence of
the emission intensity I(k||, h̄ω) are well reproduced within the dipole approximation, and the
Kohn–Sham eigenstates are found to provide a quite reasonable description of the photoemission
final states.

Keywords: graphene; angle-resolved photoemission; electron scattering; augmented plane waves

1. Introduction

Owing to the combination of high structural stability and unique electronic prop-
erties [1], graphene has become a paradigm two-dimensional material and a subject of
numerous experimental and theoretical studies. The majority of research has addressed the
vicinity of the Dirac point (DP), however, also the unbound states were discovered to exhibit
fascinating phenomena, such as the electron-transmission slits at low kinetic energies [2–4]
caused by the interlayer scattering and the scattering resonances due to the coupling of
the in-plane and perpendicular motions at higher energies [5–7]. A detailed knowledge
of the properties of unbound states is important for the interpretation of angle-resolved
photoemission (ARPES), which is the most direct source of information about the occupied
states. Graphene has been extensively studied with ARPES [8–19], and apparent final state
effects were reported [9,13,14,18,19]. In particular, the circular dichroism [12,14,17] is of
special interest owing to its close relation to the topological character of 2D states [20].

A characteristic feature of photoemission from graphite [21,22] and graphene [10,13,18]
is the so-called “dark corridor”, i.e., the suppression of emission with the p-polarized light
from the occupied π states along the Γ̄K̄ line in the second Brillouin zone (BZ) as a result of a
destructive interference of the contributions to the photoemission matrix element from the two
equivalent sublattices. In the monolayer graphene, the suppressed initial states are odd on
reflection in the Γ̄K̄ line [18,23], so the dark corridor can be illuminated by the s-polarized light
incident along Γ̄K̄ [13]. In Ref. [13] this was demonstrated experimentally, and, in addition, a
strong photon-energy dependence of the emission intensity was revealed. These observations
were analyzed using a multiple-scattering implementation [24] of the one-step theory of
photoemission [25–29] based on a density-functional-derived one-particle potential. However,
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for a direct comparison between experiment and theory, the authors shifted the theoretical
photon energies by 8.6 eV toward higher photon energies. The origin of such a large shift
is unclear, especially in view of the fact that the LEED theory based on Kohn–Sham states
describes the unoccupied continuum of both bulk graphite [30] and graphene [5,6,31–33]
rather accurately. However, in Ref. [13] only two photon energies were studied, which may
be insufficient for a conclusive comparison between experiment and theory. A more detailed
measurement in the range h̄ω = 42–55 eV was reported in Ref. [18], and a rapid variation of
the relative intensity for s and p light polarizations was observed.

A consistent and rigorous approach to photoemission is offered by the one-step
theory [25–29], in which the photoexcitation and photoelectron transport to the detector
(including elastic and inelastic scattering) are described by the time reversed LEED state
Φ∗LEED. Here, the one-step theory is applied to the monolayer and bilayer graphene with
the aim to explain the experimentally observed features and analyze their relation to the
properties of the relevant scattered waves. The final-state wave function Φ∗LEED is calculated
using the augmented plane waves scattering formalism [34]. The present theory reproduces
well both experiments [13,18] and reveals rapid variations of the character of the outgoing
photoelectron wave with energy. These variations manifest themselves also in the electron
transmission through the films and in the variations of the dwell time, i.e., the probability to
find the scattered electron inside the film. However, the variations of these quantities do not
correlate with each other, so the full knowledge of the wave function is necessary to describe
the experiment, in particular, the lateral umklapp scattering proves to be essential. For a
monolayer graphene, the question arises of how strongly the interaction with the substrate
modifies the symmetry properties of the initial and the final states. Here, this question is
addressed by comparing the symmetry of the emission from the monolayer and bilayer
graphene. This estimate suggests that the reflection of the outgoing photoelectron from the
underlying substrate may explain the experimentally observed symmetry breaking.

2. Computational Methodology and Approximations

According to the one-step theory of photoemission [25–29] the photocurrent I((k||ω)
is proportional to the probability of the transition from the initial state | i k|| 〉 to the time
reversed LEED state | f k|| 〉:

I(ω, k‖) ∼
√

Ef − Evac

∣∣∣〈 f k|| |ô| i k|| 〉
∣∣∣
2
, (1)

where 〈 r | f k|| 〉 = Φ∗LEED(r), and k|| is the crystal momentum parallel to the surface.
In the dipole approximation the perturbation operator is ô = −i∇ · e, where e is the light
polarization vector. Thereby, the dielectric response of the electronic system is neglected.
In principle, the related spatially inhomogeneous exciting field may lead to sharp structures
in the photon energy dependence of the photoemission intensity. Such local field effects are
known to be important below the plasma frequency, where the conditions for the excitation
of the multipole plasmon may be met [35]. Here, the energies well above the plasmon
are considered and, although the dielectric response may be tangible also at the higher
energies, the experience with other materials [36] suggests that there one can hardly expect
the local fields to give rise to sharp spectral features.

The LEED wave function ΦLEED(r) is a scattering solution for a plane wave incident
from vacuum with the final state energy E. Inside the graphene layer it satisfies the
Schrödinger equation with the Hamiltonian Ĥ = −∆ + V(r)− iVi. Here an imaginary
potential −iVi is added to the crystal potential V(r) to allow for the inelastic scattering of
the outgoing electron. In photoemission from semi-infinite crystals, the absorbing potential
simulates the surface sensitivity of photoemission and leads to a momentum broadening
perpendicular to the surface. For finite-thickness films the interaction with the electronic
system is limited to a thin layer. In the present calculation it is chosen to vanish outside
a thin slab between z = −1 and 1 a.u., see Figure 1. The results were found to be rather
insensitive to Vi in the range from 1 to 4 eV: the absorbing potential smoothes the electron
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transmission curves T(E) and constant initial state (CIS) spectra I(ω) and reduces the peak
intensities of I(ω) (by around 20–30% per 1 eV increase in Vi). Otherwise Vi does not affect
the shape of the curves. Increasing Vi from 1 to 4 eV leads to an increase by 20% of the peak
value of the intensity ratio in Figure 4a. The present calculations are for Vi = 1 eV.

In the electron diffraction calculation the wave is incident from the right, and the
space is divided into three regions: (i) left vacuum half-space z < zL, which contains
the transmitted plane waves, (ii) scattering region zL ≤ z ≤ zR, and (iii) right vacuum
half-space z > zR, which contains the incident plane wave and reflected waves. In the
scattering region the wave function is a linear combination of the eigenfunctions ψ of an
auxiliary three-dimensional z-periodic crystal, which contains the scattering region as a
part of the unit cell, Figure 1. The solution of the scattering problem consists in constructing
a linear combinations of the basis functions ψ that satisfies the Schrödinger equation in
region (ii) and at the planes zL and zR matches the function and derivative of the plane-
wave representations in regions (i) and (iii), respectively. This is achieved by the variational
embedding method introduced in Ref. [34]. Thus, a Laue representation of the LEED state
is constructed:

ΦLEED(r||, z) = ∑
G||

φG||(z) exp[i(k|| + G||) r||], (2)

which in the present calculation comprises 19 surface reciprocal vectors G||. The lattice
constant of the auxiliary crystal along z was c = 15 Å, and the basis set in region (ii)
comprised the ψ functions with energies up to about 40 eV above the highest energy of
interest, which amounts to around 200 ψ functions for the monolayer graphene. The Laue
representation (2) is obtained by a straightforward expansion of the all-electron wave
function in terms of 11,997 plane waves (G ≤ 11 a.u.−1). The potential V(r) of the auxiliary
crystal is determined self-consistently within the local density approximation by the full-
potential augmented Fourier components method [37].

_5_ 5_14.17_ 14.17_1_ 1
z (a.u.)

zL zR
_c/2

c/2Vi ≠ 0

(a)  Re φG
||
=0

(b)  ρ(z)

Figure 1. Wave function of the LEED state at k|| = 1.633 Å−1 along Γ̄K̄ and E − EF = 35 eV.
(a) Central beam φG||=0(z) of the Laue representation (2). (b) Density profile ρ(z), see Equation (3).
The graphene monolayer is at z = 0. The shaded area in graph (b) shows the contribution from the
G|| 6= 0 surface Fourier harmonics.

An example of the scattering solution for k|| = 1.633 Å−1 along Γ̄K̄ and E = 35 eV is
presented in Figure 1. Figure 1b shows the density profile of this LEED state

ρ(z) =
∫
|ΦLEED(r||, z) |2 dr|| (3)
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and demonstrates that in the interior of the graphene layer the contribution from the
G|| 6= 0 harmonics strongly exceeds the G|| = 0 contribution. It is the G|| 6= 0 contribution
that makes a single-plane-wave approximation for the final state Φ∗LEED unrealistic and
misleading, see a detailed analysis in Ref. [38].

3. Results and Discussion

In this section, the calculation of photoemission form graphene is presented in the
range h̄ω = 20 to 60 eV with the emphasis on the comparison with the experiments of
Refs. [13,18]. The spectra are analyzed in terms of dipole transitions to the Φ∗LEED states
for an all-electron Kohn–Sham potential. Detailed analysis of the monolayer and bilayer
graphene is given in Sections 3.1 and 3.2, respectively.

3.1. Monolayer Graphene

Calculated polarization dependence of the photoemission from the monolayer and
bilayer graphene is shown in Figure 2 for k|| along Γ̄K̄ around the DP for two photon
energies h̄ω = 35 and 52 eV. The light incidence plane intersects the surface in the Γ̄K̄
line, and the angle of incidence is 18◦, as in the experiment of Ref. [18]. For the monolayer
graphene, the two branches have different parities under the reflection in Γ̄K̄ so the
ascending branch (B2 symmetry) is visible only in p polarization and the descending branch
(A2) only in the s polarization. A similar trend is observed in the graphene bilayer, only
here the π states are not parity eigenfunctions, so every state is visible in both polarizations,
albeit with a striking intensity asymmetry. The absolute intensities and the asymmetry,
however, depend on the photon energy, as seen from the comparison of Figure 2a–c,d–f.
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Figure 2. Crystal-momentum dependence of the photocurrent from graphene along Γ̄K̄: (a,d) mono-
layer; (b,c,e,f) bilayer. (a–c) h̄ω = 35 eV; (d–f) h̄ω = 52 eV. Light is incident along Γ̄K̄ at an angle of
18◦. Intensity at p polarization is shown by red and at s polarization by black shading. The vertical
extent of the shaded area is proportional to the relative intensity in the same graph (intensity is
normalized differently in each of the graphs). The photon energy dependence of the intensity can be
inferred from Figure 3. Because of the strict parity selection rules, for the monolayer graphene both
polarizations are shown in the same graph (a,d). In graph (a) the two circles mark the initial states
considered in Figure 4.
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In agreement with the experimental observation of Ref. [13], in the monolayer graphene
over a wide k|| interval around K̄ the intensity of the s branch at 52 eV is an order of mag-
nitude lower than at 35 eV. For each of the two photon energies 35 and 52 eV the intensity
changes slowly and steadily with k||, however, this is not the case for the h̄ω interval
between 35 and 52 eV, as illustrated by the intensity distribution I(k||, ω) in Figure 3. The p

branch manifests a sharp peak, which over the interval from 1.7 to 1.9 Å−1 disperses from
40 to 33 eV and is followed by a minimum and a set of weaker structures at higher energies.
The s branch has two sharp maxima dispersing upwards: the one due to π states (below
the DP) in the second BZ around h̄ω = 42 eV and the one due to π∗ states (above the DP)
in the first BZ around 38 eV. Apart from that, the s branch of both π and π∗ states manifests
a sharp nondispersive dip at around 45.5 eV: the intensity drops by a factor of 5 over an
interval of about 3 eV and then rapidly rises again.
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Figure 3. Photocurrent distribution in photon energy and crystal momentum from the π and π∗

states for the same setup as in Figure 2. (a) B2 states (p branch). (b) A2 states (s branch). In each
graph the two white vertical ticks show the K̄ point and the k|| point presented in detail in Figure 4.

The constant initial state spectra for the π∗ states at k|| = 1.633 and 1.780 Å−1 are
shown in Figure 4b, and their ratio

R(ω) =
Ip(ω) cos2φ

Is(ω) sin2φ
, (4)

where φ = 78◦ is the experimental polarization angle, is compared to the experiment [18]
in Figure 4a. The minimum of the s branch at h̄ω = 45.5 eV gives rise to a maximum in
R(ω) very close in energy to the measured maximum at 46 eV. The calculated magnitude
of R(ω) is two times lower than in the experiment, which can be considered a satisfactory
agreement in view of the fact that it is related to a deep minimum in the denominator,
i.e., to the cancellation effects in the momentum matrix element (1) for s polarization.
Naturally, in this situation the observables are especially sensitive to the accuracy of the
wave functions, and an exact knowledge of all details is needed to achieve a perfect
agreement. On the theoretical side, the discrepancy may arise from the neglect of the
dielectric response (dipole approximation for the perturbation operator) and possibly from
using the Kohn–Sham eigenfunctions for quasiparticles. Computational uncertainty related
to the accuracy of the wave functions can hardly tangibly contribute to the discrepancy
(judging by the convergence of the observables).

These results thereby establish the R(ω) peak to originate from the rapidly changing
character of the final state wave function, and it is tempting to relate it to gross features of
the scattered wave. In particular, because the initial states are confined to the graphene
layer it is instructive to consider the spatial character of the LEED states as a function of
energy, see Figure 5. The electron scattering by the graphene monolayer was first studied
theoretically in Ref. [5], where the existence of scattering resonances was predicted that
manifested themselves as rapid variations of the transmission probability T(E) accompa-
nied by a sharp enhancement of the density ρ(z) at the graphene layer. Figure 5 shows
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that around the K̄ point the resonances have rather complicated spatial structure, which
strongly changes with k||. Consequently, the probability to find the scattered electron at
the graphene layer—the so-called dwell time τ(E)—varies with energy. The τ(E) curves
for k|| = 1.633 and 1.780 Å−1 are shown in Figure 4d (the probability density ρ(z) was
integrated from z = −2 to 2 a.u.). Both curves show rich structure, but the τ(E) variations
do not correlate with those of the photocurrent, and although the dip in the Is(E) curve
coincides with a minimum in the τ(E) curve, the former drops much deeper than the latter.
Generally, the τ(E) variations are much weaker than the variations of the photocurrent,
which points to the importance of the interference between different G|| contributions to
the photoemission matrix element also for p polarization.

Figure 4e shows the electron transmission spectra T(E), i.e., the ratio of the transmitted
current at −∞ to the incident current from +∞. The T(E) curves show a minimum (at
E = 37 eV for k|| = 1.633 Å−1 and 34 eV for 1.780 Å−1) followed by a maximum (at 42.5 and
39 eV, respectively), which is a signature of the scattering resonance [5]. The photoemission
intensity peaks are located at h̄ω = 37.3 eV for Ip and 38.1 eV for Is, close to the inflection
points of the respective T(E) curves, E = 37 and 39 eV. Although it is not surprizing
that the sharp enhancement of the intensity occurs in the resonance region, it cannot be
directly related to the gross features of the final state, such as the transmission probability
or density distribution.
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Figure 4. (a) Photon energy dependence of the relative intensity R(ω), see Equation (4), of the
emission from the B2 state (Ip) at k|| = 1.780 Å−1 and A2 state (Is) at k|| = 1.633 Å−1 for the
polarization angle φ = 78◦ (4.3% of p and 95.7% of s polarization). Both initial states are located
at about 0.4 eV above the DP. Full circles show the measurements of Ref. [18] (digitized from
Figure 5 in that work). (b) Calculated constant initial state spectra Is(ω) (black) and Ip(ω) (red).
(c) Logarithmized intensities log10 Is(ω) (black) and log10 Ip(ω) (red). (d) Dwell time τ(E): the
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Figure 5. Energy dependence of the density distribution ρ(z) in the LEED states: (a) k|| = 1.780 Å−1

effects the p branch emission, and (b) k|| = 1.633 Å−1 the s branch, see Figure 4b. The horizontal bars
at 37.7 eV (a) and 38.5 eV (b) indicate the final states at the intensity peaks in Figure 4b.

3.2. Bilayer Graphene: Relaxation of Parity Selection Rules

Crystal momentum-photon energy distribution of the photocurrent for both light
polarizations is presented in Figure 6 for the four bands around the K̄ point: concave down
bands πL and πU and concave up bands π∗L and π∗U, see Figure 2b for notation. Similar
to the monolayer graphene, the ascending branches are highlighted by the p-polarized
light, while the descending ones by the s-polarized light. For both polarizations the CIS of
each of the bands manifests a strong peak, which disperses downwards in h̄ω with k|| for
p polarization and upwards for s polarization, compare Figures 3 and 6.

However, because the bilayer is not invariant under the reflection in the Γ̄K̄ line the
parity selection rules are relaxed, and at certain h̄ω the ascending and descending branches
for a given light polarization may have comparable intensities. As seen in Figure 6, this
happens when the intensity of the p- or s-highlighted branch drops off for reasons not
related to the Γ̄K̄ reflection properties. For p polarization this occurs, for example, around
h̄ω = 31 eV, where the descending π∗U branch turns out to have higher intensity than
the ascending branch (Figure 6d). For s polarization one can observe such asymmetry
inversion for the πL branch around 34 eV (Figure 6e).

In spite of the rather strong effect of the interlayer interaction on the π states, the over-
all shape of the CIS curves is rather close for the monolayer and bilayer graphene, see
Figure 7a,b. Let us now draw on these results to comment on the observation in Ref. [13]
that in the monolayer graphene the emission from the B2 band is visible also in the s-
polarized light: this may be due to the scattering of the outgoing electron by the underlying
substrate. It is reasonable to assume that the scattering by the substrate surface is compa-
rable to the interlayer scattering in the bilayer graphene. To estimate its implications for
the selection rules, we construct the matrix elements in Equation (1) between the initial
states of the monolayer graphene (which are parity eigenfunctions) and the Φ∗LEED states of
the bilayer graphene. This hybrid model yields the intensity distributions I(k||, ω) very
similar to those in Figure 3. As an example, the hybrid-model CIS curves for the π∗ states
at k|| = 1.780 and 1.633 Å−1 are compared to the monolayer spectra in Figure 7c,d.

The extent to which the scattering by the second graphene layer relaxes the selection
rules is revealed by Figure 7e–h, which compare the k|| dependence of the emission from
the B2 and A2 branch for both light polarizations by the hybrid model. For p polarization
(Figure 7e–g) the B2 branch is about two orders of magnitude stronger than the A2 branch.
This is not surprising, as the dark corridor was also observed in photoemission from
the bulk graphite [21,22]. The situation is somewhat different for s polarization: again,
for h̄ω = 34 and 35 eV the A2 branch is two orders of magnitude more intense than the
B2 branch around the K̄ point, but below the DP the intensities of the A2 and B2 branches
become closer to each other in moving to lower energies, i.e., away from the K̄ point,
see Figure 7f. As we have seen for the two selected k||, the intensity drop-off above the
resonance is stronger for the A2 branch than for the B2 branch. Figure 7h demonstrates
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that this is the case over a wide k|| interval around the K̄ point and that at h̄ω = 52 eV
the two branches are much closer in intensity than at 35 eV. This qualitatively agrees with
the measurements of Ref. [13], where the overall contrast between the two branches was
considerably stronger for 35 eV than for 52 eV. Furthermore, Figure 7f–h show that the
contrast may be very sensitive to the photon energy: a variation of h̄ω by 1 eV may change
the intensity by a factor of 2. The hybrid model thus shows that the scattering of the
photoelectron emitted from the graphene monolayer by the substrate may be sufficiently
strong to break the symmetry of the photoexcitation. Another reason for the symmetry
breaking is the spin–orbit interaction, as discussed in Ref. [13]. This effect is neglected in
the present calculation.
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Figure 6. Photocurrent distribution in photon energy and crystal momentum from the π and π∗

states of bilayer graphene, see Figure 2b for notation. (a–d) p and (e–h) s polarization. (Horizontal
cross-sections of the maps at h̄ω = 35 and 52 eV are presented in Figure 2b,c,e,f).
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35 eV (dots); (g,h) h̄ω = 51 eV (lines) and 52 eV (dots) for p polarization (e,g) and s polarization (f,h).

4. Summary and Conclusions

The present application of the one-step theory of photoemission to the monolayer and
bilayer graphene demonstrates a strong effect of the in-plane scattering of the outgoing
photoelectron on the photoemission intensity. The continuum spectrum of graphene
contains scattering resonances first discovered in Ref. [5] and interpreted as due to the
coupling of the in-plane and perpendicular motions. At the K̄ point the resonance is
located around 38 eV above the DP, and the present theory predicts the photoemission
from the Dirac cone to be strongly enhanced in the resonance region both for p and for s
light polarization. Above the resonance the intensity drops more strongly for s than for
p polarization, in agreement with the experiment [13]. In the interval up to about 15 eV
above the resonance the scattering states have very complicated and rapidly changing
structure, which is reflected both in the electron transmission and in the photoemission
spectra, although no obvious correlation between the T(E) and I(ω) curves is observed.
(This means in particular that a single-plane-wave approximation for the final state would
be completely inappropriate for graphene). The presence of this fine structure offers the
possibility to relate the theoretically predicted spectral features to the measured ones and to
verify the validity of the approximations involved, in particular, how accurately the density-
functional derived potential simulates the excited states (it is known to underestimate
the quasiparticle energies). The good agreement of the calculated energy dependence
of the Ip/Is ratio (4) with the experiment [18] suggests that the self-energy shift is quite
moderate (around 0.5 to 1 eV), as expected from previous experience [6,30–33], and that
the Kohn–Sham quasiparticles are a good approximation for graphene.

The comparison of the monolayer and bilayer spectra is instructive in order to estimate
the effect of the scattering by the substrate on the symmetry breaking in photoemission
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from the monolayer graphene. The true structure of the interface between the graphene
monolayer and the substrate is very difficult to include in an ab initio calculation because
the mismatch between the lattices of the substrate and graphene as well as the presence of
the reconstructed buffer layer would require a huge supercell. Instead, we resorted to a
hybrid model that combines the initial states of the monolayer graphene (which have B2 or
A2 symmetry) with the final states of the bilayer (which are not symmetry eigenfunctions).
Such a heuristic model is justified in view of the close similarity of the gross features
of the monolayer and bilayer spectra. It shows that the relaxation of the selection rules
is most important in the region of low intensity (above h̄ω = 50 eV for s polarization)
and that the symmetry breaking observed in Ref. [13] can be explained by the scattering
from the substrate. Generally, at low intensities, the emission is very sensitive to this
effect, which should be kept in mind in theoretically modeling this energy range with ideal
free-standing graphene.
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Abstract: In this paper, by introducing a generalized quantum-kinetic model which is coupled
self-consistently with Maxwell and Boltzmann transport equations, we elucidate the significance of
using input from first-principles band-structure computations for an accurate description of ultra-fast
dephasing and scattering dynamics of electrons in graphene. In particular, we start with the tight-
binding model (TBM) for calculating band structures of solid covalent crystals based on localized
Wannier orbital functions, where the employed hopping integrals in TBM have been parameterized
for various covalent bonds. After that, the general TBM formalism has been applied to graphene
to obtain both band structures and wave functions of electrons beyond the regime of effective low-
energy theory. As a specific example, these calculated eigenvalues and eigen vectors have been further
utilized to compute the Bloch-function form factors and intrinsic Coulomb diagonal-dephasing rates
for induced optical coherence of electron-hole pairs in spectral and polarization functions, as well
as the energy-relaxation time from extrinsic impurity scattering of electrons for non-equilibrium
occupation in band transport.

Keywords: graphene; scattering; dephasing; relaxation time; band structure; tight-binding model

1. Introduction

Very recently, a generalized parameter-free quantum-kinetic model [1,2] based on
many-body theory [3,4] has been developed, which is self-consistently coupled with
Maxwell equations [5] for an interacting electromagnetic field and with Boltzmann trans-
port equation [6] for a conduction current, as illustrated in Figure 1. Here, being an
off-diagonal element in a density matrix, the induced quantum coherence for electron-hole
pairs leads to a macroscopic optical polarization field [1] included in the Maxwell equations.
Meanwhile, the modified electric field determined from the Maxwell equations can also
change the microscopic quantum coherence [1] of electron-hole pairs. In this way, a self-
consistent loop is constructed between electrons in the quantum-kinetic model and electric
field in the Maxwell equations. This theory aims at enabling first-principles computations
of ultra-fast dynamics for non-thermal photo-generated electron-hole pairs in undoped
semiconductors [1,2]. At the same time, this a theory is also able to simultaneously describe
electromagnetic, optical and electrical properties of crystal materials and their interplay all
together. More importantly, the numerical output of this first-principles dynamics model
can be utilized as an input for material optical and transport properties to be fed into a
next-stage simulation software facilitated by finite-element methods, such as COMSOL
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Multiphysics [7], for devices with various configurations. Consequently, device character-
istics can be accurately predicted beyond the linear-response regime [3,4] for numerical
bottom-up design and engineering. However, such a quantum-kinetic model itself requires
an input from wave functions and band structures associated with different host materials
in devices.

In Figure 1, we introduce the product of field frequency (ω) with the carrier momentum-
relaxation time (τp). The situations with ωτp ≫ 1 and ωτp ≪ 1 correspond separately
to optical and bias field regimes, while ωτp ≈ 1 uniquely specifies the terahertz regime
with dual optical and bias field characteristics. The bridging connection between the
Maxwell [5] and semiconductor Bloch [8,9] equations is provided by the induced optical-
polarization field P(r, t) as a quantum-statistical average of the electric-dipole moment
with the induced microscopic optical coherence pj(k, t) with j the band index. The bridg-
ing connection between the Maxwell [5] and Boltzmann transport [6] equations, on the
other hand, is fulfilled by the optically-induced magnetization field M(r, t) as a quantum-
statistical average of the induced microscopic magnetic-dipole moment mj(k, t) from spins
or orbital angular momentum. Finally, the bridging connection between the semiconduc-
tor Bloch [8,9] and Boltzmann transport [6] equations is facilitated by the bias-induced
macroscopic center-of-mass drift velocity vd(t) as a non-equilibrium quantum-statistical
average of the microscopic electron group velocities vj(k) from multi-band dispersions for
modifying optical-transition properties of driven carriers within the center-of-mass frame
due to relative scattering motions of carriers.

Figure 1. Illustration of a Device Modeling & Simulation Triangle for strong-coupling model ap-
plied to multi-functional electro-optical devices, where the device electromagnetic, opto-electronic
and electronic characteristics are fully described by coupled Bloch, Maxwell, and Boltzmann equa-
tions all together.

The first-principles computation of electron Bloch wave function and band dispersion
of a targeted material can be performed by employing the well-known Kohn-Sham density-
functional theory [10]. Meanwhile, the tight-binding model [11–15] for solid crystals is
usually considered as an alternative approach for computing electronic band structure
using an approximate set of orbital wave functions based upon superposition of bond-
orbital states for isolated atoms sitting at different lattice sites. In fact, this method is closely
related to the linear combination of atomic orbitals method [16] adopted commonly in
quantum chemistry. Such a real-space tight-binding model can be applied to a lot of solids,
even including a magnetic field, Ref. [17] and it is proved giving rise to good qualitative
results [18]. Moreover, this method can be combined with other models to produce better
results whenever the tight-binding model fails. Here, we would like to emphasize that
although the tight-binding model is only a one-electron model in nature, it indeed provides
a basis for more advanced computations [11], such as the computation of surface states,
application to various kinds of many-body problems, and quasi-particle calculation [19].
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Historically, the family of carbon-based materials can be characterized into two distinct
crystal forms, i.e., the isotropic diamond and anisotropic graphite. Recently, their allotropes,
such as fullerenes and carbon nanotubes, entered into play and expanded to graphene,
which is a unique material consisting of a two-dimensional lattice of carbon atoms with a
honeycomb symmetry. Graphene stands for an physically interesting system [20,21], and
becomes very promising for future device applications. On the atomic level, e.g., density-
functional theory, electron certainly follows the Schrodinger equation. However, by using
an approximate effective-mass Hamiltonian [22,23] for low-energy electrons near the K or
K′ valley, the quasi-particles are found to satisfy the relativistic Dirac equation for massless
fermions. Today, the extensive investigations on various graphene systems have turned
into a broad research field for qualitatively new two-dimensional systems [24]. Up to now,
the basic properties of novel 2D allotropes of carbon, including graphene [22,23], graphene
bilayer [25–27], multi-layer graphene [28,29], graphene on a silicon carbide substrate [30],
are well known and the basis of graphene physics becomes well established.

In recent years, by using the low-energy Dirac Hamiltonian [4], we have exten-
sively explored varieties of dynamical properties of electrons in graphene and other
two-dimensional materials, including Landau quantization [18,31–35], many-body optical
effects [36–41], band and tunneling transports [42–50], etc. In this paper, we particularly
focus on the application of computed electronic states and band structures from a tight-
binding model to the calculations of Coulomb and impurity scatterings of electrons in
graphene on the basis of a many-body theory [3,4], where the former and latter determine
the lineshape [1] of an absorption peak and the transport mobility [44], respectively.

The rest of paper is organized as follows. In Section 2, we present a general description
of tight-binding model for novel two-dimensional materials. Section 3 is devoted to discuss
the Slater-Koster approximation for bonding parameters and bonding integrals. We acquire
the parameter values in Section 4 and obtain graphene wave functions and band structures.
We study the Coulomb diagonal-dephasing rate of electron-hole pairs in undoped graphene
in Section 5, as well as the impurity scattering rate of conduction electrons in Section 6,
respectively. Finally, a brief summary is presented in Section 7 along with some remarks.

2. General Description of Tight-Binding Model

For completeness, we start with tight-binding model [14] for computing complete
band structures of two-dimensional materials. The advantage of tight-binding model is
easily incorporating a magnetic field through the so-called Peierls substitution in the phase
of a hopping integral [51]. In quantum mechanics, the single-electron static Schrödinger
equation is written as [52]

ĤΦk(r) = Ek Φk(r) , (1)

where Φk(r) is the Bloch wave function, Ek the eigen-energy, and k is the wave vector of
electrons within the first Brillouin zone of two-dimensional materials. The Hamiltonian
operator Ĥ in Equation (1) takes a general form

Ĥ = Ĥ0 + V(r) , (2)

in which the kinetic-energy operator Ĥ0 is

Ĥ0 = − h̄2

2me
∇2

r (3)

with free-electron mass me, while the potential energy V(r) for an electron within the lattice
of two-dimensional materials is given by [11]

V(r) = Vion(r) + ∆VL(r) (4)

with Vion(r) and ∆VL(r) specifying the potentials of a single ion and that for the rest of
ions, respectively. The Bloch wave function Φk(r) of electrons in Equation (1) can be

153



Nanomaterials 2021, 11, 1194

decomposed into a linear combination of a set of orbital wave functions
{

φβ,k(r)
}

within
the first Brillouin zone, leading to [11]

Φk(r) = ∑
β

Cβ φβ,k(r) , (5)

where the index β labels all the atomic orbitals of the lattice of two-dimensional materials.
The expansion coefficient Cβ introduced in Equation (5) can be decided from

Cβ =
∫

d3r φ∗β,k(r)Φk(r) , (6)

where the orthonormal property for the set of orbital wave functions
{

φβ,k(r)
}

has
been adopted.

Applying the method of linear combination of atomic orbitals (LCAO) of all ions on the
lattice [16], we further express each orbital wave function φβ,k(r) in Equation (5) by a linear
combination of bond-orbital states

{
ψβ(r− Rj)

}
within a unit cell in real space, namely

φβ,k(r) =
1√
N

N

∑
j=1

exp(ik · Rj)ψβ(r− Rj) , (7)

where j is the index for all bonded lattice ions, Rj the lattice-ion position vector, and N the
total number of atoms within the unit cell. Here,

ψβ(r− Rj) =
1√
N

∑
k

exp(−ik · Rj) φβ,k(r) (8)

is termed as the localized Wannier function for the β orbital of a bonded lattice ion at the
site Rj, which satisfies the single-ion Schrödinger equation [16]

[
Ĥ0 + Vion(r)

]
ψβ(r− Rj) = ε j,β ψβ(r− Rj) (9)

with ε j,β being the βth energy levels of electrons within an ion at the lattice site Rj.
Combining results in Equations (5) and (7), we acquire the following full LCAO

expansion of a Bloch wave function [11]

Φk(r) =
1√
N

N

∑
j=1

∑
β

Cβ; j(k)ψβ(r− Rj) (10)

with Cβ; j(k) = Cβ exp(ik · Rj). At the same time, using Equation (5), we find from
Equation (1) that

∑
β

Cβ

∫
d2r φ∗α,k(r) Ĥ φβ,k(r) = E(k) ∑

β

Cβ

∫
d2r φ∗α,k(r) φβ,k(r) , (11)

or equivalently, the following eigenvalue equation

∑
β

Hα,β(k)Cβ = E(k) ∑
β

δα,β Cβ = E(k)Cα . (12)

As a result, the eigenvalue En(k) can be determined from the secular determinant of
Equation (12) for any given k, yielding

Det
{
Hα,β(k)− En(k) δα,β

}
= 0 , (13)

and the orthonormal-eigenvectors
{

Cn,β
}

are also obtained, corresponding to the eigen-
value En(k) at given k, where the index n labels different quantized energy bands of
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two-dimensional materials. Explicitly, using Equation (7), we obtain the Hamiltonian
matrix elements in Equation (12) as [11]

Hαβ(k) =
1
N

N

∑
i,j=1

exp
(
ik · Rij

)
Hiα, jβ , (14)

in which Rij = Rj − Ri, and

Hiα, jβ =
∫

d2r ψ∗α(r− Ri)
[
Ĥ0 + Vion(r)

]
ψβ(r− Rj) +

∫
d2r ψ∗α(r− Ri)∆VL(r)ψβ(r− Rj) . (15)

In fact, we know from Equation (9) that
∫

d2r ψ∗α(r− Ri)
[
Ĥ0 + Vion(r)

]
ψβ(r− Rj) = ε j,β δα,β δi,j , (16)

∫
d2r ψ∗α(r− Ri)∆VL(r)ψβ(r− Rj) ≡





CΣ δα,β if i = j ,

tαβ(Rij) if i 6= j ,
(17)

where (ε j,β + CΣ) represents the site energy, and tαβ(Rij) is usually called the two-center
(or hopping) integral [14].

As a final step, with the help from Equation (10), we arrive at the full expression for
Hamiltonian matrix elements, given by

∫
d2r Φ∗n′ ,k′(r) ĤΦn,k(r) =

1
N

N

∑
j,j′=1

∑
α,β

C∗n′ ,α Cn,β exp(ik · Rj − ik′ · Rj′)Hj′α, jβ

=
(ε j,β + CΣ)

N

N

∑
j=1

∑
β

C∗n′ ,β Cn,β exp[i(k− k′) · Rj]

+
1
N

N

∑
j,j′=1

′ ∑
α,β

C∗n′ ,α Cn,β exp(ik · Rj − ik′ · Rj′) tαβ(Rj′ j) , (18)

where the primed summation in the second term of the right-hand side of the last equation
excludes the contribution from j = j′, and Cn,β can be obtained from the calculated
eigenvector from Equation (12). The matrix elements for other physical operators can be
computed in a similar way.

3. Slater-Koster Approximation for Hopping Integrals

To seek for the feasibility of fast numerical computation, we introduce a parameterized
process for the tight-binding model described in Section 2. For the Coulomb interaction
between electron and ion within an atom, the potential field presents a spherical symmetry.
Therefore, the energy levels labeled by the radial quantum number n = 1, 2, · · · will
degenerate with the angular-momentum quantum number ℓ = 0, 1, · · · , n− 1, as well as
the magnetic quantum number m = −ℓ, · · · , 0, · · · , ℓ [52]. Consequently, there exists a
total orbital degeneracy n2 (excluding the spin-degeneracy). Customarily, we specify these
orbitals by ℓ = 0, 1, 2, 3, · · · for {s, p, d, f , · · · } orbitals.

In order to describe the chemical bonds between a pair of atoms inside a lattice, we
often adopt the concept of overlapping electronic orbitals {s, p, d, f , · · · }. To further
specify the spatial direction of the chemical bonding between two atoms at the lattice sites
Ri and Rj, we have to rely on three directional cosines ℓ, m, n, as defined in Figure 2.

Considering s and p orbitals as an example, we display their possible bonding poten-
tials Vℓ,ℓ′ ;σ(π) in Figure 3 for s, p orbitals and four different configurations, including σ and
π bonds. Meanwhile, we also list six different π, σ, δ bonding configurations in Figure 4
for s, p, d orbitals.

To speed up numerical computations, the bonding potentials Vℓ,ℓ′ ;σ(π) for ℓ, ℓ′ = s, p, d

in Figures 3 and 4 are usually parameterized as: [53] Vℓ,ℓ′ ;ξ = (h̄2/med2) ηℓℓ′ ;ξ ,
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Vℓ,d;ξ = (h̄2r3/2
d /med7/2) ηℓ,d;ξ and Vd,d;ξ = (h̄2r3

d/med5) ηd,d;ξ , where d and rd represent
the bonding length and atomic radius, and ξ = σ, π, δ are for various bond configurations.
Here, the dimensionless bonding parameters ηℓ,ℓ′ ;ξ for different bonding types are listed
in Table 1.

z

y

x

a
b

g

Rj

Ri

l = cos a
m = cos b
n = cos g

Figure 2. Illustration for three directional cosines ℓ, m, n in a three-dimensional position space for
two atoms sitting at r = Ri and r = Rj, respectively.

Figure 3. Illustrations for π and σ bonding of atomic s and p orbitals. Details on description of these
bonding orbitals in this figure can be found in Ref. [11].

Figure 4. Illustrations for π, σ and δ bonding of atomic s, p, and d orbitals. Details on description of
these bonding orbitals in this figure can be found in Ref. [11].
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Table 1. Inter-atomic bonding parameters.

Bonding Parameter Value [11]

ηs,s;σ −1.40
ηs,d;σ −3.16
ηd,d;σ −16.2
ηs,p;σ 1.84
ηp,d;σ −2.95
ηd,d;π 8.75
ηp,p;σ 3.24
ηp,d;π 1.36
ηd,d;δ 0
ηp,p;π −0.81

By using these parameterized bonding potentials Vℓ,ℓ′ ;ξ , Vℓ,d;ξ and Vd,d;ξ , we are able
to compute further the hopping integrals tαβ(Rij) based on the Slater-Koster approxima-
tion [14], and some commonly-used results are shown in Table 2.

Table 2. Expressions for Bonding Integrals.

Bonding Integral Expression [14]

ts,s Vs,s;σ
ts,x ℓVs,p;σ
tx,x ℓ2 Vp,p;σ + (1− ℓ2)Vp,p;π
tx,y ℓm (Vp,p;σ −Vp,p;π)
tx,z ℓn (Vp,p;σ −Vp,p;π)
ts,xy

√
3ℓm Vs,d;σ

ts,x2−y2 (
√

3/2) (ℓ2 −m2)Vs,d;σ
t3z2−r2 [(n2 − (ℓ2 + m2)/2]Vs,d;σ

...
...

4. Tight-Binding Model for Graphene Band Structure

To seek for an application, we use the general theory, as developed in Sections 2 and 3,
for novel two-dimensional graphene material in order to obtain its electronic wave func-
tions and band structures for the full first Brillouin zone [54]. In this way, we are able to
study scattering dynamics with respect to high-energy electrons in graphene resulted from
Coulomb interactions between either pair of electrons or between electrons and ionized
impurity atoms.

Monolayer graphene displays a hexagonal (or honeycomb) lattice structure of carbon
atoms, as illustrated in Figure 5, where each carbon atom is connected by σ covalent bonds
with its three nearest neighbors. The electronic orbitals of a carbon atom are characterized
as 1s2 2s2 2p2. However, the unique energy difference between the 2s and 2p orbitals favors
the appearance of a mixed state of these two orbitals. The first-principles density-functional
calculations reveal that it becomes energetically favorable to move an electron from the
2s orbital to the 2p orbital in this mixed state. Since the 2p orbitals include 2px, 2py, 2pz,
as a result, each of these three 2p orbitals will accommodate one electron, leading to
the x–y orbitals within the plane of the lattice, as well as the z orbital out of the lattice
plane. Here, two electrons in the mixed x–y orbitals form the higher-energy σ bonds,
while the remaining electron in the z orbital leads to the lower-energy π bonds, i.e., a
side-on overlap of the 2p-orbital wave functions. Consequently, these π-bond electrons
give rise to the low-energy bands of graphene and will be studied exclusively based on a
tight-binding model.
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a1
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d1

d2d3

kx

ky
b1

b2

G

K

K’

M

A B

Figure 5. (Left) A diagram illustrating the hexagonal-lattice structure of a monolayer graphene with
two sublattices A (blue) and B (red) with the Bravis lattice vectors a1,2 and the nearest-neighbor
lattice vectors δ1, 2, 3. (Right) the first Brillouin zone of graphene with labeled high-symmetry points
Γ, M, K, K′ in the k–space with reciprocal-lattice vectors b1,2. In the left panel, a unit cell is shown in
the shaded region in yellow.

From Equation (7), we know the wave function for π-bond (pz-orbital) electrons in
graphene can be expressed as

φA,B
pz ,k(r) =

1√
N

N

∑
j=1

exp(ik · Rj)ψA,B
pz

(r− Rj) , (19)

where k ≡ (kx, ky), Rj ≡ (Rx
j , R

y
j ) = mja1 + nja2 represents the Bravis lattice-site vectors

as indicated in Figure 5, and indexes A, B refer to two sublattices of graphene. By including
both sublattices A and B, we have

φpz ,k(r) = ak φA
pz ,k(r) + bk φB

pz ,k(r) , (20)

where ak and bk are two elements of the eigenvector corresponding to the eigenvalue
equation with respect to two sublattices. Specifically, from Equations (11) and (20), we
arrive at the matrix-form Schrödinger equation



HAA(k) HAB(k)

HBA(k) HBB(k)






ak

bk


 = En(k)



SAA(k) SAB(k)

SBA(k) SBB(k)






ak

bk


 , (21)

where Sℓℓ′(k) = 〈 φℓ
pz ,k | φℓ′

pz ,k 〉, Hℓℓ′(k) = 〈 φℓ
pz ,k | Ĥ | φℓ′

pz ,k 〉, ℓ, ℓ′ = A or B, and En(k)

represents the eigen-energies of π-bond electrons with n = 1, 2 labeling two graphene low-
energy bands determined by the secular determinant:Det{Hℓℓ′(k)− En(k)Sℓℓ′(k) }2×2 = 0.

As in Equation (7), we can rewrite the orbital wave function φpz ,k(r) in Equation (20)
approximately only by its near-neighbor decomposition, yielding

φpz ,k(r) =
1√
Nc

∑
ℓ∈A,B

exp(ik · Rℓ)
Nc

∑
j=1

ajk ψpz(r− Rℓ + ∆j) , (22)

and then, the eigenvalue equation turns into Det
{
Hjj′(k)− Es(k) Sjj′(k)

}
Nc×Nc

= 0 with

eigen-vectors {ajk}Nc×1, where Nc represents the number of near-neighbor atoms within a
unit cell, ∆j stands for the lattice vectors of the near-neighbor atoms relative to the sublattice
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site Rℓ, and ajk = ak exp(−ik · ∆j). Moreover, we findHjj′(k) = ε2 Sjj′(k) + tjj′(k), where
ε2 stands for the second energy level of electrons within a carbon atom,

Sjj′(k) = ∑
ℓ∈A,B

exp(ik · Rℓ)
∫

d2r ψ∗pz
(r− Rℓ + ∆j)ψpz(r− Rℓ + ∆j′) (23)

is the overlap integral, while

tjj′(k) = ∑
ℓ∈A,B

exp(ik · Rℓ)
∫

d2r ψ∗pz
(r− Rℓ + ∆j)∆VL(r)ψpz(r− Rℓ + ∆j′) (24)

is the hopping integral.
For simplicity, we would omit the orbital index pz from now on. Without loss of

generality, we can assume that the vectors that connect sublattice A site to the equivalent
site on the B sublattice is δ3, as seen in Figure 5. As a result, the hopping and overlap
amplitudes between the nearest neighbor (nn) and the next-nearest neighbor (nnn) can be
computed explicitly from Equations (23) and (24), leading to

tAB(k) = t∗BA(k) = γ∗(k) tnn ,

tAA(k)− CpSAA = tBB(k)− CpSBB = 2 tnnn

3

∑
i=1

cos(k · ai) = (|γ(k)|2 − 3) tnnn ,

SAB(k) = S∗BA(k) = γ∗(k) snn ,

SAA(k) = SBB(k) = 1 + (|γ(k)|2 − 3) snnn ≈ 1 , (25)

where a3 ≡ a1 − a2, γ(k) = 1 + exp(ik · a1) + exp(ik · a2), and the hopping and overlap
integrals are calculated as

Cp =
∫

d2r ψ∗A(r)∆VL(r)ψA(r) =
∫

d2r ψ∗B(r)∆VL(r)ψB(r) ,

tnn =
∫

d2r ψ∗A(r)∆VL(r)ψB(r + δ3) ,

tnnn =
∫

d2r ψ∗A(r)∆VL(r)ψA(r + a1) =
∫

d2r ψ∗B(r)∆VL(r)ψB(r + a1) ,

snn =
∫

d2r ψ∗A(r)ψB(r + δ3) ,

snnn =
∫

d2r ψ∗A(r)ψA(r + a1) =
∫

d2r ψ∗B(r)ψB(r + a1) . (26)

Particularly, the results for these tight-binding model parameters in Equation (26) for
band structures are presented in Table 3, which have been computed from listed bonding
parameters in Table 1 and bonding integrals in Table 2.

Finally, from the eigenvalue equation Det{ tℓℓ′ (k) − E(k) Sℓℓ′ (k) }2×2 = 0 in
Equation (21) for ℓ, ℓ′ = A, B, we obtain an explicit expression

E2(k)Det{←→S } − E(k)[SAAtBB + SBBtAA − SABtBA − SBAtAB] +Det{t} = 0 , (27)

where, by setting snnn = 0, we have three coefficients

Det{←→S } = 1− s2
nn |γ(k)|2 ,

Det{←→t } = (|γ(k)|2 − 3|)2 t2
nnn − t2

nn |γ(k)|2 ,

SAAtBB + SBBtAA − SABtBA − SBAtAB = 2
[
(|γ(k)|2 − 3) tnnn − tnnsnn |γ(k)|2

]
. (28)
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This leads to the explicit solution of Equation (27), namely [55]

Eλ(k) =
(
ε2 + Cp

)
+

(|γ(k)|2 − 3|) tnnn − tnnsnn |γ(k)|2 + λ
√
D(k)

1− s2
nn|γ(k)|2

, (29)

where λ = ±1 correspond to valence (−1) and conduction (+1) bands, respectively, and

D(k) =
[
(|γ(k)|2 − 3) tnnn − tnnsnn |γ(k)|2

]2
− (1− s2

nn |γ(k)|2)

×
[
(|γ(k)|2 − 3|)2 t2

nnn − t2
nn |γ(k)|2

]
= |γ(k)|2

[
(|γ(k)|2 − 3) tnnn snn + tnn

]2
. (30)

Table 3. Graphene structure and tight-binding model parameters.

Parameter Value [55]

a1 (a/2) (3,
√

3)
a2 (a/2) (3,−

√
3)

a3 (a/2) (0, 2
√

3)
δ1 (a/2) (1,

√
3)

δ2 (a/2) (1,−
√

3)
δ3 −a (1, 0)
K (2π/3

√
3a) (
√

3, 1)
K′ (2π/3

√
3a) (
√

3,−1)
snn 0.106
snnn 0.001
tnn −2.78 eV
tnnn −0.12 eV

ε2 + Cp −0.36 eV

By using the result in Equations (29) and (30) can be rewritten as

Eλ(k) =
(
ε2 + Cp

)
+

(|γ(k)|2 − 3) tnnn[1 + λ|γ(k)| snn]− tnnsnn|γ(k)|2 + λ |γ(k)| tnn

1− s2
nn|γ(k)|2

≈
(
ε2 + Cp

)
+

(|γ(k)|2 − 3) tnnn − tnnsnn|γ(k)|2 + λ tnn |γ(k)|
1− s2

nn|γ(k)|2
. (31)

By setting Cp + ε2 = 0 as the reference point for energy, the result in Equation (31) is
plotted in Figure 6 by employing the graphene structural parameters listed in Table 3.

𝑘𝑘𝑥𝑥 (1/𝐴𝐴)o

(a) (b)

Figure 6. Calculated dispersion of energy bands for graphene. Panel (a) displays 2D plot for energy
dispersion of graphene electrons. Panel (b) shows 3D plot for upper and lower bands touched at six
Dirac points (three K and three K′ valleys), at which the energy is set to be zero.
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Furthermore, by using the result in Equation (31), two elements of the eigenvector, aλ
k

and bλ
k , are found to be

aλ
k =

{
γ∗(k) [Eλ(k) snn − tnn]

(|γ(k)|2 − 3) tnnn − Eλ(k)

}
bλ

k ,

bλ
k =

|(|γ(k)|2 − 3) tnnn − Eλ(k)|√
|γ∗(k) [tnn − Eλ(k) snn]|2 + |(|γ(k)|2 − 3) tnnn − Eλ(k)|2

. (32)

As known experimentally, both the nearest-neighbor (nn) overlap and the next-nearest-
neighbor (nnn) hopping integrals are much smaller than the nearest-neighbor (nn) hopping
integral. By neglecting some constants, the dispersion in Equation (31) can be further
simplified as

Eλ(k) ≈ 2 t′nnn

3

∑
i=1

cos(k · ai) + λ tnn

[
3 + 2

3

∑
i=1

cos(k · ai)

]1/2

, (33)

where t′nnn = tnnn − snntnn is the corrected hopping amplitude.

5. Coulomb Diagonal-Dephasing Rate for Optical Coherence in Undoped Graphene

The quantum coherence of electrons is associated with the off-diagonal elements of
their density matrix. The presence of an external field can induce coherence between two
quantum states of electrons if the field frequency matches the energy separation between
the two relevant electronic states. Dephasing refers to a physics mechanism which recovers
classical behavior from a quantum system, and it quantifies the time required for electrons
to lose their field-induced quantum coherence. Diagonal-dephasing rate connects to the
ways in which coherence caused by perturbation decays over time, and then, the system
goes back to the state before perturbation [1]. This is an important effect in molecular and
atomic spectroscopy, and also in condense-matter physics of mesoscopic devices.

In order to demonstrate the significance of band-structure computation with a tight-
binding model on dynamical properties of electrons in graphene, we first study Coulomb
diagonal-dephasing (CDD) rate for induced optical polarization of thermally-excited elec-
trons and holes around the Dirac point in an intrinsic (or undoped) graphene sample. For
undoped graphene, conduction electrons can be introduced by a photo-excitation pro-
cess [8], giving rise to equal number of electrons and holes ne = nh ≡ n0, where n0 repre-
sents the areal density of photo-excited carriers. For non-equilibrium photo-carriers under
a transverse optical field, its induced optical coherence in steady states decays [1] with the
sum of CDD rates ∆e(k) and ∆h(k) for electrons (e) and holes (h), respectively. These two
rates determine the inhomogeneous line-shape of a resonant interband-absorption peak at
h̄ω = εe

k + εh
k for vertical transitions of electrons with their kinetic energies εe,h

k in valence
and conduction bands.

As illustrated by Feynman diagrams [3] in Figure 7, the CDD rate ∆e(k) of electrons is
calculated as [1,44]

∆e(k) =
8π

h̄A2 ∑
k1,q 6=0

∣∣∣Vee
k,k1; k1−q,k+q

∣∣∣
2[
L0(ε

e
k1−q + εe

k+q − εe
k1
− εe

k, Γe)

×
{

f e
k1−q f e

k+q (1− f e
k1
) + (1− f e

k1−q) (1− f e
k+q) f e

k1

}]

+
8π

h̄A2 ∑
k1,q 6=0

∣∣∣Vhe
k,k1; k1−q,k−q

∣∣∣
2[
L0(ε

e
k1−q + εh

−(k−q) − εe
k1
− εh
−k, Γeh)

×
{

f e
k1−q f h

−(k−q) (1− f e
k1
) + (1− f e

k1−q) (1− f h
−(k−q)) f e

k1

}]
, (34)

where both spin and valley degeneracies are included, A represents the surface area
of graphene sample, the first and second terms correspond to the left and right panels
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of Figure 7, and both scattering-in and scattering-out contributions [44] are taken into
consideration in these two terms. Moreover, εe,h

k in Equation (34) stands for the kinetic
energy of electrons (e) or holes (h), and f e,h

k = {1 + exp[(εe,h
k − µe,h)/kBT]}−1 is the Fermi

function for thermal-equilibrium photo-carriers with their chemical potentials µe,h at
temperature T. Here, µe,h are separately determined by following two equations for given
T, i.e.,

ne,h =
4
A ∑

k

1

1 + exp[(εe,h
k − µe,h)/kBT]

, (35)

where both spin and valley degeneracies are included and µe = µh in our case. Furthermore,
in Equation (34), L0(a, b) = (b/π)/(a2 + b2) is the Lorentzian line-shape function, Γe,h are
inverse lifetime of unperturbed electrons or holes, and Γeh = (Γe + Γh)/2.D

Vee(q)

k+q (e)

k (e)

k1-q (e)

k1 (e)

Vhe(q)

-k (h)

-(k-q) (h)

k1-q (e)

k1 (e)

Figure 7. Feynman diagrams for CDD rate ∆e(k) of electrons in Equation (34). (left) Coulomb
coupling between pair of electrons in one inelastic-scattering event; (right) Coulomb coupling
between an electron and a hole in another inelastic-scattering event.

In addition, we have introduced in Equation (34), as well as in Equation (40) below,
the Coulomb-interaction matrix elements, given by [56]

Vee
k,k1; k1−q,k+q = uc(q)F (c)

k, k+q(q)F
(c)
k1, k1−q(−q) ,

Vhe
k,k1; k1−q,k−q = uc(q)F (v)

k, k−q(q)F
(c)
k1, k1−q(−q) ,

Vhh
k,k1; k1−q,k+q = uc(q)F (v)

k, k+q(q)F
(v)
k1, k1−q(−q) ,

Veh
k,k1; k1−q,k−q = uc(q)F (c)

k, k−q(q)F
(v)
k1, k1−q(−q) , (36)

where uc(q) = e2/[2ǫ0ǫr (q + q0)]) in Equation (36) is the two-dimensional Fourier trans-
formed Coulomb potential ∼ 1/r including static screening, ǫ0 represents the vacuum
permittivity, and ǫr = 2.4 is the average dielectric constant of the host material. Addi-
tionally, q0 stands for the inverse Thomas-Fermi screening length, and can be given by a
semi-classical model as [57]

q0 =

(
e2

8ǫ0ǫrkBT

)
4
A ∑

k

[
cosh−2

(
εe

k − µe

2kBT

)
+ cosh−2

(
εh

k − µh

2kBT

)]
, (37)

where both spin and valley degeneracies have been included.
Furthermore, the introduced F (s)

k, k′(q) in Equation (36) with s = c, v represents the
Bloch-function form factor, calculated as [57]
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F (s)
k, k′(q) =

∫
d2r [Φ

(s)
k (r)]∗ exp(iq · r)Φ

(s)
k′ (r) =

1
Nc

{
[a

(s)
k ]† ⊗ a

(s)
k′

}

×
Nc

∑
j,j′=1

exp[−i(q− k) · ∆j − ik′ · ∆j′ ] ∑
ℓ,ℓ′∈A,B

exp[i(k′ − k + q) · Rℓ]Ws(q, Rℓ′ℓ + ∆jj′) , (38)

where the Bloch functions Φ
c,v
k (r) in Equations (5) and (22) have been employed. In

Equation (38), Nc represents the number of near-neighbor atoms within a unit cell, ∆j

stands for the lattice vectors of the near-neighbor atoms relative to the sublattice site Rℓ,
and a

(s)
k are two column eigenvectors in Equation (32) for s = c, v. The Wannier-function

structure factorWs(q, Rℓ′ℓ + ∆jj′) in Equation (38) is defined as

Ws(q, Rℓ′ℓ + ∆jj′) =
∫

d2r [ψ
(s)
pz (r)]

∗ exp(iq · r)ψ
(s)
pz (r− Rℓ′ℓ − ∆jj′) , (39)

where Rℓ′ℓ = Rℓ′ − Rℓ and ∆jj′ = ∆j − ∆j′ . In fact, Equations (34) and (36)–(39) are the key
results in this paper for connecting the calculated tight-binding wave functions and band
structures to a quantum-statistical theory for graphene optical properties.

Similarly, as illustrated by Feynman diagrams [3] in Figure 8, the CDD rate ∆h(k) of
holes takes the form [1,44]

∆h(k) =
8π

h̄A2 ∑
k1,q 6=0

∣∣∣Vhh
k,k1; k1−q,k+q

∣∣∣
2[
L0(ε

h
−(k1−q) + εh

−(k+q) − εh
−k1
− εh
−k, Γh)

×
{

f h
−(k1−q) f h

−(k+q)(1− f h
−k1

) + (1− f h
−(k1−q)) (1− f h

−(k+q)) f h
−k1

}]

+
8π

h̄A2 ∑
k1,q 6=0

∣∣∣Veh
k,k1; k1−q,k−q

∣∣∣
2[
L0(ε

e
k−q + εh

−(k1−q) − εe
k − εh

−k1
, Γeh)

×
{

f h
−(k1−q) f e

k−q (1− f h
−k1

) + (1− f h
−(k1−q)) (1− f e

k−q) f h
−k1

}]
. (40)D

Vhh(q)

-k1 (h)

-(k1-q) (h)

-k (h)

-(k+q) (h)

Veh(q)

k-q (e)

k (e)

-k1 (h)

-(k1-q) (h)

Figure 8. Feynman diagrams for CDD rate ∆h(k) of holes in Equation (40). (left) Coulomb coupling
between pair of holes in one inelastic-scattering event; (right) Coulomb coupling between a hole and
an electron in another inelastic-scattering event.

Computationally, the π-electron band structure of graphite can be obtained by employ-
ing the nearest-neighbor tight-binding model [58,59]. For graphene, the reciprocal lattice in
the wave-vector space also acquires the hexagonal symmetry, same as that in real lattice.
Moreover, the low energy bands are found linear and isotropic near the corners of the first
Brillouin zone or K point. Such K-point linear bands become essential for the low-energy
(or small wave-number) excitation of electrons. The calculated energy dispersions by
diagonalizing the 2× 2 Hamiltonian matrix are given by [58,59]

εe,h
k = ±3

2
γ0bk ≡ h̄vFk , (41)

163



Nanomaterials 2021, 11, 1194

where γ0 = 2.4 eV is the hopping integral between the nearest-neighbor atoms, b = 1.42 Å
is the C–C bond length, and signs ± represents conduction (+) and hole (−) bands,
respectively. Meanwhile, the corresponding spinor-type Bloch wave functions are found
to be

φ
(c,v)
pz ,k (r) =

1√
2

[
U

(1)
k (r)∓ e

iθk U
(2)
k (r)

]
, (42)

where as shown in Equation (20), U
(1)
k (r) and U

(2)
k (r) are two sublattice Bloch functions

built from the superposition of the periodic 2pz orbitals, Ref. [59] and θk = tan−1(ky/kx)
is the angle between the wave vector k and x-axis. As in Equation (22), we can further
express the 2pz atomic orbital by means of a generalized hydrogen-like wave function,
given by [60]

ψpz(r) = C0 r cos θ e−Z∗r/2a0 , (43)

where C0 is a normalization factor, a0 the Bohr radius, and an effective nucleus charge
number Z∗ is 3.18.

In particular, the structure factor introduced in Equation (38) can be calculated explic-
itly as

F (s)
k′ , k(q) = δk′ , k+q

∫
d2r [Φ

(s)
k+q(r)]

∗ exp(iq · r)Φ
(s)
k (r)

≈ δk′ , k+q 〈φ(s)
pz , k+q(r) | exp(iq · r) | φ(s)

pz , k(r)〉 , (44)

where s = c, v for Bloch wave function. Moreover, the Bloch-function structure factor in
Equation (44) takes the form [60]

〈φ(s)
pz , k+q(r) | exp(iq · r) | φ(s)

pz , k(r)〉

=
1

NA + NB
∑

R=RA ,RB

〈ψpz(r− R) | exp[iq · (r− R)] |ψpz(r− R)〉 1
2

[
1± γ(k + q) γ∗(k)
|γ(k + q) γ(k)|

]
, (45)

where tight-binding function ψpz(r) is given by Equation (43), and the signs (±) correspond
to conduction (+) and valence (−) bands, respectively [59].

For intrinsic graphene, we have chemical potential µe = µh = 0 [61]. However, there
is still a finite intrinsic areal density ni ≈ (π/6) (kBT/h̄vF)

2 due to thermal excitation of
electrons and holes at finite temperatures T. In fact, we find f e

k = f h
k = 1/2 at the K valley

or k = 0. Here, the calculated CDD rates from Equations (34) and (40), respectively, for
electrons ∆e(k) and holes ∆h(k) are presented in Figure 9a at T = 77 K and in Figure 9b at
T = 300 K. Since f e,h

k ∼ exp(−εe,h
k /kBT) as εe,h

k ≫ kBT, the thermal occupations of electron
and hole states will be limited mostly to wave numbers close to the K valley due to their
lower kinetic energies εe,h

k around k = 0, as seen in Figure 6.
The Coulomb diagonal-dephasing rates ∆e,h(k) presented in Figure 9a,b quantifies

an amplitude-decay process of induced electron-hole optical coherence with wave vector
k by an optical field towards the state before external perturbation. Furthermore, the
Coulomb off-diagonal-dephasing rates Λe,h(k, q) reveals deformations of induced optical-
polarization waves with different wave vectors k + q [8].

Considering the fact that major occupations of electrons and holes are accumulated
around k = 0, we have f e,h

k ≈ 0 only if k is large. As a result, we find from Equation (34)
that f e

k1−q f e
k+q (1− f e

k1
) ≪ 1 at k = 0 since we require 1− f e

k1
≈ 1 for large k1, f e

k+q ≈ 1
for small q, and f e

k1−q ≈ 1 for both large q and k1, which, however, cannot be satisfied
simultaneously. Similar conclusion can also be drawn for the second term in Equation (34),
where we find f e

k1−q f h
−(k−q) (1− f e

k1
)≪ 1. Combining these two facts together, we expect

that a dip will occur at k = 0 for the Coulomb diagonal-dephasing rate ∆e(k), as seen
in Figure 9a. Moreover, the observed anisotropic energy dispersion in Figure 6a along the
K-M and K-Γ directions directly leads to a staircase-like feature in Figure 9a for both ∆e(k)
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and ∆h(k). As temperature T is raised from 77 K in Figure 9a to 300 K in Figure 9b, the
thermally-excited areal densities of electrons and holes are increased with T2; therefore,
the Coulomb interaction (∝ T4) between electrons and holes, as well as the Coulomb
interaction among electrons or holes, will be enhanced greatly. Consequently, we find that
both ∆e(k) and ∆h(k) are enhanced by a factor of 2.4, in addition to amplified depth of
the dip at k = 0. Furthermore, different structural factors in Equation (39), corresponding
to ± signs for conduction and valence bands, give rise to a slightly larger value of ∆h(k)
in comparison with that of ∆e(k), as well as different dispersion features around the K
valley for ∆e(k) and ∆h(k). These two computed Coulomb diagonal-dephasing rates can
be physically applied to the spectral [32] and polarization [1,36] functions in order to study
transport and optical properties of graphene material.

Figure 9. Calculated Coulomb diagonal-dephasing rates ∆e,h(k) for electrons (e, blue solid curves) from Equation (34) and
∆h(k) for holes (h, red dashed curves) from Equation (40) as functions of wave number k (with respect to k = 0 at the K

valley) at temperatures T = 77 K in (a) and T = 300 K in (b), where ǫr = 2.4 and Γe = Γh = 0.01 meV are assumed.

6. Carrier Energy-Relaxation Rate in Doped Graphene

In condensed-matter physics, the microscopic energy-relaxation time usually refers
to a measure of the time it requires for one electron in the system to be significantly
affected by the presence of other electrons, lattice vibrations, and randomly-distributed
ionized impurity atoms in the system through an either scattering-in or scattering-out
process mediated by electron-electron, electron-phonon and electron-impurity interactions,
respectively. Since the microscopic energy-relaxation time is assigned to a specific electronic
state, we are able to define a thermally-averaged energy-relaxation time through the
diagonal density-matrix elements of electrons for all electronic states. In this way, one
can reveal unique temperature dependence of this macroscopic energy-relaxation time
and utilize it for simplifying the well-known Boltzmann transport equation within the
relaxation-time approximation [44].

By going beyond the intrinsic graphene samples, we would like to investigate further
the impurity scattering of electrons in extrinsic (or doped) graphene materials. In parallel
with the discussion on scattering rates in Section 5, we present here the calculations for
intraband-scattering of electrons by randomly-distributed impurities. Results for intraband-
scattering of holes can be obtained in a similar way.

By using the detailed-balance condition, the microscopic energy-relaxation time τrel(k)
of electrons in the presence of randomly-distributed ionized impurities can be calculated
according to [44]

1
τrel(k)

=Win(k) +Wout(k) , (46)
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where the scattering-in rate for electrons in the final |k〉 state is

Win(k) =
4πnim

h̄A ∑
q 6=0

{∣∣∣Uim
k, k−q(q)

∣∣∣
2

f e
k−q L0(ε

e
k − εe

k−q, Γe)

+
∣∣∣Uim

k, k+q(q)
∣∣∣
2

f e
k+q L0(ε

e
k − εe

k+q, Γe)

}
, (47)

whereas the scattering-out rate for electrons in the initial |k〉 state takes the form

Wout(k) =
4πnim

h̄A ∑
q 6=0

{∣∣∣Uim
k+q, k(q)

∣∣∣
2
(1− f e

k+q)L0(ε
e
k+q − εe

k, Γe)

+
∣∣∣Uim

k−q, k(q)
∣∣∣
2
(1− f e

k−q)L0(ε
e
k−q − εe

k, Γe)

}
. (48)

Here, nim represents the areal density of ionized impurity atoms in the crystal, and
|Uim

k, k′(q)|2 comes from the randomly-impurity scattering of electron in the second-order
Born approximation [48,62]. Explicitly, the random impurity-interaction matrix elements
are calculated as

∣∣∣Uim
k, k′(q)

∣∣∣
2
= Z∗2|uc(q)|2

∣∣∣∣
∫

d2r [Φ
(c)
k (r)]∗ exp(iq · r)Φ

(c)
k′ (r)

∣∣∣∣
2
= Z∗2|uc(q)|2

∣∣∣F (c)
k, k′(q)

∣∣∣
2

, (49)

where Z∗ is the charge number of ionized impurity atoms.
Substituting Equation (49) back into Equation (47), we obtain

W in
k =

4πnimZ∗2

h̄A ∑
q 6=0

{
f e
k−q L0(ε

e
k − εe

k−q, Γe) |uc(q)|2
∣∣∣F (c)

k, k−q(q)
∣∣∣
2

+ f e
k+q L0(ε

e
k − εe

k+q, Γe) |uc(q)|2
∣∣∣F (c)

k, k+q(q)
∣∣∣
2
}

, (50)

Wout
k =

4πnimZ∗2

h̄A ∑
q 6=0

{
(1− f e

k+q)L0(ε
e
k+q − εe

k, Γe) |uc(q)|2
∣∣∣F (c)

k+q, k(q)
∣∣∣
2

+ (1− f e
k−q)L0(ε

e
k−q − εe

k, Γe) |uc(q)|2
∣∣∣F (c)

k−q, k(q)
∣∣∣
2
}

. (51)

Using the inverse microscopic energy-relaxation time in Equation (46), we can further
calculate the macroscopic thermally-averaged energy-relaxation time τrel(T) as a function
of temperature T, yielding [44]

1
τrel(T)

=
4

neA∑
k

[
1

τrel(k)

]
f e
k . (52)

Actually, the results in Equation (46) and in Equations (50)–(52) demonstrate the
approach for relating the computed tight-binding wave functions and band structures to
graphene transport properties described by a many-body scattering theory. This calculated
relaxation time in Equation (52) can be employed for building up different orders of
moment equations [63] based on semi-classical Boltzmann transport equation [6] under the
relaxation-time approximation [44]. Here, the zeroth-order moment equation [63] grantees
the conservation of conduction electrons and allows us to find the chemical potential of
electrons, as in Equation (35), for given areal doping density and temperature. Moreover,
the first-order moment equation [63] makes it possible to find transport mobility and
conductivity [64] for bias-field driven conduction electrons.

For doped graphene, we have Fermi energy EF = h̄vF
√

πn0 at low temperatures,
Ref. [61] where n0 represents the areal electron density from doping, i.e., n0 = nim for
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completely ionized doping atoms. For low temperatures with kBT ≪ EF, we have
f e
k = Θ(EF − εe

k) or f e
k = Θ(kF − k), where Θ(x) is a unity step function and kF =

√
πn0 is

the Fermi wave number.
Physically, the Coulomb diagonal-dephasing rates Γ(k) = ∆e(k) + ∆h(k) in Figure 9

describes a decay process of induced electron-hole optical coherence, which is induced
by an optical field over time, towards the state before perturbation. On the other hand,
the electron energy-relaxation rate 1/τrel(T), determined by Equations (46) and (52), re-
flects the time, which is a quantum-statistical average over all occupied states of elec-
trons, needed for recovering from a non-equilibrium-state occupation after an external
perturbation to an initial thermal-equilibrium-state occupation before external perturba-
tion via an elastic electron-impurity scattering process. Therefore, these two rates, as
shown by Figures 9 and 10, respectively, represent two fundamentally different micro-
scopic physics mechanisms.

Figure 10. Calculated average energy-relaxation rate 1/τrel(T) from Equation (52) as a function of
temperature T due to elastic scattering of doped electrons with impurities in graphene material,
where ǫr = 2.4, Γe = Γh = 0.01 meV, Z∗ = 1, doped electron areal density n0 = 1× 1011 cm−2, and
impurity areal density nim = n0 are assumed.

As seen from Figure 10, we find the electron energy-relaxation rate 1/τrel(T) reduces
with increasing temperature T due to enhanced screening effect on Coulomb interaction
uc(q) between two electrons or the rising of q0 in Equation (37) with T, which implies
that we have to wait a longer time τrel(T) for our system returning to its initial thermal-
equilibrium state at an elevated temperature. Furthermore, using the second-order Boltz-
mann moment equation [44], we would emphasize that this average energy-relaxation
time τrel(T), as determined from Equations (46) and (52), is directly associated with the
mobility of transport electrons limited by elastic scattering from existence of impurities in
the system.

7. Conclusions and Remarks

In conclusion, by introducing a generalized first-principles quantum-kinetic model
coupled self-consistently with Maxwell and Boltzmann transport equations, we demon-
strate the importance to incorporate inputs from first-principles band-structure computa-
tions for accurately describing non-equilibrium optical and transport properties of electrons
in graphene. Generally speaking, the physical properties of an active material in a device are
determined by both underlined band structures of involved materials and non-equilibrium
responses to various external impulses.
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In this study, we initialize with the tight-binding model for investigating band struc-
tures of solid covalent crystals by means of localized Wannier orbital functions, and further
parameterize the hopping integrals in the tight-binding model for different covalent bonds.
After that, we apply the general tight-binding-model formalism to graphene in order to
acquire both band structures and wave functions of electrons within the whole first Bril-
louin zone of two-dimensional materials. For illustrating their significance, we utilize them
to explore the intrinsic electron-hole Coulomb diagonal-dephasing rates used for spectral
and polarization functions of graphene materials, and meanwhile, the energy-relaxation
rate from extrinsic elastic scattering by impurities for transport mobility of doped electrons
in graphene.

Theoretically, our current theory is capable of first-principles calculations of ultra-fast
dynamics for non-thermal photo-generated electron-hole pairs. Simultaneously, this a
theory also enables to describe electromagnetic, optical and electrical properties of semi-
conductor materials all together, as well as their interplay. Technologically, in combination
with first-principles band-structure computations, the numerical output of current first-
principles dynamics model can be used as an input for material optical and transport
properties and put into a next-step simulation software, such as COMSOL Multiphysics,
for a target device. Consequently, device characteristics can be predicted accurately for
numerical bottom-up design and engineering.
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