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Preface

This volume contains the Proceedings of The East Asia Joint Symposium on

Fields and Strings 2021, which was held in hybrid form at the Media Center

of Osaka City University on November 22–27, 2021. About 160 physicists

from all over East Asia attended or stayed online for this symposium and

more than 50 researchers presented their results in the invited lectures,

the short talks or the poster session. Quantum field theory and string

theory in the context of several exciting developments were discussed, which

include frontiers of supersymmetric gauge theory, anomalies and higher

form symmetries and several issues on quantum gravity and black holes.

We thank all of the speakers and the participants of this symposium for

their stimulating lectures and intensive discussions. It is our sincerest hope

that this volume will not only help to advance our field by presenting the

latest developments in research, but also to serve to inspire new generations

of physicists.

The organizers:

Satoshi Iso

Hiroshi Itoyama (Chair)

Kazunobu Maruyoshi

Takahiro Nishinaka

Takeshi Oota

Kazuhiro Sakai

Asato Tsuchiya

Reiji Yoshioka
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Ginzburg-Landau effective action for a fluctuating

holographic superconductor

Yanyan Bu

School of Physics, Harbin Institute of Technology,

Harbin, 150001, China
E-mail: yybu@hit.edu.cn

Mitsutoshi Fujita

School of Physics and Astronomy, Sun Yat-Sen University,

Zhuhai, 519082, China

E-mail: fujita@mail.sysu.edu.cn

Shu Lin
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Guandong Provincial Key Laboratory of Quantum Metrology and Sensing, Sun

Yat-Sen University,

Zhuhai, 519082, China
E-mail: linshu8@mail.sysu.edu.cn

The fluctuation effect of the order parameter in a holographic superconduc-

tor model was analyzed under holographic prescription for Schwinger-Keldysh
closed time contour for non-equilibrium system in the paper1. The time-

dependent Ginzburg-Landau effective action, which governs the dynamics of

the fluctuating order parameter near the critical point, is derived. The time-
dependent Ginzburg-Landau action is computed up to quartic order of the fluc-

tuating order parameter and first order in time derivative in a semi-analytical

approach.

Keywords: Black holes, Gauge-gravity correspondence, Holography and con-

densed matter physics

1. Introduction

Critical exponents describe scaling behavior of observables near a critical

point of continuous phase transitions. The characteristic properties of criti-

cal exponents are symmetry, dimension, and properties of order parameters.

It is believed to be independent of the details of interaction. As a result, it

is important to examine the critical region. The results of weak and strong

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter

published by World Scientific Publishing Company. It is distributed under the terms of

the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the

original work is properly cited.
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coupling can be compared. Holography will make it possible to analyze

dynamics (e.g. changing temperature) in the critical region: the critical

exponent and the specific heat in theories at a quantum critical point. The

gauge/gravity correspondence will give insights of cuprate superconductors,

which appear in phase structure of superconductivity vs quantum criticality

in interesting strongly correlated systems.

Holographic superconductors have become a driving force for establish-

ing AdS/CMT (condensed matter theory). Holographic s-wave supercon-

ductors are referred to Abelian Higgs models2,3, where s-wave, p-wave, and

so on refer to the spatial component of the Cooper pair’s wave function.

The phase transition of an s-wave superconductor is from a black hole with

no hair (normal phase) to one with scalar hair. The gap of the AC con-

ductivity at T = 0 represents the frequency ω ∼ 8Tc. This is consistent

with the experimental results of cuprate superconductors. Because it is

different from the BCS prediction ω ∼ 3.5Tc, the holographic result implies

the strong coupling limit. The paper4 constructed the general off-shell

Ginzburg-Landau formulation (analytic expressions) of a holographic su-

perconductor. An inhomogeneous order parameter was used to calculate

the scaling coefficient and gradient term. Holographic entanglement en-

tropy has become a nice probe of the holographic superconductor phase

transition first realized by papers5–7.

In this work, we apply the holographic Schwinger-Keldysh approach8

to a holographic superconductor model9. The time-dependent physics of

a fluctuating order parameter is investigated. This model is applicable

to nonlinear problems. The main goal is to introduce time-dependence

in the Landau-Ginzburg action and to consider a non-equilibrium QFT

framework.

2. The time-dependent Ginzburg-Landau effective action

In this section, we derive the time-dependent Ginzburg-Landau effective

action from a holographic superconductor model. We analyze it in the

probe limit without considering the backreaction: the scalar QED in AdS

Schwarzschild geometry10. Consider an analytic holographic superconduc-

tor, the lagrangian of which also becomes the scalar QED as follows:

S0 =

∫
d5x
√
−g
[
−1

4
fµνf

µν − (Dµψ)∗(Dµψ)−m2
0ψ
∗ψ

]
, (1)

m2
0 = −4, (2)
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where fMN = ∇µaν −∇νaµ and Dµ = ∇µ − iqaµ. U(1) gauge symmetry

in the bulk corresponds to U(1) global symmetry on the AdS boundary.

The formation of a charged scalar hair causes the spontaneous symmetry

breaking of U(1). The incoming Eddington-Finkelstein coordinate is used

to parameterize the AdS Schwarzschild metric xµ = (r, v, xi).

Fig. 1. The radial coordinate is complexified in the gravity dual. The picture is taken

from the paper12

To analyze both fluctuation and dissipation, the boundary theory must

be placed on the Schwinger-Keldysh time contour11. A holographic dual

has the complexified radial coordinate8. It circles the black hole horizon

from infinity 1 to infinity 2. See Fig. 1.

The solution of the gauge field is in the leading order

av = µ0

(
1− r2h

r2

)
. (3)

If the regular boundary condition at the black hole horizon is required, it is

known that ODE can be solved analytically at the special point µ0 = 2rh.

This unique value corresponds to the critical point at which the phase

transition occurs.

The scalar field has mass m2
0 = −4 which saturates the Breitenlohner-

Freedman bound. The AdS boundary expansion of ψ, ψ∗ becomes

ψ(r →∞s) = ψbs
log r

r2
+

Φs
r2

+ · · · ,

ψ∗(r →∞s) = ψ̄bs
log r

r2
+

Φ̄s
r2

+ · · · , (4)

Because ψ, ψ∗ are not independent, ψ̄bs (Φ̄s) are not always complex con-

jugate of ψbs (Φs). The two modes have conformal dimension two and are

normalizable. The two modes are canonical conjugates of one another13.
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We fix Φs, identified as the expectation value of condensate, by adding a

proper boundary terms at the AdS boundary.

The EOMs are nonlinear partial differential equations (PDEs). It is not

easy to obtain an analytic solution for PDEs. Therefore, we consider the

following perturbation scheme to simplify the problem in the high temper-

ature phase where temperature T is slightly above Tc. We consider (1)

off-equilibrium fluctuation of Φ while keeping Φ2, Φ4 close to the critical

point. (2) A slight deviation from the critical point µ0 is described by a

chemical potential perturbation O(δµ), (3) We require the hydrodynamic

limit: the system grows slowly with increase of time. The hydrodynamic

limit can be represented as the low frequency expansion O(∂v). Each a field

is described by the triple expansion A
(l)(m)(n)
v , Ψ(l)(m)(n), Ψ∗(l)(m)(n).

We compute the partially on-shell action, which leads to the boundary

effective action Seff . UV divergences are removed by counter-term action

added at the AdS boundaries. Due to the triple expansion of the bulk fields,

the effective action Seff =
∫
d4xL is expanded as

L = L(0)(2)(0) + L(0)(2)(1) + L(0)(4)(0) + L(1)(2)(0) + . . . (5)

Effective action in each order becomes

L(0)(2)(0) = −Φ1 − Φ2

2iπ
(Φ∗1 − Φ∗2) =

i

2π
Φ∗aΦa. (6)

L(0)(2)(1) = δµ

[
log 2

iπ
(Φ∗2 − Φ∗1)(Φ2 − Φ1)− (Φ∗2Φ2 − Φ∗1Φ1)

]
= δµ

[
log 2

iπ
Φ∗aΦa + (ΦaΦ∗r + Φ∗aΦr)

]
, (7)

L(1)(2)(0) = −1

4
(1− 3i)Φ∗a∂vΦr +

1

4
(1 + 3i)Φ∗r∂vΦa +

log 2

4π
Φ∗a∂vΦa,

(8)

L(0)(4)(0) =− 0.000129006i(ΦaΦ∗a)2 + 0.00466688ΦaΦ∗a(Φ∗aΦr + ΦaΦ∗r)

− 0.000263406i
[
(Φ∗aΦr)

2 + (ΦaΦ∗r)
2
]
− 0.00105363iΦaΦrΦ

∗
aΦ∗r

+ 0.0208333(Φ∗aΦ∗rΦ
2
r + ΦaΦrΦ

∗2
r ), (9)

where we have introduced difference and average combinations as the (r, a)-

basis:

Φa = Φ1 − Φ2, Φr =
1

2
(Φ1 + Φ2). (10)

Equation (6) is the noise term. The coefficient should be a positive imag-

inary number because of unitarity. The chemical potential correction is
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represented by equation (7). This also includes corrections of Φ∗aΦa. Equa-

tion (8) is the first order of hydrodynamic corrections. These terms con-

tribute the symmetric and retarded two-point correlations, which obey the

standard fluctuation-dissipation theorem up to δµ at lowest order in ω.

Equation (9) includes general 8 potential terms.

Effective action has Z2-reflection symmetry Φ1 ↔ Φ2 and Φ∗1 ↔ Φ∗2 with

sign flips of effective action. This implies that effective action has complex

coefficients according to14. Higher-point correlations will be constrained

by Z2 symmetry.

3. Comparison with weakly coupled results

We compare gravity dual with weakly coupled results. The time-dependent

Ginzburg-Landau action SGL (T > Tc)
11 becomes

SGL = 2ν

∫
d4x

[
Φq∗
K (L−1)RΦcl

K + Φcl∗
K (L−1)AΦq

K + Φq∗
K (L−1)KΦq

K
]
, (11)

where ~ΦK = (~Φcl
K,
~Φq
K)T are the classical part and quantum fluctuation of

the scalar condensate (the order parameter). Matrix elements become

(L−1)R(A) =
π

8T

[
∓∂t +D(∇r + 2ieAcl

K)2 − τ−1GL −
7ζ(3)

π3Tc
|Φcl
K|2
]
, (12)

(L−1)K = coth
ω

2T

[
(L−1)R(ω)− (L−1)A(ω)

]
≈ iπ

2
, (13)

where signs in the time-derivative term change in R(A) and τGL = π/[8(T−
Tc)]. The symbol “K” means the K-gauge: the time-component of the

external gauge potential is equal to zero. The equation (13) is obtained

from Kubo-Martin-Schwinger symmetry.

We have two fundamental parameters in the action: ν—the density of

states, and D—the diffusion constant.

We have a similarity between the holographic model and weakly coupled

theory.

• The imaginary part of Φq∗K ΦqK and eq. (6) are positive. This is a

requirement coming from unitarity. In the gravity dual, the same

term is corrected by eq. (7), which does not exist in the field theory

side.

• the coefficient of the Φ∗clK ΦqK (and Φ∗qK ΦclK) term contains inverse

relaxation time, which shows τGL ∼ ε−zνT ∼ ε−1T . Actually, both

models are in model A of the Hohenberg-Halperin classification for

dynamic universality class. Static and dynamic critical exponents
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ν = 1/2 and z = 2. The effective lagrangian eq. (7) in the gravity

dual shows the critical exponent of the same dynamical universality

class δµ ∼ µ − µ0 ∼ Tc − T . Critical exponents are calculated for

holographic s-wave and p-wave superconductors1,15.

• Only two quartic terms are present in eq. (11). These cover only

arrr-terms. Eq. (9), on the other hand, has 8 general quartic

potential terms. The gravity dual predicts more general results of

holographic superconductors.

4. Discussion

We have outlined our obtained results1. We showed that holography pro-

vided a possible description of strongly coupled superconductors. In par-

ticular, time dependent Ginzburg-Landau effective action was derived from

a holographic superconductor. Effective action is up to the quartic order

in the fluctuating scalar condensate. This is an effective action for charge

degrees of freedom such as currents and charge-condensate coupling. The

holographic model was comparable with weak coupled BCS superconduc-

tor11 and demonstrated the same dynamic universality class. Our work

shows that the holographic Schwinger-Keldysh contour approach for non-

equilibrium physics is relevant to nonlinear problems in the gravity dual.

The analysis in this work is for spatially homogeneous case, in which

the charge diffusion part is decoupled. It would be interesting to consider

spatially non-homogeneous case.

We are interested in how to incorporate Kibble-Zurek scaling. We

must analyze the influence of the noise on the time dependent dynamics in

quenching physics at that time.
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The IIB matrix model has been proposed as a non-perturbative definition of super-
string theory since 1996. We study a simplified model that describes the late time
behavior of the IIB matrix model non-perturbatively using Monte Carlo methods,
and we use the complex Langevin method to overcome the sign problem. We
investigate a scenario where the space–time signature changes dynamically from
Euclidean at early times to Lorentzian at late times.We discuss the possibility of
the emergence of the (3+1)D expanding universe.

Keywords: Type IIB matrix model; Emergent space–time; Complex Langevin sim-
ulation

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of the
Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits use,
distribution and reproduction in any medium, even commercially, provided that the original
work is properly cited.
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1. Introduction

Superstring theory is the most promising candidate for a unified theory of all

interactions, including quantum gravity. The theory is consistently defined in

ten-dimensional space-time, leading to the compacting of the extra dimensions

into small compact internal spaces. These scenarios have been investigated

perturbatively on D-brane backgrounds and result in a vast number of vacua,

leading to the so-called string landscape. It is, therefore, interesting to see

what happens when one includes non-perturbative effects and whether these

play an essential role in determining the true vacuum of the theory. The type

IIB matrix model [1] has been proposed as a non-perturbative definition of

superstring theory and provides a promising context to study such problems.

The type IIB matrix model is formally obtained by the dimensional reduc-

tion of ten-dimensional N = 1 Super Yang–Mills (SYM) to zero dimensions.

The theory has maximal N = 2 supersymmetry (SUSY), where translations

are realized by the shifts Aμ → Aμ + αμ1, μ = 0, . . . , 9. The eigenvalues of

the bosonic matrices Aμ can therefore be interpreted as coordinates of space–

time. Thus, in this model, space–time appears dynamically from the degrees of

freedom of matrices. In the Euclidean version of the model, the Spontaneous

Symmetry Breaking (SSB) of the SO(10) rotational symmetry down to SO(3)

occurs, which implies the emergence of a three-dimensional space [2–8].

By Monte Carlo simulation [9], it was found that a continuous time emerges

dynamically, and a three-dimensional space expands. In Refs. [10, 11], it turned

out that the expanding behavior of the space obeys the exponential law at early

times and the power-law at late times. In Ref. [12], however, it was shown that

SSB comes from singular configurations associated with the Pauli matrices, in

which only two eigenvalues are large. This problem has been attributed to an

approximation used to avoid the sign problem, which turned out later to be

unjustifiable.

In Refs. [13–15], the Complex Langevin Method (CLM) [16, 17] was used to

overcome the sign problem without the above mentioned approximation. When

one applies this method, one should apply the criterion for correct convergence

of the CLM [18–24]. In Ref. [15], we found a new phase in which the structure

of space is continuous by applying the CLM to the Lorentzian type IIB matrix

model. See also Refs. [25–27] for other related works.

In this work, we study the bosonic version of the type IIB matrix model

by using the CLM. We show the equivalence between the Lorentzian and Eu-

clidean models, which implies that the space–time in the Lorentzian model is

Euclidean. To realize the possibility of the dynamical change of signature from
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Euclidean to Lorentzian, we introduce a Lorentz-invariant mass term in the

action that breaks the equivalence. We find some evidence that the signature

of space–time changes from Euclidean at early times to Lorentzian at later

times.

2. The type IIB matrix model

2.1. Definition

The action of the type IIB matrix model is given as follows: S = Sb + Sf ,

Sb = − 1

4g2
Tr ([Aμ, Aν ][Aμ, Aν ]) , Sf = − 1

2g2
Tr
(
Ψ̄(CΓμ)[Aμ,Ψ]

)
, (1)

where Aμ (μ = 0, . . . , 9) and Ψ are N ×N Hermitian matrices, and Γμ and C
are 10-dimensional gamma matrices and the charge conjugation matrix, respec-

tively, which are obtained after the Weyl projection. The Aμ and Ψ transform

as vectors and Majorana-Weyl spinors under SO(9,1) transformations. In this

study, we omit Sf to reduce the computational cost.

The partition function is given by Z =
∫
dAeiSb . Due to the phase factor

eiSb , the model is not well-defined as it is, and in this work, we define it by

deforming the integration contour. When we rewrite the partition function as

Z =
∫
dAe−S̃ , the action of the Lorentzian model is given as

S̃ = − i

4
N
[
−2Tr(F0i)

2
+Tr(Fij)

2
]
, (2)

where g2 = 1/N and Fμν = i[Aμ, Aν ]. According to Cauchy’s theorem, one

can rotate the Lorentzian matrices Aμ to the Euclidean ones Ãμ since the

integration contour of Aμ can be deformed keeping the real part of S̃ positive.

The relationship between Aμ and Ãμ is

A0 = e−i 3π8 Ã0 , Ai = ei
π
8 Ãi . (3)

Then, the Euclidean action is given by

S̃ =
1

4
N
[
2Tr(F̃0i)

2 +Tr(F̃ij)
2
]
, (4)

which is positive-definite. Here we have defined F̃μν = i[Ãμ, Ãν ].

2.2. Equivalence between the Euclidean and Lorentzian models

By using Eq. (3), one can derive the relationship between the expectation

values of TrA2
0 and TrA2

i in the two models:〈
1

N
TrA2

0

〉
L

= e−i 3π4

〈
1

N
TrÃ2

0

〉
E

,

〈
1

N
TrA2

i

〉
L

= ei
π
4

〈
1

N
TrÃ2

i

〉
E

, (5)
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Fig. 1. We plot the expectation values of 1
N

TrA2
0 (Left) and 1

N
TrA2

i (Right). Those
of the Euclidean and Lorentzian models are represented by the triangles and the squares,
respectively. The angles between the Lorentzian and Euclidean models of 〈 1

N
TrÃ2

0〉 and

〈 1
N
TrÃ2

i 〉 are −3π/4 and π/4, which agree with Eq. (5).

where 〈 · 〉L and 〈 · 〉E denote the expectation values in the Lorentzian and

Euclidean models, respectively. In Fig. 1 (Left), 〈 1
NTrA2

0〉 is shown, and the

angle between 〈 1
NTrÃ2

0〉E and 〈 1
NTrA2

0〉L is −3π/4. In Fig. 1 (Right), 〈 1
NTrA2

i 〉
is shown, and the angle between 〈 1

NTrÃ2
i 〉E and 〈 1

NTrA2
i 〉L is π/4. These angles

are in agreement with Eq. (5).

These results are consistent with the fact that the Lorentzian and the Eu-

clidean models are equivalent. Expectation values in the Lorentzian model can

be obtained by simply rotating the phase of those in the Euclidean model. In

particular, 〈 1
NTrA2

0〉L and 〈 1
NTrA2

i 〉L are complex and the emergent space–time

should be interpreted as Euclidean.

2.3. Lorentz-invariant mass term

To realize real time and space, we introduce a Lorentz-invariant mass term in

the action. For the Lorentzian model, the action is

S̃ = − i

4
N
[
−2Tr(F0i)

2 +Tr(Fij)
2
]
− i

2
Nγ
[
Tr(A0)

2 − Tr(Ai)
2
]

(6)

with γ > 0. Using Eq. (3), we find that the action for the corresponding

Euclidean model becomes

S̃ =
1

4
N
[
2Tr(F̃0i)

2 +Tr(F̃ij)
2
]
+

1

2
Nγ ei

3π
4

[
Tr(Ã0)

2 +Tr(Ãi)
2
]
, (7)

where the real part of the mass term is negative. If γ < 0, the real part of the

mass term in the Euclidean model becomes positive, and then the matrices can

be rotated from the Lorentzian to the Euclidean, which implies the equivalence

between the two models.
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The same mass term was used to study classical solutions of the Lorentzian

type IIB matrix model [28]:

[Aν , [Aν , Aμ]]− γAμ = 0 . (8)

For γ > 0, one can obtain classical solutions with smooth space and expanding

behavior. Classical solutions with Hermitian Aμ make the time and space real.

For γ = 0, the classical solutions are given by simultaneously diagonalizable

Aμ, which do not necessarily have an expanding behavior. For γ < 0, there do

not exist classical solutions with expanding behavior.

2.4. The time evolution

As mentioned in Sec. 1, time does not exist a priori, and we define it as

follows. We choose a basis in which A0 is diagonal and its eigenvalues are

in the ascending order: A0 = diag(α1, α2, . . . , αN ) , α1 ≤ α2 ≤ · · · ≤ αN .

Then, we define ᾱk as ᾱk = 1
n

∑n
i=1 αk+i, and the time tρ as

tρ =

ρ∑
k=1

|ᾱk+1 − ᾱk| . (9)

Here, we introduce the n×n matrices Āi(t) as
(
Āi

)
ab
(t) = (Ai)k+a,k+b, which

represent the space at the time t.

3. Complex Langevin method

The complex Langevin method (CLM) [16, 17] can be applied successfully to

many systems with a complex action problem. One writes down stochastic

differential equations for the complexified degrees of freedom, which can be

used to compute expectation values under certain conditions. Consider a model

given by the partition function Z =
∫
dxw(x), where x ∈ R

n and w(x) is a

complex-valued function. In the CLM, we complexify the variables x ∈ R
n −→

z ∈ C
n, and solve the complex Langevin equation with the Langevin time σ:

dzk
dσ

=
1

w(z)

∂w(z)

∂zk
+ ηk(σ) . (10)

The first term of the right-hand side of Eq. (10) is the drift term, and the

second one is the real Gaussian noise with the probability distribution

P(ηk(σ)) ∝ e−
1
4

∫
dσ

∑
k[ηk(σ)]

2

. (11)

To confirm that the CLM gives correct solutions, we use the criterion that the

probability distribution of the drift term should be exponentially suppressed

for large values [23].
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3.1. Application of the CLM to the type IIB matrix model

To apply the CLM to the type IIB matrix model, we make a change of variables

[13]: α1 = 0 , αi =
∑i−1

k=1 e
τk for 2 ≤ i ≤ N , where we introduce new real

variables τk. In this way, the ordering of αi is automatically realized. Initially,

αi are real, and Ai are Hermitian matrices. To apply the CLM, we complexify

τk and take Ai to be SL(N,C) matrices. The complex Langevin equations are

given by

dτk
dσ

= −∂Seff

∂τk
+ ηk(σ) ,

d(Ai)kl
dσ

= − ∂Seff

∂(Ai)lk
+ (ηi)kl(σ) , (12)

where Seff is obtained from S̃ in Eq. (6) by adding a term associated with the

gauge fixing and the Jacobian term associated with the change of variables.

4. Results

In the following, we introduce a parameter ε in the mass term:

S̃ = − i

4
N
[
−2Tr(F0i)

2
+Tr(Fij)

2
]
− i

2
Nγ
[
eiε Tr(A0)

2 − e−iε Tr(Ai)
2
]

(13)

to shift coefficients of Tr(A0)
2 and Tr(Ai)

2 slightly from pure imaginary, and

set ε = π/10.

4.1. Expectation value of the time coordinate

Fig. 2. Expectation values of the eigenvalues αi of A0 for N = 32, γ = 3 are plotted. The
solid line corresponds to the Euclidean model, where the complex phase of the expectation
values 〈αi〉L is exp(−i3π/8). From this plot, θt tends to become 0 at late times (at both
ends of the distribution).

When γ = 0, Eq. (3) holds, and we expect that 〈αi〉L = e−i 3π8 〈α̃i〉E. This is
true because of the equivalence between the Euclidean and Lorentzian models,
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and time is regarded as the Euclidean one. We measure the time differences

(Δαi)L = (αi+1)L − (αi)L ∝ eiθt . The emergent time is real if θt = 0.

In Fig. 2, we plot the expectation values of the time coordinates 〈αi〉L
on the complex plane for N = 32, γ = 3. The solid line corresponds to the

Euclidean model, where the complex phase of 〈αi〉L is exp(−i3π/8). From the

plot, θt tends to become 0 at late times (at both ends of the distribution).

4.2. Time evolution of space

Fig. 3. (Left) θs(t) is plotted against t for γ = 3. All values of θs(t) are about 0.2 and below
the θs(t) = π/8 line, which corresponds to the Euclidean space. (Right) |R2(t)| is plotted
against t for γ = 3. We can see that the space is expanding slightly with the time t.

The time evolution of the extent of space is given by R2(t) =〈
1
n tr

(
Āi(t)

)2〉
= e2iθs(t)

∣∣R2(t)
∣∣. Since the matrices Āi are complex, R2(t)

is also complex. The time t is defined in Eq. (9). From Eq. (5), we obtain the

Euclidean space when θs(t) ∼ π/8, and the real space in the Lorentzian model

when θs(t) ∼ 0. Therefore, the signature of space–time can change dynamically

in this model.

In Fig. 3 (Left) and (Right), θs(t) and |R2(t)| are plotted against t for

N = 32, γ = 3, respectively. All values of θs(t) are about 0.2 and below the

θs(t) = π/8 line, which corresponds to the Euclidean space. We can see that

the space is expanding slightly with the time t from the plot of |R2(t)|.

5. Conclusions

In this work, the CLM was applied to the bosonic type IIB matrix model

in order to overcome the sign problem. We showed that the Lorentzian and

Euclidean models are equivalent and that expectation values in the two models

are related to each other by some complex phase rotation. The expectation

values (5) in the Lorentzian model are complex, and space–time is Euclidean.
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We introduced the model with a Lorentz-invariant mass term, which is a

promising way to realize real time and expanding space. Then, the Euclidean

and Lorentzian models are not equivalent anymore for γ > 0. We found that

the time, which is extracted from the expectation values of the eigenvalues

of A0 in the Lorentzian model, may be real at late times although they are

complex near the origin. We also studied the evolution of the extent of space

with time. We have seen some tendency that the space becomes closer to real

than the original model.

To obtain a three-dimensional expanding space, we expect that supersym-

metry will play an essential role. We are currently investigating its effect,

which we will report in the near future.
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Recently computational resource of quantum computers sounds growing well.

In this article, we discuss how we can apply this development to numerically
simulate quantum field theories. In contrast to the conventional approach by

(Marlov chain) Monte Carlo method suffering from the infamous sign problem,

we work in Hamilton formalism and adopt quantum algorithms which do not
rely on Monte Carlo sampling. After brief discussion on how to put quantum

field theories on quantum computers, we present our recent numerical results

on the charge-q Schwinger model, where q is an electric charge of a Dirac
fermion. We observe an exotic phenomena such as negative string tension

behavior in potential between heavy charged particles which essentially come

from presense of non-small θ-angle.

Keywords: Quantum computation, Gauge theory, Schwinger model, Lattice

gauge theory, Confinement

1. Introduction

It seems that resource of quantum computers has been recently growing

well. In particular, readers would remember the news in 2019 that Google

claimed to achieve quantum supremacy. While the news gave contraversy

on whether or not it is really quantum supremacy, today quantum computer

is one of hot science topics in public media. It is now possible for anyone to

use (small-scale) quantum computer in the cloud for free. Although public

news on quantum computers usually mention industrial applications such

sequrity, new medicine and so on, in this article, we would like to consider

how these developments can help us to understand physical systems. In

particular, we discuss applications of quantum computation to numerical

simulations of quantum field theories (QFT), and present some of our recent

results in this context1–3. Since QFT is a common language in various fields

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter

published by World Scientific Publishing Company. It is distributed under the terms of

the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the

original work is properly cited.
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such as high energy physics, nuclear physics, cosmology and condensed

matters etc., it is expected to induce developments in various fields.

2. Conventional numerical approach to quantum field

theory

For many purposes, one of the main motivations to use a quantum computer

would be to perform fast numerical calculations. The purpose of this article,

the application of quantum field theory to numerical simulations, is not

an exception but in this case the motivation is more specific. To explain

this, we discuss how numerical simulations of quantum field theoriesa have

been usually performed. In the conventional approach, we use Lagrangian

(path integral) formalism and the expectation value of the operator O for

Euclidean case is written as

〈O(Φ)〉 =

∫
DΦ O(Φ)e−S[Φ]∫
DΦ e−S[Φ]

. (1)

where S[Φ] is the action and “integral domain” is over all possible values

of the field Φ at each point in the spacetime. Of course we cannot directly

perform a numerical evaluation of the infinite dimensional integral and we

need some regularization. The most standard way to do this is to cut

the spacetime into a lattice with finite size (lattice regularization). To

reproduce to the original theory, we need to take the continuous limit where

the lattice spacing goes to zeroa. Numerical evaluation of the regularized

integral is usually done by an algorithm called the (Markov chain) Monte

Carlo method, where we regard the Boltzmann weight (∝ e−S [Φ]) as the

probability that realizes the field configurationΦ. Then we approximate the

integral by using the average over the generated samples:

〈O(Φ)〉 ' 1

](samples)

∑
j∈samples

O(Φj). (2)

So far, the conventional approch has been successful to some extent. One of

the significant successes is the derivation of the nuclear force from the first

principle by lattice QCD (quantum chromodynamics)4. However, if the

Boltzmann weights are not positive real numbers, the probability interpre-

tation cannot be applied directly and we need some tricksb. In particular,

aIf the original spacetime has infinite volume, then we should also take a infinite volume

limit.
bThere are various efforts within the framework of the path integral formalism, which

have limited success as sign problem becomes stronger (see e.g. the paper5).
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when the integrand is highly oscillating, it is likely hard to do efficient sam-

pling. This infamous sign problem often occurs physically, for example, in

the presence of topological terms, chemical potentials and real time. All

these situations are closely related to very important physical problems.

What would happen if we work in the Hamiltonian formalism rather

than the Lagrangian formalism? In the Hamiltonian formalism, the sign

problem does not exist from the beginning since the problem to be solved

is not a (path) integral. However, there is a reason why the Hamiltonian

formalism has not been used much in numerical simulations of quantum

field theory: since state space of QFT is typically infinite, we need to regu-

larize it but the dimension of the state space after regularization typically

increases exponentially with the number of “degrees of freedom”. In other

words, naively, computers have to memorize exponentially large vectors

corresponding to the states and multiply huge matrices corresponding to

operators. This is the case for classical computer. What about quantum

computers? For quantum computers, at least for some problems in quan-

tum field theory, there are known algorithms with exponential improvement

in computational complexity compared to classical computation. Here we

consider what will be possible when the resources of quantum computers

are expected to be sufficiently developed in the future.

3. Quantum field theory as qubits

Let us see how we can put quantum field theories on quantum computers. In

gate-type quantum computer, the basic unit is quantum bit (qubit) which is

a quantum system with two dimensional Hilbert space. In order to directly

apply quantum algorithms to QFT, it is convenient to rewrite QFT as a

spin system. Here we discuss how we can achieve this in terms of simple

examples.

3.1. Fermion field

It is easiest for fermions because state space associated with fermions be-

comes finite dimensional by simply cutting the spatial directions by a finite

lattice. This is essentially because of the Pauli’s exclusion principle. Let

us explicitly see this in a free Dirac fermion in 1 + 1 dimensions. We cut

the one dimensional space by a lattice with N sites and lattice spacing a. If

we choose staggered fermion6 as a lattice fermion, the Hamiltonian of the
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lattice theory is given by

H = − i

2a

N−2∑
n=0

[
χ†nχn+1 − χ†n+1χn

]
+m

N−1∑
n=0

(−1)nχ†nχn, (3)

where m is fermion mass and the lattice fermion operators (χn, χ
†
n) satisfy

{χm, χ†n} = δmn. (4)

In this case the dimension of the state space is finite in dimension 2N .

To rewrite the system in a form that we can directly apply quantum

algorithms, we map it to a spin system. To do this, we need a spin operator

that satisfies the canonical anti-commutation relation (4). While such a spin

operator is not unique, the most traditional one is the so-called Jordan-

Wigner transformation7:

χn =
Xn − iYn

2

n−1∏
j=1

(−iZj) , (5)

where (Xn, Yn, Zn) is the Pauli matrix (σ1, σ2, σ3) located at site n. Then

we find

H =
1

4a

N−2∑
n=0

[
XnXn+1 + YnYn+1

]
+
m

2

N−1∑
n=0

(−1)nZn. (6)

This is the same as the Hamiltonian of the XY -model with (space depen-

dent) longitudinal magnetic field.

3.2. Scalar field

Next let us consider scalar field. The large difference from the fermionic case

is that the state space is still infinite dimensional even on lattice and fur-

ther regularization is required. This is because lattice scalar field theory is

technically equivalent to multi-particle quantum mechanics with appropri-

ate interactions which have infinite dimensional Hlibert space. To explain

how to put lattice scalar field theory on quantum computers, let us consider

a single particle quantum mechanics for simplicity:

H(x, p) =
1

2
p2 +

ω2

2
x2 + V (x), (7)

where V (x) is a potential and

[x, p] = i. (8)
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In principle there are many ways to truncate the Hilbert space but here

we use the most naive truncation by harmonic oscillator basisc. To do

this, let us introduce annhilation and creation operators for the harmonic

oscillator:

x =
1√
2ω

(a+ a†), p = i

√
ω

2
(a− a†). (9)

The annihilation operator in the number operator basis n is

a =

∞∑
n=0

√
n+ 1|n〉〈n+ 1|. (10)

Let us truncate the Hilbert space such that it is spanned by |0〉, |1〉, · · · , |Λ−
1〉 and replace the annihilation operator by

a → aΛ :=

Λ−2∑
n=0

√
n+ 1|n〉〈n+ 1|. (11)

Then we consider the Hamiltonian

H(x, p) → HΛ := H(xΛ, pΛ), (12)

where

xΛ =
1√
2ω

(aΛ + a†Λ), pΛ = i

√
ω

2
(aΛ − a†Λ). (13)

We can map the truncated system to a spin system as follows. First we

consider a binary representation of n:

n = bK−12K−1 + bK−22K−2 + · · ·+ b020 (K = log Λ), (14)

and express the basis |n〉 as

|n〉 = |b0〉 · · · |bK〉. (15)

Then each component of the annihilation operator is given by

|n〉〈n+ 1| = ⊗K−1
`=0 (|b′`〉〈b`|) , (16)

which can be mapped to a spin system via

|0〉〈0| = 1− Z
2

, |1〉〈1| = 1 + Z

2
,

|0〉〈1| = X + iY

2
, |1〉〈0| = X − iY

2
. (17)

This is a qubit description of the single particle quantum mechanics. It is

straightforward to generalize this method to multi-particle case.

cSee e.g. the papers8–10 for other basis.
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3.3. Gauge field

The case of gauge fields is more complicated and depends on spacetime di-

mensions and and boundary conditions. This is realted to the fact that in

gauge theory, there are not only physical states but also unphysical states,

and whether or not the dimension of the physical state space is infinite

depends on situations. To see this concretely, let us consider a 1+1 dimen-

sional quantum electrodynamics coupled to charge-q Dirac fermion. We

will call this theory the charge-q Schwinger model or simply the Schwinger

model11,12. When the space is cut into a lattice, the Hamiltonian of this

theory is given by13

H = − i

2a

N−2∑
n=0

[
χ†ne

iqφnχn+1 − χ†n+1e
−iqφnχn

]
+m

N−1∑
n=0

(−1)nχ†nχn +
g2a

2

N−2∑
n=0

(
Ln +

θ

2π

)2

, (18)

where g is gauge coupling and θ is theta angle. The lattice gauge field

operators (φn, Ln) satisfy the canonical commutation relation

[φm, Ln] = iδmn. (19)

Now the state space associated with the gauge field is infinite dimensional

since φn is bosonic. However, this is the state space including unphysical

states and the physical states are restricted by the Gauss law:

Ln − Ln−1 = q

(
χ†nχn −

1− (−1)n

2

)
. (20)

This relates Ln to its neighbours and the fermionic operator. When we

take the open boundary condition, we can rewrite Ln purely in terms of

the fermionic operator and φn can also be absorbed by a gauge transfor-

mation. Therefore the Schwinger model with the Gauss law is rewritten as

a fermionic system and we can further map it to a spin system by e.g. the

Jordan-Wigner transformation. Thus we can directly apply the quantum

algorithm to the Schwinger model.

4. Quantum algorithm to prepare vacuum

Here we would like to construct the ground state by a quantum algorithm.

While there are several known algorithms, here we use an algorithm called

adiabatic state preparation. Suppose that we would like to constract the

ground state of the Hamiltonian Htarget of the target system. First, we
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prepare an initial Hamiltonian H0 whose ground state |GS0〉 is known and

non-degenerate. Therefore H0 is practically taken to be a Hamiltonian of

a simple system. Next, we introduce a time-dependent Hamiltonian HA(t)

satisfying

HA(0) = H0, HA(T ) = Htarget, (21)

and we take HA(t) to change more slowly for larger T . Then we use the

adiabatic theorem. That is, if the ground state of HA(t) has non-degenerate

for any t, then the ground state |GS〉 of Htarget is obtained by the following

time evolution:

|GS〉 = lim
T→∞

T exp

(
−i
∫ T

0

dtHA(t)

)
|GS0〉. (22)

In actual simulations, the time evolution operator is approximated by tak-

ing finite T and discretizing the integral in the exponent. This gives errors

due to the fact that the constructed state in pratical simulation is not ex-

actly the ground state. Using the approximate ground state constructed

in this way, we can calculate the expectation value under the ground state

approximately.

5. Recent simulation results

Using the adiabatic approximation, we can construct the ground state of the

Schwinger model and calculate various physical quantities. Here we present

a part of numerical results of our simulations1–3 (see e.g. the papers14–18

for other simulations of the Schwinger model). The Schwinger model has

been analyzed by various methods. Since it is 1+1 dimensional, a powerful

anaytic approach by bosonization is available. In particular, it is known

that we can exaclty solve the massless case (m = 0)19–22. When the fermion

mass m is nonzero, there is no known exact solution but we can get a good

approximation by mass perturbation theory23,24 for small m. Regarding

the conventional Monte Carlo approach, it is known to be difficult when θ

is not small due to the sign problem while small θ region is accessible.

There is one thing before presenting the results: real quantum computer

has errors due to interactions with einvironment. Therefore we need to take

error correction into account in order to obtain error-free results. However,

it is known that this requires huge computational resources and this is a

major obstacle in development on the technology side. To test quantum

algorithms and estimate the computational resources required, people often

use a tool called a (classical) simulator. A simulator is a tool to simulate



April 25, 2022 14:2 Proceedings of the East Joint. . . - 9in x 6in ch03-ws-procs9x6˙QC page 26

26

0.0 0.5 1.0 1.5 2.0
g

−0.4

−0.3

−0.2

−0.1

0.0

⟨
̄ψψ
⟩

Fig. 1. Chiral condensate in the q = 1 Schwinger model after thermodynamic and

continuum limits against the gauge coupling g for the massless case (m = 0). The red
straight line represents the exact result.

a quantum computer by a classical computer and we can use almost the

same code to run a real quantum computer. Here we use a simulator called

“qasm simulator” provided by IBM.

5.1. The q = 1 Schwinger model without probe charges

First, we focus on the q = 1 case, which has been investigated well. Here

we consider a quantity called the chiral condensate1. In the continuum

theory, this quantity is defined as the expectation value of the fermion

mass operator ψ̄ψ(x) under the groundstate:

〈GS|ψ̄ψ(x)|GS〉. (23)

We compute the chiral condensate for various values of the parameters

(a,N), and take the infinite volume limit N →∞ and the continuous limit

a→ 0. In fig. 1, we plot the chiral condensate for the massless case against

g and find agreement with the exact result. In Fig. 2, we plot the chiral

condensated at g = 1 against m for θ = 0 and θ = 3π/5. When m is

small, the simulation and mass perturbation results agree, whereas when

m is large, they deviate from each other. This is intepreted as violation

of mass petruatation theory for non-small m. In the context of quantum

simulations of field theory, this is the first result in which the continuous

limit is taken seriously.

dWe regularize it by subtracting the free result.
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Fig. 2. The chiral condensate in the q = 1 Schwinger model for massive case at g = 1

for θ = 0 (blue ×’s) and θ = 3π/5 (green circles). The lines denote the result obtained
by the mass perturbation theory.

5.2. With probe charges

Next let us consider the q 6= 1 case2,3. We also put two probe charges ±qp
and consider the potential between them. According to the mass pertur-

bation theory25, the potential changes its qualitative bahavior as changing

the parameters:

V (`) = σ` for g`� 1, (24)

where ` is the distance between the probes and σ is the string tension

σ = −m eγqg

2π3/2

[
cos

θ + 2πqp
q

− cos
θ

q

]
+O(m2). (25)

At first sight, this seems to show a confinement behavior but note that the

tension σ is not always positive. In particular, we find σ = 0 when qp is an

integer multiple of q. This implies screening of the charges. We can also see

that σ can be sometimes negative when qp/q is not an integer. The reason

why this can happen is closely related to the generalized global symmetry,

but we will not go into details here (see e.g. the papers3,26,27).

To calculate the potential, we measure the difference of the ground

state energies in the theories with and without the probe charges. In the

(1 + 1)-dimensional U(1) gauge theory, the effect of the probe charges is

taken into account by replacing θ by a space-dependent θn such that its

value suddenly changes by 2πqp. In this way we can compute the potential.

Figure 3 shows the potential for q = 3 and qp = −1 for various values of

θ. The simulation results show a linear behavior for all values of θ. while
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Fig. 3. The potential V (`)/g between the probe charges (qp = −1) is plotted in the

q = 3 Schwinger model for various values of θ = θ0. Here we take m = 0.15, N = 25 and
ga = 0.40.

signs of its slopes change as changing θ at the same timing as the result of

the mass perturbation theory.

6. Discussion

In this article, we discussed applications of quantum computation to nu-

merical simulations of quantum field theories. This topic is still in its

infancy and there are still many things to explore. There would be future

developments both in hardware and software aspects. While we presented

recent numerical results obtained by a classical simulator, we need use real

quantum computers to have speed up of quantum algorithms.

Regarding the hardware perspective, although an ideal quantum com-

puter is a large machine with error correction, machines available in near

future are NISQ (Noisy Intermediate-Scale Quantum device)28, where er-

rors are not negligible. For such a machine, it is desirable to apply an

algorithm that uses as few quantum gates as possible. While the adiabatic

state preparation used in this article is guaranteed to be correct under the

assumptions of the adiabatic theorem, it is not suitable for NISQ devise

because it uses many quantum gates to approximate the time evolution.

The algorithm expected to be suitable for NISQ is the one that uses only

a small number of gates such as classical-quantum hybrid algorithm. An

algorithm to construct the ground state along such a direction is based on

the variational method.
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Regarding the software perspective, we have not yet established an effi-

cient way to put most field theories on a quantum computer. In particular,

in other gauge theories above 2+1 dimensions such as quantum chromody-

namics, it is hard to establish to put theories on quantum computer while

respecting gauge symmetry. So far, a simple lattice regularization has been

applied but this may not be best for some theories30. In addition, there are

many interesting states other than the ground state in QFT, but this as-

pect has not been explored well yet in the context of quantum computation.

One of the most interesting states in high energy physics are ones treated

in the scattering problem, in which multiple particles are moving with a

fixed momentum. If we can construct such a state, then we would be able

to understand what is “actually” happening in the accelerator experiments.

In this article, we have focused on QFT, but it is also interesting to con-

sider applications to quantum gravity such as string theory29. I hope that

we will be able to literally see time evolution of our universe on quantum

computers in the future.
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We construct the ASDYM 1-solitons and multi-solitons for split signature and
interpret them as soliton walls. We show that the gauge group is G = SU(2)
for the entire intersecting soliton walls, and SU(3) for each soliton walls in the
asymptotic region. This is joint research partially with Masashi Hamanaka,
Claire R. Gilson, and Jonathan Nimmo.

Keywords: Anti-self-dual Yang-Mills equation; Soliton scattering; Exact solv-
able model; N=2 Strings.

1. Introduction

The anti-self-dual Yang-Mills (ASDYM) system is notable as an exactly

solvable model and play an indispensable role in many different fields of

theoretical and mathematical physics, such as quantum field theory, twistor

theory8, and integrable systems8. Especially the ASDYM equations reveal

the essence of the lower-dimensional integrable systems because almost all

of the soliton equations are the dimensionally reduced equations of ASDYM

according to the Ward conjecture12. Among these lower-dimensional soli-

ton equations, dimensionally reduced from the 4-dimensional split signature

(+, +, −, −) (or called the Ultrahyperbolic8 spacetime) are the majority.

On the other hand, the ASDYM equations in the 4-dimensional split sig-

nature is the EOM of effective action for N = 2 open string theories11 and

seem to have good compatibility with the lower-dimensional integrable sys-

tems. Although most physicists didn’t pay too much attention on N = 2

strings and there has been little progress in this direction for a long time, we

still believe that the connections between the lower-dimensional integrable

∗This work is supported by Grant-in-Aid for Scientific Research (18K03274) and the
scholarship of Japan-Taiwan Exchange Association.
c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the
original work is properly cited.
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systems and N = 2 open string theories are worth studying and not just for

seeking the physical reality.

In (1+1)-dimensional integrable systems, the KdV equation −4ut +

6uux+uxxx = 0 might be the most notable one among the exactly solvable

models and the typical KdV 1-soliton is in the form of

u(x, t) := 2
∂2

∂x2
(log coshX) = 2κ2sech2X, X := κx+ κ3t+ δ (1)

which is a travelling wave solution with a constant velocity −κ2 and a

constant amplitude 2κ2, and hence it preserves its shape over time. In

addition, u(x, t) is an even function symmetric with respect to X = 0 and

u, ux, uxx, uxxx → 0 as x → ±∞. Therefore, the distribution of u(x, t)

is localized within a region centered on X = 0. On the other hand,

the KdV equation is also known for having infinitely conserved quanti-

ties9, more specifically, the mass
∫
udx, the momentum

∫
u2dx, the energy∫ [

2u3 − (ux)
2
]
dx, ..., and so on. In particular, the energy density

2u3 − (ux)
2 = 16κ6

(
2sech6X − sech4X

)
, X := κx+ κ3t+ δ (2)

possesses the behavior of 1-soliton as well. Inspired by this, we simply

consider the pure Yang-Mills action density TrFμνF
μν as an analogue of

energy density, and try to figure out whether the 1-solitonic behavior like

(2) exists for the ASDYM equations in 4-dimensions or not. Fortunately,

the answer is yes and our result4 is

TrFμνF
μν ∝ (2sech2X − 3sech4X

)
, (3)

where X is a nonhomogeneous linear function of real coordinates x1, x2, x3,

x4. Especially, the gauge group is G = SU(2)4 for the split signature and

hence it means our ASDYM 1-soliton could be some candidate of physical

object in N = 2 open string theories.

One more well-known fact is that the KdV multi-soliton

u(x, t) := 2
∂2

∂x2
(log τn) (4)

can be represented elegantly as the Wronskian determinant

τn := Wr(f1, f2, ..., fn) :=

∣∣∣∣∣∣∣∣∣∣

f
(0)

1 f
(0)

2 · · · f
(0)

n

f
(1)

1 f
(1)

2 · · · f
(1)

n

...
...

. . .
...

f
(n−1)

1 f
(n−1)

2 · · · f (n−1)
n

∣∣∣∣∣∣∣∣∣∣
, (5)

where f
(m)

i :=
∂mfi
∂xm

, fi := coshXi, Xi := κix+ κ3i t+ δi. (6)
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Now a natural question to ask is whether the Wronskian type multi-solitons

exist for the ASDYM equations or not. If the answer is yes and the gauge

group can be verified to be unitary, then what is interpretation for such

ASDYM multi-solitons in N = 2 string theories.

2. J-matrix formulation of ASDYM and Darboux

transformation

Before going ahead to the main topic, we need to introduce some prior

knowledge. Firstly, the ASDYM equations on various real spaces can be

unified into 4-dimensional complex flat spacetime with the metric ds2 =

2(dzdz̃ − dwdw̃) and we can easily get the split signature (+, +, −, −) by

imposing some conditions on the complex coordinates, for instance(
z w

w̃ z̃

)
=

1√
2

(
x1 + x3 x2 + x4

−(x2 − x4) x1 − x3

)
, x1, x2, x3, x4 ∈ R. (7)

Here we set the gauge group to be G = GL(N,C) in general. The complex

representation of ASDYM equations are

Fzw = 0, Fz̃w̃ = 0, Fzz̃ − Fww̃ = 0 (8)

which can be cast in a gauge independent formulation, called the Yang

equation1,13

∂z̃[(∂zJ)J
−1]− ∂z̃[(∂zJ)J

−1] = 0, (9)

where J is an N ×N matrix called Yang’s J-matrix. An advantage of this

formulation is that the anti-self-dual (ASD) gauge fields can be reformulated

by the decomposition of J = h̃−1h as

Az=−(∂zh)h
−1, Aw=−(∂wh)h

−1, Az̃=−(∂z̃h̃)h̃
−1, Aw̃=−(∂w̃h̃)h̃

−1. (10)

Sometimes we use a convenient gauge h̃ = 1 to simplify the gauge fields as

Az = −(∂zJ)J
−1, Aw = −(∂wJ)J

−1, Az̃ = 0, Aw̃ = 0. (11)

Now we introduce a novel Lax representation10 of ASDYM equations :{
L(φ) := [∂w − (∂wJ)J

−1]φ− (∂z̃φ)ζ = 0

M(φ) := [∂z − (∂zJ)J
−1]φ− (∂w̃φ)ζ = 0

, (G = GL(N,C)) (12)

where the spectral parameter ζ is any right-action N ×N constant matrix

rather than scalar. Under the compatible condition L(M(φ))−M(L(φ)) =

0, the ASDYM equations (Yang equation) can be derived from the linear

system (12). Furthermore, if we define a Darboux Transformation10 as

φ̃ = φζ − ψΛψ−1φ, J̃ = −ψΛψ−1J, (13)



April 25, 2022 14:3 Proceedings of the East Joint. . . - 9in x 6in ch04-ws-procs9x6 page 36

36

where φ(ζ) denotes the general solution of (12) and we use a new notation

ψ(Λ) to denote a specified solution of (12). Then the linear system (12) is

form invariant under the Darboux transformation (13). In other words,{
L̃(φ̃) := [∂w − (∂w J̃)J̃

−1]φ̃− (∂z̃φ̃)ζ = 0

M̃(φ̃) := [∂z − (∂z J̃)J̃
−1]φ̃− (∂w̃φ̃)ζ = 0

. (14)

Now we can choose a seed solution J = J1 of the Yang equation (9) and

substitute it into (12) to solve a specified solution ψ1(Λ1). After 1-iteration

of the Darboux transformation (13), we get a new solution J̃ = J2. By

repeating the same process6, we can obtain a series of J-matrices.

Seed solution︷︸︸︷
J1

Dar−→ J2
Dar−→ J3

Dar−→ J4
Dar−→ ...

Dar−→ Jn+1
Dar−→ ...

and the J-matrix Jn+1 can be written concisely in terms of the Wronskian3

type quasideterminant (Cf: (5)) :

Jn+1 =

∣∣∣∣∣∣∣∣∣

ψ1 ψ2 · · · ψn 1

ψ1Λ1 ψ2Λ2· · ·ψnΛn 0
...

...
. . .

...
...

ψ1Λ
n
1 ψ2Λ

n
2 · · ·ψnΛ

n
n 0

∣∣∣∣∣∣∣∣∣
J1, (15)

where ψi(Λi) denote n specified solutions of (12) with matrix size N ×N .

We use the term quasi-Wronskian to call it for short. In fact, since the

elements of Ji are noncommutative, the quasiderminant can be considered

roughly as a noncommutative version of determinant. By the definition2 ,

we can decompose (15) into 4 blocks as∣∣∣∣∣
AnN×nN BnN×N

CN×nN DN×N

∣∣∣∣∣ = D − CA−1B (16)

which shows that Ji are all N ×N matrices and G = GL(N,C).

If we choose a seed solution J with det(J) is constant, by the Darboux

transformation (13) we have det(J̃) = det(−Λ) det(J) is also a constant.

Applying the Jacobi’s formula

d

dt
detA(t) = Tr

[
adj(A(t))

dA(t)

dt

]
= detA(t) · Tr(A(t)−1 dA(t)

dt
) (17)

to J̃ and comparing with (11), we find that the gauge fields are all traceless.

That is, any J-matrices (15) generated by a seed solution J1 with constant

determinant are belonging to G = SL(N,C) gauge theory. In fact, we will

always set the seed solution J1 to be identity matrix and only consider

N = 2, 3 cases in the next sections.
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3. ASDYM 1-Soliton and Multi-Soliton for G = SU(2)

Now we set the seed solution J1 to be 2× 2 identity matrix (G = SL(2,C))

so that the linear system (12) reduces to

{
L(φ) = ∂wφ− (∂z̃φ)ζ = 0

M(φ) = ∂zφ− (∂w̃φ)ζ = 0
. (18)

For the split signature (+,+,−,−), we can take the reality condition (7)

and find a lovely solution of (18) as

ψ =

(
aeL be−L

−be−L aeL

)
w.r.t. a specific spectral parameter Λ =

(
λ 0

0 λ

)
, (19)

where L = 1√
2

[
(λα+ β)x1 + (λβ − α)x2 + (λα − β)x3 + (λβ + α)x4

]
,

a, b, α, β, λ ∈ C.

After 1 iteration of the Darboux transformation, we obtain a candidate

of 1-soliton solution :

J2 =

∣∣∣∣∣
ψ 1

ψΛ 0

∣∣∣∣∣ = −ψΛψ−1

=
−1

det(ψ)

(
λ|a|2eL+L + λ|b|2e−(L+L) (λ− λ)abeL−L

(λ − λ)abe−(L−L) λ|a|2eL+L + λ|b|2e−(L+L)

)
. (20)

The resulting action density4 of (20) is

TrFμνF
μν = 8

[
(αβ − αβ)(λ − λ)

]2 (
2sech2X − 3sech4X

)
X = L+ L+ log(|a| / |b|) . (21)

We find that the distribution of action density is localized on a 3-

dimensional hyperplane X = 0. Therefore, this kind of solitons can be

interpreted as codimensional 1 soliton and we use the term soliton wall to

distinguish them from the domain wall.

Now we can prepare n different solutions ψi(Λi) of (18) as follows :

ψi =

(
aie

Li bie
−Li

−bie−Li aie
Li

)
w.r.t. spectral parameters Λi =

(
λi 0

0 λi

)
,

Li=
1√
2

[
(λiαi + βi)x

1+(λiβi − αi)x
2+(λiαi − βi)x

3+(λiβi + αi)x
4
]
,

ai, bi, αi, βi, λi ∈ C, i = 1, 2, · · · , n.

(22)

After n-iterations of the Darboux transformation, we obtain a candidate of
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n-soliton solution :

Jn+1 =

∣∣∣∣∣∣∣∣∣

ψ1 ψ2 · · · ψn 1

ψ1Λ1 ψ2Λ2 · · · ψnΛn 0
...

...
. . .

...
...

ψ1Λ
n
1 ψ2Λ

n
2 · · · ψnΛ

n
n 0

∣∣∣∣∣∣∣∣∣
, (23)

which satisfies the property5,6

Jn+1J
†
n+1 = J†

n+1Jn+1 =

n∏
i=1

|λi|2I, I : 2× 2 identity matrix. (24)

This fact implies that the gauge fields in 4-dimensional split signature

A
(n+1)
1 = A

(n+1)
3 = −1

2

[
(∂1Jn+1)J

−1
n+1 + (∂3Jn+1)J

−1
n+1

]
A

(n+1)
2 = A

(n+1)
4 = −1

2

[
(∂2Jn+1)J

−1
n+1 + (∂4Jn+1)J

−1
n+1

] (25)

are all anti-hermitian and therefore the gauge group is G = SU(2).

Now a natural question to ask is whether the n-soliton solution (23)

gives rise to n intersecting soliton walls or not. Let us use a quite similar

technique as mentioned in reference 7 to discuss the asymptotic action

density of (23) rather than calculating the action density directly by (25).

First of all, we fix an I ∈ {1, 2, ..., n} and consider a comoving frame related

to the I-th 1-soliton solution :

J
(I)
2 = −ψ(I)

n ΛI(ψ
(I)
n )−1, ψ(I)

n =

(
aIe

LI bI e
−LI

−bIe−LI aI e
LI

)
(26)

whose action density is

TrFμνF
μν (I) = 8

[
(αIβI − αIβI)(λI − λI)

]2 (
2sech2XI − 3sech4XI

)
XI = LI + LI + log(|aI | / |bI |)

. (27)

More precisely, we define r :=
√
(x1)2 + (x2)2 + (x3)2 + (x4)2 and consider

the asymptotic limit r → ∞ such that

{
XI is a finite real number

Xi,i�=I → ±∞ (i.e. TrFμνF
μν(i�=I) → 0)

. (28)

By some mathematical techniques5,6 of the quasideterminant, we find that

Jn+1
r→∞−→ −Ψ̃ (I)

n ΛI(Ψ̃
(I)
n )−1D (I)

n , n ≥ 2, (29)
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where D
(I)
n is a constant matrix and doesn’t affect the gauge fields, and

Ψ̃ (I)
n :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)

⎛
⎜⎜⎝

n∏
i=1,i�=I

(λI − λi) aIe
LI

n∏
i=1,i�=I

(λI − λi) bI e
−LI

−
n∏

i=1,i�=I

(λI − λi) bIe
−LI

n∏
i=1,i�=I

(λI − λi) aI e
LI

⎞
⎟⎟⎠

as Xi,i�=I → +∞

(ii)

⎛
⎜⎜⎝

n∏
i=1,i�=I

(λI − λi) aIe
LI

n∏
i=1,i�=I

(λI − λi) bI e
−LI

−
n∏

i=1,i�=I

(λI − λi) bIe
−LI

n∏
i=1,i�=I

(λI − λi) aI e
LI

⎞
⎟⎟⎠

as Xi,i�=I → −∞

. (30)

Comparing the asymptotic n-solion solution (29), (30) with I-th 1-soliton

solution (26), we find that Ψ̃
(I)
n is in the same form as ψ

(I)
n up to constant

factors. These factors lead to a position shift from the principal peak of

action density (27), called phase shift. More specifically, the action density

of n-soliton solution in the asymptotic region

TrFμνF
μν r→∞−→ 8

[
(αIβI − αIβI)(λI − λI)

]2 (
2sech2X̃I − 3sech4X̃I

)
(31)

behaves like the action density of I-th 1-soliton (27), where X̃I := XI +ΔI

and the phase shift

ΔI =
n∑

i=1,i�=I

ε
(±)
i log

∣∣∣∣λI − λi

λI − λi

∣∣∣∣ ,
{
ε
(+)
i := +1, Xi,i�=I → +∞
ε
(−)
i := −1, Xi,i�=I → −∞ (32)

is real-valued. Since I is any positive integer from 1 to n, and for every I the

n-soliton solution gives rise to a soliton wall in the asymptotic region, we

can conclude that the n-soliton solution can be interpreted as n intersecting

soliton walls in the entire region. Furthermore, the n intersecting soliton

walls can be embedded into G = SU(2) gauge theory in 4-dimensional split

signature and therefore they could be interpreted as n intersecting branes

in open N = 2 string theories.

4. Reduction to (1+1)-dimensional real space

To make the discussion more clearly, let us take 2-dimensional spacetime

and 3-soliton scattering for instance. We can impose the condition x1 = t,

x2 = x4 = 0, x3 = x on the spacetime coordinates such that

Li =
1√
2
((λiαi + βi)t+ (λiαi − βi)x) , i = 1, 2, 3 (33)
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and Xi = Li + Li + log |ai/bi|. Then we fix an I ∈ {1, 2, 3} and choose a

complex number I such that LI = I which implies

Li =

(
λiαi − βi
λIαI − βI

)
I +

√
2

(
λiαiβI − λIαIβi

λIαI − βI

)
t, i �= I. (34)

Now the setup of the comoving frame related to the I-th 1-soliton is com-

pleted because{
XI = finite

Xi,i�=I → ±∞ or ∓∞ when t→ ±∞ (35)

This setup implies that the action density of i-th 1-soliton (i �= I) behaves

as TrFμνF
μν (i�=I) ∼ 2sech2Xi − 3sech4Xi → 0 as t → ±∞. On the other

hand, the action density of 3-soliton in the asymptotic region behaves as

TrFμνF
μν ∼ 2sech2X̃I − 3sech4X̃I , X̃I =

{
XI +Δ

(+)
I as t→ +∞

XI +Δ
(−)
I as t→ −∞ . (36)

In fact, Δ
(−)
I = −Δ

(+)
I and it depends on 23−1 = 4 choices of asymptotic

regions. For example one of the choices is

Δ
(+)
1 = −Δ

(−)
1 = − log

∣∣∣∣λ1 − λ2

λ1 − λ2

∣∣∣∣− log

∣∣∣∣λ1 − λ3

λ1 − λ3

∣∣∣∣ , (37)

Δ
(+)
2 = −Δ

(−)
2 = + log

∣∣∣∣λ2 − λ1

λ2 − λ1

∣∣∣∣− log

∣∣∣∣λ2 − λ3

λ3 − λ3

∣∣∣∣ , (38)

Δ
(+)
3 = −Δ

(−)
3 = + log

∣∣∣∣λ3 − λ1

λ3 − λ1

∣∣∣∣+ log

∣∣∣∣λ3 − λ2

λ3 − λ2

∣∣∣∣ . (39)

5. An example of ASDYM 1-Soliton for G = SU(3) and

Multi-Soliton scattering

If we consider the linear system (18) for G = SL(3,C), these is a special

class of solutions ψi(Λi) that give rise to soliton walls6 and behave like the

G = SU(2) cases as well. Firstly, the candidate of G = SL(3,C) 1-soliton

solution can be constructed by 1-iteration of the Darboux transformation

J
(i)
2 = −ψiΛiψ

−1
i ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψi :=

⎛
⎜⎝

aie
Li bie

−Li 0

−bie−Li aie
Li cie

−Li

0 −cie−Li aie
Li

⎞
⎟⎠ ,

Λi :=

⎛
⎝λi 0 0

0 λi 0

0 0 λi

⎞
⎠

,

Li =
1√
2

[
(λiαi + βi)x

1 + (λiβi − αi)x
2 + (λiαi − βi)x

3 + (λiβi + αi)x
4
]
,

ai, bi, ci, αi, βi, λi ∈ C, i = 1, 2, ..., n.

(40)
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By direct calculation, we obtain the action density of i-th 1-soliton as

TrFμνF
μν (i) = 8

[
(αiβi − αiβi)(λi − λi)

]2 (
2sech2Xi − 3sech4Xi

)
Xi = Li + Li +

1
2 log

[
|ai|2 /(|bi|2 + |ci|2)

] , (41)

which can be interpreted as i-th soliton wall as discussed in G = SU(2) case.

Substituting ψi of (40) into (23), we get a version of n-soliton Jn+1 for

G = SL(3,C). By some mathematical techniques6 of the quasideterminant

and considering a comoving frame related to the I-th 1-soliton, we find that

Jn+1
r→∞−→ J̃

(I)
n+1 =: −Ψ̃ (I)

n ΛI(Ψ̃
(I)
n )−1D (I)

n , n ≥ 2, (42)

where D
(I)
n is a constant matrix and Ψ̃

(I)
n is in the form of

Ψ̃ (I)
n =

⎛
⎜⎝

AIe
LI BIe

−LI 0

−BIe
−LI AIe

LI CIe
−LI

0 −CIe
−LI AIe

LI

⎞
⎟⎠ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AI =
n∏

i=1,i�=I

(λI − λ
(±)
i ) aI

BI =
n∏

i=1,i�=I

(λI − λ
(∓)
i ) bI

CI =
n∏

i=1,i�=I

(λI − λ
(∓)
i ) cI

(λ
(+)
i , λ

(−)
i ) := (λi, λi)

(43)

Comparing (43) with (40) and (41), we can conclude that the action density

of n-soliton in the asymptotic region

TrFμνF
μν r→∞−→ 8

[
(αIβI − αIβI)(λI − λI)

]2 (
2sech2X̃I − 3sech4X̃I

)
(44)

behaves like the action density of I-th 1-soliton, where X̃I := XI +ΔI and

the phase shift is

ΔI =
1

2
log

⎡
⎢⎢⎣

n∏
i=1,i�=I

∣∣∣λI − λ
(±)
i

∣∣∣2 (|bI |2 + |cI |2)
n∏

i=1,i�=I

∣∣∣(λI − λ
(∓)
i )
∣∣∣2 |bI |2 + n∏

i=1,i�=I

∣∣∣(λI − λ
(∓)
i )
∣∣∣2 |cI |2

⎤
⎥⎥⎦ (45)

which is real-valued and depends on 2n−1 choices of (λ
(+)
i , λ

(−)
i ) := (λi, λi).

Therefore, the n-soliton can be interpreted as n-intersecting soliton walls

for G = SL(3,C). On the other hand, the asymptotic form J̃
(I)
n+1 of the

n-soliton solution Jn+1 satisfies the property6

J̃
(I) †
n+1 J̃

(I)
n+1 = J̃

(I)
n+1J̃

(I) †
n+1 =

n∏
i=1

|λi|2 I3×3 (46)

which implies that the gauge fields given by J̃
(I)
n+1 are all anti-hermitian.

Therefore for each single soliton wall in the asymptotic region, the gauge

group is in fact G = SU(3).
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6. Conclusion

In this paper, we found a class of ASDYM 1-solitons in 4-dimensional split

signature for G = SU(2) and SU(3), respectively. The resulting action den-

sities are in the same form as TrFμνF
μν ∝ (

2sech2X − 3sech4X
)
which

can be interpreted as the soliton walls. After n-iterations of the Darboux

transformation, we obtain the ASDYM n-soliton and interpret it as n inter-

secting soliton walls for G = SU(2) and SL(3,C), respectively. This fact is

a well-known feature for the KdV multi-solitons, but a new insight for the

ASDYM multi-solitons. On the other hand, the n intersecting soliton walls

can be embedded into G = SU(2) gauge theory and hence they could be

interpreted as n intersecting branes in N = 2 open string theories. There-

fore, to understand the role of such physical objects that play in N = 2

open string theories would be an interesting future work, and the relation-

ship between N = 2 open string theories and lower-dimensional integrable

systems is also worth studying.
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We first study the WKB analysis of the third order ODE, which can be regarded

as the quantized Seiberg-Witten curve of the (A2, AN )-type Argyres-Douglas
theory in the Nekrasov-Shatashvili limit of Omega background. We then derive

thermodynamic Bethe ansatz (TBA) equations satisfied by the Y-functions
from the solutions of the ODE, and identify the Y-function with the WKB

period. For the (A2, A2)-type ODE, we study the process of wall-crossing of

the TBA equation from the minimal chamber to the maximal chamber.

Keywords: TBA equations, WKB period, Wall-crossing, ODE/IM correspon-

dence.

1. Introduction

The WKB period of the Schrödinger equation is expanded as the formal

asymptotic series in the Plank constant, which thus needs to be Borel re-

summed. Recently, a connection between the exact WKB period and the

thermodynamic Bethe ansatz (TBA) equations of the quantum integral

model has been noticed for the Schrödinger equation with arbitrary poly-

nomial potential1,2. In particular, the Y-function of the TBA equations is

identified to the exponential of the Borel resummed WKB period, which

share the same asymptotic behaviors and the discontinuity on the com-

plex ~-plane. The TBA equations thus provide a solution to the Voros’

Riemann-Hilbert problem of the exact WKB periods3. Moreover, the TBA

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter

published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits

use, distribution and reproduction in any medium, even commercially, provided that the

original work is properly cited.
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equations together with the exact quantization condition lead to the exact

energy spectrum of the one-dimensional Quantum Mechanics1,4.

The Schrödinger-type equation with polynomial potential also appears

as the quantized Seiberg-Witten curve of the Argyres-Douglas (AD) theo-

ries in the Nekrasov-Shatashvili (NS) limit of the Ω background5–7, where

the non-zero parameter of the Ω-background plays the role of Planck con-

stant. The TBA equations satisfied by the WKB period (quantum period)

thus becomes very useful to compute the exact BPS spectrum, whose wall-

crossing was observed when the moduli space parameters are varied. Due

to the wall-crossing, the form of the TBA equations also changed, which

we will denote by the wall-crossing of the TBA equations.

To study the exact BPS spectrum of the higher rank AD theories, it

is important to explore the relations between the exact WKB periods of

the higher order ODE and the TBA equations in the quantum integrable

model, whose wall-crossing will be useful to understand the wall-crossing

phenomena of more general non-perturbative supersymmetric gauge theo-

ries. In8, we have focused on the higher order ODE with quadratic poten-

tial, which can be regarded as the quantized SW curve of the (Ar, A1)-type

AD theory. The corresponding TBA equations are found to be (Ar, A1)

type TBA equations. Moreover, the wall-crossing of TBA equations was

observed for the third order ODE with cubic potential. The wall-crossing

of the TBA equations for more general third order ODE has been studied

in9. For the monomial type potential, the TBA equations obtained from

the (A2, A2)-type and (A2, A3)-type ODE become the D4-type and E6-type

TBA equations, respectively.

This proceeding is organized as follows. In section 2, we study the WKB

analysis of the third order ODE and introduce the Borel resummation of

the WKB period. In section 3, we derived the TBA equations satisfied

by the Y-functions, and identify them with the exact WKB periods in

the minimal chamber. In section 4, we study the wall-crossing of the TBA

equations. The TBA equation in the maximal chamber will be constructed.

The section 5 is is devoted to conclusions and discussion.

2. WKB analysis of the third order ODE

We consider the third order ODE on the complex plane:(
ε3
d3

dx3
+ p(x)

)
ψ(x) = 0, p(x) = u0x

N+1 + u1x
N + · · ·+ uN+1 (1)

where ε and ui (i = 0, · · · , N + 1) are complex parameters. This ODE can

be regarded as the quantized SW curve of the (A2, AN )-type AD theory in
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the NS limit of the Ω-background. We will denote this ODE by (A2, AN )-

type ODE in this paper.

The WKB analysis begins by imposing the following ansatz of the wave

function

ψ(x) = exp

(
1

ε

∫ x

P (x′)dx′
)
, (2)

where P (x) satisfies the Ricatti equation

p(x) + P 3 + 3εPP ′ + ε2P (2) = 0. (3)

The solution can be expanded in power series of ε

P (x) =

∞∑
n=0

εnpn(x), (4)

which can be determined recursively by

p0 = (−p) 1
3 ,

pn = − 1

3p20

[
p0

n−1∑
i=1

pn−ipi +

n−1∑
i=1

n−i∑
j=0

pn−i−jpipj

+ 3

n−1∑
i=0

pn−1−ip
′
i + p′′n−2

]
, n ≥ 1.

(5)

It is natural to regard Pdx as the meromorphic differential on the WKB

curve Σ

y3 + p(x) = 0, (6)

which is nothing but the SW curve of (A2, AN ) AD theory. We introduce

the period of Pdx along the one-cycle γ:

Πγ(ε) =

∫
γ

P (x)dx =

∞∑
n=0

εnΠ(n)
γ , (7)

which will be denoted by the WKB period. Since the basis of the mero-

morphic differentials on the WKB curve can be generated by

∂uiy
adx = −a

3

xN+1−i

y3−a
dx, a = 1, 2, (8)

we can obtain the quantum correction of the WKB periods by acting the

differential operators of ui on the periods of ya:

Π(n)
γ =

2∑
a=1

O(n)
a Π̂aγ , (9)
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where

(Π̂a)γ =

∫
γ

yadx. (10)

The operator is called Picard-Fuchs operators, whose details can be found

in8,9.

Since the WKB periods is an asymptotic formal series in ε, we need to

perform the Borel transform

B[Πγ ](ξ) =
∑
n≥0

1

n!
Π(n)
γ ξn, (11)

which Laplace transform along the direction ϕ is called the Borel resum-

mation

sϕ(Πγ)(ε) =
1

ε

∫ ∞eiϕ
0

e−ξ/εB[Πγ ](ξ)dξ. (12)

The WKB period is Borel summable when the Borel transform converges.

There arises a discontinuity for the resummed WKB period

discϕΠγ(ε) = sϕ+(Πγ)(ε)− sϕ−(Πγ)(ε)
)

= lim
δ→0+

(
s(Πγ)(eiϕ+iδε)− s(Πγ)(eiϕ−iδε)

)
,

(13)

when B[Πγ ] is singular along the direction ϕ. By using the Borel-Pade

technique, we are able to compute the singularity structure of the Borel

transform numerically. In Fig.1, we plot the singularity structure of the

Borel transform of the WKB periods for the potential p(x) = −x3 + 7x+ 6,

which will be compared to the TBA results later.

3. TBA/WKB correspondence of the third order ODE

In this section, we derive the TBA equation derived from the solutions of

the ODE, and identify the Y-function with the WKB periods.

The ODE (1) is invariant under the rotation:

x→ ω−1x, ui → ω−iui, i = 0, 1, . . . , N + 1 (14)

with ω = e2πi/(N+4). Since the solution to the ODE is changed, the rotation

is very useful to generate the solutions of the ODE

ψ(ω−1x, {ω−iui}; ε) = ψ(x, {ui}; e2πi/3ε), (15)
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Fig. 1. The singularity structure of the Borel transformed WKB periods Πγ1,1 (blue)

and Πγ1,1 (yellow). The Borel-Padé technique is applied to order ε160 terms of the

formal power series computed by using the Picard-Fuchs operators. Here the potential
is p(x) = −x3 + 7x+ 6. The figure was first presented in9.

where we have rewrite the rotation in terms of ε. At the infinity of the real

and positive axis, the subdominant solution of the ODE behaves as

φ0(x, {ui}; ε)

∼ ε

i
√

3
x−

N+1
3 exp(−1

ε

3

N + 4
x
N+4

3 ), |x| → ∞, | arg x| < π

N + 4
, (16)

where we have set u0 = 1 without loss of generality. The rotated solution

φk defined by

φk(x, {ui}; ε) = φ0(x, {ui}; e
2πi
3 kε) (17)

are the subdominant solution in the sector

Sk =
{
x ∈ C; |arg x| − 2πk

N + 4
<

π

N + 4

}
. (18)

Using these solutions, we introduce the T-functions

T0,k = W [φ−1, φ0, φ1][−k−1] = 1, T1,k = W [φ−1, φ0, φk+1][−k],

T2,k = W [φ0, φk+1, φk+2][−k−1], T3,k = W [φk, φk+1, φk+2][−k] = 1,
(19)

where f [k]({ui}; ε) = f({ui}; e
πi
3 kε) and W [·] is the Wronskian

W [fk1 , fk2 , fk3 ] = det

 fk1 fk2 fk3
∂xfk1 ∂xfk2 ∂xfk3
∂2xfk1 ∂

2
xfk2 ∂

2
xfk3

 . (20)
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We introduce the Y-function by the cross ratios of the T-functions

Ya,k =
Ta−1,kTa+1,k

Ta,k−1Ta,k+1
, a = 1, 2, k = 1, . . . , N. (21)

By using the identities of the Wronskian, it is to find these Y-function

satisfy the (A2, AN )-type Y-system10:

Y
[+1]
a,k Y

[−1]
a,k =

(1 + Ya−1,k)(1 + Ya+1,k)

(1 + Y −1a,k−1)(1 + Y −1a,k+1)
(22)

Using the WKB approximation of the solutions φk and the Stokes

graphs, we find the asymptotics of the Y-function are determined by the

WKB period. Together with the discontinuity structure, we find

log Ya,k =
[
1
εΠγ̂a,k

][a−k]
, γ̂a,k = γ2−k,k + · · ·+ γa+1−k,k,

a = 1, 2, k = 1, . . . , N,
(23)

where γl,k is the one-cycle encircling the branch points xk−1 anticlockwise

and xk clockwise, respectively, on l-th and (l + 1)-th sheets of the WKB

curve. In the following of this section, we will test this relation numerically.

Based on the asymptotics of the Y-functions, it is easy to convert the

Y-system into TBA equations

log Y1,k(θ − iφk) = |m1,k|eθ +K ?L1,k −Kk,k−1 ?L1,k−1−Kk,k+1 ?L1,k+1,

(24)

where ? denotes the convolution, ma,k = e
πi
3 (k−a)Π

(0)
γ̂a,k

and φi = arg(m1,k).

The kernel is defined by

K(θ) =
1

2π

4
√

3 cosh θ

1 + 2 cosh 2θ
, Kk1,k2(θ) = K(θ − i(φk1 − φk2)). (25)

At small ε = e−θ, we can expand the TBA equations by

log Y1,k(θ) = m1,ke
θ +

∞∑
n=1

m
(n)
1,ke

−nθ, (26)

where the coefficient m
(n)
1,k can be computed by using the solutions of the

TBA equations. In table 3, we compare the ε-expansion of the two hand

sides of (23) for the potential p(x) = −x3 + 7x+ 6.

The ε-expansion of the two hand sides of (23) for p(x) = −x3 + 7x+ 69.
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n Π
(n)
γ̂1,1

m
(n−1)
1,1

2 0.2172157436i 0.2172157436i

6 −1.519567945i −1.519567945i

8 −20.48661777i −20.48661776i

12 20065.20970i 20065.20605i

14 1160395.676i 1160393.422i

Moreover, we can express the left hand side of (23) by using the TBA

equations:

log Y1,1(θ) = m1,1e
θ +

∫ ∞
−∞

dθ′K(θ − θ′ + iφ1)L1,1(θ′)

−
∫ ∞
−∞

dθ′K(θ − θ′ + iφ2)L1,2(θ′) + · · · ,

log Y1,2(θ − πi

3
) = m1,2e

θ−πi3 +

∫ ∞
−∞

dθ′K(θ − θ′ + iφ2 −
πi

3
)L1,2(θ′)

−
∫ ∞
−∞

dθ′K(θ − θ′ + iφ1 −
πi

3
)L1,1(θ′) + · · · ,

(27)

When arg(m1,1) = arg(m1,2) = π
2 , i.e. the case studied in Fig.1 and table

3, we find the poles of the kernel of the TBA equations are located along

the directions θ = − 5π
6 ,−

π
6 ,

π
6 ,

5π
6 for log Y1,1(θ) and θ = −π2 ,−

5π
6 ,

π
6 ,

π
2 for

log Y1,2(θ− πi
3 ). Comparing with the singularity structure of Fig.1, we find

these poles are nothing but the discontinuity of the Borel resummed WKB

period of the right hand side of (23).

4. Wall-crossing of the TBA equations

In this section, we study the wall-crossing of the TBA equations for the

case of (A2, A2) ODE. We parameterize the zeros, x0(t), x1(t) and x2(t),

of the potential in the following way

x0(t) = 3− t, x1(t) = −1 +
√

3it, x2(t) = −2 + t−
√

3it, 0 ≤ t ≤ 1

(28)

and denote the potential by p(x, t) = (x− x0(t))(x− x1(t))(x− x2(t)). For

a given value t, we can compute the classical periods and mass of the the

corresponding Y-functions. We find that the pole of the kernel in TBA
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equations (24) are located at

t = 0.162117..., φ2 − φ1 =
π

3
, =

(Π
(0)
γ3,2

Π
(0)
γ1,1

)
= 0, (29)

t = 0.397459..., φ2 − φ1 =
2π

3
, =

(Π
(0)
γ2,2

Π
(0)
γ1,1

)
= 0, (30)

which are nothing but the marginalstability walls of the (A2, A2) AD theory.

Crossing the first wall at φ2−φ1 = π
3 , one needs to pick up the contribution

of the pole and modify the TBA equations:

log Y1,1(θ − iφ1) =|m1,1|eθ +K ? L1,1 −K1,2 ? L1,2 − L1,2(θ − πi

3
− iφ1),

log Y1,2(θ − iφ2) =|m1,2|eθ −K2,1 ? L1,1 +K ? L1,2 − L1,1(θ +
πi

3
− iφ2)

(31)

It is more convenient to introduce the new Y-function

Y
(1)
1,1 (θ) = Y1,1(θ)

(
1 +

1

Y1,2(θ − πi
3 )

)
, Y

(1)
1,2 (θ) = Y1,2(θ)

(
1 +

1

Y1,1(θ + πi
3 )

)
,

Y
(1)
12 (θ) =

1 + 1
Y1,2(θ−πi3 )

+ 1
Y1,1(θ)

1
Y1,1(θ)Y1,2(θ−πi3 )

,

(32)

such that the modified TBA equations can be rewritten as a three-TBA

equations system

log Y
(1)
1,1 (θ − iφ1) =|m1,1|eθ +K ? L

(1)

1,1 −K1,2 ? L
(1)

1,2 +K−1,12 ? L
(1)

12 ,

log Y
(1)
1,2 (θ − iφ2) =|m1,2|eθ +K ? L

(1)

1,2 −K2,1 ? L
(1)

1,1 −K−2,12 ? L
(1)

12 ,

log Y
(1)
12 (θ − iφ12) =|m12|eθ +K ? L

(1)

12 +K+
12,1 ? L

(1)

1,1 −K+
12,2 ? L

(1)

1,2.

(33)

These new Y-functions are identified to the WKB periods in the following

way

log Y
(1)
1,1 (θ) = eθΠγ̂1,1 , log Y

(1)
1,2 (θ) = e

πi
3 eθΠγ̂1,2(θ +

πi

3
),

log Y
(1)
12 (θ) = eθΠγ̂1,1+γ̂1,2(θ),

(34)

which have been tested numerically. Moreover, we can cross the second wall

at φ2 − φ1 = 2π/3 and arrive at the maximal chamber, where four-TBA

equations system of Y
(2)
1,1 , Y

(2)
1,2 , Y

(2)
12 and Y

(2)

1̃2
were found. At the monomial

potential, i.e. p(x, t = 1) = x3 − 8, we can compute the classical periods
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and the masses of the Y-function, which leads to a symmetry between the

Y-functions

log Y
(2)
1,1 (θ − iφ1) = log Y

(2)
1,2 (θ − iφ1 − πi) = log Y

(2)
12 (θ − iφ1 −

πi

3
). (35)

The TBA equations at the monomial potential thus become a two-TBA

equations system, which has the same form as the (symmetric-) D4-type

TBA equations10,11.

5. Conclusions and discussion

In this paper, we have found the correspondence between the WKB periods

of the third order ODE and the Y-functions satisfying the TBA equation

in the quantum integrable model. We have studied the wall-crossing of the

TBA equations on the moduli space. For the (A2, A2)-type ODE, we found

the TBA equations at the monomial point become the D4-type TBA equa-

tions. Our observation can be regarded as the duality between (A2, A2)-

type and D4-type AD theory at the quantum level. The TBA equations

of different integrable models are connected through the wall-crossing. It

would be interesting to see how these integrable models are unified at the

IM side.
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In this note, we discuss the infrared physics of 5d N = 1 Yang-Mills theories
compactified on S

1, with a view toward 4d and 5d limits. The Coulomb phase
boundaries in the decompactification limit are given particular attention and
related to how the wall-crossings by 5d BPS particles turn off. On the other
hand, the elliptic genera of magnetic BPS strings do wall-cross and retain the
memory of 4d wall-crossings, which we review with the example of dP2 theory.

Keywords: Gauge theory; Wall-crossing.

1. Introduction

When one realizes 5d N = 1 theories by geometric engineering as M-theory

on a local Calabi-Yau2–6, BPS objects are realized by M2 and M5 branes

wrapping 2-cycles and 4-cycles respectively. The former gives electrically

charged particles, including dyonic instantons, while the latter gives mag-

netic strings. Compared to their 4d counterpart7,8, these 5d theories look

very simple; the 5d prepotential is at most a piecewise cubic function of the

real Coulombic vev’s, while on S
1, one must deal with the special Kähler

geometry of complex vacuum expectation values.

The simplicity of 5d N = 1 theories is gratifying but at times appears

too simple in that the 5d theory and the same theory compactified on a

circle S1 seem superficially very disparate. The latter acquires a much richer

character. This is partly because the compactification produces particle-

like monopoles from magnetic strings wrapping S
1 and allows wall-crossing

in the 4d sense. In the compactified theory, the wall-crossing involve BPS

particles carrying several kinds of charges and could be very complicated.

But on the other hand, in the 5d limit where R5 → ∞, the ubiquitous

wall-crossing phenomena of 4d7,9 turns off in 5d, as far as particle-like BPS

states are concerned.

In this note, we wish to study 5d rank one theories compactified on a

circle to study how the decompactification limit emerges in the large radius

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the
original work is properly cited.
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limit and how the complicated wall-crossing turns off and characterizes the

co-dimension-one boundary of the Coulomb phase. We will see shortly the

two are closely related to each other, and one recovers the known fact that

5d Coulomb phases end where a BPS magnetic string becomes tension-

less. For some theories, this tensionless limit coincides with the symmetry

restoration of the non-Abelian gauge symmetry, but not always.

On the other hand, the absence of wall-crossing really addresses the

stability of 5d BPS particle states, whose central charges are all “real.” 4d

monopoles uplift to monopole strings, and the central charge density thereof

is by and large imaginary. In fact, the Kaluza-Klein particles also come with

an imaginary central charge. This explains why, upon S
1 compactification,

the wall-crossing turns on immediately. For a finite size of this circle S
1,

the magnetic strings remain extended, so the relevant counting should be

given by the elliptic genus18,19. In the second part of this note, we will take

a close look at the wall-crossing of this elliptic genus across a point where a

charged matter becomes massless, or equivalently, across a flop transition.

This note is a short version of Ref1 and is organized as follows. In

Section 2, we will revisit the question of the wall-crossing starting from

the circle-compactified theory and addressing what to expect from the

decompactification limit. Exactly what we mean by the absence of 5d

wall-crossing is mulled over, from which we draw the anticipation that the

boundary of the 5d Coulomb phase should be universally characterized by

tensionless BPS strings. Section 3 will take the simplest types of rank one

non-Abelian theories on a circle and investigate the Coulomb phase detail.

Here we will see how, in the decompactification limit, the 5d Coulomb phase

boundary is realized to make sure that certain marginal walls collapse, as

suggested by the general discussion on wall-crossings. The wall-crossing of

magnetic BPS string across such a flop transition is the topic for Section 4,

where we illustrate using the example of dP2 near a massless quark point.

2. Wall-Crossing or Not

When it comes to BPS spectra, a very distinctive feature of the 5d the-

ory is the absence of wall-crossing for BPS particles. Let us see how this

happens and what this absence means. From the low energy dynamics of

BPS objects, the usual 4d wall-crossing occurs due to runaway Coulombic

directions emerging at special values of FI constants20–22, which is in turn

related to how the central charge phases are complex and phases of a pair

can align at a co-dimension-one wall. With mutual intersection number, i.e.,
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with nonzero Schwinger product of charges, this leads to a wall-crossing.

On the other hand, the 5d BPS particles would be all represented by

M2 wrapped on 2-cycles so that a pair of 2-cycles in a Calabi-Yau 3-fold

cannot have a mutual intersection number. While D4 on a 4-cycle can have

an intersection number against D2 on a 2-cycle, the former is an extended

object in the form of the BPS string since it is really M5 wrapping a 4-cycle.

In fact, most BPS objects that would have entered the wall-crossing quiver

gauge quantum mechanics in the 4d limit are made up of magnetic strings.

Once compactified on a circle S1 of sufficiently small radius R5, however,

the low energy dynamics are again well captured by BPS quiver quantum

mechanics for D4-D2-D0 bound states, for which the wall-crossing are nu-

merous. We will ask exactly how the wall-crossing turns itself off back in the

limit R5 → ∞. One quick answer to this is that since all magnetic objects

become a string, as pointed out already, the question becomes moot if we

ask for wall-crossing among 5d BPS particles. However, we can ask a little

more by keeping track of BPS strings wrapped on S
1 considered as BPS

particles. As we will see below, approaching the decompactification limit

from the compactified theory, the disappearance of wall-crossing occurs for

multiple reasons, different for different BPS objects.

The usual 4d wall-crossing, where the complex central charge Z of the

bound state aligns with Zi and Zj and decays as

Z → Zi + Zj , (1)

is possible only if D-branes that constitute particles i and j share a net

number of open strings attached to them. This is in turn counted by the

intersection number between the two cycles wrapped by the D-branes. In

the R3+1 gauge theory viewpoint, on the other hand, the intersection num-

ber translates to the Schwinger product of electromagnetic charges,

qigj − qjgi �= 0, (2)

so at least one of the two constituents must carry a magnetic charge. As

such, one can imagine three logical possibilities for the 4d wall-crossing:

• Z is non-magnetic, while both constituent Zi and Zj are magnetic,

• Z and one of the two constituents, say Zi, are magnetic,

• all three are magnetic.

Also, the marginal stability wall of such decay, found by equating phases

of Zi to that of Zj , would extend between Zi = 0 and Zj = 0 locus in the

Seiberg-Witten moduli space.
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For the first case where Zi and Zj are magnetic, since the magnetic

central charge can be approximated as:

Zmagnetic ≈ iR5Tmonopole, (3)

which is purely imaginary and Tmonopole is the tension of the monopole

string. In the 5d limit it should remain finite otherwise Zi and Zj will be-

come too massive for a non-magnetic particle Z to decay to. That indicates

the tension of the monopole string Tmagnetic should go to zero at the same

time when R5 → ∞. If we take the absence of such wall-crossings as given,

this in turn implies that no magnetically charged BPS strings should be-

come tensionless, perhaps except at the boundary of the Coulombic phase.

This is quite natural since from the (p, q) web realization of IIB theory,

where the tensionless limit of magnetic strings translates to a collapse of

a face, so the above claim that the Coulomb phase ends where a magnetic

BPS becomes tensionless is quite natural already.

For the second and the third, Z would represent a magnetically charged

BPS string wrapped on S
1. The second type of marginal stability wall

would emanate from a point in the moduli space where some components

of charged BPS particles become massless. For instance, imagine a quark

hypermultiplet with mass μf in the defining representation of the gauge

group. Since for large R5, the central charge of Zi is dominated by Zmagnetic

which is purely imaginary, the wall emanating from the massless quark point

following

Arg(ZiZ
∗
j ) = 0, (4)

would initially extend along the circular Wilson-line direction of the small

period 1/R5. Taking the R5 → ∞ limit, this means that there is a sense

of discontinuity for magnetically charged strings across φ = μf , where φ is

the 5d moduli on the Coulomb phase.

Note that φ > μf is precisely where an Sp(1) doublet fermion would

contribute a Jackiw-Rebbi zero-mode26 to the monopole. With φ < μf , this

zero-mode is lifted, so the d = 1 + 1 low energy dynamics of the monopole

(dyon) strings change qualitatively across this point. This discontinuity

translates to the conventional wall-crossing once the BPS string wraps a

circle, S1, which may be captured via the elliptic genus of such a magnetic

string; later, we will review this with a concrete case of a magnetic string

in the dP2 theory, or Sp(1) theory with a single massive flavor.

Marginal stability walls of the third type where magnetic strings decay

into a pair of magnetic strings deserve different considerations. In 4d, such
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decays involving three types of dyons are known, and these walls actually

extend into the weak coupling region23. However, for this type of wall-

crossings, two independent adjoint scalar fields spanning the Coulombic

moduli space are essential; The decaying states may be visualized by an

analog of planar (p, q) string web, which cannot be drawn when the adjoint

scalar is real24. Such walls would not survive the decompactification limit

since half of the Coulombic directions, corresponding to the Wilson line vev,

collapses due to R5 → ∞. Thus, such 3rd type of marginal stability would

also turn off in the decompactification limit, leaving behind the simplest

possible chamber.

3. Sp(1) Theories on a Large S
1

In this section we will analyse the pure 5d Sp(1) theory on a large S
1 and

illustrate how does the second type of marginal stability walls behave in

the strict 5d limit. In particular, we will restrict to the Sp(1) theory with

zero theta angle, namely the F0 theory, for a general discussion involving

Sp(1) theory please refer to Ref1.

The Coulomb phase of 5d N = 1 supersymmetric gauge theory is fa-

mously described by the Intriligator-Morrison-Seiberg (IMS) prepotential5,

which is one-loop exact. In particular, the prepotential for Sp(1) theory is:

FIMS(φ) = μ0φ
2 +

4

3
φ3 , (5)

where φ is the real Coulmob phase moduli and μ0 ≡ 8π2/g25 is the 5d

inverse coupling-squared and also the instanton mass. The first derivative

gives the monopole string tension Tmono as,

iTmono =
i

2π

∂FIMS

∂φ
=
i2φ(μ0 + 2φ)

2π
, (6)

where we used iTmono on the left hand side as a reminder that the 4d

monopole central charge upon a compactification is imaginary in the large

radius limit. The second derivative produces the pure imaginary 5d cou-

pling as

τ5d =
i

2π

∂2FIMS

∂φ2
=
i(μ0 + 4φ)

π
, (7)

with τ5d = i8π/g25,eff.
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After compactification on S
1, the prepotential will receive instanton

corrections, which becomes6,11–14:

∂3F5d,S1(a, μ0)

∂a3

= 8 +
∑

m,n≥0

Nm,n

(
e−4πmaR5e−2πn(2a+μ0)R5

1− e−4πmaR5e−2πn(2a+μ0)R5

)
(−2m− 2n)3, (8)

where a is the complexified version of the 5d moduli φ combining with the

Wilson line around the circle, and in the asymptotic region of the Coulombic

moduli space one has Re(a) ≈ φ. Nm,n is an invariant which counts the

number of the holomorphic 2-cycles in Calabi-Yau picture, where the exact

numbers can be found in Ref.14. We are mostly interested in the interface

between 4d and 5d, so we take R5 to be sufficiently large in the following

discussion whereby |g25/2πR5| � 1.

Let’s assume the bare coupling square is positive in the following dis-

cussion. Since we are working with large R5 (μ0R5 � 1) , one can set n = 0

in (8) to obtain:

∂3F5d,S1

∂a3
= 8 + 16

(
e−4πaR5

1− e−4πaR5

)
, (9)

where we use the fact that the only non-zero Nm,0 is N1,0 = −2 for F014.

The effective 4d coupling for the compactified theory is obtained by inte-

gration:

τ4d = 2πR5τ5d ≈ i
2

π
log

(
4 sinh2(2πaR5)

(2πR5ΛQCD)2

)
, (10)

where τ5d = i
2π

∂2F5d,S1

∂φ2 is defined parallel to (7) and the integration con-

stant is determined by comparing (7). Here ΛQCD is the effective QCD

scale for the compactified theory defined as 2πR5ΛQCD ≡ e−πμ0R5/2, such

that if Re(a) � 1/2πR5 and the 4d approximation can be trusted, (10)

indicates:

1

g24,eff
≈ 1

4π2
log

(
(2a)2

Λ2
QCD

)
, (11)

which is the correct 4d coupling implied by β-function.

The moduli space for F0 theory with positive μ0 is depicted as figure

1a. There is a strongly coupled region φ ∼ ΛQCD near the tip of the cigar,

aActually for a generic Sp(1) theory with matters, the moduli space is a double-copy
of figure.1 and there are two distinct holonomy saddles. We refer Ref.15 for a detailed
discussion of the moduli space.
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and the theory is effectively the strongly coupled pure Sp(1) Seiberg-Witten

theory. Around ΛQCD there are two singularities where the mass of (0, 1)

monopole and (2,−1) dyon will separately become zero, and there is a

marginal stability wall connecting these two singularities as shown in the

figure 1.

Now let’s see what happens in the decompactification limit R5 → ∞.

Since the instanton contribution vanishes in this limit, we can identify

Re(a) = φ. The period of a is a ∼ a + i/2R5 , therefore as R5 → ∞
the imaginary part of a is zero such that a = φ in this limit, and the cylin-

der will become the half-line in figure 1. Also ΛQCD becomes much smaller

than 1/2πR5 in this limit therefore the two singularities and the marginal

stability wall both shrink to the endpoint φ = 0 in the 5d moduli space. At

that point both W-bosons and monopoles become massless and the Sp(1)

gauge symmetry is restored.

Fig. 1. Moduli space for F0-theory with positive coupling-squared. In the large R5

limit, entire strong coupling region is pushed to the far left of 1/R5, which itself is
pushed toward φ = 0. No trace of the marginal stability wall is left behind.

We have discussed the first kind of marginal stability wall where the W-

boson decays into a pair of (0, 1) monopole and (2,−1) dyon and seen how

the wall collapses to the endpoint of the 5d moduli space. More generally,

for any pair of magnetic particles Zi and Zj, their central charge are of

order ∼ ΛQCD in the core region or dominated by the magnetic part:

Zmag ∼ iR52a(2a+ μ0), (12)

in the asymptotic region Re(a) > 1/2πR5.
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On the other hand, since Z is non-magnetic, its central charge is a

combination of the electric, instanton and KK parts:

Zelec = 2a, ZInst = μ0, ZKK =
i

R5
. (13)

The wall, if any, must remain in the region where Zelec, ZInst, ZKK are

comparable with Zmag, end where the magnetic particles Zi or Zj become

massless. Zelec ∼ Zmag requires a ∼ ΛQCD while ZInst ∼ Zmag can happen

only if Re(a) ∼ 1/2πR5. ZKK scales down as 1/R5 also. Therefore, no walls

of the first kind can extend beyond a ∼ 1/2πR5, which in turn collapse to

φ = 0 in the decompactification limit.

4. Wall-Crossing of a Magnetic BPS String

In this section we will explore the second type of marginal stability wall,

where the bound state Z and one of its component Zi are magnetic. As

discussed in the previous section, one may consider adding a flavour with

positive mass μf to the 5d theory, and on the Coulomb branch it becomes

massless at φ = μf . From the M-theory picture, the quark is represented by

a M2 brane wrapping on a compact 2-cycle, and at the massless point in the

Coulomb branch the volume of the 2-cycle vanishes, which is responsible

for a flop transition of the local Calabi-Yau.

The correct description of these magnetic objects is, in fact, well known

to be governed by (0, 4) nonlinear sigma models which has been well-studied

in various literatures16,17. The elliptic genus that counts the BPS states

for such a theory is defined as18,19:

Z(τ, τ̄ , y) = TrR
1

2
F 2(−1)F eπiDabs

aqbqL0− cL
24 q̄L̄0− cR

24 e2πiyaq
a

, (14)

where the monopole string is represented by the M5-brane wrapping on the

compact divisor S in the local Calabi-Yau X̂, qa are membrane charges,

Dab is the intersection matrix between 2/4-cycles and sa/2 is a half-integer

charge shift due to the Freed-Witten anomaly25.

The evaluation of the elliptic genus is based on a fact that the elliptic

genus Z(τ, τ̄ , y) is subject to a θ-function decomposition (see1,20for a re-

view). Eventually the elliptic genus is totally determined by the geometry

of the compact divisor S and the way it is embedded in the ambient Calabi-

Yau X̂. The change of geometry during flop transition will induce a jump

of the elliptic genus, and for dP2 geometry that is:

ZdP2
= −Z

d̃P2
× θ11(τ, y3)

η(τ)
, (15)
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where the θ-part is exactly the partition function of a chiral fermion gen-

erated by the Jackiw-Rebbi zero-mode as discussed in section 2.

References

1. Q. Jia and P. Yi, [arXiv:2111.09448 [hep-th]].

2. N. Seiberg, “Five-dimensional SUSY field theories, nontrivial fixed

points and string dynamics,” Phys. Lett. B 388, 753-760 (1996)

[arXiv:hep-th/9608111 [hep-th]].

3. D. R. Morrison and N. Seiberg, “Extremal transitions and five-

dimensional supersymmetric field theories,” Nucl. Phys. B 483, 229-

247 (1997) [arXiv:hep-th/9609070 [hep-th]].

4. M. R. Douglas, S. H. Katz and C. Vafa, “Small instantons, Del Pezzo

surfaces and type I-prime theory,” Nucl. Phys. B 497, 155-172 (1997)

[arXiv:hep-th/9609071 [hep-th]].

5. K. A. Intriligator, D. R. Morrison and N. Seiberg, “Five-dimensional

supersymmetric gauge theories and degenerations of Calabi-Yau

spaces,” Nucl. Phys. B 497 (1997), 56-100 [arXiv:hep-th/9702198 [hep-

th]].

6. S. H. Katz, A. Klemm and C. Vafa, “Geometric engineering of quan-

tum field theories,” Nucl. Phys. B 497 (1997), 173-195 [arXiv:hep-

th/9609239 [hep-th]].

7. N. Seiberg and E. Witten, “Electric - magnetic duality, monopole con-

densation, and confinement in N=2 supersymmetric Yang-Mills the-

ory,” Nucl. Phys. B 426, 19-52 (1994) [erratum: Nucl. Phys. B 430,

485-486 (1994)] [arXiv:hep-th/9407087 [hep-th]].

8. N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry

breaking in N=2 supersymmetric QCD,” Nucl. Phys. B 431, 484-550

(1994) [arXiv:hep-th/9408099 [hep-th]].

9. F. Ferrari and A. Bilal, “The Strong coupling spectrum of the

Seiberg-Witten theory,” Nucl. Phys. B 469, 387-402 (1996) [arXiv:hep-

th/9602082 [hep-th]].

10. Z. Duan, D. Ghim and P. Yi, “5D BPS Quivers and KK Towers,” JHEP

02, 119 (2021) [arXiv:2011.04661 [hep-th]].

11. P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, “A Pair

of Calabi-Yau manifolds as an exactly soluble superconformal theory,”

Nucl. Phys. B 359, 21-74 (1991)

12. S. H. Katz, D. R. Morrison and M. R. Plesser, “Enhanced gauge sym-

metry in type II string theory,” Nucl. Phys. B 477 (1996), 105-140

[arXiv:hep-th/9601108 [hep-th]].



April 25, 2022 14:5 Proceedings of the East Joint. . . - 9in x 6in ch06-ws-procs9x6 page 62

62

13. A. E. Lawrence and N. Nekrasov, “Instanton sums and five-dimensional

gauge theories,” Nucl. Phys. B 513 (1998), 239-265 [arXiv:hep-

th/9706025 [hep-th]].

14. T. M. Chiang, A. Klemm, S. T. Yau and E. Zaslow, “Local mirror

symmetry: Calculations and interpretations,” Adv. Theor. Math. Phys.

3 (1999), 495-565 [arXiv:hep-th/9903053 [hep-th]].

15. C. Closset and H. Magureanu, [arXiv:2107.03509 [hep-th]].

16. J. M. Maldacena, A. Strominger and E. Witten, “Black hole entropy

in M theory,” JHEP 12 (1997), 002 [arXiv:hep-th/9711053 [hep-th]].

17. R. Minasian, G. W. Moore and D. Tsimpis, “Calabi-Yau black holes

and (0,4) sigma models,” Commun. Math. Phys. 209 (2000), 325-352

[arXiv:hep-th/9904217 [hep-th]].

18. J. de Boer, M. C. N. Cheng, R. Dijkgraaf, J. Manschot and E. Ver-

linde, “A Farey Tail for Attractor Black Holes,” JHEP 11, 024 (2006)

[arXiv:hep-th/0608059 [hep-th]].

19. D. Gaiotto, A. Strominger and X. Yin, “The M5-Brane Elliptic

Genus: Modularity and BPS States,” JHEP 08, 070 (2007) [arXiv:hep-

th/0607010 [hep-th]].

20. F. Denef and G. W. Moore, “Split states, entropy enigmas, holes and

halos,” JHEP 11, 129 (2011) [arXiv:hep-th/0702146 [hep-th]].

21. F. Denef, “Quantum quivers and Hall / hole halos,” JHEP 10, 023

(2002) [arXiv:hep-th/0206072 [hep-th]].

22. K. Hori, H. Kim and P. Yi, “Witten Index and Wall Crossing,” JHEP

01, 124 (2015) [arXiv:1407.2567 [hep-th]].

23. K. M. Lee and P. Yi, “Dyons in N=4 supersymmetric theories and

three pronged strings,” Phys. Rev. D 58, 066005 (1998) [arXiv:hep-

th/9804174 [hep-th]].

24. O. Bergman and B. Kol, “String webs and 1/4 BPS monopoles,” Nucl.

Phys. B 536, 149-174 (1998) [arXiv:hep-th/9804160 [hep-th]].

25. D. S. Freed and E. Witten, “Anomalies in string theory with D-branes,”

Asian J. Math. 3, 819 (1999) [arXiv:hep-th/9907189 [hep-th]].

26. R. Jackiw and C. Rebbi, “Solitons with Fermion Number 1/2,” Phys.

Rev. D 13, 3398-3409 (1976)



May 31, 2022 12:0 Proceedings of the East Joint. . . - 9in x 6in ch07-ws-procs9x6-2-1˙kitazawa˙3 page 63

63

de Sitter Duality and Holographic
Renormalization

Yoshihisa Kitazawa1),2), a

1) KEK Theory Center, Tsukuba, Ibaraki 305-0801, Japan
2) Department of Particle and Nuclear Physics

The Graduate University for Advanced Studies (Sokendai)

Tsukuba, Ibaraki 305-0801, Japan

We perform the resummation of the infrared logarithms in the inflationary uni-

verse. Applying the renormalization group, we derive the stochastic equations

as the effective theory at the horizon. We focus on the conformal zero mode
to respect local Lorentz symmetry. Under Gaussian approximation, we derive

the fundamental equation for the Universe (EqU). We also derive the identical

equation from the first law of thermodynamics in a dual geometric picture.
We believe it is a convincing evidence for de Sitter duality between quantum

stochastic physics on the boundary and classical thermodynamics in the bulk.
The equation for the Universe (EqU) possesses the solution with the ultraviolet

fixed point. It also contains the inflationary universe with the power potentials.

We discuss possible scenarios for the very early universe with decreasing ε. We
argue inflationary universe subsequently dominates to maximize the entropy

and ε problem is naturally solved.

1. Introduction

dS space may be decomposed into the bulk and the boundary, i.e., the

sub-horizon and horizon. From a holographic perspective, we consider the

conformal zero mode dependence of the Einstein-Hilbert action:

1

16πGN

∫
√
gd4x(Re2ω − 6H2e4ω) ' π

GNH2
(1− 4ω2), (1)

where the gauge fixing sector is suppressed because it does not produce

the IR logarithms in the background gauge. Our gauge fixing procedure

and the propagators are explained in4. The semi-classical dS entropy was

obtained by rotating the background spacetime dS4 to S4 in (1)5.
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The quadratic part of ω constitutes a Gaussian distribution function for

the conformal zero mode,

ρ(ω) =

√
4

πg
exp

(− 4

g
ω2
)
. (2)

It may represent an initial state of the Universe when the dS expansion

begins. In order to describe the time evolution of the conformal factor of

the Universe, we introduce a new parameter ξ(t).

ρ(ξ(t), ω) =

√
4ξ(t)

πg
exp

(− 4ξ(t)

g
ω2
)
. (3)

ξ is the only parameter in the Gaussian approximation. We work

within the Gaussian approximation since it is an excellent approxima-

tion for gravity with the small coupling g. The von Neumann entropy

S = −tr(ρ log ρ) ∼ 1/2 log(g/ξ) becomes larger as ξ becomes smaller. Thus

the diffusion triggers an instability in de Sitter space.

In terms of the distribution function, the n-point functions are defined

as follows

〈ωn(t)〉boundary =

∫
dωρ(ξ(t), ω)ωn. (4)

In particular, the two-point function of the conformal mode is given by

〈ω2(t)〉boundary =
g

8ξ(t)
. (5)

The negative norm of the bulk conformal mode indicates that the ρ

diffuses toward the future. In fact the perturbative quantum expectation

of (1) gives g(t) ∼ g(1 − 2γHt) ∼ g(1 − 3gHt). The duality between

the inflation and quantum gravity is also based on this one loop effect6,7.

However such an estimate is reliable only locally Ht � 1. In cosmology it

is essential to resum all powers of IR logarithms (Ht)n to understand the

global picture. For such a purpose, we find our holographic approach is up

to the task.

We investigate the dynamics of conformal mode after integrating the

bulk mode. The two point function gives rise to IR logarithms.

< ω2 >bulk = −3g

4

∫ Λ

Ha(t)

dk

k

=
3g

4
Ht =

3g

4
N(t). (6)
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We assume there is no time dependent UV contributions. We focus

on the Hubble scale physics where a(t) = 1/ − τH = exp(Ht). We recall

that −τμ ∼ 1 at the Horizon. While the wave functions of the bulk mode

oscillates, those of the boundary mode do not. That is why we call it the

zero mode. Our strategy is to integrate out oscillating mode first.

The finite bare distribution function is given by subtracting the bulk

mode contribution above the Hubble scale. We thus construct low energy

effective theory around the Hubble scale. Such a theory is holographic and

finite after the subtraction.

ρB = exp
(− 3g

4

Ht

2

∂2

∂ω2

)
ρ. (7)

The renormalization scale of the low energy effective action is the Hubble

scale. As ρB is independent of the renormalization scale, the renormalized

distribution function obeys the following renormalization group equation.

ρ̇− 3g

4
· H
2

∂2

∂ω2
ρ = 0, (8)

where Ȯ denotes a derivative of O with respect to the cosmic time t. The

factor 3g/4 in the diffusion term is the projection factor to the IR re-

gion. The conformal mode ω consists of a minimally coupled field X .

ω =
√
3X/4 + Y/44,8. We neglect Y because it has the effective mass

m2
eff = 2H2. There is no drift term in the reduced space consisting only

of X . In fact X is nothing other than the curvature perturbation ζ.

The gravitational FP equation (8) is obtained by integrating the quan-

tum bulk modes inside the horizon. It turns out to be a diffusion equation

due to the lack of the drift term. The solution is the Brownian motion as

it is jolted by the horizon exiting modes. The FP equation is a dynam-

ical renormalization group equation. We can sum up the IR logarithms

logn a = (Ht)n by this equation to find a running coupling g(t).

The FP (diffusion) equation shows that the solution is the Gaussian

distribution with the standard deviation increasing linearly with the e-

folding number N(t)9.

3

4
gHt =

3g

4
N(t) =

g

8ξ
. (9)

The standard deviation is related to N as 1/ξ = 6N in (9). It is con-

sistent with a standard Brownian motion prediction. The von Neumann
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entropy thus increases logarithmically,

δS =
1

2
log

1

ξ
=

1

2
log 6N(t). (10)

Identifying the von Neumann entropy of conformal zero mode with the

quantum correction to dS entropy, we obtain the bare action with the

counter term

1

gB
=

1

g(N)
− 1

2
log(6N). (11)

By requiring the bare action is independent of the renormalization scale:

namely N , we obtain the one loop β function.

β =
∂

∂ log(N)
g(N) = −1

2
g(N)2. (12)

We find the running gravitational coupling as

g(N) =
2

log(N)
. (13)

The holographic investigation at the boundary shows that g is asymp-

totically free toward the future10,11. The renormalization group trajectory

must reach Einstein gravity in the weak coupling limit for the consistency

with general covariance18. We find that it approaches a flat spacetime in

agreement with this requirement.

2. Equation for the Universe and de Sitter Duality

The Gaussian distribution of the conformal zero mode is characterized by

the standard deviation 1/ξ. Although there is no inflaton in Einstein grav-

ity, we propose to identify the inflaton f2 as f2 ∝ 1/ξ. In our interpretation,

the inflaton is not a fundamental field but a stochastic variable. The two

point function at an equal time grows due to the Brownian motion: IR

logarithmic fluctuations 1/ξ ∼ N . While the inflation theory is specified

by the inflaton potential, the dynamics of quantum gravity is determined

by the FP equation which describes the stochastic process at the horizon.

We thus argue the classical solution of the inflation theory satisfies the FP

equation as well.

It is likely that there are multiple elements in the universality class of

quantum gravity/inflation theory. The inflation era of the early Universe

may be one of them. As we discuss shortly we find a pre-inflation era which

is indispensable to launch inflation era which in turn necessary to trigger

the big bang.
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We evaluated the time evolution of entropy to the leading log order in

(10). In order to take account of the higher loop corrections in g, the FP

equation should be generalized. It turns out to be just necessary to intro-

duce the dimensionless gravitational coupling g(t) and e-folding number:

N =
∫ t
dt′H(t′).

∂

∂N
ρN − 3g(t)

4
· 1
2

∂2

∂ω2
ρN = 0. (14)

Since the equation is local, we consider the following local solutions.

ρ =

√
4ξ(t)

πg(t)
exp

(− 4ξ(t)

g(t)
ω2
)
. (15)

We next put the ansatz into the FP equation and find the condition for the

background to satisfy.

∂

∂N

g(t)

8ξ
=

3

4
g. (16)

We obtain a remarkably simple equation.

∂

∂N
log

g(t)

ξ
= 6ξ. (17)

(17) determines the evolution of von Neumann entropy S = 1
2 log

g
ξ with

respect to N . This formula shows the validity of our postulate that von

Neumann entropy of conformal zero mode constitutes the quantum correc-

tion to de Sitter entropy. We call it the equation for the Universe (EqU).

The increase of the entropy S = 1/g can be evaluated by the first law

TΔS = ΔE where ΔE is the incoming energy flux of the inflaton22. In

this way, the one of the Einstein’s equation is obtained:

Ḣ(t) = −4πGN ḟ
2. (18)

From this formula, we obtain

2ε = − ∂

∂N
log g(t). (19)

We add the same quantity 1/Ñ to the both sides of the equation.

2ε+
1

Ñ
= − ∂

∂N
log(gÑ). (20)

For power potential inflationary universe, (20) is rewritten as

6ξ =
∂

∂N
log

g

ξ
.
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It is precisely our EqU (17). We have derived it in a dual geometric picture

here in place of the original quantum stochastic picture.

The equation (17) has inflationary solutions with power potentials.

g = cÑ
m
2 , ξ =

m+ 2

12Ñ
. (21)

Here c is an integration constant. m denotes the power of the potential:

fm. It is convenient to replace N by Ñ where Ñ = Ne−N . Ne denotes the

e-foldings at the end of inflation. (17) becomes as follows after the change

of the variable,

− ∂

∂N
log

g(Ñ)

ξ(Ñ)
= 6ξ(Ñ). (22)

Although the dS entropy can be explained by quantum effects alone for

the weakly coupled inflaton solution, the strongly coupled inflaton solution

is a dual object in the sense that geometrical description is reliable.

It proves the consistency of the EqU and the confirmation of de Sitter

duality. Since (17) and (19) are equivalent, the solutions of the former

satisfy the latter.

3. Inflation and UV completion

In the literature, δN formalism is widely used to investigate the curvature

perturbation. It underscores the validity of the stochastic picture of the

inflation.12–16 Let us consider the fluctuation of the curvature perturbation

ζ.

ζ = δN =
H

ḟ
δf,

< δf(t)δf(t′) >= (
H2

4π2
)Hδ(t− t′). (23)

We obtain in the super-horizon regime:

∂

∂N
< ζ2(t) >=

∂

∂N
< (

H

ḟ
)2δf2 >

=
1

2εM2
P

∂

∂N
< δf2 >

=
H2

8π2εM2
P

=
g

ε(t)
= P. (24)

We recall the following identity holds at the horizon exit t = t∗

ρ̇(t∗)eρ(t∗) = k. (25)
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It is nothing but choosing our renormalization scale as log k = Ht. Let

P ∼ kns−1. The scaling dimension of P can be estimate as

k
d

dk
(4 log ρ̇(t∗)− 2 log φ̇(t∗))

=
d

dN∗
(4 log ρ̇(t∗)− 2 log φ̇(t∗))

=2(η − 3ε), (26)

where

ε =
φ̇2

2H2
, η =

φ̈

ρ̇φ̇
+ ε. (27)

In power inflation potential models V ∼ fm, ξ and ε scale as 1/N due to

the universality of the random walk. They belong to the same universality

class as the following scalar two point functions scale as

∂

∂N
< ζ2 >=

g

ε
, ε =

m

4N(t)
. (28)

The scaling exponents agree with our FP equation and the δ N formalism.

1− ns =
∂

∂N
log(gN(t)) = 2ε+

1

N(t)
=
m+ 2

2N(t)
. (29)

There is a UV fixed point in our renormalization group. We study it

next. FP equation (17) enables us to evaluate higher order corrections to

the β function. The expansion parameter is 1/ logN . We can confirm that

the following gf and ξf satisfies (17),

gf =
2

logN

(
1− 1

logN

)
, ξf =

1

6N

(
1− 1

logN

)
. (30)

Thus, the β function, ε and the semi-classical entropy generation rate are

given by

β =
∂

∂ logN
gf = − 2

log2N
+

4

log(N)3
= −2(1− 2

1

logN
)

1

log2N
. (31)

εf = −1

2

∂

∂N
log(gf ) = − 1

2gfN
βf . (32)

∂

∂N
Ssc =

∂

∂N

1

gf
= − 1

Ng2f
βf . (33)

A remarkable feature is that the coupling has the maximum value g =

1/2 at the beginning. It steadily decreases toward the future as the β
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function is negative in the whole region of time flow. It has two fixed

points at the beginning and at the future of the Universe. The existence of

the UV fixed point may indicate the consistency of quantum gravity. The

single stone solves the ε problem17 as well since it vanishes at the fixed

point. The β function describes a scenario that our Universe started the

dS expansion with a minimal entropy S = 2 while it has S = 10120 now. It

corresponds to N = e2 ∼ 7.4, a = eN ∼ 1.6× 103. The just born Universe

is rather large which reflects the critical coupling g = 1/2 is rather small.

In terms of the reduced Planck mass, H2/4π2M2
P = 1.

Since we work with the Gaussian approximation, our results on the UV

fixed points are not water tight as the coupling is not weak. Nevertheless we

find it remarkable that they support the idea that quantum gravity has a

UV fixed point with a finite coupling. In fact 4 dimensional de Sitter space

is constructed in the target space at the UV fixed point of 2+ε dimensional

quantum gravity18. 4 dimensional de Sitter space also appears at the UV

fixed point of the exact renormalization group19 20.

Such a theory might be a strongly interacting conformal field theory.

However, it is not an ordinary field theory as the Hubble scale is Planck

scale. Our dynamical β function is closely related to the cosmological hori-

zon and physics around it. The existence of the UV fixed point could solve

the trans-Planckian physics problem. A consistent quantum gravity theory

can be constructed under the assumption that there are no degrees of free-

dom at trans-Planckian physics21. In this sense, it is consistent with string

theory and matrix models. The Universe might be governed by (30) in the

beginning as it might be indispensable to construct the UV finite solutions

of the FP equation.

4. The Inflationary Universe and Pre-History

The inflaton may be identified with the stochastic variable f whose corre-

lators show characteristic features of Brownian motion. < f2 >= Ñ and

g ∝ Ñm/2 =< fm >. 6ξ = 1− ns measures the extra tilt of the scalar two

point function kns−1 with respect to k.

The left-hand side of (17) can be identified with 1− ns where ns is the

scalar spectral index. Let us recall that 1−ns is expressed by the slow-roll

parameters ε and η,

1− ns = 6ε− 2η. (34)

The equation (17) is equivalent to (34) for the fm inflaton potential where

η = (m− 1)/(2Ñ).
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We thus conclude:

g = cÑ
m
2 , ε = −1

2

∂

∂N
log(g) =

m

4Ñ
,

1− ns = 6ξ =
m+ 2

2Ñ
. (35)

In this case, the concave power solutions can be obtained by formally re-

placing m by 1/n. We admit it is not entirely clear why concave potentials

are relevant. It is possible that the convex potentials are already excluded

by observations.

In contrast, there is more room for concave potentials to accommodate

the observational information with the judicious choice of n.

ε = −1

2

∂

∂N
log(g) =

1

4nÑ
,

1− ns =
1
n + 2

2Ñ
. (36)

In our view the inflaton behaves as an particle in the Brownian motion. Its

trajectory is made of infra-red fluctuations. Nevertheless the convex and the

concave potentials in the inflation models seems to form two distinct groups.

The concave potentials are promising avenue to explore right now23.

Table 1.

n = 1 n = 2 n = 3

ε 1
4Ñ

1
8Ñ

1
12Ñ

1− ns
3

2Ñ
5

4Ñ
7

6Ñ

In Table 1, we list expected ε and 1− ns in the power potential model

with f1/n, n = 1, 2, 3. We note 1 − ns is bounded from below by 1/Ñ

while r = 16ε is not. It is consistent with the current observations. It is

important to establish the bound on n. We argue the order of magnitude

estimate can be trusted for the concave potentials as they are in the weak

coupling regime. The semi-classical de Sitter entropy favors smaller n as

the corresponding entropy grows faster: S ∼ (1/Ñ)
1
2n .

Although it is still highly speculative, we argue that our Universe is

likely to be located close to the point m = n = 1. Since the convex

potentials are excluded by observation, it must be a concave potential with

a small n. The convex potentials correspond to strongly coupled systems.
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Here the naturalness and the anthropic principle may come in. It is hard

to believe that our Universe comes out of a strongly coupled system. It

is much easier to accommodate hierarchies in the weakly coupled system.

Our Universe might to be located near the boundary between the stable

and unstable universes like the standard model of particle physics. Since

the Universe can stay at the fixed point forever, it is likely to be not far

from it.

Our FP equation is expected to go beyond the resummation of leading

IR logarithms which results in the logarithmic decay of g. It is still a great

surprise to find inflation theory as its solutions. Fortunately EqU can be

derived in a dual geometrical picture. This fact gives a non-perturbative

evidence for the dS duality.

The solution (30) is UV complete. g is attracted to the fixed point as

we roll back the history of the Universe. However, it cannot terminate the

eternal inflation as ε = −(1/2)∂ log g/∂N ∼ 1/(2N logN) decreases with

time. On the other hand, the solution (21) is not UV complete but it can

end the inflation as ε ∼ m/4Ñ increases with time. These solutions generate

the entropy in different ways: We consider the leading de Sitter entropy

1/g(t). The t dependence of g(t) depends on the quantum corrections

through the EqU equation. 1/g ∼ logN for the former and 1/g ∼ 1/Ñ
1
2n

for the latter. From the perspective of the dominant entropy principle, (30)

is chosen initially and (21) is chosen after logN ∼ 1/Ñ
1
2n . That is to say,

g1 in (30) describes the newly born Universe and g2 in (21) describes the

inflation era.
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Non-invertible topological duality defects

in 4-dimensional pure Z2 gauge theory
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In recent years, the extension of the notion of symmetry using the picture of

topological defects and its applications have been actively studied. One di-
rection is the so-called non-invertible symmetry, in which non-invertible topo-

logical defects are treated as symmetry. We have constructed non-invertible

topological defects from duality in 4D lattice pure Z2 gauge theory. This work
is in collaboration with Y.Nagoya and S.Yamaguchi.1

Keywords: Non-invertible; symmetry; topological defect.

1. Introduction

Symmetry is one of the important tools in the non-perturbative analysis

of quantum field theory. In recent years, the extension of the notion of

symmetry and its applications have been actively studied2. In extended

symmetry, topological operators are considered as symmetries. There are

also several types of extended symmetries, depending on the properties of

their topological operators. The one direction is called the non-invertible

symmetry. The unitary topological operator corresponding to the ordinary

symmetry has an inverse transformation due to the group structure of the

symmetry. There are general topological operators that do not have such

inversions, and these types of topological operators are treated as non-

invertible symmetries.

The most famous concrete example of non-invertible symmetry is the

duality defect associated with the Kramers-Wannie duality in the 2-

dimensional Ising model. Since this duality defect vanishes when acting

on a single spin operator, it is a non-invertible for which there is no inverse

transformation. It is also known that there is a non-invertible symmetry

defect called Verlinde line in the 2-dimensional RCFTs. Thus, while exam-

ples of non-invertible symmetry in 2-dimensions were known, examples of

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter

published by World Scientific Publishing Company. It is distributed under the terms of

the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the

original work is properly cited.
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non-invertible symmetry in 4-dimensions were less understood than those

in 2-dimensions.

One approach to constructing topological defects in lattices is the work

done by Aasen, Mong, and Fendley(AMF).3,4 In this paper, We explain

how to use this AMF method to construct a high dimensional topological

defect.1

2. 4-dimensional Z2 lattice gauge theory

In this paper, we examine the 4-dimensional pure Z2 lattice gauge theory.

We prepare the 4-dimensional cubic lattice and assign a link variable Um =

±1 to each link m. The partition function of this theory is given by,

Z =
∑
{U}

exp

K∑
i∈P

∏
m∈�i

Um

 . (1)

Here P is the set of all plaquettes, K is a positive constant parameter, and

�i is the set of four links included in the plaquette i. It was shown by

Wegner that there is a duality in this theory, called the Kramers–Wannier–

Wegner duality(KWW duality).5 According to the KWW duality, these

theories with the parameter K and K̂ are equivalent when they satisfy the

relation

sinh 2K sinh 2K̂ = 1. (2)

The situation K = K̂ = Kc is called self-dual point.

Kc = −1

2
log(−1 +

√
2). (3)

Next, I explain how to extend the AMF method to work in the 4-

dimensional pure Z2 lattice gauge theory. To consider the duality de-

fect, we prepare two kinds of lattices as shown in Fig.1. To be more

specific, we introduce coordinates (x1, x2, x3, x4) of R4. On this R4, we

define two lattices Λ := {(x1, x2, x3, x4)|x1, x2, x3, x4 ∈ 2Z} and Λ̂ :=

{(x1, x2, x3, x4)|x1, x2, x3, x4 ∈ 2Z + 1} that are dual to each other. In

each lattice, the line segment consisting of the two nearest points is called

a link, and the smallest square consisting of the links is called a placket. A

line segment connecting points on different lattices is not called a link.

We assign link variables Um = ±1 to the links on Λ, but constant

weights rather than variables to the links on the dual lattice Λ̂ For this

reason, lattice Λ given a variable is called an active lattice, and lattice Λ̂
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Fig. 1. Schematic figure of a lattice. In this figure, the lattice is depicted as 2-

dimensional, but the actual lattice treated in this paper is a 4-dimensional one. The
black lattice represents the lattice Λ, and the blue lattice represents the lattice Λ̂. They

are duals of each other.

given a constant weight is called an inactive lattice. This inactive lattice is

an auxiliary lattice prepared to construct the duality defect.

Consider a 16-cell as the basic unit on these lattices as shown in Fig.2.

A 16-cell consists of 16 tetrahedra such that each has one active link and

one inactive link as edges. The surface of the 16-cell is homeomorphic to

S3.

Fig. 2. 3-dimensional stereoscopic projection of a 16-cell. The black plaquette represent

an active plaquette and the blue plaquette represent an inactive plaquette.

Since there is a one-to-one correspondence between active plaquettes

and 16-cells, we assign Boltzmann weights to these 16-cells. If the four link

variables in a 16-cell are ai = 0, 1, (i = 1, 2, 3, 4), we define the Boltzmann

weight assigned to this 16-cell as

W (a1, a2, a3, a4) = exp(K(−1)(a1+a2+a3+a4)). (4)
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This definition is equivalent to the definition of Boltzmann weights in

Eq. (1) ,if the link variables for the link m are identified as Um = (−1)am .

We also assign a constant weight to each site or link, in addition to the link

variable. We assign the weights for active links, active sites, inactive links,

and inactive sites as s, l, s̄, and l̄, respectively. These weights are deter-

mined later to make the duality defect topological. The partition function

is

Z =
∑
{a}

 ∏
active
sites

s


 ∏

active
links

l


 ∏

inactive
sites

s̄


 ∏

inactive
links

l̄


∏
i∈C

W (aj1(i), aj2(i), aj3(i), aj4(i)), (5)

where C is the set of all 16-cells, and j1(i), j2(i), j3(i), and j4(i) are the

four active links in the 16-cell i. aj is the link variable assigned to the active

link j.

3. Duality defect

We discuss topological KKW duality defects in the Z2 lattice gauge theory

following AMF method3,4. This duality defects are 3-dimensional opera-

tors located at the boundary between two regions. The active lattice and

the inactive lattice are swapped across the duality defect as shown in Fig.3.

Because of this property, the building block of the duality defect is a tetra-

hedral prism with a doubled tetrahedron (see Fig.4). Each building block of

duality defect contains two active links. Let a, ã = 0, 1 be the link variables

assigned to these two active links. We assign a weight D(a, ã) (a, ã = 0, 1)to

this building block.

The entire duality defect is constructed by connecting these building

blocks together. This defect is a 4-dimensional object in the lattice, but

when the lattice spacing is set to zero, it becomes a 3-dimensional operator.

Since the duality transformation just changes the description of the

theory and does not change the observables, we expect that such topological

duality defects exist. In order to make the duality defect topological, we will

impose a commutation relation on the defect and find its solution. From

now on, we will consider the commutation relation on a single 16-cell. On

the surface of a 16-cell, there are 16 tetrahedra. Consider an arrangement

A of a certain duality defect. We assume that part of A occupies part of

the surface of the 16-cell we are focusing on. We also consider a deformed
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Fig. 3. Schematic figure of the duality defect. A duality defect is placed at the boundary

between the two regions. The active lattice (black dots) and the inactive lattice (blue

dots) are swapped across the duality defect. The building block of the duality defect is
a tetrahedral prism, depicted as a green parallelogram in this figure.

Fig. 4. The building block of duality defects. the building block is a tetrahedral prism
with a doubled tetrahedron. The 3-dimensional surface is composed of tetrahedrons each

of which includes an active link and an inactive link.

configuration B in which the tetrahedrons which are not filled by A are filled

and vice versa. Outside of a focused 16-cell, the configurations of A and B

are assumed to be same. We assume that if the topologies of configuration

A and B are the same, then the weights of those two configurations are

equal. We call this relation commutation relation(Fig.5).

The commutation relation does not hold for some configurations, such

as when the topology changes due to deformation. Therefore, we impose

the following conditions on the commutation relation.

• The filled tetrahedrons on the 16-cell of A and B are both non-

empty sets.

• The configurations A and B restricted on the surface of the focused

16-cell are both simply-connected.

• There is no connection such that the duality defects are connected

only by sites or links.

In the following, we prepare some definitions to express the commutation
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Fig. 5. Schematic figure of a commutation relation. The circle represents a 16-cell. A

green line represents a duality defect. The commutation relation means that the value of
the duality defect does not change when the topology is transformed without changing

the topology.

relation as a mathematical expression. First, consider a 16-cell where the

duality defect is not placed. Let m = 1, 2, 3, 4 be the four active links on the

focused 16-cell, and ñ = 1̃, 2̃, 3̃, 4̃ be the four inactive links. Let the set of

links be M = {1, 2, 3, 4} and Ñ = {1̃, 2̃, 3̃, 4̃}, respectively. The active link

and inactive link pair (m, ñ) corresponds one-to-one to the tetrahedron.

The set of tetrahedra on the surface of a 16-cell U can be represented as

follows

U = {(m, ñ)|m = 1, 2, 3, 4, ñ = 1̃, 2̃, 3̃, 4̃}. (6)

Next, consider a 16-cell with a duality defect in configuration A. Suppose

that I ⊂ U is occupied by a duality defect. The duality defect is defined on

a tetrahedral prism doubling the tetrahedron of the 16-cell surface, so an

additional active link appears. Since this additional active link corresponds

one-to-one to the original inactive link, we use ñ as the label. And let

Ẽ = {ñ|(m, ñ) ∈ I} be the set of such additional active links. Thus, the

weight of the duality defect on the focused 16-cell in coordination A can be

expressed as

W (a1, a2, a3, a4)
∏

(m,ñ)∈I

D(am, ãñ). (7)

In configuration B, the defect is placed at Ī = U \ I. Therefore, the weight

of the defect in configuration B becomes

W (ã1̃, ã2̃, ã3̃, ã4̃)
∏

(m,ñ)∈Ī

D(am, ãñ). (8)

Note that the Boltzmann weight variables are different for configurations

A and B because the theories on the 16-cells are dual. We also consider

E = {m|(m, ñ) ∈ Ī}.
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In this case, the commutation relation is written as follows∑
M\E

W (a1, a2, a3, a4)sα1 lβ1 s̄α̃1 l̄β̃1

∏
(m,ñ)∈I

D(am, ãñ)

=
∑
Ñ\Ẽ

W (ã1̃, ã2̃, ã3̃, ã4̃)sα2 lβ2 s̄α̃2 l̄β̃2

∏
(m,ñ)∈Ĩ

D(am, ãñ). (9)

Here the number of active sites, active links, inactive sites, and inactive

links in the configuration A are denoted by α1, β1, α̃1, and β̃1, respectively.

The number of active sites, active links, inactive sites, and inactive links

on the configuration B are denoted by α2, β2, α̃2, and β̃2, respectively. The

sums
∑
M\E ,

∑
Ñ\Ẽ are defined as follows∑

M\E

:=
∏

m∈M\E

∑
am=0,1

,
∑
Ñ\Ẽ

:=
∏

ñ∈Ñ\Ẽ

∑
ãñ=0,1

. (10)

In a physically sensible solution, these values satisfy

D(a, ã) 6= 0, l, s, l̄, s̄ > 0, K ∈ R, K 6= 0. (11)

By solving for the commutation relations, we obtained the following unique

solution

D(a, ã) =(−1)aã, (12)

l =
1√
2
, s =

1√
2
, (13)

l̄ = 1, s̄ = 1, (14)

K = Kc = −1

2
log(−1 +

√
2), (15)

W (a1, a2, a3, a4) = exp(K(−1)(a1+a2+a3+a4)). (16)

Thus, a topological duality defect was obtained. Note that the value of K

is determined to be the critical value Kc.

Finally, we show that this topological defect is non-invertible. To do

this, consider the situation as I = U as the placement of the duality defect

in configuration A (see Fig.6). In this case, the topology of the duality

defect changes with the deformation, so the commutation relation is not

always satisfied. In fact, the calculation results in the following∑
a1,a2,a3,a4=0,1

W (a1, a2, a3, a4)s8l8s̄8 l̄8
∏

(m,ñ)∈U

D(am, ãñ)

=
1√
2
W (ã1̃, ã2̃, ã3̃, ã4̃)s4l4s̄4 l̄4. (17)
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For a symmetry defect placed on a closed manifold with no operator inserted

inside, the weights are identical to the empty configuration2. However, for

this duality defect, their ratio is 1/
√

2. So, this defect is non-invertible.

Fig. 6. Schematic figure of Eq.(17). The circles represent the 16-cell. The green line

represents the duality defect.

4. summary

We construct topological KWW duality defects in the Z2 lattice gauge

theory following AMF method3,4. And this duality defect is non-invertible.
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We show that the split/non-split transition is, with some exceptions, a conifold
transition at a D2k (k ≥ 2) or an E7 codimension-two singularity, and these

non-split models have local deformed conifolds. These clarify, in these cases,

that the origin of non-local matter generation and that the deformations of
conifold singularities correspond to diagram automorphisms of the expected

simply-laced Dynkin diagrams in the split sides.

Keywords: F-theory, matter, singularity, resolution and deformation

1. Introduction

F-theory1–3 is a geometrical framework of nonperturbative compactifica-

tionsa of type IIB theory with general 7-branes. In six- or lower-dimensional

F-theories, if a fiber type involves the condition that an exceptional curve

splits into two irreducible ones, then the fiber type has two types, “split” or

“non-split”, depending on whether the exceptional curve can split globally

or not6. In the split models, each intersection diagram of exceptional curves

that arises after the resolution corresponds to the expected ADE Dynkin

diagram implied by Kodaira’s classification7(Table 2). In the non-split

models, since the two split exceptional curves are identified by monodromy,

each ADE gauge symmetry in the split models is reduced to the correspond-

ing non-simply-laced gauge symmetry by being subject to a projection by a

diagram automorphism. The fiber type In (n = 3, 4, . . .), I∗n (n = 0, 1, . . .),

IV or IV ∗ can involve such identification of exceptional curves6,8.

Non-split models have some puzzles which require a new understanding

of the non-local generation of charged matter. In split models, if the mat-

ter fields locally exist at all codimension-two singularitiesb, the number of

the matter fields matches the anomaly-free condition6. This is one of the

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the

original work is properly cited.
aIn F-theory, strong- and weak-coupling regions coexist on the base of the total space4,5.
bIn F-theory, there are 7-branes on codimension-one loci (in the base: codimension-two

in the total space) where the elliptic fibers become singular. These codimension-one loci
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reasons why the massless matter fields are localized at all intersections of

7-branes in F-theory. However, in non-split models, there is a puzzle that

the anomaly-free spectrum and the naive counting are not consistent6,12–16.

Moreover, at a D2k (k = 2, 3, . . .) or an E7 codimension-two singularity,

some conifold singularitiesc remain after all codimension-one singularities

are blown up in the split models, but not in the non-split models. In the

split models, since we can yield new two-cycles by small resolutions of the

conifold singularities9,17, we can obtain an intersection diagram of excep-

tional curves which is different from one on a codimension-one singularity

and explains the enhancement of the symmetry. In the M-theory dual, an

M2-brane wrapping a new two-cycle generates local matter multiplets18.

On the other hand, in the non-split models, no additional blow-up is re-

quired at these singularities, so the intersection diagrams remain the same

and there is no new two-cycle where an M2-brane can wrap around12.

This paper is based on our recent papers12,19: we discuss these puzzles12

and show the split/non-split transition is a conifold transition at a D2k or an

E7 codimension-two singularity with some exceptions (I∗2k−4)19. Since this

implies these non-split models have local deformed conifolds19, we can yield

new three-cycles which are non-local in terms of an elliptic fibration. These

clarify, in these cases, the “non-local” matter fields may satisfy the anomaly-

free condition and the deformations of conifold singularities correspond to

diagram automorphisms of the ADE Dynkin diagrams in the split sides.

2. Puzzles on matter generation in non-split models

In this section, we discuss non-split models using a non-split I6 model as

an example12. Specifically, we examine their matter spectra and the result

of the resolution at a D6 singularity of a non-split I6 local equation. Thus,

we show the non-split models have some puzzles regarding the generation

of charged matter fields.

2.1. Puzzle on matter spectra near D6 points in I6 model

In this section, we consider the six-dimensional F-theory on an elliptically

fibered Calabi-Yau three-fold over a Hirzebruch surface Fn
1–3 in which the

unbroken gauge symmetry is A5 or C3. These setups of F-theory compacti-

are called codimension-one singularities6,8–11. In general, there are intersections of the

codimension-one loci in the base. These codimension-two loci, where codimension-one
singularities are enhanced, correspond to intersections of 7-branes. So, The codimension-
two loci are involved in matter generation and are called codimension-two singularities.
cThis conifold singularity exists not only in the base but also in the elliptic fiber direction

and appears naturally where matter generates without any special tuning of parameters.
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fications are dual to the E8×E8 heterotic theories onK3 with (12+n, 12−n)

instantons1–3. In the heterotic dual, these massless spectra can be calcu-

lated using the index theorem (Table 1). They satisfy the anomaly-free

condition for the E8 with 12 + n instantons nH − nV = 30n+ 1126.

Table 1. The anomaly-free massless matter spectrum of heterotic theory on

K3 in which the unbroken gauge symmetry is A5 or C3. Specifically, we con-
sider the case where 12 + n instantons are distributed among (8 + n− r, 4 + r)

(0 ≤ r ≤ n + 2) in (A2, A1) or (G2, A1).

Gauge group Number of hypermultiplets: nH

A5
r
2
20 + (n + 2− r)15 + (2n + 16 + r)6 + (3n− r + 21)1

C3
r
2
14′ + (n + 1− r)14 + (2n + 16 + 3r

2
)6 + (4n− 2r + 23)1

In F-theory, an elliptic fibration can be described in Weierstrass form

y2 = x3 + fx+ g, (1)

where x and y are coordinates describing an elliptic curve. And f and g

are holomorphic functions on a Hirzebruch surface (a P1 fibration over P1)

f(z, w) :=
I∑

i=0

zif8+n(4−i)(w), g(z, w) :=
J∑

j=0

zjg12+n(6−j)(w),

where w and z are the affine coordinates along the base and P1 fiber, and I

and J are the largest integers that satisfy I ≤ 8, 8+n(4−I) ≥ 0 and J ≤ 12,

12 + n(6 − J) ≥ 0, respectively. In this subsection, all subscripts denote

the degree of the polynomial in w. We only consider i ≤ 4, j ≤ 6, and near

z = 0 so that we focus on the E8 with 12 + n instantons in the heterotic

dual1–3. There are singular fibers over the zero loci of the discriminant

∆ := 4f3 + 27g2 = 0. (2)

These singularities can be classified by the vanishing orders z of f , g, and

∆ on the codimension-one singularities (Kodaira’s classification7).

We obtain a split I6 equation (as Table 1) from the equation (1)6,12:

fIs
6
(z, w) := −3t4rh

4
n−r+2 + 6zt3rh

2
n−r+2Hn−r+4 + 3z2tr

(
2ur+4h

2
n−r+2

−trH2
n−r+4

)
+ z3 (trfn−r+8 − 3ur+4Hn−r+4) + f8z

4, (3)

gIs
6
(z, w) := 2t6rh

6
n−r+2 − 6zt5rh

4
n−r+2Hn−r+4 − 6z2t3rh

2
n−r+2

(
ur+4h

2
n−r+2

−trH2
n−r+4

)
+ z3t2r

(
9ur+4h

2
n−r+2Hn−r+4 − trfn−r+8h

2
n−r+2

−2trH
3
n−r+4

)
+ z4

(
3u2

r+4h
2
n−r+2 + t2rfn−r+8Hn−r+4

−f8t
2
rh

2
n−r+2 − 3trur+4H

2
n−r+4

)
+z5 (f8trHn−r+4 + ur+4fn−r+8) + g12z

6, (4)
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Table 2. Kodaira’s classification of singularities of an elliptic surface7.

ord(f) ord(g) ord(∆) Fiber type Singularity type G

≥ 0 ≥ 0 0 smooth none

0 0 n In An−1

≥ 1 1 2 II none
1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n + 6 I∗n Dn+4

≥ 2 3 n + 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

≥ 4 ≥ 6 ≥ 12 non-minimal

Table 3. Massless matter content in the Is6 model of F-theory, if the matter fields

locally exist at all codimension-two singularities. In Ins
6 , each representation of Is6

simply decomposes into an irreducible representation of C3 at each zero locus.

Is6 (A5) Ins
6 (C3)

Enhancement in Is6 Matter rep. Multiplicity Matter rep. Multiplicity

IV ∗ (E6) 1
2
20 r 1

2
(14′ + 6) r

I∗2 (D6) 15 n + 2− r 14 2n + 4− 2r
I7 (A6) 6 2n + 16 + r 6 2n + 16 + r

1 3n + 21− r 1 4n + 23− 2r

where tr, hn−r+2, Hn−r+4, ur+4, fn−r+8, f8, and g12 are the sections of

appropriate line bundles over the base P1. And the discriminant (2) is

∆Is
6

= z6t3rh
4
n−r+2P2n+r+16 + z7t2rh

2
n−r+2Q3n+20 + z8R4n+24 +O(z9), (5)

where P2n+r+16, Q3n+20, and R4n+24 are some non-factorizable polynomi-

als. At the zero loci of tr, hn−r+2, and P2n+r+16, the codimension-one

singularity is enhanced to IV ∗ (E6), I∗2 (D6), and I7 (A6), respectively.

These zero loci are the codimension-two singularities. In general, any two

of tr, hn−r+2, and P2n+r+16 will not be zero at the common locus, so we will

get the matter content (Table 3) from (3), (4), and (5). It can be verified

from Tables 1 and 3 that if the matter locally exists at all codimension-two

singularities, then the anomaly-free condition is satisfied.

A non-split I6 equation, which reduces the gauge group from A5 to C3, is

obtained by the replacement of the section h2
n−r+2 → h2n−2r+4 (not chang-

ing tr and P2n+r+16) in the split I6 equation since the two split exceptional

curves can no longer be factorized6. Thus, we consider each matter repre-

sentation of A5 simply decomposes into an irreducible representation of C3,

respectively (Table 3). In this case, the number of the zero loci where the

codimension-one singularity is enhanced to I∗2 is doubled, but we cannot



April 25, 2022 14:12 Proceedings of the East Joint. . . - 9in x 6in ch09-NEW-Rinto-Kuramochi-EAJS-proceeding page 87

87

assign it to two separate zero loci since 14 of C3 is not a pseudo-real but a

real representation. Therefore, it is difficult to realize the local generation

of matter at all codimension-two singularities in the non-split models.

2.2. Intersections of exceptional curves in non-split I6

As we will see explicitly in the next section, we examine, in the non-split

I6 model with a D6 codimension-two singularity, the intersection diagrams

of exceptional curves near h2n−2r+4 = w = 0 (in Section 3, b2,0 = w = 0).

At a point of w 6= 0, in the split I6 model, we have five exceptional

curves C±p1
, C±p2

, and Cp3
(the top of Figure 1). In the non-split I6 model,

since the two split exceptional curves C±p1
cannot be factorized in terms of

the polynomial ring of w and replace each other at w = 0, C±p1
are identified;

the same applies to C±p2
. This corresponds to the diagram automorphism of

the Dynkin diagram: Cpi
:= 1

2 (C+
pi

+C−pi
) (i = 1, 2) (the middle of Figure 1).

At w = 0, no conifold singularity remains after the codimension-one

singularity is blown up12. Thus, as in the previous works9–11, by lifting

up the exceptional curves C’s and δ’s (as (x, y, z)→ (x1z, y1z, z) in Section

3.2), we obtain Cp1 → δp1 , Cp2 → δp2 , Cp3 → δp3 (the bottom of Figure 1).

Therefore, in the non-split models, even at the codimension-two singu-

larities, the intersection diagrams of exceptional curves remain the same.

Thus there is no new two-cycle where an M2-brane can wrap around.

<

<

𝐶!! 𝐶!"𝐶!#

𝛿!! 𝛿!"𝛿!#

𝐶!!
" 𝐶!#

" 𝐶!#
# 𝐶!!

#𝐶!"

𝐶!! → 𝛿!!

Fig. 1. Intersection diagrams of the exceptional curves (based on Ref. 12): (Top) w 6= 0

before the identification; (Middle) w 6= 0 after the identification; (Bottom) w = 0.

3. Split/non-split transition as a conifold transition

In this section, to show the split/non-split transition is a conifold transi-

tion in the I2k model, we will perform a concrete blowing-up process of a

codimension-one singularity, near a D2k codimension-two singularity. After

that, we will show the non-split models have nontrivial three-cycles; we will

discuss the origin of non-local matter in the non-split models19. Finally,

we will discuss all other fiber types in which the non-split models exist19.
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3.1. The local equation

A local elliptic fibration with a codimension-one singularity along (x, y, z) =

(0, 0, 0) can be described in “Degline form”20:

Φ(x, y, z, w) =− y2 + x3 +
b2
4
x2 +

b4
2
x+

b6
4

= 0,

b8 :=
1

4
(b2b6 − b24),

∆ =
1

16

(
b22b8 − 9b2b4b6 + 8b34 + 27b26

)
,

(6)

where bj is a section. bj is expanded as bj = bj,0 + bj,1z + · · ·+ bj,jz
j (j =

2, 4, 6), where bj,k is a ((j − k)n+ 2j)-th degree polynomial in w.

There is a relationship between “Degline form” (6) and Weierstrass

form (1) in the previous section as follows: f = − 1
48 (b22 − 24b4), g =

1
864

(
b32 − 36b2b4 + 216b6

)
. f and g are sections of the same line bundle as

b4 and b6, respectively. And then, in the dP9 fibration they are expanded

as f = f4,0 + f4,1z+ · · ·+ f4,4z
4, g = g6,0 + g6,0z+ · · ·+ g6,6z

6, where f4,k,

g6,k are written as f8+n(4−k), g12+n(6−k) in the previous section.

The conditions for singularities of the split and non-split fiber types are

summarized in Table 419. Thus, substituting b2 := 4[(w−ε)(w+ε)−z], b4 :=

2zk, and b6 := 4z2k into equation (6), we obtain the local equation with an

I2k codimension-one singularity along (x, y, z) = (0, 0, 0) for arbitrary w:

Φ(x, y, z, w) =− y2 + x3 + [(w − ε)(w + ε)− z]x2 + zkx+ z2k = 0,

b8 = z2k [4(w − ε)(w + ε)− 1− 4z] ,

∆ = z2k
[
(w − ε)2(w + ε)2(4w2 − 4ε2 − 1)

− 2(w − ε)(w + ε)(6w2 − 6ε2 − 1)z

+(12w2 − 12ε2 − 1)z2 +O(z3)
]
,

(7)

where ε ∈ R is the parameter for a split/non-split transition since b2,0 can

be factorized when ε = 0 and not when ε 6= 0. In this section, for simplicity,

we consider k ≥ 3, but we can make the same discussion for k = 2.

3.2. Resolutions of I2k codimension-one singularities

We consider the resolution of a codimension-one singularity9–11 of the local

equation (7) along (x, y, z) = (0, 0, 0) for arbitrary w. This equation (7)

also has one D2k codimension-two singularity at w = +ε and another one

at w = −ε in the non-split side, while it has one at w = 0 in the split side.

So, we obtain the exceptional curves C’s at w 6= ±ε and δ’s at w = ±ε.
We replace (x, y, z) = (0, 0, 0) for some fixed w with a P2, by replacing
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Table 4. Singularities of the split and non-split fiber types. Ios2k+1 denotes the “over-split”
type which is explained in Ref. 19.

Kodaira’s
fiber type ord(b2) ord(b4) ord(b6) ord(b8) ord(∆) Additional

constraint(s)
Split/non-split

fiber type

I2k(k ≥ 2) 0 k 2k 2k 2k b2,0 = c21,0 Is
2k

b2,0 generic Ins
2k

I2k+1(k ≥ 1) 0 k 2k 2k + 1 2k + 1


b2,0 = c21,0
b4,k = c1,0c3,k
b6,2k = c23,k

Is
2k+1

b2,0 generic

b4,k = b2,0c2,k
b6,2k = b2,0c

2
2,k

Ins
2k+1

b2,0 = c21,0
b4,k = c21,0c2,k
b6,2k = c21,0c

2
2,k

Ios
2k+1

I∗
0 1 2 3 4 6


b2,1 = 4(p2,1 + q2,1 + r2,1)

b4,2 = 2(p2,1q2,1 + q2,1r2,1
+r2,1p2,1)

b6,3 = 4p2,1q2,1r2,1

I∗s
0


b2,1 = 4(p2,1 + q2,1)

b4,2 = 2(p2,1q2,1 + r4,2)

b6,3 = 4p2,1r4,2

I∗ss
0

b2,1, b4,2, b6,3
generic I∗ns

0

I∗
2k−3 (k ≥ 2) 1 k + 1 2k 2k + 1 2k + 3 b6,2k = c23,k I∗s

2k−3

b6,2k generic I∗ns
2k−3

I∗
2k−2 (k ≥ 2) 1 k + 1 2k + 1 2k + 2 2k + 4 b8,2k+2 = c24,k+1 I∗s

2k−2

b8,2k+2 generic I∗ns
2k−2

IV 1 2 2 3 4 b6,2 = c23,1 IV s

b6,2 generic IV ns

IV ∗ 2 3 4 6 8 b6,4 = c23,2 IV ∗s

b6,4 generic IV ∗ns

C3 with Ĉ3 = {((x, y, z), (ξ : η : ζ)) ∈ C3 × P2|(x : y : z) = (ξ : η : ζ)}.
We will be blowing up the codimension-one singularity in inhomogeneous

coordinates defined in the three different affine patches of P2, for example,

(x : y : z) = (ξ : η : ζ) = (x1 : y1 : 1) (1z, z 6= 0). Then, to replace C3

with Ĉ3, we simply replace (x, y, z) with (x1z, y1z, z) in the equation (7).

To not change the canonical class, the equation after the blow-up is defined

as follows: z−2Φ(x1z, y1z, z, w) =: Φz(x1, y1, z, w) = 0. The other patches

are also similar. In this (7) case, the codimension-one singularity remains

along (xj , yj , z) = (0, 0, 0) (j = 1, · · · , k − 1). Thus, we perform similar

processes k times for the resolution of the codimension-one singularity.

Performing these operations, we obtain the j times (j = 1, · · · , k) blown-

up equation in patch jz · · · z︸ ︷︷ ︸
j

is
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Φz · · · z︸ ︷︷ ︸
j

(xj , yj , z, w) = −y2
j + zjx3

j + [(w − ε)(w + ε)− z]x2
j + zk−jxj + z2(k−j)

= 0. (8)

These equations have codimension-one singularities along (xj , yj , z) =

(0, 0, 0) in j = 1, · · · , k − 1, and not in j = k. In the non-split side (ε 6= 0),

we also obtain the exceptional curves at w 6= ±ε and w = ±ε as follows:

Cpj
: z = 0, y2

j = (w − ε)(w + ε)x2
j

δpj
: z = 0, yj = 0, w = ±ε

(j = 1, · · · , k − 1), (9)

Cpk
: z = 0, y2

k = (w − ε)(w + ε)x2
k + xk + 1

δpk
: z = 0, y2

k = xk + 1, w = ±ε
(j = k). (10)

3.3. Local deformed conifolds in non-split models and

split/non-split transition as a conifold transition

To see conifold singularities, we consider the j times (j = 1, · · · , k) blown-

up equation in the patch of jz · · · z︸ ︷︷ ︸
j−1

x

0 = Φz · · · z︸ ︷︷ ︸
j−1

x(xj−1, yj , zj , w) = −y2
j − zjxj−1 + w2 − ε2 + zj−1

j xjj−1

+zk−j+1
j x

(k−j)
j−1 + z

2(k−j+1)
j x

2(k−j)
j−1 , (11)

where (x0, y0, z0) means (x, y, z). In the split side (ε = 0), we can confirm

that there are k conifold singularities at a D2k codimension-two singularity:

vq1 : (x, y1, z1, w) = (0, 0, 1, 0),

vqj : (xj−1, yj , zj , w) = (0, 0, 0, 0) (j = 2, · · · , k − 1),

vrk−1
: (xk−2, yk−1, zk−1, w) = (0, 0, 1, 0). (12)

Thus, the intersection diagrams of exceptional curves are obtained by blow-

ing up all conifold singularities (small resolutions), which explain the en-

hancements of the symmetries. The smooth split I2k model corresponds to

the resolved side of a conifold transition.

In the non-split side (ε 6= 0), by appropriate variable transformations of

equations (11) and considering only their lowest order, we obtain

y2
j + zjxj−1 + w2 − ε2 = 0 (j = 1, · · · , k − 1). (13)

These are local deformed conifolds19. Thus, it is natural that there is no

conifold singularity in the non-split models; there are three-cycles instead
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of two-cycles. The smooth non-split I2k model corresponds to the deformed

side of a conifold transition.

The split/non-split transition parameter ε also plays the role of a coni-

fold transition parameter, so the split/non-split transition is a conifold tran-

sition at a D2k codimension-two singularity in the I2k model. This clarifies

the deformation of conifold singularity is associated with a diagram auto-

morphism of the expected simply-laced Dynkin diagram in the split side.

Moreover, in the non-split models, it turns out that new S3’s, which are

non-local in terms of the elliptic fibration, are generated. Thus, this can

be regarded as the origin of non-local matter which cannot be generated

from two-cycles. Since it is important to consider two D2k codimension-two

singularities as a pair to find these three-cycles, the matter generated from

three-cycles may satisfy the anomaly-free condition. However, this requires

a new way to generate matter fields from three-cycles with finite size. We

will leave this issue that should be clarified in the future.

3.4. All other fiber types with non-split models

Similar results are obtained in IV and I∗2k−5 (k ≥ 3) at a D2k point, and

in IV ∗ at an E7 point19. In I2k−1 (k ≥ 2), a split model has no D2k point

in general. But we get a D2k point if we adjust a D2k−1 and an A2k−1

to overlap at the same point. We call such a specially tuned fiber type an

“over-split”19. At this D2k point, we obtain a similar discussion through an

“over-split” model. In I∗2k−2 (k ≥ 1), conifold singularities do not appear

after the resolution of the codimension-one singularity. Therefore, this is

the only case where similar arguments cannot be applied19.

4. Conclusion

In this paper, we have considered the non-split models have two puzzles

on matter generation, using I6 specifically: first, if the matter fields locally

exist and matter representations in the split models simply decompose into

irreducible representations of the corresponding non-simply-laced gauge

groups at all codimension-two singularities, the number of matter fields

mismatches the anomaly-free condition6,12–16; second, there is no conifold

singularity at all D2k or E7 points after all codimension-one singularities

are blown up, so the intersection diagrams of exceptional curves remain

the same12. Next, using I2k specifically, we have shown the split/non-split

transition is a conifold transition at a D2k codimension-two singularity, and

nontrivial three-cycles S3 are generated in the non-split models. These have

been clarified, in these cases, the deformations of conifold singularities are
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associated with diagram automorphisms of the corresponding simply-laced

Dynkin diagrams in the split sides. Moreover, we have discussed how these

solve the above puzzles19. However, in the I∗2k−2 models, we cannot discuss

the above. Also, we need a new understanding of matter generation due to

three-cycles. These are issues that need to be clarified in the future. The

analyses based on the deformations21,22 could help in solving these issues.

Acknowledgements

We thank H. Itoyama, Y. Imamura, K. Sakai, S. Mizoguchi, T. Tani,

Y. Kimura, and H. Otsuka for useful discussions.

References

1. C. Vafa, Nucl. Phys. B 469 (1996), 403.

2. D. R. Morrison and C. Vafa, Nucl. Phys. B 473 (1996), 74.

3. D. R. Morrison and C. Vafa, Nucl. Phys. B 476 (1996), 437.

4. S. Fukuchi, N. Kan, S. Mizoguchi and H. Tashiro, Phys. Rev. D 100

(2019) no. 12, 126025.

5. S. Fukuchi, N. Kan, R. Kuramochi, S. Mizoguchi and H. Tashiro, Phys.

Lett. B 803 (2020), 135333.

6. M. Bershadsky, K. Intriligator, S. Kachru, D.R. Morrison, V. Sadov

and C. Vafa, Nucl. Phys. B481 (1996), 215-252.

7. K. Kodaira, Ann. of Math. 77 (1963), 563.

8. S. Katz, D. R. Morrison, S. Schafer-Nameki and J. Sully, JHEP 08

(2011), 094.

9. D. R. Morrison and W. Taylor, JHEP 01 (2012), 022.

10. N. Kan, S. Mizoguchi and T. Tani, JHEP 08(2020), 063.
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Entanglement entropy in Schwarzschild spacetime
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In this work, we discuss the entanglement entropy in the Schwarzschild space-

time, and its relation to the vacuum state of matter fields. Recently, it was pro-
posed that there is either large violation of the additivity conjecture in quantum

information theory or disentangled states of black holes in the AdS/CFT cor-

respondence. Here, we consider the additivity conjecture in the Schwarzschild
spacetime. Usually, the entanglement entropy is calculated assuming that the

vacuum state is in the Hartle-Hawking vacuum. We discuss the entanglement

entropy in the Schwarzschild spacetime, and its relation to the vacuum state
of matter fields. We show that the other vacua than the Hartle-Hawking vac-

uum should be taken into consideration in order to consider the additivity
conjecture.

1. Introduction and summary

Recently, it was proposed that there is either large violation of the additivity

conjecture in quantum information theory or a set of disentangled states

in the black hole spacetime [1]. A simplest statement of the additivity

conjecture[2–8] says that the minimum output entropy

Smin(N ) = min
ρ∈A

S(N (ρ)) (1)

of two quantum channels N1 and N2 which map states in Hilbert spaces A1

or A2 to those in another Hilbert spaces B1 or B2 satisfies the additivity

condition;

Smin(N1 ⊗N2) = Smin(N1) + Smin(N2) , (2)

where S(ρ) is the con Neumann entropy of the density matrix ρ.

Hayden and Penington studied the additivity conjecture in the

AdS/CFT correspondence [1]. Two Hilbert spaces A1 and A2 are identified

to those of two conformal field theories which correspond to two boundaries

of the AdS black hole spacetime. They considered quantum channels N1

and N2 which take the partial trace in each CFT. The output entropy

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter

published by World Scientific Publishing Company. It is distributed under the terms of

the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the
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of the channels are the entanglement entropy, which can be calculated by

using the Ryu-Takayanagi formula [9, 10]. Then, they argued that the en-

tanglement entropy does not satisfy the additivity condition (2). Hayden

and Penington proposed that there is either large violation of the additiv-

ity conjecture or a set of disentangled quantum states which correspond to

disconnected geometries in the gravity side [1].

Here, we consider the additivity conjecture in the Schwarzschild space-

time. We consider the quantum states of matters in two exteriors of the

horizon in the Schwarzschild spacetime (See Fig. 1(left)). In a similar fash-

ion to the case of the AdS/CFT correspondence, we take the partial trace

of the states to obtain the entanglement entropy of the Hawking radiation.

The entanglement entropy is usually calculated by assuming that the state

is given by the Hartle-Hawking vacuum. The total entanglement entropy of

the Hawking radiation is smaller than the sum of the entanglement entropy

in each exterior, and hence, the additivity conjecture is not satisfied.

This is because we considered only the Hartle-Hawking vacuum, and the

other vacua should be taken into account. In the other static vacua than the

Hartle-Hawking vacuum, the quantum energy-momentum tensor becomes

very large near the horizon. By solving the semi-classical Einstein equation,

we find that two exteriors of the horizon are disconnected (Fig. 1(right)),

as is proposed by Hayden and Penington. Thus, it is important to consider

general static vacua in order to reproduce the additivity conjecture in the

Schwarzschild spacetime.

RR
Island

RR

Fig. 1. The Penrose diagram of the Schwarzschild spacetime in the Hartle-Hawking

vacuum (left) and the semi-classical Schwarzschild spacetime in the other static vacua
(right).

This paper is organized as follows. In Sec. 2, we briefly review the

additivity conjecture in the AdS/CFT correspondence. In Sec. 3, we cal-

culate the entanglement entropy in the Schwarzschild spacetime. In Sec. 4,

we solve the semi-classical Einstein equation to obtain the semi-classical

Schwarzschild solution. In Sec. 5, we consider the additivity conjecture in

the Schwarzschild spacetime. This contribution is based on [11].
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2. Additivity conjecture in AdS/CFT correspondence

The AdS/CFT correspondence relates the AdS spacetime with conformal

field theory. In the cases of the eternal black holes in asymptotically AdS

spacetime, the geometry have two boundaries, which correspond to two

conformal field theories. The Einstein-Rosen bridge which connects two

exteriors of the event horizon implies that states in two conformal field

theories are entangled with each other. This entangled state is interpreted

as the thermofield double state at the Hawking temperature,

|ψ〉 =
∑

e−βEn/2|n+〉|n−〉 . (3)

We consider the additivity conjecture for states in two CFTs A1 and

A2. Two quantum channels Ni take partial trace in each CFT and maps

states in total system of each CFT to those in subregions B1 and B2. The

output entropy of the channels are nothing but the entanglement entropy

of region Bi,

S(Ni) = S(Bi) , S(N1 ⊗N2) = S(B1 ∪B2) . (4)

By using the Ryu-Takayanagi formula, the entanglement entropy of the

region B in CFT is given by the area of the minimal area surface γB whose

boundaries are anchored at the boundaries of B in the AdS boundary,

S(B) =
Area(γB)

4GN
. (5)

𝐵1𝐵2 𝐵1𝐵2

Fig. 2. The geometry of a time slice in the AdS black hole spacetime and the Ryu-

Takayanagi surface for B1 or B2 (left), and that for B1 ∪B2 (right).

For the entanglement entropy of B1, the minimal surface lies in one

exterior of the event horizon (Fig. 2 (left)). For the entanglement entropy

of B1 ∪ B2, the minimal surface extends between two boundaries through

the Einstein-Rosen bridge (Fig. 2 (right)) [12]. Thus, we have

S(B1 ∪B2) < S(B1) + S(B2) . (6)
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Therefore, the additivity conjecture is violated by the typical states of black

holes in the asymptotically AdS spacetime.

3. Entanglement entropy in Hartle-Hawking vacuum

Now, we consider the additivity conjecture for states of matters in the

Schwarzschild spacetime. The Schwarzschild metric is given by

ds2 = −
(

1− rh
r

)
dt2 +

(
1− rh

r

)−1

dr2 + r2dΩ2 . (7)

The quantum channels Ni map states in total system into those of the

Hawking radiation, which are defined as states in the region R, or equiv-

alently in r > b. The entanglement entropy of the Hawking radiation is

given by [13–17]

S =
∑

∂R, ∂I

Area

4GN
+
∑

∂R, ∂I

S
(non-local)
matter , (8)

where

S
(non-local)
matter = (−1)i−j+1 c

6

∑
i 6=j

log |(Ui − Uj)(Vi − Vj)|+
c

12

∑
i

log |gUV (xi)| ,

(9)

and the summation is over the endpoints of region R and the island I

[18–23] (if there is the island), which are labeled so that i − j = ±1 for

neighboring labels. For the Hartle-Hawking vacuum, the coordinates in (9)

should be the Kruskal coordinates.

We first consider the entanglement entropy of the Hawking radiation in

two exteriors, R1 ∪ R2. Before the Page time [24, 25], the configuration

without the island dominates, and the entanglement entropy is calculated

as [26]

S =
2πb2

GN
+
c

6
log

[
16r2

h(b− rh)

b
cosh2 tb

2rh

]
. (10)

After the Page time, the configuration with an island dominates. The

position of the island is determined so that the entanglement entropy is

extremized. The entanglement entropy is evaluated as [26]

S ' 2πr2
h

GN
+

2πb2

GN
+
c

6

[
log

(
16r3

h(b− rh)2

b

)
+
b− rh
rh

]
. (11)

Next, we calculate the entanglement entropy of the Hawking radiation

in one of two exteriors, R1. There is no configuration with islands. The
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entanglement entropy is calculated by introducing the IR cut-off Λ and is

given by [27]

S =
πb2

GN
+
c

6
log Λ , (12)

which implies the entanglement entropy is infinitely large after taking Λ→
∞. Therefore, the entanglement entropy of the Hawking radiation in the

Hartle-Hawking vacuum does not satisfy the additivity condition,

S(R1 ∪R2)� S(R1) + S(R2) . (13)

This apparent violation of the additivity conjecture is because we consider

only the Hartle-Hawking vacuum. The Hartle-Hawking vacuum is given in

the form of the thermofield double state in terms of the states in each of

two exteriors. By using these states in each exterior, we can construct other

static vacuum states. Since we need to consider the state with the minimum

output entropy, the other vacua than the Hartle-Hawking vacuum must be

taken into account.

4. Semi-classical Schwarzschild spacetime

In the other vacuum states than the Hartle-Hawking vacuum, the energy-

momentum tensor on the classical Schwarzschild spacetime diverges at the

event horizon. This implies that quantum effects becomes very important

near the horizon, and we should solve the semi-classical Einstein equation,

Rµν −
1

2
gµνR = 8πGN 〈Tµν〉 . (14)

In the s-wave approximation, the expectation value of the quantum energy-

momentum tensor is completely fixed by the conservation law and Weyl

anomaly. For the most general spherically symmetric spacetime,

ds2 = −C(u, v)du dv + r2(u, v)dΩ2 , (15)

the energy-momentum tensor is calculated as [28, 29]

〈Tuu〉 = − c

48π2r2
C1/2∂2

uC
−1/2 +

c κ2

192π2r2
, (16)

〈Tvv〉 = − c

48π2r2
C1/2∂2

vC
−1/2 +

c κ2

192π2r2
, (17)

〈Tuv〉 = − c

96π2r2C2
[C∂u∂vC − ∂uC∂vC] , (18)

〈TΩΩ〉 = 0 , (19)
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where κ is the integration constant, which is related to the asymptotic

condition. Then, it is straightforward to solve the semi-classical Einstein

equation to obtain the expression near the Schwarzschild radius [30–33],

C(r∗) = er∗/rh +O(α2) , (20)

r(r∗) = rh + er∗/rh − α
(

1

4r2
h

− κ2

)
r∗ +O(α2) . (21)

where α = cGN

12π and r∗ is the tortoise coordinate r∗ = 1
2 (v−u). The Hartle-

Hawking vacuum is given by κ = 1
2rh

where the radius approaches to the

Schwarzschild radius rh in r∗ → −∞. In the other static vacua, κ 6= 1
2rh

,

the radius diverges for κ < 1
2rh

or goes to zero for κ > 1
2rh

before C(r∗)

goes to zero. In either case, the geometry has no event horizon but naked

singularity. Thus, two exteriors of the event horizon are disconnected in

the other static vacua than the Hartle-Hawking vacuum.

Away from the Schwarzschild radius, the metric is approximated by the

classical Schwarzschild solution (7), where

C(r∗) = 1− rh
r(r∗)

, (22)

r∗ = r − rh + rh log

(
r − rh
rh

)
. (23)

5. Additivity conjecture in Schwarzschild spacetime

Now, we calculate the entanglement entropy in static vacua with κ 6= 1
2rh

.

As we have seen in the previous section, two exteriors are disconnected

by taking quantum effects in the energy-momentum tensor into account.

Then, the entanglement entropy of R1 ∪R2 is simply given by

S(R1 ∪R2) = S(R1) + S(R2) . (24)

Thus, the additivity condition is satisfied.

Next, we calculate the entanglement entropy to see that the entangle-

ment entropy in a vacuum with κ 6= 1
2rh

gives the minimum output entropy,

or equivalently, is smaller than that in the Hartle-Hawking vacuum. In these

vacua, the coordinates in the formula (9) should be chosen as

U = −κ−1e−κu , V = κ−1eκv , (25)

where (u, v) coordinates are related to t and r∗ as v = t + r∗ and u =

t − r∗. In the configurations without islands, the entanglement entropy is
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calculated as [11]

S =
πb2

GN
+

c

12
log

(
b− rh
κ2b

)
. (26)

This entanglement entropy becomes very large for very small κ, and then,

a configuration with an island gives the dominant saddle point. The entan-

glement entropy for small κ is approximately given by [11]

S =
πb2

GN
+

c

12
log

(
b− rh
b

)
+
c

3
log

(
48πr3

h

cGN

)
. (27)

The entanglement entropy (26) is smaller than that of the Hartle-

Hawking vacuum for κ > 1
2rh

, and hence, gives the minimum output en-

tropy. Therefore, the additivity conjecture is satisfied in the Schwarzschild

spacetime if the other static vacua than the Hartle-Hawking vacuum are

taken into consideration.
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We calculate the superconformal indices of the Argyres-Douglas theories and
Minahan-Nemeschansky theories realized on N coincident D3-branes in 7-brane
backgrounds via the AdS/CFT correspondence. We include the finite N cor-
rection as “giant gravitons”, which are D3-branes wrapping around 3-cycles.
We take account of a single giant graviton for simplicity, and our method nicely
reproduces known results and gives predictions for theories whose indices are
unknown.
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1. Introduction

In this proceeding, we calculate the superconformal index of the Argyres-

Douglas theories and Minahan-Nemeschansky theories using a brane real-

ization in the type IIB superstring theory. We consider a brane system with

N D3-branes and a 7-brane. Let x0, x1, x2, and x3 be the coordinates along

D3-branes, and X , Y , and Z be the 3 complex coordinates of C3 transverse

to the D3-branes. The D3-branes are located at X = Y = Z = 0. We also

introduce a 7-brane with the worldvolume Z = 0 (Table 1).

Table 1. The brane setup.

0 1 2 3 X Y Z

7-brane � � � � � �
D3-branes � � � �

There are 7 types of 7-branes with constant axiodilaton. Correspond-

ingly, there are 7 types of 4-dimensional superconformal field theories, which

we denote by G[N ]. (G = H0, H1, H2, D4, E6, E7, E8). This brane system

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the
original work is properly cited.



April 25, 2022 14:14 Proceedings of the East Joint. . . - 9in x 6in ch11-ws-procs9x6˙murayama˙sashikae page 104

104

is quater BPS and N = 2 supersymmetric theories are realized on the D3-

brane worldvolume. Hn[N ] (n = 0, 1, 2) are Argyres-Douglas theories1,2

and En[N ] (n = 6, 7, 8) are Minahan-Nemeschansky theories3,4. D4[N ] is

an SQCD with Sp(N) gauge group. Hn[N ] and En[N ] are strongly coupled,

and it is worth analyzing these SCFTs via AdS/CFT correspondence.

The 7-brane induces a deficit angle παG on Z-plane5–8. Table 2 shows

αG and the gauge symmetry on 7-brane for each G. From the viewpoint

Table 2. Theories corresponding to each dificit angle αG.

G H0 H1 H2 D4 E6 E7 E8

αG 1/3 1/2 2/3 1 4/3 3/2 5/3
gauge sym. on 7-brane None SU(2) SU(3) SO(8) E6 E7 E8

of 4-dimensional theories, the gauge symmetry on 7-brane becomes fla-

vor symmetry. The rotational symmetry along transverse directions is

SO(4)×SO(2) ∼ SU(2)R ×SU(2)F ×U(1)RZ , where SU(2)R ×U(1)RZ is

R-symmetry, and SU(2)F is a flavor symmetry. Let RX , RY , and RZ be the

generators rotating X , Y , and Z-plane, respectively. U(1)RZ is generated

by RZ , and the Cartan generators of SU(2)R and SU(2)F are 1
2 (RX +RY )

and 1
2 (RX −RY ), respectively.

The near-horizon geometry of the brane system is AdS5 × S5
αG

, where

S5
αG

is a 5-sphere in XY Z space with deficit angle παG on Z-plane. The

7-brane wraps around the singular locus Z = 0, and the gauge symmetry

G lives on the locus.

X

Y Z

Fig. 1. 7-branes in S5
αG

of G[N ].

The superconformal index is defined by9

I = tr

[
e2πi(J+J̄)qH+J̄y2JuRX

x uRY
y uRZ

z

rankG∏
i=1

xpi

i

]
. (uxuyuz = 1) (1)
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where H is the Hamiltonian, J and J̄ are the angular momenta, and pi
are Cartan generators of G. It expresses the BPS spectrum concisely as a

function of fugacities q, y, ux, uy, uz and xi. The factor e
2πi(J+J̄) is +1 for

bosonic states and −1 for fermionic states.

Table 3 shows the theories whose superconformal indices have already

been calculated10–14. The method explained below can be used to calculate

Table 3. Theories whose superconformal in-
dex have been already calculated.

N H0 H1 H2 D4 E6 E7 E8

1 � � � � � �
2 �
3 �

the leading finite N correction to all G[N ].

In the following sections, we will briefly explain how to calculate the

index on the AdS side and show a few results. For detailed explanations and

more results, refer to the original paper15 in collaboration with Y. Imamura.

2. Large N limit

Let us first consider the large N limit, which has already been analyzed

in16,17. There are two contributions to the index (Figure 2).

(a) Kaluza-Klein modes of the gravity multiplet in the bulk

Closed strings give the gravity multiplet in the bulk. They are ex-

panded into spherical harmonics in S5
αG

. Due to the deficit angle,

the boundary condition associated with the angular coordinate on

Z-plane should be appropriately modified16,17. The superconfor-

mal index can be obtained by summing up the contributions from

all modes.

(b) Kaluza-Klein modes of vector multiplets on the 7-brane

Vector multiplets of gauge group G live on the 7-brane. We can

expand them into spherical harmonics on the 7-brane worldvolume

S3 ⊂ S5
αG

in a similar way to (a). The superconformal index can

be obtained by summing up the contributions from all modes. In

the D4 case, the 7-brane is a stack of an O7-plane and 4 D7-branes,

and the vector multiplet comes from open strings on the D7-branes.
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Fig. 2. The contributions in the large N limit. (a) The closed string in the bulk. (b)
vector multiplets on the 7-brane. Open string description of (b) is justified only in the
D4 case.

3. Finite N corrections

For finite N , we include extra contributions from “giant gravitons”18, which

are the D3-branes extended in S5
αG

. We follow the prescription proposed

in19. Namely, we consider D3-branes wrapped around three particular 3-

cycles, X = 0, Y = 0, and Z = 0. It is expected the complete finite N

index IG[N ] would be obtained if we sum up over all wrapping numbers

(nx, ny, nz) as

IG[N ] = IG[∞]

∑
nx,ny,nz

I(nx,ny,nz)

G[N ] , (2)

where IG[∞] is the large N index, and I(nx,ny,nz)

G[N ] is the index from gi-

ant gravitons with specific wrapping numbers. It is difficult to calculate

I(nx,ny,nz)

G[N ] for general wrapping numbers, and here we take account of only

leading corrections, I(1,0,0)
G[N ] and I(0,1,0)

G[N ] .

IG[N ] = IG[∞](1 + I(1,0,0)
G[N ] + I(0,1,0)

G[N ] ) + · · · . (3)

(Due to the deficit angle, the volumes of 3-cycles X = 0 and Y = 0 are

smaller than that of Z = 0, and I(0,0,1)
G[N ] becomes subleading.) I(1,0,0)

G[N ] and

I(0,1,0)
G[N ] are related to each other by the Weyl reflection ux ↔ uy.

We can split I(1,0,0)
G[N ] into 3 factors (Figure 3).

(c) The classical factor from the maximal giant graviton

The volume of the 3-cycle X = 0 is proportional to N , and a giant

graviton wrapped around the cycle carries H = RX = N . This

corresponds to the factor qNuNx .
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(d) The vector multiplet on the giant graviton

U(1) vector multiplet live on a giant graviton. Its fluctuations can

be expanded into spherical harmonics. We sum up the contribu-

tions from them.

(e) The degrees of freedom along the intersection of the

giant graviton and the 7-brane
In the D4 case, open strings between the giant graviton and the

D7-brane give chiral fermions living along the intersection. Their

contribution to the index is the character of the basic representation

of the D̂4 current algebra. For G �= D4, we cannot directly derive

the contribution, and we assume that it is the character of the basic

representation of the Ĝ current algebra.

Fig. 3. Three ccontributins to the finite N correction. (c) The classical contribution.
(d) The vector multiplet. (e) The intersection modes. Open string description of (e) is
justified only in the D4 case.

4. Results

Now, we can calculate the index by combining the five contributions (a)-(e).

We will first show the known result for H0[1]
10.

IH0[1] =1 + u
6
5
z q

6
5 − u

1
5
z χ

J
1 q

17
10 + u

− 4
5

z q
11
5

+ u
12
5
z q

12
5 + u

6
5
z χ

J
1 q

27
10 − u

7
5
z χ

J
1 q

29
10 + · · · , (4)

where χJ
n and χF

n are the characters of the n-dimensional SU(2)J and

SU(2)F representations, respectively.

Let us first compare this with the large N index without the giant
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graviton contribution included:

IH0[∞] =1 + u
6
5
z q

6
5 − u

1
5
z χ

J
1 q

17
10 + u−1

z χF
2 q

2 + (u
7
10
z χF

1 + u
− 4

5
z )q

11
5

+ 2u
12
5
z q

12
5 + (u

6
5
z − u

− 3
10

z χF
1 )χ

J
1 q

27
10 − 2u

7
5
z χ

J
1 q

29
10 + · · · . (5)

We find the discrepancy between (5) and (4) at the order q2 as shown by

the underline.

Next, let us look at the result including the giant graviton contributions:

IAdS
H0[1]

=1 + u
6
5
z q

6
5 − u

1
5
z χ

J
1 q

17
10 + u

− 4
5

z q
11
5

+ u
12
5
z q

12
5 + u

6
5
z χ

J
1 q

27
10+u

29
5
z q

14
5 + · · · . (6)

The discrepancy becomes of order q
14
5 , which is higher than the previous re-

sult. This implies the contributions from giant gravitons nicely reproduces

the finite N correction.

Finally, we show the result of E8[1]

IAdS
E8[1]

=1 + u−1
z χE8

248q
2 + (−1− χE8

248)q
3 + (u−1

z + u−1
z χE8

248)χ
J
1 q

7
2

+ (uz + u2zχ
E8
27000)q

4 + (−2− χE8
248)χ

J
1 q

9
2 +O(q5), (7)

where χE8
n is the character of the n-dimensional irreducible E8 represen-

tation. The expected error of our calculation is of order q5, and all terms

shown in (7) are expected to be correct. This has not been obtained by

other methods.
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We explore topological defects and their properties in 4-dimensional pure Z2

lattice gauge theory. This theory has the Kramers-Wannier-Wegner(KWW)
duality. Duality defects associated with the KWW duality are constructed

and shown to be non-invertible topological defects. In this paper, we explore

the crossing relations including the duality defects. We construct 1-form Z2

center symmetry defects and defect junctions. Crossing relations are derived

from these defects and defect junctions. We also calculate some expectation

values of topological defects by crossing relations.

Keywords: Generalized global symmetries, Non-invertible symmetries

1. Introduction

The concept of symmetry in quantum field theories is very important.

There are many applications to the non-perturbative analysis of quantum

fields theories. In recent years, there has been progress in the generaliza-

tion of the notion of symmetries. The important notion of generalizations

is topological defects. One of the generalizations is so-called non-invertible

symmetries. There are a lot of studies of non-invertible symmetries in 2-

dimensions1–14. Non-invertible symmetries in 2-dimensions are relatively

understood than in higher dimensions. There are several studies of non-

invertible symmetries in higher dimensions15–22.

In this paper, we study 4-dimensional Z2 pure lattice gauge theory.

There is a duality discovered by Wagner23 in this model. This duality

is similar to so-called Kramers-Wannier duality24 25, therefore we call this

duality “KWW duality”. Another important property is a 1-form Z2 center

symmetry26. The charged objects are Wilson loops.

In this paper, we aim to investigate the crossing relations among topo-

logical defects in 4-dimensional Z2 lattice gauge theory based on this work27

which is in collaboration with Masataka Koide and Satoshi Yamaguchi.

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter

published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits

use, distribution and reproduction in any medium, even commercially, provided that the

original work is properly cited.
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Crossing relations are local relations between topological defects. These re-

lations determine the algebra of symmetry structure. The crossing relations

are not closed within only duality defects. For the crossing relations, we

need Z2 symmetry defects and junctions. Defect junctions occur when two

types of defects meet. We determine the weight of junctions by junction

commutation relations and find the crossing relations by these defects and

defect junctions. Related examples are discovered by the works28,29.

This paper is organized as follows. In Sec. 2, we explain our setup and

KWW duality defects. In Sec. 3, we construct Z2 symmetry defects and

defect junctions. In Sec. 4, we explain crossing relations and calculate some

expectation values of KWW duality defects.

2. 4-dimensional Z2 pure lattice gauge theory

In this section, we explain our setup of 4-dimensional Z2 lattice gauge the-

ory. We prepare two kinds of 4-dimensional cubic lattices. One lattice is

an active lattice Λ := {(x1, x2, x3, x4)|x1, x2, x3, x4 ∈ 2Z}. Another lat-

tice is an inactive lattice Λ̂ := {(x1, x2, x3, x4)|x1, x2, x3, x4 ∈ 2Z + 1}. A

schematic picture of these lattices is shown in Fig. 1

Fig. 1. A schematic picture of our lattices. Even though this figure is drawn in 2-

dimensional, the lattices are 4-dimensional. Black dots represent a lattice Λ. Blue dots

represent a lattice Λ̂. These lattices are dual to each other.

We assign the link variables Um = (−1)am = ±1 to each link on Λ.

We also call am(= 0, 1) a link variable. We don’t assign the link variables

to each link on Λ̂. There is a one-to-one correspondence between 16-cells

and plaquettes on Λ. We regard the 16-cells as fundamental components of

the total lattice. We assign the Boltzmann weight to the 16-cell with link

variables ak = 0, 1(k = 1, 2, 3, 4) and real parameter K as

W (a1, a2, a3, a4) = exp(K(−1)(a1+a2+a3+a4)), (1)
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We define the partition function as

Z =
∑
{a}

(
∏

active
sites

s)(
∏

active
links

l)(
∏

inactive
sites

s̄)(
∏

inactive
links

l̄)
∏
i∈C

W (aj1(i), aj2(i), aj3(i), aj4(i)),

(2)

where C is the set of all 16-cells and j1(i), j2(i), j3(i), j4(i) are links of a

plaquette i in Λ. The partition function sums over all configurations of link

variables. s and l are the weights of the site and the link on Λ, respectively.

s̄ and l̄ are the weights of the site and the link on Λ̂, respectively.

We construct KWW duality defects on the codimension 1 surfaces.

Weights of links, sites and KWW duality defects, and K are determined by

commutation relations of KWW duality defects. Commutation relations

are requirements that KWW duality defects can be smoothly deformed.

Because we expect the KWW duality defects are topological defects, we

require these commutation relations. The nontrivial solution is

s =
1√
2
, l =

1√
2
, s̄ = 1, l̄ = 1, K =

1

2
log(1 +

√
2). (3)

The solution of KWW defects has the following properties. Wilson loops

have nontrivial action of KWW duality defects. When the duality defect

acts to a Wilson loop, a ’t Hooft loop appears where the Wilson loop

was. The most important property is that KWW duality defects are non-

invertible.

3. Z2 1-form symmetry defects and defect junctions

In this section, we construct Z2 1-form symmetry defects and defect junc-

tions. There are 1-form Z2 center symmetries26 in this model. We need

to construct 1-form Z2 center symmetry defects as codimension 2 objects.

We consider that Z2 symmetry defects are supported on triangles which

are formed by a link in Λ̂ and the midpoint of the adjusted link in Λ. We

deformed these triangles to double the link in Λ̂ and the midpoint of the

adjust link in Λ on these triangles. On the other hand, the sites at both

ends in Λ of these triangles are not doubled. These deformations are shown

in Fig. 2.

We assign weights to Z2(b, c) = σx
b,c = (1−δb,c) to each building block of

Z2 symmetry defects. b, c = 0, 1 are link variables in the building block. We

also assign the weight z =
√

2 to each pair of each link on Λ. Z2 symmetry

defects assigned those weights are topological and invertible. Topological

means that Z2 symmetry defects can be smoothly deformed on octagons
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Fig. 2. A schematic picture of the Z2 symmetry defect. Blue dots and links represent
sites and links in Λ̂. Black dots are the midpoints of links in Λ. We assign weights a

triangular prism and a red line. We deform triangles to double the links and sites on

triangles.

surrounded by triangles. We can show these defects are invertible from the

fact that the S2 expectation value of a Z2 symmetry defect is 1. When the

Z2 symmetry defects act on a Wilson loop, the sign flips. Therefore, we can

consider the constructed Z2 symmetry defects are actually the symmetry

defects associated with a 1-form Z2 center symmetry.

We consider configurations of defects where KWW duality defects and

Z2 symmetry defects meet. Junctions occur in such configurations. There

are two types of junctions depending on whether a sharing link is in Λ or

Λ̂. Fig. 3 and Fig. 4 show schematic pictures of two types of junctions.

We denote each weight of junctions J(a) and J̃(b, c). a, b, c = 0, 1 are link

variables in these junctions.

Fig. 3. A schematic picture of a junc-

tion. We call its weight J(a). a is a link
variable in this junction.

Fig. 4. A schematic picture of a junc-

tion. We call its weight J̃(b, c). b, c are
link variables in this junction.

These weights are determined by junction commutation relations. Junc-

tion commutation relations are a requirement that Z2 symmetry defects can
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be smoothly deformed along with KWW duality defects as shown in Fig. 5.

We expect there are topological junctions and for this reason, we require

these junction commutation relations. The nontrivial solution is

J(a) = (−1)a, J̃(b, c) = σx
b,c. (4)

Fig. 5. A schematic picture of the junction commutation relations. Green surfaces
represent KWW duality defects. Red surfaces represent a Z2 symmetry defect. This

relation is a requirement that the junctions can be smoothly deformed.

4. Crossing relations

In this section, we explain crossing relations between KWW duality defects

and Z2 symmetry defects. Crossing relations can be explicitly calculated by

weights of defects and junctions. We find three types of crossing relations.

The first crossing relations are as shown in Fig. 6. Z2 symmetry de-

fects that have the end to KWW duality defects can be removed when the

boundary of a Z2 symmetry defect on KWW duality defects is homologi-

cally trivial.

The Second crossing relations are as shown in Fig. 7. We call these

relations solid torus equations. We consider a decomposition of S3 into two

3-dimensional solid tori. We call these solid tori V1 and V2. We place a

KWW duality defect on V1 and this is the left-hand side of Fig. 7 . The

first term of the right-hand side of Fig. 7 is the configuration of KWW

duality defect on V2. The second term of the right-hand side of Fig. 7 is

the configuration of KWW duality defect on V2 with a Z2 symmetry defect

on D2 whose boundary is a non-trivial cycle on V2.
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Fig. 6. A schematic picture of the crossing relations. Green surfaces represent KWW
duality defects. A red surface represents a Z2 symmetry defect. A boundary of the Z2

symmetry defect is on the KWW duality defect. When the boundary of Z2 symmetry
defects on the KWW duality defect is homologically trivial, the Z2 symmetry defect can

be removed.

Fig. 7. A schematic picture of solid torus equations. Green surfaces represent KWW

duality defects. A red line represents a Z2 symmetry defect. The left-hand side is a

configuration of a KWW duality defect on V1. The first tern of the left-hand side is a
configuration of a KWW duality defect on V2 and the second term of it is a configuration

of a KWW duality defect on V2 with a Z2 symmetry defect on D2 whose boundary is a

non-trivial cycle on V2.

The third crossing relations are as shown in Fig. 8. We consider the

decomposition of S3 into S0×D3 and D1×S2. We consider the configura-

tion of KWW duality defects on S0×D3 and D1×S2. Expectation values

of these configurations are 1/
√

2 times different.

We can calculate some expectation values of a configuration of a KWW

duality defect by crossing relations.

One example is an expectation value of a KWW duality defect on S3.

Let us consider two S3 expectation values of KWW duality defects. Each

S3 has D3. Therefore we can use a crossing relation of Fig. 8. After using a

crossing relation of Fig. 8, we can find the expectation value of S3 is 1/
√

2.
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Fig. 8. A schematic picture of the crossing relation including S0 ×D3.

This expectation value means KWW duality defects are non-invertible.

Another example is an expectation value of a KWW duality defect on

S2×S1. We can calculate this expectation value by using crossing relations

of Fig. 6 and Fig. 7. A schematic picture of a calculation is as shown in

Fig. 9. S2 × S1 contains D2 × S1. This is a solid torus. Therefore, we

can use a solid torus equation of Fig. 7 and we use this in the first equality

of Fig. 9. A Z2 symmetry defect on D2 and its boundary is on a KWW

duality defect on S3. We use crossing relations of Fig. 6 to this term. We

can see that the S2×S1 expectation value is 1 by using the result of an S3

expectation value of a KWW duality defect.

Fig. 9. A schematic picture of a calculation of an expectation value of a KWW duality

defect on S2 × S1. In the first equality, we use the solid torus equation of Fig. 7. In the

second equality, we use a crossing relation of Fig. 6. In the third equality, we use the
result that the S3 expectation value of a KWW duality defect is 1/

√
2.

5. Conclusions

In this paper, we construct topological defects in 4-dimensional pure Z2 lat-

tice gauge theory. There are KWW duality defects and 1-form Z2 symmetry
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defects. KWW duality defects are codimension1 non-invertible topological

defects. We construct 1-form Z2 symmetry defects and defect junctions.

Finally, we explain three types of crossing relations. These relations can be

calculated by weights of junctions and defects. We calculate some expec-

tation values of KWW duality defects by crossing relations.
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We construct half-geodesic Witten diagrams with four external scalar fields
in the Rindler-AdS black hole and show that their late-time behaviors agree
with the Regge limit of conformal blocks. We also argue connection with
pole-skipping phenomena by demonstrating that the near-horizon analysis in
the Rindler-AdS black hole can determine the Regge behaviors of conformal
blocks. This proceeding is based on a collaboration with Keun-Young Kim and
Kyung-Sun Lee.
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1. Introduction and summary

The Regge limit of conformal four-point functions is a well-studied subject

for consistency of quantum field theories. Out-of-time-order correlation

functions (OTOCs) in conformal field theories (CFTs) are related to the

Regge limit, and it has been proposed that exponential behaviors in four-

point OTOCs are bounded by the consistency1. It has also been proposed

that the exponential behaviors in theories with Einstein gravity duals can

be calculated from pole-skipping points in retarded Green’s functions of the

energy density2,3. Here, the pole-skipping points are defined by intersec-

tions between poles and zeros of momentum Green’s functions.

In our paper4, from the viewpoint of holography, we study a relation

between the Regge limit of conformal blocks and the pole-skipping points

in CFTs on Rindler spacetime. First, we construct half-geodesic Witten

diagrams in the two-sided Rindler-AdS black hole and demonstrate that

their late-time behaviors agree with the Regge limit of conformal blocks.

Second, we show that the near-horizon analysis in the Rindler-AdS black

hole for the pole-skipping points can capture the Regge behaviors of confor-

mal blocks. Our result is a generalization of the original proposal regarding

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the
original work is properly cited.
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the pole-skipping points.

2. Half-geodesic Witten diagrams and the Regge limit of

conformal blocks

We define scattering amplitudes of spin-� exchange half-geodesic Witten

diagrams in the Rindler-AdS black hole as

WR
Δ,� :=

∫
γR
W

dλ

∫
γL
V

dλ′Gb∂ (Y (λ),WL; ΔW )Gb∂ (Y (λ),WR; ΔW )

×Gbb

(
Y (λ), Y (λ′);

dY (λ)

dλ
,
dY (λ′)
dλ′

; Δ, �

)

×Gb∂ (Y (λ′), VL; ΔV )Gb∂ (Y (λ′), VR; ΔV ) ,

(1)

where Gb∂ is a scalar bulk-to-boundary propagator, and Gbb is a spin-�

bulk-to-bulk propagator. Instead of the entire black hole spacetime, we

integrate over two half-geodesics γRW and γLV between boundary points and

centers of Penrose diagrams. After some approximations and calculations,

we evaluate (1) in a late-time limit:

WR
Δ,� � (CΔW ,0CΔV ,0)

2 CΔ,0

22(ΔW+ΔV )+�(Δ− 1)
log

(
1

ε

)

×e(�−1)tR−(Δ−1)d
2F1

(
Δ− 1,

d

2
− 1,Δ+ 1− d

2
; e−2d

)
,

(2)

which agrees with the Regge limit of conformal blocks5,6. Here, tR and

d are differences of time and space between two operators in four-point

OTOCs.

3. Near-horizon analysis in the Rindler-AdS black hole

Let us consider an ansatz of symmetric traceless spin-� fields

hv...vμ(v, r,x) = e−iωv
∞∑
j=0

(r − 1)jh(j)v...vμ(x) , (3)

where v is a coordinate in the incoming Eddington-Finkelstein coordinates

of the Rindler-AdS black hole. By substituting this expansion into the
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classical equations of free spin-� fields, we obtain

0 = (∇μ∇μ −Δ(Δ− d) + �)hv...v(v, r,x)

= e−iωv
[
�H − (�+ iω)(d− 1)−Δ(Δ− d)

]
h(0)v...v(x)

−2e−iωv
[
iω + (�− 1)

]
h(1)v...v(x)− 2�e−iωv

[
iω + (� − 1)

]
h(0)v...vr(x) + . . . .

(4)

The near-horizon analysis is a holographic method to search pole-skipping

points by imposing that coefficients in the classical equations are zero7.

From the near-horizon analysis of (4), we obtain conditions for the pole-

skipping points:

−iω = �− 1,
[
�H − (Δ− 1)(Δ− d+ 1)

]
h(0)v...v = 0 . (5)

These conditions are consistent with the Regge behaviors of conformal

blocks (2) with respect to tR and d5,6, and therefore the pole-skipping

points in CFTs on Rindler spacetime are related to the Regge limit of con-

formal blocks.
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Entanglement entropy (EE) in field theory is a measure for quantum entangle-
ment between spatially separated regions. While there are a lot of studies on
EE in CFTs and free theories, EE in general interacting field theories requires
further investigation. It is of very interest in order to relate the effect of the
entanglement with low-energy physics. In this talk, we introduce our study on
EE in interacting field theories with a subregion of a half-space. There, spe-
cific contributions to EE can be expressed in terms of renormalized correlation
functions of operators. The contributions are expected to be dominant when
we discuss low-energy effective theories.
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1. Introduction

In the last few decades, there has been much investigation on the entan-

glement entropy (EE) , which is one of standard measures for the bipartite

quantum entanglement between subsystems. In particular in field theory,

while two causally separated regions are irrelevant at the classical level, the

quantum entanglement between them can bring some nontrivial influence

on observations made in the subsystem. EE can capture such a nontrivial

quantum effect, and has been studied in many contexts: quantum phase

transition, information paradox of the blackhole, holography, and so on.

So far, EE has been widely discussed in CFTs1–3 or perturbations from

them4–6, and in free theories7–13. On the other hand, EE in interacting

field theories which are far from CFTs is rather less understood. There are

conceptional and technical difficulties. EE measures the entanglement with

a physical cutoff scale, and we are often interested in not the entire EE

but its “universal” part. In an interacting field theory, we are to deal with

divergent radiative corrections by renormalization, and the physical quan-

tities are described without explicit appearance of the cutoff scale. Here,

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the
original work is properly cited.
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a natural question is how the universal part of EE is related to the renor-

malized physical quantities. It is of course crucial to directly investigate

the physical implication of EE to realistic observations. Despite its impor-

tance, not so many studies have been made on it because it is very difficult

due to the lack of any useful symmetries or simplifications. On the other

hand, it was reported in Ref. 14 that a part of EE in a scalar field theory

is expressed with the renormalized mass parameter in a specific setup.

In this talk, we present our series of works on EE in interacting field

theories15–17, where we apply a technique called the orbifold technique18,19.

It was originally proposed to evaluate EE in free field theory in the case

of A being the flat half-space, and we apply it to interacting field theories.

There, by investigating the general structure of Feynman bubble diagrams,

we check that the area-law of EE holds at all order. Then we extract an

essential part of EE which comes from two-point correlation functions of

various operators. The two-point functions naturally contains the radiative

corrections and is described by renormalized parameters. As a result, we

associate a dominant part of EE with renormalized correlation functions

of fundamental and composite operators. We show our analysis with an

example of an interacting massive scalar field theory, while the basic idea

is applicable to more general theories, as long as we consider the half-space

subregion.

In Section 2, we explain our application of the orbifold technique to

interacting field theories, and derive the area-law of EE to all order. We

describe in Section 3 our main result, where EE is associated with the

renormalized correlation functions. Section 4 is devoted to the summary

and outlook.

2. Orbifold technique in interacting field theories

In field theory, a state is defined on a Cauchy surface, namely a spacelike

hypersurface. Consider separating the surface into two subregions: A and

Ā. Those who can make an observation only in A find him/herself in the

state ρA = TrĀ ρtot, where ρtot is the density matrix for the total system.

The corresponding EE is defined as the von Neumann entropy of ρA:

SA = −TrA (ρA log ρA) . (1)

A standard way to calculate it is the replica trick7, where we consider an

n-fold covering. It consists of n replicas of the Euclidean system sewed up

together at the subregion A. EE is then obtained by calculating the free
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Fig. 1. Our setup to investigate EE. The subregion A is a half-space, whose boundary
is expressed with a red line. The coordinates perpendicular and parallel to the boundary
are x and x‖, respectively.

energy of the theory on the n-fold, taking the derivative of it with respect

to n, and taking the limit n→ 1.

In particular, when we focus on the case where A is a half-space in d-

dimensional flat space (see Fig. 1), we can employ a variation of the replica

trick called the orbifold technique. In this technique, we take an analytical

continuation on n to 1/M with a integer M . Then, EE is computed as

SA = −∂
(
MF (M)

)
∂M

∣∣∣∣
M→1

, (2)

where F (M) is the free energy of the theory on an orbifold R
2/ZM . In the

following, we represent the two-dimensional coordinates perpendicular to

the boundary as x = (x1, x2), and the others parallel to the boundary as

x‖.
The advantage of introducing the orbifold is that we can formulate the

theory on it almost in the same manner as on the ordinary flat space.

The only difference is that we introduce a projection operator, that is a

symmetric summation of a rotation operator:

P̂ =
1

M

M−1∑
m=0

ĝm, ĝ :

(
x1
x2

)
�→
(
cos 2π

M − sin 2π
M

sin 2π
M cos 2π

M

)(
x1
x2

)
. (3)

As is mentioned above, we discuss the example of a massive scalar field

theory. The propagator on the orbifold is represented as:

G
(M)
0 (x, y) =

1

M

M−1∑
m=0

G̃0(x, y;m), (4)

G̃0(x, y;m) =

∫
dd+1p

(2π)d+1

ei((ĝ
mp)·x−p·y)+ip‖·(x‖−y‖)

p2 +m2
. (5)
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It is easy to see that G̃0 with nonzerom does not conserve the perpendicular

components of the momentum. Rather, it carries a twisted momentum:

(p, p‖) → (ĝmp, p‖). On the other hand, interaction vertices consist of

coupling constants and the (d+1)-dimensional delta functions representing

the momentum conservation. Note that the factor of the delta function for

p’s is invariant under a simultaneous rotation by ĝ:

δ2(p1 + p2 + · · · ) = δ2(ĝ(p1 + p2 + · · · )). (6)

By using this invariance and Eqs. (4) and (5), we can prove that the general

formula for a L-loop bubble diagramB, which contributes to the free energy,

takes the following form:

B =
Vd−1

M

M−1∑
m1,··· ,mL=0

B̃(m1, · · · ,mL), (7)

B̃(m1, · · · ,mL) =

∫ L∏
l=1

[d2pld
d−1p‖l]I(p)δ2

(
L∑

l=1

(ĝml − 1)pl

)
. (8)

Here, Vd−1 denotes the area of the boundary ∂A, Vd−1 = δd−1(0), whose

divergence is not important in the following discussion. B̃ is a contribution

from a fixed configuration of twists (m1 · · · ,ml). I(p) is an ordinary inte-

grand for the diagram. It is essential that the configuration is characterized

by the twists of the loop momenta.

Among the configurations of twists, the trivial one (m1 = 0, · · · ,mL =

0) yields the delta function with vanishing argument. Therefore, the con-

tribution to the free energy is proportional to (Vd−1 × δ2(0)) = Vd+1, the

volume of the bulk. However, it does not contribute to EE, because its

M -dependence comes only from the prefactor in Eq. (7), and it is canceled

in Eq. (2). On the other hand, all the other configurations have nontrivial

arguments in their delta functions, and they are proportional to the area

of the boundary. By combining this fact with the dimensional analysis,

we conclude that the leading contribution from B to EE is proportional to

Vd−1/ε
d−1. Since this is a statement for the general bubble diagram, we

have seen that the area-law for EE holds at all order.

3. Two specific contributions to the entanglement entropy

In principle, we can obtain the free energy on the orbifold by computing

B̃’s and summing them over the twists configurations. This is, however, a

technically difficult task even for diagrams with a few loops. Instead, we can
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Fig. 2. Examples of the configurations of twists we call the propagator contribution.
The blue cycles and letters denote the twists on the corresponding loop momenta. The
twists in the upper diagrams are realized by the twists on a propagator as shown in the
lower diagrams.

extract some specific contributions of physical importance. In the following,

we discuss them and later their dominance in the whole contribution.

While the twists are acting on the loop momenta in each B̃, in some

configurations we can attribute them to one twist acting on a momentum

on a single propagator, as is shown in Fig. 2. Let us call such class of con-

tributions the propagator contribution. The point is that we can sum them

up in a systematic way, as is explained below, and can straightforwardly

compute their contributions to EE. In those diagrams, most of the parts

are identical to those in the flat space; only one propagator gets replaced

with Eq. (5). As a naive attempt, let us sum them up by three steps: (i)

considering the bubble diagrams in the flat space, (ii) taking the derivative

of them with respect to the propagator, and (iii) reconnecting them with

Eq. (5). Note that in Step (ii), we obtain the interaction correction part

in the exact two-point function G. Then, their contributions to F (M) and

EE would be summed up to take the following form:

F (M)
prop ∼ −1

2

∫
dd+1xdd+1y

(
G−1

0 (G−G)G−1
0

)M−1∑
m=0

G̃0(m), (9)

Sprop,int ∼ Vd−1

12

∫ 1/ε dd−1k‖
(2π)d−1

[
ΣG0 + (ΣG0)

2 + (ΣG0)
3 + · · · ] . (10)

In Eq. (9), we have omitted the arguments (x, y) in the both factors. In Eq.

(10), we have represented the contribution in the momentum representation
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and expand it with respect to the 1PI part Σ. The arguments of all the

terms in the square bracket are (k = 0, k‖).
In fact, this is not correct and there is a subtlety in the attribution of

the configurations to a twist on a single propagator. In some diagrams, the

twists can be attributed more then one propagator. The method of taking

the variation, as we have considered above, counts each of such attributions

as distinct contributions. However, since what we have to sum up actually

is the twist configuration, it leads to over-counting. Thus, Eq. (10) requires

to be modified. Fortunately, we can show that the over-counting factors for

diagrams are exactly classified according to the 1PI expansion. It means

that we obtain the correct propagator contribution by dividing each term

in Eq. (10) by the corresponding over-counting factor:

Sprop,int =
Vd−1

12

∫ 1/ε dd−1k‖
(2π)d−1

[
ΣG0 +

1

2
(ΣG0)

2 +
1

3
(ΣG0)

3 + · · ·
]

= −Vd−1

12

∫ 1/ε dd−1k‖
(2π)d−1

log(1− ΣG0). (11)

Furthermore, we can deal with the free part on the same foot. It is

because its contribution to the free energy, (1/2) logG−1
0 , is expanded by

Schwinger parametrization to the series of ring-shaped diagrams, each of

which consists of the propagators simply connected at their endpoints. As

a result, their contribution to EE is identical to the one derived in the

literatures. By combining it with Eq. (11), the propagator contribution is

summed up to take the form of

Sprop =
Vd−1

12

∫ 1/ε dd−1k‖
(2π)d−1

logG(k = 0, k‖). (12)

Note that the radiative corrections entering G have been calculated in the

diagram in the flat space, and the final expression does not depend on the

fact that we have introduced the orbifold in the middle of the analysis.

After all, a potential danger of the additional counterterm on the singu-

larity of the orbifold decouples, and we can consider the counterterms and

renormalization just as in the flat space. Therefore, Eq. (12) is indeed the

contribution written with the renormalized two-point function.

We also extract contributions to EE other than the propagator con-

tribution. Consider a class of twist configurations as is shown in Fig. 3.

In each of them, the twists are attributed to a twist of a loop momen-

tum flowing at some channel in a single vertex. We call them the vertex

contribution. It can be explicitly derived almost in the same way as the
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Fig. 3. Examples of the configurations of twists we call the vertex contribution. The
twists in the upper diagrams are realized by the twists on a channel of a vertex as shown
in the lower diagrams. The dot lines denotes the delta function to decompose the vertex.

propagator contribution.

We take the variation of bubble diagrams with respect to the vertex,

namely the bare correlation function. It gives the exact correlation func-

tion. Here is a difference; we organize the endpoints into two, and reconnect

them with the twisted version of the delta function. In general, there are

choices of how to organize the endpoints. It corresponds to the channel

we consider, at which the momentum gets twisted. Accordingly, the orga-

nization turns the correlation function into the two-point function of the

composite operators. The connection by the twisted delta function comes

from the fact that the momentum twist act on the channel of the vertex,

which is expressed by decomposing the vertex with the delta function. In

this case, we have the subtlety and over-counting, and have the correspond-

ing 1PI-like expansion, and obtain the correct contribution by dividing the

terms by the over-counting factor.

This computation results in the formula for the vertex contribution,

which is written in terms of the renormalized two-point correlation function

of the composite operators. For instance, in φ4-theory, we have :φ2 : as the

only composite operator, and the vertex contribution to EE is given by

Svert =
Vd−1

12

∫ 1/ε dd−1k‖
(2π)d−1

logGφ2φ2(k = 0, k‖), (13)

where Gφ2φ2 is the two-point correlation function for :φ2 :. In general in-

teracting theories, we have several vertices and each of them has multiple
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channel to be considered. These give rise to many composite operators,

which are mixed with one another. Even in such cases, we can go through

the same discussion and get a similar expression of the vertex contribution.

The operator mixing is taken into account by representing the correlation

functions in the form of a matrix, whose elements are correlation functions

of operators. As for operators with nonzero spin, we have to take trace

over the space of spins. It leads to the introduction of some coefficient ma-

trix. Together with the propagator contribution, which is nothing but the

contribution from the fundamental operators, the contribution we discuss

is written as

Sprop+vert =
Vd−1

12

∫ 1/ε dd−1k‖
(2π)d−1

tr ĉ log Ĝ, (14)

Ĝab = GOaOb
(k = 0, k‖). (15)

Here, GOaOb
denotes the renormalized correlation function of operators Oa

and Ob, that is normalized to be dimensionless by the cutoff ε. ĉ is the

numerical coefficient matrix, which is determined by traces over the spaces

of spins. In the case where the operators are all scalar, ĉ is a unit matrix.

The result shows that the contributions of EE we have discussed is

understood in terms of the renormalized correlation functions of various

operators. This is an all-order analysis, and implies that a part of divergence

in naive calculation of EE comes from the ordinary radiative corrections,

and in a sense irrelevant once we study EE in terms of renormalized physical

quantities. On the other hand, the explicit appearance of the cutoff scale

in Eq. (15) simply suggests that EE should be measured with some scale to

be finite. Note that even in the free field theory, we have to introduce some

cutoff scale to define EE. Therefore, it is rather a matter of the definition

of EE.

There are many contributions to EE other than those we have discussed.

They are expected, however, to be sub-leading, since all of the correspond-

ing diagrams are of relatively higher loops. Their contributions to the free

energy should be less dominant. In particular, when we consider a theory

described by an Wilsonian effective action, where the quantum fluctuation

has already been integrated out, such contributions are absent in the first

place.a It is thus certain that Eq. (15) captures the dominant of EE.

aIn that case, we have infinitely many operators from vertices in the effective actions.
However, since the correlation between higher dimensional operators tends to have a
shorter correlation length, we can approximate EE by a finite number of the low-
dimensional operaotors.
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4. Summary and outlook

In this talk, we have discussed EE in interacting field theories with the

subregion of a half-space. We have reported in this case that a part of

EE can be expressed in terms of renormalized two-point functions with the

fundamental and composite operators. The composite operators arises in

the decomposition of interaction vertices with all possible channels. This

contribution to EE is certain to be dominant, and if we treat the Wilsonian

effective action, it captures the whole EE. We expect that this result should

be a significant step to associate EE to observations in a realistic physics.

The most crucial question is whether and how we can generalize the

result to the cases of the general subregions. Of course, our analysis with

the orbifold technique highly depends on the fact that the subregion is the

flat half-space. On the other hand, the final result of Eq. (15) it self does

not. We further expect that, the qualitative implication that the dominant

part of EE is described with the two-point functions of operators, should

hold in more general cases. The reason is that once we express Eq. (15)

in the position space representation, we do not see the restriction of the

form of the subregion. A possible way to investigate it is to reformulate

things directly in the position space representation. It is a challenging but

interesting future work. As another direction, It is important to study

the structure of the renormalization in detail. While our analysis holds to

all-order, it is within a perturbative picture. It is worthwhile to pursue a

nonperturbative proof for our statement.
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1. Introduction

Integrable systems give a fascinating playground for investigating nonlinear

dynamical systems. Determining whether a given theory is classical inte-

grable requires to construct a Lax pair which ensures the existence of an

infinite many conserved charges, but finding a Lax pair is a difficult task

due to the lack of a guiding principle. Recently, a nice way to handle this

issue has been proposed by Costello and Yamazaki1 which is based on a 4D

Chern-Simons (CS) theory2,3 with a meromorphic 1-form ω. According to

their proposal, by specifying the 1-form ω and the boundary conditions of

the gauge field of the 4D CS theory, one can systematically construct a 2D

classical integrable field theory. This Costello-Yamazaki proposal has been

explored in subsequent works, and it has been shown that 4D CS theory can

describe various 2D integrable field theories and integrable deformations in-

cluding the Yang-Baxter (YB) deformation4–9 and the λ-deformation10,11.

For a recent review on this subject, see12.

In this paper, we will explain how the AdS5×S5 supercoset sigma model

can be derived from a 4D CS theory by following the original paper13

(see also14). As mentioned in the above, it is necessary to determine a

memorphic 1-form ω. Remarkably, this 1-form ω is identified with a twist

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the
original work is properly cited.
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function characterizing the Poisson structure of the integrable system by

Vicedo15. The Poisson structure of the AdS5×S5 supercoset sigma model

has been studied in16,17, and we can read off the twist function from their

results. Then by considering a 4D CS theory with the twist function and

specifying the boundary conditions we give the AdS5×S5 supercoset sigma

model in the Green-Schwarz formalism. The derivation we use here is a

generalization of the procedure developed by Delduc, Laxcroix, Magro and

Vicedo18.

This paper is organized as follows. Section 2 explains how to derive 2D

NLSMs from 4D CS theory. In section 3, we derive the AdS5×S5 supercoset

sigma model by generalizing the preceding result on the PCM. Section 4 is

devoted to conclusion and discussion.

2. 2D integrable field theory from 4D CS theory

In this section, we will give a brief review about a derivation of 2D integrable

field theories from a 4D CS theory by following1,18.

2.1. 4D CS theory

We start with introducing the action of 4D CS theory. Let GC be a com-

plexified semisimple Lie group, and gC be the Lie algebra for GC with a

non-degenerate symmetric bilinear form 〈·, ·〉 : gC × gC → C. Then the

action of the 4D CS theory is given by

S[A] = − i

4π

∫
M×CP 1

ω ∧ CS(A) , (1)

where a 2D Minkowski space M has a metric ηij = diag (−1, 1) with coor-

dinates (τ, σ) and a global holomorphic coordinate of C ⊂ CP 1 = C∪ {∞}
is denoted by z. The gauge field A on M× CP 1 is taking a value of gC ,

and CS(A) is the CS 3-form

CS(A) ≡
〈
A, dA+

2

3
A ∧ A

〉
. (2)

Here, ω is a meromorphic 1-form on CP 1

ω ≡ ϕ(z)dz , (3)

where ϕ(z) is a meromorphic function on CP 1 . It is noted that the mero-

morphic function ϕ(z) can be identified with the twist function character-

ising the Poisson bracket associated with the 2D integrabe field theory15.

For later use, we denote the sets of zeros and poles by z and p , respectively.
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The fact that ω is proportional to dz indicates that the action (1) is

invariant under the transformation

A 
→ A+ χdz , (4)

where χ is any gC-valued function defined on M× CP 1 . Hence, by using

the gauge symmetry (4), the gauge field A can be expanded as

A = A+ dσ
+ + A− dσ− +Az̄ dz̄ . (5)

where we introduced the light-cone coordinates defined as σ± ≡ 1
2 (τ ± σ) .

In the following discussion, we will ignore the z̄-component of A .

Equations of motion

Next, let us give equations of motion for the action (1).

By taking a variation of the action (1) with respect to the gauge field,

we obtain the bulk equations of motion

F+− = 0 , ω Fz̄± = 0 , F (A) ≡ dA+A ∧ A , (6)

and the boundary equation of motion

dω ∧ 〈A, δA〉 =0 . (7)

Here, the factor ω in (6) is kept because there is a possibility that ∂z̄A± are

distributions on CP 1 supported by z . Note that the boundary equation of

motion (7) has the support only on M× p ⊂ M×CP 1. This follows from

the fact that since dω can be expanded as

dω = ∂z̄ϕ(z) dz̄ ∧ dz , (8)

only the poles of ϕ can contribute to the distributions according to the

relations

δ(z − x) =
1

2πi

∂

∂z̄

(
1

z − x

)
, x ∈ p . (9)

2.2. Lax form

Classical integrablity of a given 2D classical field theory requires the ex-

istence of a Lax pair L on the 2D spacetime which is valued on gC , and

satisfies the following properties: a) it is on-shell flat, b) it meromorphically

depends on an auxiliary Riemann surface. In this subsection, we will ex-

plain how the Lax pair underlying a 2D integrable field theory is introduced

in the context of the 4D CS theory.
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By following1,18, the Lax form L can be introduced by performing the

formal gauge transformation

A = −dĝĝ−1 + ĝL ĝ−1 , (10)

where a smooth function ĝ : M× CP 1 → GC , and we take a gauge choice

Lz̄ = 0 . (11)

In order to see whether the gC-valued 1-form L introduced in (10) satisfies

properties a) and b), we rewrite the bulk equations of motion (6) in terms

of L as

∂+L− − ∂−L++[L+,L−] = 0 , (12)

ω ∧ ∂z̄L = 0 . (13)

The first constraint (12) is regarded as the on-shell flatness condition for

the Lax form on M. The second constraint (13) indicates that L is a

meromorphic 1-form with poles at the zeros of ω . In this way, the 1-form

L satisfies the properties a) and b), and can be regarded as the Lax form

on M by identifying z on CP 1 with a spectral parameter.

2.3. From 4D to 2D via the archipelago conditions

Here, let us give a general formula for the 2D action of the underlying

integrable field theory by performing a dimensional reduction of the 4D

action (1) along CP 1 .

For this purpose, by substituting (10) to (1), we rewrite the 4D action

(1) in terms of L as

S[A] = − i

4π

∫
M×CP 1

ω ∧ IWZ [ĝ]− i

4π

∫
M×CP 1

ω ∧ d〈ĝ−1dĝ,L〉 . (14)

In order to reduce the 4D action (14) to a 2D one on M, we need to impose

the archipelago conditions18 on ĝ. The archipelago conditions for ĝ are

defined as follows: There exist open disks Vx, Ux for each x ∈ p such that

x ∈ Vx ⊂ Ux and

i) Ux ∩ Uy = φ if x = y for all x, y ∈ p ,

ii) ĝ = 1 outside M × ∪x∈pUx ,

iii) ĝ|M×Ux depends only on σ± and the radial coordinate |ξx| where ξx is

the local holomorphic coordinate defined as ξx ≡ z − x,

iv) ĝ|M×Vx depends only on σ±, that is, ĝx ≡ ĝM×Vx = ĝ|M×{x} .
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Here, we assume that ĝ satisfies the archipelago condition (see, for exam-

ple,18 for the existence of such ĝ). Then, the 4D action can be reduced to

the 2D action by performing an integral over CP 1 18 as follows:

S
[
{gx}x∈p

]
=

1

2

∑
x∈p

∫
M

〈
resx(ϕL), g−1

x dgx
〉

+
1

2

∑
x∈p

(resx ω)

∫
M×[0,Rx]

IWZ [gx] . (15)

The action (15) is invariant under the transformation

gx 
→ gxh , L 
→ h−1Lh+ h−1dh , (16)

where h : M → GC. The symmetry can be regarded as the residual gauge

symmetry of the Lax form.

As discussed in13, in order to determine a 2D integrable field theory,

it is necessary to specify not only the boundary conditions, but also the

behavior of ĝ. This point will be explained in the next section.

3. The GS action of the AdS5 × S5 supercoset sigma model

from the 4D CS theory

In this section, we will give a derivation of the Green-Schwarz (GS) ac-

tion of the AdS5 × S5 supercoset sigma model from the 4D CS theory by

following13.

3.1. The AdS5 × S5 supercoset sigma model

Here, let us review a supercoset construction of the AdS5 × S5 superstring.

The classical action of the AdS5 × S5 superstring in the GS formalism

has been constructed based on the following supercoset19

PSU(2, 2|4)
SO(1, 4)× SO(5)

. (17)

As is well known, the super Lie algebra su(2, 2|4) can be decomposed to

vector subspaces with respect to the Z4-grading structure:

g = g(0) ⊕ g(1) ⊕ g(2) ⊕ g(3) , g(0) = so(1, 4)× so(5) , (18)

where g(0) ⊕ g(2) and g(1) ⊕ g(3) are the bosonic and fermionic parts of

su(2, 2|4) , respectively, and the commutation relations of g(m) satisfy

[g(m), g(n)] ⊂ g(k) (m+ n = k mod 4) . (19)
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Note that the Z4-graded property ensures the classical integrablity of the

AdS5 × S5 superstring20.

The GS action (32) of the AdS5 × S5 supercoset sigma model is given

by

S[g] =

∫
M

Str (j−d+(j+)) dσ+ ∧ dσ− , (20)

where j = g−1dg ∈ su(2, 2|4) is the left-invariant current for g ∈ SU(2, 2|4).
Here, d± are the linear combinations of the projection operators P(k) : g →
g(k) (k = 0, 1, 2, 3) like

d± = ±P(1) + 2P(2) ∓ P(3) . (21)

The associated Lax pair is20

L =
(
z−1 j

(3)
+ + j

(0)
+ + z j

(1)
+ + z2 j

(2)
+

)
dσ+

+
(
z−2 j

(2)
− + z−1 j

(3)
− + j

(0)
− + z j

(1)
−
)
dσ− . (22)

We can see that the on-shell flatness condition for (22) is equivalent to the

equations of motion of the action (20).

The Poisson structure of the AdS5×S5 superstring has been considered

in16,17. By computing the Poisson brackets of the Lax pair (22), we can

obtain the twist function of the AdS5 × S5 supercoset sigma modela

ϕstr(z) =
4z3

(z4 − 1)2
. (23)

The twist function (23) has the following poles and zeros:

p = {+1 ,−1 ,+i ,−i} , z = {0,∞} , (24)

where the poles are double poles and the zeros are triple zeros, respectively.

3.2. A derivation from the 4D CS theory

Now, let us reproduce the GS action (20) of the AdS5×S5 supercoset sigma

model from the 4D CS theory (14) with the meromorphic 1-form

ω = ϕstr(z) dz . (25)

aϕstr(z) is slightly different from φstring(z) in (2.10) of8. These are related via ϕstr(z) =
1
z
φstring(z) .
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In this case, the gauge field A in (14) takes a value in g = su(2, 2|4) , and
the bracket 〈·, ·〉 in the 4D action (1) is replaced by the supertrace Str .

As mentioned in the previous section, we need to choose a solution to

the boundary equation of motion to specify a 2D integrable model. The

associated boundary equations of motion for the meromorphic 1-form (25)

are

εij〈〈(Ai, ∂ξpAi), δ(Aj , ∂ξpAj)〉〉p = 0 , p ∈ p , (26)

where the double bracket is defined as

〈〈(x, y), (x′, y′)〉〉p ≡ (resp ω) Str(x · x′) + (resp ξpω) (Str(x · y′) + Str(x′ · y))
=
p

4
(Str(x · y′) + Str(x′ · y)) . (27)

A possible solution to the boundary equationa of motion (26) is given by

A|z=p = 0 (p ∈ p) . (28)

This boundary condition obviously solves the boundary equation of motion

(26) and leads to the GS action of the AdS5 × S5 supercoset sigma model

as we will see in the following discussion.

Next, let us construct the associated Lax pair by solving the constraint

(13) with the boundary condition (28). For our purpose, we consider the

following ansatz for the Lax pair as

L =
(
z−1 V

[−1]
+ + V

[0]
+ + z V

[1]
+ + z2 V

[2]
+

)
dσ+

+
(
z−2 V

[−2]
− + z−1 V

[−1]
− + V

[0]
− + z V

[1]
−
)
dσ− , (29)

where V
[n]
± (n = −1, 0, 1) , V

[±2]
± : M → su(2, 2|4) are undetermined func-

tions. It is easy to see that the ansatz (29) satisfies the bulk equation

of motion (6) with the twist function (23). By solving the relation (10)

between the Lax pair and the gauge field at each pole under boundary

conditions (28), V
[k]
± are determined as follows

V
[0]
± =

j1,± + j2,± + j3,± + j4,±
4

, V
[±2]
± =

j1,± − j2,± + j3,± − j4,±
4

,

V
[1]
± =

j1,± − i j2,± − j3,± + i j4,±
4

, V
[−1]
± =

j1,± + i j2,± − j3,± − i j4,±
4

,

(30)
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where we denoted the left-invariant curret ĝ−1dĝ at each pole of the twist

function (23) by

j1 = ĝ−1dĝ|z=1 , j2 = ĝ−1dĝ|z=i ,

j3 = ĝ−1dĝ|z=−i , j4 = ĝ−1dĝ|z=−1 .
(31)

Note that the above ansatz (29) is not the only possible solution that sat-

isfies the boundary conditions (28). In fact, we can also consider Lax pairs

for the pure spinor form1.

Next, we substitute the Lax pair (29) into the master formula (15), and

then obtain the 2D action

S[gk] =
1

16

∫
M

Str

[ ∑
σ∈S4

(
jσ(1),+ − (1 + i)jσ(2),+ + jσ(3),+ − (1− i)jσ(4),+

)
jσ(1),−

−
(
−jσ(1),− + (1 − i)jσ(2),− − jσ(3),− + (1 + i)jσ(4),−

)
jσ(1),+

]
dσ+ ∧ dσ− ,

(32)

where σ ∈ S4 is a cyclic permutation of the set {1, 2, 3, 4} . The action (32)

is clearly invariant under the cyclic permutations of jk .

As discussed in13, it is necessary to impose a relation between jk (k =

1 , . . . , 4) , so that the 2D action (32) can reproduce the GS action of the

AdS5 × S5 supercoset sigma model. This can be achieved by requiring the

following relation, which respects the cyclic symmetry of the 2D action (32):

jk = fk−1
s (j) (k = 1 , . . . , 4) , (33)

where j ∈ su(2, 2|4) is the left-invariant current for g ∈ SU(2, 2|4) , and
the map fs : su(2, 2|4)C → su(2, 2|4)C is an automorphism of su(2, 2|4)
satisfying the Z4-grading property f4

s = Id . For our purpose, we will take

the Z4-grading automorphism fs such that each subspace g(k) (k = 0, 1, 2, 3)

is the eigenspace of fs satisfying

fs(g
(k)) = ikg(k) . (34)

The explicit expression of fs can be written down after taking a supermatrix

realization of su(2, 2|4) (For the details, see21).

By imposing the constraints (33) satisfying (34), we can easily show that

the 2D action (32) and the Lax pair (29) reduce to the ones (20), (22) of

the AdS5×S5 supercoset sigma model in the GS formalism, respectively. In

this way, the 4D CS theory with the moromorphic 1-form (25) can describe

the AdS5 × S5 supercoset sigma model.
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4. Conclusion and Discussion

In this paper, we have reviewed how a 2D classical integrable field theory

can be systematically derived from a 4D CS theory by following18. Then,

by generalizing the previous procedure on the PCM case, we have repro-

duced the AdS5×S5 supercoset sigma model from a 4D CS theory with a

meromorphic one-form (25). In addition, we should note a recent work14

which has succeeded in introducing the world-sheet metric into an underly-

ing 2D integrable field theory by extending a 4D CS theory. Thus, we can

treat AdS5×S5 superstring theory beyond the AdS5×S5 supercoset sigma

model in the context of the 4D CS theory.

It has been investigated how 4D CS theory describe various 2D classical

integrable theories. As a next step, it is natural to examine ways to quantize

2D classical integrable field theories and their quantum integrability in this

framework. The problem of quantization has been extensively investigated

for so-called ultralocal models, such as the Faddeev-Reshetikhin model22

and massless Thirring model. Note that these 2D theories can be derived

from 4D CS theories with a meromorphic 1-form ω without zeroes1,24,25. It

is known that ultralocal integrable field theories can be described by taking

the appropriate continuous limit of integrable lattice models22,23. Since

4D CS theory can also describe integrable lattice models in terms of the

expectation value of the Wilson loops2,3, it would be an interesting problem

to understand this picture in the framework of 4D CS theory.

When ω has zeros, e.g. PCM or coset sigma model, the quantization

of the corresponding classical integrable theory becomes more subtle (For

this issue, see2,15 in the context of the 4D CS theory). Quantizing non-

ultralocal classical integrable theories in a first-principles way is still an

open problem and an important task.
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Quantum entanglement is closely related to the structure of spacetime in quan-

tum gravity. For quantum field theories or statistical models, we usually con-

sider base space entanglement. However, target space instead of base space
sometimes directly connects to our spacetime. In these cases, it is natural to

consider a concept of target space entanglement. To define the target space en-

tanglement, we consider a generalized definition of entanglement entropy based
on an algebraic approach. This approach is reviewed and is applied to the first

quantized particles, in particular, fermions. This article is based on the paper

JHEP 08 (2021) 0461.

Keywords: Entanglement; Matrix models; Target space; Mutual information.

1. Introduction

It is widely believed that quantum entanglement is closely related to the

structure of spacetime in quantum gravity. In the AdS/CFT correspon-

dence, the Ryu-Takayanagi formula2 states that entanglement about the

base space in holographic CFTs is connected to the area of minimal surface

in the bulk. As in this example, we often consider the base space entangle-

ment in quantum field theories or statistical models. However, target space

instead of base space sometimes directly connects to our spacetime, for ex-

ample, perturbative string theories or matrix models. Thus, it is natural to

investigate a notion of target space entanglement3–5. See also recent Refs.

1,6–9.a

In Ref. 3, the target space entanglement is defined using an algebraic

approach. We will review this approach in Sec. 2, and apply it to quantum

mechanics of fermions in Sec. 3, Sec. 4 and Sec. 5.

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter

published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the

original work is properly cited.
aA concept of entanglement in string theories (matrix models) is investigated in 10 and
revisited in 11.
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2. Definition of entanglement entropy based on subalgebras

of operators

Let us recall the conventional definition of entanglement entropy (EE).

Suppose that a total density matrix ρ is given for a Hilbert space H =

HB ⊗ HB̄ . The EE for subsystem HB is defined as the von Neumann

entropy of the reduced density matrix ρB = trB̄ ρ as SB = − trB ρB log ρB .

This definition relies on the tensor product structure of the Hilbert space,

H = HB ⊗HB̄ . However, total Hilbert spaces sometimes do not have such

simple tensor-factorized forms. For example, the Hilbert space of a first-

quantized (non-relativistic) particle in a space Rd is schematically given by

a “direct sum” as H = span{|x〉|x ∈ Rd}. Thus, even if we divide the space

Rd into two subregions Rd = B∪B̄, it is difficult to take the “partial trace”

on B̄.

The algebraic approach enables us to define EE without relying on the

tensor product structure (see, e.g., the references1,12–14). The algebraic

definition is based on the subalgebra of operators (observables). If a total

density matrix ρ is given, and we have a restricted set of operators (sub-

algebra A), an entropy SA(ρ) associated with the subalgebra A is defined.

This concept is natural, if we recall the meaning of entropy in information

theory. The entropy is a measure of uncertainty about the whole informa-

tion when we can only know partial information. If an observer can use

only a subset of operators A, the whole information is not obtained. En-

tropy SA(ρ) quantifies the amount of uncertainty (or unknownness). In this

sense, the usual EE, SB = − trB ρB log ρB , for H = HB ⊗ HB̄ represents

uncertainty for an observer who can probe only subsystem HB . That is, it

is the entropy for the subalgebra L(HB)⊗ 1HB̄ .b The choice of subalgebra

A is arbitrary, and we do not need the tensor product structure.

For general subalgebra A, the entropy SA(ρ) is computed as follows.

First, the ‘reduced density matrix’ ρA is uniquely determined from ρ and

A as an operator in A satisfying the following equation:

tr(ρAO) = tr(ρAρ), ∀O ∈ A. (1)

For example, if the total Hilbert space has a tensor product form as H =

HB ⊗ HB̄ , and we take the subalgebra A as A = L(HB) ⊗ 1HB̄ , then ρA
is given by ρB ⊗ 1HB̄/ dimHB̄ . The point is that the definition Eq. (1) is

bHere, L(V ) denotes a set of linear operators on linear space V , and 1V does the identity

operator on V .
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applicable even when the Hilbert space does not have the tensor product

structure.

Furthermore, for a given subalgebra, we can decompose the Hilbert

space into blocks of tensor products where the subalgebra acts nontrivially

only on each tensor component as follows:

H =
⊕
k

HBk ⊗HB̄k s.t. A =
⊕
k

L(HBk)⊗ 1B̄k . (2)

This decomposition is uniquely fixed by the subalgebra A. We represents

the projection onto each block by Πk. We define the density matrix ρk on

the projected space ΠkH as

ρk :=
1

pk
ΠkρΠk, (3)

where pk is a normalization factor defined as pk := tr(ΠkρΠk) and is a

probability of being in the sector ΠkH for the given ρ. Since the projected

space ΠkH has a simple tensor-factorized form as ΠkH = HBk ⊗ HB̄k in

the decomposition (2), we can consider the reduced density matrix of ρk on

HBk as

ρBk := trB̄k ρk. (4)

Then, the ‘reduced density matrix’ ρA satisfying Eq. (1) is given by

ρA =
⊕
k

pk ρBk ⊗
1B̄k

dim(HB̄k)
. (5)

We define the reduced density matrix ρB on space HB =
⊕

kHBk as

ρB :=
⊕
k

pkρBk . (6)

EE SA(ρ) is defined as the von Neumann entropy

SA(ρ) = − trB ρB log ρB = −
∑
k

pk log pk +
∑
k

pkS(ρBk), (7)

where S(ρBk) := − trBk ρBk log ρBk . The first term in the r.h.s. of Eq. (7)

is called the classical part,

Scl(ρ,A) := −
∑
k

pk log pk, (8)

and is the Shannon entropy of the probability distribution {pk}. On the

other hand, the second term in the r.h.s. of Eq. (7) is called the quantum

part Sq(ρ,A). The expression in Eq. (7) is similar to the symmetry resolved

entanglement entropy15,16.
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2.1. Example: Entanglement in a single qubit

As a concrete example of EE in the algebraic approach, we consider a single

qubit. The Hilbert space is two-dimensional space, H = span{|0〉, |1〉}. We

usually consider entanglement between two qubits. The algebraic approach

enables us to consider “EE” even for a single qubit.

The full set of operators L(H) is L(H) = span{I, σx, σy, σz}.c If we take

the subalgebra as this full algebra, the decomposition Eq. (2) is trivial as

H = H⊗ C (9)

with A = L(H)⊗ 1. In this case, ρB in Eq. (6) is just the original ρ. Thus,

the EE associated with the full algebra L(H) is just the von Neumann

entropy of ρ,

SL(H)(ρ) = − tr ρ log ρ. (10)

In particular, if state ρ is pure, the entropy vanishes as SL(H)(ρ) = 0. It

means that the pure state is not ambiguous and is completely determined

by quantum tomography if we can use any operators.

Situation changes when we can use only a subset of operators. Let us

suppose that we can probe only z-direction. This corresponds to taking

subalgebra A = span{1, σz}. The decomposition (2) for this choice of the

subalgebra is H = span{|0〉} ⊕ span{|1〉} where A = span{1, σz} can be

represented as A = span

{(
1 0

0 0

)}
⊕ span

{(
0 0

0 1

)}
. The projection Πk

are Πk = |k〉〈k| (k = 0, 1). We then have pk = 〈k|ρ|k〉 and ρBk = Πk.

Thus, the EE associated with the subalgebra A is

SA(ρ) = −p0 log p0 − p1 log p1, (11)

where the quantum part Sq(ρ,A) always vanishes, and the entropy is just

the classical Shannon entropy of the probability distribution that the qubit

is measured in 0 or 1 for the given state ρ. Even pure states in general have

non-vanishing entropy (except for the case where states are eigenstates

of σz). The non-vanishing entropy reflects the fact that pure states are

ambiguous for restricted observers who can probe only z-direction. In fact,

the observers cannot distinguish pure states with mixed states ρ =

(
p0 0

0 p1

)
.

cWe take a basis such that σz =

(
1 0
0 −1

)
with σz |k〉 = (−1)k|k〉 (k = 0, 1).
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3. Entanglement of fermions with a fixed number

We now consider target space entanglement of first-quantized N fermions

by the algebraic approach. The Hilbert space of the single particle is rep-

resented by H(1). It is given by H(1) = span{|x〉|x ∈ M} where M is the

target space of particles. The Hilbert space H(N) of N fermions is given by

the N -th exterior power of H(1) as

H(N) =
∧N

H(1), (12)

which is spanned as H(N) = span{|x1〉 ∧ · · · ∧ |xN 〉|xi ∈M(i = 1, . . . , N)}.
We take a subregion B in the target spaceM , and consider the EE of this

subregion. Since the Hilbert space H(N) does not have a tensor-factorized

structure with respect to the target space coordinates, we adopt the alge-

braic approach instead of the conventional definition. The subalgebra we

take is the set of operators acting non-trivially only on particles in subregion

B, which is represented by A(B). For example, when N = 1, the subalge-

bra A(B) is given by A(B) = span {|y〉〈y′||y, y′ ∈ B} ⊕ span
{∫
B̄
dz|z〉〈z|

}
where B̄ is the complement region of B. For general N , we can decompose

H(N) into a direct sum of the following subsectors as

H(N) =

N⊕
k=0

H(N)
k . (13)

The subsector H(N)
k consists of states where k particles in B and N − k

ones in B̄ as

H(N)
k = span

{
|x1〉 ∧ · · · ∧ |xN 〉 |x1, . . . , xk ∈ B, xk+1, . . . , xN ∈ B̄

}
. (14)

To represent the subalgebra A(B), we introduce the following abbreviated

notation:

|{x}n〉 = |x1〉 ∧ · · · ∧ |xn〉 ∈
∧n
H(1). (15)

The subalgebra A(B) is then given by

A(B) =

N⊕
k=0

Ak, (16)

where Ak is a subalgebra on H(N)
k and takes the form

Ak = span

{∫
B̄

dz1 . . . dzN−k(|{y}k〉 ∧ |{z}N−k〉)(〈{y′}k| ∧ 〈{z}N−k|)
}

with y1, . . . , yk, y
′
1, . . . , y

′
k ∈ B. (17)
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Since the subalgebra A(B) is specified, we can compute the entropy

SA(B) associated with this subalgebra in the manner described in the pre-

vious section.d We call this entropy the target space entanglement entropy

SB because the subalgebra A(B) is characterized by the subregion B in the

target space of particles. In the second quantized picture, we can define

the conventional entanglement entropy for subregion B. The target space

EE SB agrees with this base space EE1,3,4.

4. Fermions in the Slater determinant states

To be more specific, we focus on pure states whose N -body wave functions

are given by the Slater determinants as

ψ(x1, . . . , xN ) =
1√
N !

det[χi(xj)] (i, j = 1, . . . , N), (18)

where χi(x) are one-body wave functions normalized as∫
M

dxχ∗i (x)χj(x) = δij . (19)

The target space EE for subregion B can be evaluated as Eq. (7) by

computing pk and S(ρBk) for the pure states ψ. After some computations

(see Ref. 1 for details), we can find that the entropy SB follows the simple

formula:

SB(ψ) = − tr[X logX + (1N −X) log(1N −X)], (20)

where X is a N ×N matrix given by

Xij =

∫
B

dxχ∗i (x)χj(x). (21)

We call X overlap matrix. It is easy to show that the eigenvalues λi of the

overlap matrix are in the range 0 ≤ λi ≤ 1.

From the formula (20), we can find that the entropy has the upper

bounde as

SB(ψ) ≤ N log 2. (22)

The maximum entropy N log 2 is proportional to the number of particles

N , and thus follows an extensive property like thermal entropy. However,

dIn this case, the projection Πk in Eq. (3) is the projection to the subsector H(N)
k in

Eq. (13).
eWe can also confirm that the classical part Scl is bounded as Scl(ρ;A) . O(logN).1



April 25, 2022 14:20 Proceedings of the East Joint. . . - 9in x 6in ch16-main page 153

153

this upper bound is too generic. We expect that EE for ground states is

not extensive but sub-extensive in local models. In fact, we will see in the

next section that the entropy of a ground state of N free fermions behaves

as S ∼ O(logN) in the large N limit.

5. Entanglement for free fermions in a circle

We now apply the formula (20) to N free fermions in a circle with length

L, i.e., the target space M is a circle. The Hamiltonian is given by H =∑N
i=1

p2
i

2m , and we consider its ground state. The one-body eigenfunctions

are given by χn(x) = 1√
L
e

2πi
L nx where n are integers. Supposing that the

total number of particles N is odd (N = 2K+1), the N -body wave function

for the ground state is given by the Slater determinant as

ψ(x1, · · · , xN ) =
1√
N !

∑
σ∈SN

sgn(σ)χ−K(xσ(1)) · · ·χK(xσ(N)). (23)

Thus, the target space entanglement for a subregion B can be obtained by

the formula (20) with the N ×N overlap matrix

Xnn′ =

∫
B

dxχ∗n(x)χn′(x), (24)

where n, n′ runs in −K, . . . ,K.

5.1. Single interval

In this subsection, we consider the case where the subregion B is a single

interval I1 in the circle. We parameterize the length of the interval as rL

(0 ≤ r ≤ 1), i.e., r is the ratio of the interval to the circle.

In the large N limit, the asymptotic behavior of the entropy can be

obtained as

SI1 ∼
1

3
log[2N sin(πr)] + Υ1 (25)

with

Υ1 = i

∫ ∞
−∞

dw
πw

cosh2(πw)
log

Γ
(

1
2 + iw

)
Γ
(

1
2 − iw

) ∼ 0.495018. (26)

We show the plot of the entropy with the large N result (25) in Fig. 1.

It shows that the entropy is sub-extensive (not proportional to N). Fur-

thermore, the large N behavior Eq. (25) agrees with the EE for the single

interval in c = 1 CFTs on the circle17 if we regard N as a (dimensionless)

cutoff.
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Fig. 1. EE for the half region. The red dots are the EE S for N = 1, 3, · · · , 101. The

blue curve represents the large N result (25) with r = 1/2.

5.2. Entanglement entropy and mutual information for two

intervals

In this subsection, we consider two disjoint intervals I1 and I2 in the circle.

Suppose that the coordinates of the circle is x moving in −L2 ≤ x ≤ L
2

with the periodic condition x ∼ x + L. We take the two intervals as I1 =(
−d+r

2 L,−d−r2 L
)

and I2 =
(
d−r

2 L, d+r
2 L

)
.

The EE for the subregion I1 ∪ I2 can be analytically computed in the

large N limitf as

SI1∪I2 ∼
1

3

[
2 log[2N sin(πr)] + log

sin[π(d+ r)] sin[π(d− r)]
sin2(πd)

]
+ 2Υ1.

(27)

We can also evaluated the target space mutual information;

I(I1; I2) := S(I1) + S(I2)− S(I1 ∪ I2). (28)

The large N behavior is

I(I1; I2) ∼ 1

3
log

sin2(πd)

sin[π(d+ r)] sin[π(d− r)]
. (29)

The mutual information is finite even in the large N limit. In addition,

Eq. (29) agrees with the result in a c = 1 CFT (free compact boson at the

self-dual radius18), although the reason is not understood well.

The plot of the target space mutual information (28) is Fig. 2.

fSee Ref. 1.
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Fig. 2. Mutual information for two intervals. We take N = 101 and set the parameter r
as r = 0.01 (length of each interval is rL). The red dots represent the mutual information

for some values of d. The blue curve represents the large N result (29).

6. Brief conclusion

The algebraic approach is a powerful method of characterizing entangle-

ment. This approach might be useful beyond the target space entanglement.

A similar idea to define entropy based on observables is also investigated

as the observational entropy (see, e.g., Ref. 19).

We have used the algebraic approach to define the target space entan-

glement of particles. In particular, we consider non-interacting fermions,

which can be regarded as the singlet sectors of one-matrix models. It is

more interesting to consider entanglement in multi-matrix models, and its

relation to holography.
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We study Jacobi forms associated to even positive definite unimodular lattices,
in particular E8 lattice and the Leech lattice. We require the Jacobi forms to
be invariant under the orthogonal group of the lattice, in particular E8 Weyl
group and Conway group Co0. These objects are of interest in both number
theory and string theory, for example elliptic genera of E-strings, Monster
CFT and so on. We establish the explicit structure theorem and determine the
generators for the E8 case with index t ≤ 13 and the Leech case with index
t ≤ 3. This is a short summary of two joint papers1,2 with Haowu Wang.

Keywords: Jacobi forms; Even positive definite unimodular lattice; E8 lattice;
Leech lattice; Conway group.

1. Introduction

Jacobi forms are some fundamental objects in number theory and also ba-

sic tools in string theory whenever a torus T 2 and a global symmetry is

involved. Originally, Jacobi forms are introduced by Eichler and Zagier in

their monograph3. These forms are holomorphic functions in two variables

(τ, z) ∈ H×C which are modular in τ with respective to SL2(Z) and quasi-

periodic in z. Later, Gritsenko4 defined Jacobi forms of lattice index by

replacing z with many variables associated with an integral positive definite

lattice. The Jacobi form creates an elegant bridge between different types

of modular forms. For example, Jacobi forms can be identified as vector

valued modular forms through the theta decomposition. Jacobi forms also

have many applications in mathematical physics, such as the elliptic gen-

era of K3 surface, elliptic genera of 6d (1, 0) SCFTs and the topological

string partition functions on various Calabi–Yau threefolds. It is a natu-

ral question to determine the structure of the space of Jacobi forms. This

question was solved by Wirthmüller5 for Jacobi forms associated with root

systems not of E8 type, where there is polynomial ring structure. For the

E8 root system, the structure becomes much more complicated due to the

even unimodular property. In particular, the space is not a polynomial

c© 2022 World Scientific Publishing Co. Pte. Ltd. This is an Open Access book chapter
published by World Scientific Publishing Company. It is distributed under the terms of
the Creative Commons Attribution 4.0 International (CC BY 4.0) License which permits
use, distribution and reproduction in any medium, even commercially, provided that the
original work is properly cited.



April 25, 2022 14:21 Proceedings of the East Joint. . . - 9in x 6in ch17-Proceedings˙of˙EAJS1 page 158

158

ring. This was studied before in6–8, but the structure is still not explicit.

Besides, little is known about spaces of Jacobi forms associated with other

irreducible lattices of large rank. We aim to tackle these problems, in par-

ticular the E8 lattice and the Leech lattice.

2. Jacobi Forms of Lattice Index

We review the basic notions of Jacobi forms of lattice index. Let L denote

an even positive definite unimodular lattice equipped with bilinear form

(−,−). Here the unimodular means the lattice has determinant 1 and the

even means all vectors have even norms. It is well-known such L can only

exist in dimension 8k, k ∈ Z.

Definition 2.1. Let k ∈ Z be an integer and t ∈ N be a non-negative

integer. If a holomorphic function ϕ : H × (L ⊗ C) → C satisfies the

conditions

(i) Quasi-periodicity:

ϕ(τ, z+ xτ + y) = exp (−tπi(x, x)τ − 2tπi(x, z))ϕ(τ, z), x, y ∈ L,

(ii) Modularity: for a, b, c, d ∈ Z and ad− bc = 1,

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

(
tπi

c(z, z)

cτ + d

)
ϕ(τ, z),

and the Fourier expansion of ϕ takes the form

ϕ(τ, z) =
∞∑

n=0

∑
�∈L

f(n, �)qnζ�, q = e2πiτ , ζ� = e2πi(�,z),

then it is called a weak Jacobi form of weight k and index t. If ϕ further

satisfies that f(n, �) = 0 whenever 2nt − (�, �) < 0, then it is called a

holomorphic Jacobi form. If ϕ is invariant under the orthogonal group of

lattice O(L), then it is called a O(L) invariant Jacobi form. Here O(L)

contains all automorphism of L that keeps the bilinear form.

As L is unimodular, the theta decomposition (see9 Corollary 2.6)) yields

that every O(L) invariant weak Jacobi form of weight k and index 1 is a

holomorphic Jacobi form and can be expressed as g(τ)ΘL(τ, z), where g(τ)

is a modular form of weight k − 1
2 rk(L) on SL2(Z), and ΘL(τ, z) is the

Jacobi theta function of L defined by

ΘL(τ, z) =
∑
�∈L

eπi(�,�)τ+2πi(�,z).
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For index t > 1, the structure of O(L) invariant Jacobi forms becomes

nontrivial. The cases of interest are those with large O(L), i.e. L is highly

symmetrical, then the space of O(L) invariant Jacobi forms will be relatively

simple.

We focus on two most interesting cases. The first is the E8 root lattice,

where we require the Jacobi forms to be E8 Weyl invariant:

ϕ(τ, σ(z)) = ϕ(τ, z), σ ∈W (E8).

E8 Weyl invariant Jacobi forms are frequently used in string theory, for

example in E-string theory, which is the simplest six dimensional (1, 0)

superconformal field theory with manifest E8 symmetry6,10,11. Due to this

importance, it is highly interesting to determine the precise structure of

space of E8 Weyl invariant Jacobi forms to high index.

The second case is the Leech lattice, which is the unique even positive

definite unimodular lattice in dimension 24 that has no roots. It was discov-

ered by Leech12, and its uniqueness was proved by Conway13. This lattice

has many remarkable properties. For example, it plays a role in construct-

ing the fake monster Lie algebra14 and proving the monstrous moonshine

conjecture15, and it achieves the densest sphere packing in 24 dimension16.

The group Co0 is the automorphism group of the Leech lattice, whose struc-

ture was first described by Conway17. It is natural the require the Jacobi

forms on the Leech lattice to be Conway invariant :

ϕ(τ, σ(z)) = ϕ(τ, z), σ ∈ Co0 .

The quotient of Co0 by its center gives a sporadic simple group of order

4, 157, 776, 806, 543, 360, 000. Therefore, the Leech lattice is highly sym-

metrical, and we expect that the space of Conway invariant Jacobi forms

will not be too large. Due to the importance of the Leech lattice and the

Conway group, we also expect that Conway invariant Jacobi forms will have

some applications in mathematics and physics. These motivate us to study

such Jacobi forms.

3. E8 Weyl Invariant Jacobi Forms

Denote the vector spaces ofW (E8)-invariant weak and holomorphic Jacobi

forms of weight k and index t respectively by J
w,W (E8)
k,E8,t

� J
W (E8)
k,E8,t

. Let

M∗(SL2(Z)) = C[E4, E6] be the ring of modular forms on SL2(Z). For

fixed index t, these are free M∗(SL2(Z))-modules

J
w,W (E8)
∗,E8,t

:=
⊕
k∈Z

J
w,W (E8)
k,E8,t

, J
W (E8)
∗,E8,t

:=
⊕
k∈Z

J
W (E8)
k,E8,t

.
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We aim to describe the explicit structure of the above modules using Sakai’s

forms A1, A2, B2, A3, B3, A4, B4, A5, B6. These were some algebraically

independent W (E8)-invariant holomorphic Jacobi forms first constructed

by Sakai in the study on E-strings11. Due to its importance, we briefly

explain how Sakai constructed these forms. One starts with the E8 Jacobi

theta function ϑE8(τ, z) which is the unique W (E8)-invariant holomorphic

Jacobi form of weight 4 and index 1. Acting the index raising Hecke opera-

tors T−(t) on ϑE8 , one obtains W (E8)-invariant holomorphic Jacobi forms

of weight 4 and arbitrary index t: Xt(τ, z) = 1+O(q). Sakai’s forms Aj are

constructed as

Aj(τ, z) = Xj(τ, z), j = 1, 2, 3, 5, A4(τ, z) = ϑE8(τ, 2z).

To construct Bt, one first takes an appropriate modular form gt of weight

2 on the congruence subgroup Γ0(t) of SL2(Z). Then the trace sum of

gt(τ)ϑE8 (tτ, tz) with respect to the cosets of Γ0(t)\SL2(Z) defines aW (E8)-

invariant holomorphic Jacobi form of weight 6 and index t. That is the

desired Bt.

Rather surprisingly, Del Zotto, Gu, Huang, Kashani-Poor, Klemm and

Lockhart18 discovered an exceptionalW (E8)-invariant holomorphic Jacobi

form of weight 16 and index 5 defined by the polynomial P16,5:

864A3
1A2 +3825A1B

2
2 − 770A3B2E6 − 840A2B3E6 +60A1B4E6 +21A5E

2
6 .

They checked numerically that P16,5 vanishes at the zero points of E4 for

general lattice variable z and then conjectured that the quotient P16,5/E4 is

holomorphic. They did not find other similar polynomials, so they further

conjectured that any Jacobi form expressed as a polynomial in Ai, Bj and

E6 which vanishes at the zero points of E4 must be divisible by the above

polynomial. In1 we proved their conjectures. Utilizing this distinguished

Jacobi form P16,5/E4, we are able to give a full description of W (E8)-

invariant Jacobi forms of arbitrary index in terms of Sakai’s forms.

Theorem 3.1.

(1) The quotient P16,5/E4 is a W (E8)-invariant holomorphic Jacobi form

of weight 12 and index 5.

(2) For any W (E8)-invariant Jacobi form P ∈ C[E6, Ai, Bj ], if P/E4 is

holomorphic on H× (E8 ⊗ C), then

P

P16,5
∈ C[E6, Ai, Bj ].
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(3) Every W (E8)-invariant weak Jacobi form of index t can be expressed

uniquely as ∑t1
j=0 PjE

j
4P

t1−j
16,5

ΔNtEt1
4

,

where

(i) t1 is the integer part of t/5;

(ii) Pt1 ∈ C[E4, E6, Ai, Bj ];

(iii) Pj ∈ C[E6, Ai, Bj ] for 0 ≤ j < t1;

(iv) Nt is defined as follows

Nt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5t0, if t = 6t0 or 6t0 + 1,

5t0 + 1, if t = 6t0 + 2,

5t0 + 2, if t = 6t0 + 3,

5t0 + 3, if t = 6t0 + 4 or 6t0 + 5.

To determine the explicit generators for each index, we first calculate the

Fourier expansions of Sakai’s forms Ai and Bj up to q9-terms. The Fourier

expansions involve 268Weyl orbits of vectors of norm 1
2 (v, v) ≤ 54. We then

express these Weyl orbits as polynomials in the eight fundamental Weyl

orbits. Using these data and the above theorem, we successfully determine

all generators of J
w,W (E8)
∗,E8,t

for 1 ≤ t ≤ 13 and following generating series

for the space dimensions.

Theorem 3.2. Let dk,t denote the number of generators of weight k of

J
w,W (E8)
∗,E8,t

. For 1 ≤ t ≤ 13 the Laurent polynomials

Pw
t :=

∑
k∈Z

dk,tx
k

describing the weights of generators are determined as follows

Pw
1 =x4, Pw

2 = x−4 + x−2 + 1, Pw
3 = x−8 + x−6 + x−4 + x−2 + 1,

Pw
4 =x−16 + x−14 + x−12 + x−10 + 2x−8 + x−6 + x−4 + x−2 + 1,

Pw
5 =2x−16 + 2x−14 + 3x−12 + 2x−10 + 2x−8 + x−6 + x−4 + x−2 + 1,

. . .

Pw
13 =2x−52 + 10x−50 + 24x−48 + 32x−46 + 37x−44 + 28x−42 + 29x−40

+ 28x−38 + 26x−36 + 23x−34 + 22x−32 + 18x−30 + 16x−28 + 14x−26

+ 12x−24 + 9x−22 + 8x−20 + 6x−18 + 5x−16 + 4x−14 + 3x−12

+ 2x−10 + 2x−8 + x−6 + x−4 + x−2 + 1.
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The Laurent expansion of the following rational function at x = 0 gives the

dimension of the space of weak Jacobi forms of arbitrary weight and given

index t

Pw
t

(1− x4)(1 − x6)
=

∑
k∈Z

dk,tx
k

(1− x4)(1 − x6)
=
∑
k∈Z

dim J
w,W (E8)
k,E8,t

xk.

We further compute the dimension of the space ofW (E8)-invariant holo-

morphic Jacobi forms of weight 4 and small index and construct explicit

generators. These so-called holomorphic Jacobi forms of singular (i.e. possi-

ble minimal positive) weight are usually difficult to determine and construct

in the theory of modular forms.

Proposition 3.1. The dimension of the space J
W (E8)
4,E8,t

for t ≤ 11 is for-

mulated in Table 3.1.

Table 1. The dimension of J
W (E8)
4,E8,t

t 1 2 3 4 5 6 7 8 9 10 11

dim 1 1 1 2 1 1 2 2 2 2 2

4. Conway Invariant Jacobi Forms on the Leech Lattice

Let Jw,Co0
∗,Λ,t and JCo0

∗,Λ,t denote the spaces of Conway invariant weak and

holomorphic Jacobi forms of integral weight and given index t respectively.

The following is our main theorem2.

Theorem 4.1. As free modules over M∗(SL2(Z)),

(1) Jw,Co0

∗,Λ,2 is generated by four forms of weights −4, −2, 0, 0.

(2) JCo0

∗,Λ,2 is generated by four forms of weights 12, 12, 14, 16.

(3) Jw,Co0

∗,Λ,3 is generated by ten forms of weights −14, −12, −12, −12, −10,

−8, −6, −4, −2, 0.

(4) JCo0

∗,Λ,3 is generated by ten forms of weights 12, 12, 12, 14, 14, 16, 16,

16, 18, 18.

To prove the above theorem, we first use the differential operators ap-

proach in7 to estimate the minimal weight of weak Jacobi forms of a given

index. Then we combine the arguments in1,7,11 to construct generators



April 25, 2022 14:21 Proceedings of the East Joint. . . - 9in x 6in ch17-Proceedings˙of˙EAJS1 page 163

163

such as Hecke operator. We also construct one of the singular-weight gen-

erators of JCo0
∗,Λ,t as the t-th Fourier–Jacobi coefficient of Borcherds’ au-

tomorphic form Φ12 for the unimodular lattice II26,2 (see19). The main

difficulty of the proof is to calculate the Fourier expansions of generators,

because Conway invariant Jacobi forms have unwieldy Fourier expansions

in 25 variables. To overcome this difficulty, we write the Fourier expansion

of a Jacobi form in terms of Conway orbits defined as the Co0-invariant

exponential polynomials

orb(v) =
∑

σ∈Co0 /(Co0)v

e2πi(σ(v),z),

where v ∈ Λ and (Co0)v is the stabilizer of Co0 with respect to v. The

Conway orbits orb(v) of type 1
2 (v, v) ≤ 16 are available in20. In order to

calculate the Fourier expansions of products of Jacobi forms, we have to

know the decomposition of some products orb(v) orb(u) into linear combi-

nations of Conway orbits. We determine such non-trivial decompositions

by comparing the Fourier–Jacobi expansion of Φ12 and the Borcherds de-

nominator formula for the fake monster Lie algebra (see14,19). Combining

these arguments together, we prove the theorem.

The differential operator H also called heat operator used in the proof

and the construction of generators is defined by the following lemma.

Lemma 4.1. Given a Conway invariant weak Jacobi form of weight k and

index t ≥ 1

ϕ(τ, z) =

∞∑
n=0

∑
r∈Λ/Co0

f(n, r)qn · orb(r).

Then Hk(ϕ) is a Conway invariant weak Jacobi form of weight k + 2 and

index t, where

Hk(ϕ)(τ, z) = H(ϕ)(τ, z) +
12− k

12
E2(τ)ϕ(τ, z),

H(ϕ)(τ, z) =
∑
n∈N

∑
r∈Λ/Co0

(
n− (r, r)

2t

)
f(n, r)qn · orb(r),

and E2(τ) = 1− 24
∑

n≥1 σ(n)q
n is the Eisenstein series of weight 2.

Similar to Sakai’s Ai and Bj forms for the E8 case, we can also define

analogously Conway invariant holomorphic Jacobi forms Ai and Bj for the

Leech lattice which have weight 12 and 14 respectively. The other type

of Conway invariant holomorphic Jacobi forms of singular weight 12 come
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from the famous Borcherds automorphic form Φ12 given by the Weyl–Kac–

Borcherds denominator identity of the fake monster Lie algebra. In terms

of Conway invariant Jacobi forms, one can express Φ12 as follows (see19,21)

Φ12(Z) = Δ(τ) · exp
(
−

∞∑
m=1

((Δ−1A1)|T−(m))(τ, z)e2πimω
)

=

∞∑
m=0

Φ12,m(τ, z)e2πimω ,

where T−(m) are Hecke operators. Then Φ12,m(τ, z) is a Conway invariant

holomorphic Jacobi forms of singular weight 12 and index m. The above

operator and basic forms allow us to construct the explicit generators for

the space of holomorphic forms at index 2 and 3.

Theorem 4.2. The free C[E4, E6]-module JCo0

∗,Λ,2 is generated by A2, Φ12,2,

B2 and HB2, which have weights 12, 12, 14, 16 respectively.

Theorem 4.3. The free C[E4, E6]-module JCo0

∗,Λ,3 is generated by ten forms

A3, Φ12,3, Ψ12,3, B3, Ψ14,3, HB3, HΨ14,3, Ψ16,3, H
2B3, H

2Ψ14,3

which have weights 12, 12, 12, 14, 14, 16, 16, 16, 18, 18 respectively.

For the explicit construction of holomorphic forms Ψ12,3, Ψ14,3 and Ψ16,3,

we refer to2. We also use these holomorphic generators to construct the

weak generators2.

As applications, we determine many product decompositions of Conway

orbits by means of modular linear relations among Conway invariant holo-

morphic Jacobi forms. These results are formulated in Appendix A of2.

For example,

O2 ⊗O2 =196560O0 ⊕ 4600O2 ⊕ 552O3 ⊕ 46O4 ⊕ 2O5 ⊕ 2O6b ⊕O8a,

O2 ⊗O3 =47104O2 ⊕ 11178O3 ⊕ 2048O4 ⊕ 275O5 ⊕ 24O6a ⊕O7 ⊕O8c.

Here the Conway orbits follow the notion of the ALTAS20. It would be

very difficult to compute these product decompositions in a brutal way due

to the huge size of the Conway orbits. We also classify Conway invariant

holomorphic Jacobi forms of singular weight 12 and index t ≤ 3 with non-

trivial character and use the Fourier expansions of our Jacobi forms to

determine all conjugate relations among Conway orbits of type 1
2 (v, v) ≤ 16

modulo 2Λ and 3Λ. Besides, we calculate the pullbacks of Conway invariant

Jacobi forms and Conway orbits along Leech vectors of types 2, 3 and 4,

which characterize the intersection behaviors of Leech vectors.
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We know from Borcherds’ thesis22 that Λ/4Λ have 31 orbits with respect

to Co0. We give an explicit description of the representative system of

minimal length of Λ/4Λ in2. Borcherds’ result yields that the rank of Jw,Co0
∗,Λ,4

is 31. It seems very difficult to determine and construct the associated 31

generators of index 4.

The famous 2d Monster CFT has one single character χ = ΘΛ(τ)/η
24−

24 where ΘL(τ) = ΘL(τ, z = 0). This can be seen as the index one case

of the discussion in this section. It is interesting to consider whether there

exist certain level two generalization of 2d Monster CFT which has 4 char-

acters, and level three generalization which has 10 characters, and so on.
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