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Preface

This volume contains the Proceedings of the 2nd Stochastic Transport in Upper
Ocean Dynamics Workshop held on 20–23 September 2021. After the success of the
first workshop, the STUOD Principal Investigators: Prof. Dan Crisan (ICL), Prof.
Bertrand Chapron (IFREMER), Prof. Darryl Holm (ICL) and Prof. Etienne Mémin
(INRIA) were delighted to be back with another educational and inspirational event.
“Stochastic Transport in Upper Ocean Dynamics” (STUOD) project is supported
by an ERC Synergy Grant, led by Imperial College London, National Institute
for Research in Digital Science and Technology (INRIA) and the French Research
Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new
capabilities for assessing variability and uncertainty in upper ocean dynamics and
provide decision makers a means of quantifying the effects of local patterns of sea
level rise, heat uptake, carbon storage and change of oxygen content and pH in the
ocean. The project will make use of multimodal data and will enhance the scientific
understanding of marine debris transport, tracking of oil spills and accumulation of
plastic in the sea.

As in the previous year, the 2nd STUOD Annual Workshop 2021 focused on a
range of fundamental topical areas, including:

1. Observations at high resolution of upper ocean properties such as temperature,
salinity, topography, wind, waves and velocity

2. Large-scale numerical simulations
3. Data-based stochastic equations for upper ocean dynamics that quantify simula-

tion error
4. Stochastic data assimilation to reduce uncertainty

Each chapter in the present volume illustrates one or several of these topical
areas. Many chapters offer new mathematical frameworks that are intended to
enhance future research in the STUOD project.

The event brought together 65 participants from 11 countries: UK 28, France 22,
USA 1, Canada 1, Australia 1, Czech Republic 1, Germany 4, Italy 4, Ireland 1,
South Africa 1 and Switzerland 1. Moreover, the workshop was well attended by
early-career academics, post-graduate students, industry representatives (Watson-
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Marlow Fluid Technology Group, OceanScope), senior members of the community
and invited guests.

The scientific program of this 4-day hybrid event included invited presentations
by STUOD Advisory Board Members: Prof Alberto Carrassi (University of Read-
ing, NCEO), Prof Franco Flandoli (Scuola Normale Superiore) and Prof Sebastian
Reich (University of Potsdam), Dr Eniko Székely (École Polytechnique Fédérale
de Lausanne, Swiss Data Science Center), individual presentations by the STUOD
Principal Investigators and post-doctoral Researchers, snapshot presentations and
demos. The speakers included leading mid-career and senior researchers as well as
early-career researchers. Moreover, the forum yielded opportunities for investigators
at an early stage of their career to have discussions with established scientist,
fostering potential future research collaborations, networking as well as inclusion
and training of the next generation of researchers.

The photograph above shows some participants attending the event in person
during a break between lectures.

Most of the lectures were video-recorded and may be viewed on the
STUOD YouTube channel.

The following is a brief description of the 19 contributions included in the
proceedings:

The submitted manuscripts include the paper by Dan Crisan and Prince
Romeo Mensah, entitled “Blow-up of Strong Solutions of the Thermal Quasi-
Geostrophic Equation”. This paper concerns the system of coupled equations that

https://www.youtube.com/channel/UCzP4GLJtQuDlPruvzdCbvOg
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governs the evolution of the buoyancy and potential vorticity of a fluid. This system
has been shown in recent work of the authors and their collaborators to possess
a local in time solution. In this paper, the authors give a characterization of the
blow-up of solutions of the system in the spirit of the classical Beale–Kato–Majda
blow-up criterion for the solution of the Euler equation.

The contribution of Arnaud Debussche, Berenger Hug, and Etienne Mémin,
entitled “Modelling Under Location Uncertainty: A Convergent Large-Scale
Representation of the Navier-Stokes Equations”, introduces martingale solutions
for 2D and 3D stochastic Navier-Stokes equations in the framework of the modelling
under location uncertainty (LU). Such solutions are unique when the spatial
dimension is 2D. The authors also prove that, if the noise intensity goes to zero,
these solutions converge to a solution of the deterministic Navier-Stokes equation.

Evgueni Dinvay considers in the paper “A Stochastic Benjamin-Bona-
Mahony Type Equation” a particular nonlinear dispersive stochastic equation
recently introduced as a model describing surface water waves under location
uncertainty. The corresponding noise term is introduced through a Hamiltonian
formulation, which guarantees the energy conservation of the flow. The author
shows that the initial-value problem has a unique solution.

Benjamin Dufée, Etienne Mémin, and Dan Crisan investigate in the paper
“Observation-Based Noise Calibration: An Efficient Dynamics for the Ensem-
ble Kalman Filter” the calibration of the stochastic noise in order to guide its
realizations towards the observational data used for the assimilation. This is done
in the context of the stochastic parametrization under location uncertainty (LU) and
data assimilation. The new methodology is mathematically justified by the use of the
Girsanov theorem and yields significant improvements in the experiments carried
out on the surface quasi-geostrophic (SQG) model, when applied to ensemble
Kalman filters. The test case studied in the paper shows improvements of the peak
MSE from 85% to 93%.

The paper by Camilla Fiorini, Pierre-Marie Boulvard, Long Li, and Etienne
Mémin, entitled “A Two-Step Numerical Scheme in Time for Surface Quasi
Geostrophic Equations Under Location Uncertainty”, considers the surface
quasi-geostrophic (SQG) system under location uncertainty (LU) and proposes
a Milstein-type scheme for these equations, which is then used in a multi-step
method. The SQG system considered in the paper consists of one stochastic partial
differential equation, which models the stochastic transport of the buoyancy, and a
linear operator linking the velocity and the buoyancy. In the LU setting, the Euler-
Maruyama scheme converges with weak order 1 and strong order 0.5. The authors
develop higher order schemes in time, based on a Milstein-type scheme in a multi-
step framework. They compare different kinds of Milstein schemes. The scheme
with the best performance is then included in the two-step scheme. Finally, they
show how their two-step scheme decreases the error in comparison to other multi-
step schemes.

The contribution of Franco Flandoli and Eliseo Luongo, entitled “The Dissipa-
tion Properties of Transport Noise”, presents in a compact way the latest results
about the dissipation properties of transport noise in fluid mechanics. Motivated
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by the fact that transport noise is natural in a passive scalar equation for the
heat diffusion and transport, the authors introduce several results about enhanced
dissipation due to the noise. Rigorous statements are matched with numerical
experiments to understand that the sufficient conditions stated are not yet optimal
but give a first useful indication.

Daniel Goodair presents in the paper “Existence and Uniqueness of Maximal
Solutions to a 3D Navier-Stokes Equation with Stochastic Lie Transport” a
criterion for showing that an abstract SPDE possesses a unique maximal strong
solution. This is then applied to a 3D stochastic Navier-Stokes equation. Inspired
by the classical work of Kato and Lai, the author provides a comparable result
in the stochastic case applicable to a variety of noise structures such as additive,
multiplicative and transport. In particular, the criterion is designed to fit viscous
fluid dynamics models with stochastic advection by lie transport. Its application to
the incompressible Navier-Stokes equation matches the existence and uniqueness
result of the deterministic theory.

Darryl D. Holm, Ruiao Hu, and Oliver D. Street present in “Coupling of
Waves to Sea Surface Currents Via Horizontal Density Gradients” a set of
mathematical models and numerical simulations motivated by satellite observations
of horizontal sea surface fluid motions that show the close coordination between
thermal fronts and the vertical motion of waves or, after an approximation, the
slowly varying envelope of the rapidly oscillating waves. This coordination of fluid
movements with wave envelopes occurs most dramatically when strong horizontal
buoyancy gradients are present, e.g., at thermal fronts. The nonlinear models of
this coordinated movement presented in the paper may provide future opportunities
for the optimal design of satellite imagery that could simultaneously capture the
dynamics of both waves and currents directly. The models derived in the paper
appear first in their un-approximated form, then again with a slowly varying
envelope (SVE) approximation using the WKB approach. The WKB wave-current-
buoyancy interaction model derived by the authors for a free surface with horizontal
buoyancy gradients indicates that the mechanism for these correlations is the
ponderomotive force of the slowly varying envelope of rapidly oscillating waves
acting on the surface currents via the horizontal buoyancy gradient. In this model,
the buoyancy gradient appears explicitly in the WKB wave momentum, which in
turn generates density-weighted potential vorticity whenever the buoyancy gradient
is not aligned with the wave-envelope gradient.

The contribution of Ruiao Hu and Stuart Patching, entitled “Variational
Stochastic Parameterisations and Their Applications to Primitive Equation
Models”, presents a numerical investigation into the stochastic parameterizations of
the primitive equations (PE) using the stochastic advection by lie transport (SALT)
and stochastic forcing by lie transport (SFLT) frameworks. These frameworks were
chosen due to their structure-preserving introduction of stochasticity, which decom-
poses the transport velocity and fluid momentum into their drift and stochastic
parts, respectively. In this paper, the authors develop a new calibration methodology
to implement the momentum decomposition of SFLT, and they compare this
methodology with the Lagrangian path methodology implemented for SALT. The
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resulting stochastic primitive equations are then integrated numerically using a
modification of the FESOM2 code. For certain choices of the stochastic parameters,
the authors show that SALT causes an increase in the eddy kinetic energy field
and an improvement in the spatial spectrum. SFLT also shows improvements in
these areas, though to a lesser extent. The SALT approach, however, produces
an excessive downwards diffusion of temperature, compared to high-resolution
deterministic simulations.

The paper by Oana Lang and Wei Pan, entitled “A Pathwise Parameterisation
for Stochastic Transport”, sets the stage for a new probabilistic approach to
effectively calibrate in a pathwise manner a general class of stochastic nonlinear
fluid dynamics models. The authors focus on a 2D Euler SALT equation, showing
that the driving stochastic parameter can be calibrated in an optimal way to match a
set of given data. Moreover, they show that this model is robust with respect to the
stochastic parameters.

The work by Long Li, Etienne Mémin, and Gilles Tissot, entitled “Stochastic
Parameterization with Dynamic Mode Decomposition”, considers a physical
stochastic parameterization to account for the effects of the unresolved small scale
on the large-scale flow dynamics. This random model is based on a stochastic
transport principle, which ensures a strong energy conservation. The dynamic
mode decomposition (DMD) is performed on high-resolution data to learn a basis
of the unresolved velocity field, on which the stochastic transport velocity is
expressed. Time-harmonic property of DMD modes allows the authors to perform
a clean separation between time-differentiable and time-decorrelated components.
The corresponding random scheme is assessed on a quasi-geostrophic (QG) model.

The paper by Alexander Lobbe, entitled “Deep Learning for the Benes Filter”,
concerns the filtering problem, in other words, the optimal estimation of a hidden
state given partial and noisy observations. Filtering is extensively studied in the
theoretical and applied mathematical literature. One of the central challenges in
filtering today is the numerical approximation of the optimal filter. The author
presents a brief study of a new numerical method based on the mesh-free neural
network representation of the density of the solution of the filtering problem
achieved by deep learning. Based on the classical SPDE splitting method, the
algorithm introduced includes a recursive normalization procedure to recover the
normalized conditional distribution of the signal process. The present work uses the
Benes model as a benchmark: within the analytically tractable setting of the Benes
filter, the author discusses the role of nonlinearity in the filtering model equations
for the choice of the domain of the neural network. Further, he presents the first
study of the neural network method with an adaptive domain for the Benes model.

Data assimilation techniques are the state-of-the-art approaches in the recon-
struction of a spatio-temporal geophysical state such as the atmosphere or the ocean.
These methods rely on a numerical model that fills the spatial and temporal gaps
in the observational network. Unfortunately, limitations regarding the uncertainty
of the state estimate may arise when considering the restriction of the data
assimilation problems to a small subset of observations, as encountered for instance
in ocean surface reconstruction. These limitations motivated the exploration of
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reconstruction techniques that do not rely on numerical models. In this context, the
increasing availability of geophysical observations and model simulations motivates
the exploitation of machine learning tools to tackle the reconstruction of ocean
surface variables. In the paper “End-to-End Kalman Filter in a High Dimen-
sional Linear Embedding of the Observations”, by Said Ouala, Pierre Tandeo,
Bertrand Chapron, Fabrice Collard and Ronan Fablet, the authors formulate sea
surface spatio-temporal reconstruction problems as state space Bayesian smoothing
problems with unknown augmented linear dynamics. The solution of the smoothing
problem, given by the Kalman smoother, is written in a differentiable framework
which allows, given some training data, to optimize the parameters of the state space
model.

Large-scale weather can often be successfully described using a small amount
of patterns. A statistical description of re-analysed pressure fields identifies these
recurring patterns with clusters in state space, also called regimes. Recently, these
weather regimes have been described through instantaneous, local indicators of
dimension and persistence, borrowed from dynamical systems theory and extreme
value theory. Using similar indicators and going further, Paul Platzer, Bertrand
Chapron, and Pierre Tandeo focus in the paper “Dynamical Properties of
Weather Regime Transitions” on weather regime transitions. They use sixty years
of winter-time sea-level pressure reanalysis data centred on the North-Atlantic
Ocean and western Europe. These experiments reveal regime-dependent behaviours
of dimension and persistence near transitions, although in average one observes an
increase of dimension and a decrease of persistence near transitions. The effect of
transition on persistence is stronger and lasts longer than on dimension. The findings
confirm the relevance of such dynamical indicators for the study of large-scale
weather regimes and reveal their potential to be used for both the understanding
and detection of weather regime transitions.

Standard maximum likelihood or Bayesian approaches to parameter estimation
for stochastic differential equations are known not to be robust to perturbations in the
continuous-in-time data. In the paper “Frequentist Perspective on Robust Param-
eter Estimation Using the Ensemble Kalman Filter”, Sebastian Reich gives
a rather elementary explanation of this observation in the context of continuous-
time parameter estimation using an ensemble Kalman filter. The author employs
the frequentist perspective to shed new light on two robust estimation techniques;
namely subsampling the data and rough path corrections. He also illustrates the
findings through a simple numerical experiment.

The contribution of Valentin Resseguier, Erwan Hascoet and Bertrand
Chapron, entitled “Random Ocean Swell-Rays: A Stochastic Framework”,
concerns swell systems that radiate across ocean basins. Far from their sources,
emerging surface waves have low steepness characteristics, with very slow
amplitude variations. Swell propagation then closely follows principles of
geometrical optics, that is, the eikonal approximation to the wave equation, with a
constant wave period along geodesics, when following a wave packet at its group
speed. The phase averaged evolution of quasi-linear wave fields is then dominated
by interactions with underlying current and/or topography changes. Comparable
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to the propagation of light in a slowly varying medium, over many wavelengths,
cumulative effects can lead to refraction. This opens the possibility of using surface
swell waves as probes to estimate turbulence along their propagating path.

Louis Thiry, Long Li and Etienne Mémin present in the paper, entitled
“Modified (Hyper-) Viscosity for Coarse-Resolution Ocean Models”, a simple
parameterization for coarse-resolution ocean models. To replace computationally
expensive high-resolution ocean models, the authors develop a computationally
cheap parameterization for coarse-resolution models based solely on the modifi-
cation of the viscosity term in advection equations. The parametrization is meant
to reproduce the mean quantities like pressure, velocity or vorticity computed
from a high-resolution reference solution or using observations. The authors
test this new parameterization on a double-gyre quasi-geostrophic model in the
eddy-permitting regime. The results show that the proposed scheme significantly
improves the energy statistics and the intrinsic variability on the coarse mesh. This
method will serve as a deterministic basis model for coarse-resolution stochastic
parameterizations in future works.

Resolving numerically all the scale interactions of ocean dynamics in a high-
resolution realistic configuration is today far beyond reach, and only large-scale
representations can be afforded. Francesco L. Tucciarone, Etienne Mémin and
Long Li study in the paper “Primitive Equations Under Location Uncertainty:
Analytical Description and Model Development” a stochastic parameterization
of the ocean primitive equations derived within the modelling under location
uncertainty framework. Numerical assessments built with the NEMO core’s code
are provided for a double-gyres configuration.

The paper by Yicun Zhen, Bertrand Chapron and Etienne Mémin, enti-
tled “Bridging Koopman Operator and Time-Series Auto-Correlation Based
Hilbert-Schmidt Operator”, considers Hilbert-Schmidt operators associated with
stationary continuous-time processes. A Hilbert space and a (time-shift) continuous
one-parameter semigroup of isometries are introduced and analysed. Under some
technical assumptions, the continuous one-parameter semigroup is shown to be
equivalent, almost surely, to the classical Koopman one-parameter semigroup.

Finally, the STUOD Organizing Committee would like to acknowledge the
financial and in-kind support received from several sources: the European Research
Council (ERC) under the European Union’s Horizon 2020 Research and Innovation
Programme (ERC, Grant Agreement No 856408) – for providing funds to cover the
travel expenses of the invited speakers, catering costs and administrative support;
Imperial College London – for offering the conference venue.

STUOD Organizing Committee:
Prof. Bertrand Chapron (IFREMER)
Prof. Dan Crisan (ICL)
Prof. Darryl Holm (ICL)
Prof. Etienne Mémin (INRIA)
Dr Anna Radomska (ICL)
May 2022
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Blow-Up of Strong Solutions of the
Thermal Quasi-Geostrophic Equation

Dan Crisan and Prince Romeo Mensah

Abstract The Thermal Quasi-Geostrophic (TQG) equation is a coupled system
of equations that governs the evolution of the buoyancy and the potential vorticity
of a fluid. It has a local in time solution as proved in Crisan et al. (Theoreti-
cal and computational analysis of the thermal quasi-geostrophic model. Preprint
arXiv:2106.14850, 2021). In this paper, we give a criterion for the blow-up of
solutions to the Thermal Quasi-Geostrophic equation, in the spirit of the classical
Beale–Kato–Majda blow-up criterion (cf. Beale et al., Comm. Math. Phys. 94(1),
61–66, 1984) for the solution of the Euler equation.

Keywords Blow-up criterion · Thermal Quasi-Qeostrophic equation · Modified
Helmholtz operator

1 Introduction

The Thermal Quasi-Geostrophic (TQG) equation is a coupled system of equations
governed by the evolution of the buoyancy b : (t, x) ∈ [0, T ] × R

2 �→ b(t, x) ∈ R

and the potential vorticity q : (t, x) ∈ [0, T ] × R
2 �→ q(t, x) ∈ R in the following

way:

∂tb + (u · ∇)b = 0, (1)

∂tq + (u · ∇)(q − b) = −(uh · ∇)b, (2)

b(0, x) = b0(x), q(0, x) = q0(x), (3)

D. Crisan · P. R. Mensah (�)
Department of Mathematics, Imperial College, London, UK
e-mail: d.crisan@imperial.ac.uk; p.mensah@imperial.ac.uk
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2 D. Crisan and P. R. Mensah

where

u = ∇⊥ψ, uh = 1

2
∇⊥h, q = (Δ− 1)ψ + f. (4)

Here, ψ : (t, x) ∈ [0, T ] × R
2 �→ ψ(t, x) ∈ R is the streamfunction, h : x ∈

R
2 �→ h(x) ∈ R is the spatial variation around a constant bathymetry profile and

f : x ∈ R
2 �→ f (x) ∈ R is the Coriolis parameter. Since we are working on the

whole space, we can supplement our system with the far-field condition

lim|x|→∞(b(x),u(x)) = 0.

Our given set of data is (uh, f, b0, q0) with regularity class:

uh ∈ W
3,2
div (R

2;R2), f ∈ W 2,2(R2), b0 ∈ W 3,2(R2), q0 ∈ W 2,2(R2).

(5)
The TQG equation models the dynamics of a submesoscale geophysical fluid in
thermal geostrophic balance, for which the Rossby number, the Froude number and
the stratification parameter are all of the same asymptotic order. For a historical
overview, modelling and other issues pertaining to the TQG equation, we refer the
reader to [4].

In the following, we are interested in strong solutions of the system (1)–(4)
which can naturally be defined in terms of just b and q although the unknowns
in the evolutionary Eqs. (1)–(2) are b, q and u. This is because for a given f , one
can recover the velocity u from the vorticity q by solving the equation

u = ∇⊥(Δ− 1)−1(q − f )

derived from (4). Also note that a consequence of the equation u = ∇⊥ψ in (4) is
that divu = 0. This means that the fluid is incompressible. With these information
in hand, we now make precise, the notion of a strong solution.

Definition 1 (Local Strong Solution) Let (uh, f, b0, q0) be of regularity class (5).
For some T > 0, we call the triple (b, q, T ) a strong solution to the system (1)–(4)
if the following holds:

– The buoyancy b satisfies b ∈ C([0, T ];W 3,2(R2)) and the equation

b(t) = b0 −
∫ t

0
div(bu) dτ,

holds for all t ∈ [0, T ];
– the potential vorticity q satisfies q ∈ C([0, T ];W 2,2(R2)) and the equation
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q(t) = q0 −
∫ t

0

[
div((q − b)u)+ div(buh)

]
dτ

holds for all t ∈ [0, T ].
Such local strong solutions exist on a maximal time interval. We define this as
follows.

Definition 2 (Maximal Solution) Let (uh, f, b0, q0) be of regularity class (5). For
some T > 0, we call (b, q, Tmax) a maximal solution to the system (1)–(4) if:

– there exists an increasing sequence of time steps (Tn)n∈N whose limit is Tmax ∈
(0,∞];

– for each n ∈ N, the triple (b, q, Tn) is a local strong solution to the system (1)–(4)
with initial condition (b0, q0);

– if Tmax < ∞, then

lim sup
Tn→Tmax

‖b(Tn)‖2
W 3,2(R2)

+ ‖q(Tn)‖2
W 2,2(R2)

= ∞. (6)

We shall call Tmax > 0 the maximal time.

The existence of a unique local strong solution of (1)–(4) has recently been shown in
[4, Theorem 2.10] on the torus. A unique maximal solutions also exist [4, Theorem
2.14] and the result also applies to the whole space [4, Remark 2.1]. We state the
result here for completeness.

Theorem 1 For (uh, f, b0, q0) of regularity class (5), there exist a unique maximal
solution (b, q, T ) of the system (1)–(4).

Before we state our main result, let us first present some notations used throughout
this work.

1.1 Notations

In the following, we write F � G if there exists a generic constant c > 0 (that may
vary from line to line) such that F ≤ cG. Functions mapping into R

2 are boldfaced
(for example the velocity u) while those mapping into R are not (for example the
buoyancy b and vorticity q). For k ∈ N ∪ {0} and p ∈ [1,∞], Wk,p(R2) is the
usual Sobolev space of functions mapping into R with a natural modification for
functions mapping into R

2. For p = 2, Wk,2(R2) is a Hilbert space with inner
product 〈u, v〉Wk,2(R2) =

∑
|β|≤k〈∂βu , ∂βv〉, where 〈· , 〉 denotes the standard L2-

inner product. For general s ∈ R, we use the norm

‖v‖Ws,2(R2) ≡
(∫

R2

(
1 + |ξ |2)s |̂v(ξ)|2 dξ

) 1
2

(7)
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defined in frequency space. Here, v̂(ξ) denotes the Fourier coefficients of v. For
simplicity, we write ‖ · ‖s,2 for ‖ · ‖Ws,2(R2). When k = s = 0, we get the usual
L2(R2) space whose norm we will simply denote by ‖ · ‖2. A similar notation will
be used for norms ‖ · ‖p of general Lp(R2) spaces for any p ∈ [1,∞] as well as

for the inner product 〈·, ·〉k,2 := 〈·, ·〉Wk,2(R2) when k ∈ N. Additionally, Wk,p

div (R2)

represents the space of divergence-free vector-valued functions in Wk,p(R2).
With respect to differential operators, we let ∇0 := (∂x1, ∂x2 , 0)T and ∇⊥

0 :=
(−∂x2 , ∂x1 , 0) be the three-dimensional extensions of the two-dimensional differ-
ential operators ∇ = (∂x1, ∂x2)

T and ∇⊥ := (−∂x2 , ∂x1) by zero respectively. The
Laplacian Δ = div∇ = ∂x1x1 + ∂x2x2 remains two-dimensional.

1.2 Main Result

Our main result is to give a blow-up criterion, of Beale–Kato–Majda-type [2], for a
strong solution (b, q, T ) of (1)–(4). In particular, we show the following result.

Theorem 2 Suppose that (b, q, T ) is a local strong solution of (1)–(4). If

∫ T

0

(
‖q(t)‖∞ + ‖∇b(t)‖∞

)
dt ≡ K < ∞, (8)

then there exists a solution (b′, q ′, T ′) with T ′ > T , such that (b′, q ′) = (b, q) on
[0, T ]. Moreover, for all t ∈ [0, T ],

‖b(t)‖3,2 + ‖q(t)‖2,2 ≤ [
e + ‖b0‖3,2 + ‖q0‖2,2

]exp(cK) exp[cT exp(cK)].

An immediate consequence of the above theorem is the following:

Corollary 1 Assume that (b, q, T ) is a maximal solution. If T < ∞, then

∫ T

0

(
‖q(t)‖∞ + ‖∇b(t)‖∞

)
dt = ∞

and in particular,

sup
t↑T

(
‖q(t)‖∞ + ‖∇b(t)‖∞

)
= ∞.

2 Blow-Up

We devote the entirety of this section to the proof of Theorem 2. In order to
achieve our goal, we first derive a suitable exact solution for what is referred to
as the modified Helmholtz equation. Some authors also call it the Screened Poisson
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equation [3] while others rather mistakenly call it the Helmholtz equation. Refer
to [1] for the difference between the Helmholtz equation and modified Helmholtz
equation.

2.1 Estimate for the 2D Modified Helmholtz Equation or the
Screened Poisson Equation

In the following, we want to find an exact solution ψ : R2 → R of

(Δ− 1)ψ(x) = w(x), lim|x|→∞ψ(x) = 0 (9)

for a given function w ∈ W 2,2(R2) . The corresponding two-dimensional free space
Green’s function Gfree(x) for (9) must therefore solve

(Δ− 1)Gfree(x − y) = δ(x − y), lim|x|→∞Gfree(x − y)(x) = 0 (10)

in the sense of distributions. Indeed, one can verify that the Green’s function is given
by

Gfree(x − y) = 1

2π
K0(|x − y|) (11)

see [1, Table 9.5], where

K0(z) =
∫ ∞

0

e−
√

z2+r2

√
z2 + r2

dr

is the modified Bessel function of the second kind, see equation (8.432-9), page 917
of [5] with ν = 0 and x = 1. However, since the integral above is an even function,
it follows that

Gfree(x − y) = i

4
H

(1)
0 (i|x − y|) = 1

4π

∫
R

e−
√

|x−y|2+r2

√|x − y|2 + r2
dr (12)

which is the zeroth-order Hankel function of the first kind, see equation (11.117) in
[1] and equation (8.421-9) of [5] on page 915. Therefore,

ψ(x) = 1

4π

∫
R3

e−|(x−y,−r)|

|(x − y,−r)|w((y, 0)) dydr (13)

=: ψ((x, 0)) (14)
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where we have used the identity
√|x − y|2 + r2 = |(x, 0)− (y, r)| = |(x−y,−r)|.

We can therefore view the argument of the streamfunction ψ as a 3D-vector with
zero vertical component.

2.2 Log-Sobolev Estimate for Velocity Gradient

Our goal now is to find a suitable estimate for the Lipschitz norm of u that solves

u = ∇⊥ψ, (Δ− 1)ψ = w (15)

where w ∈ W 2,2(R2) is given. In particular, inspired by Beale et al. [2], we aim
to show Proposition 1 below. This log-estimate is the crucial ingredient that allow
us to obtain our blow-up criterion in terms of just the buoyancy gradient and the
vorticity although preliminary estimate may have suggested estimating the velocity
gradient as well.

Proposition 1 For a given w ∈ W 2,2(R2), any u solving (15) satisfies

‖u‖1,∞ � 1 + (1 + 2 ln+(‖w‖2,2))‖w‖∞ (16)

where ln+ a = ln a if a ≥ 1 and ln+ a = 0 otherwise.

Proof To show (16), we fix L ∈ (0, 1] and for z ∈ R
3, we let ζL(z) be a smooth

cut-off function satisfying

ζL(z) =
{

1 : |z| < L,

0 : |z| > 2L

and |∂ζL(z)| � L−1 where ∂ := ∇⊥
0 or ∇0 as well as |∇0∇⊥

0 ζL(z)| � L−2. This
latter requirement ensures that the point of inflection of the graph of the cut-off, the
portion that is constant, concave upwards and concave downwards are all captured.
We now define the following

B1 := {
(y, r) ∈ R

3 : |(x, 0)− (y, r)| = |(x − y,−r)| < 2L
}
,

B2 := {
(y, r) ∈ R

3 : L ≤ |(x − y,−r)| ≤ 1
}
,

B3 := {
(y, r) ∈ R

3 : |(x − y,−r)| > 1
}
,

so that by adding and subtracting ζL, we obtain

|∇u(x)| = |∇0∇⊥
0 ψ((x, 0))| ≤ |∇0(u1((x, 0)), 0)| + |∇0(u1

2((x, 0)), 0)|
+ |∇0(u2

2((x, 0)), 0)| + |∇0(u3
2((x, 0)), 0)|
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+ |∇0(u4
2((x, 0)), 0)| + |∇0(u3((x, 0)), 0)|

=: |∇0u1| + |∇0u1
2| + |∇0u2

2| + |∇0u3
2|

+ |∇0u4
2| + |∇0u3|

where

∇0u1 := 1

4π

∫
B1

ζL((x − y,−r))
e−|(x−y,−r)|

|(x − y,−r)|∇0∇⊥
0 w((y, 0)) dydr,

∇0u1
2 := 1

4π

∫
B2

[
1 − ζL((x − y,−r))

]∇0∇⊥
0

[
e−|(x−y,−r)|

|(x − y,−r)|
]
w((y, 0)) dydr,

∇0u2
2 := 1

4π

∫
B2

∇0∇⊥
0

[
1 − ζL((x − y,−r))

] e−|(x−y,−r)|

|(x − y,−r)| w((y, 0)) dydr,

∇0u3
2 := 1

4π

∫
B2

∇⊥
0

[
1 − ζL((x − y,−r))

]∇0

[
e−|(x−y,−r)|

|(x − y,−r)|
]
w((y, 0)) dydr,

∇0u4
2 := 1

4π

∫
B2

∇0
[
1 − ζL((x − y,−r))

]∇⊥
0

[
e−|(x−y,−r)|

|(x − y,−r)|
]
w((y, 0)) dydr,

∇0u3 := 1

4π

∫
B3

∇0∇⊥
0

[[
1 − ζL((x − y,−r))

] e−|(x−y,−r)|

|(x − y,−r)|
]
w((y, 0)) dydr.

For L ∈ (0, 1], we have that

|∇0u1| �
(∫

B1

e−2|(x,0)−(y,r)|

|(x, 0)− (y, r)|2 dydr

) 1
2 ‖∇0∇⊥

0 w((y, 0))‖2

�
(∫ 2L

0

e−2s

s2 s2ds

) 1
2 ‖w‖2,2 �

(
1 − e−4L) 1

2 ‖w‖2,2 � πL
1
2 ‖w‖2,2.

Now note that

∇0u1
2 := 1

4π

∫
B2

[
1 − ζL((x − y,−r))

]{2(x − y)T (x − y)⊥

(|x − y|2 + r2)2 + 3(x − y)T (x − y)⊥

(|x − y|2 + r2)
5
2

− 1

|x − y|2 + r2

⎛
⎝ 0 1 0
−1 0 0
0 0 0

⎞
⎠− 1

(|x − y|2 + r2)
3
2

⎛
⎝ 0 1 0
−1 0 0
0 0 0

⎞
⎠

+ (x − y)T (x − y)⊥

(|x − y|2 + r2)
3
2

+ (x − y)T (x − y)⊥

(|x − y|2 + r2)2

}
e−|(x−y,−r)|w(y) drdy

=:
6∑

i=1

Ki ((x − y,−r)).
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Clearly, |x − y|2 ≤ |x − y|2 + r2 = |(x − y,−r)|2 and for any L ∈ (0, 1], the
inequalities

(e−L − e−1) ≤ (1 − e−1) ≤ (1 − e−1)(1 − ln(L)) � (1 − ln(L))

holds independent of L. Therefore, for L ∈ (0, 1], it follows that

|K1((x − y,−r))| + |K3((x − y,−r))+ |K6((x − y,−r))|

� ‖w‖∞
∫
B2

e−|(x−y,−r)|

|(x − y,−r)|2 drdy

� ‖w‖∞
∫ 1

L

e−s

s2 s2 ds

� ‖w‖∞(1 − ln(L)).

Again, we can use |x − y|2 ≤ |x − y|2 + r2 and the fact that the inequalities

(e−L(L+ 1)− 2e−1) ≤ (1 − 2e−1) ≤ (1 − 2e−1)(1 − ln(L)) � (1 − ln(L))

holds independent of any L ∈ (0, 1] to obtain

|K5((x − y,−r))| � ‖w‖∞
∫
B2

e−|(x−y,−r)|

|(x − y,−r)| drdy

� ‖w‖∞
∫ 1

L

e−s

s
s2 ds

� ‖w‖∞(1 − ln(L)).

Finally, for K2 and K4, we also obtain

|K2((x − y,−r))| + |K4((x − y,−r)) � ‖w‖∞
∫
B2

e−|(x−y,−r)|

|(x − y,−r)|3 drdy

� ‖w‖∞
∫ 1

L

e−s

s3 s2 ds

� ‖w‖∞e−L

∫ 1

L

1

s
ds

� ‖w‖∞e−0(− ln(L)
)
.

We have shown that

|∇0u1
2| � ‖w‖∞(1 − ln(L)) (17)
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for L ∈ (0, 1]. Also, the quantity (1/L2)[e−L(L+ 1)− e−2L(2L+ 1)] is uniformly
bounded for any L ∈ (0, 1] and as such,

|∇0u2
2| �

(∫ 2L

L

e−s

sL2 s2ds

)
‖w‖∞ � ‖w‖∞. (18)

Next, we note that the estimate for ∇0u3
2 and ∇0u4

2 will be the same where in
particular,

∇0u3
2 := −1

4π

∫
B2

∇⊥
0

[
1 − ζL((x − y,−r))

]{ (x − y)T

|x − y|2 + r2

+ (x − y)T

(|x − y|2 + r2)
3
2

}
e−|(x−y,−r)|w(y) drdy

=: K7((x − y,−r))+K8((x − y,−r)).

Since |x− y| ≤ 1 holds on B2, it follows from the condition |∇⊥
0 ζL(z)| � L−1 that

|K7((x − y,−r))| �
(∫ 2L

L

e−s

s2L
s2 ds

)
‖w‖∞ � ‖w‖∞

since (1/L)[e−L − e−2L] is uniformly bounded in L. Similarly, we can use the fact
that |x − y| ≤ √|x − y|2 + r2 to obtain

|K8((x − y,−r))| �
(∫ 2L

L

e−s

s2L
s2 ds

)
‖w‖∞ � ‖w‖∞.

We can therefore conclude that,

|∇0u3
2| + |∇0u4

2| � ‖w‖∞. (19)

Similar to the estimate for ∇u1
2, we have that

|∇0u3| � ‖w‖∞. (20)

It follows by summing up the various estimates above that

‖∇u‖∞ � L
1
2 ‖w‖2,2 + (1 − ln(L))‖w‖∞. (21)

It remains to show that the estimate (21) also holds for u. For this, we first recall
that

u(x) = 1

4π

∫
R3

∇⊥
0

[
e−|(x−y,−r)|

|(x − y,−r)|
]
w((y, 0)) dydr. (22)
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We now use the inequalities

|x − y| ≤ (|x − y|2 + r2)
1
2 (23)

and

1

4π

∣∣∣∣∇⊥
0

e−|(x−y,−r)|

|(x − y,−r)|
∣∣∣∣ �

[ |x − y|
(|x − y|2 + r2)

3
2

+ |x − y|
|x − y|2 + r2

]
e−|(x−y,−r)|

to obtain

‖u‖∞ � ‖w‖∞
∫
R3

[
1

|x − y|2 + r2 + 1

(|x − y|2 + r2)
1
2

]
e−|(x−y,−r)|dydr

� ‖w‖∞
∫ ∞

0

e−s

s2 s2ds + ‖w‖∞
∫ ∞

0

e−s

s
s2ds

� ‖w‖∞.

(24)
Therefore, it follows from (21) and (24) that

‖u‖1,∞ � L
1
2 ‖w‖2,2 + (1 − ln(L))‖w‖∞. (25)

If ‖w‖2,2 ≤ 1, we choose L = 1 and if ‖w‖2,2 > 1, we take L = ‖w‖−2
2,2 so that

(16) holds. This finishes the proof.

Before we end the subsection, we also note that a direct computation using the
definition of Sobolev norms in frequency space (7) immediately yield

‖u‖k+1,2 � ‖w‖k,2 (26)

for any k ∈ N ∪ {0} where w ∈ Wk,2(R2) is a given function in (15).

2.3 A Priori Estimate

In order to prove Theorem 2, we first need some preliminary estimates for (b, q). In
the following, we define

‖(b, q)‖ := ‖b‖3,2 + ‖q‖2,2.

Lemma 1 A strong solution of (1)–(4) satisfies the bound

d

dt
‖(b, q)‖2 �

(
1 + ‖u‖1,∞ + ‖∇b‖∞ + ‖q‖∞

)(
1 + ‖(b, q)‖2). (27)
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Proof Since the space of smooth functions is dense in the space W 3,2(R2) ×
W 2,2(R2) of existence, in the following, we work with a smooth solution pair (b, q).
To achieve our desired estimate, we apply ∂β to (1) for |β| ≤ 3 to obtain

∂t∂
βb + u · ∇∂βb = R1 (28)

where

R1 := u · ∂β∇b − ∂β(u · ∇b).

Now since divu = 0, if we multiply (28) by ∂βb and integrate over space, the
second term on the left-hand side of (28) vanishes after integration by parts. On
the other hand, we can use the commutator estimate (see for instant [4, Sect. 2.2]) to
estimate the residual term R1. Consequently, by multiplying (28) by ∂βb, integrating
over space, and summing over the multiindices β so that |β| ≤ 3, we obtain

d

dt
‖b‖2

3,2 �
(
‖∇u‖∞‖b‖3,2 + ‖∇b‖∞‖u‖3,2

)
‖b‖3,2

� (‖∇u‖∞ + ‖∇b‖∞)(1 + ‖(b, q)‖2)

(29)

where we have used (26) for w = q − f and k = 2.
Next, we find a bound for ‖q‖2

2,2. For this, we apply ∂β to (2) for |β| ≤ 2 and we
obtain

∂t∂
βq + u · ∇∂β(q − b)+ uh · ∇∂βb = R2 + R3 + R4 (30)

where

R2 := u · ∂β∇q − ∂β(u · ∇q),

R3 := −u · ∂β∇b + ∂β(u · ∇b),

R4 := uh · ∂β∇b − ∂β(uh · ∇b).

Now notice that for U := ∇u, it follows from interpolation that

‖∇U‖4 � ‖U‖
1
2∞‖∇2

U‖
1
2
2

and so,

‖∇2u‖4 � ‖∇u‖
1
2∞‖u‖

1
2
3,2.

Similarly

‖∇q‖4 � ‖q‖
1
2∞‖q‖

1
2
2,2.
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Therefore,

‖∇q‖4‖∇2u‖4 � ‖q‖∞‖u‖3,2 + ‖∇u‖∞‖q‖2,2.

By using this estimate, we deduce from (26) and commutator estimates that

‖R2‖2 � ‖∇u‖∞‖q‖2,2 + ‖q‖∞(1 + ‖q‖2,2). (31)

The commutators R3 and R4 are easy to estimate and are given by

‖R3‖2 � ‖∇u‖∞‖b‖3,2 + ‖∇b‖∞(1 + ‖q‖2,2), (32)

‖R4‖2 � ‖b‖3,2 + ‖∇b‖∞, (33)

respectively, for a given uh ∈ W 3,2(R2;R2). Next, by using divu = 0, we obtain

〈
(u · ∇∂βq) , ∂βq

〉 = 0. (34)

Additionally, the following estimates holds true

∣∣∣〈(u · ∇∂βb) , ∂βq
〉∣∣∣ � ‖u‖∞‖b‖2

3,2 + ‖u‖∞‖q‖2
2,2, (35)

∣∣∣〈(uh · ∇∂βb) , ∂βq
〉∣∣∣ � ‖b‖2

3,2 + ‖q‖2
2,2 (36)

since uh ∈ W 3,2(R2;R2). If we now collect the estimates above (keeping in mind
that f ∈ W 2,2(R2) and uh ∈ W 3,2(R2;R2)), we obtain by multiplying (2) by ∂βq

and then summing over |β| ≤ 2, the following

d

dt
‖q‖2

2,2 �
(
1 + ‖u‖1,∞ + ‖∇b‖∞ + ‖q‖∞

)(
1 + ‖(b, q)‖2). (37)

Summing up (29) and (37) yields the desired result.

We now have all in hand to prove our main theorem, Theorem 2.
Proof of Theorem 2 In the following, we define the time-dependent function g as

g(t) := e + ‖(b, q)(t)‖, for t ∈ [0, T ]. (38)

Next, without loss of generality, we assume that f = 0 so that from Proposition 1,
we obtain

‖u(t)‖1,∞ � 1 + (1 + ln ‖q(t)‖2,2)(‖∇b(t)‖∞ + ‖q(t)‖∞) (39)
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for t ∈ [0, T ]. Using the monotonic properties of logarithms, it follows from the
above that

‖u(t)‖1,∞ � 1 + ln[g(t)](‖∇b(t)‖∞ + ‖q(t)‖∞). (40)

Furthermore, since 1 ≤ ln(e+|x|) for any x ∈ R, we can deduce from the inequality
above that

‖u(t)‖1,∞ + ‖∇b(t)‖∞ + ‖q(t)‖∞ � 1 + ln[g(t)](‖∇b(t)‖∞ + ‖q(t)‖∞).

(41)
On the other hand, it follows from Lemma 1 that

g(t) ≤ g(0) exp

(
c

∫ t

0

(
1 + ‖u(s)‖1,∞ + ‖∇b(s)‖∞ + ‖q(s)‖∞

)
ds

)
(42)

for any t ∈ [0, T ]. Combining (41) and (42) yields

g(t) ≤ g(0) exp

(
c

∫ t

0

(
1 + ln[g(s)](‖∇b(s)‖∞ + ‖q(s)‖∞)

)
ds

)
. (43)

We can now take logarithm of both sides and apply Grönwall’s lemma to the
resulting inequality to obtain

ln[g(t)] ≤ (
ln[g(0)] + cT

)
exp

(
c

∫ t

0
(‖∇b(s)‖∞ + ‖q(s)‖∞) ds

)
. (44)

At this, point, we can now utilize (8), take exponentials in (44) and obtain

‖(b, q)(t)‖ ≤ [g(0)]exp(cK) exp[cT exp(cK)] (45)

for any t ∈ [0, T ]. Since the right-hand side is finite, it follows that the solution
(b, q) can be continued on some interval [0, T ′) for some T ′ > T . This finishes the
proof.
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Modeling Under Location Uncertainty:
A Convergent Large-Scale
Representation of the Navier-Stokes
Equations

Arnaud Debussche, Berenger Hug, and Etienne Mémin

Abstract We construct martingale solutions for the stochastic Navier-Stokes equa-
tions in the framework of the modelling under location uncertainty (LU). These
solutions are pathwise and unique when the spatial dimension is 2D. We then prove
that if the noise intensity goes to zero, these solutions converge, up to a subsequence
in dimension 3, to a solution of the deterministic Navier-Stokes equation. This
warrants that the LU Navier-Stokes equations can be interpreted as a large-scale
model of the deterministic Navier-Stokes equation.

1 Introduction

For several years there has been a burst of activity to devise stochastic representa-
tions of fluid flow dynamics. These models are strongly motivated in particular by
climate and weather forecasting issues and the need to provide accurate ensemble
of large-scale flow realisations [2]. Yet, elaborating such stochastic dynamics on
ad hoc grounds can be highly detrimental to the system of interest [4]. A minimal
mathematical requirement for satisfactory large-scale flow dynamics representation
is that a weak solution of the Large Eddy Simulation (LES) scheme converges
toward a weak solution of the fine-scale deterministic Navier-Stokes equations
in 3D and toward the unique solution for the 2D Navier-Stokes equations. The
convergence of some classical LES models toward the true fine scale dynamics is
well known in the deterministic case [3, 7]. However, the question of convergence
of stochastic parametrization toward solutions of the deterministic equations at the
limit of vanishing noise is not always clear.
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In this study we show that stochastic Navier-Stokes models defined within the
modelling under location uncertainty principle (LU) [9] have martingale solutions
in 3D and a unique strong solution—in the probabilistic sense—in 2D. Moreover,
in 3D in the limit of vanishing noise there exists a subsequence converging in law
toward a weak solution of the deterministic Navier-Stokes equations and in 2D the
whole sequence converges toward the unique solution. As such these results enable
to consider the LU representation as a valid large-scale stochastic representation of
flow dynamics that is more amenable to ensemble forecasting and data assimilation
than deterministic model due to an improved variability.

2 Modelling Under Location Uncertainty

The LU formulation relies mainly on the following time-scale separation assump-
tion of the flow:

dXt = u(Xt , t) dt + σ(Xt , t) dWt, (1)

where X : R
+ × Ω → S is the Lagrangian displacement defined within the

bounded domain S ⊂ Rd (d = 2 or 3) with smooth boundary, and u : R
+ ×

S × Ω → S denotes the large-scale velocity that is both spatially and temporally
correlated, while σdW is a highly oscillating unresolved component (also called
noise term) that is only correlated in space.

More precisely, we consider a cylindrical Wiener process W on L2(S,Rd), the
space of square integrable functions on S with values in R

d ,

W =
∑
i∈N

β̂iei ,

where (ei)i∈N is a Hilbertian orthonormal basis of L2(S,Rd) and (β̂i)i∈N is
a sequence of independent standard brownian motions on a stochastic basis
(Ω,F , (Ft )t∈[0,T ],P) ([11]). The above does not converge in L2(S,Rd) but in any
larger Hilbert space U such that the embedding of L2(S,Rd) into U is Hilbert-
Schmidt, for instance U can be the L2(S) based Sobolev space H−α(S) for some
α > d/2.

The spatial structure of the noise is specified through a time dependent deter-
ministic integral covariance operator σt defined from a bounded and symmetric
kernel σ̂ :

σtf (x) :=
∫
S
σ̂ (x, y, t) f (y) dy, f ∈ L2(S,Rd).

For each (x, y, t), σ̂ (x, y, t) is a d × d symmetric tensor. Since σ̂ is bounded
in x; y and t , σ(x, t) maps L2(S,Rd) into itself and is Hilbert-Schmidt. Then, the
noise can be written as the Wiener process:
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σtWt =
∑
i∈N

β̂i
t σt ei ,

where the series converges in L2(S,Rd) almost surely and in Lp(Ω) for all
p ∈ N and Eq. (1) should be understood in the Itô sense. We may further write
the dependance of the Wiener process in terms of the other variables:

σtWt (x, ω) =
∑
i∈N

β̂i
t (ω)σtei(x),

We consider a divergence free noise:

∇x · σ̂ (x, y, t) = 0, x, y ∈ S, t ≥ 0.

Also, for each t ∈ R
+, there exists (φn(t))n a complete orthogonal system

composed by eigenfunctions of the covariance operator at each time t ∈ R and
another sequence of independent standard brownian motions, on the same stochastic
basis (Ω,F , (Ft )t∈[0,T ],P), such that we have the representation:

σtWt =
∞∑
k=0

φk(t) β
k
t .

This Gaussian random field is associated to the two-times, two-points covariance
tensor given by

Q(x, y, t, t ′) = E
(
σtdWt(x) [σt ′ dWt ′ ]T (y)

) =
∫
S
σ̂ (x, z, t) σ̂ (y, z, t ′)dy δ(t−t ′) ,

with the diagonal part (i.e one time auto-correlation), referred to in the following as
the variance tensor, and denoted by

a(x, t) =
∫
S
σ̂ (x, y, t) σ̂ (x, y, t)dy =

∞∑
k=0

φk(x, t) φ
T

k (x, t). (2)

In a way similar to the classical derivation of Navier-Stokes equations, the LU
setting is based on a stochastic representation of the Reynolds transport theorem
(SRTT) [9], describing the rate of change of a random scalar q within a volume
V (t) transported by the stochastic flow (1). For incompressible unresolved flows,
(i.e. ∇ · σ = 0), the SRTT reads

d
( ∫

V (t)

q(x, t) dx
)
=
∫
V (t)

(
Dt q + q∇ · (u− us)dt

)
dx, (3a)

Dt q = dt q + (u− us) ·∇q dt + σdWt ·∇q − 1

2
∇ · (a∇q) dt, (3b)
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where dt q(x, t) = q(x, t + dt)− q(x, t) stands for the forward time-increment of q
at a fixed point x, Dt is introduced as the stochastic transport operator in [9, 12] and
plays the role of the material derivative. Recall that u is the large-scale velocity used
in (1) and a is defined in (2). Note also that we omit to mention the dependance of
σ on time.

This operator is derived from the Itô-Wentzell formula [8] to express the
differentiation of a stochastic process transported by the flow [9]. The drift us =
1
2∇ ·a, coined as the Itô-Stokes drift (ISD) in [1], represents through the divergence
of the variance tensor, the effects of the small-scale inhomogeneity on the large-
scale flow component. This term can be understood as a generalization of the Stokes
drift associated to the waves orbital motion. In addition to this modified advection,
the stochastic transport operator involves an inhomogeneous diffusion driven by the
variance tensor, which can be interpreted as a subgrid diffusion term attached to the
mixing operated by the small scales. It can be noticed that this term would only
be implicitly represented in Stratonovich integral form. However, the ISD would
remain [1]. The remaining term corresponds to the advection by the random term.
It can be observed by a direct application of Itô on the norm of the scalar that the
positive energy brought by this (backscattering) term is exactly compensated by the
energy loss by the diffusion [12]. Due to that, for a transported quantity, its energy
is conserved pathwise, or in other words: for any realization of the flow.

The above SRTT (3a) and Newton’s second principle (in a distributional sense)
allow us to derive the following stochastic equations of motions (see Sect. 5 of [9]
or Sect. 2.2–2.3 of [10]), which for any noise scaling ε > 0 parameter and for all
points of S reads, using σ, us, a introduced above:

dt u + (u− ε2us) ·∇u dt + εσdWt ·∇u − 1

2
ε2 ∇ · (a∇u) dt

= − 1

ρ
∇(p dt + dpσ

t ) + 1

Re

Δ(u dt + εσ dWt), (4)

with the incompressibility conditions

∇ · (u− ε2us) = 0 , ∇ · σ = 0 , (5)

and associated with Dirichlet boundary condition u(t, x) = 0 and σ̂ (x, y, t) = 0
for all x ∈ ∂S and t > 0. The initial condition is denoted by u(0, x) = u0(x) for
all x ∈ S . As usual, u(t, x) = (u1(t, x), . . . , ud(t, x)) and p(t, x) stands for the
velocity and the pressure of the fluid, respectively. The term dpσ

t corresponds to
the Brownian (martingale) part of the pressure. The Ito-Stokes drift us is defined

as us := 1

2
∇ · a and ρ stands for the fluid density. The dimensioning constant

Re = UL/ν denotes the Reynolds number, sets from the ratio of the product of
characteristic length and velocity scales, UL, with the kinematics viscosity ν. As
for the noise scaling parameter, ε, it encodes a scale of the unresolved energy and
should converge to zero when all the flow components are resolved. Meaning thus
there is no noise and the system corresponds trivially to the deterministic Navier-
Stokes system.
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Although the system corresponds to the Navier-Stokes for zero noise, the
convergence toward weak (strong) solutions of the 3D (2D) deterministic Navier-
Stokes, respectively, at the limit of vanishing noise needs to be assessed. This is the
results we aim to prove in this paper.

First of all, in order to work with a pressure-free system through a divergence-
free Leray projection, we proceed to the change of variable v := u− ε2us in (4) to
rewrite the system with a classical incompressibility condition on v:

dtv + v ·∇v dt − 1

Re

Δv dt + ε2(v ·∇)us dt − ε2

2
∇ · (a∇v) dt

− ε4

2
∇ · (a∇us) dt − ε2

Re

Δus dt + ε2∂tusdt = − 1

ρ
∇(p dt + dpσ

t ) −

(εσdWt ·∇)v − (ε3σdWt ·∇)us + ε

Re

Δ(σ dWt), (6)

with the incompressibility conditions

∇ · v = 0 ∇ · σ = 0 , (7)

for all points in S together with Dirichlet boundary conditions v(t, x) = 0,
σ̂ (x, y, t) = 0 for all x ∈ ∂S and t > 0 and the initial condition v(0, x) = v0(x) :=
u0(x)− ε2us(0, x) for all x ∈ S . In the following section we specify the spaces on
which this system is defined, rewrite it in an equivalent abstract form and state our
main result.

3 Notations and Main Result

Let V be the space of infinitely differentiable d-dimensional vector fields u on S ,
with compact support strictly contained in S , and satisfying ∇ · u = 0. We denote
by H the closure of V in L2(S,Rd) and V the closure of V in the Sobolev space
H 1(S,Rd). The space H is endowed with the L2(S,Rd) inner product. This inner
product and its induced norm are noted:

(u, v)
H
:= (u, v)L2(S) and |u|

H
:= ‖u‖L2(S) .

As for space V , thanks to Poincaré inequality, it is endowed with the H 1
0 (S,Rd)

inner product and its associated norm, denoted respectively as

((u, v))
V
:= (∇u,∇v)L2(S) and ‖u‖

V
:= ‖∇u‖L2(S).



20 A. Debussche et al.

We may define then the Gelfand triple V ⊂ H ⊂ V ′ where V ′ is the dual space of V
relative to H . We denote by 〈 · , ·〉V ′×V the duality pairing between V ′ and V . The
space of Hilbert-Schmidt operators from H to H is denoted by L2(H) and ‖ · ‖L2

is its norm.
System (4) may be rewritten in an equivalent simplified pressure-free formulation

by using the Leray projection P : L2(S,Rd) → H of L2(S,Rd) onto the space H

of divergence-free vectorial functions. Applying Leray’s projector to (6), we obtain

dtv − 1

Re

P (Δvdt) + P(v·∇v dt)

+ P

(
ε2(v·∇)us dt − ε2

2
∇ ·(a∇v)dt − ε4

2
∇ ·(a∇us)dt − ε2

Re

Δusdt + ε2∂tusdt

)

= P

(
ε

Re

Δ(σ dWt) − (εσdWt ·∇)v − (ε3σdWt ·∇)us

)
. (8)

This system can finally be rewritten in the following simplified abstract form

{
dtv(t) + Av(t) dt + Bv(t) dt + Fεv(t) dt = Gεv(t) dWt,

v(0) = v0.
(9)

The deterministic terms A, B, Fε and the stochastic term Gε are described below.
Several kinds of solutions can be defined for stochastic partial differential

equations. As for deterministic PDEs, these can be strong, weak or mild (semi-
group) solutions. When the solutions are constructed for a fixed Wiener process W
on a given stochastic basis (Ω,F , (Ft )t∈[0,T ],P), they are strong in the probabilistic
sense. As usual in 3D, due to the lack of uniqueness, we work with weaker solutions,
called martingale solutions, that consists in looking for solutions defined as a triplet
composed of a stochastic basis, a Wiener process and an adapted process.

More precisely, we say that there is a martingale solution of system (9) if there
exists a stochastic basis (Ω,F , (Ft )t∈[0,T ],P), a cylindrical Wiener process W on
L2(S;Rd) and a progressively measurable process v : [0, T ] ×Ω → H , with

v ∈ L2 (Ω × [0, T ];V ) ∩ L2
(
Ω , C0([0, T ];H)

)
,

such that P− a.e, v satisfies for all time t ∈ [0, T ]

v(t) +
∫ t

0
Av(s) ds +

∫ t

0
Bv(s) ds +

∫ t

0
Fv(s) ds = v0 +

∫ t

0
G(v(s)) dWs,

(10)

where the equality must be understood in the weak sense. We will show, for all
ε > 0, the existence in 3D of a martingale solution for the LU representation of
the Navier-Stokes equations for noises associated with a smooth enough diffusion
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tensor kernel σ̂ in space and time. In 2D, this solution is unique and strong in the
probabilistic sense. This result is summarized in the following theorem.

Theorem 1 Let d = 2 or 3 and assume that the noise is smooth enough in the sense
that its variance tensor and Ito-Stokes drift are such that

sup
t∈[0,T ]

∞∑
k=0

‖φk(t)‖2
H3(S)

< ∞, (11)

us ∈ L∞(0, T ;H 3(S,Rd)); ∂tus ∈ L∞(0, T ;H) and a∇us ∈ L∞(0, T ;V ).

(12)
Then, for all ε > 0, Eq. (10) admits a martingale solution. Moreover, for d = 2, any
solution of (10) is strong in the probabilistic sense and unique.

Morever, when ε → 0, for d = 3, there exists a subsequence of (uε)ε>0 which
converges in law to a solution of the deterministic Navier-Stokes equation. For
d = 2, the whole sequence converges to the unique solution of the Navier-Stokes
equation.

The condition of Theorem 1 simplifies when the covariance operator does not
depend on time or if the ISD is divergence free. In both cases the condition on the
temporal derivative of the ISD are not necessary. We note also, that for a spatially
homogeneous noise, the variance tensor is constant and the ISD cancels. However
this may happen only on a periodic domain or on the full space. The assumptions on
the noise are anyway non optimal but it is not the purpose of this paper to consider
non spatially smooth noise since in practice it is smooth.

Note that condition (11) is satisfied for instance if we choose σ independent on t

and equal to A−r with r large enough where A is the Stokes operator defined below.
Indeed, in this case φk = λ−r

k ek where (ek)k is an orthonormal complete system of
eigenvectors of A associated to the eigenvalues (λk)k and ‖φk(t)‖2

H3(S)
= λ3−2r

k .

The behavior of the eigenvalues: λk ∼ k2/d allows to conclude that (11) follows.
Since us = 1

2∇ · a and a is defined by (2), (12) holds also for r large enough since
‖us‖H 3(S) ≤ ∑∞

k=0 ‖φk(t)‖2
H4(S)

. Finally, since A−r is self-adjoint and Hilbert-

Schmidt for r > d/4, it is associated to a symmetric kernel σ̂ which is bounded for
r large enough.

These convergence results open new interesting possibilities for the study
of turbulence or for the proposition of new large-scale representations of fluid
dynamics. From the theoretical point of view, it might be interesting to explore
multiscale versions of the LU representation based on spatial filtering together with
nested noise models. This would generalize classical large eddy models in which
the noise would depend on the spatial filtering applied. The coarser the filtering
the larger the noise. Energy transfer between scales would then be very interesting
to study in this probabilistic setting. Stochastic Karman-Howarth-Monin equations
for energy exchanges across scales could be obtained by this way. From a practical
point of view, these convergence results justify the setting of such stochastic models
to represent large-scale solutions of the Navier-Stokes equations.
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4 Proofs of the Main Result

We introduce the Stokes operator: Av := − 1
Re

P (Δv) on the domain D(A) :=
V ∩ H 2(S,Rd). Let b be the trilinear form and B the bilinear operator defined for
all u, v and w ∈ V by

b(u, v,w) =
∫
S

w(x) [u(x) ·∇] v(x) dx = (B(u, v),w)H .

Recall that for all u, v and w ∈ V : b(u, v,w) = −b(u,w, v). As usual, we set
B(u) = B(u, u). We then define F by:

F(v) = ε2B(v, us)− ε2

2
P∇ · (a∇v)− ε4

2
P∇ · (a∇us) − ε2Aus (13)

+ ε2∂tus, v ∈ V.

It can be seen that F(v) ∈ V ′. We next write the noise term as

G(v) dWt =
∞∑
k=0

(
−ε Aφk − εB(φk, v) − ε3B(φk, us)

)
dβt,k,

where, as for σ , we omit to write dependance of φk on t . With these notations, (8)
may indeed be rewritten as (9).

Let (ei)i≥0 be the Hilbertian basis of H consisting of eigenvectors of A. We use
the finite dimensional orthogonal projector Pn, n ∈ N, onto Span(e0, . . . , en) and
the projected operators:

Bn := PnB Fn = PnF Gn = PnG .

The Galerkin approximation of (9) is given by:

{
dtvn(t) + Avn(t) dt + Bn[vn(t)] dt + Fn[vn(t)] dt = Gn[vn(t)] dWt,

vn(0) = Pn(v0).

(14)
This is a finite dimensional system of a stochastic differential equation with smooth
coefficients. It has a unique local solution, by the estimate (17) below it is global.

Apply Itô formula to F(x) = |x|p
H

for p ≥ 2:

dt |vn(t)|pH = p|vn(t)|p−2
H

(
vn(t) , G

n(vn(t))dWt

)
H

− p|vn(t)|p−2
H

(
vn(t) , Avn(t)+ Bnvn(t)+ Fnvn(t)

)
H

dt

+ p(p − 2)

2

(
Gnvn(t), vn(t)

)2

H
|vn(t)|p−4

H
dt + p

2
‖Gnvn(t)‖2

L2(H)|vn(t)|p−2
H

dt.

(15)
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We have (vn(t) , Avn(t))H = 1

Re

‖vn(t)‖2
V

, (vn(t) , Bnvn(t))H = 0 and

(
vn(t) , F

nvn(t)
)
H
= ε2 ([vn(t)·∇]us , vn(t))H − ε2

2
(vn(t) , ∇ ·(a∇vn(t)))H

− ε4

2
(vn(t) , ∇ · (a∇us))H + ε2 (Aus , vn(t))H + ε2 (∂tus , vn(t))H

:= Fn
1 + Fn

2 + Fn
3 + Fn

4 + Fn
5 .

Under the assumption (12) in Theorem 1, we have the estimate:

|Fn
1 + Fn

3 + Fn
4 + Fn

5 | ≤ C (ε2 + ε4) |vn(t)|2H + C(ε2 + ε4)

with C > 0 a finite constant. And by the definition of a, we have

Fn
2 = ε2

2

∞∑
k=0

|(φk ·∇)vn(t)|2L2(S)
.

Furthermore, using (11),

1

2
‖Gnvn(t)‖2

L2(l
2(H)

≤ ε2

2

∞∑
k=0

|(φk ·∇)vn(t)|2L2(S)
+ Cε2 + 2ε2 |vn(t)|2H

and the first term corresponds exactly to Fn
2 . Finally, using again (11),

(Gnvn(t), vn(t))
2
H
≤ 2C (ε2 + ε6) |vn(t)|2H .

Hence

dt |vn(t)|pH + p

Re

|vn(t)|p−2
H

‖vn(t)‖2
V
≤ p|vn(t)|p−2

H

(
vn(t) , G

n(vn(t))dWt

)
H

+ C (ε2 + ε4) |vn(t)|pH + C [(ε2 + ε6)α + (ε2 + ε4)] (16)

with C > 0 depending on p (and not on ε and n). We then use classical arguments
based in particular on Burkholder-Davis-Gundy inequality to deduce:

1

2
E

[
sup

0≤t≤T

|vn(t)|pH +
∫ T

0
|vn(t)|p−2

H
‖vn(t)‖2

V

]
≤ E

[ |v0|pH
]+ C ε2. (17)

Arguing as in [6], we prove that the laws (L(vn))n are tight in L2([0, T ] ; H) and
in C0([0, T ] ; D(A−3/2) ).
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By the Skorohod’s embedding theorem, there exists a stochastic basis (Ω,F ,

(F t )t ,P) with L2([0, T ];H) ∩ C0([0, T ];D(A−3/2))-valued random variables vn
for n ≥ 1 and v such that vn has the same law as vn on L2([0, T ];H) ∩
C0([0, T ];D(A−3/2)) and C0([0, T ], U0) cylindrical Wiener processes W

n
for

n ≥ 1 together with W such that (by thinning the sequences)

vn → v in L2([0, T ] ; H) ∩ C0([0, T ] ; D(A−3/2)) P a.s (18)

W
n → W in C0([0, T ], U0) P a.s . (19)

For all integers n, vn verifies

vn(t)− Pn(v0)+
∫ t

0

[
Avn(r)+ Bnvn(r)+ Fnvn(r)

]
dr =

∫ t

0
Gn(vn(r))dW

n

r .

(20)
We may let n → ∞ in this equation and prove that v verifies for almost surely
(t, ω) ∈ [0, T ] ×Ω

v(t)− v0 +
∫ t

0
(Av(r)+ Bv(r)+ Fv(r)) dr =

∫ t

0
G(v(r)) dWr (21)

in the weak sense. For instance, let w be a smooth test function, then:

∫ t

0
(Bn(vn(r), w)H dr =

∫ t

0
b((vn(r), (vn(r), w)dr = −

∫ t

0
b((vn(r), w, (vn(r))dr

and by the almost sure strong convergence in L2(0, T ,H) this converges to
− ∫ t

0 b((v(r), w, (v(r))dr when n → ∞.
It can be shown that (17) holds for vn and letting n → ∞ we obtain a bound on

v. In particular, v ∈ L2(Ω ; L2([0, T ], V ))∩L2(Ω ; L∞([0, T ],H)). We then use
the mild form of this equation to prove that v ∈ C0([0, T ] , H) almost surely.

For d = 2, we consider v1 and v2 two solutions of (9) on the same probability
space (Ω,F , (Ft )t ,P) and, using Ito formula and classical estimates, prove that

E

[
sup

0≤r≤T

e(r) |(v1 − v2)(r)|2H
]
= 0,

where e(t) := exp
(
−α

∫ t

0 ‖v2(r)‖2
V

dr
)

for a well chosen α. As E
∫ T

0 ‖v2(r)‖2
V

dr <

∞, we deduce P a.s, v1 = v2 for all t ∈ [0, T ]. We have proved that pathwise
uniqueness holds for d = 2. Then, using an argument due to Gyongy and Krylov
(see for instance [5], Sect. 5), we conclude that the whole sequence (vn)n converges
to a unique solution of (21).

Let v0 ∈ H . For all ε > 0, we have proved that the abstract problem (8) admits
martingale solutions (vε)ε>0. We then study if (vε)ε>0 converges when [ε → 0+]
to a solution v of the following deterministic Navier-Stokes equation
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{
dtv(t) + Av(t) dt + Bv(t) dt = 0
v(0) = v0 .

(22)

When d = 2, the solution vε is strong and unique. The deterministic Eq. (22)
admits also a unique weak solution v. By classical estimate, we prove:

Eε

[
sup

0≤t≤T

e(t) |vε(t)− v(t)|2
H

]
−→
ε→0+

0,

where e(t) := exp
(
−α

∫ t

0 ‖v(r)‖2
V

dr
)

for some α > 0.

When d = 3, inequality (17) shows that
(
L(vεn)

)
n

are tight in L2([0, T ] ; H) ∩
C0([0, T ] ; D(A−3/2) ). Using Skorohod embedding theorem, we show that a
subsequence converges to the law a weak solution of (22).
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A Stochastic Benjamin-Bona-Mahony
Type Equation

Evgueni Dinvay

Abstract Considered herein is a particular nonlinear dispersive stochastic equation.
It was introduced recently in Dinvay and Mémin (Proc. R. Soc. A. 478:20220050,
2022), as a model describing surface water waves under location uncertainty. The
corresponding noise term is introduced through a Hamiltonian formulation, which
guarantees the energy conservation of the flow. Here the initial-value problem is
studied.

Keywords Water waves · BBM equation · multiplicative noise

2010 Mathematics Subject Classification 35Q53, 35Q60, 60H15

1 Introduction

Consideration is given to the following Stratonovich one-dimensional BBM-type
equation

du = −∂xK
(
u+Ku2

)
dt +

∑
j

γj ∂x

(
u+Ku2

)
◦ dWj (1)

introduced in [4], as a model describing surface waves of a fluid layer. It is
supplemented with the initial condition u(0) = u0. Equation (1) has a Hamiltonian
structure with the energy

H(u) =
∫
R

(
1

2

(
K−1/2u

)2 + 1

3
u3
)
dx. (2)
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The Fourier multiplier operator K , defined in the space of tempered distributions
S ′(R), has an even symbol of the form

K(ξ) � (1 + ξ2)−σ0 (3)

with σ0 > 1/2. Expression (3) means that the symbol K(ξ) is bounded from below
and above by RHS(3) multiplied by some positive constants. In other words the
operator K essentially behaves as the Bessel potential of order 2σ0, see [6]. The
space variable is x ∈ R and the time variable is t � 0. The unknown u is a
real valued function of these variables and of the probability variable ω ∈ �,
representing the free surface elevation in the fluid layer. The scalar sequence {γj }
satisfies the restriction

∑
j γ

2
j < ∞, and {Wj } is a sequence of independent scalar

Brownian motions on a filtered probability space (�,F , {Ft },P) .
Model (1) was introduced in [4], where an attempt to extend an elegant

Hamiltonian formulation of [1] to the stochastic setting was made. We will just
briefly comment on the methodology of [4]. The white noise is firstly introduced
via the stochastic transport theory presented in [8], which is based on splitting
of fluid particle motion into smooth and random movements. Then it is restricted
to a particular Stratonovich form in order to respect the energy conservation. In
particular, it provides us with a model having multiplicative noise of Hamiltonian
structure. Finally, a long wave approximation results in simplified models as (1), for
example.

One may notice that after discarding the nonlinear terms in Eq. (1), the details
can be seen in [4], the corresponding linearised initial-value problem can be solved
exactly with the help of the fundamental multiplier operator

S(t, t0) = exp

⎡
⎣−∂xK(t − t0)+

∑
j

γj ∂x(Wj (t)−Wj(t0))

⎤
⎦ , (4)

where t0, t ∈ R. Note that it can be factorised as S(t, t0) = S(t − t0)SW (t, t0),

where S(t) = exp(−∂xKt) is a unitary semi-group and SW containing all the
randomness coming from the Wiener process is unitary as well. They obviously
commute as bounded differential operators. We recall that S(t) is defined via the
Fourier transform F (S(t)ψ) = exp(−iξK(ξ)t)ψ̂(ξ) for any ψ ∈ S ′(R) and
ψ̂ = Fψ. Similarly, SW(t, t0) is defined by the line

SW(t, t0)ψ = F−1

⎛
⎝ξ �→ exp

⎛
⎝iξ

∑
j

γj (Wj (t)−Wj(t0))

⎞
⎠ ψ̂(ξ)

⎞
⎠ .

It allows us to represent (1) in the Duhamel form

u(t) = S(t, 0)

⎛
⎝u0 +

∫ t

0
S(0, s)f (u(s))ds +

∑
j

γj

∫ t

0
S(0, s)g(u(s))dWj (s)

⎞
⎠ ,

(5)
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where

f (u) = −∂xK
2u2 +

∑
j

γ 2
j ∂xK(u∂xKu2)

and

g(u) = ∂xKu2.

Existence and uniqueness of solution to Eq. (5) is under consideration. It is worth
to point out that both SW and the stochastic integral in (5) are well defined. Indeed,

appealing to Doobs’ inequalities for the submartingale
∣∣∣∑n+m

j=n γjWj

∣∣∣ and the Itô-

Nisio theorem one can show that
∑

j γjWj converges uniformly in time almost

surely, in probability and in L2 sense. If the integrand of the stochastic integral in
(5) is in some Sobolev space Hσ (R) for each s and a.e. ω, then we can understand
this sum of integrals as an integration with respect to a Q-Wiener process associated
with a Hilbert space H and a non-negative symmetric trace class operator Q having
eigenvalues γ 2

j and eigenfunctions ej forming an orthonormal basis in H . Then the
corresponding integrand is the unbounded linear operator between H and Hσ (R)

that maps all ej to the same element of Hσ (R), namely, to S(0, s)g(u(s)). In
particular, it explains why we need the summability condition

∑
j γ

2
j < ∞.

Before we formulate the main result it is left to introduce a notation as follows.
By C(0, T ;Hσ (R)) we will notate the space of continuous functions on [0, T ]
having values in Hσ (R) with the usual supremum norm.

Theorem 1 Let σ0 > 1/2 and σ � max{σ0, 1}. Then for any F0-measurable u0 ∈
L2(�;Hσ (R)) ∩ L∞(�;Hσ0(R)) with sufficiently small L∞Hσ0 -norm and any
T0 > 0 Eq. (5) has a unique adapted solution u ∈ L2(�;C(0, T0;Hσ (R))) ∩
L∞(�;C(0, T0;Hσ0(R))). Moreover, H(u(t)) = H(u0) for each t ∈ [0, T0] almost
surely on �.

The conservation of energy (2) plays a crucial role in the proof. So it will be a bit
more convenient to regard the energy norm defined by

‖u‖2
H = 1

2

∫
R

(
K−1/2u

)2
dx

instead of the spatial Hσ0 -norm. They are obviously equivalent.
The proof is essentially based on the contraction mapping principle. We do not

exploit much smoothing properties of the group S(t, t0), as for example is done
in [2] for analysis of a stochastic nonlinear Schrödinger equation. It is enough to
know that the absolute value of its symbol equals one, and that S(t) is a unitary
semigroup. However, in order to appeal to the fixed point theorem we have to
truncate both deterministic f and random g nonlinearities. There are a couple of
technical difficulties related to implementation of the energy conservation in our
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case. Firstly, for the truncated equation we can claim H-conservation only until a
particular stopping time. Secondly, one can control ‖u‖H with H(u) only provided
‖u‖H is small. These additional difficulties make us repeat the arguments of the
last section in the paper iteratively in order to construct solution on the whole time
interval [0, T0].

As a final remark we point out that the noise in Eq. (1) can be gathered in one
dimensional ∂x

(
u+Ku2

) ◦ dB with the scalar Brownian motion B = ∑
j γjWj .

However, this does not affect the proof below anyhow, so we continue to stick to the
original formulation (1). In future works we are planning to extend it to γj being
either Fourier multipliers or space-dependent coefficients.

2 Truncation

The Sobolev space Hσ (R) consists of tempered distributions u having the finite
square norm ‖u‖2

Hσ = ∫ |̂u(ξ)|2 (1 + ξ2
)σ

dξ < ∞. Let θ ∈ C∞
0 (R) with supp θ ∈

[−2, 2] being such that θ(x) = 1 for x ∈ [−1, 1] and 0 � θ(x) � 1 for x ∈ R. For
R > 0 we introduce the cut off θR(x) = θ(x/R) and

fR(u) = θR(‖u‖Hσ )f (u), gR(u) = θR(‖u‖Hσ )g(u)

that we substitute in (5) instead of f (u), g(u), respectively. The new R-
regularisation of (5) reads as

u(t) = S(t, t0)

⎛
⎝u(t0)+

∫ t

t0

S(t0, s)fR(u(s))ds +
∑
j

γj

∫ t

t0

S(t0, s)gR(u(s))dWj (s)

⎞
⎠ .

(6)
In this section without loss of generality we can set t0 = 0 and u(t0) = u0. We will
vary time moments t0 below in the next section. Equation (6) can be solved with a
help of the contraction mapping principle in L2(�;C(0, T ;Hσ (R))).

Proposition 1 Let σ > 1/2, u0 ∈ L2(�;Hσ (R)) be F0-measurable and T0 > 0.
Then (6) has a unique adapted solution u ∈ L2(�;C(0, T0;Hσ (R))). Moreover, it
depends continuously on the initial data u0.

Proof We set T u(t) = RHS(6). We will show that T is a contraction mapping in
XT = L2(�;C(0, T ;Hσ (R))), provided T > 0 is sufficiently small, depending
only on R. Let u1, u2 be two adapted processes in XT . Firstly, one can notice that

‖fR(u1)− fR(u2)‖Hσ � C (1 + R)2 ‖u1 − u2‖Hσ ,

‖gR(u1)− gR(u2)‖Hσ � CR ‖u1 − u2‖Hσ .
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Indeed, Hσ (R) poses an algebraic property for σ > 1/2 and ∂xK is bounded in
Hσ (R). Then assuming ‖u1‖Hσ � ‖u2‖Hσ without loss of generality one deduces

‖gR(u1)− gR(u2)‖Hσ � C

∥∥∥θR(‖u1‖Hσ )u2
1 − θR(‖u2‖Hσ )u2

2

∥∥∥
Hσ

� CθR(‖u1‖Hσ )

∥∥∥u2
1 − u2

2

∥∥∥
Hσ

+ |θR(‖u1‖Hσ )− θR(‖u2‖Hσ )|
∥∥∥u2

2

∥∥∥
Hσ

� CR ‖u1 − u2‖Hσ ,

where we have used the estimate |θR(‖u1‖Hσ )− θR(‖u2‖Hσ )| �
∥∥θ ′∥∥

L∞ R−1

‖u1 − u2‖Hσ following obviously from the mean value theorem. The difference
between fR(u1) and fR(u2) can be obtained in the same way. Thus

‖T u1(t)− T u2(t)‖Hσ �
∥∥∥∥
∫ t

0
S(0, s)(fR(u1(s))− fR(u2(s)))ds

∥∥∥∥
Hσ

+
∥∥∥∥∥∥
∑
j

γj

∫ t

0
S(0, s)(gR(u1(s))− gR(u2(s)))dWj (s)

∥∥∥∥∥∥
Hσ

= I + II.

The first integral is estimated straightforwardly as

I �
∫ T

0
‖fR(u1(s))− fR(u2(s))‖Hσ ds � C(1 + R)2T ‖u1 − u2‖C(0,T ;Hσ ) .

The second one is estimated with the use of the Burkholder inequality [5] as

E sup
0�t�T

II 2 � CE

∫ T

0
‖gR(u1(s))− gR(u2(s))‖2

Hσ ds � CR2TE ‖u1 − u2‖2
C(0,T ;Hσ ) .

It is clear that time-continuity of T u1, T u2 follows from the factorisation S = SSW
and the estimate ‖SWgR(u)‖Hσ � CR2, so we have a stochastic convolution as in
[5, Lemma 3.3]. Thus

‖T u1 − T u2‖XT
� C

(
(1 + R)2T + R

√
T
)
‖u1 − u2‖XT

,

and so there exists a small T depending only on R such that T has a unique
fixed point in XT . Moreover, this estimate also gives us continuous dependence
of solution in XT on the initial data u0 ∈ L2(�;Hσ (R)), obviously. Clearly, the
solution can be extended to the whole interval [0, T0]. ��
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The regularisation affects the energy conservation. Indeed, in the Itô differential
form Eq. (6) reads

du =
⎛
⎝−∂xKu+ 1

2

∑
j

γ 2
j ∂

2
xu+ fR(u)+

∑
j

γ 2
j ∂xgR(u)

⎞
⎠ dt (7)

+
∑
j

γj (∂xu+ gR(u)) dWj ,

and so applying the Itô formula to the energy functional H(u(t)) defined by (2) with
the use of (7), one can easily obtain

dH(u) =
⎛
⎝(θR − 1)

∫
u2∂xKudx + θR (θR − 1)

∑
j

γ 2
j

∫ (
1

2
g(u)K−1g(u)+ ug2(u)

)
dx

⎞
⎠ dt.

(8)
Indeed, assuming σ � σ0 + 2 at first, we notice that the solution u given by
Proposition 1 solves Eq. (7). Let us introduce the following notations

�(t)dt +�(t)dW = �(t)dt +
∑
j

γj�(t)ej dWj = RHS(7).

Then Itô’s formula reads

H(u(t)) = H(u0)+
∫ t

0
∂uH(u(s))�(s)ds +

∫ t

0
∂uH(u(s))�(s)dW(s)

+ 1

2

∫ t

0
tr ∂2

uH(u(s))(�(s),�(s))ds,

where the Fréchet derivatives are defined by

∂uH(u)φ =
∫
R

(
K−1/2uK−1/2φ + u2φ

)
dx,

∂2
uH(u)(φ,ψ) =

∫
R

(
K−1/2φK−1/2ψ + 2uφψ

)
dx

at every φ,ψ ∈ Hσ0(R). Substituting these expressions together with the definitions
of � and � into the Itô’s formula one obtains (8). Let us, for example, calculate the
stochastic integral

∫ t

0
∂uH(u(s))�(s)dW(s) =

∑
j

γj

∫ t

0

∫
R

(
K−1/2uK−1/2 + u2

)

(
∂xu+ θR(‖u‖Hσ )∂xKu2

)
dxdWj



Stochastic BBM Equation 33

that equals zero as one can see integrating by parts in the space integral. Similarly,
one calculates the other two integrals in the Itô formula. Thus we have proved (8)
for σ � σ0 + 2. In order to lower the bound for σ , one would like to argue here by
approximation of initial value u0 via smooth functions and appeal to the continuous
dependence on u0, however, there is a problem here, since θR in (8) contains the
dependence on σ . So even for a smooth initial data the corresponding solution lies a
priori only in Hσ . This difficulty is overcome in the next statement, where we argue
similar to [3].

Proposition 2 Let σ0 > 1/2 and σ � max{σ0, 1}. Then (8) holds almost surely for
u satisfying Eq. (6) given by Proposition 1.

Proof The main idea is to cut off high frequencies of the differential operator ∂x
in (7) as follows. Let Pλ be a Fourier multiplier with the symbol θλ, λ > 0. It
is defined by the expression F(Pλψ) = θλψ̂. Now we consider instead of (7) the
following regularisation

du =
⎛
⎝−∂xKu+ 1

2

∑
j

γ 2
j ∂

2
xP

2
λ u+ fR(u)+

∑
j

γ 2
j ∂xPλgR(u)

⎞
⎠ dt (9)

+
∑
j

γj (∂xPλu+ gR(u)) dWj

that has a strong solution. Indeed, it contains only bounded operators and the
corresponding mild equation has exactly the same form as Eq. (6) with Sλ = SSλ

W

now instead of S , where

Sλ
W = exp

⎡
⎣∑

j

γj ∂xPλ(Wj (t)−Wj(t0))

⎤
⎦ .

So we can actually apply Proposition 1 to obtain u = uλ solving (9). Let u = u∞
stay for the solution of the original Eq. (6). Firstly, we will check that uλ → u∞ in
L2(�;L2(0, T0;Hσ (R))) for any σ > 1/2 as λ → ∞.

Let 0 � t � T � T0, where a positive small enough time moment T is to be
chosen below. Then

‖uλ(t)− u∞(t)‖Hσ = ∥∥T λuλ(t)− T ∞u∞(t)
∥∥
Hσ

�
∥∥(Sλ(t, 0)− S∞(t, 0)

)
u0
∥∥
Hσ

+
∥∥∥∥
∫ t

0

(
Sλ(t, s)− S∞(t, s)

)
fR(u∞(s))ds

∥∥∥∥
Hσ

+
∥∥∥∥
∫ t

0
Sλ(t, s)(fR(uλ(s))− fR(u∞(s)))ds

∥∥∥∥
Hσ



34 E. Dinvay

+
∥∥∥∥∥∥
(
Sλ(t, 0)− S∞(t, 0)

)∑
j

γj

∫ t

0
S∞(0, s)gR(u∞(s))dWj (s)

∥∥∥∥∥∥
Hσ

+
∥∥∥∥∥∥
∑
j

γj

∫ t

0

(
Sλ(0, s)− S∞(0, s)

)
gR(u∞(s))dWj (s)

∥∥∥∥∥∥
Hσ

+
∥∥∥∥∥∥
∑
j

γj

∫ t

0
Sλ(0, s)(gR(uλ(s))− gR(u∞(s)))dWj (s)

∥∥∥∥∥∥
Hσ

= I1 + . . .+ I6.

The terms I3 and I6 are estimated exactly as the analogous integrals I and II in the
proof of Proposition 1, namely,

I3 � C(1 + R)2
√
T ‖uλ − u∞‖L2(0,T ;Hσ )

and

E sup
0�t�T

I 2
6 � CE

∫ T

0
‖gR(uλ(s))− gR(u∞(s))‖2

Hσ ds

� CR2
E ‖uλ − u∞‖2

L2(0,T ;Hσ )
.

Thus

E

∫ T

0

(
I 2

3 + I 2
6

)
dt � C

(
(1 + R)4T 2 + R2T

)
E ‖uλ − u∞‖2

L2(0,T ;Hσ )
,

and so there exists a small T > 0 depending only on R such that

E ‖uλ − u∞‖2
L2(0,T ;Hσ )

� CE

∫ T

0

(
I 2

1 + I 2
2 + I 2

4 + I 2
5

)
dt.

One needs to show that the right hand side of this expression tends to zero when
λ → ∞. All these four integrals are treated similarly. Indeed, let us regard more
closely the first one

I 2
1 =

∫ ∣∣∣∣∣∣exp

⎛
⎝iξθλ(ξ)

∑
j

γjWj (t)

⎞
⎠− exp

⎛
⎝iξ

∑
j

γjWj (t)

⎞
⎠
∣∣∣∣∣∣
2

|û0(ξ)|2
(

1 + ξ2
)σ

dξ

that obviously tends to zero as λ → ∞ for a.e. ω and any t . Hence E
∫ T

0 I 2
1 dt → 0

by the dominated convergence theorem, sine I1 � 2 ‖u0‖Hσ . The integral of I 2
4



Stochastic BBM Equation 35

is estimated exactly in the same manner with the stochastic integral of S∞gR(u∞)

standing in place of u0. The second integral

E

∫ T

0
I 2

2 dt � TE

∫ T

0

∫ T

0

∥∥(Sλ(t, s)− S∞(t, s)
)
fR(u∞(s))

∥∥2
Hσ dsdt → 0

by the dominated convergence theorem, since ‖. . .‖2
Hσ � CR2(1+R)4. Finally, the

last integral

E

∫ T

0
I 2

5 dt � TE sup
t∈[0,T ]

I 2
5 � CTE

∫ T

0

∥∥(Sλ(0, s)− S∞(0, s)
)
gR(u∞(s))

∥∥2
Hσ ds → 0

by the Burkholder inequality and the dominated convergence theorem, since
‖. . .‖2

Hσ � CR4.

Repeating this argument iteratively on subintervals of [0, T0] of the size T one
obtains that uλ → u∞ in L2(�× [0, T0];Hσ (R)).

Let us calculate each term in the Itô formula for u = uλ. As we shall see the
corresponding stochastic integral is not zero, and moreover, it is difficult to pass to
the limit λ → ∞ treating the stochastic part. So instead of H we consider at first a
sequence Hn, n ∈ N, with the cubic term being cut off in the following way

Hn(u) = ‖u‖2
H + 1

3
θn

(
‖u‖2

H
) ∫

u3dx

that clearly tends to H(u) almost surely at any fixed time moment. The correspond-
ing Fréchet derivatives are defined by

∂uHn(u)φ =
∫
R

[(
1 + 1

3
θ ′n
(
‖u‖2

H

) ∫
u3dy

)
K−1/2uK−1/2φ + θn

(
‖u‖2

H

)
u2φ

]
dx,

∂2
uHn(u)(φ,ψ) =

∫
R

[(
1 + 1

3
θ ′n
(
‖u‖2

H
) ∫

u3dx

)
K−1/2φK−1/2ψ+2θn

(
‖u‖2

H
)
uφψ

]
dx

+ θ ′n
(
‖u‖2

H
) ∫

u2φdx

∫
K−1/2uK−1/2ψdy

+ 1

3
θ ′′n
(
‖u‖2

H
) ∫

u3dx

∫
K−1/2uK−1/2φdy

∫
K−1/2uK−1/2ψdz

at every φ,ψ ∈ Hσ0(R). Substituting it to the stochastic integral one obtains the
following expression that can be simplified by integration by parts
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∫ t

0
∂uHn(u(s))�(s)dW(s)

=
∑
j

γj

∫ t

0

∫
R

[(
1 + 1

3
θ ′n
(
‖u‖2

H
) ∫

u3dy

)
K−1/2uK−1/2 + θn

(
‖u‖2

H
)
u2
]

(
∂xPλu+θR(‖u‖Hσ )∂xKu2

)
dxdWj=

∑
j

γj

∫ t

0
θn

(
‖u‖2

H
) ∫

R

u2∂xPλudxdWj ,

where u = uλ. We will show that this integral tends to zero as λ → ∞.
That is exactly the place where we need the cut off θn. Applying some algebraic
manipulations to the space integral and the Burkholder inequality to the stochastic
integral, one deduces the estimate

E sup
0�t�T0

∣∣∣∣
∫ t

0
∂uHn(u(s))�(s)dW(s)

∣∣∣∣
2

� CE

∫ T0

0
θ2
n

(
‖uλ(t)‖2

H
)(∫

R

u2
λ(t)∂x(Pλ − 1)uλ(t)dx

)2

dt

� CE

∫ T0

0
θ2
n

(
‖uλ(t)‖2

H
)
‖uλ(t)‖4

H
(
‖(Pλ − 1)u∞(t)‖2

H 1/2 + ‖(Pλ − 1)(uλ(t)− u∞(t))‖2
H 1/2

)
dt

� Cn4
E

∫ T0

0

(
‖(Pλ − 1)u∞(t)‖2

H 1/2 + ‖(uλ(t)− u∞(t))‖2
H 1/2

)
dt → 0

as λ → 0 for each fixed n ∈ N. Note that the use of the functional Hn instead of H
is important here. Similarly, we calculate the rest two terms in the Itô formula

∂uHn(u)�+ 1

2
tr ∂2

uH(u)(�,�)

= (θR − θn)

∫
u2∂xKudx + θnθR (θR − 1)

∑
j

γ 2
j

∫
ug2(u)dx

+ θR(θR − 1)

2

∑
j

γ 2
j

∫
g(u)K−1g(u)dx

+ θn

2

∑
j

γ 2
j

∫ (
u2∂2

xP
2
λ u+ 2u(∂xPλu)

2
)
dx

+ θnθR
∑
j

γ 2
j

(
2
∫

u(∂xPλu)g(u)dx −
∫

g(u)PλK
−1g(u)dx

)
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+ 1

3
θRθ

′
n

∫
u3dy

⎛
⎝θR − 1

2

∑
j

γ 2
j

∫
g(u)K−1g(u)dx −

∫
ug(u)dx

⎞
⎠

= J1 + . . .+ J6,

where as above u = uλ. One can prove that for a.e. ω ∈ � and t ∈ [0, T0] the first
three terms J1 + J2 + J3 tend to the integrand of the right hand side of Expression
(8) in the subsequent limits, firstly, as λ → ∞ and then as n → ∞. Both J4 and
J5 tend to zero as λ → ∞. Meanwhile the last term J6 stays bounded by C/n, and
so limn→∞ limλ→∞ J6 = 0. Let us show, for example, that J4 → 0 which is the
most troublesome term in the sum, since here is the only place in the paper where
we make use of the fact σ � 1. The rest are treated similarly without this additional
restriction. Indeed,

J4 � C

∣∣∣∣
∫

(u∂xPλu− Pλ(u∂xu)) (Pλ − 1)∂xudx

∣∣∣∣
� C ‖uλ‖2

H 1

(‖(Pλ − 1)u∞‖H 1 + ‖uλ − u∞‖H 1

)

that obviously tends to zero as λ → ∞. This concludes the proof. ��
At this stage one cannot claim the energy conservation yet, so we will prove a

weaker result that will be sharpened later. Note that there exists CH > 0 such that

‖u‖2
H (1 − CH ‖u‖H) � H(u) � ‖u‖2

H (1 + CH ‖u‖H), (10)

following from the well-known embedding Hσ0(R) ↪→ L∞(R), recall that σ0 >

1/2.

Lemma 1 There exists a constant T1 > 0 independent of ω such that if u solving
Eq. (6) has ‖u‖H � 1

2CH
on some interval [0, τ ] then H(u) � 2H(u(0)) on [0, T1∧

τ ].
Proof At first one can notice that as long as ‖u‖H stays bounded by (2CH)−1, we
have

1

2
‖u‖2

H � H(u) � 3

2
‖u‖2

H .

Moreover, one can as well easily deduce from (8) the following bound

H(u(t)) � H(u(0))+ C

∫ t

0
H(u(s))ds,

and so the proof is concluded by Grönwall’s lemma. ��
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3 Proof of the Main Result

We construct a solution u of (5) iteratively on the intervals [0, T1], [T1, 2T1] and so
on. Here the interval size T1 is defined by Lemma 1. Staying under the assumptions
of Theorem 1, we denote by um solutions of Eq. (6) with R = m ∈ N given
by Proposition 1, where we subsequently set t0 = 0, T1, 2T1, . . .. We define the
stopping times

τm = τ t0m = inf {t ∈ [t0, T0] : ‖um(t)‖Hσ > m} (11)

with the agreement inf ∅ = T0. Starting with t0 = 0 we firstly show the following
result.

Lemma 2 For a.e. ω ∈ �, any m ∈ N and each t ∈ [0, τ ] with τ(ω) =
min{τm(ω), τm+1(ω)}, it holds true that um(t) = um+1(t).

Proof We define

ũi (t) =
{
ui(t) if t ∈ [0, τ ]
S(t, τ )ui(τ ) if t ∈ [τ, T0]

, i = m,m+ 1.

At first we will show that ũm and ũm+1 coincide in XT provided T is sufficiently
small. Then we will finish the proof by an iteration procedure. The difference of
these functions has the form

ũm+1(t)− ũm(t) = S(t, 0)
∫ t∧τ

0
S(0, s) (f (̃um+1(s))− f (̃um(s))) ds

+ S(t, 0)
∑
j

γj

∫ t∧τ

0
S(0, s) (g(̃um+1(s))− g(̃um(s))) dWj (s),

where the stochastic integral is estimated via

E sup
0�t�T

∥∥∥∥∥∥SW (t, 0)
∑
j

γj

∫ t

0
S(t − s)χ{s�τ }(s)SW (0, s) (g(̃um+1(s))− g(̃um(s))) dWj (s)

∥∥∥∥∥∥
2

Hσ

� CE

∫ T

0
χ{s�τ }(s) ‖SW (0, s) (g(̃um+1(s))− g(̃um(s)))‖2

Hσ ds

� CE

∫ T

0
χ{s�τ }(s) (‖ũm+1(s)‖ + ‖ũm(s)‖Hσ )2 ‖ũm+1(s)− ũm(s)‖2

Hσ ds

� C(2m+ 1)2TE sup
[0,T ]

‖ũm+1 − ũm‖2
Hσ
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with the help of the Burkholder inequality for convolution with the unitary group S,
see [5, Lemma 3.3]. The first integral is estimated more straightforwardly, notice a
similar argument employed to I in the proof of Proposition 1, and so one obtains

‖ũm+1 − ũm‖XT
� C(m)

√
T ‖ũm+1 − ũm‖XT

.

Hence ũm+1 = ũm on [0, T ] for a.e. ω ∈ � provided T is chosen sufficiently small
depending only on m. Thus we can iterate this procedure to show that ũm+1 = ũm
on the whole interval [0, T0], which concludes the proof of the lemma. ��

Our goal is to bound ‖um‖L2C(0,T1;Hσ ) by a constant independent of m ∈ N, and
so we will need to estimate ‖f (um)‖Hσ , ‖g(um)‖Hσ , in particular. This can be
easily done with the help of

‖φψ‖Hσ � C(σ, σ0)
(‖φ‖Hσ ‖ψ‖Hσ0 + ‖φ‖Hσ0 ‖ψ‖Hσ

)

being true for any σ � 0 and σ0 > 1/2, see for example [7, Estimate (3.12)].
For a.e. ω ∈ � and any m ∈ N, t ∈ [0, T0] we have

‖um(t)‖Hσ � ‖u0‖Hσ+
∫ t

0
‖f (um(s))‖Hσ ds+

∥∥∥∥∥∥
∑
j

γj

∫ t

0
S(0, s)gm(um(s))dWj (s)

∥∥∥∥∥∥
Hσ

,

where ‖f (um(s))‖Hσ � C
(‖um(s)‖Hσ0 + ‖um(s)‖2

Hσ0

) ‖um(s)‖Hσ . Now tak-
ing into account that ‖S(0, s)gm(um(s))‖Hσ � C ‖um(s)‖Hσ0 ‖um(s)‖Hσ , the
stochastic integral can be estimated by the Burkholder inequality, and so we obtain
for any 0 < T � T0 the following inequality

E sup
t∈[0,T ]

‖um(t)‖2
Hσ � 3E ‖u0‖2

Hσ + CE

∫ T

0

(
‖um(t)‖2

Hσ0 + ‖um(t)‖4
Hσ0

)
‖um(t)‖2

Hσ dt,

(12)

where C depends only on σ0, σ , T0,
∑

j γ
2
j . This inequality we will use iteratively

on the intervals [0, T0 ∧ kT1], k ∈ N, with T1 found in Lemma 1. Let ‖u0‖H �
(5CH)−1 a.e. on �. Consider the following stopping time

T m
2 = inf

{
t ∈ [0, T0] : ‖um(t)‖H > (2CH)−1

}
.

Then a.e. T1 � T m
2 . Indeed, assuming the contrary T1 > T m

2 one can deduce from
(10) and Lemma 1 that

∥∥um(T m
2 )
∥∥
H �

√
2H(um(T

m
2 )) � 2

√
H(u0) � 2

√
1 + CH ‖u0‖H ‖u0‖H

�
√

24

125
C−1
H < (2CH)−1,
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which contradicts to the definition of the stopping time T m
2 due to continuity of

‖um‖H. As a result ‖um‖H stays bounded by (2CH)−1 on the interval [0, T1] for
a.e. ω, and this simplifies (12) in the following way

E sup
t∈[0,T ]

‖um(t)‖2
Hσ � 3E ‖u0‖2

Hσ + C

∫ T

0
E sup

s∈[0,t]
‖um(s)‖2

Hσ dt

holding true for any 0 < T � T1. Hence by Grönwall’s lemma we obtain

‖um‖2
L2C(0,T1;Hσ )

� 3 ‖u0‖2
L2Hσ e

CT1 = M,

where M does not depend on m ∈ N. Hence

P(τm � T1) = P
(‖um‖C(0,T1;Hσ ) � m

)
� 1 − 1

m2E
‖um‖2

C(0,T1;Hσ ) � 1 − M

m2 ,

and so [0, T1] ⊂ ∪m∈N[0, τm(ω)] for a.e. ω ∈ �. Thus we can define u on [0, T1] by
assigning u = um on [0, τm]. This is obviously a solution of (5) on [0, T1] satisfying
dH(u) = 0 and ‖u‖H < (2CH)−1 for a.e. ω ∈ �.

Now one can repeat the argument on [T1, 2T1] by constructing new solutions
um of Eq. (6) with the initial data u(T1) given at the time moment t0 = T1. The
stopping times τm are defined by (11) with t0 = T1. The fact that ‖um‖H does
not exceed the level (2CH)−1, is guaranteed by the energy conservation, namely by
H(u(T1)) = H(u0) in the same manner as above. The rest is similar, and so we
get a solution on [T1, 2T1] with the constant energy equalled H(u0). After several
repetitions of the argument we construct a solution on [0, T0].

It remains to prove the uniqueness. Let u1, u2 ∈ L2(�;C(0, T0;Hσ (R))) solve
Eq. (5). For R > 0 we introduce

τR = inf

{
t ∈ [0, T0] : max

i=1,2
‖ui(t)‖Hσ > R

}
.

Clearly, for a.e. ω ∈ � both u1 and u2 are solutions of (6) on [0, τR]. By
Proposition 1 it holds true that u1 = u2 on [0, τR] for a.e. ω ∈ �. Taking R ∈ N and
exploiting the time-continuity of u1, u2 one obtains u1 = u2 on [0, limR→∞ τR] for
a.e. ω ∈ �. Now from sub-additivity and Chebyshev’s inequality we deduce

P(τR � T0) = P

(
max
i=1,2

‖ui‖C(0,T0;Hσ ) � R

)

� 1 − 1

R2
E

(
‖u1‖2

C(0,T0;Hσ ) + ‖u2‖2
C(0,T0;Hσ )

)
→ 1

as R → ∞, proving u1 = u2 on [0, T0]. This concludes the proof of Theorem 1.
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Observation-Based Noise Calibration:
An Efficient Dynamics for the Ensemble
Kalman Filter

Benjamin Dufée, Etienne Mémin, and Dan Crisan

Abstract We investigate the calibration of the stochastic noise in order to guide the
realizations towards the observational data used for the assimilation. This is done
in the context of the stochastic parametrization under Location Uncertainty (LU)
and data assimilation. The new methodology is rigorously justified by the use of the
Girsanov theorem, and yields significant improvements in the experiments carried
out on the Surface Quasi Geostrophic (SQG) model, when applied to Ensemble
Kalman filters. The particular test case studied here shows improvements of the
peak MSE from 85% to 93%.

Keywords Stochastic parametrization · Modeling under location uncertainty ·
noise calibration · Ensemble Kalman filters · Square root filters

1 Introduction

Sequential data assimilation uses observational data to correct a set of realizations
given by a numerical model. In the case of both high-dimensional data and model,
the data assimilation methodology can be facilitated via a procedure allowing to
guide the realizations towards the available observations. This is particularly helpful
in high dimensions as it enables the ensemble to focus on a restricted set of
the state space. That is what we intend to put forward in this paper. This work
relies on a stochastic parametrization of the underlying dynamical system based
on the Location Uncertainty (LU) principles, which rely on a decomposition of
the Lagrangian velocity into a large-scale smooth component and a random time-
uncorrelated component. In this setting, a stochastic transport operator plays the
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role of the usual material derivative, see [1] for more details. This work aims at
adding the feature of a noise specifically calibrated to play a guiding role for the
realizations.

In a previous data assimilation study on the Surface Quasi Geostrophic (SQG)
model, the stochastic forecast was shown to provide better results than deterministic
techniques like variance inflation with perturbation on the initial condition, see [2]
for details. The current study is a continuation of [2]. The noise calibration presented
here further improves the results presented in [2], particularly when the system starts
from poor or badly estimated initial conditions (for instance resulting from initial
estimations relying on regularized inverse problems). For such initial conditions,
which are generally too smooth and inaccurate, classical ensemble methods are
likely to be put in difficulties. In this short paper, we will first briefly recall the
principles of Location Uncertainty and how it applies to the SQG model. Then we
will detail the procedure leading to the noise calibration, and finally detail and assess
the numerical experiments performed.

2 The Stochastic SQG Model Under Location Uncertainty
(LU)

The analysis in this paper is carried out on the 2D Surface Quasi-Geostrophic
(SQG) model. The SQG equations model an idealized dynamics for surface oceanic
currents. It involves many realistic non-linear features such as fronts or strong
multiscale eddies (see [3, 4] for details). The deterministic SQG model couples
a transport equation of the buoyancy field b, a kinematic condition and a 2D
divergence-free constraint:

Dt b = 0 ; b = Nstrat

f0
(−Δ)

1
2 ψ ; v = ∇⊥ψ, (1)

expressed on ψ the stream function and v the velocity, where Dt is the material
derivative. The kinematic condition depends on the stratification Nstrat and the
Coriolis frequency f0.

The corresponding stochastic dynamics is derived from the Location Uncertainty
(LU) principles described in [1]. The full description and numerical analysis of the
LU-SQG model can be found in [5, 6]. This stochastic formalism models the impact
of the small scales on the flow component that is initially smooth in time. It relies
on the decomposition of the Lagrangian velocity of a fluid particle positioned at xt
in a spatial domain Ω ⊂ R

2:

dxt = v(xt , t)dt + σ(xt , t)dBt , (2)

in terms of a resolved component v (referred to as the large-scale component in
the following) and σdBt , an unresolved highly oscillating random component, built
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from a (cylindrical) Wiener process Bt (ie a well-defined Brownian motion taking
values in a functional space) [7]. The increments of the latter component are time-
independent. Due to the lack of smoothness of the solution xt , we rigorously derive
(2) in its integral form.

The random perturbation of velocity is Gaussian and has the following distribu-
tion:

σdBt ∼ N (0,Qdt), (3)

where Q is the covariance operator. This operator admits an orthonormal eigenfunc-
tion basis {φn(·, t)}n∈N with non-negative eigenvalues (λn(t))n∈N. This generates a
convenient spectral definition of the noise as

σ(x, t)dBt =
∑
n∈N

√
λn(t)φn(x, t)dβ

n
t , (4)

where the βn are i.i.d standard one dimensional Brownian motions. From Eq. (4),
the noise variance tensor a is then defined by

a(x, t) =
∑
n∈N

λn(t)φn(x, t)φn(x, t)
T . (5)

It can be noticed the variance tensor has the physical dimension of a viscosity
(ie m2/s). Indeed, as σdBt is a distance, then a(x, t)dt = E[σdBt(σdBt)

T ] is a
squared distance. The procedure used to generate the orthonormal basis functions
determines the spatial structure of the noise. The one used in our experiments will
be presented later in this section.

While a deterministically transported tracer Θ has zero material derivative:
DtΘ = ∂tΘ + v · ∇Θ = 0, in the LU framework, a stochastically transported
tracer cancels a related stochastic transport operator defined as:

DtΘ := dtΘ + (v∗dt + σdBt) ·∇Θ − 1

2
∇ · (a∇Θ)dt, (6)

where

dtΘ := Θ(x, t + dt)−Θ(x, t) (7)

is the infinitesimal forward time increment of the tracer. The effective advection
velocity is defined by

v∗ = v − 1

2
∇ · a, (8)
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the term σdBt · ∇Θ is a non-Gaussian multiplicative noise corresponding to the
tracer’s transport by the small-scale flow, and the last term in (6) is a diffusion
term, as the variance tensor a is definite positive. The expression of the stochastic
transport operator comes from a generalized Itô formula (Itô-Wentzell formula), see
[5] for more details.

The stochastic version of the SQG model is obtained by replacing the material
derivative Dt b in Eq. (1) with the stochastic transport operator Dt b:

Dt b = dt b + (v∗dt + σdBt) ·∇b − 1

2
∇ · (a∇b)dt = 0, (9)

and an additional compressibility constraint on the noise:

∇ · σdBt = 0. (10)

In the case of a compressible random field, the modified advection incorporates
an additional term in Eq. (8) related to the noise divergence [5]. One essential
property of LU (for a divergence-free noise component) is the conservation of
energy for the transported random tracer, under the same ideal boundary conditions
as in the deterministic case:

d
∫
Ω

Θ2(x)dx = 0, (11)

and, very importantly, this energy conservation property holds pathwise (i.e for any
realization of the Brownian noise), see [5, 8] for details. This property highlights
the strong relation between the LU-SQG version and the deterministic one.

Noise Generation The method used to generate the noise in this study relies on a
data-driven method called proper orthogonal decomposition (POD) to estimate the
empirical orthogonal functions in the spectral representation of Eq. (4). By a slight
abuse of notation in the following, this noise will be referred to as POD noise. We
give some brief details in what follows.

Considering a series of snapshots of the velocity field, this method consists in the
computation of the covariance tensor around the temporal mean of the series of
snapshots. Then its eigenvectors and eigenfunctions can be estimated in order to
reconstruct the large-scale variability (the first“modes” or eigenfunctions), and the
small-scale one (the smaller modes). In practice, this procedure is applied to coarse-
grained high-resolution snapshots of deterministic simulations. The latter modes
will be the ones on which the noise is decomposed. These modes are divergence-
free and stationary by construction, so the global structure of the noise will not vary
in time. In case of chaotic geophysical models like this one, we can also use online-
computed noises as the one used in our previous work [2] which have much better
uncertainty quantification, but are also much more expensive. An extension of this
work to this noise is currently at work. We refer to [6] for a precise description of
this procedure.
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3 Girsanov Theorem and Noise Calibration

3.1 Change of Measure

Ensemble-based sequential data assimilation filters are composed of a forecasting
step of the ensemble to provide a sampling of the forecast distribution, and an
analysis step correcting the departure from the observations. The purpose of the
proposed noise calibration is to modify the forecast distribution, taking into account
the upcoming observation, in order to guide the forecast towards it. In the context of
transport equations such as in the SQG model, this extra guiding term is an added
drift in the noise σdBt , which was initially built to have zero mean. Allowing σdBt

to have a non-zero mean entails a modification of the transport equation in order to
rewrite it in terms of a centered noise. This is called the Girsanov transform, and it
consists in a change of underlying measure so that a non-centered noise becomes
centered under a new probability measure, up to a drift term accounting for this
change of measure. For now, σdBt is defined on a probability space (�,F ,P) and
we define (Ft )t the filtration adapted to σdBt .

The Girsanov theorem (see [7] for details) states that if (Yt )0≤t≤T is a stochastic
process such that:

– (Yt )0≤t≤T is adapted with respect to the Wiener filtration (Ft )0≤t≤T .
– For the current probability measure P, we have, P-almost surely,

∫ T

0
Y 2
t dt < ∞.

– The process (Zt )0≤t≤T defined by

Zt = exp

(∫ t

0
YsdBs − 1

2

∫ t

0
Y 2
s ds

)
(12)

is a Ft -martingale,

then there exists a probability measure P̃ under which:

– The process (B̃t )0≤t≤T defined by

B̃t = Bt −
∫ t

0
Ysds (13)

is a standard cylindrical Wiener process.
– The Radon-Nikodym derivative of P̃ with respect to P is ZT .

Let us denote by (Γt )0≤t≤T the drift we intend to add to the noise. With such a
change of measure, let us see how Eq. (9) is modified. According to Eq. (13), we
have

dBt = dB̃t + Γtdt, (14)
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so the stochastic transport operator rewrites

Dt b = dt b + (v∗dt + σ [dB̃t + Γtdt]) ·∇b − 1

2
∇ · (a∇b)dt (15a)

= dt b + (v∗dt + vΓ dt + σdB̃t ) ·∇b − 1

2
∇ · (a∇b)dt, (15b)

where

vΓ =
K∑
k=1

γkφk (16)

is the velocity drift entailed by the Girsanov transform and we assume that Γt =
Γ = (γ1, . . . , γK) is constant on a small time step dt , which will be the case for the
discretized numerical scheme that we use.
As a result, under the probability measure P̃, (15) presents the same form as Eq. (9)
since B̃ is indeed a centered cylindrical Wiener process under P̃, but with an added
drifted advection velocity.

3.2 Computation of the Girsanov Drift

We now describe how to compute Γ in order to guide the forecast towards the next
observation.

Let us start from a given time t1 where a complete buoyancy and velocity field is
available. The next observation bobs(·, t2) is assumed to be available at time t2 and
L numerical time steps are performed until then (t2 − t1 = Lδt , where δt is the time
discretization step).

At time t1, a rough prediction of the velocity at time t2 can be estimated with the
current velocity (which, more precisely, comes from previous stochastic iterations,
but is Ft1 -measurable), namely

bobs (x + v(x, t1)Lδt , t2) := b̃(x, t2), (17)

that stands for the backward-registered observation with respect to the current
deterministic velocity. This way the error made is

Δt b̃(x) = b̃(x, t2)− b(x, t1). (18)

So b̃(x, t2) is a value taken in a modified observation field, because bobs is advected
by the current velocity v(·, t1). For this reason we consider that the backward-
registered observation used for the calibration does not have the same nature as
the raw observation used for data assimilation. It constitutes a pseudo-observation,
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for which we can consider that the error due to the imprecision of the backward-
registration (ensuing in particular from successive bilinear interpolations) is way
bigger than the observation noise, and almost uncorrelated to the latter. In the second
case, only the raw observation is used for the Kalman filter, corresponding only to
the observation noise. The aim is now to calibrate the current velocity by adding a
Girsanov drift vΓ = ∑K

k=1 γkφk , such that the solution of the following transport
equation

b

(
x + v(x, t1)Lδt + vΓ Lδt +

K∑
k=1

(
√
δtφk)(

√
Lδtβk), t2

)
= b(x, t1). (19)

is approximated in a least square sense. In other words, we solve the following
minimization problem:

min
Γ

∫
Ω

E

[
b

(
x + v(x, t1)Lδt + vΓ Lδt

+
K∑
k=1

(
√
δtφk)(

√
Lδtβk), t2

)
− b(x, t1)

]2

dx. (20)

This can be rewritten as

min
Γ

∫
Ω

[
Δt b̃ +∇b̃ · vΓ Lδt − 1

2
∇b̃ ·∇aLδt − 1

2
∇ · (a∇b̃)Lδt

]2

dx.

Using the identities

∇ · a =
K∑
k=1

(φk ·∇)φk ; ∇ · (a∇b) =
K∑
k=1

(φk ·∇)(φk ·∇b), (21)

we rewrite the minimization problem as

min
Γ

∫
Ω

[
Δt b̃ +∇b̃ ·

(
K∑
k=1

γkφk

)
Lδt − 1

2

K∑
k=1

(∇b̃ ·Fk +Gk(b̃))Lδt

]2

dx

(22)
where

Fk = (φk ·∇)φk ; Gk(b̃) = (φk ·∇)(φk ·∇b̃).

Denoting by J the integrand, we have
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∂J

∂γi
= 2

∫
Ω

(∇b̃ ·φi)Lδt
[
Δt b̃ + ∇b̃ ·

(
K∑
k=1

γkφk

)
Lδt

− 1

2

K∑
k=1

(∇b̃ ·Fk +Gk(b̃))Lδt

]
dx. (23)

Finally, we add a regularization term α||vΓ ||22 = α
∑K

k=1 γ
2
k λk , where λk is the

eigenvalue of the Q-eigenfunction φk in Eq. (22) to ensure the uniqueness of the
solution of the proposed minimization problem, where α needs to be tuned properly.
As a result, the minimization problem can be written as an inverse problem

AΓ = c (24)

where

Aik := 2
∫
Ω

(∇b̃ ·φi)(∇b̃ ·φk)+ 2αλkδik (25a)

ci :=
∫
Ω

(∇b̃ ·φi)
[

2Δt b̃ −
K∑
k=1

(∇b̃ ·Fk +Gk(b̃))

]
dx. (25b)

The parameter α is a priori fixed in order to control the resulting euclidian norm of
vΓ , ||vΓ ||2. Large values of α lead to very small corrections (Γ tends to (0, . . . , 0)
when α goes to +∞) whereas small values yield very strong and noisy drifts, as
we get closer to an ill-posed problem. For now, we use an empirical iterative way to
tune α, we increase it until the resulting norm of vΓ is under a given threshold.

4 Experiments

This section details the numerical experiments carried out in this work. The goal is
to study the benefits brought by a noise-calibrated forecast in an up-to-date version
of a localized ensemble Kalman filter. In particular we wish to observe whether or
not the noise calibration brings by itself an efficient and practical improvement of
the assimilation step.

Ensemble Kalman filters (see e.g. [9] for details) constitute a well-known family
of data assimilation methods. They rely on an ensemble of realizations (called
ensemble members) of a dynamical system (x

f
n )n=1,...,N coming from the forecast

step, and give as an output another set of members (xan)n=1,...,N . Each posterior
ensemble member xan is obtained as a linear combination of the prior ensemble

members (xfn )n=1,...,N in order to minimize the distance between the ensemble and
the observation in some sense.
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One important assumption of the classical EnKF is to consider that the observa-
tion and model noise are uncorrelated. This observation-calibrated forecast could
imply that the latter assumption no longer holds. Still, the discussion following
Eq. (18) on the observation nature explains why we can consider the uncorrelation
between the forecast and observation noise. If this assumption appears to be not
valid, we refer to the work made in [10] to rigorously justify the introduction of
an observation-dependent forecast. In this work, both Kalman and particle filter
equations were rewritten in terms of the conditional expectation with respect to the
underlying sequence of current and past observations. The stochastic simulations are
run on a double-periodic simulation grid, Gs , of size 64× 64 points and of physical
size 1000 km × 1000 km, meaning that two neighbor points are approximately
15 km apart. An observation is assumed to be available every day (i.e. every 600
time steps of the dynamics) on a coarser observation grid, Go, which is a subset
of Gs of size 16 × 16. It is generated as follows: a trajectory of buoyancy (zt )t is
run from the deterministic model (PDE) at a very fine resolution grid Gf , of size
512 × 512. Then a convolution-decimation procedure D is applied in order to fit
to the targeted simulation grid Gs . It consists in the composition of a Gaussian
filter and a decimation operator subsampling one pixel out of two. It has to be
iterated three times in our case to fit the correct resolution. This is done in order
to respect Shannon’s theorem and to avoid spectrum folding. A projection operator
P is applied from Gs to Go, and we finally add an observation noise to get the
observation

bobs(·, t) = P ◦D(zt )+ ηt ; ηt ∼ N (0, R) and R = r2IM, (26)

where R is the diagonal observation covariance matrix and M is the number of
points on the observation grid.

Numerical Setup The simulations have been performed with a pseudo-spectral
code in space (see [6] for details). The time-scheme is a fourth-order Runge-Kutta
scheme for the deterministic PDE, and an Euler-Maruyama scheme for the SPDEs.
We use a standard hyperviscosity model to dissipate the energy at the resolution
cut-off with a hyperviscosity coefficient β = (5 × 1029 m8.s−1)M−8

x , where Mx is
the grid resolution [6].

The test case considered in this study is the following: an ensemble of N =
100 ensemble members is started from the very same initial condition at day 0,
which consists in two cold vortices to the north and two warm vortices to the south.
However, the amplitude of the initial vortices is underestimated compared to the
initial condition used for the deterministic run (considered as the truth) by 20%, as
shown in Fig. 1. We refer to [2] for a mathematical expression of this field.

In this experiment, we study the differences of efficiency of the localized
Ensemble Square Root Filter (an up-to-date version of the Ensemble Kalman filter,
see for instance [11] for details of the square root filters (ESRF) and [12] for a
description of the observation covariance localization procedure) with both noise-
calibrated forecast and classical stochastic simulations. We also refer to [13] for the
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Fig. 1 Initial conditions for the truth (on the left) and for each stochastic run (on the right, common
to all ensemble members). We enforce an underestimation of the amplitude of the initial vortices
of 20%

extension of the square root filter for additive forecast noise based on covariance
transformation, where the advantages of additional model error in the forecast step
are shown.

In both cases, starting from the underestimated initial condition, the stochastic
dynamics is simulated using the POD noise with K = 10 modes. An observation
is provided each day (i.e. every 600 time steps of the SPDE), with an observation
error covariance set to r = 10−5 in (26), which corresponds to a weak (but not
negligible, 1% of the maximum amplitude in the initial buoyancy field) noise on the
observation. The localization radius is set to lobs here, where lobs � 60 km denotes
the distance between two neighboring observational sites, as it provided the best
results for both cases.

The typical behaviour of the vortices, at least at the beginning of the simulation,
is to spin with no translation of the cores. In our case, the true vortices will spin
much faster than those in the biased stochastic runs. The goal of calibration is then
to speed these vortices up in order to get them closer to the truth.

The forecast is calibrated at each time step of the SPDE, using the upcoming
observation to do it. Multiple parameters were tried for the regularization parameter
α, or alternatively for the upper bound allowed for the L2-norm of the Girsanov
drift vΓ . Figure 2 compares the MSE along time for all the range of parameters
tested here, with also the same experiment without noise calibration. For this latter,
the LESRF has a difficult task, as it tries to find linear combinations of the prior
ensemble members, which all have an underestimated velocity, to get closer to the
observation. This is a general issue for ensemble methods (as well as for particle
filters), which are not able and designed to correct the bias if this correction is not
made in the forecast. By contrast, the LU calibration offers an additional degree of
freedom to guide the ensemble towards the observation. This procedure significantly
improves the results in terms of MSE. At day 13, when the MSE is maximal for
the usual case, we observe an improvement from 85% to 93% depending on the
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Fig. 2 Comparison of MSE along time between the non calibrated forecast (in black) and all the
different parameters tested here for the noise calibration. The snapshots shown in Fig. 3 are taken
at day 15 (black dashed line)

parameters tested. The case of the underestimation is an example, but we expect
this procedure to be efficient in any situation in which all ensemble members
have a similar problem of bias, bad amplitude estimation, artefacts, unsymmetrical
features, etc. With a reasonably small ensemble size, which is generally the case in
practice, this is likely to occur if the initial conditions have such features.

As explained previously, the regularization term α controls the amplitude of the
allowed correction drift. In our experiments, all parameters tested yield significant
improvements compared to the classical case, still a good trade-off seems to be
found with a control of ||vΓ ||2 between 70 and 150. Starting from 150, we observe
higher MSE in the very first days, certainly due to a lack of constraint on the
inverse problem. In addition to the MSE results, we show in Fig. 3 a more visual
example of what calibration does. At day 15, the configuration of the truth is that all
four vortices are horizontal. Without calibration (first row), the vortices are slanted
because of the initial underestimation of the velocity. The velocity field has not been
properly corrected. On the other hand, the LU calibration offers a more reliable
prediction, as we recovered the global shape of the vortices, with additional spread
around the mean.

Finally, we show in Fig. 4 an insight of how the Girsanov correction vΓ behaves
in time. As the structure of the noise is stationary, so is the structure of vΓ because
it relies on the same modes as the noise. What is interesting is the evolution of the
amplitude of this field, which decreases in time, meaning that most of the calibration
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Fig. 3 Comparison between the ensemble mean (left) and the ensemble standard deviation (right)
maps, with and without calibration, at day 15 with the high-resolution truth

work is done in the very first days of simulation, and once the forecast manages
to get closer to the truth, the need for calibration is less crucial and the Girsanov
correction gets weaker.
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Fig. 4 Vorticity of the Girsanov drift vΓ computed for one ensemble member at the first time step
after the initial condition (left) and at the first time step after day 17 (right)

5 Conclusion

The findings of this paper show the ability of a data-driven noise calibration
procedure to improve significantly the assimilation by EnKF of a system initialized
with an underestimated initial condition.

As already mentioned in Sect. 2, we intend to extend this setting to non-stationary
noises, as they were shown to be associated to a better quantification of the
uncertainty (see [6] for details). Regarding computational effort, the calibration
procedure is intrinsically paralellizable ensemble-wise, and the techniques used are
close to optical flow estimation procedures, for which efficient solutions exist. The
tuning step of α is the more expensive step for now, for which more sophisticated
methods could be envisaged.

References

1. E. Mémin. Fluid flow dynamics under location uncertainty. Geophysical & Astrophysical Fluid
Dynamics, 108(2):119–146, 2014.

2. B. Dufée, E. Mémin and D. Crisan Stochastic parametrization: an alternative to inflation in
EnKF. Quarterly Journal of the Royal Meteorological Society, doi:10.1002/qj.4247 2022

3. P. Constantin, Q. Nie, and N. Schörghofer. Front formation in an active scalar equation.
Physical Review E, 60(3):2858, 1999.

4. G. Lapeyre and P. Klein. Dynamics of the upper oceanic layers in terms of surface
quasigeostrophy theory. Journal of physical oceanography, 36(2):165–176, 2006.

5. V. Resseguier, E. Mémin, and B. Chapron. Geophysical flows under location uncertainty, Part I
Random transport and general models. Geophys. & Astro. Fluid Dyn., 111(3):149–176, 2017a.

6. V. Resseguier, L. Li, G. Jouan, P. Derian, E. Mémin, and B. Chapron. New trends in ensemble
forecast strategy: uncertainty quantification for coarse-grid computational fluid dynamics.
Archives of Computational Methods in Engineering, pages 1886–1784, 2020a.

7. G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge University
Press, 1992.



56 B. Dufée et al.

8. W. Bauer, P. Chandramouli, B. Chapron, L. Li, and E. Mémin. Deciphering the role of small-
scale inhomogeneity on geophysical flow structuration: a stochastic approach. Journal of
Physical Oceanography, 50(4):983–1003, 2020a.

9. G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using
monte carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans,
99(C5):10143–10162, 1994.

10. E. Arnaud, E. Mémin, and B. Cernuschi. Conditional Filters for Image Sequence Based Track-
ing – Application to Point Tracking IEEE transactions on image processing : a publication of
the IEEE Signal Processing Society, 14(1):63–79, doi:10.1109/TIP.2004.838707, 2005

11. J.S. Whitaker and T.M. Hamill. Ensemble data assimilation without perturbed observations.
Monthly Weather Review, 2002.

12. P. Sakov and L. Bertino. Relation between two common localisation methods for the enkf.
Computational Geosciences, 15(2):225–237, 2011.

13. P.N. Raanes, A. Carrassi, and L. Bertino. Extending the Square Root Method to Account for
Additive Forecast Noise in Ensemble Methods Monthly Weather Review, 143(10):3857–3873,
2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.



6756 21412 a 6756 21412 a
 
http://creativecommons.org/licenses/by/4.0/


A Two-Step Numerical Scheme in Time
for Surface Quasi Geostrophic Equations
Under Location Uncertainty

Camilla Fiorini, Pierre-Marie Boulvard, Long Li, and Etienne Mémin

Abstract In this work we consider the surface quasi-geostrophic (SQG) system
under location uncertainty (LU) and propose a Milstein-type scheme for these
equations, which is then used in a multi-step method. The SQG system considered
here consists of one stochastic partial differential equation, which models the
stochastic transport of the buoyancy, and a linear operator linking the velocity and
the buoyancy. In the LU setting, the Euler-Maruyama scheme converges with weak
order 1 and strong order 0.5. Our aim is to develop higher order schemes in time,
based on a Milstein-type scheme in a multi-step framework. First we compared
different kinds of Milstein schemes. The scheme with the best performance is
then included in the two-step scheme. Finally, we show how our two-step scheme
decreases the error in comparison to other multi-step schemes.

1 Introduction

The main aim of the modelling under location uncertainty (LU) consists in
simulating on coarse meshes an enriched system mimicking a high resolution
deterministic chaotic dynamics. Such LU models allow one to recover phenomena
such as backscattering, dissipation and reorganisation on very coarse meshes.
Furthermore, it provides a natural framework for uncertainty quantification analysis
[14]. The LU framework, first introduced in [11], is based on the decomposition of
the Lagrangian velocity into two components: a large-scale smooth component and
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a small-scale fast oscillating one. This decomposition leads to a stochastic transport
operator, and one can, in turn, develop the stochastic version of classical fluid-
dynamics systems derived from the Navier–Stokes equations. SQG in particular
consists of one stochastic partial differential equation (SPDE), which models the
stochastic transport of the buoyancy, and a linear operator relating the velocity and
the buoyancy:

⎧⎪⎪⎨
⎪⎪⎩

dbt = 1
2∇ · (a∇bt )dt − v∗ ·∇btdt − ∇bt · σdBt ,

bt = N(−Δ)1/2ψ,

u = ∇⊥ψ,

(1)

where bt is the buoyancy at time t , u the large-scale smooth velocity, N a constant
depending on the vertical oscillation frequency of the buoyancy and a Coriolis
parameter, B a Wiener process, ψ the stream function and v∗ = u− 1

2∇·a+σ∇·σ
is a corrected velocity associated with the effect of the noise inhomogeneity on
the advected variables. The spatial correlations of the noise are given through an
integral kernel operator σ (here assumed deterministic and symmetric for sake of
simplicity), and the variance matrix, a, given by the matrix kernel of the operator
σσ provides a local measure of the noise strength. For more details on the derivation
of this system, see [10, 13]. In the rest of this work we will mainly focus on the
first equation, and the last two will be condensed in u = H(b). Concerning the
modelling of the noise, we use the equivalent convenient spectral definition:

σdBt =
∑
m

ϕmdβm
t ,

where βm = βm(t) are independent one-dimensional standard Brownian motions
and ϕm = [ϕm

x , ϕ
m
y ]T (x) are basis functions. The number of terms involved in the

sum is in theory infinite, but in numerical application a truncation is considered. In
the definition of the numerical schemes we will thus assume that it is a finite sum.
For the computation of the basis functions, two strategies are possible: an offline
strategy, where they are defined from the eigenfunctions of an empirical covariance
tensor built from high-resolution data as described in [10, 13]; of strategies, where
the functions are updated during the simulation and in this case they are a function
of the buoyancy b. With this representation, the variance tensor reads:

a =
∑
m

ϕm(ϕm)T .

2 Numerical Schemes

In this section we derive a two-step numerical scheme in time for the SQG system
under LU (SQG-LU). We compare this scheme to other multi-step schemes for
the SPDE, in particular the ones developed in [5] and [4], and show how our
scheme improves the precision. Concerning discretisation in space, standard spectral
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methods are used: the linear terms are treated in the Fourier space, whilst the
nonlinear terms are discretised in the physical space.

The derivation of the time scheme consists of two steps: first, we derive a class
of Milstein schemes for SQG-LU and we empirically verify their convergence, then
a two-step scheme is proposed.

2.1 Derivation of a Milstein Scheme

To design the Milstein schemes, we consider the integral form of the SPDE in (1),
namely

bt = bt0 +
∫ t

t0

(
1

2
∇ · (a∇bs)− v∗ ·∇bs

)
ds −

∫ t

t0

∑
m

∇bs ·ϕmdβm
s , (2)

and we can define the following functions:

f (bt , t) = 1

2
∇ · (a∇bt )− v∗ ·∇bt and gm(bt , t) = −∇bt ·ϕm. (3)

We can now use the functional extension of the Itô formula [3] for both f and g to
write their differential forms:

f (bt , t) = f (bt0 , t0)+
∫ t

t0

∂f

∂s
(bs, s)ds +

∫ t

t0

∂f

∂b
(bs, s)dbs

+1

2

∫ t

t0

∂2f

∂b2
(bs, s)d〈b, b〉s

(4)

gm(bt , t) = gm(bt0 , t0)+
∫ t

t0

∂g

∂s

m

(bs, s)ds +
∫ t

t0

∂g

∂b

m

(bs, s)dbs

+1

2

∫ t

t0

∂2g

∂b2

m

(bs, s)d〈b, b〉s
(5)

We remark that, since the basis ϕm is constant in time then so is a and the functions
f and gm do not depend explicitly on time, therefore ∂f/∂t = ∂gm/∂t = 0.

Concerning the first derivatives with respect to b, it has to be interpreted as a
Fréchet derivative. The Fréchet derivative of an operator F is the bounded linear
operator DF(x) which satisfies the following relation:

lim‖h‖→0

‖F(x + h)− F(x)−DF(x)h‖
‖h‖ = 0, (6)
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which implies that for a linear operator DF(x)h = F(h). We start for g and use the
fact that ∇ is a linear operator:

∂g

∂b
(b)b = −∇b ·ϕm − ∇b · ∂ϕ

∂b

m

. (7)

If the basis is computed offline, ϕm does not depend on b and therefore the second
term in (7) is zero. If the basis is computed online and ϕm does depend on b, we can
rewrite the second term of the sum by components and, using the chain rule, one
has:

∇b · ∂ϕ
∂b

m

= ∂b

∂x

∂ϕm
x

∂b
+ ∂b

∂y

∂ϕm
y

∂b
= ∇ ·ϕm. (8)

For the second term of f , i.e. v∗ · ∇b, the same considerations are valid. To
compute the derivative of the first term of f , we remark that it is a composition and
product of three operators, two of which are linear. We can define:

F1(h) = 1

2
∇ ·h, F2(b) = a(b), F3(b) = ∇b. (9)

Using the chain rule and the linearity of F1 and F3 one has:

D
(
F1
(
F2(b)F3(b)

))
b = DF1

(
F2(b)F3(b)

)(
DF2(b)F3(b)+ F2(b)DF3(b)

)
b

= F1
(
F3(b)DF2(b)b + F2(b)F3(b)

)

= 1

2
∇ ·

(
∂a

∂b
∇b + a∇b

)
.

(10)
Finally, with the same considerations used above, we remark that we can write
(∂a/∂b)∇b = ∇ · a. Therefore:

∂f

∂b
(b)b = f (b)+ 1

2
∇ ·∇ · a − ∇ · v∗, ∂g

∂b

m

(b)b = gm(b)− ∇ ·ϕm. (11)

As for the Itô covariation bracket, one has:

〈b, b〉t =
〈 ∫ ·

t0

∑
m

gm(bs, s)dβ
m
s ,

∫ ·

t0

∑
k

gk(bτ , τ )dβ
k
τ

〉
t
=
∫ t

t0

(∑
m

gm(bs, s)

)2

ds

We now suppose to be in either one of the following cases:

– the basis functions ϕm (and therefore a) do not depend on b and ∇ · v∗ = 0,
– the basis functions ϕm depend on b but are such that ∇·v∗ = ∇·∇ ·a = ∇·σ =

∇ ·ϕm = 0.
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It can be noticed that the first case corresponds to a noise defined from external
high-resolution data (and thus that does not depend on the solution) while the
second case boils down to impose an incompressibility condition constraint on the
large scale component, ∇ · u = 0, that is indeed often considered in practice with
particular scaling of the noise [1, 2]. With these assumptions, we have then:

∂f

∂b
= ∂2f

∂b2 = f,
∂g

∂b

m

= ∂2gm

∂b2 = gm. (12)

We can now replace all these expressions into (4) and (5), and then (4) and (5) into
(2). Keeping only the terms of order one or lower, we obtain:

bt = bt0 +f (bt0)Δt+
∑
m

gm(bt0)Δβm+
∫ t

t0

∫ s

t0

∑
m,k

gm(gk(bτ ))dβ
k
τ dβm

s , (13)

where Δt = t − t0 and Δβm = βm
t − βm

t0
. We define the following quantities:

Gm,k := gm(gk(bt0)), Im,k :=
∫ t

t0

∫ s

t0

dβk
τ dβm

s ,

then the double iterated Itô integral in (13) can be approximated as follows:

∑
m,k

Gm,kIm,k =
∑
m,k

Gm,k I
m,k + I k,m

2
+Gm,k I

m,k − I k,m

2
.

The first symmetric term can be computed analytically from Itô integration by part
formulae, Im,k + I k,m = ΔβmΔβk − δm,kΔt , however the second antisymmetric
term (Im,k − I k,m)/2 =: Am,k

t0,t
cannot and it is known as the Lévy area.

2.1.1 Lévy Area Simulation

In this subsection, we briefly introduce the methods we used to simulate the Lévy
area. More details can be found in [6, 8], where these methods were proposed. The
first method to simulate the Lévy area will be referred to as the weak approximation
in the rest of this work: in this method, we simulate a random variable that has the
same moments as the Lévy area. The second method, which will be referred to as
the conditional method, is a recursive method: the time interval (t0, t) is recursively
split into two subintervals of the same length, and the two following relations are
used:

A
m,k
t0,t

= A
m,k
t0,u

+A
m,k
u,t + 1

2

(
(βm

u − βm
t0
)(βk

t − βk
u)− (βk

u − βk
t0
)(βm

t − βm
u )
)

(14)
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E[At0,t |Bt − Bt0 ] = 0.

For more details on these two methods, see [7]. Finally, we consider a third
approach, where we neglect the Lévy area. We remark that this approach is exact if
Gm,k = Gk,m, which is not the case here.

2.2 Multi-Step Schemes

We next propose a two-step scheme in which the Milstein method is used as the
prediction step and the Euler method is adopted as the correction step, it reads:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b∗t = bt0 + f (bt0 ,ut0)Δt +∑
m

gm(bt0)Δβm + ∑
m,k

Gm,k
(
S
m,k
t0,t

+ Ã
m,k
t0,t

)

u∗
t = H(b∗t )

bt = 1
2bt0 + 1

2

(
b∗t + f (b∗t ,u∗

t )Δt +
∑
m

gm(b∗t )Δβm
)

(15)
where S

m,k
t0,t

:= (ΔβmΔβk − δm,kΔt)/2 and Ã
m,k
t0,t

is one of the approximations of
the Lévy area described in the previous subsection. This scheme will be referred to
as SRK2-EM (EM stands for Euler-Milstein not for Euler-Maruyama) in the rest of
the paper.

In the next section, we first analyse the results of the Milstein schemes with the
different Lévy area approximations in order to select the best one. Then, we compare
our multi-step scheme to two other multi-step schemes developed in [5] and [4]. We
briefly recall them here. The first one, based on a third order Runge-Kutta scheme,
(SSPRK3) [5], is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(1) = bt0 + fs(bt0 ,ut0)Δt +∑
m

gm(bt0)Δβm

u(1) = H(b(1))

b(2) = 3
4bt0 + 1

4

(
b(1) + fs(b

(1),u(1))Δt +∑
m

gm(b(1))Δβm

)

u(2) = H(b(2))

bt = 1
3bt0 + 2

3

(
b(2) + fs(b

(2),u(2))Δt +∑
m

gm(b(2))Δβm

)
(16)

where fs = f −∇·(a∇b)/2 denotes the modified drift under Stratonovich integral.
The second one, relies on Euler-Heun method [4] equally for Stratonovich integral,
reads:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b(1) = bt0 + fs(bt0 ,ut0)Δt +∑
m

gm(bt0)Δβm

u(1) = H(b(1))

bt = 1
2bt0 + 1

2

(
b(1) + fs(b

(1),u(1))Δt +∑
m

gm(b(1))Δβm

) (17)

3 Numerical Results

In this section we show some numerical results. First, the effect of the different
approximations of the Lévy area is studied on the Milstein scheme. Then, the multi-
step scheme is assessed and compared to the ones already proposed in the literature.
We focus on two variations of one specific test case plotted in Fig. 1: the initial
condition (left) consists of two warm elliptical anticyclones on the bottom of the
domain and two cold elliptical cyclones on the top. After one day under moderate
noise (centre), the four structures have rotated of approximately 45o. After one day
under strong noise (right) the nonlinearity of the dynamic is more noticeable. One
can find all the configuration details used for these simulations in Chapter 6 of [10]
for the moderate noise configuration. For the strong noise, all the basis functions ϕm

are multiplied by a factor 10.
We will use the following abbreviations for the different numerical schemes

– Euler: Euler-Maruyama scheme.
– Milstein-0: Milstein scheme without the Lévy area.
– Milstein-weak: Milstein scheme with the weak approximation of the Lévy area.
– Milstein-cond-n: Milstein scheme with the conditional approximation of the

Lévy area. Here n stands for the number of times the interval is recursively split
(cf. (14)).

– SRK2-EM: scheme (15) with Ã
m,k
t0,t

= 0.
– SSPRK3: scheme (16).
– Heun: scheme (17).

Fig. 1 Euler-Maruyama simulation of system (1) on a 128 × 128 spatial grid
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Fig. 2 RMSE (normalised by the amplitude of buoyancy B0 = 10−3 m/s2) of different schemes
during 30 days of simulation under moderate noise
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Fig. 3 Convergence of different schemes under weak and strong noise. Order 1 in dotted black,
order 0.5 in dashed black

In Figs. 2 and 3 one can see the difference among the Euler-Maruyama scheme
and all the Milstein schemes proposed. In Fig. 2 we plot for each scheme for a period
of 30 day the root mean squared error (RMSE), defined as:

RMSE = 1

|Ω|E
[∥∥bh − b

∥∥2
L2(Ω)

]1/2
, (18)

where Ω denotes the spatial domain, bh is the numerical solution of stochastic
system (1), and b stands for the reference solution downsampled from a high-
resolution deterministic simulation (recall that the aim of the stochastic setting
is to reproduce on coarse grid high-resolution deterministic simulations). The
downsampling procedure consists of a first low-pass filtering performed in the
Fourier domain and a subsequent subsampling operation. The expectations are
estimated from 30 of realization. These results are obtained with a Δt twice as
small for the Euler scheme with respect to the other schemes. One can observe that
Milstein-0 performs slightly better than the other Milstein schemes.
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In Fig. 3, we show the rate of strong convergence γ of all the schemes discussed,
under weak and strong noise. Since the exact solution is unknown, we use the
following method [15] to estimate γ , for a sufficiently small Δt :

γ � log2

(
e1

e2

)
,with ei := E

[∥∥∥∥bh
(
T ,

Δt

2i−1

)
− bh

(
T ,

Δt

2i

)∥∥∥∥
2

L2(Ω)

]1/2

,

where bh(T ,Δt) is the numerical solution at the final time T obtained with a
time step Δt . It is important to underline that in order for this method to work,
the Brownian trajectories must be fixed. We applied this method for time steps
30, 60, 120, 240, hence obtaining two estimates for γ . Is is important to remark
that the value of the time steps is given in seconds and the time-scale of the studied
phenomenon is of the order of one day. For reference, the CFL condition for this
problem at the initial time would give a time step around 300 s. The smallest time
step we considered to obtain this estimate is ten times smaller than this. As one can
see from Fig. 3, under weak noise all the one-step schemes provide almost identical
results and all the multi-step schemes are very similar. It is hard to distinguish among
the different numerical schemes proposed. In particular, for the considered span of
time steps, the error of the Euler scheme under moderate noise displays a linear
trend and the prevailing convergence order in this case is one. The reason of that is
explained in Appendix.

Under strong noise, it is easier to see the differences among the schemes.
Milstein-weak is a slight improvement on the Euler-Maruyama, but its rate of
convergence is far from 1. Milstein-0 has the highest rate of convergence among
all the schemes.

In conclusion, Milstein-0 seem to perform better than the other Milstein schemes.
Furthermore, it is less computationally demanding. For these reasons, we built our
two-step scheme based on Milstein-0.

In Fig. 3 we also compare the multi-step schemes mentioned above: they all have
a similar behaviour, with a rate of convergence 0.5 ≤ γ ≤ 1, but a much smaller
error when compared to the one-step schemes. In particular, the two-step scheme
proposed in this work (SRK2-EM in the figures) yields the smallest error of all for
this test case. The SRK2-EM schemes also yields the smallest RMSE (cf. Fig. 2).

4 Conclusion and Perspectives

The Milstein schemes analysed in this work improve the numerical results, in
particular when used in a multi-step framework. The Lévy area does not seem to play
a key role in these test cases, which allows us to drastically reduce the computational
costs. It must be pointed out that under weak noise, all the schemes tested provide
very similar results. Some ongoing and future work include the understanding of the
(non) importance of the Lévy area and whether this is related to the test case, the
equations, or other factors.
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Appendix: Convergence of Euler-Maruyama Scheme Under
Moderate Noise

To study the behaviour of our system under moderate noise, we use the formalism
of [12]; in particular, we write our system in the following generic form:

dXt = a(x, t)dt + εb(x, t)dWt + ε2c(x, t)dt, t ∈ [0, T ] (19)

with a, b, c, being jointly L2-measurable in (x, t), Lipschitz, bounded linear-growth
functions in x.

Let Y δ· be an Euler-Maruyama integration scheme for X· with integration step δ.
Then we may prove in a similar fashion to theorem 4.5.4 in [9] that:

1. E[Xt ]2 ≤ C, ∀t ∈ [0, T ]
2. E

[|Xt+δ − Y δ
t+δ|

∣∣Xt+δ = x
] ≤ K(x)(δ +√

ε
√
δ + ◦(δ)).

Using this and the Lipschitziannity of the coefficients in (19), we may prove a
result, to some extent similar to theorem 2.1 in [12], namely that

E

[
sup

t0≤t≤T

|Xt − Y δ
t |
∣∣∣Xt0 = x

]
≤ K ′(x)(δ +√

ε
√
δ + ◦(δ)). (20)

In light of this estimate, we may interpret the convergence rate displayed in Fig. 3
as a case where δ is not small enough when compared to ε so that

√
ε
√
δ does not

necessarily prevail over δ which is evidenced by the linear rate of convergence.
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The Dissipation Properties of Transport
Noise

Franco Flandoli and Eliseo Luongo

Abstract The aim of this work is to present, in a compact way, the latest results
about the dissipation properties of transport noise in fluid mechanics. Starting from
the reasons why transport noise is natural in a passive scalar equation for the heat
diffusion and transport, several results about enhanced dissipation due to the noise
are presented. Rigorous statements are matched with numerical experiments in order
to understand that the sufficient conditions stated are not yet optimal but give a first
useful indication.

Keywords Dissipation by noise · Turbulence · Eddy diffusion · Vortex patch ·
Transport noise · Dirichlet boundary condition

1 Introduction

In the last four years, a new understanding of heat diffusion in a turbulent fluid
modeled by white noise has been developed. This model has the interesting feature
of describing properly the dissipation properties of a turbulent fluid. The equation
for the heat diffusion and transport, with a heat source q, is

∂t θ + u · ∇θ = κΔθ + q (1)

where θ = θ (t, x) is the temperature, κ is the diffusion constant and u = u (t, x) is
the velocity field of the fluid. The turbulent fluid is a priori described by a random
field, Gaussian and white in time, with covariance structure given a priori (hence the
temperature is a passive scalar). In this review we consider the following description
for u:
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u (t, x) =
∑
k∈K

σk (x)
dWk

t

dt
(2)

where σk are divergence free vector fields satisfying no slip-boundary condi-
tions and Wk

t are independent Brownian motions on a filtered probability space(
Ω,F , (Ft )t≥0 ,P

)
; for simplicity, assume K is a finite set, but the case of a

countable set can be studied without troubles at the price of additional summability
assumptions. Some rigorous justification for describing the velocity of a turbulent
fluid by Eq. (2) are available in Sect. 2.2. Here we want just give some ideas. Let us
denote by uν,ε the solution in a domain with boundary D of the SPDE

⎧⎪⎪⎨
⎪⎪⎩
∂tu

ν,ε +∇pν,ε = νΔuν,ε − 1
ε
uν,ε + 1

ε

∑
k∈K σk∂tdW

k
t

div (uν,ε) = 0

u|∂D = 0,

(3)

where the terms − 1
ε
uν,ε+ 1

ε

∑
k∈K σk∂tdW

k
t describe the roughness of the boundary

as stated in Sect. 2.2. Let, moreover, Wν,ε
t = ∫ t

0 uν,ε(s) ds, then it can be proven
than

lim
ε→0

E

[
supt∈[0,T ]‖Wν,ε

t −
∑
k∈K

σkW
k
t ‖2

L2(D)

]
= 0,

see for example [6].
The correct interpretation of Eq. (1) when u has the form (2) is the Stratonovich

equation

dθ +
∑
k∈K

σk · ∇θ ◦ dWk
t = (κΔθ + q) dt (4)

or equivalently the Itô equation with corrector Lθ given by the second order
differential operator (7) below:

dθ +
∑
k∈K

σk · ∇θdWk
t = (κΔθ + Lθ + q) dt. (5)

There are some motivations for the analysis of Eq. (4) based on the idea to extend to
SPDE the remarkable principle of Wong-Zakai [20], see for example [2, 3, 14, 15,
18, 19, 16].

Assuming that the external source q and the initial temperature θ0 are determin-
istic, under suitable mild assumptions the deterministic function

Θ (t, x) = E [θ (t, x)]
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is the solution of the deterministic parabolic equation

∂tΘ = (κΔ+ L)Θ + q (6)

where E denotes the mathematical expectation on (Ω,F ,P). The main results in
the last years are quantitative estimates on the difference θ −Θ , some convergence
properties of the solution of Eq. (5) to the stationary solution of Eq. (6) and the
enhanced dissipative properties of the second order differential operator κΔ + L,
see [7, 9, 10]. These kinds of results explained properly the dissipation properties of
transport noise and are the core of this review article.

In Sect. 2 we will present some motivations for the analysis of Eq. (4) as a
good model for the heat diffusion in a turbulent fluid and we will introduce the
main notations. In Sect. 3 we will present the main results, referring to [7, 9, 10]
for some rigorous proofs. Lastly, in Sect. 4 we will present some cases where
the coefficients σk introduce more dissipation in the model with respect to the
theoretical predictions made by the rigorous sufficient conditions, exploiting real
computations or numerical simulations following the ideas of [7, 10].

Remark 1 In this review we only considered the effects of the transport noise on
passive scalars. Actually, some results can be stated also for the scalar vorticity of
the fluid itself, in two space dimensions. We refer to [8, 11, 12] for further readings.
The case of the influence on vector fields is much more difficult and still to be
understood.

2 Well-Posedness and Motivations

2.1 Notations and Definitions

In this review we will denote by D a 2D domain with boundary, either a smooth
bounded open set or an infinite 2D channel, namely R × (−1, 1). We write the
coordinates using the notation

x = (x1, z) ∈ D.

Let Z be a separable Hilbert space, denote by L2(Ft0, Z) the space of square
integrable random variables with values in Z, measurable with respect to Ft0 .
Moreover, denote by CF ([0, T ] ;Z) the space of continuous adapted processes
(Xt )t∈[0,T ] with values in Z such that

E

[
sup

t∈[0,T ]
‖Xt‖2

Z

]
< ∞
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and by L2
F (0, T ;Z) the space of progressively measurable processes (Xt )t∈[0,T ]

with values in Z such that

E

[∫ T

0
‖Xt‖2

Z dt

]
< ∞.

Denote by L2 (D) and Wk,2 (D) the usual Lebesgue and Sobolev spaces and by
W

k,2
0 (D) the closure in Wk,2 (D) of smooth compact support functions. Set H =

L2 (D), V = W
1,2
0 (D), D (A) = W 2,2 (D) ∩ V . We denote by 〈·, ·〉 and ‖·‖ the

inner product and the norm in H respectively.
Assume that K is a finite set and σk ∈ (

D (A) ∩ C∞
b (D)

)2
, ∇ · σk = 0, k ∈ K

(less is sufficient but we do not stress this level of generality). Define the matrix-
valued function

Q(x, y) =
∑
k∈K

σk (x)⊗ σk (y) .

If we denote by W (t, x) the vector valued random field

W (t, x) =
∑
k∈K

σk (x)W
k
t

(the velocity field u given by (2) is the distributional time derivative of W ) then we
see that Q(x, y) is the space-covariance of W (1, x):

Q(x, y) = E [W (1, x)⊗W (1, y)] .

The matrix-function Q(x, x) is elliptic:

d∑
i,j=1

Qij (x, x) ξiξj = E

[
|W (t, x) · ξ |2

]
≥ 0

for all ξ = (ξ1, . . . , ξd) ∈ R
d . Associated to it define the bounded linear operator

Q : L2(D;R2) → L2(D;R2), (Qv) (x) =
∫
D

Q(x, y)v(y) dy

and the quantities:

q̃(x) := minξ  =0
ξT Q(x, x)ξ

|ξ |2 ,

εQ := ‖Q1/2‖2
L2(D;R2)→L2(D;R2)

.
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Consider the divergence form elliptic operator L defined as

(Lθ) (x) = 1

2

d∑
i,j=1

∂i
(
Qij (x, x) ∂j θ (x)

)
(7)

for θ ∈ W 2,2 (D). Define the linear operator A : D (A) ⊂ H → H as

Aθ = (κΔ+ L) θ.

It is the infinitesimal generator of an analytic semigroup of negative type, see [1, 4,
13, 17], that we denote by etA, t ≥ 0. Moreover, if D is bounded, we denote by κλ

the first eigenvalue of −κΔ and by κλL the first eigenvalue of −(κΔ+ L).
Definition 1 Given θ0 ∈ L2(F0,H) and q ∈ L2(0, T ;H), a stochastic process

θ ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

is a mild solution of Eq. (5) if the following identity holds

θ (t) = etAθ0 +
∫ t

0
e(t−s)Aq (s) ds −

∑
k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s

for every t ∈ [0, T ], P-a.s.

Theorem 1 For every θ0 ∈ L2(F0,H) and q ∈ L2(0, T ;H) there exists a unique
θ mild solution of Eq. (5). Moreover θ depends continuously on θ0 and q.

Definition 2 Given θ0 ∈ L2(F0,H) and q ∈ L2(0, T ;H), we say that a stochastic
process θ is a weak solution of Eq. (5) if

θ ∈ CF ([0, T ];H) ∩ L2
F (0, T ;V )

and for every φ ∈ D(A), we have

〈θ(t), φ〉 = 〈θ0, φ〉 +
∫ t

0 〈θ(s), Aφ〉 ds +
∫ t

0 〈q(s), φ〉
+∑

k∈K
∫ t

0 〈θ(s), σk · ∇φ〉 dWk
s

for every t ∈ [0, T ], P− a.s.

Theorem 2 θ is a weak solution of problem (5) if and only if is a mild solution of
problem (5). Moreover the Itô formula

‖θ(t)‖2 − ‖θ(0)‖2 = 2
∫ t

0 〈θ(s), q(s)〉 ds +
∑

k∈K
∫ t

0‖σk · ∇θ(s)‖2 ds

−2
∫ t

0 〈(−A)
1
2 θ(s), (−A)

1
2 θ(s)〉 ds

holds.
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These results are classical and can be found in [5, 10] together with several
generalizations.

2.2 Motivations

In this section we want to give some heuristics to accept Eq. (4) as a correct model
for heat diffusion in a turbulent fluid. In the domain D we have a fluid with velocity
u (pressure p, constant density = 1) and the heat θ . Both u and θ are equal to zero
on ∂D:

u|∂D = 0

θ |∂D = 0.

The condition u|∂D = 0 provokes several interesting technical questions. The
equations are

∂tu+ u · ∇u+∇p = f

∇ · u = 0
∂t θ + u · ∇θ = κΔθ + q

u|t=0 = u0

θ |t=0 = θ0.

(8)

where f and q take care of interaction with external sources. In particular, physical
boundaries are never completely smooth. Hence, the external source f want to
model the effects of the roughness of the boundary and its influence to the velocity
of the fluid. The instability of the flow at the boundary, originating vortices, is very
strong, hence the frequency and intensity of creation of vortices at the boundary
strongly suffers from the imprecision of the description of the true boundary.
Replacing the true details of the boundary by a random mechanism of vorticity
production would increase the realism of the model. Emergence of vortices near
obstacles is commonly observed and we content ourselves with an ad hoc inclusion
of this fact into the equations. Assume the velocity field at time t is u(t, x). Assume
that, as a consequence of an instability near the boundary, a modification occurs and
in a very short time we have a field u(t+Δt, x) which is not just equal to the smooth
evolution of u(t, x). We may assume that at some time t we have a jump:

u(t +Δt, x) = u(t, x)+ σ(x)

where σ(x) is presumably localized in space and corresponds to a vortex structure.
After these preliminary comments we can accept to model the roughness via a
friction term of intensity −u

ε
and a term of jump described by
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WN(t, x) =
∑
k∈K

σk(x)

N

N
k,1
N2t/ε2 −N

k,2
N2t/ε2√

2
,

where N
·,·
t are independent Poisson processes. More on this topic can be found in

[6]. Applying a Donsker invariance principle to the stochastic process WN(t, x), it
converges in law to the gaussian process

Wt(x) = 1

ε

∑
k∈K

σk(x)W
k
t ,

where Wk
t are independent Brownian motions. Parameterizing the solutions of

system (8) by ε we arrive to the following stochastic coupled system

∂tu
ε + uε · ∇uε +∇pε = − 1

ε
(uε − ∂tW)

∇ · uε = 0
∂t θ

ε + uε · ∇θε = κΔθε + q

u|t=0 = u0

θ |t=0 = θ0.

(9)

The last step for moving from system (9) to Eq. (4) is trying to understand the
behavior of system (9) letting ε → 0 and it based on a result proved in [12] in the
case of the 2D torus and under analysis in the case of general 2D domains with
boundary. Thus just for the last sentence of this subsection we assume the D =
T

2 := R
2/(2πZ2).

Theorem 3 Under previous assumptions on q and σ , if moreover:

– the coefficients σk are zero-mean and there exists l ≥ 1 such that
σk ∈ Wl,∞ ∀k ∈ K;

– ∀x ∈ T
2 it holds

∑
k∈K ((K ∗ σk) · ∇σk) (x) = 0;

– q ∈ L1
([0, T ];L∞ (

T
2
)) ;

– θ0 ∈ L∞ (
T

2
)
,

then for every f ∈ L1(T2)

E

[∣∣∣∣
∫
T2
(θεt − θt )(x)f (x) dx

∣∣∣∣
]
→ 0 as ε → 0

for every fixed t ∈ [0, T ] and in Lp([0, T ]) for every finite p. Moreover, if q ∈
L1([0, T ];Lip(T2)) then the previous convergence holds uniformly for t ∈ [0, T ]
and f ∈ Lip(T2) with [f ]Lip(T2) ≤ 1 and ‖f ‖L∞(T2) ≤ 1.
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3 Main Results

The results related to the analysis of these equations can be classified in three
categories:

1. Convergence of the solution of Eq. (5) to some quantities related to Eq. (6).
2. Quantification of the dissipation of the function E

[‖θ(t)‖2
]
.

3. Enhanced dissipative properties of the second order differential operator κΔ+L.

Remark 2 Even if Q is a covariance operator, the third question is far to be trivial.
In fact we assumed that σk|∂D = 0. Thus the operator L degenerates at the boundary.

We will treat all the three problems above, sometimes specializing our general
framework.

Theorem 4 Assume D is a bounded domain.

1. If θ0 ∈ L2(F0,H), q ≡ 0. Then, ∀φ ∈ L∞(D),

E

[
〈φ, θ(t)−Θ(t)〉2

]
≤ εQ

κ
E

[
‖θ0‖2

]
‖φ‖L∞(D).

2. Moreover, if θ0 ≥ 0

E

[
‖θ(t)‖2

]
≤
(εQ
κ

+ 2|D|e−κλLt
)
E

[
‖θ0‖2

]
.

Remark 3 A result similar to the first item can be proved also in the case of D

infinite channel and q  ≡ 0 adapting the proof of Theorem 7 in [10] to such finite
time case.

Thanks to previous theorem is evident that the dissipation properties of the solution
of the stochastic Eq. (5) are influenced obviously by the first eigenvalue of the
operator L but also by the operatorial norm of Q1/2. Thus, our next step will be
state state some sufficient conditions in order to have εQ very small and κλL ! κλ.

For δ > 0 fixed, let us define

Dδ := {x ∈ D : dist (x, ∂D) > δ}.

Then the following theorems hold.

Theorem 5 Assume that the family of coefficients (σk (·))k∈K has the following
approximate orthogonality property: there exists a finite number M ∈ N and a
partition K = K1 ∪ . . . ∪KM such that

〈σk, σk′ 〉 = 0 for all k, k′ ∈ Ki
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for all i = 1, . . . ,M . Then

εQ ≤ M sup
k∈K

‖σk‖2 .

Theorem 6 Assuming that q̃(x) ≥ σ 2 in Dδ , then for any κ > 0 fixed

lim
(σ,δ)→(+∞,0)

κλL = +∞.

Theorem 7 There exists a constant CD > 0 such that

κλL ≥ CD min
(
σ 2,

κ

δ

)

for every Q such that

q̃(x) ≥ σ 2 in Dδ.

When D is the unit ball, asymptotically as δ → 0, one can take CD = 1 and

κλL ≥ 2κ

κ + δσ 2 σ
2.

From the last two theorems we understand that the dissipation properties enhance if
εQ is very small and q̃(x) is very large except for a small boundary layer around ∂D.
Obviously εQ is related to the operatorial norm of Q1/2 and thus, loosely speaking,
is related to the operatorial norm of Q. Instead q̃(x) is related to the trace of Q, i.e.

T r(Q) =
∫
D

T rQ(x, x) dx.

Consequently we want that the operatorial norm of Q is small and the trace of Q
is arbitrarily large and, possibly, infinity. Hence the existence of such operators Q

which increase the dissipativity properties of the equation is not surprising. The last
issue related to this topic is the presentation of an operator Q which has a fluid
dynamics interpretation and satisfies previous property. This definition for general
domain D is a bit implicit. Thus in the last section we will present some more
explicit computations.

Let us fix a parameter ! such that 0 < ! ≤ δ , consider a smooth probability
density function Ψ : R2 → R with compact support in B(0, 1) and let us denote by
K(x, y) the Biot-Savart kernel in D. We recall that a point vortex in x0 has vorticity
δx0 and smoothing it by Ψ!(x) := 1

!2 Ψ
(
x
!

)
, then it has vorticity 1

!2 Ψ
(
x−x0
!

)
.
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Now let us consider a random variable X0 distributed uniformly on D2δ , a real
random variable Γ0 such that

E [Γ0] = 0, ε2
0 := E

[
Γ 2

0

]
< ∞

and set

u (x) = Γ0

∫
D

K (x, y) θ!(y −X0)dy

=: Γ0K!(x,X0).

If we consider in Eq. (5) the Brownian motion W (t, x), with covariance operator

Q! (x, y) = ε2
0E [K!(x,X0)⊗K!(y,X0)]

one has

vT Q! (x, x) v = ε2
0E

[
|K!(x,X0) · v|2

]
for v ∈ R

2

〈Q!w,w〉 = ε2
0E

[(∫
D

w (x) ·K!(x,X0)dx

)2
]

for w ∈ L2(D;R2).

Inside the previous identities there is the key to have vT Q (x, x) v large and
〈Qw,w〉 small. Moreover, the law of u on the space of divergence free square
integrable vector fields with null normal trace, heuristically, is a Poisson Point
Process generating smoothed point vortices (and the associated velocity field) in
random positions of D. Thus this kind of noise is reasonable for model what we
expect from the heuristic analysis described in Sect. 2.

Theorem 8

– There exists a constant C > 0 such that

〈Q!v, v〉 ≤ Cε2
0 ‖v‖2

H

for every v ∈ H and ! > 0.
– For every x ∈ D, let q! (x) ≥ 0 be the largest number such that

vT Q! (x, x) v ≥ q! (x) |v|2

for all v ∈ R
2. Then

lim
!→∞ inf

x∈D2δ
q! (x) = +∞.
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In the last result of this section the presence of the external source q is crucial.
Moreover we assume that q is independent of time and introduce the stationary
solution of Eq. (6)

Θst := −A−1q.

In fact we want to study the convergence of the solution of the stochastic Eq. (5)
to Θst .
Set

C∞ (θ0, q) := sup
t≥0

E

[
‖θ (t)‖2∞

]
.

Theorem 9 If θ0 ∈ L2(F0,D(A)) and q ∈ D(A), then

– C∞ (θ0, q) < ∞.
– For every φ ∈ H

lim sup
t→∞

E

[
|〈θ (t)−Θst , φ〉|2

]
≤ εQ

κ
‖φ‖2 C∞ (θ0, q) .

In order to be of interest for applications, this theorem requires two conditions:

(1) that εQ is small.
(2) that Θst is significantly affected by the noise.

Obviously if κλL ! κλ then Θst is significantly affected by the noise. Thus we
reconduct ourselves to the previous framework already treated. In Sect. 4 we will
show a concrete example where this phenomenon appears.

4 Explicit Computations

Theorem 8 is not completely suitable for numerical simulations because the
definition of K(x, y) is not explicitly available for every domain smooth and
bounded. In this section we will present an explicit construction with a fluid
dynamics interpretation, again based on vortex structures, which satisfies both εQ
arbitrarily small and q̃ arbitrarily large outside a boundary layer. Moreover we will
show numerically that, even relaxing the conditions in this construction, the noise
influences the behavior of the stationary solution.
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4.1 Explicit Construction

We will construct a noise of the form Γ
∑

k∈K uk (x) dW
k
t with

uk (x) = wr (x − xk) , wr (x) = r−1w
(x
r

)

for suitable r and w. Thus, the covariance of this noise is

Q(x, y) = Γ 2
∑
z∈ΛN

wr (x − z)⊗ wr (y − z) .

We need to choose xk , called the “centers” of the vortex blobs, and a suitable vector
field w. The vector field w must satisfy several conditions:

1. w is smooth and ∇ · w = 0;
2. w has compact support contained in B(0, 1);

3. w is close to 1
2π

x⊥
|x|2 near x = 0.

The first two properties are useful in order to have that the uj ’s model the velocity of
an incompressible fluid at rest. The third one is close to our idea of vortex structures.

Now we choose the centers. For a fixed δ > 0, we choose a positive integer N
such that 1

N
≤ δ. Then we consider the set ΛN of all points of Dδ having coordinates

of the form
(
k
N
, h
N

)
with k, h ∈ Z. Thanks to this choice we have

min
z1  =z2∈ΛN

|z1 − z2| = 1

N
, min

z∈ΛN

d (z, ∂D) ≥ δ.

We choose another positive integer M and we decompose the set ΛN as the disjoint
union of the sets

ΛN =
⋃

(k0,h0)∈{0,1,...,M−1}2
Λ

(M,k0,h0)
N

where
(
k
N
, h
N

) ∈ Λ
(M,k0,h0)
N if k = Mn+ k0, h = Mm+ h0, with n,m ∈ Z. In this

way, we have

min
z1  =z2∈Λ(M,k0,h0)

N

|z1 − z2| = M

N

for each (k0, h0) ∈ {0, 1, . . . ,M − 1}2. We have introduced M and the sets
Λ

(M,k0,h0)
N in order to have that each couple of uj and uk in the same class have

disjoint supports for r small enough and this is sufficient for our estimates, because
it implies that the vector fields are “almost” orthogonal in the sense of Theorem 5.
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In order to have the supports disjoint for elements of Λ(M,k0,h0)
N and the action of

the noise covers the full set D2δ we ask r ≤ M
2N . Now we can focus on the vector

field w. In order of being divergence free we set w = ∇⊥ψ . Thus, we look for a
smooth function ψ on R

2, compactly supported in B (0, 1), close to 1
2π log |x| near

x = 0. A possible construction is the following one:

ψ(x) =
∫
R2

ψ0(x − y)fε(y) dy

where fε is a mollifier with support in B(0, ε) and ψ0 is a C∞(R2 \ {0}) radial
function such that

ψ0(x) = log |x|
2π

for |x| ≤ 1

3
and ψ0(x) = 0 for |x| > 2

3
.

Moreover, it can be proved that w defined above satisfies

‖w‖2 ≤ C log
1

ε
, ‖wr‖2 = ‖w‖2.

Thanks to these relations we can obtain, easily, an estimate of εQ

∫ ∫
v (x)T Q (x, y) v (y) dxdy = Γ 2

∑
z∈ΛN

(∫
wr (x − z) · v (x) dx

)2

= ‖w‖Γ 2
∑

(k0,h0)∈{0,1,...,M−1}2

∑
z∈Λ(M,k0,h0)

N

(∫
wr (x − z)

‖w‖L2
· v (x) dx

)2

≤ M2 ‖w‖2 Γ 2 ‖v‖2 .

Thus, taking ε = 1
N

we get

εQ ≤ M2Γ 2C logN

which is small if, given N , Γ is small enough.
For what concern the analysis of a lower bound for q̃(x) in D2δ , the computations

are a bit more involving and we refer to [7] for a complete discussion which is out
of our scope. We just claim that if

r ≥ 12

N
, M > 24, N is large enough

then

q̃(x) ≥ Γ 2N

16π
in D2δ.
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4.2 Numerical Simulation

Summing up the results of previous subsection, we have seen that if

r ≤ M

2N
, r ≤ δ, r ≥ 12

N
, ε = 1

N
≤ 1

6
, N is large enough

we have

εQ ≤ M2Γ 2C logN, q̃(x) ≥ Γ 2N

16π
in D2δ.

These conditions are strong from the numerical point of view: the cardinality of K
must be very large and a finite but not small M is required. Certain supports have
to overlap so that the noise acts everywhere. However in [10] it has been shown,
numerically, that these conditions are overabundant and much less is required to
see the influence of the noise on the solution, namely that Θst differs significantly
from the parabolic profile even for relatively modest sets K and for M = 1. In this
subsection we are working in an infinite 2D channel, suspend the requirement that
q,Θ have to decay at infinity, although not strictly covered by the theory described
in Sect. 2.1. We assume that the function q (x) is equal to a constant q.

For numerical reasons we consider the problem in the bounded domain

D̃ = (tan(−1.54), tan(1.54))× (−0.1, 0.1).

In order to have that the σk’s model a fluid at rest, we can take

r ≤ maxk∈Kd(∂D̃, xk) and ε <
1

6
.

These are the real constraints on the parameters of our numerical simulation. The
other parameters Γ, K, {xk}k∈K can be chosen more arbitrarily in order to have
satisfactory results.

Differently from [10], here the vortex structures have not been chosen on a grid
equally spaced in both directions. In particular the points thicken in the x1 direction.
We have chosen 2 points in the z direction between −0.05 and 0.05 and for what
concern the x1 direction we have chosen 2 points between 0 and 0.2, 4 points
between 0.2 and 0.4 and 8 points between 0.4 and 0.6. In order to improve the
smoothness of the solution, avoiding a shock in the number of vortices, we prefer to
consider some few vortices for x1 > 0.6. They only slightly affect the behavior
of our solution in the critical region of interest x1 < 0.5. Thus we consider 4
points between 0.6 and 0.8 and 2 points between 0.8 and 1. Obviously we avoid
repetition of the vortices. In conclusion we have 34 vortices. Moreover, we take
r = 0.05, ε = 0.1 and Γ = 0.03. The other parameters of the problem are κ = 0.05
and q ≡ 1. In this way the quantity M and N are not well defined and the impact
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Fig. 1 Solution in the critical region

of the operator L is related to a small portion of the domain D̃, however we can
completely appreciate how it changes the profile of the solution.

Figures 1 and 2 illustrate the modification of the profile, from the standard
parabolic one of free diffusion in a steady medium, to the case of turbulent decay.
Even if we use just a really reduced number of vortices we can observe a significant
decay modification of the profile due to turbulence where vortices thicken.
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Fig. 2 Profiles at different values of x1
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Existence and Uniqueness of Maximal
Solutions to a 3D Navier-Stokes Equation
with Stochastic Lie Transport

Daniel Goodair

Abstract We present here a criterion to conclude that an abstract SPDE possesses
a unique maximal strong solution, which we apply to a three dimensional Stochastic
Navier-Stokes Equation. Motivated by the work of Kato and Lai we ask that there is
a comparable result here in the stochastic case whilst facilitating a variety of noise
structures such as additive, multiplicative and transport. In particular our criterion
is designed to fit viscous fluid dynamics models with Stochastic Advection by
Lie Transport (SALT) as introduced in Holm (Proc R Soc A: Math Phys Eng Sci
471(2176):20140963, 2015). Our application to the Incompressible Navier-Stokes
equation matches the existence and uniqueness result of the deterministic theory.
This short work summarises the results and announces two papers (Crisan et al.,
Existence and uniqueness of maximal strong solutions to nonlinear SPDEs with
applications to viscous fluid models, in preparation; Crisan and Goodair, Analytical
properties of a 3D stochastic Navier-Stokes equation, 2022, in preparation) which
give the full details for the abstract well-posedness arguments and application to the
Navier-Stokes Equation respectively.

Keywords Stochastic transport · SPDE · Navier-Stokes · Well-posedness

1 Introduction

The theoretical analysis of fluid models perturbed by transport noise has been in
significant demand since the release of the seminal works [16] and [17]. In the
papers Holm and Mémin establish a new class of stochastic equations driven by
transport noise which serve as much improved fluid dynamics models by adding
uncertainty in the transport of the fluid parcels to reflect the unresolved scales. Here
we consider the SALT [16] Navier-Stokes Equation given by
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ut − u0 +
∫ t

0
Lus us ds −

∫ t

0
Δus ds +

∫ t

0
Bus ◦ dWs +

∫ t

0
∇ρsds = 0 (1)

and supplemented with the divergence-free (incompressibility) and zero-average
conditions on the three dimensional torus T

3. The equation is presented here in
velocity form where u represents the fluid velocity, ρ the pressure, L is the mapping
corresponding to the nonlinear term, W is a cylindrical Brownian Motion and B

is the relevant transport operator defined with respect to a collection of functions
(ξi) which physically represent spatial correlations. The explicit meaning of these
conditions and the definitions of the operators involved are given at the beginning
of Sect. 2.2. These (ξi) can be determined at coarse-grain resolutions from finely
resolved numerical simulations, and mathematically are derived as eigenvectors of
a velocity-velocity correlation matrix (see [3, 4, 5]). The corresponding stochastic
Euler equation was derived in [12] and the viscous term plays no additional role in
the stochastic derivation (without loss of generality we set the viscosity coefficient
to be 1).

There has been limited progress in proving well-posedness for this class of
equations: Crisan, Flandoli and Holm [5] have shown local existence and uniqueness
for the 3D Euler Equation on the torus, whilst Crisan and Lang [9, 11, 10]
demonstrated the same result for the Euler, Rotating Shallow Water and Great
Lake Equations on the torus once more. Whilst this represents a strong start in the
theoretical analysis (alongside works for SPDEs with general transport noise e.g.
[2, 1]), the modelling literature continues to expand in both the deterministic fluid
models (see for example Figure 2 of [8] and the analysis therein) and method of
stochastic perturbation (for example we may soon look to introduce nonlinearity
and time dependence in the (ξi)). The significance of an abstract approach to the
well-posedness question is clear, and whilst we discuss here only an application to
SALT Navier-Stokes [16, 12] the hope is that other stochastic viscous fluid models
can be similarly solved by simply checking the required assumptions. We state our
equation in the form

Ψ t = Ψ 0 +
∫ t

0
A(s,Ψ s)ds +

∫ t

0
G(s,Ψ s)dWs (2)

for operators A and G to be elucidated in due course. The most notable contribution
to the well-posedness theory for an abstract nonlinear SPDE is from [13]. Here the
authors prove the existence of a unique maximal solution to their abstract equation
and apply this to the three dimensional primitive equations with a Lipschitz type
multiplicative noise. The class of equations which we are concerned with include a
differential operator in the noise term, preventing us from applying this framework.
Moreover the assumptions on their operator A are quite explicit in terms of the
sum of the standard fluid nonlinear term and a linear operator, which we don’t
restrict ourselves to. Overall our assumptions are much more general and allow
for a straightforwards application to a wider class of SPDEs. Another relevant piece
here is the work of Glatt-Holtz and Ziane [14] whom show the same existence and
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uniqueness for the incompressible 3D Navier-Stokes with again a Lipschitz noise
term. Though we cannot apply this method in the presence of our transport noise
we look to adapt this argument to fit not just our Navier-Stokes equation but the
wider class of stochastic viscous fluid models and SPDEs beyond. The impact of
the boundary is fundamental to the equation and the approach of Glatt-Holtz and
Ziane copes with the arising issues by working in the right function spaces; we
recognised the importance of this in establishing an abstract framework which we
hope to apply to such stochastic transport equations on the bounded domain as well.

This short summary work contains three more sections: in the subsequent one
we properly define our Stochastic Navier-Stokes equation through the operators
involved, the relevant function spaces, the notions of solution and main results.
Following this we concretely define our abstract formulation and notion of solution,
giving the assumptions that we require and the main results for the abstract equation.
These assumptions are then all that needs to be checked to conclude the relevant
existence and uniqueness for the proposed SPDE. In the final section we discuss
the key steps behind proving these results; in the spirit of this as a summary work
announcing our results we do not give a complete proof, though all such arguments
are to be found in [7]. We then address how our Navier-Stokes equation fits the
context of the abstract formulation, though once more we do not give a thorough
justification that the operators of our equation satisfy the required assumptions, with
this precise treatment to come in [6].

2 SALT Navier-Stokes and Results

As alluded to in this section we formally introduce Eq. (1) and state the main results.

2.1 Preliminaries from Stochastic Analysis

Throughout the paper we work with a fixed filtered probability space
(Ω,F , (Ft ),P) satisfying the usual conditions of completeness and right continuity.
We take W to be a cylindrical Brownian Motion over some Hilbert Space U with
orthonormal basis (ei). The choice of U and the subsequent basis play no role
in the analysis. Recall ([15, Subsection 1.4]) that W admits the representation
Wt = ∑∞

i=1 eiW
i
t as a limit in L2(Ω;U′) whereby the (Wi) are a collec-

tion of i.i.d. standard real valued Brownian Motions and U′ is an enlargement
of the Hilbert Space U such that the embedding J : U → U′ is Hilbert-
Schmidt and W is a JJ ∗−cylindrical Brownian Motion over U′. Given a process
F : [0, T ] × Ω → L 2(U;H ) progressively measurable and such that F ∈
L2

(
Ω × [0, T ];L 2(U;H )

)
, for any 0 ≤ t ≤ T we understand the stochastic

integral



90 D. Goodair

∫ t

0
FsdWs

to be the infinite sum

∞∑
i=1

∫ t

0
Fs(ei)dW

i
s

taken in L2(Ω;H ). We can extend this notion to processes F which are such that

F(ω) ∈ L2
(
[0, T ];L 2(U;H )

)
for P − a.e. ω via the traditional localisation

procedure. In this case the stochastic integral is a local martingale in H . A
complete, direct construction of this integral, a treatment of its properties and the
fundamentals of stochastic calculus in infinite dimensions can be found in [15,
Section 1].

2.2 SALT Navier-Stokes Equation

We present Eq. (1) on the three dimensional torus T
3 (noting that all results hold

on T
2), and detail now the operators involved alongside the function spaces which

define the equations. The operator L is defined for sufficiently regular functions
φ,ψ : T3 → R

3 by

Lφψ :=
3∑

j=1

φj∂jψ

where φj : T3 → R is the j th coordinate mapping of φ and ∂jψ is defined by its kth

coordinate mapping (∂jψ)k = ∂jψ
k . The operator B is defined as a linear operator

on U (introduced in Sect. 2.1) by its action on the basis vectors B(ei, ·) := Bi(·) by

Bi = Lξi + Tξi

for L as above and

Tφψ :=
3∑

j=1

ψj∇φj .

A complete discussion of how B is then defined on U is given in [15, Subsection
2.2]. We embed the divergence-free and zero-average conditions into the relevant
function spaces and simply define our solutions as belonging to these spaces. To be
explicit, by a divergence-free function we mean a φ ∈ W 1,2(T3;R3) such that
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3∑
j=1

∂jφ
j = 0

and by zero-average we ask for a ψ ∈ L2(T3;R3) with the property
∫
T3

ψ dλ = 0

for λ the Lebesgue measure on T
3. We introduce the space L2

σ (T
3;R3) as the

subspace of L2(T3;R3) consisting of zero-average functions which are ‘weakly
divergence-free’; see [18] Definition 2.1 for the precise construction. W 1,2

σ (T3;R3)

is then defined as the subspace of W 1,2(T3;R3) consisting of zero-average
divergence-free functions, and W 2,2

σ (T3;R3) := W 2,2(T3;R3) ∩W 1,2
σ (T3;R3).

As is standard in the treatment of the incompressible Navier-Stokes Equation we
consider a projected version to eliminate the pressure term and facilitate us working
in the above spaces. Note that ρ does not come with an evolution equation and
is simply chosen to ensure the incompressibility condition. The idea is to solve
the projected equation and then append a pressure to it, see [18]. To this end we
introduce the standard Leray Projector P defined as the orthogonal projection in
L2(T3;R3) onto L2

σ (T
3;R3). As we look to project equation (1) as discussed, we

ought to address the Stratonovich integral. We look to convert this term into an Itô
integral to enable our analysis, but the resulting converted and projected equation
should not depend on the order in which the projection and conversion occur. To
this end we assume that the (ξi) are such that ξi ∈ W 1,2

σ (T3;R3) ∩W 3,∞(T3;R3)

and satisfy the bound

∞∑
i=1

‖ξi‖2
W 3,∞ < ∞. (3)

The significance of the bound (3) will be revisited, but for now we note that as each
ξi is divergence-free then each Bi satisfies the property that PBi is equal to PBiP
on W 1,2(T3;R3) which ensures that the projection and conversion commute. Our
new equation is then

ut − u0 +
∫ t

0
PLus us ds +

∫ t

0
Ausds

− 1

2

∞∑
i=1

∫ t

0
PB2

i usds +
∞∑
i=1

∫ t

0
PBiusdW

i
s = 0 (4)

where A := −PΔ is known as the Stokes Operator. Details of the Itô-Stratonovich
conversion can be found in [15, Subsection 2.3]. We shall use the Stokes operator
to define inner products with which we equip our function spaces. Recall from
[18] Theorem 2.24 for example that there exists a collection of functions (ak),
ak ∈ W 1,2

σ (T3;R3) ∩ C∞(T3;R3) such that the (ak) are eigenfunctions of A, are
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an orthonormal basis in L2
σ (T

3;R3) and an orthogonal basis in W 1,2
σ (T3;R3) con-

sidered as Hilbert Spaces with standard L2(T3;R3), W 1,2(T3;R3) inner products.
The corresponding eigenvalues (λk) are strictly positive and approach infinity as
k → ∞. Thus any φ ∈ W 1,2

σ (T3;R3) admits the representation

φ =
∞∑
k=1

φkak

so for m ∈ N we can define Am/2 by

Am/2 : φ �→
∞∑
k=1

λ
m/2
k φkak

which is a well defined element of L2
σ (T

3;R3) on any φ such that

∞∑
k=1

λmk φ
2
k < ∞. (5)

For φ,ψ with the property (5) then the bilinear form

〈φ,ψ〉m := 〈Am/2φ,Am/2ψ〉

is well defined. For m = 1, 2 this is an inner product on the spaces
W 1,2

σ (T3;R3), W 2,2
σ (T3;R3) respectively which is equivalent to the standard

W 1,2(T3;R3), W 2,2(T3;R3) inner product. Of course 〈·, ·〉3 is well defined on⋃∞
k=1 span{a1, . . . , ak} and so we define W 3,2

σ (T3;R3) as the completion of⋃∞
k=1 span{a1, . . . , ak} in this inner product. We consider Wm,2

σ (T3;R3) as a
Hilbert Space equipped with the 〈·, ·〉m inner product, and define our solution to the
equation (4) relative to these spaces.

2.3 Notions of Solution and Results

We frame this definition for an F0−measurable u0 : Ω → W 1,2
σ (T3;R3). Here and

throughout we use the notation 1 for the indicator function.

Definition 1 A pair (u, τ ) where τ is a P − a.s. positive stopping time and u

is a process such that for P − a.e. ω, u·(ω) ∈ C
([0, T ];W 1,2

σ (T3;R3)
)

and
u·(ω)1·≤τ(ω) ∈ L2

([0, T ];W 2,2
σ (T3;R3)

)
for all T > 0 with u·1·≤τ progressively

measurable in W 2,2
σ (T3;R3), is said to be a local strong solution of the equation (2)

if the identity
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ut − u0 +
∫ t∧τ

0
PLus us ds +

∫ t∧τ

0
Ausds

− 1

2

∞∑
i=1

∫ t∧τ

0
PB2

i usds +
∞∑
i=1

∫ t∧τ

0
PBiusdW

i
s = 0 (6)

holds P− a.s. in L2
σ (T

3;R3) for all t ≥ 0.

We shall address why this definition makes sense in the abstract setting in Sect. 3.3,
before then translating this abstract framework back to our Navier-Stokes Equation.

Definition 2 A pair (u,Θ) such that there exists a sequence of stopping times (θj )
which are P − a.s. monotone increasing and convergent to Θ , whereby (u·∧θj , θj )
is a local strong solution of the equation (4) for each j , is said to be a maximal
strong solution of the equation (4) if for any other pair (v, Γ ) with this property
then Θ ≤ Γ P− a.s. implies Θ = Γ P− a.s.

Definition 3 A maximal strong solution (u,Θ) of the equation (4) is said to be
unique if for any other such solution (v, Γ ), then Θ = Γ P − a.s. and for all
t ∈ [0,Θ),

P ({ω ∈ Ω : ut (ω) = vt (ω)}) = 1.

We can now state the main result of the paper.

Theorem 1 For any given F0− measurable u0 : Ω → W 1,2
σ (T3;R3), there exists

a unique maximal strong solution (u,Θ) of the equation (4). Moreover at P − a.e.

ω for which Θ(ω) < ∞, we have that

sup
r∈[0,Θ(ω))

‖ur(ω)‖2
1 +

∫ Θ(ω)

0
‖ur(ω)‖2

2dr = ∞. (7)

3 Abstract Framework and Results

We now establish the abstract framework through which we arrive at Theorem 1.
This involves giving two sets of assumptions before exploring the abstract method
with the assumptions in place, and then in Sect. 4.2 discussing how (4) fits into this
framework. These assumption sets pertain to two different notions of solution (both
strong in the probabilistic sense but related to different spaces), the reason for which
will be illustrated in Sect. 4. We give these as two distinct sets of assumptions in the
event that an equation fits the first set of assumptions but not the second, such that
we would still be able to conclude that some type of solution exists for the equation.
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3.1 Assumption Set 1

We work with a quartet of continuously embedded Hilbert Spaces

V ↪→ H ↪→ U ↪→ X

and the operators

A : [0,∞)× V → U,

G : [0,∞)× V → L 2(U;H).

We ask that there is a continuous bilinear form 〈·, ·〉X×H : X × H → R such that
for φ ∈ U and ψ ∈ H ,

〈φ,ψ〉X×H = 〈φ,ψ〉U . (8)

Moreover the continuity and bilinearity ensures that there exists some constant c
whereby for all such φ,ψ ,

|〈φ,ψ〉X×H | ≤ c‖φ‖X‖ψ‖H . (9)

As we look to use a Galerkin Scheme to solve our equation, we introduce now a
sequence of spaces (Vn) contained in V given by Vn := span {a1, . . . , an} for (an)
an orthogonal basis in U . Defining Pn to be the orthogonal projection onto Vn in X,
we shall also assume that the restriction of Pn to U is an orthogonal projection in U

and that the sequence of these projections is uniformly bounded on H : that is, that
there exists some constant c independent of n such that for all φ ∈ H ,

‖Pnφ‖2
H ≤ c‖φ‖2

H . (10)

We also require the existence of a real valued sequence (μn) with μn → ∞, which
is such that for any φ ∈ U and ψ ∈ H ,

‖(I − Pn)φ‖X ≤ 1

μn

‖φ‖U , (11)

‖(I − Pn)ψ‖U ≤ 1

μn

‖ψ‖H (12)

where I represents the identity operator in the corresponding spaces. These
assumptions are of course supplemented by a series of assumptions on the operators.
We shall use general notation ct to represent a function c· : [0,∞) → R bounded
on [0, T ] for any T > 0, evaluated at the time t . Moreover we define functions K ,
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K̃ relative to some non-negative constants p, p̃, q, q̃. We use a generic notation
to define the functions K : U → R, K : U × U → R, K̃ : H → R and
K̃ : H ×H → R by

K(φ) := 1 + ‖φ‖pU ,
K(φ,ψ) := 1 + ‖φ‖pU + ‖ψ‖qU ,

K̃(φ) := K(φ)+ ‖φ‖p̃H ,

K̃(φ,ψ) := K(φ,ψ)+ ‖φ‖p̃H + ‖ψ‖q̃H
Distinct use of the function K will depend on different constants but in no
meaningful way in our applications, hence no explicit reference to them shall be
made. In the case of K̃ , when p̃, q̃ = 2 then we shall denote the general K̃ by K̃2.
In this case no further assumptions are made on the p, q. That is, K̃2 has the general
representation

K̃2(φ,ψ) = K(φ,ψ)+ ‖φ‖2
H + ‖ψ‖2

H (13)

and similarly as a function of one variable.
We state the assumptions for arbitrary elements φ,ψ ∈ V , φn ∈ Vn and t ∈

[0,∞), and a fixed κ > 0. Understanding G as an operator G : [0,∞)×V×U → H ,
we introduce the notation Gi (·, ·) := G(·, ·, ei).
Assumption 1 For any T > 0, A : [0, T ] × V → U and G : [0, T ] × V →
L 2(U;H) are measurable.

Remark 1 Measurability here and throughout the paper is defined with respect to
the Borel Sigma Algebra on the relevant Hilbert Spaces.

Assumption 2

‖A(t,φ)‖2
U +

∞∑
i=1

‖Gi (t,φ)‖2
H ≤ ctK(φ)

[
1 + ‖φ‖2

V

]
, (14)

‖A(t,φ)−A(t,ψ)‖X ≤ ct [K(φ,ψ)+ ‖φ‖V + ‖ψ‖V ] ‖φ − ψ‖H ,

(15)

∞∑
i=1

‖Gi (t,φ)− Gi (t,ψ)‖X ≤ ctK(φ,ψ)‖φ − ψ‖H (16)
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Assumption 3

2〈PnA(t,φn),φn〉H +
∞∑
i=1

‖PnGi (t,φ
n)‖2

H ≤

ct K̃2(φ
n)
[
1 + ‖φn‖2

H

]
− κ‖φn‖2

V , (17)

∞∑
i=1

〈PnGi (t,φ
n),φn〉2

H ≤ ct K̃2(φ
n)
[
1 + ‖φn‖4

H

]
. (18)

Assumption 4

2〈A(t,φ)−A(t,ψ),φ − ψ〉U +
∞∑
i=1

‖Gi (t,φ)− Gi (t,ψ)‖2
U

≤ ct K̃2(φ,ψ)‖φ − ψ‖2
U − κ‖φ − ψ‖2

H ,

(19)

∞∑
i=1

〈Gi (t,φ)− Gi (t,ψ),φ − ψ〉2
U ≤ ct K̃2(φ,ψ)‖φ − ψ‖4

U (20)

Assumption 5

2〈A(t,φ),φ〉U +
∞∑
i=1

‖Gi (t,φ)‖2
U ≤ ctK(φ)

[
1 + ‖φ‖2

H

]
, (21)

∞∑
i=1

〈Gi (t,φ),φ〉2
U ≤ ctK(φ)

[
1 + ‖φ‖4

H

]
. (22)

3.2 Assumption Set 2

These assumptions are only checked in addition to Assumption Set 1 and so take
place in the same framework. We state the assumptions now for arbitrary elements
φ,ψ ∈ H and t ∈ [0,∞), and continue to use the c,K, K̃, κ notation of
Assumption Set 1.

Assumption 6 For any T > 0, A : [0, T ] ×H → X is measurable, and whenever
Φ is a progressively measurable process in H we have that G(·,Φ ·) is progressively
measurable in L 2(U;U).
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Assumption 7

‖A(t,φ)‖2
X +

∞∑
i=1

‖Gi (t,φ)‖2
U ≤ ctK(φ)

[
1 + ‖φ‖2

H

]
, (23)

‖A(t,φ)−A(t,ψ)‖X ≤ ct [K(φ,ψ)+ ‖φ‖H + ‖ψ‖H ] ‖φ − ψ‖H
(24)

Assumption 8

2〈A(t,φ)−A(t,ψ),φ − ψ〉X +
∞∑
i=1

‖Gi (t,φ)− Gi (t,ψ)‖2
X ≤

ct K̃2(φ,ψ)‖φ − ψ‖2
X, (25)

∞∑
i=1

〈Gi (t,φ)− Gi (t,ψ),φ − ψ〉2
X ≤

ct K̃2(φ,ψ)‖φ − ψ‖4
X (26)

We in fact state Assumption 9 for φ ∈ V and some κ > 0, making this a stronger
assumption than 5.

Assumption 9 With the stricter requirement that φ ∈ V then

2〈A(t,φ),φ〉U +
∞∑
i=1

‖Gi (t,φ)‖2
U ≤ ctK(φ)− κ‖φ‖2

H , (27)

∞∑
i=1

〈Gi (t,φ),φ〉2
U ≤ ctK(φ). (28)

3.3 Notions of Solution and Results

Here we define the two different notions of solution, which we call V -valued
solutions and H -valued solutions. The corresponding definitions of uniqueness and
maximality are given in one for both notions of solution. We frame the definition
of the V -valued solutions for an initial condition Ψ 0 : Ω → H which is an F0-
measurable mapping, and for the H -valued solutions a Ψ 0 : Ω → U which is
likewise F0-measurable.

Definition 4 A pair (Ψ , τ ) where τ is a P − a.s. positive stopping time and Ψ is
a process such that for P − a.e. ω, Ψ ·(ω) ∈ C ([0, T ];H) and Ψ ·(ω)1·≤τ(ω) ∈
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L2 ([0, T ];V ) for all T > 0 with Ψ ·1·≤τ progressively measurable in V , is said to
be a V -valued local strong solution of the equation (2) if the identity

Ψ t = Ψ 0 +
∫ t∧τ

0
A(s,Ψ s)ds +

∫ t∧τ

0
G(s,Ψ s)dWs (29)

holds P− a.s. in U for all t ≥ 0.

Remark 2 If (Ψ , τ ) is a V -valued local strong solution of the equation (2), then
Ψ · = Ψ ·∧τ .

Remark 3 The progressive measurability condition on Ψ ·1·≤τ may look a little
suspect as Ψ 0 itself may only belong to H and not V making it impossible for
Ψ ·1·≤τ to be even adapted in V . We are mildly abusing notation here; what we
really ask is that there exists a process Φ which is progressively measurable in V

and such that Φ · = Ψ ·1·≤τ almost surely over the product space Ω × [0,∞) with
product measure P× λ for λ the Lebesgue measure on [0,∞).

Remark 4 If Assumption 1 and (14) hold, then the time integral is well defined in
U and the stochastic integral is well defined as a local martingale in H .

Definition 5 A pair (Ψ , τ ) where τ is a P − a.s. positive stopping time and Ψ is
a process such that for P − a.e. ω, Ψ ·(ω) ∈ C ([0, T ];U) and Ψ ·(ω)1·≤τ(ω) ∈
L2 ([0, T ];H) for all T > 0 with Ψ ·1·≤τ progressively measurable in H , is said to
be an H -valued local strong solution of the equation (2) if the identity

Ψ t = Ψ 0 +
∫ t∧τ

0
A(s,Ψ s)ds +

∫ t∧τ

0
G(s,Ψ s)dWs (30)

holds P− a.s. in X for all t ≥ 0.

Remark 5 The analogy to Remarks 2, 3 hold for the H -valued solutions.

Remark 6 If Assumption 6 and (23) hold, then the time integral is well defined in
X and the stochastic integral is well defined as a local martingale in U .

In the following we use V ;H to mean V or H respectively.

Definition 6 A pair (Ψ ,Θ) such that there exists a sequence of stopping times (θj )
which are P− a.s. monotone increasing and convergent to Θ , whereby (Ψ ·∧θj , θj )
is a (V ;H)−valued local strong solution of the equation (2) for each j , is said to be
a (V ;H)−valued maximal strong solution of the equation (2) if for any other pair
(Φ, Γ ) with this property then Θ ≤ Γ P− a.s. implies Θ = Γ P− a.s.
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Definition 7 A (V ;H)-valued maximal strong solution (Ψ ,Θ) of the equation (2)
is said to be unique if for any other such solution (Φ, Γ ), then Θ = Γ P− a.s. and
for all t ∈ [0,Θ),

P ({ω ∈ Ω : Ψ t (ω) = Φ t (ω)}) = 1.

Theorem 2 Suppose that Assumption Set 1 holds. Then for any given F0-
measurable Ψ 0 : Ω → H , there exists a unique V -valued maximal strong solution
(Ψ ,Θ) of the equation (2). Moreover at P− a.e. ω for which Θ(ω) < ∞, we have
that

sup
r∈[0,Θ(ω))

‖Ψ r (ω)‖2
H +

∫ Θ(ω)

0
‖Ψ r (ω)‖2

V dr = ∞. (31)

Theorem 3 Suppose that Assumption Set 1 and 2 hold. Then for any given F0-
measurable Ψ 0 : Ω → U , there exists a unique H -valued maximal strong solution
(Ψ ,Θ) of the equation (2). Moreover at P− a.e. ω for which Θ(ω) < ∞, we have
that

sup
r∈[0,Θ(ω))

‖Ψ r (ω)‖2
U +

∫ Θ(ω)

0
‖Ψ r (ω)‖2

Hdr = ∞. (32)

4 Abstract Solution Method and Application

In this final section we give the main steps of the proofs of Theorems 2 and 3,
followed by a brief exposition of how our SALT Navier-Stokes Equation fits into
this framework.

4.1 Abstract Solution Method

Proof (Theorem 2) We suppose that Assumption Set 1 holds and address the
question first for an initial condition Ψ 0 which is such that for P− a.e. ω,

‖Ψ 0(ω)‖2
H ≤ M ′ (33)

for some constant M ′. We work with this bounded initial condition in the first
instance as we shall use local solutions up to first hitting times given in terms of
the initial condition, so this boundedness translates to boundedness of the relevant
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process up until these times. As directed in Sect. 3.1 we are to use a Galerkin
Scheme, whereby we consider the equations

Ψ n
t = Ψ n

0 +
∫ t

0
PnA(s,Ψ n

s )ds +
∫ t

0
PnG(s,Ψ n

s )dWs (34)

with notation PnG(·, ·, ei) := PnGi (·, ·). A local strong solution of this equation is
defined as a pair (Ψ n, τ ) where τ is a P − a.s. positive stopping time and Ψ n is
an adapted process in Vn such that for P − a.e. ω, Ψ n· (ω) ∈ C ([0, T ];Vn) for all
T > 0, and the identity

Ψ n
t = Ψ n

0 +
∫ t∧τ

0
PnA(s,Ψ n

s )ds +
∫ t∧τ

0
PnG(s,Ψ n

s )dWs (35)

holds P − a.s. in Vn for all t ≥ 0. We can conclude that for any fixed t > 0 and
M > 1, a local strong solution (Ψ n, τ

M,t
n ) of (34) exists for the stopping time τ

M,t
n

defined by

τM,t
n := t∧inf

{
s ≥ 0 : sup

r∈[0,s]
‖Ψ n

r ‖2
U +

∫ s

0
‖Ψ n

r ‖2
Hdr ≥ M + ‖Ψ n

0‖2
U

}
. (36)

This conclusion is reached thanks to Assumption 2, through standard theory in the
finite dimensional Hilbert Space Vn though some care must be taken for the infinite
dimensional Brownian Motion. Understanding that

‖Ψ n
0(ω)‖2

H ≤ c‖Ψ 0(ω)‖2
H ≤ cM ′ (37)

coming from (10) and (33), it is clear that

‖Ψ n
0(ω)‖2

U ≤ M̃ (38)

for some M̃ clearly still independent of n and ω. Thus we see the bound

sup
r∈[0,τM,t

n (ω)]
‖Ψ n

r (ω)‖2
U +

∫ τ
M,t
n (ω)

0
‖Ψ n

s (ω)‖2
Hds ≤ M + M̃ (39)

holds true for every n and P − a.e. ω. This boundedness plays a significant role
in our analysis and demonstrates the importance of starting from this bounded
initial condition in the first instance. The motivation for choosing these stopping
times comes from the work of Glatt-Holtz and Ziane in the referenced paper [14].
The authors prove an abstract result which is the central theorem of the paper,
which we simply restate in the Appendix as Theorem 4. In the original paper, the
authors use the traditional Galerkin Scheme for Navier-Stokes (given by the basis



Solutions of the SALT Navier-Stokes Equation 101

of eigenfunctions of the Stokes Operator) and apply this theorem directly with the
spaces H1 := W 2,2

σ (T3;R3), H2 := W 1,2
σ (T3;R3). We have to take a slight detour

from this method in the case of transport noise due to the condition (47). Translating
this to our framework through H1 = H and H2 = U , the idea in showing this
condition is to apply the Itô Formula in U to the difference process Ψ n−Ψm. When
we simplify down the term arising from the quadratic variation of the stochastic
integral, we must control

∞∑
i=1

‖[I − Pm]Gi (s,Ψ
m
s )‖2

U

which we would do via (12) and (10) to bound the above by

∞∑
i=1

1

μm

‖Gi (s,Ψ
m
s )‖2

H .

In order to send this to zero as m → ∞ we use some uniform boundedness of
the term

∑∞
i=1 ‖Gi (s,Ψ

m
s )‖2

H which in the case of a Lipschitz operator as in the
original paper is immediate from (39). Where Gi is a differential operator we must
obtain uniform boundedness of the solutions (Ψ n) in a higher norm, hence the need
for our space V (which in the context of our SALT Navier-Stokes, would then be
W 3,2

σ (T3;R3)). For this reason we must introduce another step to the proof, whereby
we show that there exists constants C, C̃ dependent on M,M ′, t but independent of
n such that for the local strong solution (Ψ n, τ

M,t
n ) of (34),

E sup
r∈[0,τM,t

n ]
‖Ψ n

r ‖2
H + E

∫ τ
M,t
n

0
‖Ψ n

s ‖2
V ds ≤ C

[
E

(
‖Ψ n

0‖2
H

)
+ 1

]
(40)

and in particular

E sup
r∈[0,τM,t

n ]
‖Ψ n

r ‖2
H + E

∫ τ
M,t
n

0
‖Ψ n

s ‖2
V ds ≤ C̃. (41)

This result is proven by considering Vn as a Hilbert Space with H inner product,
applying the Itô Formula in this context and using Assumption 3. Equation (41) then
follows from (40) due to (10) so we see the significance of starting from an initial
condition bounded in H and not just U (or at least, square integrable in H ). From
Assumption 4, along with the requirement that each Pn is an orthogonal projection
in X and U and the conditions (8),(11),(12), we deduce that for any m < n and
λm := min{μm,μ

2
m},
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2〈PnA(t,φ)− PmA(t,ψ),φ − ψ〉U +
∞∑
i=1

‖PnGi (t,φ)− PmGi (t,ψ)‖2
U

≤ ct K̃2(φ,ψ)‖φ − ψ‖2
U − κ

2
‖φ − ψ‖2

H + ct

λm
K(φ,ψ)

[
1 + ‖φ‖2

V + ‖ψ‖2
V

]
,

∞∑
i=1

〈PnGi (t,φ)− PmGi (t,ψ),φ − ψ〉2
U

≤ ct K̃2(φ,ψ)‖φ − ψ‖4
U + ct

λm
K(φ,ψ)

[
1 + ‖ψ‖2

V

]
.

Along with (41) these bounds allow us to conclude that

lim
m→∞ sup

n≥m

[
E sup

r∈[0,τM,t
m ∧τM,t

n ]
‖Ψ n

r − Ψm
r ‖2

U

+ E

∫ τ
M,t
m ∧τM,t

n

0
‖Ψ n

s − Ψm
s ‖2

Hds

]
= 0 (42)

again via an application of the Itô Formula for Vn considered as a Hilbert Space
with U inner product, on the difference process Ψ n − Ψm. With similar ideas and
the Assumption 5, we infer that

lim
S→0

sup
n∈N

P

({
sup

r∈[0,τM,t
n ∧S]

‖Ψ n
r ‖2

U

+
∫ τ

M,t
n ∧S

0
‖Ψ n

r ‖2
Hdr ≥ M − 1 + ‖Ψ n

0‖2
U

})
= 0.

(43)

We then apply Theorem 4 for H1 = H , H2 = U and claim that the resulting pair
(Ψ , τ

M,t∞ ) satisfies the additional properties that:

– Ψ ·1·≤τ
M,t∞ is progressively measurable in V ;

– For P− a.e. ω, Ψ (ω) ∈ C ([0, T ];H) and Ψ ·(ω)1·≤τ
M,t∞ (ω)

∈ L2 ([0, T ];V ) for
all T > 0;

– Ψ nl → Ψ holds in the sense that

E

[
sup

r∈[0,τM,t∞ ]
‖Ψ nl

r − Ψ r‖2
U +

∫ τ
M,t∞

0
‖Ψ nl

r − Ψ r‖2
Hdr

]
−→ 0. (44)

Indeed the first two are true from using the uniform boundedness (41) and taking
weakly convergent subsequences in the appropriate spaces, then using uniqueness
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of limits in the weak topology and the embeddings V ↪→ H ↪→ U to identify
this limit with Ψ . The weak convergence preserves the measurability and so the
progressive measurability of each Ψ n (from the continuity and adaptedness in Vn)
is what gives the result here. The final item is then a simple application of the
dominated convergence theorem. To conclude that (Ψ , τ

M,t∞ ) is a V -valued local
strong solution it only remains to show the identity (29), which is done by taking
limits of the corresponding terms in (35) and applying (15), (16) alongside the
already used assumptions on the (Pn). We take the limit in X and argue that the
identity being satisfied in X is sufficient to conclude the satisfaction of the identity
in U , given that all integrals can be constructed in U from the regularity of the
solution.

We have now shown the existence of a V−valued local strong solution but for
the bounded initial condition (33). We then show a uniqueness result for such
solutions, which is: suppose that (Ψ 1, τ1) and (Ψ 2, τ2) are two V−valued local
strong solutions of the equation (2) for a given initial condition Ψ 0. Then for all
s ∈ [0,∞),

P

({
ω ∈ Ω : Ψ 1

s∧τ1(ω)∧τ2(ω)
(ω) = Ψ 2

s∧τ1(ω)∧τ2(ω)
(ω)

})
= 1.

This is proven through applying Assumption 4 in the context of an Itô Formula in
U of the difference process of any two solutions. With this uniqueness in place we
then conclude the results of Theorem 2 but still for the bounded initial condition,
via similar arguments to those used in [14]. To pass to a general initial condition we
consider a sequence of such maximal strong solutions (Ψ k,Θk) corresponding to
the bounded initial conditions (Ψ 01k≤‖Ψ 0‖H≤k+1) and use the maximality on these
pieces to show that the pair (Ψ ,Θ) defined at each time t ∈ [0, T ] and ω ∈ Ω by

Ψ t (ω) :=
∞∑
k=1

Ψ k
t (ω)1k≤‖Ψ 0(ω)‖H<k+1, Θ(ω) :=

∞∑
k=1

Θk(ω)1k≤‖Ψ 0(ω)‖H<k+1

is our desired solution for the initial condition Ψ 0 (where the limit for Ψ is in reality
just a finite sum). It is clear that for any ω, there exists a k such that (Ψ (ω),Θ(ω)) =
(Ψ k(ω),Θk(ω)) so the property (31) follows from the same property in the case
of the bounded initial condition. This rounds off our discussion for the proof of
Theorem 2.

In the case where Assumption Set 2 holds, we then look to use the V -valued local
strong solutions to obtain an H -valued local strong solution but now just for a U -
valued initial condition. At this juncture it is well worth addressing the question of
why we consider these distinct types of solution; that is if we wanted an H -valued
local strong solution then why not restate Assumption Set 1 for the spaces V as H ,
H as U and U as X? The reason lies in the application to our stochastic Navier-
Stokes equation, which would then not satisfy the required assumption. This will be
discussed more explicitly in Sect. 4.2.
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Proof (Theorem 3) The idea now is to apply this existence result to the sequence
of initial conditions (PnΨ 0), and apply the same Theorem 4 argument to the
corresponding sequence of solutions. From here we now need to suppose that
Assumption Set 2 holds in addition to Assumption Set 1. In the same manner we
start again from a bounded Ψ 0, this time such that

‖Ψ 0(ω)‖2
U ≤ M̃. (45)

We could immediately apply Theorem 2 for each initial condition PnΨ 0, though
we want to apply Theorem 4 for the same spaces H1 = H and H2 = U . Recall
that we could not do this immediately for a U -valued initial condition and the
sequence of Galerkin solutions due to gaining a suitable control on the noise term
arising from the difference of the projections. In the present scenario we consider
solutions to the unprojected (2) and so we are not burdened with this difficulty.
An application of Theorem 4 would rely on us being able to conclude that each
maximal solution (Ψ n,Θn) corresponding to the initial condition PnΨ 0 exists up
until the stopping time (36) (where the Ψ n notation has now shifted to the above).
This is not immediate from Theorem 2, though we can use similar maximality
arguments to extend these solutions to τ

M,t
n at the cost of some regularity. Indeed

for these extended solutions we have only the regularity of the H -valued solution
but with the additional benefit that Ψ t (ω)1·≤τ

M,t
n (ω)

∈ V almost everywhere on
the product space Ω × [0,∞). This facilitates the use of Assumption 4 in order
to show the Cauchy property (42), but only via first using an Itô Formula with the
bilinear form 〈·, ·〉X×H . We must make this step as the identity for these extended
solutions is only satisfied in X hence we cannot use the U inner product. The
stochastic integral though can be constructed in U following from Remark 5, and
the regularity Ψ t (ω)1·≤τ

M,t
n (ω)

∈ V allows us to call upon the property (8) so that we
can apply Assumption 4. Without the uniform boundedness (41) for these solutions
we need Assumption 9 instead of just 5 to deduce (43). The conclusion of the proof
of Theorem 3 then follows identically to that of 2, now using Assumption 8 for the
uniqueness part and (24) to show the convergence of the time integral term when
justifying that the limiting pair (Ψ , τ

M,t∞ ) obtained from Theorem 4 is an H -valued
local strong solution.

4.2 SALT Navier-Stokes in the Abstract Framework

We now briefly comment on the application of this abstract framework to Eq. (4) in
order to conclude the paper. In the previous subsection we have already established
the identification of the spaces

V := W 3,2
σ (T3;R3),H := W 2,2

σ (T3;R3), U := W 1,2
σ (T3;R3),X := L2

σ (T
3;R3)
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at which point we address the question posed in that subsection as to why we need
to make this effort with first the V−valued solutions before showing the existence
for the H−valued ones. That is, why would Assumption Set 1 not hold if we were
to shift the spaces from V to H , H to U and U to X (with some modifications of
the reference to X in Assumption Set 1)? One clear answer is in the treatment of the
nonlinear term for (17): for H = W 2,2

σ (T3;R3) we have the algebra property of the
Sobolev Space which affords us a bound

‖Lφnφn‖2 ≤ c‖φn‖2‖φn‖3

using the equivalence of the ‖·‖2 and the standard W 2,2 one. In the W 1,2 norm we do
not have the same luxury and so this nonlinear term cannot be bounded just in terms
of the W 1,2 and W 2,2 norms as would be required. It is worth noting the significance
of using the 〈·, ·〉2 inner product here, as in the same assumption this facilitates the
‘integration by parts’ property for the Stokes Operator in order to gain the additional
control we require (i.e. the −κ‖φn‖2

V term). There is some additional care required
then to control the noise terms in these inner products, but this is facilitated by using
the same standard cancellation argument that

〈Lξi φ, φ〉L2 = 0 (46)

for φ ∈ W 1,2(T3;R3), as well as appreciating that the commutator [Δ,Bi] is of
second order and commuting through the Bi with Δ until we reduce to a term of the
form (46). The control (3) allows the ξi to be effectively ignored in many of these
computations, by just pulling them out with the supremum. We refer once more
to [6] for the complete details. Of course it is Theorem 3 which is what translates
into our main Theorem of the paper (1), though it is also worth noting that having
showed Theorem 2 in this context then we can also say something about the retained
regularity of our solutions coming from a more regular initial condition. To really
make this point we’d have to say that the maximal times for the different notions of
solution were in fact the same, and this is to be addressed in [6].

Appendix

Here we state [14, Lemma 5.1].

Theorem 4 Let H1 ⊂ H2 be Hilbert Spaces with continuous embedding, and (Ψ n)

be a sequence of processes such that for P − a.e. ω, Ψ n(ω) ∈ C ([0, T ];H2) ∩
L2 ([0, T ];H1) which is a Banach Space with norm

‖ψ‖X(T ) :=
(

sup
r∈[0,T ]

‖ψ r‖2
H2

+
∫ T

0
‖ψ r‖2

H1
dr

) 1
2

.
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For some fixed M > 1 and t > 0 define the stopping times

τM,t
n (ω) := t ∧ inf

{
s ≥ 0 : ‖Ψ n(ω)‖2

X(s) ≥ M + ‖Ψ n
0(ω)‖2

H2

}

and suppose that

lim
m→∞ sup

n≥m
E‖Ψ n − Ψm‖2

X(τ
M,t
m ∧τM,t

n )
= 0 (47)

and

lim
S→0

sup
n∈N

P

({
‖Ψ n‖2

X(τ
M,t
n ∧S) ≥ M − 1 + ‖Ψ n

0‖2
H2

})
= 0.

Then there exists a stopping time τ
M,t∞ , a subsequence (Ψ nl ) and process Ψ =

Ψ ·∧τM,t∞ such that:

– P

({
0 < τ

M,t∞ ≤ τ
M,t
nl

)}
= 1;

– For P− a.e. ω, Ψ (ω) ∈ C
(
[0, τM,t∞ (ω)];H2

)
∩ L2

(
[0, τM,t∞ (ω)];H1

)
;

– For P− a.e. ω, Ψ nl (ω) → Ψ (ω) in(
C
(
[0, τM,t∞ (ω)];H2

)
∩ L2

(
[0, τM,t∞ (ω)];H1

)
, ‖ · ‖

X(τ
M,t∞ (ω))

)
.
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Coupling of Waves to Sea Surface
Currents Via Horizontal Density
Gradients

Darryl D. Holm, Ruiao Hu, and Oliver D. Street

Abstract The mathematical models and numerical simulations reported here are
motivated by satellite observations of horizontal gradients of sea surface tempera-
ture and salinity that are closely coordinated with the slowly varying envelope of the
rapidly oscillating waves. This coordination of gradients of fluid material properties
with wave envelopes tends to occur when strong horizontal buoyancy gradients are
present. The nonlinear models of this coordinated movement presented here may
provide future opportunities for the optimal design of satellite imagery that could
simultaneously capture the dynamics of both waves and currents directly.

The model derived here appears in two levels of approximation: first for rapidly
oscillating waves, and then for their slowly varying envelope (SVE) approximation
obtained by using the WKB approach. The WKB wave-current-buoyancy inter-
action model derived here for a free surface with significant horizontal buoyancy
gradients indicates that the mechanism for the emergence of these correlations is
the ponderomotive force of the slowly varying envelope of rapidly oscillating waves
acting on the surface currents via the horizontal buoyancy gradient. In this model,
the buoyancy gradient appears explicitly in the WKB wave momentum, which in
turn generates density-weighted potential vorticity whenever the buoyancy gradient
is not aligned with the wave-envelope gradient.

Keywords Nonlinear water waves · Free surface fluid dynamics · Geometric
mechanics
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1 Introduction

1.1 Submesoscale Sea Surface Dynamics

Capabilities in sea surface observation have been improving rapidly during the past
two decades [1]. In particular, new high-resolution satellite observation capabilities
are revealing sea surface features seen for the first time at submesoscale spatial
scales of 100 m–10 km and time scales of hours to weeks. Invariably, the new
satellite imagery reveals a plethora of coupled dynamical surface phenomena,
including currents, spiral filaments, flotsam patterns, jets and fronts, some of which
are detected indirectly through gradients of sea surface temperature, salinity or
colour, in addition to the imagery [5, 10, 13, 20, 26].

The new capabilities in sea surface observation are still developing. For example,
the impending Surface Water Ocean Topography (SWOT) mission will map the
ocean surface mesoscale sea surface height field, as well as a large fraction of the
associated submesoscale field, including buoyancy fronts [17]. A sample of this type
of submesoscale data taken from [5] is shown in Figs. 1 and 2.

The coming new age of higher-resolution upper ocean observations will present
a formidable array of challenges for the next generation in data management,
computational simulation and mathematical modelling. This paper will offer a
mathematical modelling framework that is flexible enough to admit uncertainty

Fig. 1 Wave activity in the submesoscale ocean is dynamically complex, as illustrated in this
figure showing the zoomed image of a submesoscale sea surface elevation, seen in Envisar
MERIS glitter observations. This image shows the wave elevation tracking a cyclonic eddy
visible in the sea surface glitter observations. The pixel resolution is 250 m. This glitter image
demonstrates the complex, highly-coordinated dynamical forms taken in wave-current interaction
on the submesoscale sea surface. In particular, notice the instabilities developing in the eddy’s outer
boundary. Image courtesy of B. Chapron
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Fig. 2 Comparison of the two images above demonstrates the emergent coherence between sea
surface temperature and the glitter patterns visible from satellite imagery. The thermal fronts visible
are dynamic, and sea surface roughness is most obvious along the strongest fronts. Discussions
of the interpretation of sun glitter measurements are given in [5, 20, 26]. Images courtesy of B.
Chapron

quantification through stochastic modelling and analysis, applied in concert with
high-resolution observations, computational simulations, and stochastic data assim-
ilation for large data sets. This framework involves decomposing the surface motion
into a two-dimensional horizontal flow map representing transport by the current
acting on a one-dimensional vertical flow map representing wave-like motion of
the elevation. This composition-of-maps modelling framework is described and
applied to model sea-surface dynamics in two deterministic examples in Sect. 2 of
the present paper.
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Emergent Coherence (EC) Combining high-resolution thermal data (buoyancy)
with glitter data for the wave elevation as in Fig. 2 has recently revealed yet another
interesting feature of submesoscale dynamics. Namely, the observed submesoscale
data show extremely high correlations of wave, current and thermal properties
[5]. This emergent spatial-temporal coherence of dynamic and thermal properties
presents a significant challenge for dynamical submesoscale modelling. Accepting
this challenge, the aim of this paper is to derive a mathematical model of nonlinear
sea surface dynamics whose solutions also demonstrate the emergent coherence
observed in combining different types of submesoscale data. This paper derives new
two-dimensional equations that show the emergent coherence (EC) seen in the sea
surface features appearing in Fig. 2. The EC behaviour produced by the equations
derived here are demonstrated in Fig. 3 which shows a snapshot of the coherence
of buoyancy and wave amplitude distributions in the dynamics of divergence-free
two-dimensional flow acting on free surface vertical elevation wave features moving
under gravity. In the model equations, the horizontal buoyancy gradients mediate the
interactions between the vertical elevation waves and the horizontal currents. The
equations of motion represent the current as a time-dependent, area-preserving map
of the horizontal plane into itself and the waves as the composition of the horizontal
flow map with a time-dependent vertical elevation map. Thus, the model involves a
dynamical composition of maps (C◦M).

2 Submesoscale Thermal Wave-Current Dynamics on a Free
Surface

2.1 Surface Waves as Symmetry-Breaking Features of Local
Force Imbalances

Waves are propagating symmetry-breaking features that signify the response to
a local imbalance of forces. Thus, from the viewpoint of satellite oceanography,
observations of waves—defined as propagating sea surface elevation features—
signify processes at the surface or below the surface whose presence introduces
forces that locally break the symmetry of the surface. The sea surface would
otherwise follow the stable global gravitational balance of the geoid, which we
regard here as being spherical. Thus, waves arise from a spatially local imbalance
of forces in the neighbourhood of a stable equilibrium. The propagating feature of
relevance here is the wave elevation, measured as the local departure of the surface
level in the direction normal to its equilibrium mean level. The symmetry broken
here is the invariance of the sea surface under spatial translations tangent to the
equilibrium surface level, also known as the local horizontal direction. Hence, from
the viewpoint of satellite oceanography, sea surface waves are observed as local
vertical displacements of the otherwise horizontal motion of the ocean currents on
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Fig. 3 This is a 5122 snapshot of the C◦M equations in the SVE approximation in the potential
vorticity form in (45). The four panels display the following distributions, modified potential
vorticity Q-PV in (43) (top left), buoyancy (top right), square of the wave amplitude (bottom left)
and wave phase (bottom right) in the numerical simulation of the dynamics of divergence-free flow
on a free surface moving under gravity. The simulation began with a spin-up period with zero wave
amplitude. After the spin-up period, as explained in Sect. 3, a checker-board pattern of finite wave
amplitude with zero phase was introduced and the simulation was resumed. The ‘mixing’ of these
wave patterns eventually brought them into coherence with the spatial distributions of thermal
properties and potential vorticity. These features show an emergent coherence in patterns similar
to those seen in the corresponding high-resolution satellite data in Fig. 2

the sea surface. From the mathematical modelling viewpoint, sea surface waves
are local vertical oscillations of the horizontal surface that are carried along by the
horizontal current flow, envisaged as a smooth invertible time-dependent map of the
horizontal surface into itself. This is the composition of maps (C◦M) modelling
approach for describing the dynamics of horizontal fluid flows (currents) acting
on oscillating vertical elevations (waves). Since the surface current velocity, its
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advected material properties and the wave elevation are all that can be observed in
satellite oceanography, the task in three-dimensional ocean modelling for satellite
oceanography devolves into determining the dynamical surface features that are
produced by the three-dimensional flow processes below the surface arising from
e.g., bathymetry, stratification, rotation, Langmuir circulation, and thermal effects
such as frontogenesis. The dynamics of the surface signatures of these three-
dimensional flow processes, as well as the effects of air-sea interactions on the
surface, need to be interpreted in order to understand what satellite oceanography
observes.

2.2 A Tale of Two Maps: Currents and Waves

Story Line Waves on the surface of the ocean are modelled here as a composition
of two smooth invertible maps describing the temporal evolution and advection
of two degrees of dynamical freedom interacting at widely separated space-time
scales. In this composition of maps (C◦M) approach, the waves are regarded as
local vertical disturbances that rapidly oscillate as they are swept along by the broad,
slowly changing horizontal currents. Thus, the slow current motion is a Lagrangian
coordinate for the rapid wave oscillations. This wide separation in space-time
scales invokes the classical WKB description. The standard WKB approach seeks a
rapidly oscillating wave packet solution whose phase-averaged amplitude possesses
a slowly varying envelope (SVE) spatially. The WKB method is often applied via
a variational principle because in a variational setting the phase average naturally
leads to an adiabatic invariant known as the wave action density, cf. for example, [3]
for a review of the WKB or SVE method in fluid dynamics. Here we will follow the
variational approach of [4, 11] guided by the classical work of [22, 24, 25].

Submesoscale Sea-Surface Motion: Composition of Two Time-Dependent
Maps The position and velocity of fluid parcels in motion under gravity on a
2D free surface embedded in R3 have both horizontal and vertical components. The
corresponding flow maps are denoted as the map φt : R2 → R2 for the horizontal
current flow, and as the composite map ζtφt for the vertical elevation of the waves
as a function of time and position in R2. The flow lines of these two components of
the flow map of a free surface can be written as

r t = φtr0 and zt = ζt (φtr0) =: ζt (r t ) ,

where r t = (xt , yt ) ∈ R2 is the horizontal position along the flow at time t and
ζt (r t ) is the vertical elevation at horizontal position r t at time t , starting at position
r0 at time t = 0. Thus, one may say that the initial position of the flow line, r0, is
a Lagrangian coordinate for the horizontal motion, and the horizontal motion is a
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Lagrangian coordinate for the vertical motion. That is, the ‘footpoint’ at time t of
the vertical component of the flow map ζt is located in the horizontal plane along
a curve φtr0 parameterised by time t . Likewise, one can simply say that the wave
dynamics is advected, or swept along, by the current dynamics.

Hence, the corresponding horizontal and vertical components of velocity along a
stream line r t in the horizontal plane are defined by,

dr t

dt
= d

dt
(φtr0) = v̂t (φtr0) =: v̂t (r t ) , so v̂t = dφt

dt
φ−1
t and

dzt

dt
=: ŵt (r t ) = d

dt

(
ζt (φtr0)

) = ∂t ζt (r t )+ ∇rζt (r t ) · v̂t (r t ) .

That is, in the dynamics of free surface flow, the vertical velocity ŵ(r, t) at a given
Eulerian point r and time t is related to the wave elevation ζ(r, t) and horizontal
velocity v̂(r, t) at that point by

ŵ(r, t) = ∂t ζ(r, t)+ v̂(r, t) · ∇rζ(r, t) .

In terms of these fluid variables, one could propose a Hamilton’s principle for wave-
current interaction of a free surface by following [8] for the variational modelling
framework and applying [24, 7] for the potential energy to find1

0 = δS = δ

∫ b

a

!(̂v, ζ,D, ρ) dt

= δ

∫ b

a

∫
D

(
1

2

(
|̂v|2 + σ 2(∂t ζ + ∇rζ · v̂)2

)
− ζ 2

2Fr2

)
Dρ − p(D − 1) d2r dt.

(1)

To interpret the variational principle proposed in (1) we rewrite its Lagrangian
as a sum of an Eulerian spatial integral and an integral over material mass elements
d2r0 = Dρ d2r which follow the paths of the horizontal fluid motion, r(r0, t) =
φtr0,

0 = δS = δ

∫ b

a

∫
D

Dρ

2
|̂v|2 − p(D − 1) d2r dt + δ

∫ b

a

∫
D0

σ 2

2
ζ̇ 2 − ζ 2

2Fr2 d2r0 dt .

(2)

1 In [8] the potential energy was linear in ζ . This linearity neglected the restoring force due to
vertical pressure gradient via Archimedes’ principle. Adopting the potential energy quadratic in ζ

regains this restoring force.
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Variations of the first summand in (2) at fixed spatial position (r) yield the Euler
fluid equations for 2D divergence free flow with advected buoyancy, ρ(r, t) =
ρ(φtr0) = ρ0(r0),

∂t v̂ + (̂v · ∇r )̂v = − 1

ρ
∇rp with ∇r · v̂ = 0. (3)

Variations of the second summand in (2) taken at fixed mass element (r0) yield
equations for vertical harmonic oscillations of the elevation of each material mass
element

σ 2ζ̈ (r0, t) = σ 2 d
2ζ

dt2

∣∣∣
r0

= − ζ(r0, t)

F r2 . (4)

The wave-elevation equation in (4) is unrealistic, though, because it implies that
fluid mass elements with different labels (r0) would be oscillating in phase and all
with the same frequency, as they follow the flow of the Euler fluid equations (3) for
2D divergence free flow with advected buoyancy. This unrealistic synchronisation
and resonance can be removed by including the inertia of each mass element. This
can done by including the initial buoyancy of each mass element, as

σ 2ζ̈ (r0, t) = σ 2 d
2ζ

dt2

∣∣∣
r0

= − ρref

ρ0(r0)

ζ(r0, t)

F r2 . (5)

At this point in our reasoning, we have not yet considered the differences in space
and time scales between the fluid flow and the wave activity. In what follows, we
will use the simple composition-of-maps idea explained here along with estimates of
relative space and time scales to investigate the applicability of this class of models.
To improve the applicability of the model comprising (3) and (5) for describing the
effects of currents on waves, we will derive a related model in the slowly varying
envelope (SVE) approximation. The SVE approximation allows considerations of
current and wave dynamics at the same space and time scales.

The comparisons of the simulated solutions of these C◦M models with the
observations in Figs. 1, 2, 3, and 4 above indicate that these models can indeed
produce results that match some aspects of observed features. However, these
models are not derived from three dimensional fluid equations. Instead, they are
derived from the simple solution Ansatz in Hamilton’s principle that the vertical
elevation of the sea surface wave activity is carried by divergence-free horizontal
fluid motion. The latter assumption is a weakness of the current approach, because
it precludes effects of vertical up-welling and down-welling, which are observed
to occur along with convergence and divergence of currents [10]. The equations
derived here are also not associated with classical surface wave equations such as the
nonlinear Schroedinger (NLS) equation, or other celebrated surface wave equations.
This departure from the classical water wave literature may be regarded as another
weakness of the current approach.
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Fig. 4 These 5122 snapshots of the C◦M simulation in the vorticity form (25) shows the elevation
ζ in the left panel and the density-weighted vertical velocity w̃ on the right. The snapshots are taken
at the same time and with the same fluid spin-up initial conditions as the snapshots of the simulation
of the SVE approximate equations presented in Fig. 3. Overlaying the two figures demonstrates that
the resolved features in the ζ distribution in this figure of C◦M results are bounded by the SVE
wave envelope distribution |a|2 in Fig. 3

Estimating Parameters σ 2 and Fr2 for Satellite Observations The Lagrangian
!(̂v, ζ,D, ρ) in (1) represents the dimension-free difference of the kinetic and
potential energies, augmented by the incompressibility constraint imposed by the
Lagrange multiplier p. Two dimension-free parameters (σ 2 and Fr2) appear in
this Hamilton’s principle. The coefficient σ 2 = ([H ]/[L])2 in formula (1) is the
square of the vertical-to-horizontal aspect ratio. Typically, for satellite observations
of submesoscale dynamics one finds

[H ] ≈ (3×10−4−3×10−3) km and [L] ≈ (10−1−10) km, so σ 2 ≈ 10−3−10−6 $ 1

for the squared aspect ratio σ 2 $ 1 of the height of the waves [H ] relative to
the breadth [L] of the two-dimensional domain. The squared ‘Froude number’ Fr2

in this regime is estimated by the square of the ratio of horizontal and vertical
frequency scales at the sea surface,

Fr2 :=
( [V ]/[H ]

N

)2

≈ 1 − 104 . (6)

Here, the horizontal velocity on the sea surface is taken as [V ] = (0.1 − 1)m/s,
[H ] = (0.3 − 3)m. According to [9], the Brunt-Väisälä buoyancy frequency in
the sea surface wave regime is given by N ≈ (10−3 − 10−4)/s. The ratio of
horizontal and vertical frequency scales at the sea surface in (6) is selected for
use later in applying the slowly varying envelope (SVE) wave approximation in
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Sect. 2.4. Hence, we estimate that the squared product of the ‘Froude number’ and
aspect ratio for satellite observations of the sea surface can reasonably be estimated
over the range

σ 2Fr2 :=
( [V ]
N [L]

)2

≈ 10−3 − 10. (7)

Modelling the Dynamic Effects of Surface Density Variations As mentioned
earlier, the observed oscillations of sea surface waves are by no means simultaneous
across the whole domain, although the observations show that they are indeed
coordinated spatially with the buoyancy of the fluid. To correct this solution
behaviour, the kinetic energy and potential energy need to be de-synchronised from
the buoyancy.

The dynamic dependence of the wave kinetic energy on the density is physically
required. However, to de-synchronise the wave oscillations we can introduce a
constant reference density ρref into the wave potential energy, by writing

ζ 2

Fr2
→ ρref

ρ

ζ 2

Fr2
with

ρref

ρ
of order O(1) . (8)

The quantity ρref is a constant reference density, and the density ratio (ρref /ρ) =
O(1).

The density dependence imposed here is important in the dynamics that follows
from Hamilton’s principle. Substituting the relations in (8) into Hamilton’s principle
in Eq. (1) leads to the following dimension-free action integral,

0 = δS = δ

∫ b

a

!(̂v, ζ,D, ρ) dt

= δ

∫ b

a

∫
D

(
1

2

(
|̂v|2 + σ 2(∂t ζ +∇rζ · v̂)2

)
− ρref

ρ

ζ 2

2Fr2

)
Dρ − p(D − 1) d2r dt.

(9)

The advected quantities D(r, t)d2r and ρ(r, t) evolve via push-forward by the
horizontal flow map, φt . For example, Dtd

2rt = φt∗(D0d
2r0) and ρt = φt∗ρref

denote, respectively, evolution of the determinant of the Lagrange to Euler map and
of the local scalar value of the mass density. Conservation of mass is then expressed
as the push-forward relation, Dtρtd

2rt = φt∗(D0ρref d
2r0). The pressure p in (9)

acts as a Lagrange multiplier to enforce conservation of area, so that Dt = 1 =
φt∗D0, and the horizontal flow is incompressible, which implies that the horizontal
velocity is divergence-free, i.e., divr v̂(r, t) = 0. Taking variations of the action
integral (9) yields the following set of equations,
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δv̂ : δ!

δv̂
= Dρ

(̂
v · dr + σ 2ŵ dζ

)⊗ d2r := DρV · dr ⊗ d2r ,

with ŵ = ∂t ζ + v̂ · ∇rζ ,

δζ : ∂t (σ
2Dρŵ)+ divr(σ

2Dρŵv̂)− D
ζρref

F r2
= 0 ,

δD : δ!

δD
= ρ

2

(|̂v|2 + σ 2ŵ2)− ρref ζ
2

2Fr2 − p =: ρ$̃ − p̃ ,

δρ : δ!

δρ
= D

2

(|̂v|2 + σ 2ŵ2) =: D$̃ , p̃ := p + ρref ζ
2

2Fr2 ,

δp : D − 1 = 0 %⇒ divr v̂ = 0 .

(10)

From their definitions as advected quantities, one also knows that D and ρ satisfy

(∂t + Lv̂)(D d2r) = 0 %⇒ ∂tD + divr(Dv̂) = 0 with D = 1 ,

(∂t + Lv̂)ρ = 0 %⇒ ∂tρ + v̂ · ∇rρ = 0 ,
(11)

where Lv̂ denotes the Lie derivative operation along the horizontal velocity vector
field, v̂, which provides coordinate-free brevity in the notation.

Theorem 1 (Kelvin-Noether Circulation Theorem) Use of the Euler-Poincaré
(EP) theorem yields the following Kelvin circulation theorem

d

dt

∮
c(̂v)

(̂
v · dr + σ 2ŵ dζ

) = −
∮
c(̂v)

1

ρ
dp̃ . (12)

Proof The Euler-Poincaré (EP) theorem in this case yields

(∂t + Lv̂)
δ!

δv̂
= δ!

δD
'D + δ!

δρ
' ρ := D∇r

δ!

δD
− δ!

δρ
∇rρ. (13)

Here the diamond (' ) operator is defined by

〈 δ!
δa

' a , X
〉
X
=:

〈 δ!
δa

, −£Xa
〉
V
. (14)

In addition, X ∈ X is a (smooth) vector field defined on R2 and a ∈ V , a vector space
of advected quantities, which are here the scalar function, ρ, and the areal density
D d2r . Using the advection relations for D and ρ in (11) and the corresponding
variational derivatives in (10) simplifies the EP equation in (14) to

(∂t + Lv̂)
( 1

Dρ

δ!

δv̂

)
= 1

ρ
∇r

δ!

δD
− 1

Dρ

δ!

δρ
∇rρ .

Equation (10) then yields (∂t + Lv̂)
(̂
v · dr + σ 2ŵ dζ

) = −ρ−1dp̃ + d$̃ .

(15)
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Inserting the last relation into the following standard relation for the time derivative
of a loop integral then completes the proof of Eq. (12) appearing in the statement of
the theorem,

d

dt

∮
c(̂v)

(̂
v · dr + σ 2ŵ dζ

) =
∮
c(̂v)

(∂t + Lv̂)
(̂
v · dr + σ 2ŵ dζ

) =
∮
c(̂v)

−ρ−1dp̃ + d$̃ .

(16)

Using the advection relations for D and ρ in (11) again and combining with the
variational relations with respect to ζ in (10) simplifies the ŵ and ζ equations, as
follows.

(∂t + Lv̂)ŵ = (∂t + v̂ · ∇r)ŵ = − ρref

σ 2Fr2ρ
ζ ,

(∂t + Lv̂)ζ = (∂t + v̂ · ∇r)ζ = ŵ .

(17)

After deriving these equations, one may finally evaluate the constraint D = 1
imposed by the variation in pressure p to obtain further simplifications. ��

Corollary 2 (Kelvin-Noether circulation Theorem for the Current) The Kelvin
circulation theorem for the current alone is given by,

d

dt

∮
c(̂v)

v̂ · dr = −
∮
c(̂v)

1

ρ
dp − d

|̂v|2
2

. (18)

Proof Equation (18) follows by shifting the ŵdζ term in Eq. (38) to the right-hand
side, as

d

dt

∮
c(̂v)

v̂ · dr = −
∮
c(̂v)

1

ρ
dp̃ + σ 2(∂t + Lv̂)

(
ŵ dζ

)− d$̃

= −
∮
c(̂v)

1

ρ
dp̃ + σ 2((∂t + v̂ · ∇r)ŵ

)
dζ + σ 2ŵdŵ − d$̃

= −
∮
c(̂v)

1

ρ
dp̃ − ρref

F r2ρ
ζdζ + σ 2ŵdŵ − d$̃

= −
∮
c(̂v)

1

ρ
dp − d

|̂v|2
2

=: −
∮
c(̂v)

1

ρ
dp − d

|̂v|2
2

.

(19)
��

Remark 1 (Separation of Wave and Current Circulation) The decoupling of the
Kelvin-Noether circulation theorem into its wave and current components, leading
to the reduction of the current flow to the Euler result in Eq. (18), was also observed
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in [8]. This behaviour is consistent with the Charney-Drazin ‘non-acceleration’
theorem [6, 23]. Namely, in certain circumstances, wave activity does not create
circulation in the mean current. A modification that allows exchange of circulation
between wave (vertical) and current (horizontal) components of the flow was
proposed in [8]. The instabilities observed around the edges of eddies in the satellite
imagery shown in Fig. 1 suggests that a coupling of this sort may exist at high wave
number.

Remark 2 It is clear from Eqs. (38)–(18) that generation of circulation of the current
by the dynamics in Eq. (15) requires non-zero ∇rρ×∇rp. No current circulation is
generated by wave variables in the case of constant buoyancy.

2.3 Thermal Potential Vorticity (TPV) Dynamics on a Free
Surface

The momentum map arising from the variations in (10) is given by

1

D

δ!

δv̂
= ρv̂ · dr + σ 2ρŵdζ . (20)

As expected from the well-known non-acceleration theorem [6, 23], the dynamics
of the Euler-Poincaré equations separate (15) gives the dynamics of the fluid and
wave components of the momentum one-form (20)

(∂t + Lv̂)
(
ρ
(̂
v · dr

)) = −dp + ρ

2
d
(|̂v|2),

(∂t + Lv̂)
(
σ 2ρŵdζ

) = − ρref

F r2 ζdζ + σ 2ρŵdŵ .

(21)

The mass-weighted thermal potential vorticity (TPV) also separates into fluid and
wave components Q = QF +QW with following definitions

Qd2r = d
(
ρ
(̂
v · dr + σ 2ŵdζ

))

= dρ ∧ (̂
v · dr + σ 2ŵdζ

)+ ρ
(̂
z · curl̂v + σ 2J

(
ŵ, ζ

))
d2r

=
(

div(ρ∇ψ)+ σ 2J
(
ρŵ, ζ

))
d2r when v̂ = ∇⊥ψ for D = 1,

with QF := div(ρ∇ψ) , QW = J
(
σ 2w̃, ζ

)
.

(22)
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where buoyancy weighted vertical velocity is defined as w̃ := ρŵ. The dynamics of
QF d2r and QW d2r can be computed from (21) as

(∂t + Lv̂)(QF d2r) = 1

2
dρ ∧ d(|̂v|2) = 1

2
J
(
ρ, |∇ψ |2)) d2r ,

(∂t + Lv̂)(QW d2r) = σ 2 1

2
dρ ∧ d(ŵ2) = 1

2
J
(
ρ ,

σ 2w̃2

ρ2

)
d2r .

(23)

From the two relations in (23), one sees that the buoyancy gradient ∇ρ couples the
PV dynamics of the waves (QW) and currents (QF ), each to their corresponding
kinetic energy. In the case of constant buoyancy, dρ = 0 in (23); so, the PVs of the
waves and currents would be separately advected.

The operator div(ρ∇) is invertible, so long as ρ is a differentiable positive
function, which can be ensured by requiring that this condition holds initially.
Consequently, the stream function ψ is related to the other fluid variables by

ψ := (divρ∇)−1QF . (24)

The potential vorticity dynamics can then be written in coordinate form as

∂tQF + J (ψ,QF ) = J
(
ρ ,

1

2
|∇rψ |2

)
,

∂tQW + J (ψ,QW) = J
(
ρ ,

σ 2w̃2

2ρ2

)
,

with QF := div(ρ∇ψ) and QW := J
(
σ 2w̃ , ζ

)
,

∂tρ + J (ψ, ρ) = 0 ,

∂t ζ + J (ψ, ζ ) = ŵ =: w̃/ρ ,

∂t (σ
2w̃)+ J (ψ, σ 2w̃) = − ρref ζ

F r2
.

(25)

Theorem 3 The Legendre transform yields the Hamiltonian formulation of our
system of wave-current equations (25), which with w̃ = ρŵ may be written in the
untangled block-diagonal Poisson form as

∂

∂t

⎡
⎢⎢⎣

Q

ρ

σ 2w̃

ζ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
J (Q, · ) J (ρ, · ) 0 0
J (ρ, · ) 0 0 0

0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

δh/δQ = ψ

δh/δρ = $̃

δh/δ(σ 2w̃) = w̃/ρ + J (ζ, ψ)

δh/δζ = −J (σ 2w̃, ψ)+ ρref ζ

F r2

⎤
⎥⎥⎥⎦ .

(26)
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The energy Hamiltonian h(Q, ρ, ŵ, ζ ) associated with this system is given by

h(Q, ρ, w̃, ζ ) =
∫

1

2

(
Q− J

(
σ 2w̃, ζ

))
(divρ∇)−1

(
Q− J

(
σ 2w̃, ζ

))

+
(
σ 2w̃2

2ρ2 + ρref

ρ

ζ 2

2Fr2

)
ρ d2r .

(27)

Theorem 4 (Casimir Functions) The Casimir functions, conserved by the relation
{C�,�, h} = 0 with any Hamiltonian h(M,D) for the block-diagonal Lie-Poisson
bracket in Eq. (26) are given by

C�,� :=
∫

�(ρ)+Q�(ρ) d2r. (28)

Proof The Casimirs C�,� for the direct sum of the Lie-Poisson brackets for Q and
ρ and canonical Poisson brackets for w̃ and ζ follows by direct verification that the
C�,� are conserved for any differentiable functions, (�,�). ��

2.4 C◦M Equations in the Slowly Varying Envelope (SVE)
Approximation

The SVE Solutions Apply to Satellite Observations of Sea Surface Waves
From the viewpoint of satellite observations, the vertical motion on the sea surface
typically oscillates much more quickly than the rate of change of features in the
horizontal motion of the ocean surface currents. In this situation, the standard WKB
approximation introduces a solution Ansatz for the slowly varying envelope (SVE)
of the rapidly oscillating vertical wave elevation in the standard form [2, 11],

ζ(r, t) = (
(
a(r, t) exp

( iθ(r, t)
ε

))
with ε $ 1 . (29)

The SVE solution Ansatz (29) comprises the product of a slowly varying complex
amplitude a(r, t) ∈ C multiplied by a rapidly oscillating phase θ(r, t)/ε ∈ R with
ε $ 1 in which the phase factor θ(r, t) may also vary slowly as a function of the
space and time variables, (r, t).

Following [11], let us substitute the SVE solution Ansatz (29) into Hamilton’s
principle in (9) and find the condition on the parameter ε $ 1 that will allow higher
order wave terms to be neglected. For this, one computes



124 D. D. Holm et al.

0 = δSSVE = δ

∫ b

a

!SVE(̂v,D, ρ; a, θ) dt

= δ

∫ b

a

∫
D

1

2
Dρ |̂v|2 − p(D − 1)+ σ 2

2
Dρ

((dζ
dt

)2 − ρref

ρ

ζ 2

2σ 2Fr2

)
d2r dt

= δ

∫ b

a

∫
D

1

2
Dρ |̂v|2 − p(D − 1)

+ σ 2

8
Dρ

(∣∣∣da
dt

∣∣∣2 + 2

ε

dθ

dt
)
(
a∗ da

dt

)
+ |a|2

ε2

((dθ
dt

)2 − ρref

ρ

ε2

σ 2Fr2

))
d2r dt

� δ

∫ b

a

∫
D

1

2
Dρ |̂v|2 − p(D − 1)

+ σ 2|a|2
8ε2 Dρ

((
∂t θ + v̂ · ∇rθ

)2 − ρref

ρ

ε2

σ 2Fr2

)
d2r dt +O

(
σ 2

ε

)
.

(30)

The leading order wave term O(ε−2) with ε $ 1 in Hamilton’s principle will
dominate the solution and the remaining wave terms in the second line of Eq. (31)
may be neglected, when2

ε $ 1 ,
ε2

σ 2Fr2 = O(1), and σ 2Fr2 $ 1 . (31)

According to the estimates in (7) there is a range of physical parameters relevant to
satellite observations in which the SVE approximation applies, for σ 2Fr2 $ 1.

To continue the investigation of the SVE description of wave-current interactions
on the sea surface, we take variations of the action integral (31) to find the following
set of equations,

δv̂ : δ!

δv̂
= Dρ

(
v̂ · dr +Nd

dθ

dt

)
⊗ d2r with N := σ 2|a|2

4ε2 ,

δ|a|2 : δ!

δ|a|2 = σ 2

8Fr2 Dρ

((dθ
dt

)2 − ρref

ρ

)
= 0 at O

(
σ 2

ε2

)

%⇒ dθ

dt
=: −ω + v̂ · k = ±

√
ρρref

ρ
with ω(r, t) = −∂t θ and k(r, t) = ∇rθ ,

δθ : δ!

δθ
= 0 %⇒ ∂tA+ div(Av̂) = 0 , with A := DρN

dθ

dt
and N := σ 2|a|2

4ε2 ,

δD : δ!

δD
= ρ

2
|̂v|2 − p ,

δρ : δ!

δρ
= D

2
|̂v|2 ,

δp : D − 1 = 0 %⇒ divr v̂ = 0 , Hence, ∂tA+ v̂ · ∇rA=0 %⇒ ∂t |a|2 + v̂ · ∇r |a|2=0 .

(32)

2 The ratio ε2/(σ 2Fr2) = O(1) is required for the rate of change of the phase parameter θ(r, t)
of the SVE wave solution Ansatz (29) to match the time scale of the density ρ(r, t) in Eq. (31).
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In the second line of (32) we see that stationarity of the action integral with
respect to variations in |a|2 acts as a Lagrange multiplier to impose a constraint
which relates the dynamics of the wave phase θ to the buoyancy. This constraint
relation involves the Doppler-shifted frequency of the waves, as shown in the third
line of (32). In combination with conservation of the wave action density and the
divergence free condition on the fluid flow velocity v̂, this constraint relation implies
in the last line of (32) that the wave magnitude |a|2 is advected by the fluid flow.
Because of the oscillatory nature of the solution Ansatz (29), the sign of the wave
phase in dθ/dt = ∂t θ + v̂ · ∇rθ in the second line above is immaterial. Hence,
hereafter, we will choose the positive root for dθ/dt = √

ρρref /ρ.
From the conservation of wave action density A in (32) and the definitions of the

advected fluid variables, one finds that |a|2, D and ρ satisfy the following advection
relations

(∂t + Lv̂)(D d2r) = 0 %⇒ ∂tD + divr(Dv̂) = 0 with D = 1 ,

(∂t + Lv̂)ρ = 0 %⇒ ∂tρ + v̂ · ∇rρ = 0 ,

(∂t + Lv̂)|a|2 = 0 %⇒ ∂t |a|2 + v̂ · ∇r |a|2 = 0 ,

(33)

where Lv̂ denotes the Lie derivative operation along the horizontal velocity vector
field, v̂. The Lie derivative notation Lv̂ provides coordinate-free brevity in proving
the following Kelvin circulation theorem for thermal wave-current theory.

Theorem 5 (Kelvin-Noether Circulation Theorem) The variational equations in
(32) imply the following Kelvin circulation theorem

d

dt

∮
c(̂v)

(
v̂ · dr +Nd

dθ

dt

)
= −

∮
c(̂v)

1

ρ
dp . (34)

Proof The Euler-Poincaré (EP) theorem [16] in this case yields

(∂t + Lv̂)
δ!

δv̂
= δ!

δD
'D + δ!

δρ
' ρ := D∇r

δ!

δD
− δ!

δρ
∇rρ . (35)

Here, the diamond (' ) operator is defined for a fluid advected quantity f by

〈 δ!
δf

' f , X
〉
X
=:

〈 δ!
δf

, −£Xf
〉
V
. (36)

In (36), X ∈ X(R2) is a (smooth) vector field defined on R2 and f ∈ V is a vector
space of advected quantities. These advected quantities are the scalar function, ρ,
and the areal density, D d2r .

Upon using the advection relations for D and ρ in (33) and the corresponding
variational derivatives in (32), the EP equation in (35) simplifies to
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(∂t + Lv̂)
( 1

Dρ

δ!

δv̂

)
= 1

ρ
∇r

δ!

δD
− 1

Dρ

δ!

δρ
∇rρ .

Equation (32) then yields (∂t + Lv̂)
(
v̂ · dr +Nd

dθ

dt

)
= −ρ−1dp + d

(1

2
|̂v|2

)
.

(37)

Inserting the last relation into the following standard relation for the time derivative
of a loop integral then completes the proof of Eq. (34) appearing in the statement of
the theorem,

d

dt

∮
c(̂v)

(
v̂ · dr +Nd

dθ

dt

)
=
∮
c(̂v)

(∂t + Lv̂)
(
v̂ · dr +Nd

dθ

dt

)
=
∮
c(̂v)

−ρ−1dp + d
(1

2
|̂v|2

)
.

(38)

Note, however, that Eqs. (32) imply the following combination of advected quanti-
ties,

(∂t + Lv̂)

(
Nd

dθ

dt

)
= σ 2

4Fr2 (∂t + Lv̂)

(
|a|2d

√
ρref

ρ

)
= 0 . (39)

Consequently, the wave-momentum 1-form Nd(dθ
dt
) is advected by the fluid flow

and the Kelvin circulation theorem in Eq. (38) reduces to the standard circulation
theorem for the 2D Euler fluid equations. ��

Remark 3 (Separation of Wave and Current Motion in the SVE Approximation) The
decoupling of the Kelvin-Noether circulation theorem into its wave and current
components for the SVE approximation is inherited from the un-approximated
model. When modifications to the un-approximated model which removes this
property are added, one would expect the new SVE approximation to lose the non-
acceleration result.

Remark 4 Equation (39) implies advection of the 1-form |a|2dρ, which in turn
implies advection of the Jacobian J (|a|2, ρ). Since the fluid flow is area preserving,
divv̂ = 0, the following 2-form will also be advected,

(
∂t + v̂ · ∇r

)(
d|a|2 ∧ dρ

)
= 0 . (40)

Thus, the divergence-free flow of v̂ preserves the area element d|a|2 ∧ dρ. This
means that if the gradients ∇|a|2 and ∇ρ are not aligned initially, then they will
remain so. It also means that equilibrium solutions of (40) will be symplectic
manifolds [14].
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After deriving these equations, one may finally evaluate the constraint D = 1
imposed by the variation in pressure p to obtain further simplifications.

2.5 Thermal Potential Vorticity Dynamics with SVE on a Free
Surface

The momentum map arising from the variations of the action in (32) is given by

1

D

δ!

δv̂
= ρ

(
v̂ · dr +Nd

dθ

dt

)
with N := σ 2N2|a|2

4
=: %|a|2 and

dθ

dt
=
√
ρref

ρ
,

so
1

D

δ!

δv̂
= ρ

(
v̂ · dr + %|a|2d(√ρρref /ρ)

)
.

(41)

According to the Euler-Poincaré equation (37), the dynamics of the fluid and wave
components of the 1-form in (41) separates into the following equations,

(∂t + Lv̂)
(
ρ
(̂
v · dr

)) = −dp + ρ

2
d
(|̂v|2),

(∂t + Lv̂)
(|a|2d√ρρref

) = 0 .
(42)

This means that the mass-weighted thermal potential vorticity (TPV) dynamics also
separates into the following fluid and wave components, Q = QF +QW , given by

Qd2r := d

(
ρ
(
v̂ · dr + %|a|2d

√
ρref

ρ

))

=
(

div(ρ∇ψ)− %J
(
|a|2,√ρρref

)
d2r when v̂ = ∇⊥ψ for D = 1,

= QF d2r +QW d2r ,

with QF := div(ρ∇ψ) and QW := %J
(√

ρρref , |a|2) .
(43)

Then, again, the differentials of the separate equations in (42) yield the ‘non-
acceleration’ result,

(∂t + Lv̂)(QF d2r) = 1

2
dρ ∧ d |̂v|2 = 1

2
J
(
ρ, |∇ψ |2) d2r ,

(∂t + Lv̂)(QW d2r) = 0.

(44)

Equivalently, in coordinates one has
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∂tQF + v̂ · ∇QF = 1

2
J
(
ρ, |∇ψ |2) ,

∂tQW + v̂ · ∇QW = 0 ,

with QF := div(ρ∇ψ) and QW := %J
(√

ρρref , |a|2) ,
∂tρ + v̂ · ∇rρ = 0 and % = σ 2

4Fr2
= O(1) ,

∂t |a|2 + v̂ · ∇r |a|2 = 0 ,

∂t θ + v̂ · ∇rθ =
√
ρρref

ρ
.

(45)

The operator (divρ∇) is invertible, so long as ρ is a differentiable positive function,
which can be ensured by requiring that this condition holds initially, since ρ is
advected. Consequently, the stream function ψ is related to the other fluid variables
by

ψ := (divρ∇)−1QF . (46)

The dynamics of the equation set (45) explains why the various physical components
of the flow coordinate their movements, as seen in satellite observations in Fig. 2.
In particular, the motion of buoyancy ρ and squared wave amplitude |a|2 are
coordinated with each other through the advection of the momentum 1-form |a|2dρ
and the area 2-form d|a|2 ∧ dρ. Likewise, the motion of the fluid potential vorticity
QF and the mass density ρ are coordinated with each other through the mass-
weighted definition of the stream function in (46). These considerations emphasise
again the importance of horizontal buoyancy gradients in sea surface dynamics.

3 Numerical Implementation

Our implementation of the C◦M equations (25) and the C◦M equations in the
SVE approximation (45) used the finite element method (FEM) for the spatial
variables. The FEM algorithm we used is based on the algorithm formulated in
[15] and is implemented using the Firedrake3 software. In particular, for (25) we
approximated the fluid potential vorticity QF , buoyancy ρ, wave elevation ζ and
bouyancy weighted wave vertical velocity w̃ using a first order discrete Galerkin
finite element space. Similarly, for (45), we approximated QF , ρ, square of the
wave amplitude |a|2 and wave phase θ using a first order discrete Galerkin finite
element space. The stream function ψ for both models was approximated by using

3 https://firedrakeproject.org/index.html.
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a first order continuous Galerkin finite element space. For the time integration, we
used the third order strong stability preserving Runge Kutta method [12].

Figures 3 and 4 present snapshots of high resolution runs of the C◦M equations
and the C◦M equations in the SVE approximation. These simulations were run
with the following parameters. The domain is [0, 1]2 at a resolution of 5122. The
boundary conditions are periodic in the x direction, and homogeneous Dirichlet for
ψ in the y direction. To see the effects of the waves on the currents, the procedure
was divided into two stages for both set of equations. The first stage was performed
without wave activity for Tspin = 100 time units starting from the following initial
conditions

QF (x, y, 0) = sin(8πx) sin(8πy)+ 0.4 cos(6πx) cos(6πy)+ 0.3 cos(10πx) cos(4πy)+
0.02 sin(2πy)+ 0.02 sin(2πx) ,

ρ(x, y, 0) = 1 + 0.2 sin(2πx) sin(2πy) and ρref = 1 .

(47)

The purpose of the first stage was to allow the system to spin up to a statistically
steady state without any wave activity. The PV and buoyancy variables at the end
of the initial spin-up period are denoted as Qspin(x, y) = QF (x, y, Tspin) and
ρspin(x, y) = ρ(x, y, Tspin). Figures of these variables are shown in Fig. 5. In the
second stage, the full simulations including the wave variables were run with the
initial conditions for the flow variables being the state achieved at the end of the
first stage. To start the second stage for (25), wave variables were introduced with
the following initial conditions

ζ(x, y, 0) = sin(8πx) sin(8πy)+ 0.4 cos(6πx) cos(6πy)+ 0.3 cos(10πx) cos(4πy)+
0.02 sin(2πy)+ 0.02 sin(2πx) ,

w̃(x, y, 0) = 0 , QF (x, y, 0) = Qspin(x, y) , ρ(x, y, 0) = ρspin(x, y) ,

σ 2Fr2 = 10−2 .

(48)

To start the second stage for (45), wave variables were introduced with the following
initial conditions

|a|2(x, y, 0) = (
sin(8πx) sin(8πy)+ 0.4 cos(6πx) cos(6πy)+ 0.3 cos(10πx) cos(4πy)+
0.02 sin(2πy)+ 0.02 sin(2πx)

)2
,

θ(x, y, 0) = 0 , QF (x, y, 0) = Qspin(x, y) , ρ(x, y, 0) = ρspin(x, y).

(49)
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Fig. 5 These figures show the results of the first stage of the simulation in which only fluid motion
is present and the wave degrees of freedom are absent. The panels show fluid potential vorticity
QF (left) and buoyancy ρ (right). The fluid state obtained from the first stage was used as the
initial condition for the second stage simulations in which wave variables were included. These
distributions of fluid properties show strong spatial coherence. The coordination of wave and fluid
properties that emerges in the second stage of the simulations shown in Figs. 3 and 4 arises from
the interaction between the wave and current components of the flow which is mediated by the
buoyancy gradient

Remark 5 Importantly, the wave phase θ in the second stage was set initially to
zero. Thereafter, the wave phase θ increased linearly in time in proportion to
the advected quantity

√
ρρref /ρ following each flow line, as implied by the last

equation in (45).

4 Conclusion and Outlook

This paper models the effects of thermal fronts on the dynamics of the ocean’s
waves and currents. It introduces and simulates two models of thermal wave-current
dynamics on a free surface. The original C◦M model is derived from Hamilton’s
principle via the composition of two maps which represent the horizontal and
vertical motion respectively. The second, a slowly varying envelope (SVE) model,
is introduced via the standard WKB approximation which takes advantage of large
separation of the space-time scales between the slow horizontal currents and fast
vertical oscillations. In particular, the second model introduces the WKB solution
Ansatz into Hamilton’s principle, whereupon the time integral averages over the
phases of the rapid oscillations that are out of resonance with the slowly varying
envelope. Model runs of both models are presented in which the buoyancy mediates
the dynamics of the currents and waves, as seen in Figs. 3 and 4. These simulations
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also validate the use of the WKB approximation for two reasons. First, the resolved
small scale wave features of the original C◦M model lie primarily within the
envelope defined by the SVE approximate model. This means that the dynamics of
the spatial features of the SVE approximate model are consistent with those of the
original C◦M model, although the resolved space and time scales differ. Secondly,
requiring that ε2/(F r2σ 2) = O(1) ensures that the time scale for the wave envelope
dynamics matches that of the fluid motion.

Nonetheless, the two models introduced here merit further study in several
directions. For example, it remains to: (1) quantify the correlations observed
visually; (2) determine their rate of formation; and (3) parameterise the model
for comparison and analysis of the satellite data on which their derivations were
based. Furthermore, the models discussed here involve only variables that are
evaluated on the free surface and therefore they neglect bathymetry. A scientific
challenge persists in understanding regions of the ocean where bathymetry has
profound effects on the observable surface dynamics, such as in the Lofoten vortex
[21]. This is a multiscale issue that might be addressed by including mesoscale
modulations of the sub-mesoscale models derived here. One candidate for providing
the mesoscale modulations would the thermal quasi-geostrophic (TQG) model in
which bathymetry has recently been included [15].

The currents are modelled here by the two dimensional incompressible Euler
equations, as seen in Eqs. (2) and (3). Incompressibility is a reasonable assumption
in some regions of the ocean, for example when the quasigeostrophic approximation
is valid. There are regions in the upper ocean where other equations are more
suitable for modelling currents, and the development and investigation of such two
dimensional models is an open problem which warrants further consideration.

As mentioned in Remark 1, the wave component of the model presented here
does not create circulation in the currents. The instabilities present in satellite
simulations indicate that additional modelling is needed to fully capture this effect.
Future work will investigate approaches for modelling these instabilities.

Many other questions remain about wave-current interaction. The full extent of
submesoscale ocean dynamics is by no means adequately described by existing
models. For example, we have little understanding of the formation and dynamics
of various sea-surface phenomena, including the so-called ‘spirals on the sea’ [18].
Other questions are emerging because the ocean has absorbed in excess of 90%
of the heat present in the earth system as a result of human activity during the
post-industrial era [19]. The absorption of heat from the warming atmosphere is
ongoing and it is forecast to become more dramatic. This absorption has resulted
in ‘marine heat waves’, which are predicted to increase in frequency and severity.
These changes to the upper ocean, where most of this heat is stored, could
have a profound effect on the dynamical landscape of our oceans. These effects
may, in turn, influence our weather and climate systems. Over the millennia, the
ocean has approached statistical equilibrium under its current forcing conditions.
Using modelling terminology, one says the ocean is well ‘spun-up’. However, the
continued warming of the ocean is likely to influence the number and intensity
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of thermal fronts. One hopes that mathematical models will provide a useful
framework for estimating some of the potential impacts of these thermal fronts on
atmospheric effects, as well.
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Variational Stochastic Parameterisations
and Their Applications to Primitive
Equation Models

Ruiao Hu and Stuart Patching

Abstract We present a numerical investigation into the stochastic parameteri-
sations of the Primitive Equations (PE) using the Stochastic Advection by Lie
Transport (SALT) and Stochastic Forcing by Lie Transport (SFLT) frameworks.
These frameworks were chosen due to their structure-preserving introduction of
stochasticity, which decomposes the transport velocity and fluid momentum into
their drift and stochastic parts, respectively. In this paper, we develop a new
calibration methodology to implement the momentum decomposition of SFLT
and compare with the Lagrangian path methodology implemented for SALT. The
resulting stochastic Primitive Equations are then integrated numerically using a
modification of the FESOM2 code. For certain choices of the stochastic parameters,
we show that SALT causes an increase in the eddy kinetic energy field and an
improvement in the spatial spectrum. SFLT also shows improvements in these areas,
though to a lesser extent. SALT does, however, have the drawback of an excessive
downwards diffusion of temperature.

Keywords Primitive equations · Geometric mechanics · FESOM2 · Stochastic
parameterisation

1 Introduction

Uncertainty can be present in ocean models due to a number of factors including,
but not limited to: small-scale processes not resolved by the grid; observation error;
model error; numerical error and unrealistic viscosities imposed to ensure numerical
stability. Several stochastic parameterisation techniques [PZ14, Ber05, Mem14,
Hol15, HH21] have been proposed recently as ways of representing uncertainty in
ocean models. Because these parameterisations are probabilistic, it is possible to
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generate ensemble forecasts [CCH+19, CCH+20, Cot20, UJPD21] with associated
means and variances, which can then be applied to data assimilation. This work
will focus on two frameworks which introduce stochasticity in a way that preserves
certain fundamental and desirable properties of fluid flows. These frameworks are:
Stochastic Advection by Lie Transport (SALT) [Hol15] and Stochastic Forcing by
Lie Transport (SFLT) [HH21]. Both SALT and SFLT are derived from variational
principles, from which we may observe the geometric structure of the fluid equations
and the conservation laws which are inherited.

The key assumption of SALT is the decomposition of transport velocity into a
slow mean part and a fast, rapidly fluctuating part around the mean. In the limit
of high fluctuation frequency, one can use homogenisation theory to transform the
rapidly-fluctuating component to a sum of stochastic vector fields [CGH17]. Thus,
the modification from the deterministic flow is the addition of stochastic vector
fields to the transport velocity. This stochastic modification has been shown [Hol15]
to preserve the Kelvin circulation theorem and the advection equation for potential
vorticity. In the case where buoyancy obeys an advection relation, the potential
vorticity is conserved along particle paths. However, SALT violates energy conser-
vation since stochastic Hamiltonians are introduced into the variational principle.
The application of the SALT in quasi-geostrophic (QG) models and the 2D Euler
equations has been investigated before in [CCH+20, CCH+19, Cot20]. However,
these models are too simplistic to be used in operational ocean simulations, and
the majority of ocean codes (e.g. MOM5 [GBB+00], ICON [Kor17], MITgcm
[MAH+97], FESOM2 [DSWJ16]) solve the Primitive Equations (PE). For this
reason, if SALT is to be employed for use in practical applications, it must be
adapted for use in PE. This introduces additional features to the model as compared
the QG or 2D Euler: in PE there are advected quantities such as temperature and
salinity, which in the SALT framework are advected by the stochastic velocity.
There is, moreover, a subtlety in the pressure arising from the imposition of a semi-
martingale Lagrange multiplier in the incompressibility condition of the variational
principle [SC21].

An alternative stochasatic parameterisation is the more recent SFLT framework
[HH21]. Derived via a Lagrange-d’Alembert principle, SFLT allows the addition
of arbitrary stochastic forcings to the evolution equations of the momentum and
of the advected quantities. This modification differs from SALT, as stochasticity is
added in the variational principle after taking variations of the Hamiltonian for the
deterministic system . By considering the Lie-Poisson bracket of the system, we
choose the forcing to be of a particular form that preserves, on every realisation
of the noise, the original (deterministic) Hamiltonian. For PE, the Hamiltonian is
given in Eq. (2). However, the addition of energy preserving forces will modify
the Kelvin circulation theorem. In the current work, we will consider the case
where the stochastic forcing is in the energy conserving form and applied to the
momentum equation. As in the SALT case, stochastic pressure terms will appear
in the momentum equation due to the imposition of semi-martingale Lagrange
multiplier in the incompressibility constraint. Prior to the present work, SFLT has
not been implemented into numerical models.
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The rest of the paper is structured as follows. In Sect. 2, we derive PE with
both SALT and SFLT from a variational principle and we show the conservation
properties from the resulting equations. In Sect. 3, we consider calibration pro-
cedures to calculate the stochastic parameters of SALT and SFLT. In particular,
we use the Lagrangian paths method of [CCH+20] but also consider a simpler
technique, that of Eulerian differences, which we propose is more appropriate for
use in SFLT. In Sect. 4, we present numerical results of applying SALT and SFLT
to FESOM2 [DSWJ16] (see Sect. 5), demonstrating the different effects of these
stochastic frameworks and the sensitivity to the choice of parameters.

2 Stochastic Primitive Equations

2.1 Variational Principles for Stochastic Primitive Equations

Variational principles may be used to derive systems of fluid equations [HMR98,
HSS09] which obey conservation laws such as the Kelvin circulation theorem.
To derive the Primitive Equations from a variational principle, the appropriate
Lagrangian is [HSS09]:

l(u,D, T , S) =
∫ (

1

2
|u|2 + u · R − V (T , S, z)

)
Dd3x , (1)

where u = (u, v) is the horizontal velocity vector field, R is the Coriolis potential,
which satisfies curl R = f (y)ẑ with f (y) = 2Ω cos y and Ω = 2π/day is
the rotational frequency of the earth. T and S are the temperature and salinity
respectively; these are tracers advected by the fluid. D is the Jacobian of the flow
map gt that maps a fluid particle at initial position x0 to its position xt = gtx0
at time t . V is the potential energy, which has explicit dependence on T and S, as
well as on the vertical coordinate z. The three-dimensional velocity shall be denoted
v = (u, w).

In order to obtain the correct hydrostatic balance condition the potential energy
should obey ∂V

∂z
(T , S, z) = g(1+b) where the partial derivative is taken with respect

to z at constant T , S. b is the buoyancy, given by the equation of state b = b(T , S, z).
It is convenient here to use the Clebsch version of the variational principle

[CH09] in Hamiltonian form. The Hamiltonian is given by Legendre transformation
as h(mh,D, T , S) := 〈

u, δl
δu

〉 − l(u,D, T , S) where mh := δl
δu = D (u + R) is the

horizontal momentum. We have also defined the inner product 〈p, q〉 = ∫
p · qd3x.

We shall use the same angle-bracket notation for all such pairings, when p and q

are dual variables, e.g. vector field and 1-form density; or a scalar and a density. The
Hamiltonian can be written explicitly as:
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h(mh,D, T , S) =
∫ (

1

2

∣∣∣∣m
h

D
− R

∣∣∣∣
2

+ V (T , S, z)

)
Dd3x . (2)

In the Clebsch variational principle when SALT or SFLT are present, the (3-
dimensional) transport velocity dχ is defined to be a stochastic process. The form
of dχ is defined using Lagrange-multiplier constraints to impose the transport
equations

(
d + Ldχ

)
a = 0, where a ∈ {D, T , S} [see SW68]. Here we remark

that for clarity, we denote by an italic d the spatial differential and a straight red
d for the stochastic time-increment. Ldχ denotes the Lie derivative, which is a
differential operator with a form that depends on the object on which it acts. We
remark here that there is a slight abuse of notation and we shall write D as a short-
hand for Dd3x so that this is a density 3-form and the Lie derivative is given by
LdχD = ∇ · (dχ D). T and S are scalars, so we have LdχT := dχ · ∇T and
similarly for S. In order to obtain the incompressibility of the transport velocity dχ ,
we include an additional constraint to set D = 1 where the Lagrange multiplier
will be interpreted as the pressure. Since the Hamiltonian h only depends on the
horizontal momentum mh, we need to include an extra constraint so that the vertical
component of the momentum is set to zero; this will give us hydrostatic balance.

The defining feature of SALT is that the transport velocity is the sum of the drift
velocity and a number of stochastic corrections to the drift:

dχ(x, t) := v(x, t)dt +
∑
i

ξ i (x, t) ◦ dWi
t , (3)

where ξ i (x, t) are arbitrary vector fields. We remark here that Eq. (3) is a stochastic
process at fixed Eulerian points x and we do not solve for this process explicitly.
dχ is distinct from the particle trajectories xt , which evolve in time according to
dxt = v(xt , t)dt+∑i ξ i (xt , t)◦dWi

t and will be used during calibration procedures
in Sect. 3. We can impose the form of the transport velocity specified in Eq. (3) by
including in the action some additional stochastic Hamiltonians

∑
i hi(m

h) ◦ dWi
t

where the horizontal component of the parameters is given by ξhi (x, t) = δhi
δmh . The

three-dimensional momentum is denoted m = (mh,m3). We note that in principle
ξ i may depend on time; however, we shall henceforth assume for simplicity that
ξ i = ξ i (x) is a function of space only. When hi are independent of mh, we have
the relation dχ(x, t) := v(x, t)dt , so that dχ reduces to the original deterministic
transport.

SFLT is included [HH21] via a Lagrange-d’Alembert term 〈δdχ ,F〉 added to the
variation of the action δS. Since this is added after variations of the action are taken,
the forcing F can in principle be arbitrary. Overall, the variational principle takes
the following form:
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0 = δS = δ

∫
〈dχ ,m〉 − h(m(h),D, T , S)dt − 〈dζ,m3〉 − 〈dP,D − 1〉

+ 〈
α,
(
d + Ldχ

)
D
〉+ 〈

β,
(
d + Ldχ

)
T
〉+ 〈

γ,
(
d + Ldχ

)
S
〉

−
Nξ∑
i=1

hi

(
m(h), ξ

(h)
i

)
◦ dWi

t

︸ ︷︷ ︸
SALT

−
∫

〈δdχ ,F〉
︸ ︷︷ ︸

SFLT

.

(4)

The first two lines of Eq. (4) are what would be included in the unmodified
variational principle. dζ is a Lagrange multiplier, enforcing m3 = 0 and after taking
variations can be interpreted as the vertical component of the stochastic transport
velocity. Indeed, we may expand dζ = wdt +∑

i ξ
(z)
i ◦ dWi

t ; note that here dζ is
varied and so the third component of ξ i is treated as a variable in the action, whereas
the horizontal components are treated as fixed parameters. The final term on the top
line enforces incompressibility, and the Lagrange multiplier dP must be stochastic
since a semi-martingale Lagrange multiplier is required to enforce a condition on
the semi-martingale D [see SC21]. On the second line the quantities α, β, γ are
Lagrange multipliers enforcing the fact that D, T , S are advected quantities. The
final line contains the modifications required to include SALT or SFLT; we shall
not in practice use both SALT and SFLT together, but for compactness of the
presentation we include them together here. The first modification, giving SALT,
consists of a sum of Nξ Hamiltonians multiplied by Stratonovich noise. The second,
additional term is a Lagrange-d’Alembert term which introduces a shift F in the
momentum. We remark that by including further Lagrange-d’Alembert terms such
as 〈δα, dFD〉 or 〈δβ, dFT 〉 etc. we may add arbitrary forcings to the right-hand side
of the equations for the advected tracers. However, we do not consider this here.

The equations resulting from the variational principle δS = 0 are:

δmh : dχ (h) = δh

δmh
dt +

∑
i

δhi

δmh
◦ dWi

t ; (5a)

δm3 : dχ(z) = dζ ; (5b)

δdχ : m = α 'D + β ' T + γ ' S + F ; (5c)

δα : (
d + Ldχ

)
D = 0 ; (5d)

δβ : (
d + Ldχ

)
T = 0 ; (5e)

δγ : (
d + Ldχ

)
S = 0 ; (5f)

δD : (
d + Ldχ

)
α = −

(
dP + δh

δD
dt

)
; (5g)

δT : (
d + Ldχ

)
β = − δh

δT
dt ; (5h)
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δS : (
d + Ldχ

)
γ = − δh

δS
dt ; (5i)

δdP : D = 1 ; (5j)

δdζ : m3 = 0 ; (5k)

The diamond in Eq. (5c) is a binary operator acting on two variables that are dual
with respect to the inner product 〈·, ·〉 (e.g. or scalar and density) and giving a 1-
form density. Explicitly, for two dual variables p, q and an arbitrary vector field X :
the diamond is defined by the relation 〈p ' q,X〉 = − 〈p,LXq〉. We can compute
these explicitly as follows:

δh

δD
'D = D∇ δh

δD
,

δh

δT
' T = − δh

δT
∇T ,

δh

δS
' S = − δh

δS
∇S . (6)

We note that the form of dχ as given in Eq. (3) is not an input to the variational
principle, but a consequence of it. Indeed, we obtain Eq. (3) by defining v :=(

δh
δmh , w

)
and ξ i :=

(
δh
δmh , ξ

(z)
i

)
. The horizontal velocity is therefore u = δh

δmh =
mh

D
− R. The fact that D = 1, combined with Eq. (5d) gives the incompressibility

condition ∇ · dχ = ∇(h) · dχ (h) + ∂
∂z

dζ = 0. By Doob-Meyer decomposition
[Doo53, Mey62, Mey63], we can split the incompressibility condition into its drift
part and stochastic oscillations. Thus we are able to compute w, ξ

(z)
i in terms of u

and ξ (h) respectively:

∇(h) · u + ∂w

∂z
= 0 , ∇(h) · ξ (h)i + ∂ξ

(z)
i

∂z
= 0 . (7)

Boundary conditions at z = 0 allow us to integrate Eq. (7) in the vertical direction.
To obtain the momentum equation we apply

(
d + Ldχ

)
to both sides of Eq. (5c) and

use the fact that the Lie derivative obeys a Leibniz rule with respect to the diamond
operator. After some re-arranging, we obtain:

(
d + Ldχ

) (mh − F
D

· dx
)
= −d

((
δh

δD
− V

)
dt + dP

)
+ ∂V

∂z
dzdt . (8)

We shall show in Sect. 2.2 that the SFLT terms will conserve energy if we
require that the momentum shift F takes a particular form, which is that it satisfies(
d + Ldχ

)
F = LvdΦ, for some stochastic process dΦ. In this work, we shall

assume further that dΦ has the form dΦ = ∑
I φI ◦ dBI

t for some spatially
dependent parameters φI and with BI

t being a set of independent Brownian motions.
Because the momentum m = (mh, 0) has only horizontal components, we shall
assume that φI also have only horizontal components. Moreover, we can expand
the pressure in terms of its drift component and Brownian increments: dP =



Variational Stochastic Parameterisations 141

pdt + ∑
i pi ◦ dWi

t + ∑
I pI ◦ dBI

t . Thus, writing m = u + R and expanding
dχ in terms of v and ξ i , we find that Eq. (8) becomes:

du + [∇ · (vu)+ f ẑ × v +∇p + g(1 + b)ẑ
]

dt

+
∑
i

[∇ · (ξ iu)+ f ẑ × ξ i +∇ξ i · u + ∇ (
pi + ξ i · R

)] ◦ dWi
t

−
∑
I

[∇ · (vφI

)− ∇φI · v − ∇ (
pI − v · φI

)] ◦ dBI
t = 0 .

(9)

The first line of Eq. (9) contains the terms of the deterministic momentum equation,
the second line contains the SALT terms and the final line contains the SFLT
contributions. Equation (9) is a three-dimensional equation, but the third component
is the (diagnostic) hydrostatic balance condition rather than a prognostic evolution
equation for w. In the cases of SALT and SFLT hydrostatic balance includes
additional constraints on the stochastic parts of the pressure dP :

∂p

∂z
= −g(1 + b) ,

∂p′
i

∂z
= −∂ξ i

∂z
· u ,

∂p′
I

∂z
= −∂φI

∂z
· v , (10)

where we have the definitions of the shifted stochastic pressure terms p′
i := pi +

ξ i · R and p′
I := pI − v · φI . We solve Eq. (10) by imposing the following surface

pressure boundary conditions:

p|z=0 = gη , p′
i |z=0 = ψi , p′

I |z=0 = ψI , (11)

where η is the free surface height. The boundary condition on p is that used in the
linear free surface approximation, which is employed in FESOM2 [DSWJ16]. ψi

and ψI are functions only of the horizontal direction and are arbitrary. They may be
used to introduce some stochastic atmospheric forcing at the ocean surface, but we
do not consider this in the present work. For simplicity we shall set ψi = ψI = 0
for all i, I . Solving Eq. (10) with the boundary conditions in Eq. (11) gives us the
following:

p = g(η − z)+ g

∫ 0

z

bdz′ , (12a)

p′
i = ψi +

∫ 0

z

∂ξ i

∂z
· udz′ , (12b)

p′
I = ψI +

∫ 0

z

∂φI

∂z
· vdz′ . (12c)
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A more exact condition on the deterministic pressure would be p|z=η = 0. Using
this gives almost the same result for p except that the upper limit of the integral will
instead be η.

The equation for the evolution of the free surface height η is obtained by
integrating the incompressibility condition and using appropriate surface boundary
conditions. For the linear free surface approximation we take w|z=0dt = dη; at
the bottom boundary z = −H(x, y) we have dχ |z=−H · ∇ (z+H) = 0. Thus,
integrating the incompressibility condition in the vertical direction from z = −H to
z = 0 we find, in the linear free surface case:

dη + ∇ ·
∫ 0

−H

udt dz = 0 . (13)

Again, the more exact boundary condition would be dχ |z=η · ∇ (z− η) = dη ad in
this case Eq. (13) is modified by udt → udt +∑

i ξ i ◦ dWi
t and the upper limit of

the integral will be η rather than 0. However, for our numerical simulations we use
the linear free surface.

From Eqs. (5e) and (5f) we have the advection equations:

dT + v · ∇T dt +
∑
i

ξ i · ∇T ◦ dWi
t = 0 , (14)

dS + v · ∇Sdt +
∑
i

ξ i · ∇S ◦ dWi
t = 0 , (15)

for temperature and salinity respectively. The horizontal component of the momen-
tum equation (9), along with the solutions Eq. (10) for pressure (with the equation of
state b = b(T , S, z)), the incompressibility conditions Eq. (7), the tracer advection
equations (14) and (15) and the linear free surface equation (13) give us a complete
set of fluid equations, the Primitive Equations with SALT and SFLT.

2.2 Conservation Laws

The key benefit of the SALT and SFLT frameworks is that they retain some of
the fundamental conservation properties possessed by the deterministic equations.
By writing the Primitive Equations in the geometric form given in Eqs. (5d)–(5f)
and (8), we may demonstrate the effect of the stochastic frameworks on these
conservation laws. First, we consider energy conservation. The total energy is equal
to the Hamiltonian, as given in Eq. (2). For convenience of notation, we define
h̃(m,D, T , S,w) = h(mh,D, T , S) + 〈m3, w〉. h and h̃ are equal on solutions of

the equations, but we have δh̃
δm = v. By direct calculation, the time evolution of the

energy is given by:
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dh =
∑
i

[〈
δh̃

δm
,
∑
i

Lξ i
mh

〉
+
〈
g(1 + b), ξ

(z)
i

〉]
◦ dWi

t

−
〈
δh̃

δm
, (d + Ldχ )F

〉
.

(16)

Thus, the energy conservation property is violated by the stochastic terms. The two
terms on the right-hand side of the pairing in Eq. (16) come from SALT and SFLT
respectively. However, as shown in [HH21], the energy deviation from SFLT can be
nullified by choosing

(
d + Ldχ

)
F = ∑

I LvφI ◦ dBI
t for some parameters φI (x).

Indeed, by the anti-symmetry of the vector field commutator:

〈
δh̃

δm
,
∑
I

LvφI ◦ dBI
t

〉
=
〈[

δh̃

δm
, v

]
,
∑
I

φI ◦ dBI
t

〉
= 0 , (17)

where the square bracket [·], denotes the commutator of vector fields. Thus, energy
conservation is broken by SALT but preserved by a class of stochastic forcing in
SFLT. In the remainder of the paper, we shall assume the stochasticity introduced
by SFLT are in the energy preserving form.

The next conservation law we consider is the Kelvin circulation theorem. The
evolution of the circulation corresponding to Eq. (8) is given by:

d
∮
C(t)

mh

D
· dx = −g

∮
C(t)

b(T , S, z)dz dt +
∑
I

∮
C(t)

(curl φI × v) · dx ◦ dBI
t ,

(18)

where C(t) is a closed loop moving with the transport velocity dχ . We see that
SALT affects the circulation theorem only by modifying the advection of the loop;
thus the circulation theorem for SALT is the same as in the deterministic case, but
with the circulation considered around a stochastically-transported loop. Therefore,
circulation is generated only by buoyancy gradients being misaligned with the
vertical direction. In SFLT, on the other hand, there are additional forces introduced,
which generate the circulation of fluid momentum.

The evolution of potential vorticity associated with Eq. (8) can be expressed as

(d + dχ · ∇) q = 1

D
ω · ∇

(
∂b

∂z
dχ(z)

)
+ 1

D
∇b ·

∑
I

[∇ · (vωI )− ωI · ∇v] ◦ dBI
t ,

(19)

where ω := curl
(
mh/D

)
is the relative vorticity, ωI = curl φI is the stochastic

vorticity generated by SFLT and q := 1
D

ω · ∇b is the potential vorticity. Similar
to the Kelvin circulation theorem, SALT introduces stochasticity in the transport
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velocity dχ , while SFLT introduces stochastic forces that act on the advection of
fluid potential vorticity. If we assume that the buoyancy has no explicit dependence
on the vertical coordinate, i.e. ∂b

∂z
= 0, then q is purely advected by the flow in the

absence of SFLT.

3 Calibration of the Stochastic Parameters

3.1 Lagrangian Paths

In order to calibrate the parameters ξ i used in SALT we propose to use the method
of Lagrangian paths introduced in [CCH+19, CCH+20].

First, we perform a fine-grid model run, which we shall take to be the ‘truth’.
Resulting from this run we get an output velocity v(x, t) saved at times t ∈
{t1, . . . , tN−1, tN }, where the time interval between subsequent sample times,
ti+1 − ti , is greater than the velocity decorrelation time, defined to be the smallest
τ at which the auto-correlation function C(τ) is less than e−1. Suppose the fine-
grid resolution is M times that of the coarse grid, in which case the coarse-grid
time step is given by Δtc := MΔtf , where Δtf is the time step for the fine-
grid model run. In order to compute Lagrangian paths we also save v(x, t) at
t ∈ {

ti , ti +Δtf , . . . , ti + (M − 1)Δtf
}

for each i = 1, . . . , N .
To obtain the corresponding coarse-grid velocity v̄(x̄, t) from v(x, t), we apply

a coarse-graining operator to v(x, t), which consists of a local average over fine-
grid points, to obtain a velocity v̄(x̄, t) defined on the coarse grid. Considering a
distribution of tracer particles whose initial positions xr0 are the (three-dimensional)
coordinates of the coarse-grid nodes (enumerated by r), we compute Lagrangian
paths on the fine grid and coarse grid respectively:

xrf
(
ti +MΔtf

) := xr0 +
M−1∑
m=0

v
(

xrf
(
ti +mΔtf

)
, ti +mΔtf

)
Δtf , (20a)

xrc
(
ti +MΔtf

) := xr0 + v̄
(
xrc(ti), ti

)
Δtc , (20b)

where xfr
(
ti +MΔtf

)
and xrc

(
ti +MΔtf

)
are the Lagrangian paths computed as

integral curves of vf and v̄ respectively; the integral is carried out over one coarse-
grid time-step, which is equivalent to M fine-grid time steps. We can then define
the difference Δxr,i = Δx(ti , xr0) := xrf

(
tr +MΔtf

)− xc
(
tr +MΔtf

)
and apply

the method of [HJS07] to compute the Empirical Orthogonal Functions (EOFs). To
summarise, we subtract off the time mean to define Δx′r,i := Δxr,i− 1

N

∑N−1
i=0 Δxr,i .

In the x-direction we then have a matrix with components Δx′r,i . From this we

construct the matrix Λ(x) which has components Λ(x)
rs = 1

N

∑N−1
i=0 Δx′r,iΔx′s,i . The

EOFs in the x-direction are then defined to be the eigenvectors of the matrix Λ(x)
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which we denote as a
(x)
i , for i = 1 . . . N . They are normalised in the sense that∑

x a
(x)
i (x)a(x)j (x) = δij , where the sum is over all grid points. We apply the same

process to the y-component Δy′r,i to obtain N eigenvectors in the y-direction, which

we denote a
(y)
i . We do not compute the eigenvectors for the z-direction since these

will be obtained from the incompressibility condition.

We remark that the method we have used here, in which we compute the EOFs
of each component of Δx separately, is different from the method found in other
sources [e.g. HLB96], in which the components are computed together and we
obtain a set of two-component eigenvectors ai immediately, with one eigenvalue
λi corresponding to each of these EOFs. However, this method was attempted for
SALT runs in the current set-up and the results of model runs were less successful.
For this reason we have chosen to compute the components separately.

Thus, in our case we have N eigenvectors in each of the horizontal directions
and these will have associated eigenvalues λ

(x)
i and λ

(y)
i . We define the horizontal

components of ξ i by a re-scaling of these eigenvectors. The magnitude of the
eigenvalue λ

(x)
i gives an indication of how much of the variance is captured by

the corresponding eigenvector. Therefore, we choose to scale the parameters so

that
〈
ξ
(h)
i , ξ

(h)
i

〉
∝ λi . Moreover, in order to ensure that the different methods for

computing ξ i may be compared fairly, we require that the L2-norm of the sum be
the same for each method. Thus we impose the following:

1

Vtot

Nξ∑
i=1

〈
ξ
(h)
i , ξ

(h)
i

〉
= γ 2 (21)

where γ is a constant with units ms−1/2, which we shall choose later; Vtot is the
total volume of the domain. and Nξ ≤ N is the number of EOFs we choose to
keep for our model runs. The total integral, denoted by angle brackets, is defined by
〈a,b〉 := ∑

x a(x) · b(x)V (x). We can achieve the required properties by choosing
the following scaling:

ξ
(x)
i (x) = γ

√
λ
(x)
i

λtot
· Vtot

V (x)
a
(x)
i (x) (22)

where V (x) is the volume of the grid cell located at x and we have defined λtot :=∑Nξ

i=1(λ
(x)
i +λ

(y)
i ). After computing the horizontal components in this way, ξ

(h)
i are

then smoothed to zero near the boundaries in order to enforce the impermeability
condition at the boundary, ξ

(h)
i · n = 0, where n is the normal to the boundary and

ξ
(h)
i = (ξ

(x)
i , ξ

(y)
i ) is the horizontal part of ξ i = (ξ

(x)
i , ξ

(y)
i , ξ

(z)
i ).
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For the z-component we use the incompressibility condition Eq. (7) along with
the impermeability condition ξ i · ∇ (z+H) = 0 at the lower boundary z = −H to
obtain:

ξ
(z)
i = −∇(h) ·

∫ z

−H

ξ
(h)
i dz , (23)

where ∇(h) = ( ∂
∂x
, ∂
∂y
) is the horizontal gradient. This method for computing the

vertical component of ξ i is applicable to any system of fluid equations with an
incompressibility condition. We could, alternatively, compute all three components
of ξ i as EOFs of the three components of Δx. However, the resulting three-
component vector ξ i will not be guaranteed to be divergence-free. We would then
need to subtract off the divergent part ξ i → ξ ′i = ξ i − ∇Δ−1

(∇ · ξ i
)

where Δ−1

is the inverse Laplacian. However, computing the divergent part of the vector ξ i
is computationally expensive; moreover, the components of ξ i computed in this
way will not be guaranteed to be orthogonal with respect to 〈·, ·〉. Thus in this
paper we consider only the ξ i for which the vertical components are computed from
integrating the incompressibility condition.

3.2 Eulerian Differences

To calibrate the parameters φI used in SFLT we propose an alternative method
by using differences in fixed Eulerian coordinates. Consider the deterministic
momentum equation given by:

(d + Lvdt )
(

mh
)
= −

(
p + δh

δD

)
'Ddt − δh

δT
' T dt − δh

δS
' Sdt , (24)

and the SFLT equation:

(d + Lv̄dt )
(

m̄h
)
−
∑
I

Lv̄ (dΦ) = −
(
p + δh

δD̄

)
' D̄dt − δh

δT̄
' T̄ dt − δh

δS̄
' S̄dt ,

(25)

where the notation ¯(·) are used on the variables of the SFLT equations to emphasise
the difference between deterministic and stochastic variables. The goal of the
stochastic parameterisation is to decompose the “true” fluid flow to a slow drift
component and a rapid fluctuating component whose amplitude can be estimated
from data. In the example of estimating the momentum fluctuation dΦ of m̄h, we
denote the slow drift component as m̄h and we seek the solution to the minimisation
problem

min
dΦ

E

[∣∣∣dmh − dm̄h
∣∣∣2
]
. (26)
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Assuming D, T and S do not have rapidly fluctuating components, the minimisation
problem becomes

min
dΦ

E

[∣∣∣Lv(mhdt)− Lv̄(m̄hdt − dΦ)

∣∣∣2
]
. (27)

We see that this minimisation problem can be solved by taking
dΦ = (

mh − m̄h
)

dt = (u − ū) dt . Therefore, we define the differences

Δxr,I := Δx(tI , xr0) =
[
u(tI , xr0)− ū(tI , xr0)

]
Δtc (28)

for I = 1, . . . , N . We then assume the expansion dΦ = ∑N
I=1 φI ◦ dBI

t . As
before, we subtract the time-mean to obtain Δx′r,I = Δxr,I − 1

N

∑N−1
I=0 xr,I and

then compute the EOFs exactly as we did in Sect. 3.1 to get our parameters φI .

In both methods we initially compute horizontal components of the stochastic
parameters using EOFs, but for SALT there is the additional step of integrating
the incompressibility condition to obtain the vertical component. The vertical
component is not needed for φI since it is a part of the decomposition of the fluid
momentum m, the vertical part of which vanishes in the Primitive Equations. In
fully three-dimensional models in which the vertical component of the momentum
is non-zero, the Eulerian differences of the momenta will be a three-dimensional
object and one can compute all three components of the parameters φI using EOFs.

We can also consider using Eulerian differences as an option for ξ i in SALT.
This effectively means approximating the fine-grid Lagrangian path by taking only
one time-step in the coarse grid: xf ≈ vf (x0, t)Δtc. We can expect that this will
be a reasonable approximation for small M , but for larger M the Lagrangian paths
method will diverge from the Eulerian differences. In our numerical investigations
in SALT we shall consider ξ i computed from both the Lagrangian paths method
and Eulerian differences method. For SFLT we also consider φI computed from
Lagrangian paths (for completeness) as well as those computed by Eulerian
differences as described above.

4 Results

We solve the Primitive Equations using the FESOM2 code on a rectangular domain
[0, 40◦] × [30◦, 60◦] × [0,−H ], where H = 1600m is the depth of the domain and
the bathymetry is flat. Impermeability conditions are imposed at all boundaries. The
model is spun up for three years from zero initial velocity and an initial temperature

profile given by T (z) = T0 + λ
αρ0

(
(1 − β) tanh

(
z
z0

)
+ β z

H

)
, which is based on

the test case described in [RDH+12, SDB+16]. We take T0 = 25◦C, β = 0.05,
λ = 5kgm−3, z0 = 300m, ρ0 = 1030kgm−3, and α = 0.00025K−1. For simplicity,
salinity is kept constant and we use a linear equation of state which depends only on
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temperature: b = −α(T − 10◦C). The flow is driven by a wind forcing in the upper
layer given by τ (x, y) = −τ0Δz0

ρ0
cos

( πy
15◦
)

x̂, where Δz0 = 10m is the thickness

of the upper layer; τ0 = 0.2ms−2 is the wind strength. The vertical discretisation
consists of 23 layers, with layer thicknesses increasing with depth. For the horizontal
discretisation we take a fine grid of spacing 1/4◦ and a coarse grid of spacing
1/2◦. At the latitudes we are considering, 1/4◦ corresponds to an eddy-permitting
model, while 1/2◦ may be considered non-eddy resolving [see Hal13]. We run the
deterministic model on the fine grid and the coarse grid, and carry out the SALT
and SFLT runs on the coarse grid. All coarse-grid runs are begun from the same
initial condition, being the final time snapshot after the three-year spin-up period;
the fine-grid run is begun from the end of the three-year spin-up on the fine grid.
We save data in each case at intervals of 15 days, over a time period of 10 years,
for a total of 240 snapshots. From the fine grid data we have the ‘truth’ velocity
vf . To this we apply a coarse-graining v̄; we then follow the procedures outlined in

Sect. 3 to compute ξ
(h)
i and φI . However, there is no canonical choice for how the

coarse-graining should be done. We consider a filter defined by an equally-weighted
nine-point average over nearest neighbours, and we denote this filter F ; this filter,
applied once, has a width equal to the spacing on the coarse grid, i.e. 1/2◦. The
coarse-graining will then be done by applying this filter Nf ilt times successively,
then projecting onto the coarse grid. Thus, the smoothing filter applied Nf ilt times
will be denoted FNf ilt ; this has a width Nf ilt /2 degrees with a stronger weighting
for points closer to the centre of the filter. We consider the cases Nf ilt = 1, 4, 32.

From the deterministic model run, we have velocities saved at 240 time snap-
shots, so we can use these to compute 240 EOFs. We do this for both the Lagrangian
paths method and the Eulerian differences method, for each of the three choices of
Nf ilt ; this gives a total of six sets of parameters. In our model runs we shall choose
to keep Nξ = Nφ = 32 of these parameters for each run. In Fig. 1 we plot the
square-root of the sum of the squares of these parameters (before re-scaling by γ )
as a field in space. From Fig. 1 it appears the differences between Lagrangian paths
or Eulerian differences are minimal. We remark that here the time-steps on the fine
and coarse grids differ only by a factor of 2; it is expected that if a bigger difference
in resolution is used, then more steps will be needed in computing the Lagrangian
paths and therefore the corresponding parameters will differ more substantially. The
number of times we apply the smoothing operator, however, has a much greater
effect and we see significantly different fields with Nf ilt = 32 than we do with
Nf ilt = 4 or Nf ilt = 1. Indeed, it appears from Fig. 1 that the weaker filter causes
the parameters to be more strongly concentrated around the western boundary,
whereas for the stronger filter the parameters are spread more across the domain.

The cumulative spectra of the EOFs are shown in Fig. 2. These spectra show us
how many EOFs are needed to capture a given percentage of the total variability;
or conversely, how much variance is captured by a given number of EOFs. We
show in each case how much variability is captured by using 32 EOFs. In all cases
the Lagrangian paths method gives a slightly higher variability captured, though
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Fig. 1 1
γ

(
1
Nξ

∑Nξ

i=1 ξ
(h)
i · ξ (h)i

)1/2
in the upper fluid layer for different methods of computing

ξ
(h)
i . Top row: ξ

(h)
i computed from Lagrangian paths for different strengths of smoothing filter.

Bottom row: ξ
(h)
i computed from Eulerian differences for different strengths of smoothing filter

Fig. 2 Eigenvalue spectra of zonal ξ i , plotted for three different values for Nf ilt . On each panel is
shown the spectrum for the EOFs calculated by Lagrangian trajectories and Eulerian differences.
The horizontal lines show what the percentage of the total variance is captured by choosing Nξ =
32 EOFs

the difference is small, especially for the smaller values of Nf ilt . A much bigger
variability is captured, however, in the Nf ilt = 32 case when compared with the
Nf ilt = 1 case.

We implemented SALT and SFLT into FESOM2 (see Appendix section) and ran
the model with each choice of parameters and with the appropriate re-scaling as
detailed above. For all SALT runs we use Nξ = 32 with the scaling γ = 2 ×
10−3ms−1/2. For SFLT we also take Nφ = 32 but scale the parameters with γ =
102ms−1/2. This re-scaling is chosen empirically taking γ to be the largest value
possible that will not result in model blow-up. It appears that the magnitude of
parameters that we are able to use for SFLT is much higher. This is possibly due to
the fact that SFLT does not involve any direct modification of the tracer equation.
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SALT, on the other hand, includes an advection of the temperature by the stochastic
transport velocity; using higher values for this velocity may destabilise the tracer
equation and cause model blow-up.

The results of these runs are shown in Figs. 3, 4, 5. Figure 3 shows the eddy
kinetic energy (EKE), defined by E = 1

2 |u − 〈u〉|2, where 〈u〉 is the time-averaged
velocity. We notice that the eddy kinetic energy is significantly less in the coarse-
grid deterministic run than it is in the fine-grid run. This is probably due to the
fact that small scales are less present in the coarse-grid flow, and in the coarse-grid
model the viscosity used is greater and so kinetic energy is dissipated at a faster
rate. However, when we include SALT there is, for most choices of ξ i , a notable
increase in EKE across the domain, particularly around the western boundary. The
exception is in the cases in which the coarse-grained velocities v̄ used to calculate
ξ i are defined with only one application of the smoothing operator, as shown in
panels (c) and (d) in Fig. 3. This could be because, from Fig. 2, the inclusion of 32
ξ i captures a smaller amount of the total variability; it may also be that the effect of

Fig. 3 Time-average of eddy kinetic energy at depth 16 m below the surface. Panel (a) is from
the high-resolution (1/4◦) deterministic model, while (b) is from the low-resolution (1/2◦)
deterministic model. Panels (c), (g), (k) are the results of model runs at 1/2◦ with SALT, where
ξ i are computed using Lagrangian differences using a coarse velocity defined by applying the
smoothing filter 1, 4 and 32 times respectively. Panels (d), (h), (l) are also SALT runs but ξ i are
computed from Eulerian differences rather than Lagrangian trajectories. Panels (e), (i), (m) are
SFLT runs with φI computed from Lagrangian trajectories, while (f), (j), (n) have φI computed
from Eulerian differences



Variational Stochastic Parameterisations 151

Fig. 4 Spectra of eddy kinetic energy for SALT (left panel) with ξ i calculated from Lagrangian
paths and from Eulerian differences; and for SFLT (right panel) with φI calculated from
Lagrangian paths and from Eulerian differences. Also included in each plot are the spectra for
the deterministic runs on the fine and coarse grids. Spectra are calculated in the x-direction at

fixed y = 45 1
6
◦

by
∣∣∣Ê(k)

∣∣∣ := 1
tmax

∫ tmax

0

∣∣∫ E(x, t)eikxdx
∣∣ dt . Here tmax = 10years and t = 0

corresponds to the beginning of the model run, after spin-up

Fig. 5 Vertical profiles of temperature horizontally-averaged across the domain after 10 years of
model time. The left-hand panel shows the results from the SALT runs, alongside the deterministic
runs. The right-hand panel shows the results from the SFLT runs, alongside the deterministic runs

the ξis is more spread out across the domain, as shown in Fig. 1, which overall has a
greater impact than having them more highly concentrated in one region. For SFLT
there is only a modest improvement in the EKE field, and the effect is similar for all
choices of the parameters. In all cases there appears to be little difference between
the Eulerian differences method and the Lagrangian paths method when the same
Nf ilt is used.

We can also consider the spatial spectra, as shown in Fig. 4. There we see that
the 1/4◦ run contains higher EKE at all scales than the low-resolution run. Every
SALT run succeeds in increasing the energy at almost all scales and in shifting the
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Fig. 6 Time series of spatially-averaged temperature fields for SALT runs at z = −5 m (left panel)
and z = −1350 m (right panel)

spectrum towards that of the 1/4◦ run. The most significant improvements are seen
in the run with Eulerian parameters computed with Nf ilt = 32; in contrast, there
is only a small change from the deterministic run when the Nf ilt = 1 Eulerian
parameters are used. For SFLT the improvement is again less noticeable, with all
choices of parameters only giving a slight increase in EKE at all scales.

Since we are working with the Primitive Equations, the buoyancy can have
a large effect on the fluid flow. We therefore consider the temperature, which
determines buoyancy directly via the linear equation of state. Figure 5 shows
vertical temperature profiles at the end of the ten-year run. In the coarse-grid model
there is a slightly lower average temperature in the upper layers of the fluid, and
slightly higher temperatures in the lower layers. However, with SALT included
there is, for some choices of parameters, a significant reduction in temperature in
the upper layers, while at lower depths the temperature increases relative to the
deterministic model. Considering the time series of spatially averaged temperature
at z = −5 m and z = −1350 m in Fig. 6, we see the downwards diffusion effects are
persistent in time. In the deterministic case we see that the coarse-grid model has a
stronger downwards diffusion of temperature than the fine-grid run. The inclusion of
SALT also accelerates this downward-diffusion effect. It therefore appears that the
calibrated stochastic terms we have included in the temperature equation with SALT
cause a downwards-diffusion effect. Indeed, an additional SALT run (not shown),
in which the stochastic terms were not included in the temperature advection,
did not display this downwards diffusion behaviour. Thus, further investigation
will be required in order to determine how to avoid the excessive downwards
diffusion in the tracer equation while maintaining a positive effect on the EKE
field. SFLT has very little effect on the temperature field when compared to that
of the low-resolution model. This is expected however since there are no direct
stochastic effects in the temperature equation. Comparing with SALT runs where
the temperature downwards-diffusion effect is present against the SFLT runs, we
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believe that the temperature is the dominant force for the evolution of velocity, at
least at the resolutions we have considered here. Then, the limited effects on EKE
by the SFLT framework are explained as it does not affect the driving temperature
fields directly. It remains part of future work to consider the case where SFLT is
added to the temperature field.

5 Summary and Discussion

This work lays the groundwork for the application of two relatively new stochastic
parameterisation frameworks to the Primitive Equations. The first, SALT, has
hitherto only been applied to simple idealised ocean models such as QG and 2D
Euler. The second, SFLT, had not been investigated numerically prior to the present
work. We have demonstrated some of the desirable theoretical properties of the
stochastic Primitive Equations with the noise added in these ways. Notably, the
preservation of a circulation theorem for SALT and energy conservation for SFLT.
We have proposed to calculate the parameters ξ i governing SALT and φI governing
SFLT by two different methods: Lagrangian paths and Eulerian differences. We
find that there are no significant differences between the two methods, either
in the parameters themselves or in the results of model runs. In this case it is
preferable to use the Eulerian differences method, as the parameters in this case
are computationally less expensive to compute. However, we have used a set-up
in which the fine-grid resolution is only is only 2 times the coarse-grid resolution.
However, using a larger ratio of grid resolutions would mean more time-steps are
needed in the Lagrangian paths and so may give different EOFs that differ more
significantly than what we have observed here. We do observe, however, that there
are large sensitivities to the choice of smoothing used in defining the coarse-grained
velocity, from which the parameters are calculated. In the SALT case, the model
runs using parameters calculated with a strong smoothing filter show a significant
improvement in the eddy kinetic energy field at all depths, as well as in the eddy
kinetic energy spectrum. In the SFLT case, the improvement in EKE field and
EKE spectrum are more modest compared to the improvement by SALT due to the
lack of direct stochastic effects to the driving temperature fields. Considering the
temperature profile, however, we observe that SALT causes significant additional
downward diffusion when compared with the deterministic model. It remains an
open problem to devise a method to avoid this effect. The answer may lie in a
different method for configuring the parameters ξ i or it may be the case that this is
a property intrinsic to SALT. In either case, further study is needed in this direction.

The stochastic parameterisation frameworks considered in this paper distils all
uncertainties of the ocean models into the stochastic parameters ξ i and φI . However,
the effects of these stochastic parameterisations could be limited by the model,
both physically and numerically. Examples of the limiting factors for the Primitive
Equations are the forcing from the temperature field and artificial viscosity imposed
for numerical stability. The interplay between numerical effects such as artificial
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viscosity and stochastic parameterisation is particularly interesting for future work.
This is due to different numerical viscosity are imposed at different mesh resolutions
to numerical stability which influences the calibration process. Thus, we expect
there are limits to the effects of SALT and SFLT for low-resolution simulations
where viscosity are dominant. In high-resolution simulations, we expect to see
further effects of stochasticity as the influence of viscosity diminishes. After all,
the problem of stochastic parameterisations are not just model-dependent, it also
dependent on the numerical method solving it.
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Appendix: Numerical Implementation

In order to apply SALT and SFLT to FESOM2 we adapt the time-stepping scheme to
include the appropriate stochastic terms. Details of the original (deterministic) time-
stepping are given in [DSWJ16]. We modify the scheme from FESOM2 to a two-
step Heun-type method [BBT04]; we choose this because of the use of Stratonovich
integrals, to which the Heun method converges. The first step in the method is to
compute the modified pressure:

p̂n
h = ρ0g

∫ z

−H

b(T n+1/2)dz′ +
∑
i

∫ z

−H

∂ξ i

∂z
· undz′

ΔWi
n+1

Δt

+
∑
I

∫ z

−H

∂φI

∂z
· undz′

ΔBI
n+1

Δt

(29)

where ΔWi
n+1 and ΔBI

n+1 are independent, normally-distributed random variables
with mean 0 and variance Δt . For the sake of conciseness we shall assume that the
buoyancy depends only on temperature T , and that salinity is kept constant; how-
ever, extending the method to include additional tracers should be straightforward.
The advective, diffusive and pressure parts of the momentum right-hand-side are
then computed:

Δûn+1 = R̂n+1/2 −∇ (
p̂n
h + ηn

)
Δt + D

(
un,Δûn+1

)
(30)
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where R̂n+1/2 is an Adams-Bashforth interpolation of the advective and Coriolis

terms. In fact we have R̂n+1/2 =
(

3
2 + ε

)
R̂n −

(
1
2 + ε

)
R̂n−1, where R̂n =

R [vnΔt,un] +∑
i

(
R
[
ξ i ,un

]−∇(h)ξ i · un
)
ΔWi

n+1 −
∑

I R
[
vn,φIΔBI

n+1

]
and

R [v,u] := −∇ · (vu)− f×v. D includes the horizontal and vertical diffusion terms,
as well as the external wind forcing.

The change in free surface height Δη̂n+1 is computed implicitly:

(
1 − gΔ2∇ ·

∫ 0

−H

∇ (·) dz
)
Δη̂n+1 = −∇ ·

∫ 0

−H

∇ ·
(

un +Δûn+1
)
dzΔt

(31)

Once this has been solved we can finally compute the stepped-forward horizontal
velocity:

ûn+1 = un +Δûn+1 − gΔt∇Δη̂ (32)

Then we solve for the total layer thickness h̄, which in the continuous case is the
same as the free surface height η; in the discrete case, however, they are different
and we compute:

ˆ̄hn+3/2 = h̄n+1/2 −∇ ·
∫ 0

−H

ûn+1dzΔt

In our present set-up we then set the free-surface height as a linear interpolation of
the total layer heights:

η̂n+1 = θ ˆ̄hn+3/2 + (1 − θ) ˆ̄hn+1/2 (33)

where θ ∈ [0, 1] is an arbitrary parameter, which we set equal to 1.

Since we have the horizontal velocity we may compute the vertical velocity:

ŵn+1 = −∇ ·
∫ z

−H

ûn+1dz′ (34)

The newly-computed three-dimensional velocity, along with the stochastic SALT
velocity, is then used to advect the tracer:

T̂ n+3/2 = T n+1/2 − RT

[
T n+1/2, T n−1/2, v̂n+1Δt + ξ iΔWn+3/2

]
+K

[
T n+1/2

]
(35)

where RT denotes the advection scheme and K is the diffusion. From these steps we

compute intermediate values X̂n+1 :=
(

ûn+1, η̂n+1, ˆ̄hn+3/2, T̂ 3/2
)

from values at
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the previous two time steps: un,un−1, h̄n+1/2, T n+1/2, T n−1/2. We may write this
schematically as:

X̂n+1 = Xn + F
[
Xn,Xn−1

]
(36)

where F is an operator representing the computations outlined above. For the

corrector step we follow the same steps as above, to compute F
[
X̂n+1, Xn

]
and

we have the overall evolution given by:

Xn+1 = Xn + 1

2

[
F
[
Xn,Xn−1

]
+ F

[
X̂n+1, Xn

]]
(37)

This method differs from the usual Heun method because the right-hand side
depends on the previous two time-steps, rather than just the previous one. It remains
to prove that adding the stochasticity with this method does converge to the required
Stratonovich integrals.
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A Pathwise Parameterisation for
Stochastic Transport

Oana Lang and Wei Pan

Abstract In this work we set the stage for a new probabilistic pathwise approach to
effectively calibrate a general class of stochastic nonlinear fluid dynamics models.
We focus on a 2D Euler SALT equation, showing that the driving stochastic param-
eter can be calibrated in an optimal way to match a set of given data. Moreover, we
show that this model is robust with respect to the stochastic parameters.

1 Introduction

A fundamental challenge in observational sciences, such as weather forecasting and
climate change predictions, is the modelling of uncertainty due, for example, to
unknown or neglected physical effects, and incomplete information in both the data
and the formulation of the theoretical models for prediction. Various dynamical
parameterisation approaches have been proposed to tackle this challenge, see e.g.
[6], [4], [11], [5], [1]. Of particular interest are the recently developed Data Driven
models, that accommodate uncertainty by predicting both the expected future
measurement values and their uncertainties, based on input from measurements
and statistical analysis of the initial data. To effectively incorporate uncertainty
in the data driven approach, such predictions are made in a probabilistic sense.
Additionally, a data assimilation procedure is used to take into account the time
integrated information obtained from the data being observed along the solution
path during the forecast interval as “in flight corrections”.

In the geoscience community, data assimilation (DA) refers to a set of method-
ologies designed to efficiently combine past knowledge of a geophysical system (in
the form of a numerical model) with new information about that system (in the form
of observations). DA is a central component of Numerical Weather Prediction where
it is used to improve forecasting by adjusting the model parameters and reducing the
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uncertainties. To achieve this, a stochastic feedback loop between the model and the
observation may be introduced: the assimilation of more data during the prediction
interval will then decrease the uncertainty of the forecasts based on the initial data,
by selecting the more likely paths as more observational data is collected. This is
the basis of the so-called ensemble data assimilation which uses a set of model
trajectories that are intermittently updated according to data.

A key step for ensuring the successful application of the combined stochastic
parameterisation and data assimilation procedure, is the “correct” calibration of
stochastic model parameters. For Stochastic Advection by Lie Transport (SALT)
and Location Uncertainty (LU) models, current numerical methods for calibration,
see [4], [1], [5], [12], have largely been inspired by the physical interpretation of
the models derivations. More specifically on the assumption that the flow map
is decoupled into a slow scale mean part and a fast scale fluctuating part. In the
references mentioned before, it was shown that these methods are effective and led
to successful combination of data driven models and state of the art data assimilation
techniques.

In this work, we wish to investigate the feasibility and viability of probabilistic
pathwise approach for calibration. Our general aim is to explore such ideas for
a wide class of nonlinear stochastic transport models. This will be very useful
in data assimilation problems, as in real world applications the signal is usually
observed through discrete observations, but no results of this type for SALT or
LU models have been obtained before. Currently, Lagrangian particle trajectories
are simulated starting from each point on both the physical grid and its refined
version, then the differences between the particle positions are used to calibrate the
noise. This is computationally expensive and not fully justified from a theoretical
perspective. In the same spirit as [3] but with a more complicated noise term and
without any smoothing effects of a Laplacian, we propose an approach which uses
high-frequency in time and low-frequency in space observations of a single path
of the solution, to rigorously infer properties of the stochastic parameters. The
knowledge of the noise is crucial for determining the behaviour of the solution and
for assessing to what degree the solution of the coarse resolution SPDE deviates
from the solution of the fine resolution PDE in the model reduction procedure, so an
optimal calibration of the noise parameters is relevant from both a theoretical and
an applied perspective.

In this work we look at stochastic calibration for the two-dimensional incom-
pressible Euler equation in vorticity form. This stochastic equation models the local
rotation of a fluid flow in the presence of spatial uncertainties and it has been
derived from fundamental principles in [6]. This equation is a key ingredient in
modelling phenomena in oceanography and in order to ensure that it efficiently
encodes the small-scale variability in the upper part of the ocean, one needs to
specify the stochastic parameters based on real observations. One of the main issues
in parameter estimation using real data is the fact that the model parameters do not
map to observations in a unique way (model identifiability problem, see e.g. [2]).
For this reason, we believe that a probabilistic approach is much more suitable.
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The 2D Euler equation in the form derived in [6] and studied in [4], [5] and [8]
is given by:

dωt + ut · ∇ωtdt +
∞∑
i=1

ξi · ∇ωt ◦ dWt = 0 (1)

where u = (u1, u2) is the fluid velocity, ω = curl u = ∂2u1 − ∂1u2 is the vorticity,
(ξi)i are divergence-free time-independent vector fields such that

∞∑
i=1

‖ξi‖2
k+1,∞ < ∞ (2)

and (Wi)i∈N is a sequence of independent Brownian motions. Global well-
posedness for Eq. (1) has been proven in [8] and the numerical and data assimilation
perspective has been studied in [4] and [5]. In [8] the authors have shown that
Eq. (1) admits a unique pathwise solution which belongs to the Sobolev space
Wk,2(T2) (k ≥ 2) when ω0 ∈ Wk,2(T2) and which can be extended to L∞(T2)

when ω0 ∈ L∞(T2).

In this paper we consider the following SPDE on the two-dimensional torus T2 =
R

2/Z2, driven by a 1-dimensional Brownian motion W :

dωt + ut · ∇ωtdt + ξ · ∇ωt ◦ dWt = 0 (3)

where u and ω are as above and ◦ denotes Stratonovich integration. We impose the
following condition on the stochastic parameter ξ , in the same spirit as (2):

‖ξ‖2
k+1,∞ < ∞ (4)

with k > 4. This condition ensures that for any f ∈ W2,2(T2) ∩W2,∞(T2),

‖ξ · ∇f ‖2
2 ≤ C‖f ‖2

1,2 ‖ξ · ∇(ξ · ∇f )‖2
2 ≤ C‖f ‖2

2,2 (5)

‖ξ · ∇f ‖2∞ ≤ C‖f ‖2
1,∞ ‖ξ · ∇(ξ · ∇f )‖2∞ ≤ C‖f ‖2

2,∞. (6)

Remark 1 We can view the stochastic part as a space-time noise (ξ,W) where the
spatial component is given by ξ and the time component is a standard Brownian
motion. This perspective is many times useful in numerical applications where (ξ ◦
dWt) · ∇ is implemented as a random operator applied to the solution ω.

The problem of parameter estimation, known also as statistical inference, is
technically challenging for such (infinite-dimensional) SPDEs driven by transport
noise, as most methods used in the literature benefit from a diagonalizable structure
of the underlying space-covariance matrices. This structure is specific for additive
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noise and therefore it does not apply in our case. Also, most results are obtained
for stochastic variations of the heat equation, which contain a smoothing Laplace
operator (see for instance [3]). Our model does not contain a Laplacian a priori, and
therefore we cannot exploit the properties of a heat kernel. These makes the analysis
much harder.

Contributions of the Paper
In this work, we focus on Eq. (3) from two perspectives:

• First, we show that the driving stochastic parameter ξ can be calibrated in an
optimal way to match a set of high-frequency in time given data. This is done
using a forced and damped version of the equation and a parametric form
of the stream function and the corresponding stochastic parameter which is
implemented using an orthonormal basis. Our technique can be explicitly applied
to calibrate the 2D Euler model using real oceanic data and we intend to do this
in coming work.

• Second, we show that the original 2D Euler model is robust with respect to the
stochastic parameters ξ in the sense that if we consider two couples (ω1, ξ1) and
(ω2, ξ2) which solve Eq. (3), then the L2 distance between ω1 and ω2 can be
controlled using the initial conditions and the difference between ξ1 and ξ2 only
(see Sect. 4). This is important in applications as it shows that if we consider
approximate values for ξ , the corresponding model solution remains close to the
true solution.

Structure of the Paper
In Sect. 2 below we present the problem formulation. In Sect. 3 we introduce the
methodology. In Sect. 4 we prove the robustness of the original model and in Sect. 5
we present the numerical results.

2 Problem Formulation

Let (�,F , (Ft )t≥0,P) be a filtered probability space and W a one-dimensional
Brownian motion adapted to the complete and right-continuous filtration (Ft )t≥0.

Let h : R → R be a smooth function representing some observation map. We
assume we have available a finite sequence of high frequency in time snapshots
of observed vorticity fields, that are denoted by h(ω∗)ti (x) := h(ω∗

ti
)(x), i =

1, . . . , N , and are adapted to (Ft )t≥0. We take the view that the h(ω∗)ti ’s are the
given observation data. We further assume that ω∗

ti
∈ Wk,2(T2), k > 4.

Writing ωξ to denote solutions to the model (3) for a given vector field ξ , the
generic problem we are interested in is to find a ξ so that solutions to (3) matches
the data as best as possible, i.e.
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arg min
ξ

‖ω∗ − ωξ‖ (7)

for some suitable norm.1

The dimension of the observations currently coincides with the number of
sources of noise, that is we have a determined system. However, in practice
this is not always a realistic assumption and in future work we will look at
underdetermined or overcomplete systems i.e. when the number of noise sources
is larger than the dimension of the observation operator.

In general, the infinite dimensional optimisation problem (7) may be too hard
to solve in practice. We thus make concrete the form of ξ . Let (ej )j∈N be an
orthonormal basis in L2(T2). We assume the following parametric form for the
stream function of ξ , which is henceforth denoted by ζ ,

ζ(x) =
∞∑
j=1

αj ej , (8)

where αj are reals. Then

ξ(x) = ∇⊥ζ(x) =
∞∑
j=1

αj∇⊥ej (x) (9)

and the optimisation problem (7) then reduces to finding the coefficients αj .

3 Methodology

For a stochastic process Xt defined on a filtered probability space, its quadratic
variation is defined by

[X]t := lim
maxj 'tj→0

n∑
i=1

|Xti −Xti−1 |2, (10)

where t0 = 0 < t1 < · · · < tn = t is a partition of the interval [0, t], 'ti :=
|ti − ti−1|, and the convergence is in the sense of probability (see e.g. [7]).

From (3) and (9) we have

ωt(x) = ω0(x)−
∫ t

0
Bs(x;ω) ds −

∫ t

0

∑
j

αj∇⊥ej (x) · ∇ωt(x) ◦ dWt (11)

in which for notation simplicity, we have introduced Bs(x;ω) := us(x) · ∇ωs(x).

1 By the assumed regularity of h, any solution to (7) is also a solution to arg min
ξ

‖h(ω∗)−h(ωξ )‖.
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Using Itô’s lemma, and following standard results on the quadratic variation of
semimartingales, it is straightforward to show that

[h(ω)]t =
∞∑

i,j=1

αiαj

∫ t

0
〈h′(ωs), ∇⊥ei · ∇ωs〉 〈h′(ωs), ∇⊥ej · ∇ωs〉 ds. (12)

Due to global existence and uniqueness of solutions to (3), [h(ω)]t exists
globally P-almost surely. Thus the right hand side of (23) can be arbitrarily well
approximated by its truncation for all t i.e. for a given ε > 0, there exists Mε such
that
∣∣∣∣∣∣[h(ω)]t −

Mε∑
i,j=1

αiαj

∫ t

0
〈h′(ωs), ∇⊥ei · ∇ωs〉 〈h′(ωs), ∇⊥ej · ∇ωs〉 ds

∣∣∣∣∣∣ < ε.

(13)
Additionally, from the computational perspective, for any fixed Mε , the linear map

Aij :=
∫ t

0
〈h′(ωs), ∇⊥ei · ∇ωs〉 〈h′(ωs), ∇⊥ej · ∇ωs〉 ds (14)

that defines the truncated quadratic form is symmetric and positive definite,2 and
thus can be diagonalised by a unitary linear map. Doing so, we obtain the following
linear problem

[h(ω)]t =
Mε∑
j=1

α̃2
j λj + ε′, (15)

where ε′ denotes the truncation error of (23), λj are the eigenvalues of the associated
linear map, and α̃j ’s are the original α values which get rescaled by the unitary
matrix from the diagonalisation.

We can estimate [h(ω)]t using the high frequency in time data h(ω∗) and (10),
assuming the discrete sum converges fast enough,

[h(ω)]t ≈ [̂h(ω)]t,N :=
N∑
i=1

|h(ω∗)ti − h(ω∗)ti−1 |2. (16)

The estimate [̂h(ω)]t,N could then be used in (15) to get an estimate for the α̃.
One could then recover the original α’s by applying the unitary linear map that’s
associated with the diagonalisation of Aij .

2 Since [h(ω)]t is strictly positive.
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Example 1 Let h be the identity map. Let eκ = eiκ·x be the Fourier basis. Then we
have

[̂ω]t,N =
∞∑

i,j=1
with κi ,κj∈Z2

αiαj

∫ t

0
eκi eκj (κ

⊥
i · ∇ωs) (κ

⊥
j · ∇ωs) ds. (17)

In Sect. 5 we test numerically Eq. (17) for an idealised example, and show we can
adequately recover the basis coefficients using our methodology.

Example 2 In this example, we assume the data are the kinetic energy of the flow,

Et := 1

2

∫
T2

|ut |2dx. (18)

Thus the data are “indirect” information about the vorticity. Note that the energy
data is feasible for SALT models as energy is not a conserved quantity of SALT.

Below, we avoid calculating the pressure term of the Euler system by utilising the
Biot-Savart operator K that links the velocity field to the vorticity field in Eq. (3).
For further discussions on this topic see [9] or [10]. We have

u(x) = (K * ω)(x) =
∫
T2

K(x − y)ω(y)dy (19)

where

K(x) =
∑

κ∈Z2\{0}

iκ⊥

‖κ‖2 e
iκ·x. (20)

It is known that, for any k ≥ 0, there exists a constant Ck,2, that is independent of
u, and such that

‖u‖k+1,2 ≤ Ck,2‖ω‖k,2.

If ψ : T
2 × [0,∞) → R is a solution for 'ψ = −ω then u = ∇⊥ψ solves

ω = curl u, so u = −∇⊥'−1ω. The reconstruction of u from ω is ensured by
the incompressibility condition ∇ · u = 0 and a periodic, distributional solution of
'ψ = −ω is given by

ψ(x) = (G * ω)(x)

where G is the Green’s function of the operator −' on T
2
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G(x) =
∑

κ∈Z2\{0}

eiκ·x

‖κ‖2

and κ = (κ1, κ2), κ⊥ = (κ2,−κ1).
Combining (11) with the Biot-Savart law (19) we obtain

ut (x) = u0(x)−
∫ t

0

∫
T2

K(x − y)Bs(y;ω)dyds −
∫ t

0

∫
T2

K(x − y)ξ(y) · ∇ωs(y)dy ◦ dWs

(21)

Using Itô’s lemma, we obtain

Et − E0 = −
∫ t

0
〈us , K * (Bs − 1

2
ξ · ∇(ξ · ∇ωs))〉ds −

∫ t

0
〈us , K * (ξ · ∇ωs)〉 dWs

(22)
where 〈·, ·〉 is the standard L2(T2) pairing. Thus

[E]t =
∞∑

i,j=1

αiαj

∫ t

0
〈us , K * (∇⊥ej · ∇ωs)〉〈us , K * (∇⊥ei · ∇ωs)〉 ds.

(23)

4 Robustness

Theorem 2 Let ω1, ω2 be two solutions of the 2D Euler equation (3) and ξ1, ξ2 the
corresponding stochastic parameters for each of these two solutions. More precisely,
(ω!, ξ!) for ! = 1, 2 solves

dω!
t + u!t · ∇ω!

t dt + ξ! · ∇ω!
t dWt = 1

2
ξ! · ∇

(
ξ! · ∇ω!

t

)
. (24)

Then for any p ≥ 2 there exist some constants3 C = C(p, T ), C1,p, C2,p, such that

E

[
sup

t∈[0,T ]
e−γ (t)‖ω1

t − ω2
t ‖2p

2

]
≤ Cp,T

(
‖ω1

0 − ω2
0‖2p

2 + ‖ξ1 − ξ2‖2p
2 + ‖ξ1 − ξ2‖2p

1,2

)

(25)
where

3 In this theorem all constants generically denoted by C,Cp,T , C1,p, C2,p, C̃ may differ from line
to line and from term to term.
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γ (t) := C1,p

∫ t

0
‖ω1

r ‖2
k,2dr + C2,pt

and k > 4.

Proof of Theorem 2 Let ω̄ := ω1 −ω2, ū = u1 −u2, ξ̄ = ξ1 − ξ2. Then ω̄ satisfies

dω̄t + (ūt · ∇ω1
t + u2

t · ∇ω̄t )dt +
(
ξ1 · ∇ω1

t − ξ2 · ∇ω2
t

)
dWt

= 1

2

(
ξ1 · ∇(ξ1 · ∇ω1

t )− ξ2 · ∇(ξ2 · ∇ω2
t )
)
dt.

By the Itô formula:

d‖ω̄t‖2
2 =− 2〈ω̄t , ξ

1 · ∇ω1
t − ξ2 · ∇ω2

t 〉dWt − 2〈ω̄t , ūt · ∇ω1
t + u2

t · ∇ω̄t 〉dt

+
(
〈ω̄t , ξ

1 · ∇(ξ1 · ∇ω1
t )− ξ2 · ∇(ξ2 · ∇ω2

t )〉

+〈ξ1 · ∇ω1
t − ξ2 · ∇ω2

t , ξ
1 · ∇ω1

t − ξ2 · ∇ω2
t 〉
)
dt.

(26)

We make the following notations

mt := ‖ω̄t‖2
2 Z := ‖ξ̄‖2

2 L := ‖ξ̄‖2
1,2

At := −2〈ω̄t , ūt · ∇ω1
t + u2

t · ∇ω̄t 〉 + 〈ω̄t , ξ
1 · ∇(ξ1 · ∇ω1

t )− ξ2 · ∇(ξ2 · ∇ω2
t )〉

+ 〈ξ1 · ∇ω1
t − ξ2 · ∇ω2

t , ξ
1 · ∇ω1

t − ξ2 · ∇ω2
t 〉

Dt :=
∫ t

0
〈ω̄s, ξ

1 · ∇ω1
s − ξ2 · ∇ω2

s 〉dWs

φ(t) := C‖ω1
t ‖2

k,2 + C

ψ(t) := (C‖ω1
t ‖2

k,2 + C)Z + C‖ω1
t ‖2

k,2L

Z̃ := C‖ω1
t ‖2

k,2Z

Then we can write (26) as

dmt = Atdt − 2dDt

We want to estimate each of the terms which appear in (26). The difference of the
nonlinear terms is analysed explicitly in [8] pp. 9:

〈ω̄t , ūt · ∇ω1
t 〉 ≤ ‖ω̄t‖2‖ūt‖4‖∇ω1

t ‖4 ≤ C‖ω̄t‖2
2‖ω1

t ‖k,2 = C‖ω1
t ‖2

k,2mt
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We used here that ‖∇ω1
t ‖4 ≤ C‖ω1

t ‖k,2 and ‖ūt‖4 ≤ C‖ūt‖1,2 ≤ C‖ω̄t‖2. Also,

since u2 is divergence-free, 〈ω̄t , u
2
t · ∇ω̄t 〉 = − 1

2

∫
T2
(∇ · u2

t )(ω̄t )
2dx = 0. We

estimate the difference terms which include ξ1 and ξ2 in Lemma 3 below. Note here
that the term 〈ω̄t , ξ

2 ·∇ (
ξ2 · ∇ω̄t

)〉 is negative. Using these estimates and Lemma 3
below we have that

Atdt ≤ ψ(t)dt + φ(t)mtdt.

Then

d

⎛
⎜⎝e

−
∫ t

0
φ(s)ds

mt

⎞
⎟⎠ = e

−
∫ t

0
φ(s)ds

(dmt − φ(t)mtdt)

≤ e
−
∫ t

0
φ(s)ds

(ψ(t)dt − 2dDt) .

After raising everything to the power p ≥ 2,4 taking the supremum over t ∈ [0, T ]
and then the expectation, we obtain

E

⎡
⎢⎣ sup
t∈[0,T ]

⎛
⎜⎝e

−
∫ t

0
φ(s)ds

mt

⎞
⎟⎠

p⎤
⎥⎦ ≤ Cpm

p

0 + CpE

⎡
⎢⎣ sup
t∈[0,T ]

∣∣∣∣∣∣∣
∫ t

0
e
−
∫ s

0
φ(r)dr

ψ(s)ds

∣∣∣∣∣∣∣

p⎤
⎥⎦

+ CpE

⎡
⎢⎣ sup
t∈[0,T ]

∣∣∣∣∣∣∣
∫ t

0
e
−
∫ s

0
φ(r)dr

dDs

∣∣∣∣∣∣∣

p⎤
⎥⎦

(27)
For the stochastic integral we use the Burkholder-Davis-Gundy inequality: for

arbitrary p ≥ 2 and a martingale Mt there exists a constant Cp such that5

E

[
sup

t∈[0,T ]
|Mt |p

]
≤ CpE

[
[M]p/2

T

]

where [M]t is the quadratic variation of the martingale Mt . In our case

4 We use here and below that |a + b|p ≤ 2p−1(|a|p + |b|p), p ≥ 2.
5 In this proof C,Cp are generic constants which may differ from line to line and from term to
term.
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Mt :=
∫ t

0
e
−
∫ s

0
φ(r)dr

dDs

and then

[M]t =
∫ t

0
e
−2

∫ s

0
φ(r)dr

d[D]s =
∫ t

0
e
−2

∫ s

0
φ(r)dr

|〈ω̄s , ξ
1 · ∇ω1

s − ξ2 · ∇ω2
s 〉|2ds.

Therefore6

E

[
[M]p/2

T

]
= E

⎡
⎢⎢⎣
⎛
⎜⎝
∫ T

0
e
−2

∫ s

0
φ(r)dr

|〈ω̄s, ξ
1 · ∇ω1

s − ξ2 · ∇ω2
s 〉|2ds

⎞
⎟⎠

p/2
⎤
⎥⎥⎦

≤ Cp,TE

⎡
⎢⎣
∫ T

0
e
−p

∫ s

0
φ(r)dr

|〈ω̄s, ξ
1 · ∇ω1

s − ξ2 · ∇ω2
s 〉|pds

⎤
⎥⎦

≤ Cp,T

∫ T

0
E

⎡
⎢⎣ sup
r∈[0,s]

e
−p

∫ r

0
φ(q)dq (

m
p
r + Z̃p

)
⎤
⎥⎦ ds.

Using these estimates in (27) we obtain

E

⎡
⎢⎣ sup
t∈[0,T ]

⎛
⎜⎝e

−
∫ t

0
φ(s)ds

mt

⎞
⎟⎠

p⎤
⎥⎦ ≤ Cpm

p

0 + Cp,T E

⎡
⎢⎣ sup
t∈[0,T ]

∫ t

0
e
−p

∫ s

0
φ(r)dr

ψ(s)pds

⎤
⎥⎦

+ Cp,T

∫ T

0
E

⎡
⎢⎣ sup
r∈[0,s]

e
−p

∫ r

0
φ(q)dq (

m
p
r + Z̃p

)
⎤
⎥⎦ ds

(28)
For the second term on the right hand side of (28) we use that, since Z is

deterministic and by [8] the 2D Euler equation (3) has a unique global solution
in Wk,2(T2) for k ≥ 2, there exist C̃1

p, C̃
2
p such that for all t ∈ [0, T ]

6 We use here the control obtained for Q in Lemma 3. More precisely: since Q ≤ Cmt + Z̃ then
Qp ≤ Cp(m

p
t + Z̃p).
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E

[
sup

s∈[0,t]
ψ(s)p

]
= E

[
sup

s∈[0,t]

(
(C‖ω1

s ‖2
k,2 + C)Z + C‖ω1

s ‖2
k,2L

)p]

≤ Zp
E

[
sup

s∈[0,t]
(C‖ω1

s ‖2
k,2 + C)p

]
+ Lp

E

[
sup

s∈[0,t]
(C‖ω1

s ‖2
k,2)

p

]

≤ C̃1
pZ

p + C̃2
pL

p.

The same argument is used to control
∫ T

0
E

⎡
⎢⎣ sup
r∈[0,s]

e
−p

∫ r

0
φ(q)dq

Z̃p

⎤
⎥⎦ ds in the

third term of (28). Then

E

⎡
⎢⎢⎣ sup
t∈[0,T ]

⎛
⎜⎝e

−
∫ t

0
φ(s)ds

mt

⎞
⎟⎠
p
⎤
⎥⎥⎦ ≤ C1

p,T (m
p
0 + Zp + Lp)

+ C2
p,T

∫ T

0
E

[
sup

r∈[0,s]

(
e−

∫ r
0 φ(q)dqmr

)p]
ds.

Then by Gronwall lemma

E

⎡
⎢⎣ sup
t∈[0,T ]

⎛
⎜⎝e

−
∫ t

0
φ(s)ds

mt

⎞
⎟⎠

p⎤
⎥⎦ ≤ e

∫ T

0
C2
p,T ds

(
m

p

0 +
∫ T

0
C1
p,T (m

p

0 + Zp + Lp)ds

)

≤ eC(T )
(
m

p

0 + T (C1
p,T (m

p

0 + Zp + Lp))
)
.

So we finally obtain that

E

[
sup

t∈[0,T ]
e−γ (t)‖ω1

t − ω2
t ‖2p

2

]

≤ Cp,T

(
‖ω1

0 − ω2
0‖2p

2 + ‖ξ1 − ξ2‖2p
2 + ‖ξ1 − ξ2‖2p

1,2

)
, p ≥ 2

where

γ (t) := p

∫ t

0
φ(r)dr.

��
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Lemma 3 Let (ω1
t , ξ

1) and (ω2
t , ξ

2) be two solutions of the 2D Euler equation
with ω̄t := ω1

t − ω2
t and ξ̄ := ξ1 − ξ2. Then there exist constants C7 such that the

following estimates hold:

Q := |〈ω̄t , ξ
1 · ∇ω1

t − ξ2 · ∇ω2
t 〉| ≤ C‖ω̄t‖2

2 + C‖ω1
t ‖2

k,2‖ξ̄‖2
2.

A := 〈ξ1 · ∇ω1
t − ξ2 · ∇ω2

t , ξ
1 · ∇ω1

t − ξ2 · ∇ω2
t 〉 ≤ C‖ω̄t‖2

2 + C‖ω1
t ‖2

k,2‖ξ̄‖2
2

|B| ≤ (C‖ω1
t ‖2

k,2 + C)‖ω̄t‖2
2 + C‖ξ̄‖2

2 + C‖ω1
t ‖2

k,2‖ξ̄‖2
1,2

where

B := 〈ω̄t , ξ
1 · ∇

(
ξ1 · ∇ω1

t

)
− ξ2 · ∇

(
ξ2 · ∇ω2

t

)
〉.

and k > 4.
Proof For the difference terms which include ξ1 and ξ2 we use that

ξ1 · ∇ω1
t − ξ2 · ∇ω2

t = ξ̄ · ∇ω1
t + ξ2 · ∇ω̄t .

We have

Q = |〈ω̄t , ξ
1 · ∇ω1

t − ξ2 · ∇ω2
t 〉|

≤ |〈ω1
t − ω2

t , (ξ
1 − ξ2) · ∇ω1

t 〉| + |〈ω1
t − ω2

t , ξ
2 · ∇(ω1

t − ω2
t )〉|

≤ 1

2
‖ω1

t − ω2
t ‖2

2 +
1

2
‖∇ω1

t ‖2∞‖ξ1 − ξ2‖2
2

≤ 1

2
‖ω̄t‖2

2 +
C

2
‖ω1

t ‖2
k,2‖ξ̄‖2

2

with k ≥ 3, since the second scalar product is zero due to the fact that ∇ · ξ2 = 0.
Also

A = 〈ξ1 · ∇ω1
t − ξ2 · ∇ω2

t , ξ
1 · ∇ω1

t − ξ2 · ∇ω2
t 〉 = ‖ξ1 · ∇ω1

t − ξ2 · ∇ω2
t ‖2

2

≤ ‖(ξ1 − ξ2) · ∇ω1
t ‖2

2 + ‖ξ2 · ∇(ω1
t − ω2

t )‖2
2

≤ ‖ξ1 − ξ2‖2
2‖∇ω1

t ‖2∞ + C‖ω1
t − ω2

t ‖2
2

≤ C‖ω1
t ‖2

k,2‖ξ̄‖2
2 + C‖ω̄t‖2

2

where k ≥ 3. For the higher order term we have

7 C differs from line to line and from term to term depending on the Sobolev embedding we use.



172 O. Lang and W. Pan

B = 〈ω1
t − ω2

t , ξ
1 · ∇

(
ξ1 · ∇ω1

t

)
− ξ2 · ∇

(
ξ2 · ∇ω2

t

)
〉

= 〈ω1
t − ω2

t , (ξ
1 − ξ2) · ∇(ξ1 · ∇ω1

t )〉
+ 〈ω1

t − ω2
t , ξ

2 · ∇
(
(ξ1 − ξ2) · ∇ω1

t

)
〉

+ 〈ω1
t − ω2

t , ξ
2 · ∇

(
ξ2 · ∇(ω1

t − ω2
t )
)
〉

=: a + b + c.

Note that c is negative:

〈ω1
t − ω2

t , ξ
2 · ∇

(
ξ2 · ∇(ω1

t − ω2
t )
)
〉 = −〈ξ2 · ∇(ω1

t − ω2
t ), ξ

2 · ∇(ω1
t − ω2

t )〉
= −‖ξ2 · ∇(ω1

t − ω2
t )‖2

2

≤ 0

so |B| ≤ |a| + |b|. We estimate |a| as follows:

|a| = |〈ω1
t − ω2

t , (ξ
1 − ξ2) · ∇(ξ1 · ∇ω1

t )〉| ≤
1

2
‖∇(ξ1 · ∇ω1

t )‖2∞‖ω1
t − ω2

t ‖2
2 +

1

2
‖ξ1 − ξ2‖2

2

≤ C

2
‖ω1

t ‖2
2,∞‖ω1

t − ω2
t ‖2

2 +
1

2
‖ξ1 − ξ2‖2

2

≤ C

2
‖ω1

t ‖2
k,2‖ω̄t‖2

2 +
1

2
‖ξ̄‖2

2

with k > 4. Likewise, we estimate |b|:

|b| = |〈ω1
t − ω2

t , ξ
2 · ∇

(
(ξ1 − ξ2) · ∇ω1

t

)
〉| ≤ 1

2
‖ω1

t − ω2
t ‖2

2 +
1

2
‖ξ2 · ∇

(
(ξ1 − ξ2) · ∇ω1

t

)
‖2

2

=: 1

2
‖ω1

t − ω2
t ‖2

2 +
1

2
K.

Now

K ≤ ‖ξ2 · ∇(ξ1 − ξ2) · ∇ω1
t ‖2

2 + ‖ξ2 · (ξ1 − ξ2) · ∇(∇ω1
t )‖2

2 := K1 +K2

where

K1 ≤ ‖ξ2 · ∇ω1
t ‖2∞‖∇(ξ1 − ξ2)‖2

2

≤ C‖ω1
t ‖2

1,∞‖ξ1 − ξ2‖2
1,2

≤ C‖ω1
t ‖2

k,2‖ξ1 − ξ2‖2
1,2

and
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K2 ≤ C‖ξ2 · ∇(∇ω1
t )‖2

4‖ξ1 − ξ2‖2
4

≤ C‖ξ2 · ∇(∇ω1
t )‖2

1,2‖ξ1 − ξ2‖2
1,2

≤ C‖ω1
t ‖2

k,2‖ξ1 − ξ2‖2
1,2

for k > 4. Then

K ≤ 2C‖ω1
t ‖2

k,2‖ξ̄‖2
1,2

and therefore

|b| ≤ 1

2
‖ω̄t‖2

2 + C‖ω1
t ‖2

k,2‖ξ̄‖2
1,2

which gives

|B| ≤
(
C

2
‖ω1

t ‖2
k,2 +

1

2

)
‖ω̄t‖2

2 +
1

2
‖ξ̄‖2

2 + C‖ω1
t ‖2

k,2‖ξ̄‖2
1,2.

��

5 Numerical Results

In this section, we show the results we obtained for Example 1 in Sect. 3. We
implemented the main equation (3) with added forcing and damping, on a unit
square domain with doubly periodic boundary conditions,

dωt + ut · ∇ωtdt + ξ · ∇ωt ◦ dWt = (Q− rωt )dt (29)

where we chose r = 0.001 and Q(x) = 0.01(cos(8πy) + sin(8πx)). Note that,
since the added forcing term is of bounded variation, (17) is unchanged for (29).

We considered a ξ whose parametric form with respect to the Fourier basis
consists of only one α. The stream function of our chosen ξ is given by

ζ(x, y) = α (cos(k12πx) cos(k22πy)− sin(k12πx) sin(k22πy)) . (30)

Note that

ζ = α

2
(ei2πk·x + e−i2πk·x), (31)

and

ξ = iαπ(ei2πk·x − e−i2πk·x)k⊥. (32)
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Fig. 1 Snapshots of the numerical solution ω(t, x) to (29) at times t = 0 (left), and t = 1 (right)

To discretise (29), we followed the methods documented in [4]—a mixed Finite
Element method was used for the spatial derivatives, and an explicit strong stability
preserving Runge-Kutta scheme of order 3 was used for the time derivative. We
added the forcing and damping terms to help with maintaining the statistical
homogeneity of the numerical solution, once it has reached a spun-up state from
some set initial state. Our choice for the set initial state was

ω(0, x, y) = sin(8πx) sin(8πy)+ 0.4 cos(6πx) cos(6πy)

+ 0.3 cos(10πx) cos(4πy)+ 0.02 sin(2πy)+ 0.02 sin(2πx).
(33)

Spatially, we chose the grid size 64 × 64 cells. We first spun-up the system until it
reached a statistical equilibrium state. This statistical equilibrium state was then set
as the initial condition for our experiment. Figure 1 shows a snapshot of the obtained
initial condition. Over the spin-up phase, we used α = 0.000001 and kᵀ = (2, 4).

The time horizon for the experiment data was chosen to be the unit interval, i.e.
we generated data ω∗(ti , x) for 0 = t0 < t1 < · · · < tN = 1. See Fig. 1 for
snapshots of ω∗(0, x) and ω∗(1, x). When generating the data, we used the larger
value of α = 0.001. This was to avoid any possible numerical issues8 when we
attempted to recover α from data.

Assuming we know in-advance the exact Fourier wavenumber k, the linear
system for estimation reduces to

8 When α is small, α2 is close to machine precision.
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[̂ω]t,N (x) :=
N∑
i=1

(ωti (x)− ωti−1(x))
2 ≈ α24π2 B(t, k, x)e′k(x) (34)

where

B(t, k, x) :=
∫ t

0
(k⊥ · ∇ωs(x))2ds (35)

and

e′k(x, y) := (cos(k12πx) sin(k22πy)+ sin(k12πx) cos(k22πy))2 . (36)

Thus our estimate for α is given by

α̂2
N = 1

4π2

∫
T2 [̂ω]t,N (x)dx∫

T2 B(t, k, x)e′k(x)dx
. (37)

Remark 4 In (37), we applied spatial averaging to stabilise estimation.

Remark 5 The assumption that we know k in advance is of course too strong from
the applications viewpoint. The aim of this experiment is to test the strength of
the pathwise approach under the assumption of “perfect knowledge”. If we cannot
accurately recover α in this case, then getting a good estimate for α using the
pathwise approach may be too difficult or impractical in more realistic scenarios.

Figure 2 shows snapshots of [̂ω]t,N (x) and B(t, k, x)e′k(x). We applied (37) for
different values of N . In each case, the time integral that constitutes B(t, k, x) was
approximated using a simple trapezoidal rule, for which the same N number of data
snapshots were used. Figure 3 shows the results for the relative error

errN = |α − α̂N |
α

(38)

for the different values of N . The results show that, in the worst case of N = 2500,
the relative error was no greater than 0.89. This translates to an absolute error
of range of 0.001 ± 0.00089. The best case was when all 200,000 data samples
were used to estimate α, the relative error in that case was 0.00135. This suggests
convergence and stabilisation of the sum for [̂ω]t .

For future work, we aim to test the pathwise approach for cases in which we do
not know the exact selection of basis elements for ξ . Further, we wish to extend and
test these ideas on coarse grained PDE data and compare with the results that were
obtained in [4] using previously developed calibration methods.
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Fig. 2 Shown on the left is a snapshot of the estimate [̂ω]t , which was computed using
N = 200,000 data samples. Shown on the right is a snapshot of the basis element
Bt (k, x) (cos(k12πx) sin(k22πy)+ sin(k12πx) cos(k22πy))2, which was approximated using the
same N number of data samples

Fig. 3 The plot (in log log scale) shows the relative error errN defined in (38) as a
function of N . errN was computed for N = 2500, 5000, 10,000, 20,000, 40,000, 50,000,
66,667, 100,000, 200,000
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Appendix

Lemma 6 (Gronwall Lemma) Let β : [0, T ] → [0,∞) be a non-negative
absolutely continuous function that satisfies for a.e. t

dβ(t) ≤ φ(t)β(t)dt + ψ(t)dt

where φ,ψ are non-negative integrable functions on [0, T ]. Then

β(t) ≤ e

∫ t

0
φ(s)ds (

β(0)+
∫ t

0
ψ(s)ds

)

for all t ∈ [0, T ].
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Stochastic Parameterization with
Dynamic Mode Decomposition

Long Li, Etienne Mémin, and Gilles Tissot

Abstract A physical stochastic parameterization is adopted in this work to account
for the effects of the unresolved small-scale on the large-scale flow dynamics. This
random model is based on a stochastic transport principle, which ensures a strong
energy conservation. The dynamic mode decomposition (DMD) is performed on
high-resolution data to learn a basis of the unresolved velocity field, on which
the stochastic transport velocity is expressed. Time-harmonic property of DMD
modes allows us to perform a clean separation between time-differentiable and time-
decorrelated components. Such random scheme is assessed on a quasi-geostrophic
(QG) model.

Keywords Stochastic parameterization · Dynamical system · Data-driven

1 Introduction

The modelling under location uncertainty (LU) setting has shown to provide
consistent physical representations of fluid dynamics [10, 12]. This representation
introduces a random component to describe the unresolved flow components.
This enables to consider less dissipative systems than the classical large-scale
counterparts. Nevertheless, the ability of such a model to represent faithfully the
uncertainties associated to the actual unresolved small scales highly depends on
the definition of the random component and on its evolution along time. Unsur-
prisingly, stationarity/time-varying and homogeneity/inhomogeneity characteristics
have strong influences on the results [1, 2]. Another important aspect concerns the
ability to include in the noise representation a stationary drift component associated
to the temporal mean of the high-resolution fluctuations. As shown in this paper such
stationary drift can be elegantly introduced in the noise through Girsanov theorem.
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Yet, large-scale persistent components associated to the high resolution fluctuations
are not strictly stationary and slowly varying quasi-periodic components might be
important to include. To that purpose we devise a noise generation scheme relying
on the dynamic mode decomposition [13]. Such a decomposition or other related
techniques aiming to provide a spectral representation of the Koopman operator [11]
will allow us to represent the noise as a superposition of random and deterministic
harmonics oscillators. The first ones are attached to the fast components whereas the
latter represent the slow fluctuations components. As demonstrated in Sect. 4, this
strategy brings us a very efficient technique for ocean double-gyres configuration.

2 Modelling Under Location Uncertainty

In this section, we briefly review the LU setting and the associated random QG
model that will be used for the numerical evaluations.

2.1 Stochastic Flow

The evolution of Lagrangian particle trajectory (Xt ) under LU is described by the
following stochastic differential equation (SDE):

dXt (x) = v
(
Xt (x), t

)
dt + σ

(
Xt (x), t

)
dB t , X0(x) = x ∈ D, (1)

where v denotes the time-smooth resolved velocity that is both spatially and tem-
porally correlated, σdB t stands for the fast oscillating unresolved flow component
(also called noise in the following) that is only correlated in space, and D ⊂ C

d

(d = 2 or 3) is a bounded spatial domain.
We now give the mathematical definitions of the noise. In the following, let

us fix a finite time T < ∞ and the Hilbert space H = (L2(D))d with the
inner product 〈f ,g〉H = ∫

D(f
†g)(x) dx and the norm ‖f ‖H = 〈f ,f 〉1/2

H ,
where •† stands for transpose-conjugate operation. Then, {B t }0≤t≤T is an H -valued
cylindrical Brownian motion (see definition in [4]) on a filtered probability space
(Ω,F , {Ft }0≤t≤T ,P), with the covariance operator diag(Id) (where Id is an d-
dimensional vector of identity operators). For each (ω, t) ∈ Ω×[0, T ] constraining,
σ (·, t)[•] to be a (random) Hilbert-Schmidt integral operator on H with a bounded
matrix kernel σ̆ = (σ̆ij )i,j=1,...,d such that

σ (x, t)f =
∫
D

σ̆ (x, y, t)f (y) dy, f ∈ H, x ∈ D. (2a)

Its adjoint operator σ ∗(·, t)[•] satisfying 〈σ (·, t)f ,g〉H = 〈f , σ ∗(·, t)g〉H reads:
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σ ∗(x, t)g =
∫
D

σ̆ †(x, y, t)g(y) dy, g ∈ H, x ∈ D. (2b)

The composite operator σ (·, t)σ ∗(·, t)[•] is trace class on H and admits eigenfunc-
tions ξn(·, t) with eigenvalues λn(t) satisfying

∑
n∈N λn(t) < +∞. The noise can

then be equally defined by the spectral decomposition:

σ (x, t) dB t =
∑
n∈N

λ
1/2
n (t)ξn(x, t) dβn(t), (3)

where βn are independent standard Brownian motions. In addition, we assume that
the operator-space-valued process {σ (·, t)[•]}0≤t≤T is stochastically integrable,
i.e. P

[ ∫ T

0

∑
n∈N λn(t) dt < +∞] = 1. From [4], the stochastic integral

{∫ t

0 σ (·, s) dBs}0≤t≤T is a continuous square integrable H -valued martingale,
hence a centered Gaussian process, EP[

∫ t

0 σ (·, s) dBs] = 0, of bounded variance,
EP

[‖ ∫ t

0 σ (·, s) dBs‖2
H

]
< +∞. Moreover, the joint quadratic variation process of

the noise, evaluated at the same point x ∈ D, is given by

〈 ∫ ·

0
σ (x, s) dBs ,

∫ ·

0
σ (x, s) dBs

〉
t
=
∫ t

0
a(x, s) ds (4a)

a(x, t) =
∫
D

σ̆ (x, y, t)σ̆ †(y, x, t) dy =
∑
n∈N

λn(t)
(
ξnξ

†
n

)
(x, t). (4b)

We remark that real-valued noise can be achieved by adding the constraint that both
eigenfunctions, eigenvalues and the standard Brownian motions in (3) are organised
in complex-conjugated pairs. In that case, its joint quadratic variation process is
real-valued as well.

The previous formulations consist of only a zero-mean and temporally uncor-
related noise. However, this might not be enough and including a mean or
time-correlated component of the unresolved velocity field could be of crucial
importance to obtain a relevant model. For instance, the eddy parametrization
proposed by [15] is decomposed into a deterministic mean term and a stochastic
term of zero-mean. For the double-gyre circulation configuration, the considered
deterministic parametrization allows to reproduce the eastwards jet for the coarse-
resolution model, while the additional stochastic terms enhance the gyres circulation
and improves the flow variability. Similarly, the random-forcing model proposed
by [3] consists in a space-time correlated stochastic process to enhance the jet
extension. The slow modes of the sub-grid scales can be provided by adequate high-
pass filtering of high-resolution data on the coarse grid. We aim in this work at
investigating the incorporation of such slow components within the LU framework.
However, the derivation of LU models [10, 12, 1] relies on the martingale properties
of the centered noise and we need hence to properly handle non centred Brownian
terms. The Girsanov transformation [4] provides a theoretical tool that fully
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warrants such a superposition: by a change of the probability measure, the composed
noise can be centered with respect to a new probability measure while the additional
drift term appears, which pulls back time-correlated sub-grid-scale components into
the dynamical system. The associated mathematical description is given as follows.
Let Γ t be an H -valued Ft -predictable process satisfying the Novikov condition,
EP

[
exp( 1

2

∫
T

0 ‖Γ t‖2
H

dt)
]
< +∞, then the process { ˜B t := B t +

∫ t

0 Γ s ds}0≤t≤T is an
H -valued cylindrical Wiener process on (Ω,F , {Ft }0≤t≤T , P̃) with Radon-Nikodym
derivative

dP̃

dP
= exp

(
−
∫ T

0
〈Γ t , dB t 〉H − 1

2

∫ T

0
‖Γ t‖2

H
dt
)
. (5a)

In this case, the SDE (1) under the probability measure P̃ reads:

dXt =
(
v(Xt , t)− σ (Xt , t)Γ t

)
dt + σ (Xt , t) d ˜B t . (5b)

In the present work, we shall consider rather this modified stochastic flow defined on
(Ω,F , {Ft }0≤t≤T , P̃) with EP̃[σd ˜B t ] = 0 as the physical solution. Hereafter, σΓ t is
referred to as the Girsanov drift.

2.2 Stochastic QG Model

The evolution law of a random tracer (function) Θ transported along the stochastic
flow, Θ(Xt+δt , t + δt) = Θ(Xt , t), is derived by [10, 1]. Under the probability
measure P̃, this can be described by the following stochastic partial differential
equation (SPDE), namely

DtΘ := dtΘ + (ṽ
* dt + σd ˜B t ) ·∇Θ − 1

2
∇ · (a∇Θ) dt = 0 (6a)

ṽ
* := v − 1

2
∇ · a + σ ∗(∇ · σ )− σΓ , (6b)

In this SPDE, the first term dtΘ(x) := Θ(x, t + δt) − Θ(x, t) stands for the
(forward) increment of Θ at a fixed point x ∈ D; the second term describes
the tracer’s advection by an effective drift ṽ

* and the noise σd ˜B t ; the last term
depicts the tracer’s diffusion through the noise quadratic variation a. The effective
drift (6b) ensues from (i) the noise inhomogeneity, (ii) the possible unresolved
flow divergence and (iii) the statistical correction due to the change of probability
measures, respectively.

The derivation of the stochastic geophysical models under the LU framework
follows exactly the same path as the deterministic derivation, together with a proper
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scaling of the noise and its amplitude. In particular, a continuously stratified QG
model under LU has been derived by [12, 9] using an asymptotic approach. With
horizontally moderate and vertically weak noises (see definitions in [12, 9]), the
governing equations under the probability measure P̃ read:

Evolution of potential vorticity (PV):

Dt q =
∑
i=1,2

J
(
(̃u*)i dt + (σdB̃t )

i , ui
)
−
(1

2
∇ · (∂⊥xi a∇ui

)+ β∂xi ai2

)
dt, (7a)

From PV to streamfunction:

∇2ψ + ∂z

( f 2
0

N2
∂zψ

)
= q − βy, (7b)

Incompressible constraints:

u = ∇⊥ψ, ∇ · σd ˜B t = ∇ · (ũ* − u) = 0. (7c)

Here, ∇ = [∂x, ∂y]T , ∇⊥ = [−∂y, ∂x]T , ∇2 = ∂2
xx + ∂2

yy denote two-dimensional
operators and J(f, g) = ∂xf ∂yg − ∂xg∂yf stands for the Jacobian operator. The
vector fields u, σd ˜B t and the tensor field a are two-dimensional (2D) horizontal
quantities. The horizontal effective drift is defined as ũ

* := u − ∇ · (a/2) − σΓ .
The scalar fields q and ψ represent the PV and the streamfunction. In Eq. (7b),
N2 = −(g/ρ0)∂zρ is the Brunt-Väisälä (or buoyancy) frequency with g the gravity
value, ρ0 the background density, ρ the density anomaly, and f0+βy is the Coriolis
parameter under a beta-plane approximation. As shown in [1], one important
characteristic of the random model (7) is that it conserves the total energy of the
resolved flow (under natural boundary condition) for any realization (i.e. pathwise).
This property highlights a strong relation between the classical deterministic model
and the stochastic formulation.

3 Numerical Parameterization of Unresolved Flow

Data-driven approaches are presented in this section to estimate the spatial corre-
lation functions of the unresolved flow component based on the spectral decom-
position (3). In practice, we work with a finite set of functions to represent the
small-scale Eulerian velocity fluctuations rather than with the Lagrangian particles
trajectory. We first review the empirical orthogonal functions (EOF) method for
which the noise covariance is assumed quasi-stationary. We then propose an
approach relying on the dynamic mode decomposition (DMD) to account for the
temporal behavior of the spatial correlations.
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3.1 EOF-Based Method

In the following, let {uHR(x, ti)}i=1,...,N be the set of velocity snapshots provided
by a high-resolution (HR) simulation. We first build the spatial local fluctuations
uf (x, ti) of each snapshot on the coarse-grid points. In particular, for the QG system
(7), one can first perform a high-pass filtering with a 2D Gaussian convolution
kernel G on each HR streamfunction ψHR, to obtain the streamfunction fluctuations,
ψf (x, ti ) = (

(I − G) * ψHR

)
(x, ti ) (only for the coarse-grid points x). Then, the

geostrophic velocity fluctuations can be derived by uf = ∇⊥
LRψf . We next centre

the data set by u′
f = uf − uf

t (with •t the temporal mean) and perform the
EOF procedure [9] to get a set of orthogonal temporal modes {αm}m=1,...,N and
orthonormal spatial modes {φm}m=1,...,N satisfying

u′
f (x, ti ) =

N∑
m=1

αm(ti)φm(x), αmαn
t = λmδm,n. (8)

Truncating the modes (with M $ N ) and rescaling by a small-scale decorrelation
time τ , the stationary noise and its quadratic variation can be build by

σ (x)d ˜B t = √
τ

M∑
m=1

√
λmφm(x) dβm(t), a(x) = τ

M∑
m=1

λmφm(x)φ
T

m(x). (9)

Note that this time scale τ is used to match the fact that the noise in (5b) has
the physical dimension of a length. In practice, we often consider the coarse-grid
simulation timestep ΔtLR. In addition, the Girsanov drift is set to be σ (x)Γ t =
uf

t (x). It means that the Girsanov drift here is the projection of the temporal
mean of the sub-grid scales onto the EOFs, i.e. σ (x)Γ t = ∑N

m=1 γmφm(x) with
γm = 〈uf

t ,φm〉H satisfying
∑N

m=1 γ
2
m < +∞.

3.2 DMD-Based Method

The DMD algorithm [13] seeks a spectral decomposition of the best-fit linear
operator A that relates the two snapshots:

u′
f (x, ti+1) ≈ Au′

f (x, ti ). (10a)

Applying the exact DMD procedure proposed by [14], the corresponding spectral
expansion in continuous time reads
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u′
f (x, t) =

N∑
m=1

bm exp
(
(σm + iωm)t

)
ϕm(x), (10b)

where ϕm(x) ∈ C
d are the DMD modes (eigenvectors of A) associated to the DMD

eigenvalues μm ∈ C, σm = log(|μm|)/Δtd ∈ R are the modes growth rate (with
Δts = ti+1 − ti the sampling step of data), ωm = arg(μm)/Δts ∈ R are the modes
frequencies (with i the imaginary unit) and bm ∈ C are the modes amplitudes. In
practice, our data set of velocity fluctuations is real valued, hence the DMD modes
(also eigenvalues and amplitudes) are two-by-two complex conjugates, i.e. ϕ2p =
ϕ2p−1 (p = 1, . . . , N/2).

We next propose to split the total set of DMD modes into two subsets, Mc and
Mr , to select separately adequate fast and slow modes for the noise (from Mr ) and
the Girsanov drift (from Mc), respectively, according to the following analysis of
frequencies and amplitudes:

Mc =
{
m ∈ [1, N ]

∣∣∣ |μm| ≈ 1, |ωm| ≤ π

τc
, |bm| ≥ C

}
, (11a)

Mr =
{
m ∈ [1, N ]

∣∣∣ |μm| ≈ 1, |ωm| > π

τc
, |bm| ≥ C

}
, (11b)

where τc is a temporal-separation-scale that can be estimated by the spatial mean
of the autocorrelation functions of data and C denotes an empirical cutoff of ampli-
tudes. The DMD modes that are neither included in Mc nor in Mr are discarded. An
example of spectrum and amplitudes of the selected DMD modes is shown in Fig. 1.
In order to avoid spurious effects associated with the non-orthogonality of DMD
modes, their amplitudes are rescaled such that the reconstructed data corresponds to

Fig. 1 Illustration of the selections of DMD modes used for the noise (orange) and the Girsanov
drift (blue)
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an orthogonal projection onto the subspace spanned by the modes in Mc or Mr . In
particular, we propose to rescale those truncated DMD modes as follows:

(i) Construct the Gramian G = (gm,n)m,n∈Mc with gm,n = 〈
ϕm,ϕn

〉
H

;
(ii) Inverse the Gramian G−1 := (g−1

m,n)m,n∈Mc and derive the dual set of the
truncated DMD modes by ϕ∗

m =∑
n∈Mc g−1

m,nϕn;
(iii) Project the initial state of data on the dual set of modes to update the

amplitudes: φm := 〈u′
f (·, t1),ϕ∗

m〉H ϕm.

Such procedure holds separately for the DMD modes of Mc and Mr . Finally,
the noise and the correction drift can be defined as

σ (x, t)d ˜B t = √
τ
∑

m∈Mr

exp(iωmt)φm(x) dβm(t), (12a)

σ (x, t)Γ t = uf
t (x)+

∑
m∈Mc

exp(iωmt)φm(x), (12b)

In particular, we assume that each pair of the complex Brownian motions are
conjugates (β2p = β2p−1) and their real and imaginary parts are independent. As

such, both noise σd ˜B t and correction drift σΓ t are real-valued fields. In addition,
the joint quadratic variation of such noise remains stationary:

a(x) = τ
∑

m∈Mr

φm(x)φ
†
m(x). (12c)

In a similar way as in the EOF-based method, we could also construct the Girsanov
drift by the projection of the RHS of (12b) onto the DMD modes. As we have
dropped the unstable DMD modes, one can show that the predictability and the
Novikov condition (presented in Sect. 2) of Γ hold in this case.

4 Numerical Experiments

In this section, we present some numerical results of the stochastic QG system (7).
The objective consists to improve the variability of large-scale models defined on
coarse grids. To that end, a high-resolution deterministic reference model (REF) is
first simulated and compared to several coarse-resolution models: the benchmark
deterministic model (DET), two stochastic models with an EOF-based noise (STO-
EOF) and a DMD-based noise (STO-DMD).
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4.1 Configurations

In this study, we consider a vertically discretized QG dynamical core proposed in
[8] and extended in the stochastic setting [9]. This model consists in n isopycnal
layers with constant thickness Hk and density ρk in each layer k. In this case, the
prognostic variables such as ψ in (7) are assumed to be layer-averaged quantities.
Homogeneous Dirichlet boundary conditions have been imposed for the term
f0∂zψ/N2 in (7b) at the ocean surface and bottom. Moreover, external forcing
and numerical dissipation are included in the evolution of PV (7a): the Ekman
pumping ∇⊥ · τ due to the wind stress τ over ocean surface boundary, a linear
drag −(f0ηek/2)∇2ψn at ocean bottom with a very thin thickness ηek, and a
biharmonic dissipation −A4∇4(∇2ψk) in each layer with uniform coefficient A4. In
particular, we consider here a finite box ocean driven by an idealized (stationary and
symmetric) wind stress τ = [−τ0 cos(2πy)/Ly, 0]T . A mixed horizontal boundary
condition is used for the k-th layer streamfunction: ψk|∂A = fk(t) and ∂2

nψk|∂A =
−(αbc/Δx)∂nψk|∂A (same for the 4-th order derivative). Here, A denotes the
2D area, fk is a time-dependent function constrained by mass conservation [7],
Δx stands for the horizontal resolution and αbc is a nondimensional coefficient
associated to the slip conditions [7]. A quiescent initial condition is used for
the REF, whereas a spin-up condition downsampled from REF (after 90-years
integration) is adopted for all the coarse-resolution models. The common parameters
for all the simulations are listed in Table 1, whereas resolution dependant parameters
are presented separately in Table 2. Both EOF and DMD modes are calibrated from
the REF data during 40 years (after the spin-up) with a 5-days sampling step. As for
the numerical discretization, a conservative flux form [9] together with a stochastic
Leapfrog scheme [5] is adopted for the evolution of PV (7a). The inversion of
the modified Helmholtz equation (7b) is carried out with a discrete sine transform
method [7].

Table 1 Common parameters for all the models. The buoyancy frequency N2 in (7b) is
approximated by g′k+0.5/(Hk +Hk+1)/2 on the interface between layers k and k + 1

Parameters Value Description

X × Y (3840 × 4800) km Domain size

Hk (350, 750, 2900)m Mean layer thickness

g′k+0.5 (0.025, 0.0125)m s−2 Reduced gravity

ηek 2 m Bottom Ekman layer thickness

τ0 2 × 10−5 m2 s−2 Wind stress magnitude

αbc 0.2 Mixed boundary condition coefficient

f0 9.375 × 10−5 s−1 Mean Coriolis parameter

β 1.754 × 10−11 (m s)−1 Coriolis parameter gradient

rm (39, 22) km Baroclinic Rossby radii
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Table 2 Values of grid varying parameters. The energy proportion captured by the truncated EOF
modes are given in the bracket. For DMD method, the first number stands for the size of Mc (11a)
whereas the latter is the one of Mr (11b)

Resolution (km) Timestep (s) Viscosity (m4 s−1) EOF modes DMD modes

5 600 2 × 109 – –

40 1200 5 × 1011 300 (83%) 14 + 46

80 1440 5 × 1012 300 (92%) 16 + 74

120 1800 1 × 1013 300 (97%) 16 + 110

Fig. 2 Snapshots of surface PV provided by different simulations after 60-years integration. The
black arrows are the interpolated geostrophic velocities

Snapshots of the surface PV provided by the different simulations are shown in
Fig. 2. The dynamics of REF (5 km) model is mainly characterized by a meandering
eastward jet with adjacent recirculations, which results from the most active
mesoscale eddies effect through baroclinic instability. However, this effect cannot be
properly resolved once the horizontal resolution exceeds the baroclinic deformation
radius maximum (39 km here). For instance, the DET (80 km) simulation generates
only a smooth symmetric field. On the other hand, both STO-EOF and STO-
DMD models are able to reproduce the eastward jet on the coarse mesh (80 km)
by including the non-linear effects carried both by the unresolved noise and the
correction drift. In particular, the STO-DMD model produces a stronger meridional
perturbation along the jet and is able to capture some of the large-wave structures
predicted by the REF model. The improvements brought by these random models
will be diagnosed and analyzed more precisely in the following.

4.2 Diagnostics

We first compare the long-term mean (over a 100-years interval) of the kinetic
energy (KE) spectrum for both coarse models at different resolutions (40, 80,
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Fig. 3 Temporal mean of vertically integrated KE spectra for the different models

120 km). As shown in Fig. 3, introducing only a dissipation mechanism like the
biharmonic viscosity in the DET coarse models leads to an excessive decrease of the
resolved KE compared to the REF model. Both STO-EOF and STO-DMD models at
different resolutions, recover a given amount of lost energy over all wavenumbers.
In particular, the STO-DMD models provide higher KE backscattering at large
scales and better spectrum slope in the inertial-range than the stationary unresolved
models. This seems to highlight the importance of the non-stationary characteristic
of the noise and Girsanov drift.

We then quantify the temporal variability (over the same 100-years interval)
predicted by the different coarse models. In this work, we adopt the following three
global metrics. The first one is the root-mean-square error (RMSE) between the
standard deviation of the streamfunction of a coarse model (denoted by σ [ψM]) and
the subsampled high-resolution one (denoted by σ [ψR]), ‖σ [ψM] − σ [ψR]‖L2(D),
where D = A × [−H, 0] and H stands for the total depth of the ocean basin.
The second criterion is the Gaussian relative entropy (GRE) [6] which assesses in a
single measure the mean and variance reconstruction:

GRE = 1

|D|
∫
D

1

2

((
ψM

t − ψR
t)2

σ 2[ψM] + σ 2[ψR]
σ 2[ψM] − 1 − log

( σ 2[ψR]
σ 2[ψM]

))
dx. (13)

It is clear that a coarse model of high variability will have low RMSE and GRE,
whereas a poor variability will lead to a large RMSE and GRE. The last metric
measures the eddy kinetic energy (EKE), (ρ0/2)‖u′‖2

(L2(D))2
, where u′ := (I −

Ft )[u] is the eddy velocity filtered out through a 2-years low-pass filter Ft at every
point in space. For comparison reason, we show here only the time average of this
metric (EKE) for the different models.

These three criteria are shown in Fig. 4 as bar plots. The DET models show very
high RMSE and GRE with a very low order of EKE, meaning that they produce poor
variability along time and failed to represent the eddies effect. Compared to the STO-
EOF, the STO-DMD models enable to increase significantly the internal variability
and the eddy energy. Moreover, these improvements are resolution-aware. As shown
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Fig. 4 Comparison of variability measures for different coarse models. The y-axis of the last two
figures are in log-scales

in Table 2, under a similar level of captured energy, the STO-DMD models require
much less modes than the STO-EOF, which reduces first the memory cost. Then,
in terms of computational cost at each step, the former consists in generating less
Gaussian variables than the latter, and reduces hence as well the dimension of the
matrix-vector multiplication for the spectral decomposition (3).

4.3 Discussion

In order to distinguish the contribution of the correlated Girsanov drift and the
uncorrelated noise, three additional benchmark runs (at resolution 80 km) have been
further performed and compared to the proposed STO-DMD model, they are (i)
STO-DMD without any correlation drift (i.e. σΓ t = 0); (ii) STO-DMD only with
σΓ t = uf

t ; (iii) a simplified deterministic version of the proposed STO-DMD
model, denoted as DET-DMD, which only encodes the (full) correlated drift σΓ t

into the DET model. We remark that for the two first runs the DMD modes used
for the correlated drift in the previous stochastic model are now included into the
noise component. As shown in Fig. 5, run (i) fails to reproduce the eastwards jet
on the coarse mesh, whereas the other runs succeed. However, run (ii) produces
similar results as the STO-EOF model (see Fig. 2) with a lower improvement of
variability, and run (iii) captures more waves than the others, yet leads to a reduction
of the jet magnitude compared to the proposed STO-DMD model. In particular, by
comparing the KE spectra of the different runs, Fig. 6 illustrates that the simplified
DET-DMD model allows to produce backscattering of KE from small to large
scales, and the proposed STO-DMD enhances this result with significantly higher
KE at large-scales. We observe a consistent conclusion for the EKE budget (see
Fig. 6). These comparisons demonstrate that the both correlated drift (σΓ t ) and the
uncorrelated noise (σd ˜B t ) contribute on the prediction of large-scale patterns and
on the improvement of the variability of the large-scale models.
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Fig. 5 Snapshots of surface PV provided by different simulations after 60-years integration. These
four figures (from left to right) correspond to the benchmark runs (i), (ii), (iii) and the proposed
STO-DMD model

Fig. 6 Comparison of KE spectra and layered EKE (only horizontally integrated) for different
coarse models
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5 Conclusions

The proposed stochastic parameterization has been successfully implemented in a
well established QG dynamical core. Different noises defined from high-resolution
data have been considered. An additional correction drift ensuing from a change
of probability measure has been introduced. This non-intuitive term seems quite
important in the reproduction of the eastward jet within the wind-driven double-
gyre circulation. Furthermore, the DMD procedure has been adopted to represent
the quasi-periodic dynamic of the unresolved flow. The resulting random model
enables us to improve the intrinsic variability of the large-scale resolved flow.

Acknowledgments The authors acknowledge the support of the ERC EU project 856408-
STUOD. The source codes can be found in https://github.com/matlong/qgcm_lu.
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Deep Learning for the Benes Filter

Alexander Lobbe

Abstract The filtering problem is concerned with the optimal estimation of a
hidden state given partial and noisy observations. Filtering is extensively studied
in the theoretical and applied mathematical literature. One of the central challenges
in filtering today is the numerical approximation of the optimal filter. Here, accurate
and fast methods are actively sought after, especially for such high-dimensional
settings as numerical weather prediction, for example. In this paper we present
a brief study of a new numerical method based on the mesh-free neural network
representation of the density of the solution of the filtering problem achieved
by deep learning. Based on the classical SPDE splitting method, our algorithm
includes a recursive normalisation procedure to recover the normalised conditional
distribution of the signal process. The present work uses the Benes model as a
benchmark. The Benes filter is a well-known continuous-time stochastic filtering
model in one dimension that has the advantage of being explicitly solvable.
Within the analytically tractable setting of the Benes filter, we discuss the role of
nonlinearity in the filtering model equations for the choice of the domain of the
neural network. Further, we present the first study of the neural network method
with an adaptive domain for the Benes model.

Keywords Nonlinear filtering · Deep learning · Stochastic PDE approximation

1 Introduction

Stochastic Filtering, i.e. the estimation of a signal process given only partial and
noisy observations, is a well-studied problem, both in the theoretical and applied
literature. It is relevant in many practical domains, for example in numerical weather
prediction. Therefore, there is a high demand for efficient numerical methods to
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approximate the optimal filter. Many such methods are known in the literature,
among them the SPDE splitting method can be used to solve the filtering problem
in low dimensions. The reason for the inefficiency of the splitting method in higher
dimensions stems from the fact that the underlying state space must be explicitly
discretised. This is problematic as the required number of discretisation points,
known as the mesh, grows exponentially with the dimension of the state space.
For this reason, the authors of [4] present a modified splitting method for the
filtering problem which does not rely on the explicit space discretisation. The
method developed in [4] is therefore called mesh-free and relies on a neural network
representation of the solution. This means that, instead of approximating the values
of the solution on a discrete mesh, we can optimize the parameters of a neural
network defined on the state-space itself.

In this paper we present a further study of the deep learning method developed
in [4] on the example of the Benes filter. The algorithm is derived from the classical
splitting method for SPDEs which consists of a deterministic PDE approximation
step and a normalisation step to incorporate the randomness of the SPDE. Our
algorithm replaces the PDE approximation step of the splitting method by a neural
network representation and learning algorithm. Combined with the Monte-Carlo
method for the normalisation step, this method becomes completely mesh-free.
Furthermore, an important property of the methodology in the filtering context
is the ability to iterate it over several time steps. This allows the algorithm to
be run online and to successively process observations arriving sequentially. In
order to be computationally feasible, the domain of the neural network needs to be
restricted. This restricted domain needs to cover the support of the density as well
as possible in order to yield a sensible solution. In [4] the neural network domain
is fixed a priori and does not move with the solution. This presents two problems.
First, it is unnecessarily large to cover the support over all timesteps. Second, the
solution may eventually move outside the computational domain, rendering the
approximation inadequate. It was therefore noted in [4] that a possible extension
of the approximation method would be given by an adaptive domain as the support
of the neural network. We present in this work the first results obtained using an
adaptive domain in the nonlinear and analytically tractable case of the Benes filter.

The paper is structured as follows. In Sect. 1.1 we briefly introduce the nonlinear,
continuous-time stochastic filtering framework. The setting is identical to the one
assumed in [4] and the reader may consult [1] for an in-depth treatment of stochastic
filtering. Thereafter, in Sect. 2.2, we formulate the Benes filtering model used as a
benchmark. Then, in Sect. 1.2 we introduce the filtering equation and the classical
SPDE splitting method. This is the method upon which the new algorithm in [4] was
built.

Next, in Sect. 2 we present an outline of the derivation of the new methodology.
For details, the reader is referred to the original article [4]. The first idea of
the algorithm, presented in Sect. 2.1 is to reformulate the solution of the PDE
for the density of the unnormalised filter as an expected value. This is done
using the Feynman–Kac formula, based on an auxiliary diffusion process derived
from the model equations. Moreover, in Sect. 2.3 we briefly specify the neural
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network parameters used in the method, as well as the employed loss-function. The
theoretical part of the paper is concluded with Sect. 2.4 where we show how to
normalise the obtained neural network from the prediction step using Monte-Carlo
approximation for linear sensor functions.

Section 3 contains the detailed parameter values and results of the numerical
studies that we performed. Specifically, we perform two experiments, the first one,
Sect. 3.1, is carried without any domain adaptation and highlights the limitations of
ad-hoc parameterization of the domain. It is a simulation of the Benes filter using
the deep learning method over a larger domain, as well as longer time interval than
in the paper [4]. In particular, the size of the domain was estimated using the exact
solution of the Benes model. This is necessary, as the nonlinearity of the Benes
model makes it difficult to know the evolution of the posterior a priori. Thus we
would be requiring a much larger domain, if chosen in an ad-hoc way. The second
experiment, in Sect. 3.2, reports the performance of the proposed framework with
domain adaptation. The adaptation was performed using precomputed estimates of
the support of the filter by employing the solution formula for the Benes filter.

Finally, we formulate the conclusions from our experiments in Sect. 4. In short,
the domain adapted method was more effective in resolving the bimodality in our
study than the non-domain adapted one. However, this came at the cost of a linear
trend in the error.

1.1 Nonlinear Stochastic Filtering Problem

The stochastic filtering framework consists of a pair of stochastic processes (X, Y )

on a probability space (Ω,F ,P) with a normal filtration (Ft )t≥0 modelled, P-a.s.,
as

Xt = X0 +
∫ t

0
f (Xs) ds +

∫ t

0
σ(Xs) dVs , (1)

and

Yt =
∫ t

0
h(Xs) ds +Wt . (2)

Here, the time parameter is t ∈ [0,∞), d, p ∈ N and f : R
d → R

d and
σ : R

d → R
d×p are the drift and diffusion coefficient functions of the signal.

The processes V and W are p– and m-dimensional independent, (Ft )t≥0-adapted
Brownian motions. We call X the signal process and Y the observation process. The
function h : Rd → R

m is often called the sensor function, or link function, because
it models the possibly nonlinear connection of the signal and observation processes.
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Further, consider the observation filtration (Yt )t≥0 given as

Yt = σ(Ys, s ∈ [0, t]) ∨N and Y = σ

⎛
⎝ ⋃

t∈[0,∞)

Yt

⎞
⎠ ,

where N are the P-nullsets of F . The aim of nonlinear filtering is to compute the
probability measure valued (Yt )t≥0-adapted stochastic process π that is defined by
the requirement that for all bounded measurable test functions ϕ : Rd → R and
t ∈ [0,∞) we have P-a.s. that

πtϕ = E [ϕ(Xt ) |Yt ] .

We call π the filter.
Furthermore, let the process Z be defined such that for all t ∈ [0,∞),

Zt = exp{−
∫ t

0
h(Xs) dWs − 1

2

∫ t

0
h(Xs)

2 ds}.

Then, assumimg that

E

[∫ t

0
h(Xs)

2 ds

]
< ∞ and E

[∫ t

0
Zsh(Xs)

2 ds

]
< ∞,

we have that Z is an (Ft )t≥0-martingale and by the change of measure (for details,

see [1]) given by dP̃t

dP

∣∣∣
Ft

= Zt , t ≥ 0, the processes X and Y are independent

under P̃ and Y is a P̃-Brownian motion. Here, P̃ is the consistent measure defined on⋃
t∈[0,∞) Ft . Finally, under P̃, we can define the measure valued stochastic process

ρ by the requirement that for all bounded measurable functions ϕ : Rd → R and
t ∈ [0,∞) we have P-a.s. that

ρtϕ = E

[
ϕ(Xt ) exp{

∫ t

0
h(Xs) dYs − 1

2

∫ t

0
h(Xs)

2 ds}
∣∣∣∣Yt

]
. (3)

The Kallianpur–Striebel formula (see [1]) justifies the terminology to call ρ the
unnormalised filter.

1.2 Filtering Equation and General Splitting Method

Note that under the conditions given in [4], X admits the infinitesimal generator
A : D(A) → B(Rd) given, for all ϕ ∈ D(A), by
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Aϕ = 〈f,∇ϕ〉 + Tr(a Hessϕ), (4)

where D(A) denotes the domain of the differential operator A and a = 1
2σσ

′. The
symbol B(Rd) denotes the set of real-valued, bounded, Borel-measurable functions
defined on R

d .
It is well-known (see, e.g., [1]), that the unnormalised filter ρ satisfies the filtering

equation, i.e. for all t ≥ 0, we have P̃-a.s. that

ρt (ϕ) = π0(ϕ)+
∫ t

0
ρs(Aϕ) ds +

∫ t

0
ρs(ϕh

′) dYs. (5)

The classical splitting method for the filtering equation is given in [3] and seeks
to approximate the following SPDE for the density pt of the unnormalised filter
given, for all t ≥ 0, x ∈ R

d , and P-a.s. as

pt (x) = p0(x)+
∫ t

0
A∗ps(x) ds +

∫ t

0
h′(x)ps(x) dYs

and relies on the splitting-up algorithm described in [9] and [10]. Here A∗ is the
formal adjoint of the infinitesimal generator A of the signal process X.

We summarise the splitting-up method below in Note 1.

Note 1 The splitting method for the filtering problem is defined by iterating the
steps below with initial density p0(·) = p0(·):
1. (Prediction) Compute an approximation p̃n of the solution to

∂qn

∂t
(t, z) = A∗qn(t, z), (t, z) ∈ (tn−1, tn] × R

d ,

qn(0, z) = pn−1(z), z ∈ R
d ,

(6)

at time tn and
2. (Normalisation) Compute the normalisation constant with zn = (Ytn −

Ytn−1)/(tn − tn−1) and the function

R
d . z �→ ξn(z) = exp

(
− tn − tn−1

2
||zn − h(z)||2

)
,

so that we can set,

pn(z) = 1

Cn

ξn(z)p̃
n(z); z ∈ R

d ,

where Cn = ∫
Rd ξn(z)p̃

n(z) dz.
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The deep learning method studied below replaces the predictor step of the splitting
method above by a deep neural network approximation algorithm to avoid an
explicit space discretisation. This is achieved by representing each p̃n(z) by a
feed-forward neural network and approximating the initial value problem (6) based
on its stochastic representation using a sampling procedure. The normalisation
step may then be computed either using quadrature, or, to preserve the mesh-free
characteristic, by Monte-Carlo approximation.

2 Derivation and Outline of the Deep Learning Algorithm

Here, we present a concise version of the derivation laid out in detail in [4].

2.1 Feynman–Kac Representation

Assuming sufficient differentiability of the coefficient functions, the operator A∗
may be expanded such that for all compactly supported smooth test functions ϕ ∈
C∞
c (Rd ,R) we have

A∗ϕ = Tr(a Hessϕ)+ 〈2−→div(a)− f, grad ϕ〉 + div(
−→
div(a)− f )ϕ. (7)

Subtracting the zero-order term from (7), we obtain an operator that generates the
auxiliary diffusion process, denoted X̂, which is instrumental in the deep learning
method.

Definition 1 Define the partial differential operator Â : C∞
c (Rd ,R) → Cb(R

d ,R),
with image in the set of bounded continuous function on R

d , such that for all ϕ ∈
C∞
c (Rd ,R),

Âϕ = Tr(a Hessϕ)+ 〈2−→div(a)− f, grad ϕ〉

and the function r : Rd → R such that for all x ∈ R
d ,

r(x) = div(
−→
div(a)− f )(x).

Lemma 1 For all x ∈ R
d the operator Â defined in Definition 1 is the infinitesimal

generator of the Itô diffusion X̂ : [0,∞) × Ω → R
d given, for all t ≥ 0 and

P-a.s. by

X̂t = x +
∫ t

0
b(X̂s)ds +

∫ t

0
σ(X̂s)dŴs,
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where Ŵ : [0,∞)×Ω → R
d is a d-dimensional Brownian motion and b : Rd →

R
d is the function

b = 2
−→
div(a)− f.

From the well-known Feynman–Kac formula (see Karatzas and Shreve [6,
Chapter 5, Theorem 7.6]) we can deduce the Corollary 1 below for the initial value
problem.

Corollary 1 Let d ∈ N, T > 0, let k : Rd → [0,∞) be a continuous function,
let Â be the operator defined in Definition 1, and let ψ : R

d → R be an at
most polynomially growing function. Suppose that u ∈ C

1,2
b ((0, T ] × R

d ,R) is
continuously differentiable with bounded derivative in time and twice continuously
differentiable with bounded derivatives in space, and satisfies the Cauchy problem

∂u

∂t
(t, x)+ k(x)u(t, x) = Âu(t, x), (t, x) ∈ (0, T ] × R

d ,

u(0, x) = ψ(x), x ∈ R
d .

(8)

Then, for all (t, x) ∈ (0, T ] × R
d , we have that

u(t, x) = E

[
ψ(X̂t ) exp

(
−
∫ t

0
k(X̂τ ) dτ

)∣∣∣∣ X̂0 = x

]
,

where X̂ is the diffusion generated by Â.

Recall that our aim is to approximate the Fokker–Planck equation (6). Assume
from now on the discrete times {t0 = 0, t1, t2 . . . }, indexed by n. Written in the form
as in Corollary 1, for any timestep n = 1, 2, . . . , (6) reads as

∂qn

∂t
(t, z) = Âqn(t, z)+ r(z)qn(t, z), (t, z) ∈ (tn−1, tn] × R

d ,

qn(0, z) = pn−1(z), z ∈ R
d .

Thus, with k = −r , and assuming that −r is non-negative in (8), we obtain by
Corollary 1 the representation, for all n ∈ {1, . . . , N}, t ∈ (tn−1, tn], z ∈ R

d ,

qn(t, z) = E

[
pn−1(X̂t ) exp

(∫ t

tn−1

r(X̂τ ) dτ

)∣∣∣∣ X̂tn−1 = z

]
. (9)

Note that [4, Proposition 2.4] shows that we have a feasible minimisation
problem to approximate by the learning algorithm (see also [2, Proposition 2.7]).
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2.2 The Benes Filtering Model

The Benes filter is a one-dimensional nonlinear model and is used as a benchmark
in the numerical studies below. As we show below, it is one of the rare cases
of explicitly solvable continuous-time stochastic filtering models. Here, we are
considering a special case of the more general class of Benes filters, presented, for
example, in [1, Chapter 6.1].

The signal is given by the coefficient functions

f (x) = ασ tanh(β + αx/σ) and σ(x) ≡ σ ∈ R,

where α, β ∈ R and the observation is given by the affine-linear sensor function

h(x) = h1x + h2,

with h1, h2 ∈ R. The density pB of the filter solving the Benes model is then given
by two weighted Gaussians (see [1, Chapter 6.1]) as

pB(z) = w+Φ(μ+
t , νt )(z)+ w−Φ(μ−

t , νt )(z), (10)

where μ±
t = M±

t /(2vt ), νt = 1/(2vt ), and

w± = exp((M±
t )2/(4vt ))

exp((M+
t )2/(4vt )) exp((M−

t )2/(4vt ))

with

M±
t = ±α

σ
+ h1

∫ t

0

sinh(sζσ )

sinh(tζσ )
dYs + h2 + h1x0

σ sinh(tζσ )
− h2

σ
coth(tζσ ),

vt = h1 coth(tζσ )/2σ , and ζ =
√
α2/σ 2 + h2

1.
Further, for the Benes model, the auxiliary diffusion is given as

X̂t = X̂0 −
∫ t

0
ασ tanh(β + αx/σ) ds +

∫ t

0
σ dŴs,

and the coefficient

r(x) = − div f (x) = −α2sech2(β + αx/σ).

Therefore the representation of the solution to the Fokker–Planck equation (6) in the
Benes case reads

qn(t, z) = E

[
pn−1(X̂t ) exp

(
−
∫ t

tn−1

α2sech2(β + αX̂τ /σ ) dτ

)∣∣∣∣ X̂tn−1 = z

]
.
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2.3 Neural Network Model for the Prediction Step

To solve the Fokker–Planck equation over a rectangular domain Ωd = [α1, β1] ×
· · ·×[αd, βd ], we employ the sampling based deep learning method from [2]. Using
the representation (9), the solution of the Fokker–Planck equation is reformulated
into an optimisation problem over function space given in [4, Proposition 2.4].
This in turn yields the loss functions for the learning algorithm. Writing X̂ξ for the
auxiliary diffusion with Unif(Ωd)-random initial value ξ , the optimisation problem
is approximated by the optimisation

inf
θ∈R

∑L
i=2 li−1li+li

E

[∣∣∣∣ψ(X̂ξ
T ) exp

(
−
∫ T

0
k(X̂ξ

τ ) dτ

)
−NNθ (ξ)

∣∣∣∣
2]

where the solution of the PDE is represented by a neural network NNθ and the
infinite-dimensional function space has been parametrised by θ . Here, L denotes
the depth of the neural net, and the parameters li are the respective layer widths.
Further details can be found in [4]. A comprehensive textbook on deep learning
is [5]. We apply a modified gradient descent method, called ADAM [7], to determine
the parameters in the model by minimising the loss function

L(θ; {ξ i, {X̂ξ,i
τj
}Jj=0}Nb

i=1) =

1

Nb

Nb∑
i=1

∣∣∣∣∣∣ψ(X̂ξ,i
T ) exp(−

J−1∑
j=0

k(X̂ξ,i
τj
)(τj+1 − τj ))−NNθ (ξ

i)

∣∣∣∣∣∣
2

,

where Nb is the batch size and {ξ i, {X̂ξ,i
τj }Jj=0}Nb

i=1 is a training batch of independent

identically distributed realisations ξ i of ξ ∼ U(Ωd) and {X̂ξ,i
τj }Jj=0 the approximate

i.i.d. realisations of sample paths of the auxiliary diffusion started at ξ i over the
time-grid τ0 = 0 < τ1 < · · · < τJ−1 < τJ = T . For the approximation of the
sample paths of the diffusion we use the Euler–Maruyama method [8]. Additionally,
we augment the loss L by an additional term to encourage the positivity of the neural
network. Thus, in practice, we use the loss

L̃(θ; {ξ i, {X̂i
τj
}Jj=0}Nb

i=1) = L(θ; {ξ i, {X̂i
τj
}Jj=0}Nb

i=1)+ λ

Nb∑
i=1

max{0,−NNθ (ξ
i)}

with the hyperparameter λ to be chosen.
Thus, in the notation of Sect. 1.2 we replace the Fokker–Planck solution by a

neural network model, i.e. we postulate a neural network model

p̃n(z) = NN (z),
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with support on Ωd . Therefore we require the a priori chosen domain to capture
most of the mass of the probability distribution it is approximating.

2.4 Monte-Carlo Normalisation Step

We then realise the normalisation step via Monte-Carlo sampling over the bounded
rectangular domain Ωd to approximate the integral

∫
Rd

ξn(z)NN (z) dz =
∫
Ωd

exp

(
− tn − tn−1

2
||zn − h(z)||2

)
NN (z) dz, (11)

where, as defined earlier, zn = 1
tn−tn−1

(Ytn − Ytn−1). Note that, since Ωd is the
support of the neural network NN , the right-hand side above is indeed identical to
the integral over the whole space.

The sensor function in the Benes model is given by h(x) = h1x + h2. Then, the
likelihood function becomes

ξn(z) =
√

2π√
(tn − tn−1)h

2
1

Npdf

(
zn − h2

h1
,

1

(tn − tn−1)h
2
1

)
(z),

where Npdf(μ, σ
2) denotes the probability density function of a normal distribution

with mean μ and variance σ 2. Therefore, we can write the integral (11) as

√
2π√

(tn − tn−1)h
2
1

EZ[NN (Z)]; Z ∼ N
(
zn − h2

h1
,

1

(tn − tn−1)h
2
1

)
.

This is an implementable method to compute the normalisation constant Cn. Thus,
we can express the approximate posterior density as

pn(z) = 1

Cn

ξn(z)p̃
n(z).

Therefore, the methodology is fully recursive and can be applied sequentially.

Remark 1 In low-dimensions, the usage of the Monte-Carlo method to perform the
normalisation is optional, since efficient quadrature methods are an alternative. We
chose the sampling based method to preserve the grid-free nature of the algorithm.
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3 Numerical Results for the Benes Filter

The neural network architecture for all our experiments below is a feed-forward
fully connected neural network with a one-dimensional input layer, two hidden
layers with a layer width of 51 neurons each and batch-normalisation, and an
output layer of dimension one (a detailed illustration can be found in [4]). For
the optimisation algorithm we chose the ADAM optimiser and performed the
training over 6002 epochs with a batch size of 600 samples. The initial signal
and observation values are x0 = y0 = 0 and the coefficients of the Benes model
were chosen as α = 3, β = 0, σ = 0.5, h1 = 3, h2 = 0, and timestep
Δt = 0.1 over N = 40 steps. The initial condition is a Gaussian density with
mean 0 and standard deviation 0.001. The posterior was calculated over the domain
[−9, 2.5]. The domain boundaries were pre-estimated using a simulation of the
exact Benes filter with fixed random seed. In the case of the domain adaptation
we used the precomputed evolutions from the true solution to estimate the support
of the posterior and set a fixed domain adaptation schedule. The spatial resolution is
1000 uniformly spaced values in the domain of definition of the neural network. At
each time step, the training of the network consumes 6002·600 = 3,601,200 Monte-
Carlo samples. Additionally we employ a piecewise constant learning rate schedule
lr(epoch) = 10−(2+epoch mod 2001) and the normalisation constant is computed
using 107 samples each timestep. The regularising parameter λ = 1.

3.1 No Domain Adaptation

Figure 1 shows the plots for the Benes filter without domain adaptation. In Fig. 1a
we observe the drift of the posterior toward the left edge of the domain. The initial
bimodality, reflecting the uncertainty due to few observed values, quickly resolves
and the approximate posterior tracks the signal within the domain. In Fig. 1b the
bimodality is mostly visible in the Monte-Carlo prior and smoothed out by the
neural network. Figure 1c and d show snapshots of the progression of the filter.
The absolute error in means with respect to the Benes reference solution is plotted
in Fig. 2a and shows that as the posterior reaches the left domain boundary, the
error increases. This is reflected as well in the drop of probability mass, Fig. 2c,
and Monte-Carlo acceptance rate, Fig. 2d at later times. It is not clear from Fig. 2a
if there is a trend in the error. Further experiments need to be performed to check
this hypothesis. Figure 2b shows that the neural net training consistently succeeds
as measured by the L2 distance between the Monte-Carlo reference prior and the
neural net prior.
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Fig. 1 Results of the combined splitting-up/machine-learning approximation applied iteratively
to the Benes filtering problem (no domain adaptation). (a) The full evolution of the estimated
posterior distribution produced by our method, plotted at all intermediate timesteps. (b–d)
Snapshots of the approximation at times, t = 0.6, t = 1.8, and t = 3.9. The black dotted line
in each graph shows the estimated posterior, the yellow line the prior estimate represented by the
neural network, and the light-blue shaded line shows the Monte-Carlo reference solution for the
prior
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Fig. 2 Error and diagnostics for the Benes filter (no domain adaptation). (a) Absolute error in
means between the approximated distribution and the exact solution. (b) L2 error of the neural
network during training with respect to the Monte-Carlo reference solution. (c) Probability mass
of the neural network prior. (d) Monte-Carlo acceptance rate

3.2 With Domain Adaptation

Figure 3 shows the plots for the Benes filter with domain adaptation. In Fig. 3a
we observe again the drift of the posterior toward the left edge of the domain. and
the initial bimodality resolves. The approximate posterior tracks the signal within
the domain. In Fig. 3b the bimodality is visible both in the prior an the posterior
network. This shows that the domain adaptation helps resolve the bimodality in the
nonlinear case by increasing the spatial resolution while keeping the computational
cost equal. Figure 3c and d again show snapshots of the progression of the filter.
The absolute error in means with respect to the Benes reference solution is plotted
in Fig. 4a and shows a clear linear trend. This is an interesting phenomenon, likely
due to the reduced domain size and subsequent error accumulation. The probability
mass, Fig. 4c, and Monte-Carlo acceptance rate, Fig. 4d are stably fluctuating.
Figure 4b shows here again that the neural net training consistently succeeds.
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Fig. 3 Results of the combined splitting-up/machine-learning approximation applied iteratively
to the Benes filtering problem (with domain adaptation). (a) The full evolution of the estimated
posterior distribution produced by our method, plotted at all intermediate timesteps. (b–d)
Snapshots of the approximation at times, t = 0.6, t = 1.8, and t = 3.9. The black dotted line
in each graph shows the estimated posterior, the yellow line the prior estimate represented by the
neural network, and the light-blue shaded line shows the Monte-Carlo reference solution for the
prior
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Fig. 4 Error and diagnostics for the Benes filter (with domain adaptation). (a) Absolute error in
means between the approximated distribution and the exact solution. (b) L2 error of the neural
network during training with respect to the Monte-Carlo reference solution. (c) Probability mass
of the neural network prior. (d) Monte-Carlo acceptance rate

4 Conclusion and Outlook

We have studied the domain adaptation in our method from [4] on the example of
the Benes filter. We observed that the domain adapted method was more effective in
resolving the bimodality than the non-domain adapted one. However, this came at
the cost of a linear trend in the error. A possible direction for future work would thus
be to investigate the optimal domain size more closely, in order to mitigate the error
trend, and make full use of the increased resolution from the domain adaptation.
This is subject of future research in connection with more general domain adaptation
methods than the one employed here, which is specific to the Benes filter.

As already noted in the previous work [4], the possibility for transfer learning in
our method should be explored.
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A long-term goal in the development of neural network based numerical methods
must of course be the rigorous error analysis, which remains a challenging task.
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End-to-End Kalman Filter in a High
Dimensional Linear Embedding of the
Observations

Said Ouala, Pierre Tandeo, Bertrand Chapron, Fabrice Collard,
and Ronan Fablet

Abstract Data assimilation techniques are the state-of-the-art approaches in the
reconstruction of a spatio-temporal geophysical state such as the atmosphere or the
ocean. These methods rely on a numerical model that fills the spatial and temporal
gaps in the observational network. Unfortunately, limitations regarding the uncer-
tainty of the state estimate may arise when considering the restriction of the data
assimilation problems to a small subset of observations, as encountered for instance
in ocean surface reconstruction. These limitations motivated the exploration of
reconstruction techniques that do not rely on numerical models. In this context,
the increasing availability of geophysical observations and model simulations
motivates the exploitation of machine learning tools to tackle the reconstruction
of ocean surface variables. In this work, we formulate sea surface spatio-temporal
reconstruction problems as state space Bayesian smoothing problems with unknown
augmented linear dynamics. The solution of the smoothing problem, given by the
Kalman smoother, is written in a differentiable framework which allows, given some
training data, to optimize the parameters of the state space model.

Keywords Kalman filter · Machine learning · Spatio-temporal interpolation

1 Introduction

Data assimilation in a broad sense can be considered as the inference of a hidden
state, based on several sources of information. When considering data assimilation
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in the context of oceanography, these schemes exploit, in addition to some given
observations, a dynamical model to perform simulations from given ocean states [1].
Unfortunately, realistic analytic parameterizations of the dynamical model, in the
context of sea surface variables reconstruction, lead to computationally demanding
representations [2]. Furthermore, when associated to a small subset of observations
(as encountered for instance when assimilating sea surface variables with a global
ocean model), these realistic models may result in modeling and inversion uncer-
tainties. On the other hand, the analytic derivation of computationally-efficient,
low-order models involves theoretical assumptions, which may not be fulfilled
by real observations. These limitations motivated the exploration of interpolation
techniques that do not require an explicit dynamical representation. Among other
methods, Optimal Interpolation (OI) became the state-of-the-art framework [3, 4].
This technique does not need an explicit formulation of the dynamical model and
rather relies on the modelization of the covariance of the spatio-temporal fields.
Despite the success of OI, this technique tends to smooth the fine scale structures
which motivates the development of new spatio-temporal interpolation schemes,
mainly based on machine learning representations [5–10].

From the perspective of the machine learning community, state-of-the-art recon-
struction techniques are usually formulated as inverse problems, where one searches
to maximize the reconstruction performance of an inversion model, given the
observed field as an input. Several methods were developed for this purpose
in the fields of signal denoising [11, 12] and image inpainting [13] where the
inversion model typically relies on a deep learning architecture. This end-to-end
learning strategy, differs from classical inversion techniques used in geosciences,
where the state-space representations (specifically the dynamical models) and the
inversion schemes are a priori unrelated. The recent exploration of machine learning
representations in the context of sea surface fields reconstruction was inspired by the
latter methodological viewpoint, where a data-driven dynamical model is optimized
based on the minimization of a forecasting cost. This data-driven prior is then
plugged into a data assimilation framework to perform reconstruction based on
classical (Kalman based, variational formulations) inversion schemes [7, 14, 8].

Recently, several works investigated end-to-end deep learning architectures in the
resolution of reconstruction issues in geosciences [15–17, 10]. However, this tools,
although relevant, were naturally explored in the context of image denoising and
inpainting applications due to the lack of methodological formulation. When con-
sidering geosciences applications, a huge effort was carried within the geosciences
community to derive reconstruction algorithms that, beyond being efficient with
respect to a given metric, are robust and rely on a solid methodological formulation.
From this point of view, we believe that end-to-end deep learning techniques should
build on such methodological knowledge to propose new reconstruction solutions
that can achieve both a decent performance score, and remain theoretically relevant
which helps the understanding and generalization of these algorithms. From this
point of view, we exploit ideas from machine learning and Bayesian filtering to
propose a framework that is able to provide a relevant reconstruction of a spatio-
temporal state. Specifically, we formulate a new state space model for ocean surface
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observations based on an augmented linear dynamical system. Assuming that the
model and observation errors are Gaussian, the solution of the filtering/smoothing
problem on this new state space model is given by the Kalman filter/smoother.
Inspired by deep learning architectures, the Kalman recursion is written in a
differentiable framework, which allows for the derivation of the parameters of the
new state-space model based on a reconstruction cost of the observations.

2 Method

Motivation Let us assume the following state-space model

ẋt = f (xt )+ ηt (1)

yt = Ht (xt )+ εt (2)

where t ∈ [0,+∞] is time. The variables xt ∈ R
s and yt ∈ R

n represent
the state variables and the observations respectively. f and Ht are the dynamical
and observation operators. ηt and εt are random processes accounting for the
uncertainties. They are defined as centered Gaussian processes with covariances
Qt and Rt respectively.

In the context of geosciences, and when considering the resolution of filtering and
smoothing problems using data assimilation, the dynamical and observation models
f and H, the model and observation error covariances Qt and Rt as well as the true
state xt of Eqs. (1) and (2) are either unavailable or too complicated to handle. In
this context, we show in this work how to exploit observations yt sampled from time
t1 to time tf to learn a Bayesian scheme that allows for reconstruction applications
given new observations (i.e., at time t > tf ).

Definition of a New State Space Model In this work, we consider an embedding
of the observations as proposed in [18]. Specifically, we project our observations
(or a reduced order version of our observations) into a higher dimensional space
where the dynamics of the observations are assumed to be linear. Formally, in order
to derive our new state-space model, we first start by writing an augmented state
ut such as ut

T = [(Myt )T , zTt ] with zt ∈ R
l is the unobserved component of the

augmented state ut and M ∈ R
r×n with r ≤ n a linear projection operator (that

can be used for instance in the context of reduced order modeling). The matrix M is
assumed to have r orthogonal lines so that the matrix M−1 = MT verifies MM−1 =
I. We used in this work an Empirical Orthogonal Functions (EOF) projection. This
constraints M to be a matrix of orthogonal eigenvectors of the covariance matrix of
the centered data. The augmented state ut ∈ R

dE , with dE = l + r , evolves in time
according to the following state-space model:

u̇t = Aσut + ηt (3)
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yt = M−1Gut + εt (4)

where the dynamical operator Aσ is a dE × dE matrix with coefficients σ . G
is a projection matrix that satisfies Myt = Gut . The eigenvalues of the matrix
Aσ encode the decaying and oscillating modes of the dynamics that are learned
from data. Furthermore, the matrix Aσ can be constrained to be skew-symmetric
(simply by imposing Aσ = 0.5(Bσ − BT

σ ) with Bσ a trainable matrix) so the
solution of (3) will be written as a weighted sum of dE/2 trainable oscillations,
where the corresponding frequencies been encoded in the imaginary parts of the
eigenvalues of Aσ . This formulation is highly suitable for Hamiltonian (conserva-
tive) dynamical systems since the energy of the system is conserved and allows
guaranteeing long term boundedness of the model. Furthermore, this formulation
differs fundamentally from classical Auto Regressive (AR) models written in the
space of the observations. Indeed, simple AR models only have a number of r < dE
eigenvalues, which limits their expressivity.

It is worth noting that this formulation closely relates to the Koopman operator
[19] where the augmented state ut can be seen as a finite dimensional approximation
of the infinite dimensional Hilbert space of measurements of the hidden state xt .
This model takes advantage of a linear formulation of the dynamics in a space
of observables, where the resulting model is perfectly linear for a category of
dynamical regimes (typically periodic and quasi-periodic ones), and can provide
a decent short-term approximation of chaotic regimes. It can also be seen as a
generalization of the Dynamic Mode Decomposition (DMD) method, in which
ut = Myt .

Model and Observations Error Covariances The model and observation errors
ηt and εt are assumed to follow Gaussian distributions with zero mean and
covariance matrices Qλ,t and Rφ,t , respectively. These covariance models can be
parameterized as neural networks with parameter vectors λ and φ.

Smoothing Scheme A Kalman smoother, based on the above state-space model,
is written in a differentiable framework. The idea is to derive an analytical solution
of the posterior distribution p(ut |yt1:tf ), based on the Kalman recursion. Formally,
given a regular time discretization t ∈ [t1, . . . , tN ] where N is a positive integer and
given the initial moments ua

t1
and Pa

t1
, the mean us and covariance Ps of the posterior

distribution p(ut |yt1:tf ) can be computed as follows:

uf

t+1 = Fua
t (5)

Pf

t+1 = FPa
t FT + Qλ,t (6)

Kt+1 = Pf

t+1HT [HPf

t+1(H)T + Rφ,t ]−1 (7)

ua
t+1 = uf

t+1 + Kt+1[yt+1 − Huf

t+1] (8)
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Pa
t+1 = Pf

t+1 − Kt+1HPf

t+1 (9)

Ks
t+1 = Pa

t+1FT (Pf

t+2)
−1 (10)

us
t+1 = ua

t+1 + Ks
t+1[us

t+1 − uf

t+1] (11)

Ps
t+1 = Pa

t+1 − Ks
t+1(P

f

t+1 − Ps
t+2)(K

s
t+1)

T (12)

where F = edtAσ with dt the prediction time step and H = M−1G. The smoothing
(Eqs. (10), (11) and (12)) is carried backward in time with Ps

tf
= Pa

tf
and us

tf
= ua

tf
.

Learning Scheme The tuning of the trainable parameters vector θ = [σ, λ, φ]T
is carried using the following loss function: θ̂ = arg min

θ
{γ1L1 + γ2L2} where

L1 =∑tN
t=t0

‖yt − Hus
t ‖2 and L2 = 1

2 log(|HPf

t+1HT + Rφ,t |)
+ 1

2

∑t=tN
t=1 ||yt − Huf

t ||2HPf
t+1HT+Rφ,t

and γ1 and γ2 are weighting parameters.

The first term L1 is simply the quadratic reconstruction error of the observation.
The minimization of this error helps to recover an initial guess of the trainable
parameters. The second term, L2 is the negative log likelihood of the observations.
This likelihood is derived from the likelihood of the innovation, i.e. p(y1:T ) =∏t=T

t=1 p(yt|yt−1) [20].

3 Numerical Experiments

3.1 Preliminary Analysis on SST Anomaly Data

As an illustration of the proposed framework, we consider scalar measurements
of the anomaly of the Sea Surface Temperature (SST) in the Mediterranean Sea
(8.6◦N and 43.8◦E). The data are computed based on of the annual 99th percentile
of Sea Surface Temperature (SST) from model data [21]. The time series consists
of daily measurements of the SST anomaly from 1987 to 2019. The training data is
composed of a sparse sampling of the original time series, as highlighted in Fig. 1a.
The proposed framework is tested with the following configuration: The augmented
state space model is built with M = I1, and z ∈ R

5. The model error covariance is
a constant matrix of size, dE × dE and the observation error covariance is a scalar
parameter that corresponds to the variance of the SST anomaly measurement error.
Finally, the training is carried with γ1 = 0 and γ2 = 1.

Figure 1b highlights the reconstruction performance of the smoothing Probability
Density Function (PDF) with respect to the true (unobserved) state. Interestingly,
and despite the fact that the observations used to train the parameters of the Kalman
filtering scheme were extremely sparse, the proposed framework is able to catch
the correct underlying frequencies. Furthermore, the coverage probability of the
PDF highlights the effectiveness of the estimated model and observations error
covariances.
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Fig. 1 Performance of the
proposed framework in the
reconstruction of the
smoothing PDF of SST
anomaly data. (a) Sparse
training data (b)
Reconstructed smoothing
PDF on the test set (We only
visualize the standard
deviation of the SST anomaly
measurements)

3.2 Shallow Water Equation (SWE) Case-Study

Dataset Description We consider the SWE without wind stress and bottom
friction. The momentum equations are taken to be linear, and the continuity equation
is solved in its nonlinear form. The direct numerical simulation is carried using a
finite difference method. The size of the domain is set to 1000 km × 1000 km with
a corresponding regular discretization of 80 × 80. The temporal step size was set
to satisfy the Courant–Friedrichs–Lewy condition (h = 40.41 s). The data were
subsampled to h = 40.41 × 10 and 500 time-steps were used as training data. The
models were validated on a series of length 100. As observations, we randomly
sample 1% of the pixels with a temporal coverage given in Fig. 2.

Parametrization of the Data-Driven Models The application of the above frame-
work in the spatio-temporal reconstruction of sea surface fields should be considered
with care to account for the underlying dimensionality. In this context, and following
several related works [14, 9], a patch based representations is considered in order
to reduce the computational complexity of the model. Specifically, this patch
based representations allows a block diagonal modelization of the covariance



End-to-End Kalman Filter 217

Fig. 2 Daily performance time series: we report the reconstruction performance of the sea surface
elevation and its gradient in (a) and (b) respectively

matrices, which significantly reduces the computational and memory complexity
of the model. This patch-based representation is fully embedded in the considered
architecture to make explicit both the extraction of the patches from a 2D field and
the reconstruction of a 2D field from the collection of patches. The latter involves a
reconstruction operator Fr which is learned from data.

This patch-level representation is carried with a fixed shape of 35 × 35 pixels
and a 10 pixels overlap between neighboring patches, resulting in a total of 16
overlapping patches. For each patch Pi , i = 1, . . . , 16 we learn an EOF basis
MPi

from the training data. We keep the first 20 EOF components, which amount
on average to 95% of the total variance. This patch-based decomposition is shared
among all the tested models. The end-to-end Kalman filter architecture (E2EKF) is
applied on a patch level with an augmented linear model operating on an embedding
of dimension dE = 60. The reconstructed patches are combined through the
reconstruction model Fr . This model is implemented as a residual, two blocks,
convolutional neural network. The first block of the network contains four layers
with 6 filters of size k× k (with k ranging from 3 to 17). The second block involves
5 layers, the first four containing 24 filters and a similar kernel size distribution as
the ones in the first block, the last layer is a linear convolution with a single filter.

The proposed technique is compared in this work to the following schemes:

– Data-driven plug-and-play Kalman filter (KF): In order to show the relevance
of the proposed end-to-end architecture, its plug-and-play counterpart is also
tested. This model exploits the same patch based augmented linear formulation as
the end-to-end one, however, the parameters of the dynamical model are trained
based on a forecasting criterion and plugged into a Kalman filtering scheme.
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Table 1 Surface elevation (η) interpolation experiment: reconstruction correlation coefficient and
root mean squared error (RMSE) over the elevation time series and their gradient. Bold values
denote smallest RMSE and highest percentage correlation

Entire map Missing data areas

RMSE Correlation RMSE Correlation

Model η(m) ∇η(m/◦) η ∇η η(m) ∇η(m/◦) η ∇η

Proposed, E2EKF 0.046 0.009 73.10% 41.89% 0.047 0.010 73.80% 41.90%

AnDA 0.058 0.011 52.74% 35.91% 0.060 0.011 52.82% 21.25%

KF 0.060 0.010 64.57% 21.21% 0.059 0.010 64.68% 36.06%

– Analog data assimilation (AnDA): We apply the analog data assimilation frame-
work [14, 7] with a locally linear dynamical kernel and an ensemble Kalman
filter scheme. Please refer to [14, 7] for a detailed description of this data-driven
approach, which relies on nearest-neighbor regression techniques.

Following [14], an EOF based post-processing step is applied to all the recon-
structions. Furthermore, in this experiment, we only report the reconstruction
performance of the mean component as a relevant benchmark of the uncertainty
of the above data-driven models would be out of the scope of this paper. Thus,
the model and observation error covariances are assumed to be known matrices
with appropriate dimensions, and the training of the proposed model is carried with
γ1 = 1 and γ2 = 0.

Reconstructing Performance of the Proposed Data-Driven Models A quanti-
tative analysis of the benchmark is given in Table 1 based on (i) a mean RMSE
criterion and (ii) a mean correlation coefficient criterion of the interpolated fields
as well as their gradients. The RMSE and correlation coefficient time series, as
well as the spatial coverage of the observations are also reported in Fig. 2. Overall,
the proposed end-to-end architecture leads to very significant improvements with
respect to the state-of-the-art AnDA technique, as well as to its plug-and-play
counterpart both in terms of RMSE and correlation coefficients. These results
emphasize the importance of the end-to-end methodology with respect to classical
plug-and-play techniques since, when considering data-assimilation applications,
and as shown by [16, 10], the reconstruction performance depends, in addition to the
quality of the dynamical prior, on the provided measurements and their sampling.
Classical plug-and-play techniques, in the opposite to end-to-end strategies, ignore
the latter source of information which explains the performance of our framework.

Qualitative Analysis of the Proposed Schemes the conclusions of the quantitative
analysis are also illustrated through the visual analysis of the reconstructed surface
elevation and its gradient in Fig. 3. Interestingly, this visual analysis reveals that the
AnDA technique tend to smooth out fine-scale patterns. By contrast, the Kalman
filter based schemes (in both its end-to-end and plug and play versions) achieve a
better reproduction of fine scale structures, illustrated for instance by the gradients
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Fig. 3 Interpolation example of the surface elevation field: first row, the reference surface
elevation, its gradient and the observation with missing data; second row, interpolation results
using respectively the plug-and-play Augmented Koopman Kalman filter, AnDA, and the proposed
E2EKF; third row, gradient of the reconstructed fields

of the field. The analysis of the spectral signatures in Fig. 4 leads to similar
conclusions since, when compared to the state-of-the-art AnDA technique, as well
as to its plug and play counterpart, the proposed end-to-end architecture leads
to significant improvements especially regarding the reproduction of the gradient
energy-level.

4 Conclusion

Spatio-temporal interpolation applications are important in the context of ocean
surface modeling. For this reason, deriving new data assimilation architectures that
can perfectly exploit the observations and the current advances in signal processing,
modeling and artificial intelligence is crucial. In this context, this work investigated
the ability of augmented linear state space models in solving smoothing issues of
ocean surface observations using the Kalman filter.
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Fig. 4 Spectral comparison of the tested models: the averaged power spectral densities and their
error with respect to the ground truth are given in (a) and (b) respectively

Beyond filtering and smoothing applications, we believe that the proposed
framework provides an initial playground for learning approximate linear state
space models of real observations. Given a sequence of sparse observations, the
proposed framework may be able to unfold large scale frequencies that are useful
for prediction. Interesting case studies include sea level rise and the increase of the
anomaly of the sea surface temperature.
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Dynamical Properties of Weather Regime
Transitions

Paul Platzer, Bertrand Chapron, and Pierre Tandeo

Abstract Large-scale weather can often be successfully described using a small
amount of patterns. A statistical description of reanalysed pressure fields identifies
these recurring patterns with clusters in state-space, also called “regimes”. Recently,
these weather regimes have been described through instantaneous, local indicators
of dimension and persistence, borrowed from dynamical systems theory and
extreme value theory. Using similar indicators and going further, we focus here
on weather regime transitions. We use 60 years of winter-time sea-level pressure
reanalysis data centered on the North-Atlantic ocean and western Europe. These
experiments reveal regime-dependent behaviours of dimension and persistence near
transitions, although in average one observes an increase of dimension and a
decrease of persistence near transitions. The effect of transition on persistence is
stronger and lasts longer than on dimension. These findings confirm the relevance
of such dynamical indicators for the study of large-scale weather regimes, and reveal
their potential to be used for both the understanding and detection of weather regime
transitions.

Keywords Weather · Regime · Transition · Shift · Dynamical systems ·
Dimension · Persistence

1 Introduction

The concept of weather regime was introduced in 1949 by [1]. Broadly speaking,
weather regimes are recurring, quasi-stationary states of the atmosphere, which
allow to describe most of the subseasonal variability of atmospheric states, the
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latter being defined through large-scale maps of either mean sea-level pressure
or geopotential height. The study of weather regimes has numerous potential
applications as a tool to understand subseasonal atmospheric dynamics [2]. The
understanding and correct representation of weather regimes is also paramount for
adequate climate projections [3].

Vautard [4] defines weather regimes through stationarity and searches for
geopotential fields with a quasi-vanishing time-derivative. Others (see e.g. [5])
use cluster analysis (i.e. k-means or Gaussian Mixture Models) to find recurring
patterns. To perform such analyses, one usually uses a low-order description of the
atmospheric state, through empirical orthogonal functions (EOFs). Some authors
simply rely on projection on a low number of EOFs (two in the case of [6]), and
on forecaster’s empirical knowledge of the recurrence of regimes defined through
positive and negative phases of dominant EOFs.

A natural concern is not only the definition of weather regime, but also the study
of their transition [5]. Statistical tools such as random forest can be used to perform
such a task [7]. The performance of physics-based weather forecasts can also be
assessed through their ability to predict weather regime transitions [6]. Our study of
weather regime transition is noticeably motivated by the relevance and difficulty of
their forecast.

We aim to focus on the time-evolution of two dynamical indicators (local
dimension and persistence) around transitions between winter-time, North-Atlantic
weather regimes. These indicators are relevant to the study of Atlantic-European
weather regimes, as each weather regime can be associated with specific values of
these indicators [8]. From this static study of weather regimes, we carry on with a
dynamic study of transitions.

Note, [9] already investigated the temporal behaviour of local dimension and
persistence at the mature stage of seven regimes, used to define round-year
sub-seasonal variability of weather over the North-Atlantic and western Europe.
These mature stages were identified as local minima of the weather regime index
defined by [10] as the projection of the instantaneous atmospheric state on the
atmospheric state associated with each regime. Hochman et al. [9] showed that the
so-defined mature stages of weather regimes coincided with locally low values of the
dimension and inverse persistence, and that these mature stages were both preceded
and followed by higher relative values of these indicators. The present paper is
concerned with weather regime transitions, which are located between weather
regime mature stages. We therefore expect to confirm the relatively higher values of
dimension and persistence observed by [9] before and after regime mature stages.
However, our study could reveal varying behaviours as we focus on transitions from
one specific regime to another, while the study of [9] does not specify which regime
precedes or follows a given mature stage.

Our analysis also bears similarity with the one of [11], in which the temporal
behaviour of local dimension and persistence during Eastern Mediterranean cold
spells was examined. The main difference with the present study is the nature of the
event of interest: we are interested in transitions between weather regimes, while
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cold spells could be viewed as a special type of weather regime (a particular case
of Cyprus Lows which is the dominant regime responsible for precipitation in the
Eastern Mediterranean region).

The next section is the core of our paper and reviews the results of our study,
describing salient features of the time-evolution of dimension and persistence
around transitions between four winter-time North-Atlantic weather regimes. The
following section draws perspectives and proposes potential applications to real-
world meteorological issues. Appendix sections provide details to the tools and data
used in the present study.

2 European-Atlantic Weather Regime Transitions

An EOF-decomposition is performed (see section “Empirical Orthogonal Func-
tions”) of winter-time, reanalysed sea-level pressure fields described in Appendix 1.
A weather-regime analysis follows using a Gaussian Mixture Model with four
modes, corresponding to four weather regimes, in a reduced-space spanned by the
three first EOFs (see section “Gaussian Mixture Model” for a discussion). The
resulting regimes are shown in Fig. 1 in EOF space and there centroids are shown in
Fig. 2 as SLP-anomaly maps.

Figure 1 illustrates that the four regimes are mostly defined through EOF1
and EOF2, as the centroids’ EOF3-coordinates are close to zero. Two regimes
are associated with positive-negative phases of the first EOF, corresponding to a
strong north-south pressure gradient (see Fig. 2), and we label these regimes NAO+
and NAO− to match previous works in the litterature. The two other regimes are

Fig. 1 Weather regimes as cluster distributions from the fit of a Gaussian Mixture Model to winter-
time sea-level-pressure anomaly (SLPa) from reanalysis data. The fit is performed in reduced
space through projection of SLPa maps on three leading empirical orthogonal functions (EOF).
Colored contours show the 0.75σ (thick lines) and 1.25σ (thin lines) ellipses of each distribution
around their centroids, with σ denoting standard deviation. Grey contours show the whole GMM
distribution through marginal distributions in two-dimenisonal EOF-subspaces. Regime names are
assigned from comparison with other scientific studies found in the litterature (see Fig. 2)
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Fig. 2 Weather regimes as sea-level-pressure anomalies in (longitude, latitude) coordinates
(coastlines are shown), defined by the distributions’ centroids from a Gaussian Mixture Model
(see Fig. 1 and section “Gaussian Mixture Model”). Regime names are assigned from comparison
with other scientific studies found in the literature

associated with a pressure system covering western Europe and extending far-off
Europe’s west-coast. The regime corresponding to an anticyclonic situation over
western Europe is termed BLO+, and its opposite phase is termed BLO−, in
accordance with previous studies on such regimes. Note that the small contribution
of EOF3 to the definition of BLO+ and BLO− induces a slight west-ward shift of
the BLO− pressure system compared to the one of BLO+.

Then, we follow [5] and assign each SLP-anomaly field to a weather regime if
it lies inside the 1.25σ ellipses, shown in Fig. 1 (in cases of points belonging to
two regimes, we assign the regime with highest probability), otherwise no regime
is assigned. Next, for any regimes “A” and “B”, a transition from regime “A”
to regime “B” is defined as either the consecutive passing from “A” to “B” or
the consecutive passing from “A” to “no regime” and then to “B” (note that this
allows transitions from a regime to itself). As we are interested in the behaviour of
dynamical indicators around transitions, we discard transitions of the type “A”→“no
regime”→“B” if the “no regime” phase exceeds 24 h.
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3 Dimensionality Around Transitions

The local dimension of sea-level pressure fields is used as an indicator of the state
of the atmosphere. Details on this indicator and how is it computed can be found in
section “Local Dimensions”.

In Fig. 3, one observes statistics of dimension-versus-time profiles centered on
transitions. The number of transitions on which the statistics were computed is also
mentioned, showing preferred transitions in agreement with [5]. Several behaviours
can be observed.

Fig. 3 Typical profiles of local dimension versus time, centered at transition point, for each
possible transitions. Light (resp. dark) greys fill between the 0.05 and 0.95 (resp. 0.25 and 0.75)
quantiles, while the dark lines show the average dimension profile around transition from regime
“A” to regime “B”. In red, statistics over each regime (with no restriction to transitions) are shown.
Red dotted (resp. dashed) lines show the 0.05 and 0.95 (resp. 0.25 and 0.75) quantiles, while the
full red lines show the average dimension of regime “A” and “B”
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Smooth transition The transition BLO+ → NAO− shows a smooth transition
from the dimension statistics of regime BLO+ to the statistics of regime NAO−
over a transition period of ∼1 day, starting after the transition, with no particular
behaviour at the transition itself.

Dimension overshoot Right before, after, or during transitions NAO− →
BLO−, BLO− → BLO+, BLO+ → BLO−, and BLO+ →NAO+, the local
dimension statistics exceed what is expected from statistics computed over each
regime. Transitions BLO− → BLO+ and BLO+ → BLO− show the highest
intensity of dimension overshoot (around +1 in dimension), with the average
dimension near transition (black, full) reaching the 0.75 quantile of the regime
distributions (dashed, red). For transition BLO−→ BLO+, the overshoot occurs
∼1 day after the transition, while for BLO+ → BLO− it occurs 1 day before.
In both cases, transition-statistics (black, grey) are very similar to the BLO−
regime-statistics (red), while the overshoot occurs in the BLO+ phase, and is
preceded or followed by an undershoot.

Time-symmetry From the previous description, it appears that the dimension
statistics around transition BLO− →BLO+ are almost symmetric to
BLO+ →BLO−: the latter can be recovered from taking the former in reverse-
time. Similar types of symmetry can be observed in transitions BLO+ ↔NAO+,
BLO− ↔NAO+, and BLO+ ↔NAO−, although with less confidence.

Time-asymmetry On the other hand, the transition NAO− →BLO− shows a
slight overshoot of dimension statistics at the transition point while the transition
BLO− →NAO− shows an overshoot of dimension statistics away from the
transition point (∼2 days before and after).

Auto-transitions are harder to interpret than normal transitions. They correspond
to trajectories in phase-space where the system goes from a well-defined regime
to a mixed, undefined regime, and then comes back to the initial well-defined
regime. It is likely that these auto-transitions actually mix different types of
transient behaviours, with different properties. Auto-transition NAO+ →NAO+
seems to show an overshoot of dimension near the transition point, but the number
of transitions (57) is small and therefore only low confidence is attributed to
these statistics. Other auto-transition statistics are rather smooth and close to the
corresponding regime-statistics, which might be due to the fact that auto-transitions
mix different types of transient behaviours.

Figure 5b shows dimension statistics for all transitions, excluding auto-
transitions. It shows a slight dimension overshoot at the transition point ±1 day.
The fact that this overshoot is so small is an indicator of the variety of behaviours
near transition, depending on which regimes are involved.
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4 Persistence Around Transitions

We now use the inverse persistence θ (also called extremal index) of sea-level
pressure fields as an indicator of the state of the atmosphere. Details on this indicator
and how is it computed can be found in section “Inverse Persistence θ”.

In Fig. 4, we show the result of the same procedure followed in the previous
section, but replacing the local dimension by the inverse persistence. As these two
variables are correlated, the behaviour of inverse persistence resembles the one
of dimension around much of the observed transitions. However, the difference
between transition-statistics and regime-statistics appear to be more significant for
θ than for the dimension, with some special behaviours described below.

Fig. 4 Same as Fig. 3, but for the inverse persistence θ (also called extremal index). High values
indicate a rapidly changing dynamical system
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Transitions to/from BLO+ The BLO+ regime-statistics of θ are much higher
than the ones of other regimes, with most values concentrated between 0.17 and
0.19, and almost all values above 0.16. We therefore see high variations of θ

around transitions from or to BLO+. However, when one is in the regime BLO+,
either after or before a transition, we do not observe an overshoot as with the
dimension. Rather, we see that the transition-statistics match the BLO+ statistics
very near the transition point, while they are much lower 2–3 days away from the
transition. This means that, in the regime BLO+, the inverse persistence is much
lower either 2–3 days before or 2–3 days after any transition. Also, the values
of θ in regimes NAO± and BLO−, up to at least three days around a transition
from or to BLO+, are much higher than expected from intra-regime statistics.
We can interpret these fact using the results of [9] who observed a strong
decrease of θ when weather regimes are well-installed. Therefore, what we see in
Figs. 3d, h, l, m–p and 4d, h, l, m–p indicates that the systems rapidly exits/enters
regime BLO+, while it needs more time to exit/enter neighbouring regimes when
transitioning from or to BLO+.

BLO–↔NAO+ Although the NAO+ and BLO− intra-regime statistics of θ are
significantly different, BLO− ↔NAO+ transition-statistics of θ are relatively
smooth in time, showing very few variations, and closer to the NAO+ intra-
regime statistics. Again, this can be interpreted as a slow transition.

Low-quantiles overshoot From Fig. 5, one can see that, while all quantiles
of dimension seem to be affected equally around transitions (Fig. 5b), it is
mostly the low quantiles of inverse persistence which are affected by transitions
(Fig. 5a). That is, values of θ are not expected to be especially large near
transitions (compared to average statistics), but small values of θ are expected
to be extremely unlikely around transitions.

Fig. 5 In grey: statistics (0.05, 0.25, 0.75 and 0.95 quantiles, as well as mean) of inverse
persistence (a) and local dimension (b) over all transitions, discarding auto-transitions (from
regime “A” to “A”). In red: statistics (0.05, 0.25, 0.75 and 0.95 quantiles, as well as mean) over
all values from the dataset (winter-time from 1956 to 2015), without restriction to transitions
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Already mentioned earlier, we discard transitions “A→B” if the “no regime”
phase between regimes “A” and “B” exceeds 24 h. Raising the maximum length
of this “no regime” phase allows to find more transitions, and results in a slight
smoothing of the profiles of Figs. 3 and 5, but the observed tendencies remain.
Reducing the maximum length of the “no regime” phase between regimes “A” and
“B” results in slightly sharper, yet noisier profiles (not shown).

5 Conclusion and Perspectives

The analysis of reanalysed sea-level pressure maps covering a large part of
the North-Atlantic ocean and western Europe, demonstrates that local dynamical
indicators of dimension and persistence display great sensitivity to transitions
between weather regimes. In particular, we observe higher values of dimension and
lower values of persistence near transitions, which is in agreement both with the
early definition of weather regimes (as quasi-stationary, low-order recurring states)
and with recent studies of weather regimes through these same two dynamical
indicators. The study reveals non-homogeneous behaviour of these indicators near
transitions, meaning that different transition show different signatures in terms
of time-variation of dimension and persistence. Furthermore, we observe that the
fingerprint of transitions is more pronounced for persistence than for dimension,
and that it spreads over a larger duration (more than ±3 days for persistence but
around ±1.5 day for dimension).

This study, combined with recent studies on weather regimes and dynamical
indicators, confirm the relevance of these indicators for the understanding of weather
regimes, and even reveal the potential for these indicators to be used in the definition
of weather regimes. Present findings also indicate that each transition could be
identified through the time-behaviour of dimension and persistence. This has great
implications and shall motivate further investigations on how to use these indicators
for the purpose of detecting regime transitions. However, for each transition we
still observe a great variability of time-profiles of dimension and persistence. This
suggests to use a variety of related indicators, and not only these two. Recent studies
have used these indicators on separated scales, allowing to explore variations in
dimensionality and persistence of small-scale variables [23]. Our current analyses
also reveal a signature of large-scale weather regime transitions in the time-variation
of small-scale dimension and persistence, however with less intensity than for large-
scale dynamical indicators (not shown). We interpret this as a hint that small-scale
organization may be necessary to large-scale transitions. Other local indicators also
based on analogues such as the ones used by [24] and [25] shall also be considered
in an attempt to predict transitions.
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Appendix 1: Data Description: Twentieth Century Reanalysis

We use data from the 3rd version of the twentieth Century Reanalysis, which
combines surface observations of synoptic pressure and NOAA’s Global Forecast
System, and prescribes sea surface temperature and sea ice distribution [12].

From this reanalysis we extract the ensemble-mean, sea-Level pressure maps
from year 1956 to 2015, at 3h-intervals. We do not use preceding years in order to
avoid inconsistency between past, observation-scarce data, and more recent data,
better constrained by observations. We could also have selected only data from
the satellite era starting in 1979, but this would have diminished the statistical
significance of our work.

We focus on a 41×41 grid at 1◦-resolution covering longitudes 30W≤LON≤10E
and latitudes 30N≤LAT≤70N, including western Europe and the eastern part of the
North-Atlantic Ocean (see Fig. 2). We use only extended-winter data, from October
to March, as is typical in North-Atlantic weather-regime studies (see e.g., [9, 6, 8]).

Appendix 2: Statistical Descriptors

Empirical Orthogonal Functions

To study winter-time SLP fields, we use the empirical orthogonal function decom-
position, also called principal component analysis [13]. It allows to decompose
any spatial field (snapshot) of SLP-anomaly (SLPa) onto orthogonal maps (EOFs),
ordered by their respective contribution to the total variability in time of SLPa fields.
To compute SLPa, we remove a moving seasonal-average using data from ±10 years
and ±5 calendar-days, with a Gaussian kernel to give more weight to neighbouring
years and calendar days.

In our case, EOFs n◦1–7 contribute respectively to 41%, 24%, 14%, 5.5%, 4.8%,
2.2% and 1.5% of the total signal variance. No that, for our analyses of weather
regimes, we use only EOFs n◦1–3, which contribute collectively to 79% of the total
variance.
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Gaussian Mixture Model

A Gaussian Mixture Model (GMM) assumes that the random variable it describes is
the result of pooling from a finite number of sub-populations (in our case, regimes)
whose distributions are Gaussian [14]. Expectation-maximization (EM) allows to
find optimal parameters (averages and covariances) of the Gaussian distributions,
once the number of regimes has been fixed.

We follow [5], and make a GMM EM-fit using a finite number of EOFs. As
we allow the covariances to have any possible shape, the number of parameters
to be optimized depends exponentially on the number of EOFs kept, we therefore
have not tried using more than 5 EOFs. Then, once the number of EOFs is fixed,
a trade-off between the number of parameters (dictated by the number of regimes)
and the model adequacy to the data can be found by computing either the Bayesian
Information Criterion or the average log-likelihood over an independent set [16].
However, as in the study by [5], we find a very low sensitivity of these indicators to
the number of regimes chosen (not shown). We also compute the Silhouette score
proposed by [15] to estimate the degree of overlapping between regimes, and find
that using more EOFs always leads to more overlapping, and so does using more
regimes but to a lesser extent (not shown).

In the end, we make the choice of keeping 3 EOFs and 4 regimes. The choice of 3
EOFs is motivated by the fact that each of the three first EOFs account for more than
10% of the total variance, while EOFs n◦4 and further only represent up to ∼5%.
This has the consequence that, even when we retain more than 3 EOFs, the regime
centroids found through GMM EM-fits are mostly defined by their projection on
the 3 first EOFs, as projections on EOFs 4 and 5 are always closer to 0 then one
of the other projections (not shown). The choice of 4 regimes is motivated by the
adequacy with other studies [6] and operational weather-forecasting services such
as ECMWF who divide into 4 quadrants the reduced-space formed by the projection
of geopotential height fields onto their corresponding first-2 EOFs.

Appendix 3: Dynamical Indicators

Local Dimensions

We use the same estimator of local dimension as [8], borrowing the python code
from the Chaotic Dynamical Systems Kit (https://github.com/yrobink/CDSK). This
estimator is based on a definition of local dimension at any point z in state-space
through the extreme-value distribution of the observable gz : x → gz(x) =
− log dist(z, x) for any other state-space vector x (where “dist” is any distance in
the mathematical sense). Large values of this observable are found for points x

close to z: these points are called “analogues” of z in the atmospheric- and ocean-
sciences community. Then, the probability that g(x) exceeds a given threshold ρ is
exponential (see, for instance, [17]):
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P (gz(x) > ρ) ∝ exp(−ρ d(z)) , (A.1)

where d(z) is the local-dimension that we estimate here. The geometric interpre-
tation of this dimension is that in a space of dimension d, the typical number of
points inside a sphere of radius r scales as rd . Although such an interpretation of
dimension has been connected to the distances to analogues for a long time (see
for instance [18] and the famous Grassberger-Proccacia algorithm [19]), only recent
works have used extreme-value theory to provide instantaneous, local estimators
of dimension [20]. These recent tools are particularly suited for the study of local
behaviours, while previous works focused on average, global indicators.

Recently, distances between analogues x and their target z have been shown
to follow distributions whose parameters are given by the length of the available
dataset, the analogue rank, and the local dimension as estimated in this paper [21].
This indicator is thus both relevant from a dynamical systems point of view and for
practical use of data-based methods.

Inverse Persistence θ

However, Eq. A.1 is not valid when the system passes close to a fixed point, as this
causes trajectories to slow down. In this case, another parameter called the extremal
index, or inverse persistence, comes into play:

P (gz(x) > ρ) ∝ exp(−ρ θ(z)d(z)) , (A.2)

with 0 < θ(z) ≤ 1. Low values of θ correspond to highly persistent areas of
state-space. It can be interpreted as the inverse mean residence time within a sphere
centered on z (if divided by the time-increment between two consecutive points in
the dataset, which is 3 h in our case). We estimate this parameter with the Süveges
likelihood estimator [22]. It is based on counting consecutive points inside a ball
centered on z (i.e., analogues of the same point z that are also consecutive points in
the time-ordered dataset).
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Frequentist Perspective on Robust
Parameter Estimation Using the
Ensemble Kalman Filter

Sebastian Reich

Abstract Standard maximum likelihood or Bayesian approaches to parameter
estimation for stochastic differential equations are not robust to perturbations in
the continuous-in-time data. In this paper, we give a rather elementary explanation
of this observation in the context of continuous-time parameter estimation using an
ensemble Kalman filter. We employ the frequentist perspective to shed new light
on two robust estimation techniques; namely subsampling the data and rough path
corrections. We illustrate our findings through a simple numerical experiment.

Keywords Parameter estimation · Stochastic differential equations · Ensemble
Kalman filter · Frequentist approach · Rough path theory

1 Introduction

In this note, we consider the well-studied problem of parameter estimation for
stochastic differential equations (SDEs) from continuous-time observations X†

t , t ∈
[0, T ] [25]. It is well-known that the corresponding maximum likelihood estimator
does not depend continuously on the observations X†

t , t ∈ [0, T ], which can result
in a systematic estimation bias [27, 14]. In other words, the maximum likelihood
estimator is not robust with respect to perturbations in the observations. Here, we
revisit this problem from the perspective of online (time-continuous) parameter
estimation [6, 11] using the popular ensemble Kalman filter (EnKF) and its
continuous-time ensemble Kalman-Bucy filter (EnKBF) formulations [15, 10, 26].
As for the corresponding maximum likelihood approaches, the EnKBF does not
depend continuously on the incoming observations X

†
t , t ≥ 0, with respect to

the uniform norm topology on the space of continuous functions. This fact has
been first investigated in [9] using rough path theory [16]. In particular, as already
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demonstrated for the related maximum likelihood estimator in [14], rough path
theory allows one to specify an appropriately generalised topology which leads to
a continuous dependence of the EnKBF estimators on the observations. Here we
expand the analysis of [9] to a frequentist analysis of the EnKBF in the spirit of [29],
where the primary focus is on the expected behaviour of the EnKBF estimators over
all admissible observation paths. One recovers that the discontinuous dependence
of the EnKBF estimators on the driving observations results in a systematic bias
from a frequentist perspective. This is also a well known fact for SDEs driven by
multiplicative noise [23].

The proposed frequentist perspective naturally enables the study of known bias
correction methods, such as subsampling the data [27], as well as novel de-biasing
approaches in the context of the EnKBF.

In order to facilitate a rather elementary mathematical analysis, we consider
only the very much simplified problem of parameter estimation for linear SDEs.
This restriction allows us to avoid certain technicalities from rough path theory and
enables a rather straightforward application of the numerical rough path approach
put forward in [13]. As a result we are able to demonstrate that the popular
approach of subsampling the data [2, 27, 5] can be well justified from a frequentist
perspective. The frequentist perspective also suggests a rather natural approach to
the estimation of the required correction term in the case an EnKBF is implemented
without subsampling.

We end this introductory paragraph with a reference to [1], which includes a
broad survey on alternative estimation techniques. We also point to [9] for an in-
depth discussion of rough path theory in connection to filtering and parameter
estimation.

The remainder of this paper is structured as follows. The problem setting and the
EnKBF are introduced in the subsequent Sect. 2. The frequentist perspective and its
implications on the specific implementations of an EnKBF in the context of low
and high frequency data assimilation are laid out in Sect. 3. The importance of these
considerations becomes transparent when applying the EnKBF to perturbed data
in Sect. 4. Here again, we restrict attention to a rather simple model setting taken
from [17] and also used in [9]. As a result we build a clear connection between
subsampling and the necessity for a correction term in the case high frequency data
is assimilated directly. A brief numerical demonstration is provided in Sect. 5, which
is followed by a concluding remark in Sect. 6.

2 Ensemble Kalman Parameter Estimation

We consider the SDE parameter estimation problem

dXt = f (Xt , θ)dt + γ 1/2dWt (1)

subject to observations X†
t , t ∈ [0, T ], which arise from the reference system
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dX†
t = f †(X

†
t )dt + γ 1/2dW †

t , (2)

where the unknown drift function f †(x) typically satisfies f †(x) = f (x, θ†) and θ†

denotes the true parameter value. Here we assume for simplicity that the unknown
parameter is scalar-valued and that the state variable is d-dimensional with d ≥
1. Furthermore, Wt and W

†
t denote independent standard d-dimensional Brownian

motions and γ > 0 is the (known) diffusion constant.
Following the Bayesian paradigm, we treat the unknown parameter as a random

variable Θ . Furthermore, we apply a sequential approach and update Θ with
the incoming data X

†
t as a function of time. Hence we introduce the random

variable Θt which obeys the Bayesian posterior distribution given all observations
X†

τ , τ ∈ [0, t], up to time t > 0. Furthermore, instead of exactly solving
the time-continuous Bayesian inference problem as specified by the associated
Kushner–Stratonovitch equation [6, 26], we define the time evolution of Θt by
an application of the (deterministic) ensemble Kalman–Bucy filter (EnKBF) mean-
field equations [10, 26], which take the form

dΘt = γ−1πt

[
(θ − πt [θ ])⊗ f (X

†
t , θ)

]
dIt , (3a)

dIt = dX†
t −

1

2

(
f (X

†
t , Θt )+ πt [f (X†

t , θ)]
)

dt, (3b)

where πt denotes the probability density function (PDF) of Θt and πt [g] the
associated expectation value of a function g(θ). The column vector It , defined by
(3b), is called the innovation, while the row vector

Kt(πt ) = γ−1πt

[
(θ − πt [θ ])⊗ f (X

†
t , θ)

]
, (4)

premultiplying the innovation in (3a) is called the gain. Here the notation a ⊗ b =
abT, where a, b can be any two column vectors, has been used. The initial condition
Θ0 ∼ π0 is provided by the prior PDF of the unknown parameter.

A Monte-Carlo implementation of the mean-field equations (3) leads to the
interacting particle system

dΘ(i)
t = γ−1πM

t

[
(θ − πM

t [θ ])⊗ f (X
†
t , θ)

]
dI (i)t , (5a)

dI (i)t = dX†
t −

1

2

(
f (X

†
t , Θ

(i)
t )+ πM

t [f (X†
t , θ)]

)
dt, (5b)

i = 1, . . . ,M , where expectations are now taken with respect to the empirical
measure. That is,

πM
t [g] = 1

M

M∑
i=1

g(Θ
(i)
t ) (6)
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for given function g(θ), and all Monte-Carlo samples are driven by the same (fixed)
observations X†

t . The initial samples Θ(i)
0 , i = 1, . . . ,M , are drawn identically and

independently from the prior distribution π0.
We note in passing that there is also a stochastic variant of the innovation process

[26] defined by

dIt = dX†
t − f (X

†
t , Θt )dt − γ 1/2dWt, (7)

which leads to the Monte-Carlo approximation

dI (i)t = dX†
t − f (X

†
t , Θ

(i)
t )dt − γ 1/2dW(i)

t (8)

of the innovation in (5).

Remark 1 There is an intriguing connection to the stochastic gradient descent
approach to the estimation of θ†, as proposed in [30], which is written as

dθt = αt

γ
∇θf (X

†
t , θt )dĨt , (9a)

dĨt = dX†
t − f (X

†
t , θt )dt (9b)

in our notation, where αt > 0 denotes the learning rate. We note that (9) shares
with (3) the gain times innovation structure. However, while (3) approximates
the Bayesian inference problem, formulation (9) treats the parameter estimation
problem from an optimisation perspective. Both formulations share, however, the
discontinuous dependence on the observation path X

†
t , and the proposed frequentist

analysis of the EnKBF (3) also applies in simplified form to (9). We also point
out that (3) is affine invariant [18] and does not require the computation of partial
derivatives.

We now state a numerical implementation with step-size Δt > 0 and denote the
resulting numerical approximations at tn = nΔt by Θn ∼ πn, n ≥ 1. While
a standard Euler–Maruyama approximation could be applied, the following stable
discrete-time mean-field formulation of the EnKBF

Θn+1 = Θn +Kn

{
(X

†
tn+1

−X
†
tn
)− 1

2

(
f (X

†
tn
, Θn)+ πn[f (X†

tn
, θ)]

)
Δt

}

(10)
is inspired by [3] with Kalman gain

Kn = πn

[
(θ − πn[θ ])⊗ f (X

†
tn
, θ)

]
× (11a)

(
γ +Δtπn

[(
f (X

†
tn
, θ)− πn[f (X†

tn
, θ)]

)
⊗ f (X

†
tn
, θ)

])−1
. (11b)
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It is straightforward to combine this time discretisation with the Monte-Carlo
approximation (5) in order to obtain a complete numerical implementation of the
EnKBF.

Remark 2 The rough path analysis of the EnKBF presented in [9] is based on a
Stratonovich reformulation of (3) and its appropriate time discretisation. Here we
follow the Itô/Euler–Maruyama formulation of the data-driven term in (3),

∫ T

0
g(X

†
t , t) dX†

t = lim
Δt→0

L∑
i=1

g(X
†
tn
, tn)(X

†
tn+1

−X
†
tn
) (12)

for any continuous function g(x, t) and Δt = T/L, as it corresponds to standard
implementation of the EnKBF and is easier to analyse in the context of this paper.

The EnKBF provides only an approximate solution to the Bayesian inference
problem for general nonlinear f (x, θ). However, it becomes exact in the mean-field
limit for affine drift functions f (x, θ) = θAx + Bx + c.

Example 1 Consider the stochastic partial differential equation

∂tu = −U∂yu+ ρ∂2
yu+ Ẇ (13)

over a periodic spatial domain y ∈ [0, L), where W(t, y) denotes space-time
white noise, U ∈ R, and ρ > 0 are given parameters. A standard finite-difference
discretisation in space with d grid points and mesh-size Δy leads to a linear system
of SDEs of the form

dut = −(UD + ρDDT)utdt +Δy−1/2dWt, (14)

where ut ∈ R
d denotes the vector of grid approximations at time t , D ∈ R

d×d

a finite difference approximation of the spatial derivative ∂y , and Wt the standard
d-dimensional Brownian motion. We can now set Xt = ut , γ = Δy−1 and identify
either θ = U or θ = ρ as the unknown parameter in order to obtain an SDE of the
form (1).

In this note, we further simplify our given inference problem to the case

f (x, θ) = θAx , (15)

where A ∈ R
d×d is a normal matrix with eigenvalues in the left half plane. That is

σ(A) ⊂ C−. The reference parameter value is set to θ† = 1. Hence the SDE (2)
possesses a Gaussian invariant measure with mean zero and covariance matrix

C = −γ (A+ AT)−1. (16)
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We assume from now on that the observations X†
t are realisations of (2) with initial

condition X
†
0 ∼ N(0, C).

Under these assumptions, the EnKBF (3) simplifies drastically, and we obtain

dΘt = σt

γ
(AX

†
t )

TdIt , (17a)

dIt = dX†
t −

1

2
(Θt + πt [θ ]) AX†

t dt, (17b)

with variance

σt = πt

[
(θ − πt [θ ])2

]
. (18)

Remark 3 For completeness, we state the corresponding formulation for the
stochastic gradient descent approach (9):

dθt = αt

γ
(AX

†
t )

TdĨt , (19a)

dĨt = dX†
t − θtAX

†
t dt. (19b)

We find that the learning rate αt takes the role of the variance σt in (17). However,
we emphasise again that the same pathwise stochastic integrals arise from both
formulations, and therefore, the same robustness issue of the resulting estimators
θt , t > 0, arises.

Similarly, the discrete-time mean-field EnKBF (10) reduces to

Θn+1 = Θn +Kn

{
(X

†
tn+1

−X
†
tn
)− 1

2
(Θn + πn[θ ])AX†

tn
Δt

}
(20)

with Kalman gain

Kn = σn(AX
†
tn
)T
(
γ +Δtσn(AX

†
tn
)TAX

†
tn

)−1
. (21)

Furthermore, since X
†
t ∼ N(0, C),

(AX
†
t )

TAX
†
t = (ATA) : (X†

t ⊗X
†
t ) ≈ (ATA) : C (22)

for d ! 1, and we may simplify the Kalman gain to

Kn = σn (AX
†
tn
)T
(
γ +Δtσn (A

TA) : C
)−1

. (23)
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Here we have used the notation A : B = tr(ATB) to denote the Frobenius inner
product of two matrices A,B ∈ R

d×d . The approximation (22) becomes exact in
the limit d → ∞, which we will frequently assume in the following section. Please
note that

Kn = σn

γ
(AX

†
tn
)T +O(Δt) (24)

under the stated assumptions.

Remark 4 The Stratonovitch reformulation of (17) replaces (17a) by

dΘt = σt

γ

{
(AX

†
t )

T ◦ dIt − γ

2
tr (A) dt

}
. (25)

The innovation It remains as before. See Appendix B of [9] for more details. An
appropriate time discretisation of the innovation-driven term replaces the Kalman
gain (21) by

Kn+1/2 = σn(AX
†
tn+1/2

)T
(
γ +Δtσn(AX

†
tn+1/2

)TAX
†
tn+1/2

)−1
, (26)

where

X
†
tn+1/2

= 1

2
(X

†
tn
+X

†
tn+1

) . (27)

Please note that a midpoint discretisation of the data-driven term in (25) results in

(AX
†
tn+1/2

)T(X
†
tn+1

−X
†
tn
) = (AX

†
tn
)T(X

†
tn+1

−X
†
tn
) + (28a)

1

2
AT : (X†

tn+1
−X

†
tn
)⊗ (X

†
tn+1

−X
†
tn
) (28b)

and that

1

2
AT : (X†

tn+1
−X

†
tn
)⊗ (X

†
tn+1

−X
†
tn
) ≈ Δt γ

2
tr (A), (29)

which justifies the additional drift term in (25). A precise meaning of the approxi-
mation in (29) will be given in Remark 5 below.

Alternatively, if one wishes to explicitly utilise the availability of continuous-time
data X

†
t , one could apply the following variant of (20):

Θn+1 = Θn + σn

γ

∫ tn+1

tn

(AX
†
t )

TdX†
t −

1

2
KnAX

†
tn
(Θn + πn[θ ])Δt, (30)
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and following the Itô/Euler–Maruyama approximation (12), discretise the integral
with a small inner step-size Δτ = Δt/L, L ! 1; that is,

∫ tn+1

tn

(AX
†
t )

TdX†
t ≈

L−1∑
l=0

(AX†
τl
)T(X†

τl+1
−X†

τl
) (31)

with τl = tn + lΔτ . We note that

L−1∑
l=0

(AX†
τl
)T(X†

τl+1
−X†

τl
) = (AX

†
tn
)T(X

†
tn+1

−X
†
tn
) + (32a)

AT :
(
L−1∑
l=0

(X†
τl
−X

†
tn
)⊗ (X†

τl+1
−X†

τl
)

)
,

(32b)

which is at the heart of rough path analysis [13] and which we utilise in the following
section.

3 Frequentist Analysis

It is well-known that the second-order contribution in (32) leads to a discontinuous
dependence of the integral on the observed X

†
t in the uniform norm topology on the

space of continuous functions. Rough path theory fixes this problem by defining
appropriately extended topologies and has been extended to the EnKBF in [9].
In this section, we complement the path-wise analysis from [9] by an analysis
of the impact of second-order contribution on the EnKBF (17) from a frequentist
perspective, which analyses the behaviour of EnKBF over all possible observations
X

†
t subject to (2). In other words, one switches from a strong solution concept to

a weak one. While we assume that the observations satisfy (2), throughout this
section, we will analyse the impact of a perturbed observation process on the EnKBF
in Sect. 4.

We first derive evolution equations for the conditional mean and variance under
the assumption that Θ0 is Gaussian distributed with given prior mean mprior and
variance σprior. It follows directly from (17) that the conditional mean μt = πt [θ ],
that is the mean of Θt , satisfies the SDE

dμt = σt

γ

(
(AX

†
t )

TdX†
t − μt (A

TA) : (X†
t ⊗X

†
t ) dt

)
, (33)
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which simplifies to

dμt = σt

γ

(
(AX

†
t )

TdX†
t − μt (A

TA) : C dt
)
, (34)

under the approximation (22). The initial condition is μ0 = mprior. The evolution
equation for the conditional variance, that is the variance of Θt , is given by

d

dt
σt = −σ 2

t

γ
(ATA) : (X†

t ⊗X
†
t ) (35)

with initial condition σ0 = σprior and which again reduces to

d

dt
σt = −σ 2

t

γ
(ATA) : C (36)

under the approximation (22).
We now perform a frequentist analysis of the estimator μt defined by (34) and

(36), that is, we perform a weak analysis of the SDE (34) in terms of the first
two moments of μt [29]. In the first step, we take the expectation of (34) over all
realisations X†

t of the SDE (2), which we denote by

mt := E
†[μt ]. (37)

The associated evolution equation is given by

d

dt
mt = σt

γ
(ATA) : E†

[
X

†
t ⊗X

†
t

]
− σt

γ
(ATA) : C mt, (38)

which reduces to

d

dt
mt = σt

γ
(ATA) : C (1 −mt) = σt (A

TA) : (A+ AT)−1 (1 −mt). (39)

In the second step, we also look at the frequentist variance

pt := E
†[(μt −mt)

2]. (40)

Using

d(μt −mt) = σt

γ

{
(ATA) :

(
X

†
t ⊗X

†
t − C

)
dt + γ 1/2(AX

†
t )

TdW †
t

}
− (41a)

σt

γ
(ATA) : C (μt −mt)dt, (41b)
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we obtain

d

dt
pt = −σt

γ
(ATA) : C (2pt − σt ) + (42a)

2σt
γ

(ATA) : E†
[
(X

†
t ⊗X

†
t − C) (μt −mt)

]
, (42b)

which we simplify to

d

dt
pt = σt

γ
(ATA) : C (σt − 2pt ) = σt (A

TA) : (A+ AT)−1 (σt − 2pt ) (43)

under the approximation (22). The initial conditions are m0 = mprior and p0 =
0, respectively. We note that the differential equations (36) and (43) are explicitly
solvable. For example, it holds that

σt = σ0

1 + (ATA) : (AT + A)−1 σ0t
(44)

and one finds that σt ∼ 1/((ATA) : (AT + A)−1 t) for t ! 1. It can also be shown
that pt ≤ σt for all t ≥ 0. Furthermore, this analysis suggests that the learning rate
in the stochastic gradient descent formulation (19) should be chosen as

αt = min

{
ᾱ,

1

(ATA) : (AT + A)−1 t

}
, (45)

where ᾱ > 0 denotes an initial learning rate; for example ᾱ = σ0.
We finally conduct a formal analysis of the ensemble Kalman filter time-stepping

(20) and demonstrate that the method is first-order accurate with regard to the
implied frequentist mean mt . We recall (24) and conclude from (20) that the implied
update on the variance σn satisfies

σn+1 = σn − σ 2
n

γ
(ATA) : CΔt +O(Δt2), (46)

which provides a first-order approximation to (36).
We next analyse the evolution equation (34) for the conditional mean μt and its

numerical approximation

μn+1 = μn +Kn

{
(X

†
tn+1

−X
†
tn
)− μnAX

†
tn
Δt
}

(47)

arising from (20). Here we follow [13] in order to analyse the impact of the data X
†
t

on the estimator. An in-depth theoretical treatment can be found in [9].
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Comparing (47) to (34) and utilising (24), we find that the key quantity of interest
is

J
†
tn,tn+1

:=
∫ tn+1

tn

(AX
†
t )

TdX†
t , (48)

which we can rewrite as

J
†
tn,tn+1

= AT : (X†
tn
⊗X

†
tn,tn+1

)+ AT : X†
tn,tn+1

. (49)

Here, motivated by (32) and following standard rough path notation, we have used

X
†
tn,tn+1

:= X
†
tn+1

−X
†
tn

(50)

and the second-order iterated Itô integral

X
†
tn,tn+1

:=
∫ tn+1

tn

(X
†
t −X

†
tn
)⊗ dX†

t . (51)

The difference between the integral (48) and its corresponding approximation in
(47) is provided by AT : X

†
tn,tn+1

plus higher-order terms arising from (24).

The iterated integral X
†
tn,tn+1

becomes a random variable from the frequentist
perspective. Taking note of (2), we find that the drift, f (x) = Ax, contributes
with terms of order O(Δt2) to X

†
tn,tn+1

and the expected value of X†
tn,tn+1

therefore
satisfies

E
†[X†

tn,tn+1
] = O(Δt2), (52)

since E
†[W †

tn,τ
] = 0 for τ > tn, and

E
†[W†

tn,tn+1
] = 1

2
E

†[W †
tn,tn+1

⊗W
†
tn,tn+1

− [W †
tn
,W

†
tn,tn+1

]] − Δt

2
I = 0, (53)

where we have introduced the commutator

[W †
tn
,W

†
tn,tn+1

] := W
†
tn
⊗W

†
tn,tn+1

−W
†
tn,tn+1

⊗W
†
tn
. (54)

Hence we find that, while (47) is not a first-order (strong) approximation of the SDE
(34), the approximation becomes first-order in mt when averaged over realisations
X

†
t of the SDE (2). More precisely, one obtains

E
†[J †

tn,tn+1
] = (ATA) : CΔt +O(Δt2). (55)
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We note that the modified scheme (30) leads to the same time evolution in the
variance σn while the update in μn is changed to

μn+1 = μn + σn

γ

∫ tn+1

tn

(AX
†
t )

TdX†
t −KnAX

†
tn
μnΔt. (56)

This modification results in a more accurate evolution in the conditional mean
μn, but because of (52) it does not impact to leading order the evolution of the
underlying frequentist mean, mn = E

†[μn]. We summarise our findings in the
following proposition.

Proposition 1 The discrete-time EnKBF implementations (20) and (30) both pro-
vide first-order approximations to the time evolution of the frequentist mean, mt ,
and the frequentist variance, pt . In other words, both methods converge weakly
with order one.

We also note that the frequentist uncertainty is essentially data-independent and
depends only on the time window [0, T ] over which the data gets observed. Hence,
for fixed observation interval [0, T ], it makes sense to choose the step-size Δt

such that the discretisation error (bias) remains on the same order of magnitude
as p1/2

T ≈ σ
1/2
T . Selecting a much smaller step-size would not significantly reduce

the frequentist estimation error in the conditional estimator μT .

Remark 5 We can now give a precise reformulation of the approximation (29):

1

2
E

†
[
AT : (X†

tn,tn+1
⊗X

†
tn,tn+1

)
]
= Δt γ

2
tr (A)+O(Δt2), (57)

which is at the heart of the Stratonovich formulation (25) of the EnKFB [9].

4 Multi-Scale Data

We now have all the material in place to study the dependency of the EnKBF
estimator on a set of observations X

(ε)
t , ε > 0, which approach the theoretical X†

t

with respect to the uniform norm topology on the space of continuous functions as
ε → 0. Since the second-order contribution in (32), that is (51), does not depend
continuously on such perturbations, we demonstrate in this section that a systematic
bias arises in the EnKBF. Furthermore, we show how the bias can be eliminated
either via subsampling the data, which effectively amounts to ignoring these
second-order contributions, or via an appropriate correction term, which ensures
a continuous dependence on observations X

(ε)
t with respect to the uniform norm

topology. More specifically, we investigate the impact of a possible discrepancy
between the SDE model (1), for which we aim to estimate the parameter θ , and
the data generating SDE (2). We therefore replace (2) by the following two-scale
SDE [17]:



Frequentist Perspective on Estimation Using the EnKF 249

dX(ε)
t = AX

(ε)
t dt + γ 1/2

ε
MP

(ε)
t dt, (58a)

dP (ε)
t = −1

ε
MP

(ε)
t dt + dW †

t , (58b)

where

M =
(

1 β

−β 1

)
, (59)

β = 2 and ε = 0.01. The dimension of state space is d = 2 throughout this section.
While we restrict here to the simple two-scale model (58), similar scenarios can
arise from deterministic fast-slow systems [24, 7].

The associated EnKBF mean-field equations in the parameter Θt , which we now
denote by Θ

(ε)
t in order to explicitly record its dependence on the scale parameter

ε $ 1, become

dΘ(ε)
t = σ

(ε)
t

γ
(AX

(ε)
t )TdI (ε)t , (60a)

dI (ε)t = dX(ε)
t − 1

2

(
Θ

(ε)
t + π

(ε)
t [θ ]

)
AX

(ε)
t dt, (60b)

with variance

σ
(ε)
t = π

(ε)
t

[
(θ − π

(ε)
t [θ ])2

]
(61)

and Θε
t ∼ π

(ε)
t . The discrete-time mean-field EnKBF (20) turns into

Θ
(ε)
n+1 = Θ(ε)

n +K(ε)
n

{(
X

(ε)
tn+1

−X
(ε)
tn

)
− 1

2

(
Θ(ε)

n + π(ε)
n [θ ]

)
AX

(ε)
tn

Δt

}
(62)

with Kalman gain

K(ε)
n = σ (ε)

n (AX
(ε)
tn

)T
(
γ +Δtσ (ε)

n (AX
(ε)
tn

)TAX
(ε)
tn

)−1
. (63)

We also consider the appropriately modified scheme (30):

Θ
(ε)
n+1 = Θ(ε)

n + σ
(ε)
n

γ

∫ tn+1

tn

(AX
(ε)
t )TdX(ε)

t − 1

2
K(ε)

n AX
(ε)
tn

(
Θ(ε)

n + π(ε)
n [θ ]

)
Δt.

(64)
In order to understand the impact of the modified data generating process on the

two mean-field EnKBF formulations (62) and (64), respectively, we follow [17] and
investigate the difference between X

(ε)
t and X

†
t :
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Fig. 1 SDE driven by mathematical vs. physical Brownian motion (ε = 0.01). The top panel
displays both X

†
t (blue) and X

(ε)
t (red) over the long time interval t ∈ [0, 10], while the lower

panel provides a zoomed in perspective over the interval t ∈ [0, 1]

d(X(ε)
t −X

†
t ) = A(X

(ε)
t −X

†
t )dt +

γ 1/2

ε
MP

(ε)
t dt − γ 1/2dW †

t (65a)

= A(X
(ε)
t −X

†
t )dt − γ 1/2dP (ε)

t . (65b)

When P
(ε)
t is stationary, it is Gaussian with mean zero and covariance

Estat

[
P

(ε)
t ⊗ P

(ε)
t

]
= ε (M +MT)−1 = ε

2
I. (66)

Hence P
(ε)
t → 0 as ε → 0 and also

X
(ε)
t → X

†
t (67)

in L2 uniformly in t , provided σ(A) ⊂ C− and X
(ε)
0 = X

†
0. This is illustrated in

Fig. 1.
In order to investigate the problem further, we study the integral

J
(ε)
tn,tn+1

:=
∫ tn+1

tn

(AX
(ε)
t )TdX(ε)

t (68)

and its relation to (48). As for (48), we can rewrite (68) as

J
(ε)
tn,tn+1

= AT : (X(ε)
tn

⊗X
(ε)
tn,tn+1

)+ AT : X(ε)
tn,tn+1

. (69)

We now investigate the limit of the second-order iterated integral

X
(ε)
tn,tn+1

=
∫ tn+1

tn

X
(ε)
tn,t

⊗ dX(ε)
t (70a)
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= 1

2
X

(ε)
tn,tn+1

⊗X
(ε)
tn,tn+1

− 1

2

∫ tn+1

tn

[X(ε)
tn,t

, dX(ε)
t ] (70b)

as ε → 0 [17]. Here [., .] denotes the commutator defined by (54).

Proposition 2 The second-order iterated integral X(ε)
tn,tn+1

satisfies

lim
ε→0

X
(ε)
tn,tn+1

= X
†
tn,tn+1

+ Δt γ

2
M (71)

Proof The proof follows [17] and can be summarised as follows:

X
(ε)
tn,tn+1

=
∫ tn+1

tn

X
(ε)
tn,t

⊗ dX(ε)
t (72a)

→
∫ tn+1

tn

X
†
tn,t

⊗ dX†
t − γ 1/2

∫ tn+1

tn

X
(ε)
tn,t

⊗ dP (ε)
t (72b)

= X
†
tn,tn+1

− γ 1/2X
(ε)
tn,tn+1

⊗ P
(ε)
tn+1

+ γ 1/2
∫ tn+1

tn

dX(ε)
t ⊗ P

(ε)
t (72c)

→ X
†
tn,tn+1

+ γ 1/2
∫ tn+1

tn

{
AX

(ε)
t + γ 1/2

ε
MP

(ε)
t

}
⊗ P

(ε)
t dt (72d)

→ X
†
tn,tn+1

+ Δt γ

ε
M Estat

[
P

(ε)
tn

⊗ P
(ε)
tn

]
(72e)

= X
†
tn,tn+1

+ Δt γ

2
M. (72f)

As discussed in detail in [9] already, Proposition 2 implies that the scheme (64) does
not, in general, converge to the scheme (64) as ε → 0 since

J
†
tn,tn+1

= lim
ε→0

J
(ε)
tn,tn+1

− Δt γ

2
AT : M . (73)

This observation suggests the following modification

Θ
(ε)
n+1 = Θ(ε)

n + σ
(ε)
n

γ

∫ tn+1

tn

(AX
(ε)
t )TdX(ε)

t − Δt

2
σ (ε)
n AT : M − (74a)

1

2
K(ε)

n AX
(ε)
tn

(
Θ(ε)

n + π(ε)
n [θ ]

)
Δt (74b)

to (64). Please note that it follows from (70) that
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∫ tn+1

tn

(AX
(ε)
t )TdX(ε)

t = AT :
(
X

(ε)
tn+1/2

⊗X
(ε)
tn,tn+1

− 1

2

∫ tn+1

tn

[X(ε)
tn,t

, dX(ε)
t ]

)
.

(75)

Proposition 3 The discrete-time EnKBF (62) converges to (20) for fixed Δt as ε →
0. Similarly, (74) converges to (30) under the same limit.

Proof The first statement follows from σ
(ε)
n = σn, the limiting behaviour (67), and

lim
ε→0

K(ε)
n = Kn. (76)

The second statement additionally requires (73) to be substituted into (74) when
taking the limit ε → 0.

Remark 6 The analogous adaptation of (74) to the gradient descent formulation
(19) with X

†
t replaced by X

(ε)
t becomes

θ
(ε)
n+1 = θ(ε)n + αtn

γ

(∫ tn+1

tn

(AX
(ε)
t )TdX(ε)

t − γΔt

2
AT : M − (77a)

θ(ε)n (AX
(ε)
tn

)TAX
(ε)
tn

Δt
)
. (77b)

Alternatively, subsampling the data can be applied which leads to the simpler
formulation

θ
(ε)
n+1 = θ(ε)n + αtn

γ
(AX

(ε)
tn

)T
(
(X

(ε)
tn+1

−X
(ε)
tn

)− θ(ε)n AX
(ε)
tn

Δt
)
. (78)

Remark 7 A two-scale SDE, closely related to (58), has been investigated in [8] in
terms of the time integrated autocorrelation function of P (ε)

t and modified stochastic
integrals. In our case, the modified quadrature rule, here denoted by ', has to satisfy

∫ tn+1

tn

(AX
†
t )

T ' dX†
t = lim

ε→0

∫ tn+1

tn

(AX
(ε)
t )TdX(ε)

t , (79)

and it is therefore related to the standard Itô integral via

∫ tn+1

tn

(AX
†
t )

T ' dX†
t =

∫ tn+1

tn

(AX
†
t )

TdX†
t +

Δtγ

2
AT : M. (80)

Hence M playes the role of the integrated autocorrelation function of P
(ε)
t in

our approach. We note that the modified quadrature rule reduces to the standard
Stratonovitch integral if either β = 0 in (59) or A is symmetric. While the results
from [8] could, therefore, also be used as a starting point for discussing the induced
estimation bias, practical implementations would still require knowledge of the
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integrated autocorrelation function of P (ε)
t or, equivalently, the estimation of M in

addition to observing X
(ε)
t . We address this aspect next.

The numerical implementation of (74) requires an estimator for the generally
unknown M in (73). This task is challenging as we only have access to X

(ε)
t

without any explicit knowledge of the underlying generating process (58). While
the estimator proposed in [9] is based on the idea of subsampling the data, the
frequentist perspective taken in this note suggests the alternative estimator Mest
defined by

Δt γ

2
Mest = E

†[X(ε)
tn,tn+1

], (81)

which follows from (72f) and (52). That is, E
†[X†

tn,tn+1
] = O(Δt2) for Δt

sufficiently small. Note that second-order iterated integral X(ε)
tn,tn+1

satisfies (70) and
is therefore easy to compute. In practice, the frequentist expectation value can be
replaced by an approximation along a given single observation path X

(ε)
t , t ∈ [0, T ],

under the assumption of ergodicity.
An appropriate choice of the outer or sub-sampling step-size Δt [27] constitutes

an important aspect for the practical implementation of the EnKBF formulation (62)
for finite values of ε > 0 [26]. Consistency of the second-order iterated integrals
[13] implies

X
(ε)
tn,tn+2

= X
(ε)
tn,tn+1

+ X
(ε)
tn+1,tn+2

+X
(ε)
tn,tn+1

⊗X
(ε)
tn+1,tn+2

. (82)

A sensible choice of Δt is dictated by

E
†
[
X

(ε)
tn,tn+1

⊗X
(ε)
tn+1,tn+2

]
= O(Δt2) , (83)

that is, the sub-sampled data X
(ε)
tn

behaves to leading order like solution increments
from the reference model (2) at scale Δt independent of the specific value of ε. Note
that, on the other hand,

E
†
[
X(ε)

τl ,τl+1
⊗X(ε)

τl+1,τl+2

]
= O(ε−1Δτ 2) (84)

for an inner step-size Δτ ∼ ε. In other words, a suitable step-size Δt > 0 can be
defined by making

h(Δt) := Δt−2
∥∥∥E†

[
X

(ε)
tn,tn+1

⊗X
(ε)
tn+1,tn+2

]∥∥∥ (85)

as small as possible while still guaranteeing an accurate numerical approximation
in (62).
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Remark 8 The choice of the outer time step Δt is less critical for the EnKBF
formulation (74) since it does not rely on sub-sampling the data and is robust
with regard to perturbations in the data provided the appropriate M is explicitly
available or has been estimated from the available data using (81). Furthermore, if
A is symmetric, then it follows from (75) and the skew-symmetry of the commutator
[., .] that

∫ tn+1

tn

(AX
(ε)
t )TdX(ε)

t = A :
(
X

(ε)
tn+1/2

⊗X
(ε)
tn,tn+1

)
, (86)

which can be used in (74). The same simplification arises when M is symmetric.
This insight is at the heart of the geometric rough path approach followed in [9]
and which starts from the Stratonovich formulation (25) of the EnKBF. See also
[28] on the convergence of Wong–Zakai approximations for stochastic differential
equations. In all other cases, a more refined numerical approximation of the data-
driven integral in (74) is necessary; such as, for example, (31). For that reason, we
rely on the Itô/Euler–Maruyama interpretation of (68) in this note instead, that is the
approximation (12).

5 Numerical Example

We consider the linear SDE (2) with γ = 1 and

A = −1

2

(
1 −1
1 1

)
. (87)

We find that C = I and ATA = 1/2I . Hence (ATA) : C = 1, and the posterior
variance simply satisfies σt = σ0/(1 + σ0t) according to (44). We set mprior = 0
and σprior = 4 for the Gaussian prior distribution of Θ0, and the observation interval
is [0, T ] with T = 6. We find that σT = 0.16. Solving (39) for given σt with initial
condition m0 = 0 yields

mt = 1 − σt

σ0
(88)

and mT = 0.96. The corresponding curves are displayed in red in Fig. 2.
We implement the EnKBF schemes (20) and (30) with tn = nΔt . The inner

time-step is Δτ = 10−4 while Δt = 0.06, that is, L = 600. We repeat the
experiment N = 104 times and compare the outcome with the predicted mean value
of mT = 0.96 and the posterior variance of σT = 0.16 in Fig. 2. The differences
in the computed time evolutions of mt and pt are rather minor and support the
idea that it is not necessary to assimilate continuous-time data beyond Δt . We
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Fig. 2 (a–b) Frequentist mean, mt and variance, pt , from EnKBF implementation (20) with step-
size Δt = 0.06; (c–d) Same results from EnKBF implementation (30) with inner time-step Δτ =
Δt/600. We also display the curves arising for σt and mt from the standard Kalman theory using
the approximation (22). Note that the posterior variance, σt , should provide an upper bound on the
frequentist uncertainty pt
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Fig. 3 Same experimental setting as in Fig. 2 but with the data now generated from the multi-scale
SDE (58). Again, subsampling the data in intervals of Δt = 0.06 and high-frequency assimilation
with step-size Δτ = 10−4 lead to very similar results in terms of their frequentist means and
variances

also find that the simple prediction (88), based on standard Kalman filter theory,
is not very accurate for this low-dimensional problem (d = 2). The corresponding
approximation for σt provides, however, a good upper bound for pt .

We now replace the data generating SDE model (2) by the multi-scale formula-
tion (58) with ε = 0.01 and β = 2. This parameter choice agrees with the one used
in [9]. We again find that assimilating the data at the slow time-scale Δt = 0.06
leads to very similar results obtained from an assimilation at the fast time-scale
Δτ = 10−4 with the EnKBF formulation (74), provided the correction term
resulting from the second-order iterated integral (73) is included (See Fig. 3). We
also verified numerically that Δt = 0.06 constitutes a nearly optimal step-size in the
sense of making (85) sufficiently small while maintaining numerical accuracy. For
example, reducing the outer step-size to Δt = 0.02 leads to h(0.02)−h(0.06) ≈ 10
in (85).
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6 Conclusions

In this follow-up note to [9], we have investigated the impact of subsampling and/or
high-frequency data assimilation on the corresponding conditional mean estimators,
μt , both for data generated from the standard SDE model and a modified multi-scale
SDE. A frequentist analysis supports the basic finding that both approaches lead to
comparable results provided that the systematic biases due to different second-order
iterated integrals are properly accounted for. While the EnKBF is relatively easy to
analyse and a full rough path approach can be avoided, extending these results to
the nonlinear feedback particle filter [26, 9] will prove more challenging. Extensions
to systems without a strong scale separation [4, 31] and applications to geophysical
fluid dynamics [22, 12] are also of interest. In this context, the approximation quality
of the proposed estimator (81) and the choice of the step-size Δt following (85) (and
potentially Δτ ) will be of particular interest. Finally, while we have investigated the
univariate parameter estimation problem, a semi-parametric parametrisation of the
drift term f in (1), such as random feature maps [21], lead to high-dimensional
parameter estimation problems and their statistics [19, 20]. This provides another
fertile direction for future research.
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Random Ocean Swell-Rays: A Stochastic
Framework

Valentin Resseguier, Erwan Hascoët, and Bertrand Chapron

1 Introduction

Originating from distant storms, swell systems radiate across all ocean basins
(Snodgrass et al., 1966; Collard et al., 2009; Ardhuin et al., 2009). Far from their
sources, emerging surface waves have low steepness characteristics, with very
slow amplitude variations. Swell propagation then closely follows principles of
geometrical optics, i.e. the eikonal approximation to the wave equation, with a
constant wave period along geodesics, when following a wave packet at its group
velocity. The phase averaged evolution of quasi-linear wave fields is then dominated
by interactions with underlying current and/or topography changes (Phillips, 1977).
Comparable to the propagation of light in a slowly varying medium, over many
wavelengths, cumulative effects can lead to refraction, i.e. change of the direction of
propagation of a given wave packet, so that it departs from its initial ray-propagation
direction. This opens the possibility of using surface swell systems as probes to
estimate turbulence along their propagating path.

For a single progressive swell wave train, a description of the form

h(x, t) = a(x, t)eiφ(x,t), (1)
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is locally possible for most wave properties, i.e. the surface elevation, slope, orbital
velocities. If the wave-ray propagation is to be followed, or predicted, the phase,
φ(x, t), must vary smoothly along the wave’s path. Mathematically, φ(x, t) is
required to be differentiable, to define the relative frequency

ω = −∂tφ(x, t), (2)

and the wave number vector

k = ∇φ(x, t). (3)

These partial derivatives of φ(x, t) being independent of the differentiation order,
the kinematical conservation equation for the density of waves writes

− ∇ω = ∂tk, (4)

with the irrotational condition

∇ × k = 0, (5)

to serve as an initial condition for use with Kelvin’s circulation theorem. The rate
of change of the wave-number is balanced by the convergence of the frequency, the
number of wave crests passing a fixed point.

Let us now consider an ocean moving with velocity v, slowly varying with
respect to time and space. The frequency of wave crests passing a fixed point, i.e.
the apparent frequency, becomes

ω = ω0 + v · k, (6)

with ω0 = f (k,H), H the depth, the intrinsic frequency, whose functional
dependence on k is known. For gravity waves, this dispersion relationship is

ω0 = √
g‖k‖ tanh ‖k‖H, (7)

and thus

∂tk + ∂kω0∇k + ∂Hω0∇H + l · v∇‖k‖ + ‖k‖∇(l · v) = 0, (8)

with l is a unit vector in the direction of k and k = ‖k‖. Consequently, for a steady
wave train, the variation of the wave-number magnitude along the propagation s is

∂s‖k‖ = −(cg + l · v)−1[∂Hω0∂sH + ‖k‖∂s(l · v)], (9)

with cg = ∂kω0, the local group velocity. Using the irrotational condition, the
evolution of the ray direction, θ(s), follows
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∂sθ = −(cg + l · v)−1[ 1

‖k‖∂Hω0∂νH + ∂ν(l · v)], (10)

where ν is unit vector normal to the direction of the ray. Accordingly, wave
trajectories will bend with depth variations. For deep water, the dispersion rela-
tionship reduces to ω0 = √

g‖k‖, and θ(s) solely depends upon the ratio between
the cross-ray current gradient and the local group velocity. More generally, this
result extends to the ray curvature, being to first order controlled by ζ/cg , the
ratio between ζ = ∇ × v, the vertical component of the current vorticity, and
cg = ∂kω0 = ω/2‖k‖, the group velocity. Accordingly, the rays will bend in the
direction of decreasing (increasing) current speed. Moreover, a potential velocity
field will give little refraction. Yet, a potential velocity field will control the variation
of the wave-number magnitude, and thus the group velocity and bending, along the
propagation.

To specify the local linear wave propagation, a precise knowledge of the surface
currents, local gradients and/or vorticity, thus appears essential. In a realistic numer-
ical setting, Ardhuin et al. (2017) clearly demonstrated that wave energy variations
would largely be dominated by the effects of ocean currents at scales of about
10–100 km. From altimeter ocean surface wave energy measurements, Quilfen
and Chapron (2019) also showed that mesoscale and sub-mesoscale upper ocean
circulation can drive a significant part of the wave variability in the coupled ocean-
atmosphere system. Unfortunately, these small-scale currents are not observed
and certainly not resolved in operational models. Today, a precise spatio-temporal
information is thus largely missing. To overcome these observation difficulties, but
to best take into account unresolved small-scale currents, a stochastic framework
can be adopted. Such a stochastic model shall then provide means to perform fast
simulations and test ensembles of wave-propagation predictions, to best evaluate
impacts of underlying near-surface small-scale currents on the evolution of ocean
surface swell systems.

2 Random Swell-Rays

To first order in wave steepness, the group velocity vg is modified by the local
velocity of the currents v,

dx

dt
= vg = ∇kω = ∇kω0(k)︸ ︷︷ ︸

Group velocity
without currents

but changing wave vector

+v, (11)

where x is the centroid of a wave group. The ray direction can thus differ from
the direction of the wave vector, except in the case of parallel wave and current
directions. Unlike depth refraction, the crest alignment does not indicate the wave
propagation direction. The coupled wave vector evolution writes
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dk

dt
= −∇vT k. (12)

Along the propagation ray, velocity gradients induce linear variations. Decelerating
currents will shorten waves, and thus reduce the group velocity. The validity of this
coupled ray approximation largely depends on the condition ‖k‖ξ ! 1, where ξ is
a length scale on which the current field is varying, physically corresponding to the
typical eddy size. This condition is well satisfied for wave numbers of interest, of
order ‖k‖ ∼ 2π/250 rad.m−1, and typical eddy size ξ ∼ 5 km or larger. Scattering
of the waves by currents can further be assumed to be weak, with ‖v‖ of order
0.5 m/s, much smaller than ‖vg‖ of order 10 m/s. Subsequently, each ray will be
appreciably deflected, with scattering angle of order ∼‖v‖/‖vg‖ after traveling a
typical correlation length ∼ξ along the mean wave vector direction.

To complete the wave field description, the wave action A(x, t) is considered to
be an adiabatic invariant. Wave action is crucial to anticipate wave transformations
by currents (White and Fornberg, 1998). This action is the integral of the action
spectrum N(x, k, t) over all the wave-vectors k:

A(x, t) =
∫

dk N(x, k, t). (13)

The wave action spectrum N is the action by unit of surface (unit of x) and by unit
of wave-vector surface (unit of k). For linear waves, the wave action spectrum is
simply related to the wave energy spectrum E:

E(x, k, t) = N(x, k, t) ω0(k). (14)

By the Liouville theorem, the (x, k) space does not contract nor dilate along
time1 Since the dissipation is neglected, the wave action spectrum N is thus
conserved (Lavrenov, 2013), i.e.

N (x(ti), k(ti), ti ) = N
(
x(tf ), k(tf ), tf

)
, (15)

along the following (x, k) variable change between initial time ti and the final time
tf :

(
x(ti)

k(ti)

)
�→

(
x(tf )

k(tf )

)
. (16)

1
[∇x

∇k

]
·
(

d
dt

[
x

k

])
=
[∇x

∇k

]
·
([

v

−∇xvT k

])
= ∇x · v − ∇x · v = 0.
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Subsequently, each Fourier mode of a swell wave train can be modified, indepen-
dently of the others. In absence of source terms, the action spectrum conservation
(15) then writes:

dN

dt
= ∂tN + vg ·∇xN +

(
−∇xvT k

)
·∇kN = 0. (17)

3 The Time-Decorrelation Assumption

Now, the Eulerian current v is decomposed into a large-scale component v and a
small-scale unresolved component v′:

v = v + v′. (18)

In a stochastic framework, we can work with the Stratonovich notations
(Oksendal, 1998; Kunita, 1997). Under Stratonovich calculus rules, expressions
become similar to deterministic ones. The Stratonovich dispersion relation is
analogous to the deterministic one (6). The method of characteristics is also valid,
(11), (12), and (15), with v′ defined by σ◦dBt/dt , where dBt/dt is a spatio-temporal
white noise and σ◦ denotes a spatial filter which encodes spatial correlations and
horizontal incompressibility (∇ · σ = 0). For a spatially stationary and isotropic
small-scale velocity, the wave characteristic dynamics equations (11), (12) and (15)
would then also remain the same with Ito notations (i.e. we can replace σ ◦ dBt by
σdBt to derive the evolution). With Ito notations, the action spectrum conservation
(17) writes

∂tN + vg · ∇xN +
(
−∇xvT k

)
· ∇kN =

[∇x

∇k

]
·
(

D

[∇x

∇k

]
N

)
, (19)

where vg and v include the random small-scale component v′ = σdBt/dt , and

D = 1

2dt
E

{[
σdBt

−∇x(σdBt)
T k

] [
σdBt

−∇x(σdBt)
T k

]T}
. (20)

Compared to (17), a RHS diffusive term appears, likely acting to increase the initial
directional spread of the incident very directional swell components.

Voronovich (1991) and White and Fornberg (1998) discussed the joint random
evolution changes of the coupled (x, k), i.e. the location and the wave vector of
waves, subject to a random current v. Considering the wave train to undergo slow
changes over the typical time to travel through the typical correlation length of the
underlying current, the joint time evolution of (x, k) can be approximated to be
driven by a diffusion Markov process.
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3.1 The Ray Lagrangian Correlation Time

To apply (19), the covariance of the small-scale unresolved component v′ – in the
wave group frame – is thus to be assessed:

γ
Xr

v′ (t) = E
(
v′(t ′,Xr (t

′)) · v′(t ′ + t,Xr (t
′ + t))

) = γv′(t,Xr (t
′+t)−Xr (t

′)),
(21)

where γv′ is the (Eulerian) spatio-temporal covariance of v′, assuming statistical
homogeneity, and stationarity for v′. Assume a typical isotropic form for this
covariance:

γv′(t, x) = γ

( |t |
τv′

+ ‖x‖
lv′

)
, (22)

then,

γ
Xr

v′ (t) = γ

( |t |
τv′

+ ‖Xr (t
′ + t)− Xr (t

′)‖
lv′

)
= γ

((
1

τv′
+ ‖vg‖

lv′

)
|t | +O(t2)

)
,

(23)

for small time increment t . Therefore,
(

1
τv′

+ ‖vg‖
lv′

)−1
is the correlation time of

v′(t,Xr (t)). The same derivation is valid for ∇(v′)T (t,Xr (t)). Over deep ocean,

the swell wave group velocity is ‖v0
g‖ = ‖∇kω0‖ = 1

2

√
g
‖k‖ , and the along-ray

correlation time of the small-scale velocity can be approximated by lv′/‖v0
g‖. The

ratio ε between this along-ray correlation time and the characteristic time of the
wave group properties evolution, will then control the time decorrelation assumption
of v′:

ε = lv′

‖v0
g‖

‖∇vT ‖. (24)

Note the Eulerian small-scale velocity v′ is not necessarily time uncorrelated. Yet,
for small enough ε, the Lagrangian small-scale velocity along the ray can be
considered time uncorrelated. From the expression of ε, such a condition depends
upon:

– ‖v0
g‖, increasing with the square root of the wave-group wave number. Hence, ε

decreases with the square root of the wave-group wave-length.
– lv′ , defined by the separation between large scales v and small scales v′, e.g. the

spatial filtering cutoff of the large-scale velocity v.
– ‖∇vT ‖ – which is different from ‖∇(v′)T ‖ –, related to the overall kinetic energy

(KE) and its high-wavenumber spectral slope.
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3.2 Ray Absolute Diffusivity

The absolute diffusivity (or Kubo-type formula) usually corresponds, in the so-
called diffusive regime, to the variance per unit of time of a fluid particle Lagrangian
path dX

dt
= v. It is approximately equal to the velocity variance times its correlation

time. The Eulerian velocity covariance (22) will thus induce an absolute diffusivity

a =
∫ ∞

0
dt γv′(t,X(t ′ + t)− X(t ′)) ≈ γ (0) τv′ . (25)

Here, a wave group is followed along its propagation, and a ray absolute diffusivity
slightly differs from the usual absolute diffusivity to become

aXr =
∫ ∞

0
dt γ

Xr

v′ (t) ≈
(

1

τv′
+ ‖vg‖

lv′

)−1

γ (0) ≈ lv′

‖v0
g‖

γ (0). (26)

In the Fourier space, the current Absolute Diffusivity Spectral Densisty (ADSD)
(Resseguier et al., 2020) associated with the wave dynamics is defined by

AXr (k) = 1/k

‖v0
g(k

Xr )‖ Ek(k), (27)

where kXr denotes the wave wave-vector, k the current wave number and Ek the
current kinetic energy spectra. Accordingly, for noise calibration, we assume AXr

self-similar and we choose a divergence-free spatial filter ∇⊥ψσ such that v′ =
σdBt/dt = ∇⊥ψ̆σ * dBt/dt and ‖σ̂dBt(k)‖2/dt = |k ̂̆ψσ (k)|2 = A

Xr

v′ (k).

3.3 A Practical Estimation

To simplify (20), let us consider the solution for an homogeneous and isotropic
small-scale velocity v′ = σdBt/dt = ∇⊥ψ̆σ * dBt/dt and Matérn stream function
covariance, (ψ̆σ ∗ ψ̆σ ), leading to

D = 1

2dt

⎡
⎢⎢⎢⎣
E

{
(σdBt )(σdBt )

T
} 0 0

0 0

0 0

0 0

∑2
ij=1 kikj E

{
(∇x(σdBt )i)(∇x(σdBt )j )

T
}

⎤
⎥⎥⎥⎦ , (28)

=

⎡
⎢⎢⎢⎣

a0
2 Id

0 0

0 0

0 0

0 0

cκM
2

(
kkT + 3k⊥

(
k⊥

)T )

⎤
⎥⎥⎥⎦ , (29)
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where a0 = 1
2dtE‖σdBt‖2 and cκM = 1

8dtE‖∇x(σdBt)
T ‖2 are constants depending

on both the correlation length and the spectrum slope of the small-scale velocity.
The Ito action spectrum equation (19) then reads:

∂tN + vg ·∇xN +
(
−∇xvT k

)
·∇kN

= ∇x ·
(

1
2a0∇xN

)
+ ∇k ·

(
1
2cκM

[
kkT + 3k⊥ (k⊥)T ]∇kN

)
, (30)

= 1
2a0ΔxN + 1

2cκM
1

‖k‖∂‖k‖
(
‖k‖3∂‖k‖N

)
+ 3 1

2cκM ∂2
θk
N. (31)

The ensemble mean then follows:

∂tEN + vg ·∇xEN +
(
−∇xvT k

)
·∇kEN

= 1
2a0ΔxEN + 1

2cκM
1

‖k‖∂‖k‖
(
‖k‖3∂‖k‖EN

)
+ 3 1

2cκM ∂2
θk
EN, (32)

This last RHS diffusion term along the ray-direction θ is then reminiscent to Eq.
3.16 in Bôas and Young (2020) and Eq. 36 in Smit and Janssen (2019) derived
under the same isotropic and homogeneous turbulence assumptions.

4 Numerical Simulations

To illustrate our purpose, we consider the Surface Quasi-Geostrophic dynamics
(Pierrehumbert, 1994; Lapeyre, 2017), abbreviated SQG:

(∂t + v ·∇)

(
− b

N

)
= 0 with v = vSQG = −∇⊥(−Δ)−1/2

(
− b

N

)
. (33)

Note, real-upper-ocean currents may not strictly follow SQG. Still, after a wind
burst, it can be a good approximation at many mid-latitude locations. SQG
corresponds to dynamics with extreme locality, i.e a KE spectrum with a shallow
slope −5/3. Hence, for fixed KE value, a larger current gradient ‖∇vT ‖ is expected.
The validity of the time-decorrelation assumption of Sect. 3 will then depend upon
the scale separation, defining the correlation length of the unresolved scales.

A reference simulation is obtained at a resolution 512 × 512 for a 1000-km
squared domain, through a pseudo-spectral code (Resseguier et al., 2017, 2020).

Once initialized, the current velocity v is about 0.1 m.s−1.
A swell system enters the southern boundary, propagating to the north. The

carrier incident wave has a wave length λ = 250 m. Its envelope is Gaussian
with an isotropic spatial extension of 30λ. Figure 1 illustrates the branched regime



Random Ocean Swell-Rays 267

Fig. 1 Swell interacting with
a high-resolution (512 × 512)
deterministic SQG current.
The left panel shows ray
trajectories computed by
forward advection and
superimposed on the current
vorticity ω = ∇⊥ · v. The
right panel shows
bidirectional wave spectra,
computed by backward
advection, at 8 locations
along a meridional axis (the
mean wave propagation
direction)
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in this homogeneous SQG turbulence. This regime spreads the positions (left
panel) and wavevectors (right panel) of the incoming waves. From south to north,
spectral diffusion occurs (right panel), in the direction orthogonal (here kx) to
the propagation (here ky). This accelerates – along the propagation – the zonal
wave position spread, to create the branched regime visible in the left panel. This
acceleration is explained by the ray equation (11) dominated by the intrinsic wave
group velocity ∇kω0 = ‖∇kω0‖‖k‖ k.

To mimic a badly resolved v, the current v is smoothed at a resolution 32 × 32.
Wave dynamics, using this coarse-scale current, are obtained Fig. 2. The branched
regime is strongly weakened, i.e. the spectral small-scale turbulence diffusion is
missing.

A stochastic current is then added to this coarse deterministic one. That stochastic
component is divergence-free and has a self-similar distribution of energy across
spatial scales. Its precise parametrisation is a modification of the ADSD calibration
(Resseguier et al., 2020) (see Sect. 3.2). Figure 3 displays the wave simulations.
This white-in-time model appears to work for a sufficiently well-resolved large-
scale current. Indeed, the decorrelation ratio ε = (lv′/‖v0

g‖)‖∇vT ‖ depends on this
resolution through lv′ . Specifically, for this SQG flow, the large-scale current v needs
to be resolved at least on a 32 × 32 grid, i.e. with a resolution lv′ = 31.3 km. As
such, we obtain ε = 3.23 × 10−2 (computed with 1/‖∇vT ‖ = 1.38 × 105 s and
Cg � 10 m.s−1).

5 Conclusion

The presence of velocity variations results in random scattering of swell-wave rays.
Interactions are weak, but cumulative effects can become significant, to increase
the average path length taken by the swell energy to reach an observer. Nowadays,
sufficiently precise measurements can then open the possibility to use along-ray
measurements to probe the near-surface ocean turbulence. Under a Lagrangian
time-decorrelation assumption and using geometrical optics, a practical stochastic
framework helps express these scattering effects on the mean swell-action statistics,
directly in terms of the KE spectrum of the unresolved surface current field. Results
are presented in both Lagrangian and Eulerian forms, where the latter augments
the initial radiative transport equation with a diffusive term in directional space.
Measured delays in swell arrivals, estimated wave height spectral characteristics
and decays, and/or varying directional spread of the swell field shall then be more
quantitatively interpreted to infer regional and seasonal upper ocean dynamical
properties.

Acknowledgments This work is supported by the R&T CNES R-S19/OT-0003-084, the ERC
project 856408-STUOD, the European Space Agency World Ocean Current project (ESA Contract
No. 4000130730/20/I-NB), and SCALIAN DS.
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Fig. 2 Swell interacting with
a low-resolution (32 × 32)
deterministic SQG current.
The left panel shows ray
trajectories computed by
forward advection and
superimposed on the
low-resolution current
vorticity ω = ∇⊥ · v. The
right panel shows
bidirectional wave spectra,
computed by backward
advection, at 8 locations
along a meridional axis (the
mean wave propagation
direction)
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Fig. 3 Swell interacting with
a low-resolution (32 × 32)
deterministic SQG current
plus (one realization of) the
time-uncorrelated stochastic
model. Ray trajectories are
computed by forward
advection and superimposed
on the low-resolution current
vorticity ω = ∇⊥ · v
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Modified (Hyper-)Viscosity for
Coarse-Resolution Ocean Models

Louis Thiry, Long Li, and Etienne Mémin

Abstract We present a simple parameterization for coarse-resolution ocean
models. To replace computationally expensive high-resolution ocean models, we
develop a computationally cheap parameterization for coarse-resolution models
based solely on the modification of the viscosity term in advection equations.
It is meant to reproduce the mean quantities like pressure, velocity, or vorticity
computed from a high-resolution reference solution or using observations. We
test this new parameterization on a double-gyre quasi-geostrophic model in the
eddy-permitting regime. Our results show that the proposed scheme improves
significantly the energy statistics and the intrinsic variability on the coarse mesh.
This method shall serve as a deterministic basis model for coarse-resolution
stochastic parameterizations in future works.

1 Introduction

Ocean general circulation models used at climatic scales are limited for evident
computational reasons to too coarse horizontal resolutions to solve correctly ocean
mesoscale and sub-mesoscale eddies, even with large computational infrastructure.
The horizontal resolution of the most recent climatic ocean models is of the order
of the Rossby radius of deformation. These models are hence in the so-called eddy-
permitting regime and they can solve partially the mesoscale (i.e. 10–100 km) eddy
field. These models however suffer from strong limitations. In particular, they are
unable to reproduce accurately large-scale structures such as the eastward turbulent
jet in an idealized double-gyre configuration.

Recent parameterizations have shown significant improvements in coarse-
resolution models compared to high-resolution reference solutions [2]. However, it
remains an important topic of research, as the actual generation of parametrizations
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is not completely able to resolve the effects of the unresolved scales on the large-
scale flow structures.

A wide range of subgrid parametrizations relies on eddy viscosity such as
Laplacian and biharmonic schemes [16, 10, 4, 3]. It has been shown in [9] that
including only these (hyper)viscosity in coarse-resolution models often causes too
much dissipation and results in an artificial energy sink at large scales. In general,
even eddy-permitting models are not energetic enough and as a result, the long-time
average of any coarse model’s variable of interest departs completely from the long-
time average of high-resolution models subsampled at the same scale. This becomes
the main motivation of the present work. In particular, we would like to answer the
following question: how can we reduce the excessive resolved kinetic energy loss
due to the viscosity while simultaneously ensuring numerical stability?

We propose a simple affine parameterization of (hyper)viscosity. The
(bi)laplacian operator 'pf is replaced by 'p

(
f − f ′), where f ′ is a field of

same dimension as f that does not depend upon time. We interpret this method
as a mathematical regularization technique to guide the solutions towards prior
information. We frame f ′ as the solution of an optimal control problem to reproduce
statistics computed from a reference solution or observations. We present a method
to solve this optimal control problem.

We test the proposed method with an idealized double-gyre configuration. For
that purpose, we release with this article a fast, concise, and CPU-GPU portable
Pytorch implementation of a multi-layer quasi-geostrophic model on a rectangular
domain. We implement and test our optimization procedure within this setting.

This article is organized as follows: we present in Sect. 2 the double gyre quasi-
geostrophic model we use and detail its implementation, we present in Sect. 3 our
modified viscosity parameterization and we show and discuss numerical results in
Sect. 4.

2 Double Gyre Quasi-Geostrophic Model

2.1 Governing Equations

We use the same multi-layer quasi-geostrophic model in a non-periodic rectangular
domain as in [6]. Here, we only give a brief review of this system. The quasi-
geostrophic pressure and potential vorticity (PV) are stacked in three isopycnal
layers. We adopt vector forms to denote the layered pressure and potential vorticity
(PV):

p =
⎡
⎣p1

p2

p3

⎤
⎦ , q =

⎡
⎣q1

q2

q3

⎤
⎦ .
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The forced and damped quasi-geostrophic (QG) equations can be then written as

∂tq = 1

f0
J (q,p)+ f0Be + 1

f0

(
a2'− a4'

2)('p), (1)

(
'− f 2

0 A
)
p = f0q − f0β(y − y0), (2)

where ' = ∂2
xx+∂2

yy denotes the horizontal Laplacian, '2 the bi-laplacian operator,
J (a, b) = ∂xa∂yb − ∂xb∂ya stands for the Jacobi operator, f0 + β(y − y0) is the
Coriolis parameter under beta-plane approximation with the meridional axis center
y0, a2 and a4 are the Laplacian and biharmonic viscosity coefficients. Parameters
of the configuration are listed in the Tables A.1 and A.2 in Appendix. Besides, the
second term on the right-hand side of Eq. (1) represents the external forcing applied
on different layers. In this work, we only consider an idealized case in which the
ocean basin is driven by a stationary and symmetric wind stress τ = (τ x, τ y) on
the surface and by a linear Ekman stress at the bottom. In that case, the forcing term
can be specified by

B =
⎡
⎢⎣

1
H1

−1
H1

0 0

0 1
H2

−1
H2

0

0 0 1
H3

−1
H3

⎤
⎥⎦ , e =

⎡
⎢⎢⎢⎣
∂xτ

y − ∂yτ
x

0
0

δek
2|f0|'p3

⎤
⎥⎥⎥⎦ , τ = τ0

[− cos(2πy/Ly)

0

]
,

where τ0 is the magnitude of surface wind, Hk is the background thickness of layer
k, and δek is the bottom Ekman layer thickness. The vertical stratification level of
such a model is described by the term −f 2

0 Ap in Eq. (2) with

A =

⎡
⎢⎢⎣

1
H1g

′
1.5

−1
H1g

′
1.5

0

−1
H2g

′
1.5

1
H2

(
1

g′1.5
+ 1

g′2.5

) −1
H2g

′
2.5

0 −1
H3g

′
2.5

1
H3g

′
2.5

⎤
⎥⎥⎦ ,

where gk+0.5 is the reduced gravity defined across the interface between layers k

and k + 1. A multi-layered generalization of this model can be found in [5]. Note
also that such a multi-layered model can be considered as a vertical discretized
approximation of the continuously stratified QG system [17] with ∂z(f0∂zp/N2) ≈
−f0Ap approximated by finite differences, and in which N denotes the buoyancy
(or Brunt-Vaisala) frequency.
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2.2 Pytorch Implementation

To facilitate numerical developments and benefit from built-in automatic differenti-
ation, we develop a Pytorch [12] implementation of the above-described multilayer
QG model.1 For this purpose, we follow rigorously the strategy of [7]:

1. we use a regular numerical grid with finite differences
2. We solve the PV advection equation (1) on the whole domain except the

boundaries. We use a standard 5-point finite difference scheme for the (bi-
)Laplacian and the energy-enstrophy conservative Arakawa-Lamb scheme for
the Jacobian [1].

3. We apply a vertical change of coordinate to Eq. (2) which becomes a set of
three inhomogeneous Helmholtz equations. We solve these equations with the
spectral Discrete Sine Transform (DST) method, and we add corresponding
homogeneous Helmholtz equation solutions to ensure mass conservation.

4. We update the boundary values of the potential vorticity q using Eq. (2).

Detailed equations and numerical routine design choices can be found in [7]. We use
a Heun–Runge–Kutta 2 time-stepping instead of the Leap-Frog time scheme used
by [7].

For sake of numerical efficiency, we follow the recommendation of [14]:
we compile computationally demanding routines and simplify finite difference
calculations by reducing as much as possible the number of multiplications. We end
up with a very concise code (less than 300 lines) that only depends upon Numpy
and Pytorch libraries. This implementation will be open-sourced at the time of the
publication.

2.3 Eddy-Resolving and Eddy-Permitting Regimes

We consider two spatial settings for our simulations:

1. The eddy-resolving regime, our high-resolution reference with a 5 km resolution.
2. The eddy-permitting regime, our low-resolution setting with a 40 km resolution.

Parameters for these two different regimes are written in Table A.2 in Appendix.
Shevchenko and Berloff [15] studied the resulting flows’ differences between

these two regimes. The high-resolution eddy-resolving model shows a well-
pronounced eastward jet fuelled by mesoscale eddies circulating while the
low-resolution eddy-permitting model does not induce a proper eastward jet as
shown on Fig. 1. Temporal statistics significantly differ between high- and low-
resolution simulations.

1 Available at https://github.com/louity/qgm_pytorch.
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Fig. 1 (Top) high-resolution and (bottom) low-resolution top-layer snapshots after 400 years of
integration starting from zero velocity. Velocities are in m s−1 and PV in s−1

3 Proposed Modified Viscosity

3.1 Motivation

In both resolutions, we use biharmonic viscosity as in [16, 10, 4, 3] essentially
because it is less dissipating at large scales than a Laplacian. Compared to the usual
Laplacian viscosity, it preserves large-scale structures. However, hyperviscosity
remains much too dissipative in the “eddy-permitting” regime [9]. This too strong
dissipation kills the eastward jet that is present in the high-resolution and that we
expect to see in such a double-gyre quasi-geostrophic model. Figure 2 shows a
sequence of snapshots of the low-resolution models where we input a downsampled
snapshot of the high-resolution (see Appendix for details on downsampling). After
as few as three years, the eastward jet has almost disappeared, showing that the
model is too dissipating. Lowering the hyper-viscosity coefficient by a factor of 10
does not solve this problem, and creates spurious gradients in the potential vorticity
as shown in Fig. 2. These numerical artifacts are due to a bad representation of the
direct enstrophy cascade, causing a piling up of the small-scale vorticity gradients
at the cut-off frequency together with aliasing effects.
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Fig. 2 (left) Initial condition: high-resolution snapshot on the low-resolution grid.(center and
right) Zonal velocity and potential vorticity (PV) snapshots after 3 years of integration at low-
resolution with Eqs. (1, 2) with (top) standard hyper-viscosity and (bottom) 10 times smaller
hyper-viscosity. We can see aliasing effects on potential vorticity snapshots integrated with low
hyper-viscosity

3.2 Modified Viscosity

Here we propose a simple affine modification parameterization of hyperviscosity.
We add a bias to the term 'p in Eq. (1), which becomes '

(
p − p′) where p′ is a

dimensional field that does not depend upon time. The PV advection equation with
hyperviscosity becomes

∂tq = 1

f0
J (q,p)+ f0Be + 1

f0

(
a2'− a4'

2) ('(p − p′)
)
. (3)

The elliptic equation (2) remains unchanged.
The goal of this additional term is to reproduce a relevant time-average pressure

field relying on observations or high-resolution solutions. For example the high-
resolution average pHR can be downsampled to the targeted coarse grid resolution
in pHR ↓, and we want the average of the modified low-resolution pLR model to be
as close as possible to the high-resolution reference pHR ↓.

We face here an optimal control problem, as the low-resolution average is a
function of the control parameter p′. We state it with the following least-square
formulation
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p′
opt = argmin

p′
F
(
p′) (4)

F
(
p′) = ∥∥ pLR

(
p′)− pHR ↓ ∥∥2 (5)

This optimization problem is a priori non-convex and we shall not expect to find
a global optimum. In the following, we propose a numerical procedure to find a
heuristic p̂′ of the optimal solution p′

opt.
Computationally, the implementation of this modified hyperviscosity is simple

and computationally cheap. We precompute 'p′ and subtract it from 'p at each
time-integration step. It increases the integration time of the advection equation (1)
by less than 1% on CPUs and GPUs.

3.3 Modified Viscosity Regularization

The continuously stratified QG equations can be rewritten in a variational formula-
tion [8] with a Hamiltonian J defined as

J(p) = 1

2

∫
�

1

f0
|∇p|2 + f0

N2
(∂zp)2.

Our model is a discretized version of the continuous stratification. Since we add an
external wind forcing term and we use an energy conservative Arakawa advection
scheme, we need to add some viscosity or hyperviscosity to dissipate energy.
In a variational formulation, these (hyper-)viscous terms become the following
penalization

1

2

∫
�

a2|'p|2 + a4 |∇ ('p)|2 ,

added to the Hamiltonian J(p) to produce a smooth solution. The Gradient norm
penalization of Laplacian p guides the minimization toward solutions of smooth
Laplacian. Hyperviscosity corresponds to the Laplacian norm penalization and
enforces a solution of minimum Laplacian norm. The parameters a2 and a4 quantify
the strength of these regularization constraints.

Here, we simply propose to replace it with the following penalization

1

2

∫
�

a2|'(p − p′)|2 + a4
∣∣∇ (

'(p − p′)
)∣∣2 .

We now penalize (p − p′) instead of p, meaning that we guide the solution to a
possibly non-smooth reference p′ that will produce the correct large scale behavior.
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3.4 Iterative Procedure

Here we present a method to find a solution to the optimization problem (4). A
natural guess for p′

opt is pHR ↓. We solve the equations and compute the average
pressure pLR. Results are shown in Fig. 4. It is a good first-guess, but the difference
pHR ↓ −pLR is still large.

We propose the following iterative procedure to find a better guess for p′
opt. In

the following we assume that we are in low resolution, i.e. p = pLR and p = pLR
unless explicitly written.

• We set p′
0 and we compute the average pressure p0 solving standard equations

(1, 2) without modified viscosity.
• Choose k ∈ ]0, 1].
• Start with p′

1 = pHR ↓.
• Evolve the ensemble for n years and compute the corresponding average pressure

p1 with ensemble average.
• For n = 1 . . . :

– Set p′
n+1 = p′

n + k
(
pHR ↓ −pn

)
.

– Evolve the ensemble for n years and compute new average pressure pn+1.

• return p′
n and pn

There is no theoretical guarantee that this procedure converges, but we observe
in the next section that it converges with the double-gyre QG model that we use.

4 Results and Discussion

4.1 Statistics

We use ensemble averages to compute the statistics. To create ensembles of size N ,
we start from a zero solution and spin up the models for 100 years with a timestep
of 1200 s to reach statistically steady states as in [13]. Then we run the models for
500 years and save 10 snapshots a year to get 5000 snapshots, and we randomly
select N snapshots out of these 5000 snapshots. The ensemble averages are simply
average over these N ensemble members that we evolve in parallel. Such ensemble
averages are denoted with • in the following, i.e. the average pressure is denoted by
p, average velocity by u, etc.



Modified (Hyper-)Viscosity for Coarse-Resolution Ocean Models 281

Fig. 3 Evolution of the relative square error ‖pn−pHR↓‖2

‖pHR↓‖2 w.r.t iterations of the procedure

Fig. 4 Top-layer average pressure (top) and velocity (bottom) of (left-to-right) proposed model at
low-resolution, reference, and the difference between the two

4.2 Iterative Procedure

We test the iterative procedure described in Sect. 4.2 with the double-gyre model
presented in Sect. 2 in the eddy-permitting regime. We use n = 10 years to evolve
the ensemble after each iterate. We compute the reference pressure average pHR
with the same model in the eddy-resolving regime.

Figure 3 shows the relative square error ‖pn−pHR ↓ ‖2/‖pHR ↓ ‖2 at iterations
of the procedure with k = 1 and k = 0.7. The procedure converges with k = 0.7
and oscillates with k = 1.

Figure 4 shows the output average pressure pn of the iterative procedure, the
reference pHR and the difference between the two, as well as for zonal velocity u .
Our model can reproduce the eastward jet produced by the high-resolution reference



282 L. Thiry et al.

Fig. 5 Top-layer kinetic-energy spectra average with models at high-resolution (HR), at low-
resolution (LR) and at low-resolution with proposed modified viscosity. The decreasing slope of
the spectrum of the proposed model is much closer to the high-resolution reference

Fig. 6 PV and zonal velocity snapshots form (left-to-right) high-resolution, low-resolution and
proposed model at low-resolution

model. Kinetic energy spectra shown on Fig. 5 shows also the improvement of our
model compared to low-resolution. Finally, Fig. 6 shows high-resolution and low-
resolution snapshots as well as a snapshot of the proposed model at low-resolution.
Our model effectively produces the eastward jet and a re-circulation zone around it
where eddies are created. Artifacts can be also observed on the zonal velocity and
potential vorticity on the right of Fig. 6. They can likely be Rossby waves created
by the harmonic regularization terms, which remain an artificial constraint, but this
needs to be studied further.
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5 Conclusion

We presented a simple modified-viscosity scheme for coarse resolution ocean
modeling that we derived and tested on a double-gyre multi-layer quasi-geostrophic
model. We interpret it as a modified regularization technique that will guide the
solution to a reference rather than producing a too smooth solution in the eddy-
permitting regime. The technique requires solving an optimization problem, and we
presented a procedure to find a good guess for the solutions. We showed that it
converges to a reasonable solution that fairly reproduces the input reference.

If this method mimics the average of the high-resolution, it only reproduces
partially the variability and higher-order statistics of the high-resolution. We see
in Fig. 5 our model’s snapshots resemble the averages. In future works, we consider
using this method as a deterministic basis for stochastic parameterizations such as
Location-Uncertainty [11].

Appendix

Downsampling Procedure

Downsampling the high-resolution solution on a low-resolution grid consists of
interpolating the high-resolution (769 × 961) streamfunction on the low-resolution
(97× 121) grid. Then we can compute the potential vorticity using Eq. (2). Because
of the no-flow constraint, the downsampled streamfunction should be constant on
the boundaries and should satisfy a mass conservation constraint [7]. We also want
to preserve the frequency information and prevent aliasing.

We use the following procedure:

1. we apply a Gaussian filter and downsample the streamfunction on the domain
except on the boundaries.

2. we adding homogeneous solutions of the Elliptic equation (2) to the streamfunc-
tion in order to satisfy the mass conservation as in [7].
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Parameter Tables

Table A.1 Common parameters for all the models

Parameters Value Description

Lx × Ly (3840 × 4800) km Domain size

Hk (350, 750, 2900) m Mean layer thickness

g′k (0.025, 0.0125) m s−2 Reduced grativity

δek 2 m Bottom Ekman layer thickness

τ0 2 × 10−5 m2 s−2 Wind stress magantitude

a2 0 m2 s−1 Laplacian viscosity coefficient

f0 9.375 × 10−5 s−1 Mean Coriolis parameter

β 1.754 × 10−11 (m s)−1 Coriolis parameter gradient

Table A.2 Grid-dependent parameters

Grid dimensions Resolution Timestep Hyperviscosity (a4)

769 × 961 5 km 600 s 2.0 × 109 m4 s−1

97 × 121 40 km 1200 s 5.0 × 1011 m4 s−1
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Primitive Equations Under Location
Uncertainty: Analytical Description and
Model Development

Francesco L. Tucciarone, Etienne Mémin, and Long Li

Abstract Resolving numerically all the scale interactions of ocean dynamics in a
high resolution realistic configuration is today far beyond reach, and only large scale
representations can be afforded. In this work, we study a stochastic parameterization
of the ocean primitive equations derived within the modelling under location
uncertainty framework. First numerical assessments built with the NEMO core’s
code are provided for a double-gyres configuration.

Keywords Stochastic parametrization · Ocean modelling

1 Introduction

The Ocean covers a major part of Earth’s surface and has an important stabilizing
effect on the climate. For climatic prediction, accurate likely ensemble forecasts
of future ocean states are consequently essential. However, due to an evident
computational limitation high resolution simulations are completely unfeasible and
only large-scale ocean representations can be handled. To face this difficulty, and
the need of generating different likely future scenarios, there has been a growing
interest in the geophysical sciences to set up flow models that incorporate in their
dynamics noise terms related to uncertainties or errors. In accounting for the actions
of unresolved processes in a random way, these stochastic models are in general
less diffusive than the classical large-scale deterministic models. The unresolved
processes include small-scale turbulence effects, boundary value uncertainties or
uncertainties coming either from scale coarsening or from the numerical schemes
used. Moreover, compared to classical large-scale deterministic modelling, the
additional degree of freedom brought by the stochastic component allows us to
devise new intermediate models [4, 3, 6, 7, 8]. The addition of noise in fluid
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dynamics models cannot be done in a haphazard manner. Ad-hoc choices for
model noise can fundamentally perturb the corresponding fluid dynamics models,
making them exhibit unrealistic properties [3]. Rigorously justified methodologies
for choosing the model noise have recently been introduced by Mémin [1] and Holm
[2]. These derivations lead to large classes of stochastic geophysical fluid dynamics
models that preserve either energy or circulation, respectively. Such models natu-
rally emerge from a decomposition of the flow velocity field in terms of a smooth
component and a time uncorrelated uncertainty random term. This decomposition
is reminiscent, in spirit, of the classical Reynolds decomposition, and enables the
definition of large-scale representation with a stochastic term representing small-
scale effects. The Location Uncertainty (LU) formulation has been found to be
more accurate in structuring the large-scale flow [4] and in reproducing long-terms
statistics [22] for the barotropic quasi-geostrophic model. It also provides a good
trade-off between model error representation and ensemble spread [21, 23] for the
rotating shallow water model and the surface quasi-geostrophic model. In this work
we explore more specifically a stochastic version of the primitive equations, named
primitive equations under Location Uncertainty. The derivation of this model is
detailed and first numerical experiments built from the NEMO code are assessed.

2 Location Uncertainty (LU)

In the LU formalism, the Lagrangian displacement Xt associated to a fluid particle
is decomposed as:

Xt (x) = Xt0 (x)+
∫ t

0
v (Xs (x) , s) ds +

∫ t

0
σ (Xs (x) , s) dBs , (1)

where X : Ω×IR+ → Ω is the fluid flow map, that is the trajectory followed by fluid
particles starting at initial map X|t=0 (x) = x0 of the bounded domain Ω ⊂ IR3.
Written in differential form Eq. (1) takes the usual form:

dXt (x0) = v (Xt , t) dt + σ (Xt , t) dBt . (2)

The first component, v (Xt , t), represents the smooth, resolved velocity field of the
flow. It corresponds to the integration of the equations of motions, solved on a
grid of a given resolution, and it is supposed to be both spatially and temporally
correlated. The second term, σ (Xt , t) dBt , is a stochastic process that assembles
the unresolved flow component, uncertainties on the flow and turbulent effects. This
stochastic contribution, often referred to as noise in the following, is built from the
application of an Hilbert-Schmidt kernel integral operator, σ , to an I3−cylindrical
Wiener process B
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(σ (Xt , t) dBt )
i =

∫
Ω

σ̆ik (Xt , y, t) dBk
t (y) dy, (3)

where B is defined on a filtered probability space {Ω,F ,P, (Ft )t } and (Ft )t is
the filtration adapted to B. The application of the (integrable) kernel σ̆ imposes
fast/small scales spatial correlation and defines a centered Gaussian process σdBt ∼
N (0,Qdt), with covariance tensor defined as

Qij (x, y, t, s) = E
[
(σ (x, t) dBt )

i (σ (y, s) dBs)
j
]

= δ (t − s) dt
∫
Ω

σ̆ik (x, z, t) σ̆kj (z, y, s) dz.

The strength of the noise is measured by the diagonal components of the covariance
tensor per unit of time, i.e. the variance tensor, a, defined as a(x, t)δ(t − t ′)dt =
Q(x, x, t, t ′). The variance tensor is symmetric and positive definite at any point x
of the domain. Notably, it has the dimension of a viscosity in m2s−1. The covariance
operator is self-adjoint, positive definite and compact and admits a convenient
spectral decomposition.

In this paper, the noise will always be assumed to be centred, but it can be proven
through Girsanov theorem that one can redefine the Lagrangian displacement (2) as

dXt (x0) = [v (Xt , t)− μt (Xt )] dt + σdB̃t (Xt ) , (4)

where the Wiener process B̃t is a centred process under a new probability measure
Q drifted by μt . Indeed a non centred Wiener process shifted by a random process
(Yt )t can be defined as:

B̃t = Bt +
∫ t

0
Ys ds. (5)

Under good properties of (Y)t ( Ft -measurability, almost sure L2−integrability and
Novikov condition) there exists a measure Q such that (B̃t )t is a Q− Wiener process
With the non centred random process B̃t we can rewrite the equations with respect
to B̃t as

σdBt (Xt ) = σdB̃t (Xt )− σ (Xt , t)Yt dt. (6)

Denoting σ (Xt , t)Yt as μt one can write the Lagrangian displacement (2) as (4)
and under Q the Wiener process dB̃t is centred thus the writing of dXt has the
same form as (2) but under a new measure. All the arguments provided in the
following will hold for this process under Q. The use of a drifted noise σdB̃t is
fundamental when the processes employed to operationally define the noise are not
centred, hence displaying a non-zero time average.
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3 Stochastic Transport Theorem

The derivation of Eulerian flow dynamics models within the LU formalism relies on
a stochastic version of the Reynolds transport theorem (SRTT), introduced in [1],
which describes the rate of change of a random scalar q transported by the stochastic
flow (2) within a flow volume Vt :

d
∫
Vt

q (x, t) dx =
∫
Vt

{
Dt q + q∇·[v* dt + σdBt

]}
(x, t) dx, (7)

with the operator

Dt q = dt q + [
v* dt + σdBt

] ·∇q − 1

2
∇·(a∇q) dt, (8)

defining the stochastic transport operator. The SRTT is in perfect analogy with the
deterministic Reynolds transport theorem (compare with [13] section 5.3), and the
various terms can be interpreted physically. Proceeding in order, the first right-hand
side term of (8) is the increment in time at a fixed location of the process q, that
is dt q = q (Xt , t + dt) − q (Xt , t). This contribution plays the role of the partial
time derivative for a process that is not time differentiable. The term enclosed in the
square brackets is a stochastic advection displacement. It involves a time correlated
modified advection,

v* = v − 1

2
∇·a + σ T (∇·σ ) , (9)

and a fast evolving, time uncorrelated noise σdBt . The advection by this term of
variable q leads to a multiplicative noise, which is hence non Gaussian. This type
of noise is often denoted as transport noise in the literature. The second term of the
modified advection is coined as the Ito-Stokes drift velocity in [4], vs = 1

2∇·a.
It represents an effective transport velocity resulting from statistical effects due
to inhomogeneities of the noise term. The last term of the transport operator is a
dissipation term that depicts the mixing mechanism due to the unresolved scales.
Following [5] one can consider the transport of a characteristic function to introduce
an evolution equation for the Jacobian determinant J of the flow:

Dt J − J∇·[(v − vs + σ T (∇·σ )) dt + σdBt

] = 0. (10)

This equation provides a clear condition for the stochastic flow to be isochoric:

∇·[v* dt + σdBt

] = 0. (11)
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4 Boussinesq Equations

Under location uncertainty, a stratified ocean can be modelled with a modified
version of Boussinesq equations. The derivation that is outlined here follows almost
verbatim the asymptotic derivation given in [12]. First, one applies the SRTT (7) to
the density and imposes conservation, that is d

∫
Vt
ρ (x, t) dx = 0. Then, assuming

that the fluctuations of density are small compared to the mean,

ρ (x, t) = ρ0
[
1 + ε δρ̂ (t, x)

]
, (12)

and using ε as an asymptotic ordering parameter to perform an expansion of the
conservation of mass, the first order is found to be:

∇·[v* dt + σdBt

] = 0, (13)

that can be split in two incompressibility conditions involving both the modified drift
velocity v* and the fast scale component σdBt thanks to the uniqueness of semi-
martingale decomposition [15]. Applying again the SRTT (7) to the momentum
reads

ρDtv = −∇
(
p − μ

3
∇·v

)
dt − ∇ (

dpσ
t

)− ρge3 dt, (14)

where the right hand side entails pressure forces, compressibility effects [14] and
gravitational forces. The compressibility term μ

3 ∇·v, with μ dynamical viscosity of
water, is usually neglected in the deterministic derivation of the Boussinesq model,
but in this model is maintained in view of the different incompressibility condi-
tion (12), that enforces ∇·v = ∇·vs . Following classical nondimensionalization
procedure [12, 14], characteristic scales are introduced as:

x = Lx̂, v = U v̂, t = τ t̂, p = ρ0U
2

ε
p̂, g = U2

εL
ĝ, (15)

with τ = L/U advective time scale. Furthermore, the variance tensor is assumed to
scale as a = Aâ so that the fast-evolving component σdBt and the kernel σ can be
scaled as

σdBt =
√
AL

U
σ̂dB̂t and σ = √

Aσ̂ . (16)

In this novel framework a non-dimensional parameter Υ = UL/A is introduced
to compare advection and stochastic diffusion terms in the momentum equation.
This parameter is termed stochastic Peclet number, in perfect similarity with
the deterministic advection-diffusion problem [10]. Introducing these variables,
following [12], one obtains:



292 F. L. Tucciarone et al.

ρ0
(
1 + εδρ̂

) {
dt v̂ +

[(
v̂ − 1

Υ
v̂s

)
dt̂ + 1

Υ 1/2 σ̂dB̂t

]
· ∇̂v̂

− 1

2Υ
∇̂·
(

â∇̂v̂
)

dt̂

}
= ∇̂

(
−ρ0

ε
p̂ + 1

ReΥ

1

3
∇̂· v̂s

)
dt̂ (17)

−∇̂
(
Pσ

U2 dp̂σ
t

)
− ρ0

(
1 + εδρ̂

) ĝ
ε

e3 dt̂ .

Expanding each variable as an asymptotic with ε taken as ordering parameter,
Eq. (17) provides at lowest order, once dimensional variables are replaced to non-
dimensional variables,

∇p0 = −ρ0gez, p0 (z) = −ρ0gz. (18)

Decomposing the density into a background constant density and a deviation,
corresponds on the pressure variable to a decomposition in terms of a hydrostatic
component and a pressure fluctuation. This splitting,

ρ (t, x) = ρ0 + ρ′ (t, x) , p (t, x) = p0 + p′ (t, x) , (19)

allows the recognition of the first order component of the pressure as the deviation
from the hydrostatic pressure p′, so that Eq. (17) at first order in dimensional form
becomes

dtv + [(v − vs) dt +σdBt ] ·∇v − 1

2
∇· (a∇v) dt =

= ∇
(
−p′ + ν

3
∇·vs

)
dt −∇

(
dpσ

t

ρ0

)
− ρ′

ρ0
gez dt.

The splitting (19) also introduces naturally the buoyancy b = −ge3ρ
′ (t, x) /ρ0 in

the equations of motions, representing the upward (or downward) force associated
with the density anomaly ρ′. In terms of buoyancy, the momentum equation can be
written as

Dtv = ∇
(
−p′ − dpσ

t

ρ0
+ ν

3
∇·vs

)
dt − b dt. (20)

A stochastic transport equation can be written for the buoyancy from mass
conservation. However, in this work a tracer transport equation on salinity, S, and
temperature, T , is preferred, relating then the buoyancy and the tracers with a
buoyancy state equation b = b (T , S, z). The conservation of a given tracer θ is
expressed as

Dt θ + θ∇· [(v − vs) dt + σdBt ] = Fθ dt +Dθ dt, (21)
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where the variation of tracer quantity is balanced by a forcing term Fθ and a
diffusive term Dθ . We note that here these terms are assumed to be regular in time,
although additional Brownian terms could be considered to encode intermittent
forcing. The resulting system, split into horizontal and vertical equations using the
convention v = (u, w), is:

Horizontal momentum:

Dtu + f e3 ×
(

u dt + 1

2
σdB

H

t

)
= ∇H

(
−p′ + ν

3
∇·v

)
dt −∇Hdpσ

t (22)

Vertical momentum:

Dtw = ∂

∂z

(
−p′ + ν

3
∇·v

)
dt − ∂

∂z
dpσ

t + b dt (23)

Temperature and salinity:

Dt T = κT ΔT dt, (24)

Dt S = κSΔS dt, (25)

Incompressibility:

∇·[v − vs
] = 0, ∇·σdBt = 0, (26)

Equation of state:

b = b (T , S, z) . (27)

Temperature and salinity are introduced as active tracers, as they modify the
buoyancy field, and their stochastic evolution is obtained again by application
of the SRTT (7), balanced with a diffusion process with diffusivity κT and κS
respectively. The unusual coefficient 1/2 in the random Coriolis term can be
shown to appear naturally from a derivation of the non-inertial acceleration in this
stochastic framework, again following the derivation of [12]. Metric terms relative
to the rotation of the earth should also be adapted to the stochastic Frenet-Serret
formula dC = Ωdt × C in the case of planetary scale simulations. In Eqs. (22) and
(23) the stochastic pressure is introduced, and corresponds to a zero-mean turbulent
pressure related to the small scale velocity component (i.e. noise). It is a martingale
term. An operational model referred to as the primitive equations can be obtained
through the so-called hydrostatic balance, resulting from neglecting the vertical
acceleration terms through a proper scaling of the velocity. In our stochastic setting,
the vertical momentum equation reads, after neglecting the large scale acceleration
terms and for moderate noise ( Υ ∼ O (1) so as the martingale terms related to the
vertical velocity component are negligible):

− ∂p′

∂z
+ b = 0 and

∂dpσ
t

∂z
= 0, (28)
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where the bounded variation terms and the martingale terms have been safely
separated. The left equation constitutes the usual hydrostatic balance. With the
scaling used, the stochastic pressure is constant along depth and is in balance
with the stochastic Coriolis component [9, 5]. These two martingale terms can be
removed then from the horizontal momentum equation. In this setting the vertical
component of the momentum equation becomes a diagnostic component that can
be recovered integrating the continuity equation given by (26). In a similar way,
the large scale pressure is obtained from the vertical integration of the hydrostatic
relation. The scaling parameter Υ can also be related to the ratio between the Mean
Kinetic Energy (TKE) when an advective time scale is used, that is

Υ = U2

A/τ
= 1

ε

MKE

TKE
(29)

where ε = τσ /τ , is the ratio of the fast-scale to the slow-scale correlation times.
This ratio can be adapted to the different variables involved (i.e. momentum,
temperature or salinity) with a value similar to the inverse of the Schmidt number
(ratio of diffusion rates) making hence the noise scaling parameter, Υ , dependant
on the variable transported. The parameter Υ appears in dimensional analysis and
asymptotic expansions, but plays also a paramount role in the quantification of the
strength of the noise.

5 Methods

The experiments are performed with the level-coordinate free-surface primitive
equation ocean model NEMO [16]. The domain configuration is a double-gyre
configuration consisting of a 45◦ rotated beta plane centred at ∼ 30◦N, 3180 km
long, 2120 km wide and 4 km deep. The domain is bounded by vertical walls and
a flat bottom. The seasonally varying wind and buoyancy forcings induce a strong
jet to appear diagonally in the domain, separating a warm sub-tropical gyre from a
cold sub-polar gyre. Three experiments were performed: two purely deterministic
simulations at different resolutions, 1/27◦ (R27d) and 1/3◦ (R3d), and one stochastic
simulation at 1/3◦ (R3LU). Each simulation was run for 10 years with data collected
every (and averaged over) 5 days. The focus of this paper is to assess the benefits
brought by LU to the coarse simulation, so the parameters of the simulation were
chosen following thoroughly [17, 18] (see Table 1 for an overview of their values).
In this first study, we restrict ourselves to 3D divergence-free horizontal noise (i.e.
with no vertical component). In spectral form the random field and the variance
tensor can be written as:

σdBt =
∑
i∈N

λ
1/2
i ϕi (x)dβi

t , a =
∑
i∈N

λiϕi (x)ϕT
i (x), (30)
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Table 1 Parameters of the model experiments

R27d R3d R3LU

Horizontal resolution 1/27◦ (3.9 km) 1/3◦ (35.3 km) 1/3◦ (35.3 km)

Horizontal grid points 540×810 60×90 60×90

Vertical levels 30 30 30

Time step 5 min 20 min 20 min

Eddy viscosity −5×10−9 m4s−1 −10−12 m4s−1 −10−12 m4s−1

Eddy diffusivity −5×10−10 m4s−1 300 m2s−1 300 m2s−1

where {ϕi (x), i ∈ N} are the orthonormal eigenfunctions of the covariance operator
associated to {λi, i ∈ N}, the (real, positive) eigenvalues ranged in decreasing
value order and {βi

t , i ∈ N} is a set of standard (scalar) Brownian variables.
This representation corresponds to the Karhunen-Loeve decomposition [24]. Oper-
ationally, the (finite) set of eigenfunctions {φi (x), i ∈ [1, N]} and of eigenvalues
{λi, i ∈ [1, N]} are computed through a proper orthogonal decomposition (POD)
[11] of the temporal fluctuations of the two-dimensional low resolution residual uLR .
This velocity residual is obtained through Gaussian filtering of the high resolution
deterministic simulation R27d, uLR = (1 − G)uHR , with the fluctuations computed
through Reynolds decomposition:

u′
LR

(x, t) = uLR (x, t)− uLR (x, t)
t =

N∑
i=1

φi (x) αi (t) . (31)

The POD procedure applied to u′
LR

(x, t) provides a set {φi (x), i ∈ [1, N]} of
eigenfunctions that are stationary in time and such that

〈φm,φn〉 =
∫
Ω

φT
mφn (x) dx = δmn, αmαn

t = λmδm,n. (32)

The eigenfunctions are used to define the random field and a stationary variance
tensor as

σdBt (x) =
M(z)∑
i=1

λ
1/2
i φi (x)

√
Δt dβi

t , a (x) =
M(z)∑
i=1

λiΔt φi (x)φT
i (x) (33)

where ϕi = φi

√
Δt and M(z) $ N chosen to provide at least 85% of the

energy of the fluid layer. Due to the constraint posed by Eq. (26) on the noise,
incompressibility on the horizontal noise is imposed by applying a Helmoltz-Hodge
decomposition [19] on the each snapshot of the horizontal velocity uLR . Moreover,
the set of eigenfunctions {φi (x), i ∈ [1, N]} is used to construct the drift μt of
Eq. (4) in such a way that the distance between μt and uLR

t is minimized, that is
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μt =
N∑
i=1

φi (x) yit with yit = arg min

∥∥∥∥∥uLR (x, t)
t −

N∑
i=1

φi (x) yit

∥∥∥∥∥
2

. (34)

Due to the orthogonality of the basis functions the coefficients can be easily
recovered as the orthogonal projection yit = 〈uLR (x, t)

t
,φi (x)〉.

6 Results

In this work we focus on the results of a single realisation. From a qualitative point
of view, the effect of the coarsening of the resolution can be seen in Figs. 1 and 2,
where the leftmost panel represents the result the R27d simulation, the central panel
shows the results of the R3d simulation and the rightmost panel shows the R3LU
simulation. The first noticeable characteristic of the R27d reference simulation is
the presence of a primary jet stream inclined at an almost −45◦ angle starting at
the bottom-left corner and directed towards the centre, and a secondary, smaller jet
with the same inclination roughly 80 km above the primary. The presence of both
structures is visible in the reference papers [17, 18]. In both figures the comparison
between the high resolution and the low resolution deterministic simulation shows a
degradation of the information about the jet-streams. Figure 1, depicting the relative

vorticity ζ
10Y = (

∂xv − ∂yu
)
/f

10Y
, shows that the deterministic R3d simulation is

incapable of reproducing the primary jet characteristic and its positioning, though
showing an increased activity in place of the secondary jet stream. The stochastic
R3LU simulation presents instead a intensification of the vortical activity in the

R27d UL3Rd3R

-0
.0

2
0
.0

0
.0

2

Fig. 1 10-years averaged relative vorticity ζ = (
∂xv − ∂yu

)
/f at the surface layer of the model

for deterministic high-resolution (1/27◦, left), for deterministic low resolution (1/3◦, middle) and
for stochastic low resolution (1/3◦, right)
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Fig. 2 5-days averaged sea surface height of the model for deterministic high-resolution (1/27◦,
left), for deterministic low resolution (1/3◦, middle) and for stochastic low resolution (1/3◦, right)
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Fig. 3 Left and centre panels, standard deviation of the kinetic energy. The color scale has
been adjusted to enhance the differences in the jet region, not considering the highly energetic
boundaries where peaks present values as 0.2 m2/s2 for R3d and 0.17 m2/s2 for R3LU. Right
panel, the Gaussian relative entropy for relative vorticity, ζ , (cold palette) and kinetic energy (warm
palette). The lighter colors represent the deterministic simulation R3d, the darker colors represent
the stochastic simulation R3LU. All the statistics are computed over 10 years

regions of the primary and secondary jet. Considering sea surface height, Fig. 2
shows that the best result is obtained by the stochastic simulation that, while not
being able to distinguish the primary jet stream by the smaller vortices of the
secondary jet, it is capable of reproducing the main behaviour. The left and centre
panels of Fig. 3 shows the difference obtained in terms of variance of the kinetic
energy in the two coarse simulations, with greater variability obtained with the
stochastic model, especially in the area of the jet stream, where a lesser variability is
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Fig. 4 Vertical profile of temperature after 1 year of simulation (left) and after 10 years (right)

shown in the deterministic case. From a quantitative point of view, the simulations
are compared using the Gaussian Relative Entropy described in details in [20] and
which measures with a single criterion both the mean and variance reconstructions.
In the left panel of Fig. 3, values of the GRE for two variables, the relative vorticity
ζ , and the kinetic energy KE = (

u2 + v2
)
/2 are compared. For two different depths

and in a vertical average sense (GRE
z
), the relative entropy is smaller for the

stochastic simulation, indicating a smaller distance from the distribution given by
the reference R27d simulation. The proposed stochastic model thus outperforms
the standard deterministic simulation in terms of both relative entropy and intrinsic
variability for kinetic energy and vorticity. This behaviour is observed in every layer.
In the tracers equation the noise has been scaled with the aid of the Schmidt number,
the ratio between the eddy viscosity and eddy diffusivity. This consideration stems
from the fact that the correlation times for transport of momentum and of tracers
are not the same, and the difference can be expressed in terms of the Schmidt
number. Figure 4 shows the vertical profiles of horizontally-averaged temperature,
T

x,y
(z, t) = ∫

A
T (x, y, z, t) dxdy, at time t = 1Y and t = 10Y for the three

simulations. The vertically averaged temperature shows an increase in mixing of
temperature of the stochastic setting with respect to its deterministic counterparts.
This process has been observed to be sensible to the noise amplitude and might
be caused by the structure of the noise and by the effects of Helmholtz-Hodge
decomposition. Further studies to investigate this process with three-dimensional
and isopycnal noise are ongoing.
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7 Conclusions

The considered stochastic model has been implemented into the NEMO dynamical
core. A 3D horizontal, incompressible noise was considered and has been proven
to successfully increase the capabilities of a coarse simulation in simulating the
dynamical quantities of interest, when corrected with a stochastic drift leading
to a change of probability measure. Both the qualitative behaviour of the jet-
stream and the quantitative intrinsic variability of the model have been increased.
Thermodynamic quantities like temperature and salinity seem to not benefit from
this implementation. In future works, more complex non stationary fully 3D noises
will be investigated within the same setting.
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Bridging Koopman Operator and
Time-Series Auto-Correlation Based
Hilbert–Schmidt Operator

Yicun Zhen, Bertrand Chapron, and Etienne Mémin

Abstract Given a stationary continuous-time process f (t), the Hilbert–Schmidt
operator Aτ can be defined for every finite τ . Let λτ,i be the eigenvalues of Aτ

with descending order. In this article, a Hilbert space Hf and the (time-shift)
continuous one-parameter semigroup of isometries Ks are defined. Let {vi, i ∈
N} be the eigenvectors of Ks for all s ≥ 0. Let f =

∞∑
i=1

aivi + f⊥ be the

orthogonal decomposition with descending |ai |. We prove that lim
τ→∞ λτ,i = |ai |2.

The continuous one-parameter semigroup {Ks : s ≥ 0} is equivalent, almost surely,
to the classical Koopman one-parameter semigroup defined on L2(X, ν), if the
dynamical system is ergodic and has invariant measure ν on the phase space X.

Keywords Singular spectrum analysis · Koopman theory · Hilbert–Schmidt
theory

1 Introduction

Let {f (t) ∈ C : t ≥ 0} be a continuous time process. We assume that f has zero
temporal mean and the lagged moments exist for all s ≥ 0:

ρ(s) := lim
T→∞

1

T

∫ T

0
f (t)f̄ (t + s)dt. (1)

Define ρ−s = ρ̄s . In [3] the self-adjoint operator Aτ is defined to act on L2([0, τ ]):
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(Aτg)(t) = 1

τ

∫ τ

0
g(s)ρ(t − s)ds, (2)

for every g ∈ L2([0, τ ]), and for all t ∈ [0, τ ]. When ρ ∈ L2
loc(R) and ρ(s)  = 0

for almost all s ∈ [0, τ ] , Aτ is a Hilbert–Schmidt operator. In particular, Aτ is
compact and always has a purely punctual spectrum. In other words, the Hilbert
space L2([0, τ ]) admits a basis {φi ∈ L2([0, τ ]) : i ∈ N}, so that each φi is an
eigenvetor of Aτ . This implies a Karhunen–Loéve type of decomposition. Namely
for any h ∈ L2([0, τ ]), there exists scalars ci ∈ C, so that:

h(t) =
∑
i

ciφ(t), (3)

for any t ∈ [0, τ ].
As stated in [3], the singular spectrum analysis (SSA) algorithm is based on

the spectral analysis of Aτ . Given a finite sequence of discrete-time measurements:
{f (nΔt) : n = 0, 1, 2, . . . , N +M, and(N +M)Δt ≤ τ }, the (N + 1)× (N + 1)
a discretized version of Aτ can be approximated by:

Aτ ≈ CN := 1

M + 1
HNMH ∗

NM, (4)

where HNM is the trajectory matrix defined by

HNM =

⎛
⎜⎜⎜⎝

f (0) f (Δt) · · · f (MΔt)

f (Δt) f (2Δt) · · · f ((M + 1)Δt)
...

f (NΔt) f ((N + 1)Δt) · · · f ((N +M)Δt)

⎞
⎟⎟⎟⎠ , (5)

and H ∗
NM refers to the conjugate transpose of HNM . Matrix HNM can be computed

numerically whenever a discrete-time time series is available. Intuitively, for τ large
enough and Δt small enough, CN is a good approximation of Aτ . The SSA method
starts with calculating the spectral quantities (i.e. eigenvectors, eigenvalues) of CN .
The spectral quantities of Aτ are the theoretical quantity that the spectral quantities
of CN are supposed to represent.

While in practice the SSA method has been applied successfully to a large variety
of time series, in a theoretical purpose, yet with practical consequences, one may ask
ourselves what is the relation between Aτ1 and Aτ2 for different τ1 and τ2? And what
is the asymptotic behavior of Aτ as τ → ∞? In what way is the spectral property
of Aτ related to intrinsic properties of the dynamical system? These questions are
important because for real world data it is often not possible to get finer sampling
time Δt . However, longer time series are sometimes available with long enough
data. In this article we generalize the idea and tools developed in [4] and apply them
to study of Aτ . We shall prove that
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lim
τ→∞ λτ,i = |ai |2, (6)

where λτ,i is the i-th largest eigenvalue of Aτ and ai is the i-th largest (in modulus)
coefficient of some eigenvector vi (of unit length) of the time-shift operator Ks (for
all s ≥ 0) in the orthogonal decomposition of f :

f =
∞∑
i=1

aivi + f⊥, (7)

where f⊥ denotes the the expression of f in the orthogonal complement of the
space spanned by the time-shift operator eigenfunctions. If there are only finitely
many i (say only N terms in the summation) in Eq. (7), then we set ai = 0 for i > N .
The time-shift operator Ks is closely related to the classical Koopman operator,
which is defined to act, as a time-shift operator, on some function space whose
domain is the whole phase space of the dynamical system.

In Sect. 2 we present the main result and a brief introduction of the mathematical
tools used by the proof of the main result. All the quantities mentioned above are
defined rigorously in Sect. 2. The detailed proof of the main result is presented in
Sect. 3.

Notes and Comments The main result as well as the techniques and ideas used for
the proof are close in spirit to those developed in [4]. However, the Hilbert–Schmidt
operator Aτ is defined for continuous time process and the theory developed in [4]
does not cover the continuous-time case. The objective of this paper is to confirm
that the asymptotic behavior of the Hilbert–Schmidt operator Aτ is well related to
Koopman theory.

2 Preliminaries and the Main Result

Let {f (t) : t ≥ 0} be a continuous-time process.

Assumption 1 Assume that

lim
T→∞

1

T

∫ T

0
f (t)dt = 0, (8)

and that ρ(s) is well-defined by Eq. (1) for all s ≥ 0.

For any s ≥ 0, we use Fs to denote the time series {Fs(t) = f (t + s) : t ≥ 0}. For
any two time series g = {g(t) : t ≥ 0} and h = {h(t) : t ≥ 0}, we define the new
time series

ag + bh = {ag(t)+ bh(t) : t ≥ 0}, (9)
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where a, b ∈ C. We consider the following linear space:

H̃f = SpanC{Fs : s ≥ 0}. (10)

Each element h ∈ H̃s can be written as

h =
n∑

i=1

ciFsi , (11)

for any n ≥ 1, ci ∈ C, si ≥ 0. The existence of ρ(s) allows us to define the
following positive semi-definite Hermitian form:

〈h, g〉 = lim
T→∞

1

T

∫ T

0
h(t)ḡ(t)dt. (12)

Let V = {v ∈ H̃f : 〈v, v〉 = 0}. Since the Hermitian form is positive semi-definite,
V is a linear subspace of H̃f . And the Hermitian form is strictly positive-definite on
the quotient space H̃f /V . Hence it defines an inner product on H̃f /V . We define

Hf := H̃f /V (13)

where the closure is taken with respect to the inner product defined above.
We define the operator Ks on H̃f for any s, s1 ≥ 0:

KsFs1 = Fs1+s . (14)

It is obvious that

〈Ksh,Ksg〉 = 〈h, g〉, (15)

for any h, g ∈ H̃f and any s ≥ 0. Hence Ks is well-defined on H̃f /V , and can
be further extended to the whole Hf by continuity. Therefore we obtain a one
parameter family of isometric operators Ks that acts on the Hilbert space Hf . And
obviously we have

Ks1Ks2 = Ks1+s2 . (16)

To simplify the notation, we use f to also denote the continuous-time process F0.
We further assume that
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Assumption 2

lim
s→0+

‖Ksf − f ‖Hf
= 0. (17)

In other words, Assumption 2 assumes that the curve:

γ : [0,∞) → Hf

t → Kt f (18)

is continuous. Since Hf is generated by f and Ks are isometries for all s ≥ 0,
Assumption 2 implies that Ks → I in the strong operator topology as s → 0+. In
other words, {Ks : s ≥ 0} forms a strongly continuous semigroup of isometries on
Hf .

Under Assumption 2, we have the following decomposition theorem (see
Theorem 9.3 in [2]).

Theorem 1 Let {Ks : s ≥ 0} be a strongly continuous semigroup of isometries on
a Hilbert space H. Then H has the orthogonal decomposition H = HU

⊕
HNU ,

where HU =
⋂
s≥0

KsH, and HNU is isomorphic to L2([0,∞],H0) for some Hilbert

space H0. HU and HNU are invariant under Ks for all s ≥ 0. The operator Ks

restricted on HU is a strongly continuous semigroup of unitary operators. And Ks

restricted to HNU acts as the unilateral shift operator, i.e. for any γ ∈ HNU =
L2([0,∞],H0),

(Ksγ )(t) = γ (t + s) ∈ H0. (19)

Theorem 1 provides us with an useful tool to deal with the completely nonunitary
component of Ks . For the unitary component, we have the following spectral
representation theorem.

Theorem 2 Let {U(s) : s ≥ 0} be a strongly continuous semigroup of unitary
operators on a Hilbert space H. Assume that H can be generated by U and some
f ∈ H. Then there exists a unitary map φ : H → L2(R, dμ) where μ is some
positive finite measure on R, such that

(φ(f ))(x) = 1, (20)

(φ(Ksg))(x) = eisx(φ(g))(x) (21)

for all g ∈ H, x ∈ R, and s ≥ 0.

Theorems 1 and 2 suggest the orthogonal decomposition Hf = Hf,U

⊕
Hf,NU =

L2(R, dμf )
⊕

L2([0,∞],Hf,0). Furthermore, we can write μf = μf,d + μf,c,
where μf,d is a countable sum of Dirac measures and μf,c is continuous with
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respect to the Lebesgue measure. μf,c can be composed both of an absolutely
continuous part and a singular continuous part. The decomposition of μf suggests
the orthogonal decomposition Hf,U = L2(R, dμf,d)

⊕
L2(R, dμf,c). In sum, we

have

f = fNU + fd + fc, (22)

where fNU ∈ L2([0,∞],Hf,0), fd ∈ L2(R, dμf,d), and fc ∈ L2(R, dμf,c). Note
that these subspaces are pair-wise orthogonal and are all invariant under Ks for all
s ≥ 0. The support of μf,d consists of countably many points. Each point xi in the
support of μf,d corresponds to an eigenvector vi ∈ Hf of Ks for all s ≥ 0, i.e.

(φ(aivi))(x) =
{

1 if x = xi,

0 otherwise,
(23)

and μf,d({xi}) = |ai |2, where ai’s are the coefficients of the eigenvectors in the
following decomposition:

f =
∑
i

aivi + fNU + fc. (24)

We rearrange the index of vi so that |a1| ≥ |a2| ≥ · · · ≥ 0. In order to make
connection with Aτ , we need the following lemmas.

Lemma 1 For any τ > 0 and any g ∈ L2([0, τ ]), the following integral

∫ τ

0
g(s)Ksfds (25)

is well-defined and is an element of Hf .

The proof of this and the following lemma use standard argument from mathemati-
cal analysis and we leave the proof to the interested readers.

Let

H̃int
f = {

∫ τ

0
g(s)Ksfds : τ > 0, g ∈ L2([0, τ ])}. (26)

H̃int
f is a linear subspace of Hf . We have

Lemma 2

H̃int
f = Hf . (27)
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For simplicity, we use the notation L2
τ := L2([0, τ ]). Given Lemma 1, for any

g1, g2 ∈ L2([0, τ ]) and t ∈ [0, τ ], we define the Hermitian form Aτ : L2
τ×L2

τ → C:

Aτ (g1, g2) = 1

τ

〈∫ τ

0
g1(t)Kt fdt,

∫ τ

0
g2(s)Ksfds

〉
Hf

. (28)

Cauchy-Schwartz inequality implies that

|Aτ (g1, g2)|2 ≤ 1

τ 2

∥∥∥
∫ τ

0
g1(s)Ksfds

∥∥∥2

Hf

∥∥∥
∫ τ

0
g2(s)Ksfds

∥∥∥2
(29)

≤ 1

τ 2 ‖g1‖2
L2
τ
‖g2‖2

L2
τ
‖f ‖4

Hf
, (30)

where 〈, 〉L2
τ

refers to the inner product in L2
τ and 〈, 〉Hf

refers to the inner product
in Hf . Therefore Riesz representation theorem warrants that there exists a linear
bounded operator Aτ : L2

τ → L2
τ so that Aτ (g1, g2) = 〈g1, Aτ g2〉L2

τ
. Consequently,

(Aτg)(t) = 1

τ

〈∫ τ

0
g(s)Ksfds,Kt f

〉
Hf

= 1

τ

∫ τ

0
g(s)ρ(t − s)ds, (31)

which is the same as the definition of Aτ in [3]. Assumption 2 implies that ρ ∈
L2

loc(R). This implies that Aτ is a Hilbert–Schmidt operator on L2
τ . We shall use the

following variational description of the eigenvalues.

Proposition 1 (The Min-Max Principle) Let H be a Hilbert space and A a
Hermitian operator on H. Let λ1 ≥ λ2 ≥ · · · be the eigenvalues of A in descending
order. Then

λi = max
M⊂H

dimM=i

min
v∈M

〈v,Av〉
‖v‖2 (32)

Our main result states that,

Theorem 3 (Main Result) Under Assumptions 1 and 2, we have, for all i ∈ N

lim
τ→∞ λτ,i = |ai |2, (33)

where λτ,i stands for the eigenvalues of Aτ .

The following Proposition [4] demonstrates the correspondence between the
eigenfrequencies of the continuous-time time-shift operator and the discrete-time
time-shift operator. Please refer to [4] for the notations in the proposition.

Proposition 2 Let {f (Xt ) : t ≥ 0} be a continuous time process for which ρs exists
for all s ≥ 0. Let Δt > 0 be a time step. Assume that
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lim
T→∞

1

T

∫ T

0
f (Xt )f̄ (Xt+kΔt )dt

= lim
T→∞

Δt

T

T/Δt∑
N.n=0

f (XnΔt )f̄ (X(n+k)Δt ), (34)

for all k ∈ N. Then Hf ↪→ Hcont
f . Let q be an eigenfrequency of the discrete-time

operator KΔt , i.e. there exists h ∈ Hf ↪→ Hcont
f so that KΔth = eiqh. Then there

exists an integer k, and hk ∈ Hcont
f , so that

Kshk = ei
q+2kπ
Δt

shk (35)

for all s ≥ 0.

Remark 1 It is worth to point out that the one-parameter semigroup of isometries
{Ks : s ≥ 0} is equivalent to the classical Koopman one-parameter semigroup
{K̃s : s ≥ 0} which acts on L2(X, dν) almost surely (with respect to the initial
state of the time series), if the dynamical system is ergodic and has finite invariant
measure ν on the phase space X. Because if f ∈ L2(X, ν), then f K̃s f̄ ∈ L1(X, dν)

and Birkhoff ergodic theorem states that ρ(s) = ν(f K̃s f̄ ) for almost every initial
state x0 ∈ X. In other words, 〈f,Ksf 〉Hf

= 〈f, K̃sf 〉L2(X,dν). Note that f is
interpreted as a given time series on the left of the equality and interpreted as a
function on the right of the equality. This shows that under the assumption that
the dynamical system is ergodic and (finite) measure-preserving, there is a natural
isometric bijection from Hf to L2(X, dν).

For mathematical interests, we present the main result in an abstract mathematical
form.

Theorem 4 (Main Result in Mathematical Form) Let H be a Hilbert space and
{Ks : s ≥ 0} a strongly continuous one-parameter semigroup of isometries acting
on H. For any f ∈ H, let f =

∑
i

aivi + f⊥, where vi’s are the common

eigenvectors of Ks for all s ≥ 0, and f⊥ is the component of f that is orthogonal
to the eigenspace of Ks for all s ≥ 0. Assume that |a1| ≥ |a2| ≥ · · · ≥ 0. For
any τ > 0, let Af,τ be the Hermitian operator on L2([0, τ ]), such that for any
g ∈ L2([0, τ ]) and any t ∈ [0, τ ],

(Af,τ g)(t) = 1

τ

∫ τ

0
g(s)〈Ksf ,Kt f 〉Hds. (36)

Then Af,τ is a Hilbert–Schmidt operator and hence has purely punctual spectrum.
Let λf,τ,i be the i-th largest eigenvalue of Af,τ . Then we have
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lim
τ→∞ λf,τ,i = |ai |2. (37)

3 Proof of the Main Result

For any fixed small ε ≥ 0, we choose k, so that
∞∑

i=k+1

|ai |2 ≤ ε. We have the

orthogonal decomposition

f =fd + fNU + fc =
k∑

i=1

aivi +
∞∑

i=k+1

aivi + fd,k + fNU + fc

=fd,k + fd,ε + fNU + fc, (38)

where fd,k ∈ Hf,d,k which is the subspace of Hf,d spanned by {v1, . . . , vk}, and
fd,ε ∈ Hf,d,ε the subspace spanned by the rest of the eigenvectors, fNU ∈ Hf,NU ,
and fc ∈ Hf,c. Note that Hf,d,k , Hf,d,ε , Hf,NU , and Hf,c are pairwise orthogonal
and invariant subspaces of Hf . Hence following Eq. (28), for any g1, g2 ∈ L2

τ ,

〈g1, Aτ g2〉L2
τ
= 1

τ

〈∫ τ

0
g1(s)Ksfds,

∫ τ

0
g2(t)Kt fdt〉Hf

= 1

τ

〈∫ τ

0
g1(s)Ks (fd,k + fd,ε + fc + fNU )ds,

∫ τ

0
g2(t)Kt (fd,k + fd,ε + fc + fNU )dt〉

= 1

τ

〈∫ τ

0
g1(s)Ksfd,kds,

∫ τ

0
g2(t)Kt fd,kdt

〉
Hf

+ 1

τ

〈∫ τ

0
g1(s)Ksfd,εds,

∫ τ

0
g2(t)Kt fd,εdt

〉
Hf

+ 1

τ

〈∫ τ

0
g1(s)Ksfcds,

∫ τ

0
g2(t)Kt fcdt

〉
Hf

+ 1

τ

〈∫ τ

0
g1(s)KsfNUds,

∫ τ

0
g2(t)Kt fNUdt

〉
Hf

=〈g1, Aτ,d,kg2〉L2
τ
+ 〈g1, Aτ,d,εg2〉L2

τ
+ 〈g1, Aτ,cg2〉L2

τ
+ 〈g1, Aτ,NUg2〉L2

τ
, (39)

in which the definition of Aτ,d,k , Aτ,d,ε , Aτ,c and Aτ,NU are obvious. It is not hard
to show that Aτ,d,k , Aτ,d,ε , Aτ,c and Aτ,NU all admit eigendecomposition since they
are all Hilbert–Schmidt Hermitian operators. Note that the cross product terms all
as Hf,d,k , Hf,d,ε , Hf,c and Hf,NU are pairwise orthogonal and invariant under Ks

for all s ≥ 0.
Let λτd ,k,i , λτ,d,ε,i , λτ,c,i , and λτ,NU,i be the i-th largest eigenvalue of Aτ,d,k ,

Aτ,d,ε , Aτ,c, Aτ,NU respectively. We will prove the following identities:
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Proposition 3

lim
τ→∞ λτ,d,k,i = |ai |2 for i = 1, . . . , k, (40)

λτ,d,ε,1 ≤ ε for any τ > 0, (41)

lim
τ→∞ λτ,c,1 = 0, (42)

lim
τ→∞ λτ,NU,1 = 0. (43)

Before we start to prove Eqs. (40)–(43), it is not hard to see that Propositions 1 and
3 directly implies the main result. Indeed, for any fixed n and any ε > 0, we can find

k so that n ≤ k and
∞∑

i=k+1

|ai |2 ≤ ε. Then we find τ large enough so that λτ,c,1 ≤ ε

and λτ,NU,1 ≤ ε. Note that Aτ,d,k , Aτ,d,ε , Aτ,c, and Aτ,NU are all positive semi-
definite. Applying the min-max principle we have

λτ,n = max
M⊂L2

τ
dimM=n

min
v∈M

〈v,Aτ v〉
‖v‖2

(44)

= max
M⊂L2

τ
dimM=n

min
v∈M

〈v,Aτ,d,k v〉 + 〈v,Aτ,d,ε v〉 + 〈v,Aτ,c v〉 + 〈v,Aτ,NU v〉
‖v‖2

(45)

≥ max
M⊂L2

τ
dimM=n

min
v∈M

〈v,Aτ,d,k v〉
‖v‖2

= λτ,d,k,n, (46)

and that

λτ,n = max
M⊂L2

τ
dimM=n

min
v∈M

〈v,Aτ v〉
‖v‖2 (47)

≤ max
M⊂L2

τ
dimM=n

min
v∈M

〈v,Aτ,d,k v〉
‖v‖2

+ 2ε = λτ,d,k,n + 2ε. (48)

Combined with Eq. (40), this implies Theorem 3.

Proof (Equation (40)) Recall from Eq. (23) that each eigenvector vi corresponds
to a point xi in the support of μd . For any g ∈ L2

τ , Theorem 2 states that∫ τ

0
g(s)Ksfd,kds has the following representation in L2(R, dμ), for any x ∈ R,
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(
φ
( ∫ τ

0
g(s)Ksfd,kds

))
(x) =

{∫ τ

0 g(s)eisxjds , if x = xj for some j.

0 , otherwise.
(49)

And

〈g,Aτ,d,kg〉L2
τ
= 1

τ

〈∫ τ

0
g(s)Ksfd,kds,

∫ τ

0
g(t)Kt fd,kdt

〉
Hf

(50)

= 1

τ

k∑
j=1

∥∥∥
∫ τ

0
g(s)eisxjds

∥∥∥2

L2(R,dμ)
(51)

= 1

τ

k∑
j=1

|aj |2
∣∣∣
∫ τ

0
g(s)eisxjds

∣∣∣2. (52)

Let ξj ∈ L2
τ so that ξj (s) = eisxj for any s ∈ [0, τ ]. Then ‖ξj‖2

L2
τ
= τ and

〈g,Aτ,d,k g〉L2
τ
= 1

τ

k∑
j=1

|aj |2|〈ξj , g〉L2
τ
|2 =

k∑
j=1

|〈aj ξj√
τ
, g〉L2

τ
|2 (53)

Let Vτ,k = SpanC{ a1ξ1√
τ
,
a2ξ2√

τ
, · · · , akξk√

τ
}. We write g = gτ,k+g⊥, where gτ,k ∈ Vτ,k ,

and g⊥ ∈ V ⊥
τ,k . Then

〈g,Aτ,k,d g〉L2
τ
=

k∑
j=1

|〈aj ξj√
τ
, gτ,k〉|2L2

τ
. (54)

Note that dimVτ,k = k for all τ > 0. Direct calculation yields that, for j  = !,

〈 aj ξj√
τ
,
a!ξ!√

τ
〉L2

τ
= aj āl

e
i(xj−x!)τ−1
iτ (xj−x!)

→ 0 as τ → ∞. Therefore the distribution of the
eigenvalues of Aτ,k,d shall approach to the distribution of the eigenvalues of

⎛
⎜⎜⎜⎝

|a1|2 0 · · · 0
0 |a2|2 · · · 0
...

0 0 · · · |ak|2

⎞
⎟⎟⎟⎠ (55)

as τ → ∞. This completes the proof of Eq. (40).

Proof (Equation (41)) Similar to Eq. (53), for any g ∈ L2
τ , ‖g‖L2

τ
= 1, we have
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〈g,Aτ,d,ε g〉L2
τ
= 1

τ

∞∑
j=k+1

|aj |2|〈ξj , g〉L2
τ
|2 =

∞∑
j=k+1

|〈aj ξj√
τ
, g〉L2

τ
|2 (56)

≤
∞∑

j=k+1

|aj |2 ≤ ε. (57)

Then the min-max principle implies that λτ,k,ε,1 ≤ ε.

Proof (Equation (42)) Following [1] (page 39–41), we first show that

lim
τ→∞

1

τ

∫ τ

0

∣∣μf,c(e
isx)

∣∣ds = 0, (58)

or equivalently

lim
τ→∞

1

τ

∫ τ

0

∣∣μf,c(e
isx)

∣∣2ds = 0. (59)

Equation (58) means that the large moments associated to the continuous spectral
measure has density zero. For any ε > 0, we write μf,c = μf,c,1 +μf,c,ε , in which
μf,c,1 has compact support, μf,c,ε(R) < ε and μf,c,1 ⊥ μf,c,ε . Denote the support
of μf,c,1 by B1. Then we have

1

τ

∫ τ

0

∣∣μf,c(e
isx)

∣∣2ds = 1

τ

∫ τ

0

∣∣μf,c,1(e
isx)

∣∣2ds+ 1

τ

∫ τ

0

∣∣μf,c,ε(e
isx)

∣∣2ds
(60)

<
1

τ

∫ τ

0

∣∣
∫
R

eisxdμf,c,1(x)
∣∣2ds + ε (61)

and that

1

τ

∫ τ

0

∣∣μf,c,1(e
isx)

∣∣2ds = 1

τ

∫ τ

0

∣∣ ∫
R

eisxdμf,c,1(x)
∣∣2ds

=1

τ

∫ τ

0
ds

∫
R

∫
R

eis(x−y)dμf,c,1(x)dμf,c,1(y) (62)

=1

τ

∫
R

∫
R

dμf,c,1(x)dμf,c,1(y)

∫ τ

0
eis(x−y)ds (63)

=1

τ

∫
B1

∫
B1

dμf,c,1(x)dμf,c,1(y)

∫ τ

0
eis(x−y)ds (64)

Note that
∣∣∣ 1
τ

∫ τ

0 eis(x−y)ds
∣∣∣ ≤ 1 for any τ > 0 and any x, y ∈ R. And when x  = y
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1 ≥
∣∣∣1

τ

∫ τ

0
eis(x−y)ds

∣∣∣ =
∣∣∣e

iτ(x−y) − 1

τ i(x − y)

∣∣∣ −→
τ→∞ 0. (65)

Since μf,c,1 is continuous, we have that (μf,c,1 × μf,c,1)({(x, y) ∈ R
2 : x =

y}) = 0. Hence, the integral in Eq. (64) boils down to an integral on R
2 \ {x =

y}. Lebesgue’s dominated convergence theorem implies that the integral in Eq. (64)

converges to 0 as τ → ∞. Hence lim sup
τ→∞

1

τ

∫ τ

0

∣∣μf,c(e
isx)

∣∣2ds < ε for any ε > 0.

This implies Eq. (59).
For any g ∈ L2(R), Theorem 2 implies that

(
φ
( ∫ τ

0
g(s)Ksfd,cds

))
(x) =

∫ τ

0
g(s)eisxds. (66)

Therefore

〈g,Aτ,c g〉L2
τ
= 1

τ

〈∫ τ

0
g(s)Ksfd,cds,

∫ τ

0
g(t)Kt fd,cdt

〉
Hf

(67)

= 1

τ

〈
φ
( ∫ τ

0
g(s)Ksfd,cds

)
, φ
( ∫ τ

0
g(t)Kt fd,cdt

)〉
L2(R,dμc)

(68)

= 1

τ

∫ ∞

−∞
dμf,c(x)

∫ τ

0

∫ τ

0
g(s)ḡ(t)ei(s−t)xdsdt (69)

= 1

τ

∫ τ

0

∫ τ

0
g(s)ḡ(t)μf,c (e

i(s−t)x)dsdt (70)

Hence

|〈g,Aτ,c g〉| ≤1

τ

∫ τ

0

∫ τ

0
|g(t)| · |g(s)| · |μf,c (e

i(s−t)x)|dtds (71)

=1

τ

∫∫
0≤s≤t≤τ

|g(t)| · |g(s)| · |μf,c (e
i(s−t)x)|dtds (72)

+ 1

τ

∫∫
0≤t≤s≤τ

|g(t)| · |g(s)| · |μf,c (e
i(s−t)x)|dtds (73)

=2

τ

∫ τ

0
|g(t)|

∫ τ

t

|g(s)| · |μf,c (e
i(s−t)x)|dtds (74)

=2

τ

∫ τ

0
|g(t)|

∫ τ−t

0
|g(t + s)| · |μf,c(e

isx)|dsdt (75)

≤2

τ

∫ τ

0

∫ τ−t

0

1

2
(|g(t)|2 + |g(t + s)|2)|μf,c(e

isx)|dsdt (76)
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=1

τ

∫ τ

0
|μf,c(e

isx)|
∫ τ−s

0
(|g(t)|2 + |g(t + s)|2)dsdt (77)

≤1

τ

∫ τ

0
2|μf,c(e

isx)| · ‖g‖2
L2
τ
ds (78)

Therefore

λτ,c,1 = max
g∈L2

τ

〈g,Aτ,cg〉
‖g‖L2

τ

→ 0, (79)

as τ → ∞. This completes the proof of Eq. (42).

Proof (Equation (43)) Recall that Hf,NU
∼= L2([0,+∞],H0). Hence fNU can

be represented as a curve from [0,∞] to H0. We denote this curve by γ . Without
ambiguity, we do not distinguish between γ and fNU . Hence for each t ≥ 0, γ (t) ∈
H0. And ‖γ ‖2

Hf,NU
=
∫ ∞

0
‖γ (t)‖2

H0
dt . Recall that (Ksγ )(t) = γ (t + s). We set

γ (t) = 0 for all t < 0. Hence for any g ∈ L2
τ ,

〈g,Aτ,NU g〉L2
τ
= 1

τ

〈∫ τ

0
g(s1)Ks1γds1,

∫ τ

0
g(s2)Ks2γds2

〉
Hf,NU

(80)

=1

τ

∫ ∞

0

∫ τ

0

∫ τ

0
ḡ(s2)g(s1)〈γ (t + s1), γ (t + s2)〉H0ds1ds2dt (81)

=1

τ

∫ τ

0

∫ τ

0
ḡ(s2)g(s1)

∫ ∞

0
〈γ (t + s1), γ (t + s2)〉H0dtds1ds2 (82)

We first show the following identity:

lim
s→∞〈γ,Ksγ 〉Hf,NU

= lim
s→∞

∫ ∞

0
〈γ (t), γ (t + s)〉H0dt = 0. (83)

To prove Eq. (83), without loss of generality we assume that ‖γ ‖Hf,NU
= 1. For

any ε > 0, there exists Nε , so that
∫ Nε

0 ‖γ (t)‖2
H0

dt > 1 − ε. This means that∫∞
Nε

‖γ (t)‖2dt < ε. Therefore for any s ≥ Nε ,

∣∣∣
∫ ∞

0
〈γ (t), γ (t + s)〉H0dt

∣∣∣2 ≤
∣∣∣
∫ ∞

0
‖γ (t)‖2

H0
dt
∣∣∣2 ·

∣∣∣
∫ ∞

Nε

‖γ (t)‖2
H0

dt
∣∣∣2 < ε2.

(84)

This proves Eq. (83). Now we continue with Eq. (82):

〈g,Aτ,NUg〉L2
τ
≤
∣∣∣2

τ

∫ τ

0

∫ τ

s1

ḡ(s2)g(s1)〈Ks1γ,Ks2γ 〉Hf,NU
ds1ds2

∣∣∣ (85)



Koopman and Time-Series 315

≤
∣∣∣2

τ

∫ τ

0

∫ τ−s1

0
g(s1)ḡ(s1 + s)〈γ,Ksγ 〉Hf,NU

ds1ds
∣∣∣ (86)

For any ε > 0, find Mε , so that for any |〈γ,Ksγ 〉| < ε for any s > Mε . Now for
any τ > Mε/ε and any ‖g‖L2

τ
= 1, we have

〈g,Aτ,NUg〉L2
τ

(87)

≤2

τ

∫ τ

0

∫ Mε

0
|g(s1)| · |g(s1 + s)| · |〈γ,Ksγ 〉Hf,NU

|ds1ds+ (88)

2

τ

∫ τ

0

∫ τ−s1

Mε

|g(s1)| · |g(s1 + s)| · |〈γ,Ksγ 〉Hf,NU
|ds1ds (89)

≤1

τ

∫ τ

0

∫ Mε

0
(|g(s1)|2 + |g(s1 + s)|2)|〈γ,Ksγ 〉Hf,NU

|ds1ds+ (90)

1

τ

∫ τ

0

∫ τ−s1

Mε

(|g(s1)|2 + |g(s1 + s)|2)|〈γ,Ksγ 〉Hf,NU
|ds1ds (91)

≤1

τ

∫ τ

0

∫ Mε

0
|g(s1)|2ds1ds + 1

τ

∫ τ

0

∫ Mε

0
|g(s1 + s)|2 · |〈γ,Ksγ 〉Hf,NU

| (92)

ds1ds + 1

τ

∫ τ

0

∫ τ−s1

Mε

ε(|g(s1)|2 + |g(s1 + s)|2)ds1ds (93)

≤Mε

τ
+ Mε

τ
+ 2

ε

τ
(τ −Mε) ≤ 4ε. (94)

Therefore for τ > Mε/ε,

λτ,NU,1 = max
g∈L2

τ‖g‖=1

〈g,Aτ,NUg〉 ≤ 4ε. (95)

This completes the proof of Eq. (43).
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2. Béla Szőkefalvi-Nagy, Ciprian Foias, Hari Bercovici, and László Kérchy. Harmonic Analysis of
Operators on Hilbert Space. Springer Science & Business Media, 2010.

3. Robert Vautard and Michael Ghil. Singular spectrum analysis in nonlinear dynamics, with
applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35:395–424, 1989.

4. Yicun Zhen, Bertrand Chapron, Etienne Mémin, and Lin Peng. Eigenvalues of autocovariance
matrix: A practical method to identify the koopman eigenfrequencies. arXiv, 2021.



316 Y. Zhen et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 6756 800 a 6756 800 a
 
http://creativecommons.org/licenses/by/4.0/


Index

B
Boulvard, Pierre-Marie, 57

C
Chapron, Bertrand, 211, 223, 259, 301
Collard, Fabrice, 211
Crisan, Dan, 19, 43

D
Debussche, Arnaud, 15
Dinvay, Evgueni, 27
Dufée, Benjamin, 43

F
Fablet, Ronan, 211
Fiorini, Camilla, 57
Flandoli, Franco, 69

G
Goodair, Daniel, 87

H
Hascoet, Erwan, 259
Holm, Darryl D., 109
Hug, Berenger, 15
Hu, Ruiao, 109, 135

L
Lang, Oana, 159
Li, Long, 57, 179, 273, 287

Lobbe, Alexander, 195
Luongo, Eliseo, 69

M
Mémin, Etienne, 15, 43, 57, 179, 273, 287, 301
Mensah, Prince Romeo, 1

O
Ouala, Said, 211

P
Pan, Wei, 159
Patching, Stuart, 135
Platzer, Paul, 223

R
Reich, Sebastian, 237
Resseguier, Valentin, 259

S
Street, Oliver D., 109

T
Tandeo, Pierre, 211, 223
Thiry, Louis, 273
Tissot, Gilles, 179
Tucciarone, Francesco L., 287

Z
Zhen, Yicun, 301

© The Author(s) 2023
B. Chapron et al. (eds.), Stochastic Transport in Upper Ocean Dynamics,
Mathematics of Planet Earth 10, https://doi.org/10.1007/978-3-031-18988-3

317


 10371 61494
a 10371 61494 a
 
https://doi.org/10.1007/978-3-031-18988-3

	Preface
	Organization
	Contents
	Blow-Up of Strong Solutions of the Thermal Quasi-GeostrophicEquation
	1 Introduction
	1.1 Notations
	1.2 Main Result

	2 Blow-Up
	2.1 Estimate for the 2D Modified Helmholtz Equation or the Screened Poisson Equation
	2.2 Log-Sobolev Estimate for Velocity Gradient
	2.3 A Priori Estimate

	References

	Modeling Under Location Uncertainty: A Convergent Large-Scale Representation of the Navier-Stokes Equations
	1 Introduction
	2 Modelling Under Location Uncertainty
	3 Notations and Main Result
	4 Proofs of the Main Result
	References

	A Stochastic Benjamin-Bona-Mahony Type Equation
	1 Introduction
	2 Truncation
	3 Proof of the Main Result
	References

	Observation-Based Noise Calibration: An Efficient Dynamics for the Ensemble Kalman Filter
	1 Introduction
	2 The Stochastic SQG Model Under Location Uncertainty (LU)
	3 Girsanov Theorem and Noise Calibration
	3.1 Change of Measure
	3.2 Computation of the Girsanov Drift

	4 Experiments
	5 Conclusion
	References

	A Two-Step Numerical Scheme in Time for Surface Quasi Geostrophic Equations Under Location Uncertainty
	1 Introduction
	2 Numerical Schemes
	2.1 Derivation of a Milstein Scheme
	2.1.1 Lévy Area Simulation

	2.2 Multi-Step Schemes

	3 Numerical Results
	4 Conclusion and Perspectives
	Appendix: Convergence of Euler-Maruyama Scheme Under Moderate Noise
	References

	The Dissipation Properties of Transport Noise
	1 Introduction
	2 Well-Posedness and Motivations
	2.1 Notations and Definitions
	2.2 Motivations

	3 Main Results
	4 Explicit Computations
	4.1 Explicit Construction
	4.2 Numerical Simulation

	References

	Existence and Uniqueness of Maximal Solutions to a 3D Navier-Stokes Equation with Stochastic Lie Transport
	1 Introduction
	2 SALT Navier-Stokes and Results
	2.1 Preliminaries from Stochastic Analysis
	2.2 SALT Navier-Stokes Equation
	2.3 Notions of Solution and Results

	3 Abstract Framework and Results
	3.1 Assumption Set 1
	3.2 Assumption Set 2
	3.3 Notions of Solution and Results

	4 Abstract Solution Method and Application
	4.1 Abstract Solution Method
	4.2 SALT Navier-Stokes in the Abstract Framework

	Appendix
	References

	Coupling of Waves to Sea Surface Currents Via Horizontal Density Gradients 
	1 Introduction
	1.1 Submesoscale Sea Surface Dynamics

	2 Submesoscale Thermal Wave-Current Dynamics on a Free Surface
	2.1 Surface Waves as Symmetry-Breaking Features of Local Force Imbalances
	2.2 A Tale of Two Maps: Currents and Waves
	2.3 Thermal Potential Vorticity (TPV) Dynamics on a Free Surface
	2.4 CM Equations in the Slowly Varying Envelope (SVE) Approximation
	2.5 Thermal Potential Vorticity Dynamics with SVE on a Free Surface

	3 Numerical Implementation
	4 Conclusion and Outlook
	References

	Variational Stochastic Parameterisations and Their Applications to Primitive Equation Models
	1 Introduction
	2 Stochastic Primitive Equations
	2.1 Variational Principles for Stochastic Primitive Equations
	2.2 Conservation Laws

	3 Calibration of the Stochastic Parameters
	3.1 Lagrangian Paths
	3.2 Eulerian Differences

	4 Results
	5 Summary and Discussion
	Appendix: Numerical Implementation
	Bibliography

	A Pathwise Parameterisation for Stochastic Transport
	1 Introduction
	2 Problem Formulation
	3 Methodology
	4 Robustness
	5 Numerical Results
	Appendix
	References

	Stochastic Parameterization with Dynamic Mode Decomposition
	1 Introduction
	2 Modelling Under Location Uncertainty
	2.1 Stochastic Flow
	2.2 Stochastic QG Model

	3 Numerical Parameterization of Unresolved Flow
	3.1 EOF-Based Method
	3.2 DMD-Based Method

	4 Numerical Experiments
	4.1 Configurations
	4.2 Diagnostics
	4.3 Discussion

	5 Conclusions
	References

	Deep Learning for the Benes Filter
	1 Introduction
	1.1 Nonlinear Stochastic Filtering Problem
	1.2 Filtering Equation and General Splitting Method

	2 Derivation and Outline of the Deep Learning Algorithm
	2.1 Feynman–Kac Representation
	2.2 The Benes Filtering Model
	2.3 Neural Network Model for the Prediction Step
	2.4 Monte-Carlo Normalisation Step

	3 Numerical Results for the Benes Filter
	3.1 No Domain Adaptation
	3.2 With Domain Adaptation

	4 Conclusion and Outlook
	References

	End-to-End Kalman Filter in a High Dimensional Linear Embedding of the Observations
	1 Introduction
	2 Method
	3 Numerical Experiments
	3.1 Preliminary Analysis on SST Anomaly Data
	3.2 Shallow Water Equation (SWE) Case-Study

	4 Conclusion
	References

	Dynamical Properties of Weather Regime Transitions
	1 Introduction
	2 European-Atlantic Weather Regime Transitions
	3 Dimensionality Around Transitions
	4 Persistence Around Transitions
	5 Conclusion and Perspectives
	Appendix 1: Data Description: Twentieth Century Reanalysis
	Appendix 2: Statistical Descriptors
	Empirical Orthogonal Functions
	Gaussian Mixture Model

	Appendix 3: Dynamical Indicators
	Local Dimensions
	Inverse Persistence θ

	References

	Frequentist Perspective on Robust Parameter Estimation Using the Ensemble Kalman Filter
	1 Introduction
	2 Ensemble Kalman Parameter Estimation
	3 Frequentist Analysis
	4 Multi-Scale Data
	5 Numerical Example
	6 Conclusions
	References

	Random Ocean Swell-Rays: A Stochastic Framework
	1 Introduction
	2 Wave-Current Interaction in the Literature
	3 The Time-Decorrelation Assumption
	3.1 The Ray Lagrangian Correlation Time
	3.2 Ray Absolute Diffusivity
	3.3 A Practical Estimation

	4 Numerical Simulations
	5 Conclusion
	References

	Modified (Hyper-)Viscosity for Coarse-Resolution Ocean Models
	1 Introduction
	2 Double Gyre Quasi-Geostrophic Model
	2.1 Governing Equations
	2.2 Pytorch Implementation
	2.3 Eddy-Resolving and Eddy-Permitting Regimes

	3 Proposed Modified Viscosity
	3.1 Motivation
	3.2 Modified Viscosity
	3.3 Modified Viscosity Regularization
	3.4 Iterative Procedure

	4 Results and Discussion
	4.1 Statistics
	4.2 Iterative Procedure

	5 Conclusion
	Appendix
	Downsampling Procedure
	Parameter Tables

	References

	Primitive Equations Under Location Uncertainty: Analytical Description and Model Development
	1 Introduction
	2 Location Uncertainty (LU)
	3 Stochastic Transport Theorem
	4 Boussinesq Equations
	5 Methods
	6 Results
	7 Conclusions
	References

	Bridging Koopman Operator and Time-Series Auto-Correlation Based Hilbert–Schmidt Operator
	1 Introduction
	2 Preliminaries and the Main Result
	3 Proof of the Main Result
	References

	Index

