
CONVEX OPTIMIZATION

FOR MACHINE LEARNING

CHANGHO SUH

Published, sold and distributed by:

now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510

www.nowpublishers.com

sales@nowpublishers.com

Outside North America:

now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

ISBN: 978-1-63828-052-1

E-ISBN: 978-1-63828-053-8

DOI: 10.1561/9781638280538

Copyright © 2022 Changho Suh

Suggested citation: Changho Suh. (2022). Convex Optimization for Machine Learning. Boston–Delft:

Now Publishers

The work will be available online open access and governed by the Creative Commons

“Attribution-Non Commercial” License (CC BY-NC), according to https://creativecommons.or

g/licenses/by-nc/4.0/

We would like to express our sincere gratitude to Hyun Seung Suh, who has provided a flurry of

constructive comments and feedback on the structure of the book, writing, and readability from a

beginner’s viewpoint.

This work was supported by the 2019 Google Education Grant; and Institute of Information &

Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government

(MSIT) (2020-0-00626, Ensuring high AI learning performance with only a small amount of training

data).

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Table of Contents

Preface v

Chapter 1 Convex Optimization Basics 1

1.1 Overview of the Book . 1
1.2 Definition of Convex Optimization . 10
1.3 Tractability of Convex Optimization and Gradient Descent 18
Problem Set 1 . 24
1.4 Linear Program (LP) . 28
1.5 LP: Examples and Relaxation . 35
1.6 LP: Algorithms . 42
1.7 LP: CVXPY Implementation . 50
Problem Set 2 . 54
1.8 Least Squares (LS) . 58
1.9 LS: Test Error, Regularization and CVXPY Implementation 64
1.10 LS: Computed Tomography . 72
Problem Set 3 . 80
1.11 Quadratic Program . 86
1.12 Second-order Cone Program. 93
1.13 Semi-definite Program (SDP) . 103
1.14 SDP Relaxation . 109
Problem Set 4 . 116

iii

iv Table of Contents

Chapter 2 Duality 124

2.1 Strong Duality . 124
2.2 Interior Point Method . 131
Problem Set 5 . 140
2.3 Proof of Strong Duality Theorem (1/2) . 143
2.4 Proof of Strong Duality Theorem (2/2) . 150
Problem Set 6 . 157
2.5 Weak Duality . 162
2.6 Lagrange Relaxation for Boolean Problems . 169
2.7 Lagrange Relaxation for the MAXCUT Problem 175
Problem Set 7 . 182

Chapter 3 Machine Learning Applications 185

3.1 Supervised Learning and Optimization . 185
3.2 Logistic Regression . 193
3.3 Deep Learning I . 201
3.4 Deep Learning II . 210
3.5 Deep Learning: TensorFlow Implementation 221
Problem Set 8 . 229
3.6 Unsupervised Learning: Generative Modeling 240
3.7 Generative Adversarial Networks (GANs) . 246
3.8 GANs: TensorFlow Implementation . 252
Problem Set 9 . 262
3.9 Wasserstein GAN I . 271
3.10 Wasserstein GAN II . 278
3.11 Wasserstein GAN: TensorFlow Implementation 285
Problem Set 10 . 295
3.12 Fair Machine Learning . 299
3.13 A Fair Classifier and Its Connection to GANs 307
3.14 A Fair Classifier: TensorFlow Implementation 313
Problem Set 11 . 323

Appendix A Python Basics 329

A.1 Jupyter Notebook . 329
A.2 Basic Python Syntaxes . 334

Appendix B CVXPY Basics 343

Appendix CTensorFlow and Keras Basics 348

References . 357

Index . 362

About the Author . 370

Preface

Features of the book The writing of this book was prompted by the huge surge
of research activities in machine learning and deep learning, and the crucial roles of
convex optimization in the spotlight fields. This forms the motivation of this book,
enabling three key features.

The first feature of this book is the focus of optimization contents tailored for
modern applications in machine learning and deep learning. Since the optimiza-
tion field has contributed to many disciplines, ranging from statistics, dynamical
systems & control, complexity theory to algorithms, there are numerous optimiza-
tion books that have been published with great interest during the past decades. In
addition, the optimization discipline has been applied to a widening array of con-
texts, including science, engineering, economics, finance and management. Hence,
the books contain a broad spectrum of contents to cover many applications in var-
ious areas. On the other hand, this book focuses on a single yet prominent field:
machine learning. Among the vast contents, we put a special emphasis on the con-
cepts and theories concerning machine learning and deep learning. Moreover, we
employ many toy examples to ease illustration of some important concepts. Exam-
ples include historical and canonical instances, as well as the ones that arise in
machine learning.

Second, this book is written in a lecture style. A majority of optimization books
deal with many mathematical concepts and theories together with numerous appli-
cations in a wide variety of domains. So the concepts and relevant theories are sim-
ply enumerated to present topics sequentially, following a dictionary style organi-
zation. While the dictionary style eases search for targeted materials, it often lacks
coherent stories that may help motivate readers. This books aims at motivating
readers who are interested in machine learning inspired by optimization funda-
mentals. So we intend to make an interesting storyline that well demonstrates the

v

vi Preface

role of fundamentals in the field. In order to establish a motivating storyline, this
book adopts a lecture style organization. Each section serves as a note for a lecture
spanning around 80 minutes, and an intimate connection is made across sections,
centered around coherent themes and concepts. To make a smooth transition from
one section to another, we feature two special paragraphs in each section: (i) the
“recap” paragraph that summarizes what have been done so far, thereby motivat-
ing the contents in the current section; and (ii) the “look ahead” paragraph that
introduces upcoming contents by connecting with the past materials.

The last feature of this book is the inclusion of many programming exer-
cises via three prominent software languages: (i) Python; (ii) CVXPY; and (iii)
TensorFlow. Since one of the key tools in convex optimization is an algorithm
that requires computation on a computer, it is crucial to know how to implement
algorithms using software tools. We employ Python as a major programming plat-
form. To solve traditional convex optimization problems such as linear program,
least squares, and semi-definite program, we utilize an easy-to-use and high-level
language, CVXPY, running in Python. To implement machine learning and deep
learning algorithms, we employ TensorFlow, one of the most popular deep learning
frameworks. TensorFlow provides numerous powerful built-in functions that ease
performing many important procedures in deep learning. One of the key benefits
of TensorFlow is that it is fully integrated with Keras, the most high-level library
with a focus on enabling fast user experimentation. Keras allows us to go from idea
to implementation with very few steps.

Structure of the book This book is made up of course materials that we devel-
oped for the following two courses at KAIST: (i) EE523 Convex Optimization
(offered in Spring 2019); and (ii) EE424 Introduction to Optimization (offered
in Fall 2020 and 2021). It consists of three parts, each being comprised of many
sections. Each section contains materials covered by a single lecture with the dura-
tion of approximately 80 minutes. Each problem set (which served as a homework
in the courses) is included every three or four sections. The contents for the three
parts are summarized as below.

I. Convex optimization basics (14 sections and 4 problem sets): A brief history of
convex optimization; basic concepts on convex sets and convex functions,
and the definition of convex optimization; gradient descent; linear pro-
gram (LP), LP relaxation, least squares, quadratic program, second-order
cone program, semi-definite program (SDP) and SDP relaxation; CVXPY

implementation.
II. Duality (7 sections and 3 problem sets): The Lagrange function, the dual

function and the dual problem; strong duality, KKT conditions, and the
interior point method; weak duality and Lagrange relaxation.

Preface vii

III. Machine learning applications (14 sections and 4 problem sets): Supervised
learning and the role of optimization in logistic regression and deep learn-
ing; backpropagation and its Python implementation; unsupervised learn-
ing, Generative Adversarial Networks (GANs), Wasserstein GAN, and the
role of LP and duality theories; fair machine learning and the role of the
regularization technique and the KKT conditions; TensorFlow implemen-
tation of a deep learning classifier, GANs, Wasserstein GAN and a fair
machine learning algorithm.

At the end, we offer three appendices for brief tutorials of the employed pro-
gramming languages (Python, CVXPY and TensorFlow). We also provide a list of
references that are related to the contents discussed in the book. But we do not
explain details, since we do not aim to exhaust the immense research literature.

How to use this book This book is written as a textbook for a senior-level
undergraduate course, yet it is also suitable for a first-year graduate course. The
expected background is solid undergraduate courses in linear algebra and probabil-
ity, together with basic familiarity with Python.

For students and interested readers, we provide some guidelines:

1. Study one section per day and two sections per week: Since each section is
designed for a single lecture and two lectures are normal per week in a course
offering, we recommend this way of reading.

2. Go through all the contents in Parts I and II: One of the most important con-
cepts in optimization is duality. So if you are familiar with convex optimiza-
tion basics, then it is okay to directly dive into Part II without exploring
Part I. However, if it is not the case, we recommend you to go through all
the contents in Parts I and II in a sequential manner. A motivating storyline is
made across sections, and proper exercise problems are placed adequately in
between. We believe this way of reading maximizes your motivation, interest
and understanding on the materials.

3. Explore Part III in part depending on your interest: Since Part III is dedicated
to applications, you may want to read them in part. Nonetheless, we made
a logical storyline assuming that every section is read sequentially. One of
the key features in Part III is TensorFlow implementation. You may be able
to implement all the covered algorithms, consulting with a guideline in the
main body together with skeleton codes offered in problem sets and appen-
dices.

4. Solve four to five basic problems in each problem set: Around 90 problems
(more than 200 subproblems) are provided. Most of them elaborate on con-
cepts discussed in the main text. The exercises range from basics on linear

viii Preface

algebra and probability, relatively straightforward derivations of results in the
main text, in-depth exploration on non-trivial concepts not fully explained
in the main text, and to programming implementation via Python, CVXPY

or TensorFlow. All of the problems are tightly coupled with the storyline
established. So working on at least some of the problems is essential in under-
standing the materials.

In the course offerings at KAIST, we have been able to cover most of the materials
in Parts I and II, yet only two to three applications in Part III. Depending on the
background and interest of students, and time availability, one can envision several
other ways to structure a course around this book. Examples include:

1. Semester-based course (24–26 lectures): Cover all the sections in Parts I and
II, and two to three applications in Part III, e.g., (i) supervised learning and
GANs (or Wasserstein GAN), or (ii) supervised learning and fair machine
learning.

2. Quarter-based course (18–20 lectures): Cover almost all the materials in Parts I
and II, except some topics like LP relaxation, simplex algorithm, least squares
for computed tomography, SDP relaxation, and the proof of strong duality
theorem. Investigate two applications picked up from Part III.

3. A graduate course for students with convex optimization basics: Briefly review
the contents in Part I spending around four to six lectures. Cover all the
materials in Parts II and III.

Programming exercises may be covered through homeworks to save time.

DOI: 10.1561/9781638280538.ch1

Chapter 1

Convex Optimization Basics

1.1 Overview of the Book

Outline In this section, we will cover two basic stuffs. The first is logistics of this
book. We will explain details as to how the book is organized and will proceed. The
second thing to cover is a brief overview to this book. We are going to explore a
story of how optimization was developed, as well as what we will cover throughout
this book.

Prerequisite The key prerequisite for this book is to have a good background
in linear algebra. In terms of a course, this means that you should have taken an
introductory-level course on linear algebra. The course is usually offered in the
Department of Mathematics, e.g., MAS109 in KAIST. Some of you might take
a different yet equivalent course from other departments. This is also okay. Tak-
ing a somewhat advanced-level course (e.g., MAS212 Linear Algebra in KAIST) is
optional although it is recommended. If you feel uncomfortable although you took
the relevant course(s), you may want to consult with some exercise problems that
we will put in proper places while preceding the book.

Another prerequisite for the book is a familiarity with the concept on proba-
bility. In terms of a course, this means that you are expected to be comfortable
with the contents dealt in an undergraduate-level probability course, e.g., EE210 in

1

http://dx.doi.org/10.1561/9781638280538.ch1

2 Convex Optimization Basics

KAIST. Taking an advanced course like Random Processes (e.g., EE528 in KAIST)
is optional. This is not a strong prerequisite. In fact, the optimization concept itself
has nothing to do with probability. But some problems (especially the ones that
arise in machine learning and deep learning, and we will also touch upon in this
book) deal with some quantities which are random and therefore are described with
probability distributions. This is the only reason that understanding the probability
is needed. Hence, reviewing any easy-level probability book that you choose may
suffice.

There must be a reason as to why linear algebra is crucial for this book. The
reason is related to the definition of optimization. A somewhat casual definition
of optimization is to make the best choice among many candidates or alternatives.
A more math-oriented definition of optimization which we will rely upon is to
choose an optimization variable (or a decision variable) so as to minimize or maxi-
mize a certain quantity of interest possibly given some constraint(s). Here the opti-
mization variable and the certain quantity are the ones that relate the optimization
to linear algebra. In many situations, the optimization variables are multiple real
values which can be succinctly represented as a vector (just a collection of num-
bers). Also the certain quantity (which is a function of the optimization variables)
can be represented as a function that involves matrix-vector multiplication and/or
matrix-matrix multiplication, which are basic operations in linear algebra. In fact,
many operations and techniques in linear algebra help formulate an optimization
problem in a very succinct manner, and therefore serve to theorize the optimiza-
tion field. This is the very reason that this book requires a good understanding and
manipulation techniques on linear algebra. Some of you may not be well trained
with expressing an interested quantity with vector/matrix forms. Please don’t be
offended. You will have lots of chances to be trained via some examples that will be
covered throughout the book, particularly in many problem sets. Whenever some
advanced techniques are needed, we will provide detailed explanations and/or rel-
evant exercise problems which serve you to understand the required techniques.

Problem sets Each problem set is offered per three or four sections. So there
would be 11 problem sets in total. We encourage you to cooperate with your col-
leagues in solving the problem sets. The problem sets are vehicles for learning,
and whatever maximizes learning for you is desirable. This usually includes dis-
cussion, teaching of others and learning from others. Solutions will be available
only to instructors upon request. Some problems may require programming tools
like Python, CVXPY and TensorFlow. We will use Jupyter notebook. Please refer
to the installation guide provided in Appendix A.1. Or you can consult with:

https://jupyter.readthedocs.io/en/latest/install.html

Overview of the Book 3

We also provide tutorials for the programming tools in appendices: (i) Appendix A
for Python; (ii) Appendix B for CVXPY; and (iii) Appendix C for TensorFlow.

Optimization Let us investigate how the theory of optimization was developed
in what contexts. Based on this, we will present detailed topics that we will learn
about throughout the book.

Let us start with a story of how the theory of optimization was developed. What
is optimization? As mentioned earlier, a casual informal definition of optimization
is to make the best choice out of possible candidates. It comes up often in our daily
life. For example, we may want to figure out a scheduling strategy for airplanes
so that the total waiting time is minimized under some constraints, e.g., a certain
airplane with emergency should take off no later than a specific time. Or family
members may want to choose a restaurant to visit for dinner, so as to maximize the
happiness of the members (if it can be quantified) given a distance constraint, e.g.,
a chosen restaurant should be within a few kilometers.

A mathematical definition of optimization that we are interested in here is to
choose an optimization variable that minimizes (or maximizes) a certain quantity
of interest possibly given some constraints. We aim at learning a theory concerning
such a formal definition. Specifically we are interested in learning a mathematical
theory of optimization which has been extensively developed and explored for a few
past centuries. In fact, the birth of the theory traced back to an astronomy problem
in the 1800s (Serio et al., 2002). So let us first talk about the problem so that you
can readily figure out how the theory was developed.

An astronomy problem in the early 1800s (Serio et al., 2002) In the
early 1800s, astronomers discovered a new planetoid (or called dwarf planet), which
was later named Ceres. See Fig. 1.1. Giuseppe Piazzi is the first astronomer who
discovered the planetoid. At that time, he wished to figure out an orbit of Ceres.

Figure 1.1. A new planetoid, named Ceres, discovered in the early 1800s.

4 Convex Optimization Basics

Carl Friedrich Gauss (1777 ~ 1855)
Figure 1.2. Carl Friedrich Gauss, a German mathematician, is the father of the optimiza-

tion field. In fact, he is well-known as an inventor of the Gaussian distribution (one of the

very famous and useful distributions in probability and statistics) as well as the Gaussian
elimination (an efficient method which allows us to do matrix inversion or to solve linear

equations).

So as an effort, he made 19 observations (of its locations) over 42 days. However,
something happened in locating the trajectory. The object was lost due to the glare
of the Sun. So many astronomers wanted to predict the hidden trajectory only from
the partial 19 observations.

One interesting trial was made by a young German mathematician, named Carl
Friedrich Gauss (1777 ∼ 1855) (Gauss, 1887). See Fig. 1.2 for his portrait. He
made a specific yet smart approach to figure out the trajectory successfully. In the
process, he could develop a mathematical problem that later laid the foundation of
the optimization field.

Gauss’s approach (Gauss, 1887) Here is what Gauss did. See Fig. 1.3 for illus-
tration. First of all, he gathered all the observations (each pointing to a location of
Ceres measured at a certain time) scattered around the Sun. Let bi ∈ R3 indicate a
coordinate of the location of the ith observation where i ∈ {1, 2, . . . , m}. Here m
denotes the total number of observations that could be up to 19 in the astronomy
problem context. Remember that Piazzi made 19 observations.

Next he fixed an arbitrary number of observation points, say two points, marked
in the hallowed star sign in the figure. You may wonder why two. This will be
explained in detail soon. He then drew an orbit that crosses the two fixed points.

Overview of the Book 5

Sun

Figure 1.3. Gauss’s approach for searching the orbit of Ceres.

Actually it was well studied in the astronomy field that an orbit can be fully rep-
resented with six parameters. So the orbits that cross the two fixed points can be
represented with four parameters. Depending on the choice of the free parameters,
there are many ways to draw such orbits. Let’s denote by x ∈ R4 a vector that
stacks up the four parameters. Here we see that the dimension of x is six minus the
number of observation points that we fixed earlier. Increasing the number of fixed
points, a drawn orbit would more fit into the fixed points, and this may incur the
risk of not well fitting into other observations. On the other hand, without fixing
any points, we need to figure out six parameters and this may be challenging only
with 19 observations. As a number that well balances these two issues, Gauss chose
the number two.

In terms of the vector x ∈ R4, Gauss could represent a point on the orbit which
is the closest to each bi. He could approximate the point as a vector that comprises
linear combinations of the components of x, i.e., Aix. Here Ai ∈ R3×4 indicates
a certain matrix that relates bi to the nearest point on the orbit. He then believed
that if the orbit were the ground truth that we wish to figure out, then the distance
to bi, reflected in ‖Aix − bi‖, must be only within a location-measurement error.
Here ‖x‖ denotes the Euclidean norm (or called the `2 norm), defined as ‖x‖ :=√

x2
1 + · · · + x2

d where d is the dimension of x. This motivated him to formulate
the following optimization problem:

min
x∈R4

m∑
i=1

‖Aix − bi‖
2. (1.1)

Since we fixed the two points that an orbit must pass, ‖Aix− bi‖ = 0 for the fixed
points.

6 Convex Optimization Basics

Gauss then observed that
∑m

i=1 ‖Aix − bi‖
2 can be simplified as:

m∑
i=1

‖Aix − bi‖
2
=

∥∥∥∥∥∥∥
A1x − b1

...
Amx − bm

∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
A1

...
Am

 x −

b1
...

bm

∥∥∥∥∥∥∥

2

.

(1.2)

Let

A =

A1
...

Am

 ∈ R3m×4, b =

b1
...

bm

 ∈ R3m. (1.3)

Then, the optimization problem can be re-written as:

min
x∈R4
‖Ax − b‖2. (1.4)

Least squares The problem (1.4) is the famous problem that is now known
as least squares. Notice that the word “least” comes from “min” and “squares” is
due to the square exponent placed above the Euclidean norm. You may wonder
why Gauss employed the square as an exponent in the objective function. Why
not other exponents like 1, 3 or 4? This was due to the mathematical beauty that
Gauss was obsessed with. Notice that using other exponents like 1 or 3 or 4, one
cannot do the beautiful simplification like (1.2). If you cannot see why, then check
in Prob 1.1.

The least-squares problem could open up the optimization field (since then,
people have tried to theorize the field with passion) and also has played a significant
role in the field. There are two reasons as to why the problem played such a big role.
The first is that (1.4) has the beautiful closed-form solution:

x∗ = (AT A)−1AT b (1.5)

where (·)T indicates a transpose of a matrix and (·)−1 denotes a matrix inversion.
We will later show why the solution is of the form (1.5). Please be patient until
we get to the point. The second reason is that there are efficient algorithms and
software that enable us to compute the solution involving matrix inverse. Even in
the 1800s, there was an efficient matrix-inversion algorithm, based on the Gaussian
elimination due to again Gauss.

Overview of the Book 7

Leonid Kantorovich (1912 ~ 1986)
Figure 1.4. Leonid Kantorovich is a Soviet economist. He is known as the father of Linear

Program (LP), one of the prominent optimization classes that we will study soon in depth.

Since the development of the least squares, people tried to translate any problem
of their interest to a least-squares problem. So a variety of translation techniques
(that we will also study in this book) have been developed. However, people encoun-
tered many situations in which such translation does not work. This challenge was
expected. As you can easily image, the least-squares problem is just a single tiny
class of the entire optimization problems that can be formulated in the world.

A breakthrough by Kantorovich Unfortunately there was no significant
progress on the optimization theory for more than a century. But another history
was made in 1939 by a Soviet economist, named Leonid Kantorovich (Kantorovich,
1960). See Fig. 1.4 for his portrait.

He made a breakthrough in the course of solving a military-related problem
during World War II (sort of forced to do so by the Soviet Union government).
The problem that he was trying to solve was to plan expenditures and returns of
soldiers to minimize the entire cost of the Soviet Union Army as well as to maximize
the losses imposed on the enemy.

In the process, he could formulate an optimization problem now known as the
very famous linear program (LP).1 Simply put, the LP is an optimization problem

1. The “program” (or “programming”) is a jargon frequently used in the field, which refers to an optimization
problem. So the formal name of LP is a linear optimization problem.

8 Convex Optimization Basics

in which the objective function and the functions that appear in constraints are
all linear. We will delve into its formal definition later on. Unlike the least-squares
problem, the LP has no closed form solution. But the good news is that Kantorovich
could develop a very efficient algorithm that achieves the optimal solution. Actually
having a closed form solution is not that important as long as we know how to get
to the optimal solution. This achievement won him the Nobel Prize in Economics
in 1975 (Kantorovich, 1989).

The development of LP made people become very excited again, trying to
translate an interested problem into a least-squares problem or LP. While many
LP-translation techniques (that we will also study) have been developed, people
encountered still many situations in which the translation is not doable.

A class of tractable optimization problems Inspired by the development
of LP, people tried to come up with a class of tractable optimization problems
which can be solved reliably & efficiently. LP is one such instance. In a decade,
another tractable problem, called quadratic program (QP), was developed (Frank
and Wolfe, 1956). It is a generalized version, as it includes as special cases the least-
squares problem and LP. See Fig. 1.5.

In the 1990s, another problem, called second-order cone program (SOCP),
was developed which subsumes as special cases all of the prior problems (Nes-
terov and Nemirovskii, 1994). Around at the same time, a larger class of problem,
called semi-definite program (SDP), was developed (Alizadeh, 1991; Nesterov and
Nemirovskii, 1994). More and more tractable problems have been developed so far.
It turns out that all of the tractable problems share the common property (concern-
ing the word “convex”), and this property established the class of tractable prob-
lems, named convex optimization, which we will focus mostly on throughout this
book.

Least-squares Linear Program
(LP)

Quadratic Program (QP)

Second-Order Cone Program
(SOCP)

Semi-Definite Program
(SDP)

……

Convex Optimization

19391800s

1956

1994

1994

Figure 1.5. A class of tractable optimization problems: Convex optimization.

Overview of the Book 9

Book outline This book consists of three parts. In Part I, we will study the basic
concepts and several mathematical definitions required to understand what convex
optimization is as well as how to translate an interested problem into a convex prob-
lem. We will then explore five instances of convex optimization problems: LP, least
squares, QP, SOCP and SDP. We will focus on techniques which serve recognizing
(and translating to) such problems. We will also study some prominent algorithms
for solving the problems. In Part II, we will study one of the key theories in the
optimization field, called duality. There are two types of dualities: (1) strong dual-
ity; and (2) weak duality. The strong duality is quite useful for gaining algorithmic
insights for convex problems. The weal duality helps dealing with difficult non-
convex problems, by providing an approximated solution. In the last third part, we
will explore applications that arise in machine learning: (i) supervised learning, one
of the most popular machine learning methodologies; (ii) Generative Adversarial
Networks (GANs), one of the breakthrough models for unsupervised learning; and
(iii) fair classifiers, which is one of the trending topics in machine learning.

10 Convex Optimization Basics

1.2 Definition of Convex Optimization

Recap In the last section, we figured out how the optimization theory was devel-
oped. There were two breakthroughs in the history of optimization. The first was
made by the famous Gauss. In the process of solving an astronomy problem of fig-
uring out the orbit of Ceres (which many astronomers were trying to address in
the 1800s), he could develop an optimization problem, which is now known as
the least-squares problem. The beauty of the least-squares problem is two folded:
(i) it has a closed form solution; and (ii) there is an algorithm which enables us to
efficiently do matrix inversion required for computing the solution. The beauty of
the problem opened up the optimization field and has played a significant role in
the field.

The second breakthrough was made by Leonid Kantorovich. In the process of
solving a military-related problem, he could formulate a problem which is now
known as linear program (LP). The good thing about LP is that there is an efficient
algorithm which allows us to compute the optimal solution reliably and efficiently
although the closed form solution is unknown. In other words, Kantorovich came
up with the concept of tractable optimization problems which can be solved via
an algorithm without the knowledge of the concrete form of the optimal solution.
This motivated many followers to mimic his approach, thereby coming up with
a class of tractable optimization problems: convex optimization. See the class of
convex optimization problems in Fig. 1.6.

Outline The goal of this section is to understand what convex optimization is.
To this end, we will cover four stuffs. First we will study a standard mathematical
formulation of optimization problems. It turns out the definition of convex opti-
mization problems requires the knowledge of convex functions. But the definition of
convex functions relies upon the concept of convex sets. So in the second part, we

Least-squares Linear Program
(LP)

Quadratic Program (QP)

Second-Order Cone Program
(SOCP)

Semi-Definite Program
(SDP)

……

Convex Optimization

19391800s

1956

1994

1994

Figure 1.6. A class of tractable optimization problems: Convex optimization.

Definition of Convex Optimization 11

will study what the convex set is. We will also investigate some important examples
which help us to be familiar with the concept as well as which play an important
role in defining convex optimization. Next we will study the definition of convex
functions, building upon a couple of examples and crucial properties to be explored
in depth. Using all of these, we will finally investigate a standard mathematical for-
mulation of convex optimization problems.

Optimization problem in standard form Let us start by recalling the defini-
tion of optimization: Choosing an optimization variable that minimizes (or maxi-
mizes) a certain quantity of interest possibly given constraints. We denote the opti-
mization variable by x := [x1, . . . , xd]T

∈ Rd where d indicates the dimension
of the variable. Denote the objective function (the certain quantity) by f (x) ∈ R.
Notice that the objective function should always be a real number, not a vector.
There are two types of constraints: (i) inequality constraints; and (ii) equality con-
straints. The inequality constraints are represented by the form like fi(x) ≤ ci where
i ∈ {1, . . . , m}. Here m indicates the number of the constraints. Without loss of
generality (WLOG), the constant ci can be merged with fi(x) and hence the form
can be simplified as: fi(x) ≤ 0. Here the WLOG means that the general case can
readily be covered with some proper modification to the simplified case of focus.
That’s why here we say that there is no loss of generality although we focus on the
simplified case. Similarly the equality constraints can be represented by: hi(x) = 0
where i ∈ {1, . . . , p} and p denotes the number of the equality constraints.

Using these notations, one can write the standard form of optimization prob-
lems as:

min
x∈Rd

f (x)

subject to fi(x) ≤ 0, i ∈ {1, 2, . . . , m},

hi(x) = 0, i ∈ {1, 2, . . . , p}.

(1.6)

WLOG, it suffices to consider the minimization problem, since the maximization
problem can readily come by flipping the sign of f (x): min f (x) is equivalent to
max−f (x). Here we have two conventions that allow us to simplify the above
form (1.6). First we use the colon “:” to indicate the “subject to”. Second, x ∈ Rd

placed below min is often omitted since the role of x is clear enough from the
context. Hence, the simpler form reads:

min f (x) : fi(x) ≤ 0, i ∈ {1, 2, . . . , m},

hi(x) = 0, i ∈ {1, 2, . . . , p}.
(1.7)

12 Convex Optimization Basics

Two more things to note. One is the optimal value, denoted by p∗ := min f (x).
The other is the optimal solution, denoted by x∗ := arg min f (x). Or it is called the
minimizer. Here “arg min” stands for “argues the one that minimizes”.

Convex set Now what is convex optimization that we wish to figure out in this
section? As mentioned in the beginning, to define this, we need to know about the
concept of convex functions. But the definition of convex functions requires the
knowledge of convex sets. So we will first study the definition of the convex set.

A set S is said to be convex if and only if

x, y ∈ S H⇒ λx + (1− λ)y ∈ S, ∀λ ∈ [0, 1] (1.8)

where the sign “∀” means “for all”.

Examples: Point, line, plane, line segment, … To get a concrete feel about
what the convex set means, let us explore several examples. The first simplest exam-
ple is the set containing a single point. This is obviously a convex set, as any convex
combination that lies in between x and y, represented as λx + (1− λ)y, is just the
single point.

The second simplest example is perhaps the set that contains a line that lives in a
2-dimensional ambient space. This is also convex because any convex combination
of two points lying on a line should also lie on the line. Here let us investigate
how to represent the convex set. This representation will help us to understand the
concept of convex optimization later on. Notice that the line in a 2-dimensional
space can be represented as: y = ax + b where a and b indicate the slope and
y-intercept, respectively. Hence, one can represent the set as:

S = {x := [x1, x2]T : x2 = a1x1 + b1}. (1.9)

Here we use the notations (x1, x2) instead of (x, y); also (a1, b1) instead of (a, b).
Using vector notations, one can define a := [−a1, 1]T and b1 := b, which in turn
simplifies the representation (1.9) as:

S = {x : aT x − b = 0}. (1.10)

The third example is the naive extension of the second example: a plane living
in a 3-dimensional space. This is also obviously a convex set, as any combination of
two points lying on a plane also lies on the plane. The representation of the convex
set is exactly the same as (1.10), except that now the dimension of x and a are 3.
Why?

The fourth example is the one in which the dimension of an object of interest
differs from d ≥ 2 by 2. One such example is the set that contains a line living
in a 3-dimensional space. This is also a convex set, since the object of interest is a

Definition of Convex Optimization 13

line. But the representation of such a convex set is different from that of (1.10).
A line is actually the intersection of two planes in a 3-dimensional space. So the
representation of the set should read:

S = {x : aT
1 x − b1 = 0, aT

2 x − b2 = 0}. (1.11)

Defining A := [a1, a2]T and b := [b1, b2]T , one can simplify this as:

S = {x : Ax − b = 0} (1.12)

where the thick 0 indicates the all-zero vector [0, 0]T . For illustrative simplicity, we
will use the normal 0 even to denote the all-zero vector, as it may be clear from the
context.

Looking carefully at these examples, one can see that the representation of a
line, a plane or a hyperplane (a subspace whose dimension is one less than that
of its ambient space) lying in a larger-dimensional ambient space reads the form
like (1.12). Depending on the dimension of the matrix A ∈ Rp×d , S may refer
to the set containing a line, a plane or a higher-dimensional plane. For instance,
when d − p = 1, S refers to a line. When d − p = 2, S indicates a plane. The set
represented by the form (1.12) is called an affine set. An affine function is a linear
function that allows for having a bias constant term; the formal definition will be
given later on. Since the set in (1.12) includes the affine function f (x) = Ax − b,
it is called an affine set.

Another example that we would like to mention is the line segment; see the left top
in Fig. 1.7. Again this is obviously a convex set. On the other hand, a broken line,
a line that is broken in the middle, is not convex, since some convex combination
of two points in the broken line may fall into to somewhere in the broken place;
see the right top in Fig. 1.7.

More examples: Convex polygon, polyhedron, polytope, … You may won-
der if there are any other examples beyond point/line/plane. Of course, there
are many. One object that you may be interested in is: a polygon living in a

line segment broken line

boundary-only polygonclosed polygon

Figure 1.7. Examples of convex sets (left two) and non-convex sets (right two).

14 Convex Optimization Basics

2-dimensional space. In particular, the closed polygon in which points inside (and
boundary at) the polygon are included in the set is a convex set. See the left bottom
in Fig. 1.7 for illustration. On the other hand, the boundary-only polygon is not a
convex set. See the right bottom in Fig. 1.7.

As you may imagine, the representation of the closed-polygon convex set is dif-
ferent from the form (1.12) of affine sets. The closed-polygon can actually be rep-
resented as the intersection of half-planes. A half-plane is a planar region consisting
of all points on one side of an infinite straight line, and no points on the other
hand. It is represented by aT

i x − bi ≤ 0. Hence, the representation of such a set
reads:

S = {x : Ax − b ≤ 0} (1.13)

where the inequality indicates a component-wise inequality.
Similarly, a polyhedron living in a 3-dimensional ambient space (or a polytope

living in an d -dimension space and hence difficult to visualize) is a convex set and
can also be represented as the form like (1.13).

Convex function We are now ready to define the convex function. A real-valued
function f (x) is said to be convex if the following two conditions are satisfied:

(i) the domain of the function f , denoted by domf (the set in which the input
x of the function lies in), is a convex set; and

(ii) for x, y ∈ domf and λ ∈ [0, 1]:

f (λx + (1− λ)y) ≤ λf (x)+ (1− λ)f (y). (1.14)

Here you can see why we needed to know about the concept of the convex set. The
concept appears while mentioning the first condition that domf should satisfy.
Actually this “convex set” condition is required; otherwise, a problem occurs when
it comes to stating the second key condition in (1.14), because the function in the
left hand side cannot be defined. Notice that the input argument in the function is
λx+ (1−λ)y and this should be in domf (meaning that domf should be convex);
otherwise, f (λx + (1− λ)y) cannot be defined.

If you think about some picture that reflects the second key condition (1.14),
then you can readily get a feel about why the convex function should be defined in
such a manner. The meaning of “convex” is “bowl-shaped”. So we can think about
a bowl-shaped curve like the one as illustrated in Fig. 1.8. Consider two points,
say x and y, and a λ-weighted convex combination, λx + (1 − λ)y. The function
evaluated at λx + (1 − λ)y is on the bowl-shaped curve while the same-weighted
convex combination λf (x)+ (1− λ)f (y) of the two functions evaluated at x and

Definition of Convex Optimization 15

Figure 1.8. A geometric intuition behind convex functions.

y is above f (λx + (1− λ)y). Hence, the key condition (1.14) comes naturally as a
consequence of the bowl-shaped feature of the curve.

There are tons of examples of convex functions and also many of these are the
ones that you should be familiar with if you wish to be an expert in this field. Or at
least you may want to know some of them in which the problems of your interest
can be linked to. But exploring many of such examples may be too much now – it is
just the beginning of the book, so that way you will be exhausted shortly. Thus we
will here investigate only a couple of examples. One example of a convex function is:

f (x) =
1

x
x > 0. (1.15)

Here the function is indeed bowl-shaped, so it respects the second condition (1.14).
Also domf = {x : x > 0} is a convex set, satisfying the first condition. Hence, the
function is convex.

Now what about a slightly different function:

f (x) =
1

x
? (1.16)

Here the distinction is that domf is not explicitly defined. In this case, we should
think about an implicit constraint that x should satisfy. The implicit constraint is:
x 6= 0, thus yielding:

domf = (−∞, 0) ∪ (0,∞).

Since domf is not convex, the function is not convex either.
There is a way to handle this issue to make such a non-trivial function convex.

The way is to make domf span the entire region (making it convex) while setting
the function to some arbitrary quantities for newly added regions. For instance, we

16 Convex Optimization Basics

can define the function as:

f (x) =

{1
x , x > 0;

+∞, x ≤ 0.
(1.17)

Notice that now dom = (−∞,∞) is a convex set. Also one can readily verify that
the key condition (1.14) is satisfied. Hence, the function is convex.

There is another function which is defined very similarly to the convex function.
That is, a concave function. We say that f (x) is concave if −f (x) is convex. The
geometric intuition says that the function of a bell shape is concave. Also a function
is said to be affine (linear plus bias) if it is convex and concave.

On a side note: Here you may wonder if there is a corresponding set with respect
to (w.r.t.) concave functions, like a concave set. Unlike a convex set, people do
not introduce any definition for a set regarding concave functions. Remember in
the definition of convex functions that the convex set was employed only for the
purpose of making f (λx+ (1− λ)y) definable at the convex combination. Hence,
the same convex set suffices to define concave functions.

Convex sets defined in terms of general convex functions Previously we
investigated a bunch of examples of convex sets where only affine functions, Ax−b
(linear and bias-allowing functions), are introduced. There are many convex sets
concerning general convex functions. Here we list a couple of such examples.

One such example is:

S = {x : f (x) ≤ 0} (1.18)

where f (x) is a convex function. Here is the proof that S is a convex set. Suppose
x, y ∈ S. Then, f (x) ≤ 0 and f (y) ≤ 0. This together with the convexity of f ,
reflected in the condition (1.14), gives:

f (λx + (1− λ)y) ≤ 0,

which in turn implies that λx + (1− λ)y ∈ S. This completes the proof.
Another example is the intersection of such convex sets:

S = S1 ∩ S2

S1 = {x : f1(x) ≤ 0}, S2 = {x : f2(x) ≤ 0}.
(1.19)

Try the proof in Prob 1.4. Actually the intersection of arbitrary convex sets is also
convex – check in Prob 1.4 as well.

Definition of Convex Optimization 17

Convex optimization problem in standard form We are now ready to define
the convex optimization problem. It is an optimization problem which satisfies
the following three: (i) The objective function is convex; (ii) The set induced by
inequality constraints is convex; and (iii) The set induced by equality constraints
is convex. So the standard form of the convex optimization problem reads (1.7) in
which (i) f (x) is convex; (ii) fi(x) is convex; and (iii) hi(x) is affine. Notice that the
set induced by affine equality constraints S = {x : Ax − b = 0} is a convex set as
we studied earlier.

On a side note: Notice that the standard form exhibits just a sufficient condition
under which the set induced by inequality constraints is convex. There are indeed
a bunch of convex sets which take the form like (1.18) yet having a non-convex
function f (x). But it turns out that in many cases, convex sets can be represented
as the form like (1.18) with a convex function f (x). This is one of the main reasons
that people define convex optimization in such a manner.

Look ahead There is another reason that the convex optimization problem is
defined in such a manner. This is because the way of definition makes the prob-
lem tractable. In the next section, we will provide an intuition as to why convex
optimization is tractable. We will then start investigating one instance of convex
optimization: Linear Program (LP).

18 Convex Optimization Basics

1.3 Tractability of Convex Optimization and Gradient
Descent

Recap In the last section, we studied the concept of convex sets and convex func-
tions to understand what convex optimization is. We then figured out that convex
optimization is defined as:

min f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m},

hi(x) = 0, i ∈ {1, . . . , p}
(1.20)

where f (x) and fi(x)’s are convex and hi(x)’s are affine functions. There was a rea-
son that many people have been interested in such convex optimization defined
particularly as above. The reason is that the way of defining the problem makes the
problem tractable. Here what it means by tractable is that the optimal solution can
be achieved via an algorithm (often with the help of a computer) even if the closed
form solution is unknown.

Outline The main goal of this section is to understand why such a particular way
of definition enables tractability. We will try to understand this by focusing on
two cases: (i) unconstrained minimization; and (ii) constrained minimization. For
the unconstrained case, we will present an explicit intuition as to why the convex
objective function yields a tractable way of solving the problem. Specifically we will
first derive a simple-looking necessary and sufficient condition for the optimality
of a solution and then argue that there are efficient algorithms that allow us to
satisfy the condition, thus obtaining the optimal solution. We will also study one
very prominent algorithm, named gradient descent. For the constrained case, on
the other hand, we will rely upon a well-known theory (to be studied in depth in
Part II) to argue that there are also efficient algorithms that allow us to solve the
problem.

Another goal of this section is to give an overview to the contents regarding one
instance of convex optimization problems: Linear Program (LP). This is what we
will cover through a couple of upcoming sections.

Assumption While investigating the two cases, we will assume that: (i) the objec-
tive function f (x) is differentiable at every point x in domf ; (ii) domf is open; and
(iii) f (x) has a stationary point, i.e., there exists x∗ such that ∇f (x∗) = 0. The
rationale behind this assumption is two folded. The first is that the assumption
represents many practically-relevant scenarios. Second, the assumption allows us to
easily explain an intuition behind the tractability of convex optimization. This will
be clearer as this section progresses.

Tractability of Convex Optimization and Gradient Descent 19

Figure 1.9. 1st order condition of convex functions: f (x) ≥ ∇f (x∗)T (x−x∗)+ f (x∗), ∀x ∈ domf .

Unconstrained minimization Let us start by investigating the unconstrained
convex optimization:

min f (x).

Recall the meaning of convex: “bowl-shaped”. So one can think of a graph illus-
trated in Fig. 1.9. This graph also respects our assumption that there exists a sta-
tionary point. Here you can easily see that the slope of the objective function
at the optimal point x∗ is 0, and also vice versa (meaning that the point with
the slope being 0 is the optimal solution). This naturally guides us to conjecture
that ∇f (x∗) = 0 is a sufficient and necessary condition in order for x∗ to be
optimal:

∇f (x∗) = 0⇐⇒ f (x) ≥ f (x∗) ∀x ∈ domf . (1.21)

It turns out this conjecture indeed holds. Here is the proof.
Proof of the direct part (H⇒) in (1.21): To gain some insights, let us see a convex

function f (x) in Fig. 1.9. Pick up a point (x∗, f (x∗)). Now consider a line that
passes through the point (x∗, f (x∗)) with a slope ∇f (x∗) so that it is tangent to
f (x). Then, the line should read: ∇f (x∗)T (x − x∗) + f (x∗). Here the picture
suggests that the convex function f (x) is above (or touching) the line:

f (x) ≥ ∇f (x∗)T (x − x∗)+ f (x∗) ∀x ∈ domf . (1.22)

It turns out this is indeed the case, meaning that the condition (1.22) (together with
domf being convex) holds for any x, y ∈ domf if and only if f (x) is convex. This
is one of the crucial properties of convex functions, called the “1st order condition
of convex functions”. The proof of this is omitted here, but you will have a chance
to prove this in Prob 1.5. This together with the hypothesis (∇f (x∗) = 0) gives:
f (x) ≥ f (x∗), ∀x ∈ domf .

20 Convex Optimization Basics

Proof of the converse part (⇐H) in (1.21): The converse proof relies upon the
following fact:

f (x) ≥ f (x∗) ∀x ∈ domf H⇒ ∇f (x∗)T (x − x∗) ≥ 0 ∀x ∈ domf .

(1.23)

Let us adopt this for the time being. We will prove this fact once we finalize the
converse proof.

Suppose ∇f (x∗) 6= 0. Here the key thing to note is that there is no constraint
on x, except that x ∈ domf . So one can choose x such that x − x∗ points to an
arbitrary direction. This implies that we can easily choose x such that

∇f (x∗)T (x − x∗) < 0. (1.24)

This contradicts with the RHS of (1.23). Hence, it must be that∇f (x∗) = 0. This
completes the proof.

Let us now prove (1.23) which we deferred proving earlier.
Proof of (1.23): The proof idea is by contradiction. Suppose that there exists x

(i.e., ∃x) ∈ domf such that:

∇f (x∗)T (x − x∗) < 0. (1.25)

Consider a point: z(λ) := λx + (1 − λ)x∗ where λ ∈ [0, 1]. Notice that z(λ) ∈
domf , as the function f is convex and therefore its domain is a convex set. Here
what we want to show is that for a very small λ ≈ 0, f (z(λ)) < f (x∗). This is
because f (z(λ)) < f (x∗) contracts with the fact that x∗ is an optimal solution,
thus leading to contradiction. To show this, we consider the following quantity:

d
dλ

f (z(λ))
(a)
= ∇f (z(λ))T

d
dλ

z(λ)

(b)
= ∇f (z(λ))T (x − x∗)

where (a) follows from a chain rule and (b) is due to the definition of z(λ) :=
λx + (1− λ)x∗. Now evaluating both sides at λ = 0, we get:

d
dλ

f (z(λ))

∣∣∣∣
λ=0
= ∇f (x∗)T (x − x∗) < 0 (1.26)

where the last inequality comes from our assumption (1.25). Here the derivative of
f (z(λ)) being negative at λ = 0 implies that f (z(λ)) decreases with λ and therefore:

f (z(λ)) < f (x∗). (1.27)

Tractability of Convex Optimization and Gradient Descent 21

This contradicts with the hypothesis f (x) ≥ f (x∗) ∀x ∈ domf . This completes
the proof.

Gradient descent So what we can conclude with respect to (w.r.t.) uncon-
strained minimization is that:

∇f (x∗) = 0 is a sufficient and necessary condition for x∗ to be optimal.

This suggests that it suffices to find a point such that (s.t.) its gradient is 0. But
there are some issues in obtaining such a point. Two issues. One is that computing
∇f (x)may not be that simple. The second is that analytically finding such a point
may not be doable even if one can explicitly compute the gradient. However, there
is a good news. The good news is that there are several algorithms which allow us to
find such a point numerically without the knowledge of the closed form solution.
One prominent algorithm that has been widely employed in a variety of fields is:
gradient descent.

Here is how the algorithm works. The gradient descent is an iterative algorithm.
Suppose that at the tth iteration, we have an estimate of x∗, say x(t). We then
compute the gradient of the function evaluated at the estimate: ∇f (x(t)). Next we
update the estimate along a direction being opposite to the direction of the gradient:

x(t+1)
←− x(t) − α(t)∇f (x(t)) (1.28)

where α(t) > 0 indicates the learning rate (or called a step size) that usually decays
like α(t) = 1

2t .
If you think about it, this update rule makes an intuitive sense. Suppose x(t)

is placed right relative to the optimal point x∗, as in the two-dimensional case2

illustrated in Fig. 1.10.
Then, we should move x(t) to the left so that it becomes closer to x∗. The update

rule actually does this, as we subtract by α(t)∇f (x(t)). Notice that ∇f (x(t)) points
to the right direction given that x(t) is placed right relative to x∗. We repeat this
procedure until it converges. It turns out: as t →∞, it converges:

x(t) −→ x∗, (1.29)

as long as the learning rate is chosen properly, like the one decaying exponentially.
We will not touch upon the proof of this convergence. In fact, the proof is difficult –
even there is a big field in statistics which intends to prove the convergence of a
variety of algorithms (if the convergence holds).

2. In a higher-dimensional case, it is difficult to visualize how x(t) is placed. Hence, we focus on the two-
dimensional case. It turns out that gradient descent works even for high-dimensional settings although it is
not 100% intuitive.

22 Convex Optimization Basics

slope:

t-th estimate

Figure 1.10. How gradient descent works.

Constrained minimization As mentioned in the beginning of this section, to
give insights in the constrained minimization, we will rely upon a well-known the-
ory that we will touch upon in depth later in Part II. The theory is called strong
duality. There is a rigorous mathematical statement of strong duality. But here we
will state only an implication of strong duality because in that way we can even
understand a rationale without introducing any further notations and concepts.
The implication of strong duality is:

Convex-constrained problem can be translated into an unconstrained
convex optimization without loss of optimality.

This suggests that it suffices to consider a translated unconstrained minimization;
hence, we can rely on efficient algorithms like gradient descent to solve the prob-
lem. In summary, we have efficient algorithms for solving both unconstrained and
constrained convex optimization. This is exactly the reason why we define convex
optimization in the particular manner mentioned at the beginning.

You may be eager to know about strong duality right now because we relied
heavily on the theory for the purpose of explaining the tractability of convex opti-
mization. However, we will not touch upon it now because the proof requires many
deep backgrounds. If we do so now, you will be easily distracted, potentially losing
an interest in the optimization field. Please be patient until we get to that point in
Part II.

Overview of Linear Program (LP) From now on, we will start investigating
several instances of convex optimization problems. One instance that we will take
first is: Linear Program (LP).

min f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m},

hi(x) = 0, i ∈ {1, . . . , p}.
(1.30)

Here we say that (1.30) is an LP if all functions f (x), fi(x)’s, hi(x)’s are affine.

Tractability of Convex Optimization and Gradient Descent 23

Since Kantorovich’s breakthrough, people realized that many interesting/impor-
tant problems can be formulated as LPs such as: (i) resource allocation problems
(like the military-related problem that Kantorovich considered); (ii) transportation
problems (Monge, 1781) (important problems that arise in economics and other
relevant areas); (iii) the classification problem (one of the most classical and popu-
lar problems in machine learning); (iv) the network flow problem (a fundamental
problem in computer networks); and so on and so forth.

Moreover, some very difficult problems in which the optimization variable is
boolean (binary values) can be approximated as an LP via a relaxation technique.
Very interestingly, in some cases, the LP relaxation yields the exact solution to the
original problem, meaning it comes without loss of optimality.

Look ahead Through a couple of upcoming sections, we will deal with the above
examples together with algorithms and software implementation. Specifically we are
going to cover four stuffs. First we will study a few examples that can be formulated
as LPs. Second, we will study the LP relaxation technique which we claimed useful
for some very difficult problems. Third, we will investigate efficient algorithms for
solving LPs. Lastly we will study how to implement such algorithms using software
tools like CVXPY running in Python.

24 Convex Optimization Basics

Problem Set 1

Prob 1.1 (Least Squares) Let A := [a1 · · · am]T and b := [b1 · · · bm]T

where ai ∈ Rd and bi ∈ R, i ∈ {1, . . . , m}.

(a) Consider a function f : Rd
→ R : f (x) = ‖aT

1 x−b1‖+· · ·+‖aT
mx−bm‖

where x ∈ Rd and ‖ · ‖ denotes the Euclidean norm. A student claims that
the function f can be represented as:

f (x) = ‖Ax − b‖. (1.31)

Prove or disprove the claim.
(b) Consider another function f : Rd

→ R:

f (x) = ‖Ax − b‖2. (1.32)

Using only the definition of a convex function, show that f (x) is convex in
x ∈ Rd .

Prob 1.2 (Basics on gradients) Let f : Rd
→ R be a differentiable function.

Let x = [x1, x2, . . . , xd]T
∈ Rd , B ∈ Rd×d and c ∈ Rd .

(a) Explain the concept of gradient ∇f with respect to (w.r.t.) x (or
denoted by ∇xf).

(b) Suppose f (x) = xT x. Derive ∇f w.r.t. x. Show all of your detailed
derivation.

(c) Suppose f (x) = xT Bx. Derive ∇f w.r.t. x. Show all of your detailed
derivation.

(d) Suppose f (x) = cT x. Derive ∇f w.r.t. x. Show all of your detailed
derivation.

(e) Suppose f (x) = xT c. Derive ∇f w.r.t. x. Show all of your detailed
derivation.

Prob 1.3 (Representation of convex sets)

(a) In Section 1.2, it was claimed that a plane in a 3-dimensional space can be
represented as

S = {x : aT x − b = 0}. (1.33)

where x, a ∈ R3 and b ∈ R. Explain why.
(b) State the definition of a hyperplane. What is the representation of

a set that indicates a hyperplane in a d -dimensional ambient space?

Problem Set 1 25

Specify the dimension of matrices and vectors (if any) employed in your
representation.

(c) State the definition of a polytope. What is the representation of a set that
indicates a polytope in a d -dimensional ambient space? Specify the dimen-
sion of matrices and vectors (if any) employed in your representation.

Prob 1.4 (Convex sets) Let f1 : Rd
→ R and f2 : Rd

→ R be convex func-
tions.

(a) In Section 1.2, we proved that Si = {x : fi(x) ≤ 0} is convex for i ∈ {1, 2}.
Show that S = S1 ∩ S2 is convex.

(b) Suppose S1 and S2 are arbitrary convex sets. Prove that S = S1 ∩ S2 is
convex.

(c) Suppose f : Rd
→ R be a concave function. A student claims that C =

{x : f (x) ≤ 0} is not convex. Prove or disprove the claim.

Prob 1.5 (1st-order condition of convexity) Suppose f : Rd
→ R is differ-

entiable, i.e., its gradient ∇f exists at each point in domf . In Section 1.3, it was
claimed that f is convex if and only if

domf is convex;

f (x) ≥ ∇f (x∗)T (x − x∗)+ f (x∗) ∀x, x∗ ∈ domf .
(1.34)

This problem explores the proof of the above.

(a) Suppose d = 1. Show that if f (x) is convex, then (1.34) holds.
(b) Suppose d = 1. Show that if (1.34) holds, then f (x) is convex.
(c) Prove the claim for arbitrary d ∈ N.

Prob 1.6 (Composition of convex functions) Let f : Rd
→ R be a real-

valued function. The same holds for g , f1 and f2.

(a) Show that if the functions f (x) and g(x) are convex, so is f (x)+ g(x).
(b) Let A and b be a matrix and a vector of compatible size. Show that if f (x)

is convex, so is f (Ax + b).
(c) Show that if f1 and f2 are convex, so is max{f1(x), f2(x)}.
(d) Show that if f (x) is convex, then− log(−f (x)) is convex on {x : f (x) < 0}.

Prob 1.7 (Jensen’s inequality) Suppose that f : Rd
→ R is convex,

x1, . . . , xk ∈ domf , and λ1, . . . , λk ≥ 0 with λ1 + · · · + λk = 1. Show that

f (λ1x1 + · · · + λkxk) ≤ λ1f (x1)+ · · · + λkf (xk). (1.35)

Also, identify the conditions under which the equality holds.

26 Convex Optimization Basics

Prob 1.8 (Logistic function) Let x, w ∈ Rd . Let

σ(t) :=
1

1+ e−t , t ∈ R. (1.36)

(a) A student claims that L(w) := − log σ(wT x) is convex in w. Prove or
disprove the claim.

(b) A student claims that L(w) := log
(
1− σ(wT x)

)
is convex in w. Prove or

disprove the claim.

Prob 1.9 (Convex function vs convex set) Let f : Rd
→ R be a real-valued

function. In Section 1.2, we proved that if f (x) is convex, S = {x : f (x) ≤ 0} is a
convex set. A student claims that if S is a convex set, f (x) must be convex. Prove
or disprove the claim.

Prob 1.10 (Gradient descent)

(a) Consider an optimization problem:

min x2
− 2x (1.37)

where x ∈ R. Suppose we perform gradient descent with an initial point
x(0) = 5 and the learning rate α(t) = 1

2t . Using Python to plot the objective
function evaluated at x(t) as a function of t where x(t) denotes the estimate
at the t-th iteration. What is the limiting value of x(t)? Does it converge to
the optimal solution that you can obtain analytically?

(b) Now consider:

max−x2
+ 4x (1.38)

where x ∈ R. Can you apply gradient descent to approach the optimal
solution numerically (without converting max into min optimization)? If
so, redo part (a)with the same initial point and the learning rate. Otherwise,
come up with another iterative algorithm which bears similarity to gradient
descent, yet which allows us to obtain the optimal solution. Also explain
why. In addition, plot the objective function evaluated at x(t) as a function
of t where x(t) denotes the t-th estimate of your algorithm.

Prob 1.11 (True or False?)

(a) A line is represented as:

S = {x : aT x − b = 0} (1.39)

where a, x ∈ Rd and b ∈ R.

Problem Set 1 27

(b) Consider a set {(x1, x2) ∈ R2 : x1
x2
≥ 1, x1 > 0, x2 > 0} where x1, x2 ∈ R.

The set is convex.
(c) Consider a set {(x, t) ∈ Rd+1 : xT x ≤ t} where x ∈ Rd , t ∈ R, d ∈ N.

The set is convex.
(d) Suppose that f1, f2, f3, f4 : Rd

→ R are concave functions. Then,

max{min{f1(x), f2(x)}, min{f3(x), f4(x)}} (1.40)

is convex.
(e) Consider functions fi(x), i ∈ {1, 2, . . . , m}. Then, the following function

max
x∈domf

m∑
i=1

λifi(x) (1.41)

is always convex in λ := [λ1, . . . , λm]T
∈ Rm.

28 Convex Optimization Basics

1.4 Linear Program (LP)

Recap In Section 1.3, we tried to understand why convex optimization stated
below is tractable, i.e., it can be solved efficiently via an algorithm even if the closed
form solution is unknown:

min f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m},

hi(x) = 0, i ∈ {1, . . . , p}
(1.42)

where f (x) and fi(x)’s are convex and hi(x)’s are affine functions. To this end, we
considered two cases: (i) unconstrained case; and (ii) constrained case. For uncon-
strained minimization, we first derived the necessary and sufficient condition for
x∗ to be optimal: ∇f (x∗) = 0, assuming that there exists a stationary point and
that f is differentiable at every point ∈ domf , which is open. We then investi-
gated one prominent algorithm for finding such a solution: gradient descent. The
gradient descent is an iterative algorithm which allows us to achieve x∗ numer-
ically. For constrained minimization, on the other hand, we relied upon a the-
ory so called strong duality which enables translating a convex-constrained prob-
lem into an unconstrained convex problem without loss of optimality. So with
this theory, we can use algorithms like gradient descent to address the convex-
constrained problem. This is how we understood why convex optimization is
tractable.

We then moved onto one simple instance of convex optimization: Linear Pro-
gram (LP). The standard form reads:

min wT x : Ax − b ≤ 0,

Cx − e = 0
(1.43)

where w, A, b, C and e are of compatible size and the inequality is component-wise
one. At the end, we claimed that many interesting and important problems can be
translated into LPs.

Outline The goal of this section is to defend the claim. To this end, we will study
two prominent and historical examples which can be formulated as LPs. The first
is a resource allocation problem which is also called an optimal planning problem.
This has been the most important problem in economics and operation research
in the 20th century. Specifically we will investigate a historical problem (explored
by the father of LP, Leonid Kantorovich (Gardner, 1990)), which later gave inspi-
rations to the development of LP. The second is a transportation problem which
has been playing a crucial role in a variety of fields for centuries. In particular we
will study a problem explored by the farther of Transportation Theory, Gaspard

Linear Program (LP) 29

wood 1
machine 1

machine 2

wood 2
10 10

20 40

units/time

Figure 1.11. Machine capabilities of peeling woods.

Monge, a French mathematician in the 18th century (Monge, 1781). While inves-
tigating these examples, we will learn a couple of techniques that serve to formulate
an LP: (i) how to express conditions (given in a problem) in terms of vector and
matrix notations; (ii) how to set up a proper optimization variable that yields an
LP formulation; and (iii) how to translate a convex function into an affine function
that arises in the standard form of LP.

Kantorovich’s plywood cutting problem (Gardner, 1990) One of the
problems that Kantorovich considered is the plywood cutting problem. Kantorovich
encountered the problem in 1937 while interacting with plywood engineers. For
simplicity, we consider a much simpler version of the original problem.

The problem is about allocating the time for the use of different machines for
peeling different kinds of woods. Suppose there are two kinds of woods to peel,
say wood 1 and wood 2. Also there are two different peeling machines: machine
1 and machine 2. Each machine has a different capability of peeling. Machine
1 can peel 10 units/time for either type of wood. On the other hand, machine
2 can peel 20 units/time for wood 1 while peeling 40 units/time for wood 2.
See Fig. 1.11.

The goal of the problem is to maximize the total wood production. But there is
a constraint. The constraint is that production is desired to meet the equal propor-
tion, i.e., the amount of wood 1 peeled is desired to be the same as that of wood
2. If there is a remnant part which exceeds the equal proportion, then it is simply
discarded. So the objective is to maximize the minimum of wood 1 and 2 products:

max min
{
wood 1 product, wood 2 product

}
. (1.44)

What is an optimization variable? In other words, what is a quantity that affects
the objective function? That is, the time that we use for peeling each wood with
a certain machine. Let x1 be machine 1’s time for peeling wood 1. Normalizing
the time, we can assume that 0 ≤ x1 ≤ 1. Assuming that machines are always
operating, machine 1’s time for wood 2 would be 1 − x1. Similarly define 0 ≤
x2 ≤ 1 as machine 2’s time for peeling wood 1. Using these notations together with
machine capabilities illustrated in Fig. 1.11, we get: wood 1 product = 10x1+20x2

(units); wood 2 product = 10(1 − x1) + 40(1 − x2) (units). Now applying this
to (1.44) and flipping the sign of the objective function, we obtain a minimization

30 Convex Optimization Basics

problem as follows:

min max {−10x1 − 20x2, 10(x1 − 1)+ 40(x2 − 1)} :

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.
(1.45)

Translation to an LP Notice in (1.45) that the objective function max{·, ·}
(marked in red) is convex (why? check in Prob 1.6), but it is not affine, so it is not
an LP. This is exactly where one important technique kicks in. One technique that
allows us to convert such a convex function into an affine function is to introduce
another variable, say x3, such that:

x3 ≥ −10x1 − 20x2, x3 ≥ 10(x1 − 1)+ 40(x2 − 1). (1.46)

Now consider the following optimization:

min x3 :

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,

− 10x1 − 20x2 − x3 ≤ 0,

10x1 + 40x2 − x3 − 50 ≤ 0.

(1.47)

Here the key observation is that the minimizer, say x∗3 , is achieved at:

x∗3 = max {−10x1 − 20x2, 10(x1 − 1)+ 40(x2 − 1)} . (1.48)

Otherwise, i.e., if x∗3 > max {−10x1 − 20x2, 10(x1 − 1)+ 40(x2 − 1)}, it con-
tradicts with the hypothesis that x∗3 is the minimizer. Hence, the translated prob-
lem (1.47) is equivalent to the original problem (1.45).

Note that the objective function and all of the functions that appear in inequality
constraints are affine. Hence, the problem is an LP. Using vector/matrix notations,
we can also represent this in the following standard form:

min wT x : Ax − b ≤ 0 (1.49)

where:

w =

0
0
1

, A =

−1 0 0

1 0 0

0 −1 0

0 1 0

−10 −20 −1

10 40 −1

, b =

0
1
0
1
0
50

. (1.50)

Linear Program (LP) 31

The first rows of A and b come from −x1 ≤ 0, and the second rows are due to
x1 − 1 ≤ 0, and so on and so forth.

Monge’s transportation problem (Monge, 1781) The second problem that
we will study is another historical problem: Monge’s problem, explored by Gaspard
Monge, a French mathematician who lived in the 18th century. In 1781, he pub-
lished a memoir, titled: Mémoire sur la théorie des déblais et des remblais (Monge,
1781). In the memoir, he introduced a transportation problem which later laid
the foundation of transportation theory. In particular, the field of transportation
theory was revolutionized in the 20th century by the recognition that the Monge’s
transportation problem can be translated into an LP. This recognition was made
by Kantorovich (Kantorovich, 1960). So here we will figure out how Kantorovich
recognized it as an LP.

Monge’s problem is about transporting soils (mined in several grounds) into
construction sites, each of which demands a certain amount of soils for construc-
tion purpose. For instance, let us consider an example illustrated in Fig. 1.12. Sup-
pose there are three grounds (marked in black squares) and four construction sites
(marked in hollowed circles). For each ground, a certain amount of soils can be
mined. Let si be the amount of soils mined in ground i ∈ {1, 2, 3}. For simplicity,
we assume that si’s are normalized such that s1 + s2 + s3 = 1. Let dj indicate the
amount of soils demanded at construction j ∈ {1, 2, 3, 4}. Assume that the total
demand is the same as the total supply. Then, d1+d2+d3+d4 = s1+ s2+ s3 = 1.

The goal of the problem is to find an optimal coupling such that the transporta-
tion cost is minimized. To figure out how to achieve this, we first need to understand
how the transportation cost is determined. We assume that the cost is proportional
to two factors: (i) distance between a ground and a corresponding construction site
and (ii) the amount of the soils sent. To quantify the distance, we need to define
coordinates of locations of grounds and constructions. Let xi and yj denote loca-
tion coordinates of ground i and construction j, respectively, where i ∈ {1, 2, 3}

: amount of soil

amount of soil sent

: amount of soils demanded

Figure 1.12. A particular coupling in Monge’s transportation problem.

32 Convex Optimization Basics

and j ∈ {1, 2, 3, 4}. Then, the distance between ground i and construction j can
be written as:

dist(ground i, construction j) = ‖xi − yj‖ (1.51)

where ‖ · ‖ denotes the Euclidean norm.
How to represent the amount of soils delivered from ground i to construc-

tion j? For ease of illustration, let us consider a particular coupling illustrated in
Fig. 1.12. This coupling suggests that the soils mined in ground 1 are transmitted
only to construction 1. So the amount of soils must read s1. Let’s denote that by
PX ,Y (x1, y1) = s1. Later you will see why we use this complicated-looking nota-
tion PX ,Y (·, ·). For ground 2, the soils are split into two construction sites: con-
structions 2 and 3. Assume the equal split. We can then represent the splitting by
PX ,Y (x2, y2) = 0.5s2 and PX ,Y (x2, y3) = 0.5s2. Similarly for ground 3, the soils
are split into constructions 3 and 4, but with an asymmetric split, say 8:2. So we
have PX ,Y (x3, y3) = 0.8s3 and PX ,Y (x3, y4) = 0.2s3. Notice that the soil alloca-
tion, determined by the values of PX ,Y (xi, yj)’s, is the one that we can control over.
So this is an optimization variable. It is a 12-dimensional vector in this example.

Next think about constraints posed in the problem. The constraints are two
folded: (i) all the soils mined in each ground should be transmitted to construction
sites; and (ii) the demands of all the constructions should be satisfied. In terms of
mathematical notations, this means that:

4∑
j=1

PX ,Y (xi, yj) = si i ∈ {1, 2, 3}, (1.52)

3∑
i=1

PX ,Y (xi, yj) = dj j ∈ {1, 2, 3, 4}. (1.53)

We can then write down the optimization problem as follows. Given (si, dj)’s
and (xi, yj)’s:

min
3∑

i=1

4∑
j=1

PX ,Y (xi, yj)︸ ︷︷ ︸
amount of soils

· ‖xi − yj‖︸ ︷︷ ︸
distance

:

4∑
j=1

PX ,Y (xi, yj) = si i ∈ {1, 2, 3},

3∑
i=1

PX ,Y (xi, yj) = dj j ∈ {1, 2, 3, 4}.

(1.54)

Linear Program (LP) 33

The objective function and all the functions that appear in the constraints are affine
w.r.t. the optimization variable PX ,Y (xi, yj). Hence, it is an LP.

Wasserstein distance If you think about the formula (1.54), we see that one
can succinctly represent it by relying upon the concept of probability distribution.
The succinct form that you will see soon gives an insightful interpretation on the
transportation problem. Remember that si’s and dj ’s are normalized: s1 + s2 +
s3 = 1 and d1 + d2 + d3 + d4 = 1. So one can view this as a valid prob-
ability distribution. For example, defining PX (xi) := si, we see that PX (xi) is
a probability distribution. Similarly, PY (yj) := dj is another valid probability
distribution.

Keeping these in our mind, let us take a careful look at the constraints in the
above optimization problem (1.54). What do the constraints remind you of? They
remind you of the total probability law! Hence, one can view PX ,Y (xi, yj) as another
valid probability distribution. This probabilistic viewpoint then allows us to sim-
plify the optimization problem (1.54) as follows. Given (PX ,PY),

W (PX ,PY) := min
PX ,Y

E [‖X − Y ‖] (1.55)

where the minimization is over all joint distributions PX ,Y which respect
marginals: ∑

yj

PX ,Y (xi, yj) = PX (xi) ∀xi,∑
xi

PX ,Y (xi, yj) = PY (yj) ∀yj .
(1.56)

Here W (PX ,PY) is a function of PX and PY . So one nice interpretation is that
it can be viewed as sort of distance between the two distributions. Notice that
PX = PY gives W (PX ,PY) = 0, while distinct marginal distributions yield larger
W (·, ·). This succinct expression (1.55) was recognized by Kantorovich and other
person, named Rubinstein. So it is called the Kantorovich-Rubinstein distance. The
distance measure was generalized later by incorporating an arbitrary pth-order expo-
nent in ‖X − Y ‖ (i.e., ‖X − Y ‖p) (Vaserstein, 1969). The general measure con-
cerning ‖X − Y ‖p is called the pth-order Wasserstein distance. So W (PX ,PY) is
called the 1st-order Wasserstein distance.

It turns out the Wasserstein distance appears in many of the optimal transporta-
tion problems as a key measure, thus revolutionizing the field of transportation
theory. Very interestingly, the Wasserstein distance played a crucial role in design-
ing a famous machine learning model, called Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014), thus leading to the development of Wasserstein

34 Convex Optimization Basics

GAN (Arjovsky et al., 2017) that has been proved powerful in many applications.
We will investigate details on this in Part III of this book.

Look ahead In the next section, we will study one more example for LP. We will
also do what we were planning to do for LP: Studying an LP relaxation technique
which turns out to be instrumental in addressing some very difficult problems.

LP: Examples and Relaxation 35

1.5 LP: Examples and Relaxation

Recap In the previous section, we explored two historical examples that can be
translated into LPs, as well as have played a big role in the fields like economics,
operation research and transportation:

1. Kantorovich’s plywood cutting problem;
2. Monge’s transportation problem.

In the process, we learned about a couple of techniques which allow us to translate
problems into LPs. We also gained some insights as to how to recognize LPs.

Outline In this section, we will study another interesting and prominent
example:

3. Classification problem.

This is arguably the most classical problem that arises in machine learning. Next
we will deal with another claim that we made in Section 1.3. Some very difficult
problems can be solved via LP relaxation. Specifically we will study a canonical
example in which the LP relaxation can provide the exact solution in some cases.

Classification problem The last example that we will touch upon is a very pop-
ular problem that arises in a widening array of fields such as machine learning, arti-
ficial intelligence, finance, and real estates. In particular, it is the most classical and
canonical problem in machine learning.

For illustrative purpose, let us explain what the problem is under a simple task
setting: classifying legitimate emails against spam emails. Suppose there are two
datasets. One dataset contains data points (also called samples or examples in the
machine learning field) concerning spam emails. The other includes those concern-
ing legitimate emails. Assume that each data point is represented by two features: (i)
frequency of keyword 1 (say, dollar signs $$); and (ii) frequency of keyword 2 (say,
winner). In machine learning, the feature is a frequently used terminology which
refers to a key component that well describes characteristics of data. Denote each
data point by x(i) := (x(i)1 , x(i)2) where x(i)1 and x(i)2 indicate the two features: fre-
quencies of keyword 1 and 2 contained in the ith email, respectively. See Fig. 1.13
for data points in two datasets, blue (legitimate) and red (spam) datasets. Here we
are also given a label which indicates whether data point x(i) comes from a legiti-
mate email (y(i) = 1) or from a spam email (y(i) = −1). Assume that we have m
such paired samples.

36 Convex Optimization Basics

frequency of keyword 1

frequency of keyword 2

Figure 1.13. Visualization of two datasets for email classification: one for spam emails;

the other for legitimate emails.

Given these data points together with labels {(x(i), y(i))}mi=1, the goal of the
classification problem is to find a line that separates two datasets. We consider
the simplest classification approach, called linear classification, which pursues to
find a linear function. A line can be represented as a linear equation in the two-
dimensional space: aT x− b = 0. Note that aT x− b ≥ 0 is a half-space that covers
the region above the line (where the blue data points reside) while aT x − b ≤ 0
indicates another half-space spanning the bottom region (where the red data points
reside). Hence, in order for a line to separate the two datasets, it must hold
that:

y(i)(aT x(i) − b) ≥ 0 i ∈ {1, . . . , m}. (1.57)

Notice that the optimization variables are (a, b) instead of (x(i), y(i))’s. You may
be confused about the notations because we have so far used x notation for the
optimization variable. Here we use the x notation to indicate data points, which is
a sort of convention in machine learning.

Notice in (1.57) that (a, b) = (0, 0) always satisfies the constraint. However,
it is obviously not of interest, since the trivial solution (a, b) = (0, 0) makes the
classifier play no role. Hence, one may want strict separability, meaning that a strict
inequality may be preferred in (1.57):

y(i)(aT x(i) − b) > 0 i ∈ {1, . . . , m}. (1.58)

However, this is also problematic. Remember the standard form of optimization
problems. The inequality constraints should be of “≤”. In fact, the rationale behind
the use of this form is related to the strong duality that we will study in depth in

LP: Examples and Relaxation 37

Part II. For now, let us just adopt this form. Given this form, the strict inequality
in (1.58) is indeed problematic.

In order to address this, one can introduce a tiny value, say ε, so that we obtain
an inequality constraint like:

y(i)(aT x(i) − b) ≥ ε. (1.59)

Here the scale of the values that appear in the inequality does not affect finding the
optimal solution (a∗, b∗) that we will seek shortly. Hence, without loss of generality,
we consider the normalized version instead:

y(i)(aT x(i) − b) ≥ 1 i ∈ {1, . . . , m}. (1.60)

Again, whenever we have a strict inequality as in (1.58), one can obtain the inequal-
ity like (1.60) by properly scaling (a, b).

As long as the above constraints are satisfied for all data points (x(i), y(i))’s, we are
done, meaning that there is nothing to minimize or maximize. One traditional way
to represent an optimization problem in such a case is to set an arbitrary yet constant
value as an objective function. So one such problem reads: Given {(x(i), y(i))}mi=1,

min
a,b

0 : y(i)(aT x(i) − b) ≥ 1 i ∈ {1, . . . , m} (1.61)

where the objective function is simply set to 0. Notice that we have nothing to
minimize. Observe that all the functions that appear are affine. Hence, it is an LP.

On a side note: You may wonder how we can apply an algorithm like gradient
descent, since we have a constant objective with 0 derivative all the time. Notice that
this is a constrained optimization. Remember the claim that we stated in Section 1.3.
A convex constrained optimization can be translated into an unconstrained version
thanks to the consequence of strong duality. It turns out the objective function in
the unconstrained counterpart is indeed a function of the optimization variable.
This point will be clearer in Part II.

Non-separable case In the classification setting, one may ask the following nat-
ural question. What if datasets are not linearly separable, as illustrated in Fig. 1.14?
Notice in Fig. 1.14 that some red points reside near a cluster of blue points,
and also some blue points are mingled with a majority of red points. Obviously
there is no line that separates the two datasets. This non-separable case often
occurs in various tasks in machine learning. For instance, in the cat-dog classifi-
cation problem, the boundary that separates cat dataset and dog dataset is highly
non-linear.

38 Convex Optimization Basics

frequency of keyword 1

frequency of keyword 2

Figure 1.14. Non-separable case of email classification.

One naive3 yet natural way to handle this non-separable case is to introduce the
concept of margin. For some outlier data points (x(i), y(i)), we introduce margins,
say v(i) ≥ 0, such that

y(i)(aT x(i) − b)+ v(i) ≥ 1 i ∈ {1, . . . , m}. (1.62)

Whenever y(i)(aT x(i)−b) is strictly less than 1 (which is undesirable), we introduce
a positive margin v(i) so that the sum of them is greater than or equal to 1. Obviously
the smaller the margin, the better the situation.

We can then set out our new goal as: minimizing the aggregated margins while
respecting the above constraint (1.62). Hence, one can formulate the optimization
problem as:

min
a,b,v(i)

m∑
i=1

v(i) :

y(i)(aT x(i) − b)+ v(i) ≥ 1 i ∈ {1, . . . , m},

v(i) ≥ 0 i ∈ {1, . . . , m}.

(1.63)

Again this is still an LP.

3. A more powerful yet sophisticated way is to employ deep neural networks. During the past decades, there has
been a breakthrough in machine learning. It has been shown that deep neural networks can well represent
any arbitrary (possibly highly non-linear) functions with reasonable computational complexity in view of
current technologies. So one can use such a network to implement a non-linear classifier to do much better.
We will get to this point in depth in Part III. Neural networks are systems with one or multiple layers in
which each layer consists of an affine operation and an arbitrary (possibly non-linear) operation (called the
activation function in the literature). Input and output in each layer are high-dimensional vectors and each
component in the vectors is represented as a circle and called a neuron. The naming was originated from
the fact that the structure looks like that of brain networks. Deep neural networks refer to the one having at
least one hidden layer between input and output layers.

LP: Examples and Relaxation 39

A class of difficult yet solvable problems Recall the claim that we made
earlier. Some very difficult problems can be solved via LP relaxation. So let us study
the technique in the context of such a difficult problem class. One such prominent
class is: a class of boolean problems, which can be formally stated as below.

p∗ :=min wT x :

Ax − b ≤ 0, Cx − e = 0,

xi ∈ {0, 1}, i ∈ {1, . . . , d}.

(1.64)

We see the last additional constraint, saying that the optimization variable is con-
strained to be boolean. We often use the following shorthand notation: x ∈ {0, 1}d .
There are many problems that can be formulated as above in the real world. To get
some feeling about the problem nature, let us explore one popular example.

Example: Shortest path problem (Dijkstra et al., 1959) The popular prob-
lem that we will delve into is a fundamental problem in combinatorial optimization,
named the shortest path problem. The problem is about finding a path from a source
to a destination in a graph.

For ease of illustration, let us consider an example in Fig. 1.15. To understand
what this problem is, we need to first know about the concept of graphs. A graph,
denoted by G, is a collection of two sets: (i) a vertex (or node) set, denoted by V ; and
(ii) an edge set, denoted by E . The vertex set includes many nodes indicating some
objects of interest. The edge set includes many edges indicating some connections
between two nodes. Here we have a graph G = (V , E) where:

V = {1, 2, 3, 4, 5, 6};

E = {(1, 2), (2, 1), (1, 5), (5, 1), (2, 3), (3, 2), (2, 5), (5, 2),

(3, 4), (4, 3), (4, 5), (5, 4), (4, 6), (6, 4)} .

We consider a bi-directed graph in which the edges are bi-directional. Let node 1
and node 6 be source and destination, respectively. A path is defined as a sequence of
edges that connects the source to the destination. See an example path in Fig. 1.15,
marked in a green line: (1, 5)→ (5, 4)→ (4, 6). Let xij indicate whether the edge

1

5

2 3

4 6

source

destination

Figure 1.15. Illustration of the shortest path problem.

40 Convex Optimization Basics

(i, j) is participated in the path. So in this example, x15 = x54 = x46 = 1 while all
others are 0, i.e., x51 = 0, x12 = 0, . . . , x34 = 0, x64 = 0. Notice that the path has
a direction. So x51 = x45 = x64 = 0, since those are reverse to the direction of the
path flow.

The goal of the problem is to find a path such that the total cost is minimized.
It is assumed that the cost is decided by the weight wij (non-negative) that comes
with an edge (i, j). Hence, the objective can be stated as:

min
xij∀(i,j)∈E

∑
(i,j)∈E

wijxij . (1.65)

Here the constraint is that xij ’s should be set to ensure a valid path, i.e., con-
necting the source to the destination. Then, how to check whether or not a path is
valid? The validation is a bit tricky. But if you think about the nature of the flow
of a valid path, you can come up with an easy way to check.

Consider the flow at source node 1 in the example. One key observation is that
the flow is just outgoing, i.e., there is no ingoing flow. So we should read:

outgoing flow− ingoing flow = 1

⇐⇒

∑
(1,j)∈E

x1j −
∑
(j,1)∈E

xj1 = 1 (1.66)

where
∑
(1,j)∈E x1j indicates the entire flow that comes out of source 1 and∑

(j,1)∈E xj1 denotes the aggregated flow that goes into source 1. On the other
hand, at the destination, the situation is reversed:

outgoing flow− ingoing flow = −1

⇐⇒

∑
(6,j)∈E

x6j −
∑
(j,6)∈E

xj6 = −1. (1.67)

For other node, say u (neither source nor destination), the flow is just passing, mean-
ing that the flow coming in must go out. So we have:

outgoing flow− ingoing flow = 0

⇐⇒

∑
(u,j)∈E

xuj −
∑
(j,u)∈E

xju = 0. (1.68)

Using the above, we can formulate the optimization problem as:

min
xij∀(i,j)∈E

∑
(i,j)∈E

wijxij :

LP: Examples and Relaxation 41

∑
(1,j)∈E

x1j −
∑
(j,1)∈E

xj1 = 1

∑
(6,j)∈E

x6j −
∑
(j,6)∈E

xj6 = −1

∑
(u,j)∈E

xuj −
∑
(j,u)∈E

xju = 0 ∀u ∈ {2, 3, 4, 5}

xij ∈ {0, 1} ∀(i, j) ∈ E . (1.69)

We see that this is a boolean problem (1.64).

LP relaxation The boolean problem (1.64) is known to be notoriously difficult
in general. In most cases, we need to search over all possible binary choices of x to
figure out the optimal solution. So the complexity scales like 2d , growing exponen-
tially with the dimension d .

To deal with such difficult problems, people thought about a way to move for-
ward. One natural way is to just ignore the binary value constraint (the very cause
of making the problem intractable). This natural way is indeed relaxation. Simply
ignoring the binary value constraint in (1.64), we obtain:

p∗LP :=min wT x :

Ax − b ≤ 0, Cx − e = 0,

0 ≤ xi ≤ 1, i ∈ {1, . . . , d}

(1.70)

where xi is relaxed to be any real value ∈ [0, 1].
Since it is a more relaxed problem, we can do better, so in general,

p∗ ≥ p∗LP. (1.71)

Interestingly, it turns out that under some situations of shortest path problems, the
optimal solution for the relaxed problem is binary: x∗ij,LP ∈ {0, 1}, thus implying
that p∗ = p∗LP. We will not prove this here. Instead you may want to check this
numerically via programming tools. If you are interested in further details, you
may want to take a graph theory course offered in math and/or computer science
departments.

Look ahead So far we have studied the three historical examples that can be
formulated as LPs, as well as some boolean problems which can be solved via LP
relaxation. In the next section, we will cover one remaining part among what we
were planning to do for LP. That is, investigating efficient algorithms.

42 Convex Optimization Basics

1.6 LP: Algorithms

Recap During the past two sections, we have studied three important problems
that can be formulated as LPs: (1) Kantorovich’s plywood cutting problem (Gard-
ner, 1990); (2) Monge’s transportation problem (Monge, 1781); and (3) the linear
classification problem. We also investigated a class of difficult problems which can
be however solved via LP relaxation: Boolean problems. As an example, we explored
the shortest path problem (Dijkstra et al., 1959).

Outline In this section, we are going to study an efficient algorithm for LP. We
will focus on one particular algorithm, called the simplex algorithm. Specifically
what we are going to do are three folded. There are a couple of historical and
famous algorithms for LP. First off, let us provide the rationale behind why the
simplex algorithm is picked up among the algorithms. We will then investigate
the standard form that the algorithm relies upon. Lastly we will study how the
algorithm works in detail. The algorithm is intuitive and beautiful. You will check
this soon.

Algorithms for LP Three major algorithms have been recognized for LP. The
first is obviously the one that the father of LP, Kantorovich, developed. The sec-
ond is a very famous and faster algorithm, called the simplex algorithm (Dantzig,
1951). The algorithm was developed in 1947 by an American mathematician,
named George Dantzig. Actually some scientists and mathematicians in the West,
especially at Berkeley (where Dantzig obtained PhD) and Stanford (where he was
a Professor), claimed that the inventor of LP is Dantzig. The claim was based
on the fact that the simplex algorithm is the first one that solves any LP in a
finite number of steps (which was not revealed by Kantorovich) as well as the
fact that the naming of LP was first used in print by Dantzig. However, many
people did not accept the claim, and perhaps more importantly, the Nobel Prize
committee was silent on this. Kantorovich’s contribution for the Nobel Prize was
actually on the optimal allocation of scarce resources, which is not the invention of
LP although highly related (Kantorovich, 1989). If the committee had wanted
to award a prize for LP, then Dantzig should have been included. The last algo-
rithm is a very generic algorithm, called the interior point method (Dikin, 1967;
Wright, 2005), which can be applied to general convex optimization problems
not limited to LP. The algorithm is based on strong duality. Since strong dual-
ity will be covered later in Part II, we will study the algorithm around at the time.
This is the reason that the simplex algorithm is picked up for the focus of this
section.

LP: Algorithms 43

Standard form for the simplex algorithm Remember the standard form
of LP:

min wT x : Ax − b ≤ 0, Cx − e = 0. (1.72)

The simplex algorithm relies upon a differently-looking yet equivalent form, called
the standard form for the simplex algorithm:

max wT x : Ax ≤ b,

x ≥ 0.
(1.73)

Later you will see why this form (1.73) helps run the algorithm. One can readily
see that (1.73) belongs to the class of (1.72). It turns out the other direction is also
true, i.e., any form like (1.72) can always be converted into the form like (1.73).

How to convert (1.72) into the standard form (1.73)? To show the con-
version from (1.72) to (1.73), we need to demonstrate four things. The first is to
convert min to max. This can be done very easily by flipping the sign of the objective
function. The second is to convert the equality constraint into inequality one(s).
This is also immediate because:

Cx − e = 0 ⇐⇒ Cx ≤ e, Cx ≥ e.

The last is to ensure that all the optimization variables are non-negative, i.e.,
x ≥ 0. This can be done in the following manipulation. Suppose there is no sign
constraint on a variable, say x1. Then, by introducing two new non-negative vari-
ables, say x2, x3 ≥ 0, we can cover the case by setting:

x1 = x2 − x3, x2, x3 ≥ 0.

Here one important note is that using the equality x1 = x2− x3, we should replace
all x1’s (that appear in other constraints if any) with x2 − x3, so that there is no x1

in the final form.

Simplex algorithm: Conversion into the slack form In fact, the precise
description of the algorithm is complicated although the idea is simple and insight-
ful. So we will focus only on grasping the key idea through the following example:

max 5x1 + 4x2 :

3x1 + 5x2 ≤ 78

4x1 + x2 ≤ 36

x1, x2 ≥ 0.

(1.74)

44 Convex Optimization Basics

The algorithm starts with conversion into another form, called the slack form. In
the slack form, two types of new variables are introduced. One is the target variable,
usually denoted by z, which indicates the objective function itself:

z = 5x1 + 4x2.

The others are the slack variables, usually denoted by si’s. These are used for making
the inequality constraints equality ones. For instance, 3x1 + 5x2 ≤ 78 can be
equivalently written as:

3x1 + 5x2 + s1 = 78, s1 ≥ 0.

You may wonder why we convert back into equality constraints, since we had
already converted the equality constraints in (1.72) into inequality constraints as
in (1.73). The reason is relevant to a certain condition (to be described in the sequel)
that the translated equality constraints should respect.

To see this clearly, we re-write (1.74) as follows with the target and slack variables:

max z : (1.75)

z − 5x1 − 4x2 = 0 (1.76)

3x1 + 5x2 + s1 = 78 (1.77)

4x1 + x2 + s2 = 36 (1.78)

x1, x2, s1, s2 ≥ 0. (1.79)

In the slack form, we see that the right hand side (RHS) terms in the translated
equality constraints are non-negative, as marked in green in the above. Here the RHS
being non-negative is the certain condition that the translated equality constraints
should satisfy. Actually we could obtain such non-negative RHS terms by going
through the two-step conversion: (i) converting (1.72) into (1.73); and then (ii)
converting inequality constraints back into equality ones with slack variables.

However, if you think about it, you may see that the RHS in the translated equal-
ity constraint is not always guaranteed to be non-negative. For example, suppose we
have the following inequality instead:

−2x1 − 4x2 ≤ −34.

In this case, if we naively apply the slack-variable trick that we did earlier, then we
would get −34 in the RHS, violating the certain condition. Hence, to avoid this,
we should take a slightly different slack-variable trick. We first flip the sign of both
sides to obtain:

2x1 + 4x2 ≥ 34.

LP: Algorithms 45

We then subtract a non-negative slack variable, say s1, so as to obtain:

2x1 + 4x2 − s1 = 34.

This way, we can ensure that all the RHSs are non-negative while s1 being non-
negative.

Simplex algorithm: The overall procedure The simplex algorithm is an iter-
ative algorithm. For each iteration, we do the following:

1. Start with an initial feasible solution;
2. Perturb the solution along a direction that maximizes the target variable z.

Once we obtain a newly perturbed solution, we set it as another initial point in the
next iteration, and again do perturbation along a new z-maximizing direction in
view of the new initial point. We repeat this procedure until any perturbation does
not increase z further.

Iteration 1 How to set up an initial solution? There could be many ways. One nat-
ural way comes from a particular form of the two equality constraints that involve
the two slack variables: (1.77) and (1.78). Notice that s1 appears only in (1.77),
similarly s2 appears only in (1.78); on the other hand, (x1, x2) appear both in the
two equations. So one easily-derived feasible point is the one in which we set the
both-appearing variables to zero, i.e., x1 = x2 = 0. This way, one can readily see
that the following is a feasible solution:

(x1, x2, s1, s2) = (0, 0, 78, 36). (1.80)

Notice in this case that z = 0 due to (1.76).
A natural question arises. Can we do better? To figure this out, we consider the

equality constraint (1.76) that includes z of interest:

z = 5x1 + 4x2. (1.81)

We see that increasing x1 and/or x2 (from the initial point x1 = x2 = 0) yields an
increase in z. So one may wonder which direction leads to maximizing z? There are
three possible options that one can think of: (i) increasing x1 only while maintaining
x2 = 0, i.e., (x1, x2) = (δ, 0)where δ ≥ 0; (ii) the other way around, i.e., (x1, x2) =

(0, δ); or (iii) increasing both x1 and x2, i.e., (x1, x2) = (δ1, δ2) where δi ≥ 0. The
simplex algorithm takes only the first two options. You may wonder why the last
option is ignored – the reason will be explored in depth in Prob 2.6.

The first option seems the z-maximizing direction because the slope 5 placed
in front of x1 is larger than the slope 4 in front of x2 in (1.81). However, it is not
that clear if taking that direction is indeed the best way to go. The reason is that
the maximum values of δ that we can push through can be different across distinct

46 Convex Optimization Basics

directions. Notice that we still need to respect the feasible region induced by the
constraints while searching for the maximum values of δ. So we need to investigate
the two options carefully.

First consider (x1, x2) = (δ, 0). The constraints of (1.77) and (1.78) then give:
s1 = 78−3δ ≥ 0 and s2 = 36−4δ ≥ 0, which in turn yields: δ ≤ min{26, 9} = 9.
So x1 can be maximally set to 9 where z = 45. On the other hand, (x1, x2) = (0, δ)
gives: s1 = 78 − 5δ ≥ 0 and s2 = 36 − δ ≥ 0. Hence, δ ≤ min{78

5 , 36} =
78
5 , which yields z = 62.4. So from this, we see that the second option is better,

although the slope 4 is smaller than the other slope 5. This naturally motivates us
to choose the following feasible point:

(x1, x2, s1, s2) =
(

0,
78

5
, 0,

102

5

)
(1.82)

where s1 and s2 are set according to the constraints of (1.77) and (1.78). The geo-
metric picture for this is illustrated in Fig. 1.16. We move from (x1, x2) = (0, 0)
to (x1, x2) = (0, 78

5).

Iteration 2 We now take the solution (1.82) as an initial feasible solution. The
question is: Can we do better than this? To check this, let us ponder (1.82) again:

(x1, x2, s1, s2) =
(

0,
78

5
, 0,

102

5

)
. (1.83)

Remember in the initial feasible point (1.80) that (x1, x2) = (0, 0). On the other
hand, in the second feasible point (1.83), variables that are set to zero are different:

Figure 1.16. A geometric insight behind how the simplex algorithm leads to the solution.

The beauty of the simple algorithm is that it can obtain the optimal solution although it

searches only along the edges of the feasible region.

LP: Algorithms 47

(x1, s1) = (0, 0). Notice that whenever an iteration occurs, we have a new set of two
variables being set to zeros. This is because only one variable (x2 in this example)
is perturbed while the other (x1 in this example) being zero and in the new initial
point, one equality is obtained, thus forcing another variable (s1 in this example)
to be zero.

Given that (x1, s1) = (0, 0) in the new initial point, one can now think of two
options for perturbation: (i) (x1, s1) = (δ, 0); and (ii) (x1, s1) = (0, δ). You may
wonder why other variables (x2, s2) are not taken into consideration for perturba-
tion. Sure, we can include such additional options for perturbation. However, the
beauty of the simplex algorithm is that only the restricted perturbation w.r.t. the
zero-set variables suffices for us to obtain the optimal solution. Of course, it is not
crystal clear why that is the case. The proof of the optimality of the simplex algo-
rithm may be helpful for you to obtain a better understanding although we will not
cover the proof here.

In order to check which direction is better between the two options, we first
need to ponder (1.76) to see how x1 and s1 affect z:

z − 5x1 − 4x2 = 0. (1.84)

But there is a problem here. The problem is that it is difficult to see how s1 affect
z, since s1 does not appear in the equation (1.84).

A very famous technique, called the Gaussian elimination, helps us to see the
effect of s1 upon z. Massaging (1.76) and (1.77) properly, we can cancel x2 out to
obtain:

5× [z − 5x1 − 4x2 = 0]

+ 4× [3x1 + 5x2 + s1 = 78]

→ 5z − 13x1 + 4s1 = 312. (1.85)

This then immediately rules out the second option: (x1, s1) = (0, δ). Why? We see
that increasing s1 yields a decrease in z. So taking the first option (x1, s1) = (δ, 0)
is the right way to go. Now the question is: How maximally can we set δ? To check
this, let us ponder the constraints (1.77) and (1.78) again:

3x1 + 5x2 + s1 = 78; (1.86)

4x1 + x2 + s2 = 36. (1.87)

Here (1.86) looks okay because we can immediately see how x2 is changed depend-
ing on (x1, s1) and this helps us to easily identify the limit of δ. On the other hand,
the form like (1.87) is not desirable because the form does not allow us to directly

48 Convex Optimization Basics

see how s2 is changed depending on (x1, s1). Hence, it is not that simple to identify
the limit of δ. Actually the following form is preferred instead: ?x1+?s1+?s2 =?.
Again the Gaussian elimination helps us to obtain the form:

5× [4x1 + x2 + s2 = 36]

− [3x1 + 5x2 + s1 = 78]

→ 17x1 − s1 + 5s2 = 102. (1.88)

With (1.88) and (1.85), we can re-write the optimization problem as:

max z : (1.89)

5z − 13x1 + 4s1 = 312 (1.90)

3x1 + 5x2 + s1 = 78 (1.91)

17x1 − s1 + 5s2 = 102 (1.92)

x1, x2, s1, s2 ≥ 0. (1.93)

Remember that our second feasible point was:

(x1, x2, s1, s2) =
(

0,
78

5
, 0,

102

5

)
. (1.94)

As mentioned earlier, we can rule out the second option (x1, s1) = (0, δ). So taking
the first option (x1, s1) = (δ, 0), we get: 5x2 = 78−3δ ≥ 0 and 5s2 = 102−17δ ≥
0, which then yields: δ ≤ min{26, 102

17 } =
102
17 . Hence, we obtain: z = 78. Since

z = 78 is strictly larger than z = 62.4 (obtained under (1.94)), this motivates us
to choose the following feasible point:

(x1, x2, s1, s2) =
(

102

17
,

204

17
, 0, 0

)
= (6, 12, 0, 0) (1.95)

where (x2, s2) are set according to (1.91) and (1.92). The geometric picture for this
is illustrated in Fig. 1.16. We move from (x1, x2) = (0, 78

5) to (x1, x2) = (
102
17 , 204

17).

Iteration 3 Can we do better? To check this, again ponder (1.95). We now
have the following two options for perturbation: (i) (s1, s2) = (δ, 0); and (ii)
(s1, s2) = (0, δ), due to (s1, s2) = (0, 0). To check which direction is better, again
consider (1.90) to see how (s1, s2) affect z: 5z − 13x1 + 4s1 = 312. Here it is
difficult to see how s2 affects z. Again use the Gaussian elimination to obtain the

LP: Algorithms 49

following where one can see the effect immediately:

17× [5z − 13x1 + 4s1 = 312]

− 13× [17x1 − s1 + 5s2 = 102]

→ 85z + 55s1 + 65s2 = 6630. (1.96)

We see from (1.96) that increasing (s1, s2) yields a decrease in z, meaning that any
perturbation does not increase z further. Hence, we stop here, obtaining:

(x∗1 , x∗2) = (6, 12) H⇒ z∗ = 78. (1.97)

This is how the simplex algorithm works. We stop when increasing such zero-
variables does not increase z. It turns out this way of iteration enables us to achieve
the optimal solution in a finite number of steps. In many practical applications,
it has been shown that the finite number of steps required is much less than the
total number of vertices in the polytope formed by the constraints, meaning that
the simplex algorithm arrives at the optimal point very fast.

Look ahead In the next section, we will study how to solve LPs using a particular
yet useful programming tool: CVXPY. We will then move onto the second instance
of convex optimization problems: Least Squares.

50 Convex Optimization Basics

1.7 LP: CVXPY Implementation

Recap So far we have studied several stuffs: (1) the concept of convex optimiza-
tion; (2) typical categorization of convex instances; (3) why convex optimization
problems are tractable (efficiently solvable on a computer); (4) a bunch of historical
and classical examples that can be translated into LPs or that can be solved via LP
relaxation; and (5) the simplex algorithm for LPs. However, there is one content
that we missed for LP. That is, how to implement the algorithm via programming
tools such as CVXPY that runs in a widely-used open source platform, Python.

Outline In this section, we are going to cover the missing stuff: studying how to
implement several interested problems via CVXPY. Specifically what we are going
to do are four folded. First off, we will learn how to install CVXPY in Python. We
will then investigate basic CVXPY syntaxes via a simple example. Next we will do
some exercises for code implementation to get familiar with CVXPY. We will do
this in the context of the two prior examples: (i) Kantorovich’s plywood cutting
problem (see (1.47) in Section 1.4); and (ii) the toy example introduced in the
course of explaining the simplex algorithm (see (1.74) in Section 1.6).

CVXPY in Python There are two popular software tools depending on platforms
that we use: (1) CVX (running in MATLAB); (2) CVXPY (running in Python).
While MATLAB is much more user-friendly and hence much easier to use, it
requires a license. So we will use a free software, CVXPY.

CVXPY is a library running in a recent version of Python, Version 3.
So you should first install Version 3 by downloading it from https://www.

python.org/downloads/. Or you can use it via virtual environment tools like
Anaconda:

https://www.anaconda.com/products/individual

For more details, refer to a Python tutorial in Appendix A.
In order to install CVXPY, you should rely upon the library manager called pip.

Here is a command for installation:

pip install cvxpy

To check the list of installed libraries, you can type:

pip list

If you have difficulties during installation, please refer to

https://www.cvxpy.org/install/index.html

https://www.python.org/downloads/
https://www.python.org/downloads/

LP: CVXPY Implementation 51

How to use CVXPY? To give you a rough idea as to how to use CVXPY, let us
give you a CVXPY script for a simple example:

min
x
(x1 − 3x2)

2 :

x1 − x2 ≤ 3,

x1 + x2 = 10.

(1.98)

With some straightforward yet tedious calculation, you can easily figure out that the
optimal solution is: (x∗1 , x∗2) = (6.5, 3.5). Let’s do sanity check with the following
CVXPY script:

import cvxpy as cp
optimization variable
x1 = cp.Variable()
x2 = cp.Variable()
constraints
constraints = [x1-x2<=3, x1+x2==10]
objective function
obj_min = cp.Minimize((x1-3*x2)**2)
set up a problem
prob = cp.Problem(obj_min, constraints)
solve the problem
prob.solve()
print the solution
print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal variables: ’, x1.value, x2.value)

Here the blank parenthesis in cp.Variable() is for generating a scalar optimiza-
tion variable. To create a vector with a higher dimension, say d , one can put the
dimension inside the parenthesis like cp.Variable(d). Sometimes, an optimization
variable is of a matrix form in particular in the case of Semi-Definite Program (SDP)
that we will study in Section 1.13. In such a case, we use: cp.Variable(d1,d2) where
(d1,d2) are the row and column sizes of an interested matrix. For equality con-
straints, we use the symbol “==” instead of “=”. The command cp.Minimize is for
the use of minimization, while cp.Maximize is employed for maximization. The
command cp.Problem is an optimization problem object that takes the objec-
tive function and constraints as input arguments. The command prob.solve()

solves the optimization problem and prints the optimal value accordingly. The last
three lines are for checking whether the solution is optimal as well as returning

52 Convex Optimization Basics

the optimal value together with the optimal solution. In this case, we should
read:

status: optimal
optimal value: 16.0
optimal variables: 6.5 3.5

Notice that the optimal solution is the same as what we calculated by hand.
You may now have a very rough idea as to how to implement CVXPY. Of course,

this may not be enough for scripting some problems that you may be interested in.
So we do more exercises yet in the context of the two examples that we investigated
earlier.

Exercise 1: Kantorovich’s plywood cutting problem (1.47) Recall the
problem:

min x3 :

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,

− 10x1 − 20x2 − x3 ≤ 0,

10x1 + 40x2 − x3 − 50 ≤ 0.

(1.99)

Using the syntaxes that we learned above, we can readily implement a code as
below:

import cvxpy as cp
x1 = cp.Variable()
x2 = cp.Variable()
x3 = cp.Variable()

constraints = [x1>=0, x1<=1,
x2>=0, x2<=1,
-10*x1-20*x2-x3<=0,
10*x1+40*x2-x3-50<=0]

obj_min = cp.Minimize(x3)
prob = cp.Problem(obj_min, constraints)
prob.solve()
print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal variables: ’, x1.value, x2.value, x3.value)

status: optimal
optimal value: -20.00000000023447
optimal variables: 1.0000000001581 0.4999999998885342

-20.00000000023447

LP: CVXPY Implementation 53

Actually, the optimal value is −20 and the optimal variables should read
(x∗1 , x∗2 , x∗3) = (1, 0.5,−20). So there are some minor distinctions in the values
relative to the above numerical solutions. This is because CVXPY runs on a com-
puter via an algorithm, incurring some numerical distinctions.

Exercise 2: The toy example used for the simplex algorithm Recall the
toy example:

max 5x1 + 4x2 :

3x1 + 5x2 ≤ 78

4x1 + x2 ≤ 36

x1, x2 ≥ 0.

(1.100)

The code implementation is also very simple. See below.

import cvxpy as cp
x1 = cp.Variable()
x2 = cp.Variable()
constraints = [3*x1+5*x2<=78,

4*x1+x2<=36,
x1>=0, x2>=0]

obj_max = cp.Maximize(5*x1 + 4*x2)
prob = cp.Problem(obj_max, constraints)
prob.solve()
print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal variables: ’, x1.value, x2.value)

status: optimal
optimal value: 77.99999988422522
optimal variables: 5.999999990155606 11.999999983361798

Similarly, we see some very minor numerical differences, compared to the optimal
value 78 and the optimal variables (x∗1 , x∗2) = (6, 12).

You may want to exercise more. Don’t worry. We have prepared a couple of
exercise problems in upcoming problem sets. So you will have some chances to do
more.

Look ahead We are now done with all the contents in LP. In the next section, we
are going to move onto the second instance of convex optimization: Least Squares
(LS). Specifically what we are going to do for LS are three folded. First we will review
what the LS problem is. We will then present a geometric insight which can help us
to understand what the LS solution means and therefore why the solution makes
sense in light of our intuition. Lastly we will study one very important application
in machine learning: the classification problem.

54 Convex Optimization Basics

Problem Set 2

Prob 2.1 (Total probability law) Consider discrete random variables X ∈ X
and Y ∈ Y with probability distributions PX and PY , respectively.

(a) State the total probability law, and prove it.
(b) Suppose PX ,Y is a joint distribution for (X , Y). Show that∑

y∈Y
PX ,Y (x, y) = PX (x) ∀x ∈ X . (1.101)

(c) Suppose (1.101) holds. Show that PX ,Y satisfies one of probability axioms:∑
x∈X

∑
y∈Y
PX ,Y (x, y) = 1.

Prob 2.2 (1st-order Wasserstein distance) Let X ∈ X := {−2, 0, 2} be a
discrete random variable with probability distribution: PX (x) = 1

4 , 1
2 , 1

4 for x =
−2, 0, 2, respectively. Let Y ∈ Y := {−4,−1, 1, 4} be another discrete random
variable with: PY (y) = 3

8 , 1
8 , 1

8 , 3
8 for y = −4,−1, 1, 4, respectively. Consider

Monge’s problem which can be formulated as follows. Given PX and PY ,

W (PX ,PY) := min
PX ,Y

E [‖X − Y ‖] (1.102)

where the minimization is over all joint distributions PX ,Y respecting the marginals
PX and PY : ∑

y∈Y
PX ,Y (x, y) = PX (x) ∀x ∈ X ; (1.103)

∑
x∈X

PX ,Y (x, y) = PY (y) ∀y ∈ Y . (1.104)

(a) Translate the above optimization problem into an LP in standard form.
(b) Solve the optimization problem using CVXPY. Also write a script for

CVXPY implementation.

Prob 2.3 (Linear classification) Consider the linear classification problem
wherein the goal is to find a boundary of the line form that can distinguish legit-
imate emails from spams. We are given {(x(i), y(i))}mi=1 training dataset placed in
the file “train.csv”. The file is uploaded on

http://csuh.kaist.ac.kr/convex book/PS2/train.csv

Problem Set 2 55

Here x(i) := (x(i)1 , x(i)2) indicates the ith example and y(i) denotes its corresponding
label (legitimate = +1; spam = −1).

(a) What are m and dimension of x(i)?
(b) Use Python to visualize the data points in the two-dimensional space.

Hint: You may want to use a Python package matplotlib.pyplot. For how to
use it, refer to Appendix A.2.

(c) Formulate an optimization problem for the linear classifier. Solve the prob-
lem using CVXPY. Also write a script for CVXPY implementation.

Prob 2.4 (Bipartite matching problem) Consider the bipartite matching
problem that assigns three people to three tasks in an one-to-one fashion. The
matching costs are given as:

(w11, w12, w13) = (1, 2, 4)

(w21, w22, w23) = (1, 4, 2)

(w31, w32, w33) = (1, 3, 3)

where wij indicates the cost w.r.t. the assignment of task j to person i. The objective
function is:

min
xij

N∑
i=1

N∑
j=1

wijxij (1.105)

where xij ∈ {0, 1} indicates whether person i is assigned to task j and N = 4 is
the number of people (or tasks). Here the constraint is that each person must be
assigned, and so each task must be:

N∑
j=1

xij = 1 ∀i ∈ {1, . . . , N } (each person must be assigned to one task);

(1.106)
N∑

i=1

xij = 1 ∀j ∈ {1, . . . , N } (each task must be assigned to one person).

(1.107)

(a) Formulate a Boolean optimization problem. Derive the optimal value p∗

and the optimal solution x∗. You can do this by hand or by computer.
(b) Formulate an LP relaxation problem. Solve this problem (deriving p∗LP

and x∗LP) using CVXPY. Also write a script for CVXPY implementation. Is
p∗LP = p∗?

56 Convex Optimization Basics

Prob 2.5 (Standard and slack forms for the simplex algorithm) Consider
the following LP:

min x1 + x2 : 2x1 + x2 ≥ 1

x1 + 3x2 ≥ 1

x1 ≥ 0, x2 ≥ 0.

(a) Convert this into the standard form for the simplex algorithm.
(b) Convert the standard form (derived in part (a)) into the slack form.

Prob 2.6 (Simplex algorithm: z-maximizing direction) Consider the exam-
ple that we investigated in Section 1.6:

max z : (1.108)

z − 5x1 − 4x2 = 0 (1.109)

3x1 + 5x2 + s1 = 78 (1.110)

4x1 + x2 + s2 = 36 (1.111)

x1, x2, s1, s2 ≥ 0. (1.112)

Suppose we set an initial feasible point as:

(x1, x2, s1, s2) = (0, 0, 78, 36). (1.113)

Consider three possible options for a direction along which we perturb the initial
point:

(i) (x1, x2) = (δ, 0);

(ii) (x1, x2) = (0, δ);

(iii) (x1, x2) = (δ1, δ2)

where δ, δ1, δ2 ≥ 0.

(a) Suppose that δ = δ1 + δ2 = 1. Which is the z-maximizing direction?
(b) Suppose that (δ, δ1, δ2) can be chosen arbitrarily subject to the constraints.

Is (δ1, δ2) = (
102
17 , 204

17) a valid choice, i.e., respecting the constraints? If so,
what is z under the choice? What is the z-maximizing direction in this case?

(c) When taking the third option, discuss whether it is easy to find the best
choice of (δ1, δ2) (in a sense of maximizing z) relative to finding the best δ
in the first (or second) option. What if we have more constraints that come
with more slack variables?

Problem Set 2 57

Prob 2.7 (Simplex algorithm: Exercise 1) Consider the following LP:

max 4x1 + 3x2 : 2x1 + 3x2 ≤ 6

−3x1 + 2x2 ≤ 3

2x2 ≤ 5

2x1 + x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.

(a) Solve this using the simplex algorithm that we learned in Section 1.6. You
should do it by hand.

(b) Solve this using CVXPY to do sanity check for your solution in part (a).

Prob 2.8 (Simplex algorithm: Exercise 2) Consider the following LP:

min 3x1 + 9x2 : 2x1 + x2 ≥ 8;

x1 − 2x2 ≥ −1;

x1 ≥ 0, x2 ≥ 0.

(1.114)

(a) Convert the problem into the slack form.
(b) Use the simplex algorithm to solve this problem. Show all the detailed pro-

cedures as per the rule that we learned in Section 1.6.
(c) Write a CVXPY script for solving the above optimization (1.114).

Prob 2.9 (True or False?)

(a) Consider Monge’s problem that we studied in Section 1.4. Let si ≥ 0 be
the amount of soils mined in ground i ∈ {1, 2, . . . , m}. Let dj ≥ 0 be
the amount of soils demanded at construction site j ∈ {1, 2, . . . , n}. In
Section 1.4, assuming that

∑m
i=1 si =

∑n
j=1 dj = 1, it was shown that the

problem can be formulated as an LP. In fact, without the assumption on si’s
and dj ’s, the problem can also be formulated as an LP.

(b) The LP relaxation technique yields the exact solution for the shortest path
problem.

58 Convex Optimization Basics

1.8 Least Squares (LS)

Recap So far we have studied many contents ranging from the concept of convex
optimization to all the details for LP including CVXPY implementation.

Outline In this section, we will move onto the second instance of convex opti-
mization: Least Squares (LS). Specifically we will cover three stuffs. First we will
review what the LS problem is. We will then present a geometric insight which
helps us to understand what the LS solution means and therefore why the solu-
tion makes sense in light of our intuition. Lastly we will study one very important
application in machine learning: the classification problem.

Review: Least-squares problem Since we studied LS in Section 1.1 (a bit far
from here), let us start by reviewing what the problem is. The problem is formu-
lated as:

min ‖Ax − b‖2. (1.115)

As mentioned earlier, one of the most important things that we can benefit from
this problem is that it has the closed-form solution:

x∗ = (AT A)−1AT b. (1.116)

In Section 1.1, we just claimed that this is the solution. Now let us prove it. The
first thing to notice is that the objective function ‖Ax− b‖2 is convex. Actually this
was dealt in Prob 1.1(b). Next, remember the optimality condition for x∗ that we
learned in Section 1.3 w.r.t. unconstrained optimization. That is, x∗ must be the
stationary point. By applying this, we obtain:

∇‖Ax∗ − b‖2 = 0. (1.117)

Now consider the gradient w.r.t. x:

∇‖Ax − b‖2 = ∇(Ax − b)T (Ax − b)

= ∇(xT AT Ax − 2xT AT b+ bT b)

= 2AT Ax − 2AT b

where the last follows from the definition of the gradient w.r.t. a vector. Please
exercise Prob 1.2 if you are not convinced with the gradient computation. Applying
this to the optimality condition (1.117), we get:

x∗ = (AT A)−1AT b. (1.118)

Least Squares (LS) 59

Dimensions of (x, A, b) Let d be the dimension of the optimization variable x.
Then, x ∈ Rd . Let A := [a1 · · · ad] ∈ Rm×d . Then, b ∈ Rm. We now have two
cases depending on the values of m and d .

One is: m < d , i.e., A is a wide matrix.4 Suppose all the row vectors in A are
linearly independent, i.e., rank(A) = m, which usually holds in practice. In this
case, we have a larger number d of unknowns than the number m of linear equations
in Ax − b = 0. This implies that there are infinitely many solutions that respect
Ax − b = 0. So in this case, the optimal value p∗ = 0. In typical scenarios, the
optimization solution x∗ that we seek to find is unique. For instance, consider the
astronomy problem that we investigated in Section 1.1, wherein x∗ concerns the
ground-truth trajectory of the orbit of Ceres. In such a case, x∗ must be unique.
However, if m < d , there are infinitely many solutions for x∗. Then, it would be
very much unlikely that one solution among infinitely many coincides with the
ground-truth trajectory. This is definitely not an interested scenario.

The second case is: m ≥ d , i.e., A is a tall matrix. Suppose that b does not lie in
the range space of A, range(A) (the space spanned by all the column vectors of A).
Actually the case b /∈ range(A) is typical in practice. Again think about the astron-
omy problem in which b indicates a collection of observed location coordinates
and A is an observed-location-dependent matrix. Since observations often contain
measurement errors subject to random directions, it is very much likely that b is
not in a certain space, say range (A). Hence, b /∈ range(A). In the case of m ≥ d ,
obviously there is no solution that satisfies Ax − b = 0. But what we can say is that
it has a solution that minimizes ‖Ax − b‖2 though, and this forms the basic idea
behind the least-squares problem. So what we are interested in is the second case:
m ≥ d .

Geometric insight We present a geometric insight behind the least-squares
problem. From this, you will see what the least-squares solution means, as well
as why the problem is important accordingly.

Let us first consider the simplest setting in which d = 1. In this case, A is simply
a single-column vector and x is a scalar. Suppose we have two vectors a1 and b,
as illustrated in Fig. 1.17(a), in which b is not aligned with a1. This is due to the
assumption that often holds in practice: b /∈ range(A). Notice that ‖a1x − b‖2 is
minimized when the vector a1x− b (marked in the blue thick line) is perpendicular
to the direction of a1. So from this, one can interpret the least-squares solution

4. In fact, a majority of people use the terminology like a fat matrix instead. But Prof. Stephen Boyd at Stanford
whom I interacted with while being on sabbatical recommended the use of a different terminology: a wide
matrix. His rationale was that the wide matrix has sort of positive nuance, while the fat matrix looks negative.
In light of his positive attitude, let us use the “wide matrix” terminology.

60 Convex Optimization Basics

distance

distance

Figure 1.17. Geometric insight behind the least-squares solutions.

as the distance-minimizing solution. The distance-minimizing solution is obviously
what we want. So it is sort of a good solution which well matches our natural
demand.

We can have the same interpretation for a slightly more general case, say d = 2.
In this case, A = [a1 a2] ∈ Rm×2. The vector Ax now lies in the plane, which
is the range space of A: Ax ∈ range(A); see Fig. 1.17(b). Similarly ‖Ax − b‖2 is
minimized when the vector Ax− b (marked in the blue thick line) is perpendicular
to the plane, as illustrated in Fig. 1.17(b). So again one can interpret Ax∗ as the
distance-minimizing solution.

An application: Classification problem As mentioned earlier, the least-
squares problem is a very popular and powerful problem which has played a sig-
nificant role in the optimization field since the birth of the problem in the 1800s.
It has been employed for addressing many important problems that arise in a wide
variety of applications.

In this section, we would like to put a particular emphasis on one important
application that arises in machine learning as well as that we have already investi-
gated earlier: the classification problem.

Remember the classification example that we studied in Section 1.5: legitimate-
vs-spam emails classification, in which we are given m data points {(x(i), y(i))}mi=1.
Here x(i) indicates a feature vector. In the example, we considered a two-dimensional
case where x(i) := (x(i)1 , x(i)2) and (x(i)1 , x(i)2) denote the frequencies of keywords 1
and 2 that appear in the ith email, respectively. Here y(i) is a label, indicating an
identity of the ith email: y(i) = +1 (legitimate email), y(i) = −1 (spam email).

For the above setting, we considered linear classifiers. For the separable case, we
formulated an LP which intends to find a line that separates two datasets (legiti-
mate vs. spam). For the non-separable case (which is typical in practice), we for-
mulated a slightly different LP which finds a line that minimizes the aggregated
margin.

In this section, we will consider a different classifier which is based on the least-
squares problem and therefore called: the least-squares classifier. The idea of the

Least Squares (LS) 61

Least-squares
classifier

label

linear projection

Figure 1.18. A block diagram of the least-squares classifier.

least-squares classifier is to find a linear projector that minimizes the aggregated
squared error.

Least-squares classifier To see what the idea means, let us consider a block dia-
gram for the classifier, illustrated in Fig. 1.18. The least-squares classifier is param-
eterized by a weight vector, say w ∈ Rd . Given input x(i), it computes a linear
projection w.r.t. the weight vector w; hence, it outputs x(i)T w. You may want to
consider a sightly more general setting where we allow for having a bias term, like
x(i)T w+ b. It turns out one can deal with this case easily with a slight modification
to the classifier. This will be explored later. The way to design w is as follows. Using
the corresponding label y(i), we first compute its squared error: ‖x(i)T w − y(i)‖2.
Next compute the aggregated squared error with all of the m data points given.
Finally we formulate an optimization problem which minimizes the aggregation:

min
w∈Rd

m∑
i=1

‖x(i)T w − y(i)‖2. (1.119)

Notice that the objective function is very similar to the one that we saw in Sec-
tion 1.1. Yes, that is the objective function that Gauss came up with in the process
of addressing the astronomy problem. So we can use the same simplification trick
that Gauss did, thus obtaining:

m∑
i=1

‖x(i)T w − y(i)‖2 =

∥∥∥∥∥∥∥
 x(1)T w − y(1)

...
x(m)T w − y(m)

∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
x(1)T

...
x(m)T

w −

y(1)
...

y(m)

∥∥∥∥∥∥∥

2

.

(1.120)

Define

A :=

x(1)T
...

x(m)T

, b :=

y(1)T
...

y(m)T

. (1.121)

62 Convex Optimization Basics

Least-squares
classifier

Figure 1.19. A block diagram of the bias-allowing least-squares classifier.

Using these notations, we can re-write the optimization problem (1.120) as:

min
w
‖Aw − b‖2, (1.122)

which is the least-squares problem. So we obtain w∗ as:

w∗ = (AT A)−1AT b. (1.123)

Bias-allowing LS classifier Consider a more general setting in which we allow
for a bias in the LS classifier. See Fig. 1.19. In case a bias term is allowed, the linear
classifier outputs:

x(i)T w + c (1.124)

where c ∈ R indicates the bias. We can then formulate an optimization problem as:

min
w∈Rd ,c∈R

m∑
i=1

‖x(i)T w + c − y(i)‖2. (1.125)

Using exactly the same manipulation that we did in (1.120), we get:

m∑
i=1

‖x(i)T w + c − y(i)‖2 =

∥∥∥∥∥∥∥
 x(1)T w + c − y(1)

...
x(m)T w + c − y(m)

∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
x(1)T 1

...
x(m)T 1

[w
c

]
−

y(1)
...

y(m)

∥∥∥∥∥∥∥

2

.

(1.126)

By defining

A :=

x(1)T 1
...

x(m)T 1

, b :=

y(1)
...

y(m)

,

Least Squares (LS) 63

we see that the optimal solution is exactly of the same formula as before:[
w∗

c∗

]
= (AT A)−1AT b. (1.127)

Question One natural question arises. Can the least-squares classifier perform
better than the linear classifier that we developed earlier using LP? To answer this
question, first of all, we need to know what is a proper performance measure that
one can use.

Look ahead In the next section, we will cover this topic in depth, thus address-
ing the question. Specifically we will introduce a prominent performance mea-
sure named test error. We will then study how to evaluate test error, thereby mak-
ing a comparison between the LS classifier and the linear classifier. We will also
study a popular technique employed for improving the test error performance:
regularization.

64 Convex Optimization Basics

1.9 LS: Test Error, Regularization and CVXPY
Implementation

Recap In the prior section, we embarked on the second instance of convex opti-
mization: Least Squares (LS). We studied the LS problem in the context of the
spam filter design. We showed that the spam filter design problem can be formu-
lated as an LS optimization. The formulated LS problem reads: Given data points
{(x(i), y(i))}mi=1,

min
w
‖Aw − b‖2 (1.128)

where

A :=

x(1)T
...

x(m)T

, b :=

y(1)
...

y(m)

.

This then yields w∗ = (AT A)−1AT b. We also proved the closed-form solution
using the optimality condition of unconstrained convex optimization (derived in
Section 1.3). In addition, we extended into a general setting that allows for a bias
term, say c ∈ R:

min
w̄:=(w,c)∈Rd+1,c∈R

m∑
i=1

‖Aw̄ − b‖2 (1.129)

where A now reads:

A :=

x(1)T 1
...

x(m)T 1

 ∈ Rm×(d+1). (1.130)

At the end of the last section, we raised two questions: (i) Is the LS classifier bet-
ter than the margin-based linear classifier?; and (ii) What is a proper performance
measure?

Outline In this section, we will answer these two questions. Specifically what we
are going to do are four folded. First we will introduce a prominent performance
measure called test error. We will then study how to evaluate the test error. With this
measure, we will make a comparison between the LS classifier and the linear classi-
fier. Next, we will study a useful technique employed for the purpose of improving
the test error performance: regularization. Lastly we will learn how to solve an LS
problem via CVXPY.

LS: Test Error, Regularization and CVXPY Implementation 65

LS classifier sign(.)

Figure 1.20. A block diagram of the least-squares classifier.

Test data In order to introduce a proper performance measure, we first need to
study one concept on the data that is employed for the purpose of performance
evaluation. In fact, what we are interested in is the performance w.r.t. data which
is never used while training an interested model. Such data is so called unseen data.
A formal name of the unseen data is test data, as the unseen data is employed
for the purpose of testing. In contrast, we call the data used for training train
data. Train data is usually denoted by {(x(i), y(i))}mi=1, while test data is denoted

by {(x(i)test, y(i)test)}
mtest

i=1 where mtest indicates the number of examples in the test
dataset.

Test error The test error indicates the error computed w.r.t. such unseen data. To
give you a mathematical definition, consider the LS classifier illustrated in Fig. 1.20.
Here an unseen test example, say xtest, is fed as an input, yielding a linearly projected
output xT

testw
∗. Notice that the output is a real value, while the label ytest is binary

∈ {+1,−1}. Hence, we take a transformation of xT
testw

∗ in an effort to make an
apple-to-apple comparison with such a binary label. To this end, if xT

testw
∗
≥ 0, we

declare a legitimate email, outputting ŷtest = +1. Otherwise, we declare a spam
email, setting ŷtest = −1. In other words, we take the sign of the output:

ŷtest = sign(xT
testw). (1.131)

Comparing this to the ground-truth label ytest, we compute a loss function, so
called an 0/1 loss. It takes 0 if they coincide and 1 otherwise. Considering many
such data points, say mtest examples, we compute the test error as the average of
the 0/1 losses:

TestError =
1

mtest

mtest∑
i=1

1{ŷ(i)test 6= y(i)test} (1.132)

where 1{·} denotes an indicator function which outputs 1 when the event {·} is true
and 0 otherwise.

An example of test error computation Here is an example that demonstrates
the test error performance of a trained classifier conducted on a test dataset. Suppose
that the test dataset has: (1) 1139 legitimate emails; and (2) 127 spam emails.
Applying the trained classifier, we obtain 1120 correct and 19 wrong answers for

66 Convex Optimization Basics

(legitimate)

(spam)

191120

9532

true positive false negative
(misdetection)

false positive
(false alarm)

true negative

Figure 1.21. Test error performance of a trained classifier conducted on a test dataset.

1139 legitimate emails. For 127 spam emails, we have 95 correct and 32 wrong
answers. See Fig. 1.21 for the summary of the results.

Then, the test error is computed as:

TestError =
19+ 32

1139+ 127
≈ 4%. (1.133)

Four types of interested events and two types of errors The test error is
categorized into two types depending on what the ground truth is, and a different
emphasis should be put on the two types depending on applications. To explain
what it means, let us first introduce four types of interested events to understand
the different types of errors. The first is the true positive case which indicates the
event {ŷ = +1|y = +1}. The second refers to another desirable situation: the true
negative case which indicates {ŷ = −1|y = −1}.

Now the third and fourth are relevant to error events. The third is the false neg-
ative (or misdetection) case indicating {ŷ = −1|y = +1}. The third is the false
positive (or false alarm) case, which refers to {ŷ = +1|y = −1}. The first type of
error is concerned about the false negative case and therefore called the false negative
rate (FNR):

FNR := P{ŷ = −1|y = +1}. (1.134)

The second type of error refers to the false positive case, so it is called the false
positive rate (FPR):

FPR := P{ŷ = +1|y = −1}. (1.135)

On a side note: The above naming (e.g., FNR and FPR) may be a bit confused
to some readers. One way to remember the naming is as follows. If the test result
is +1 (or −1), we say positive (or negative). If the prediction is correct (or wrong),
then it reads true (or false).

LS: Test Error, Regularization and CVXPY Implementation 67

In the above example exhibited in Fig. 1.21, the two types of error can be com-
puted as:

FNR =
19

19+ 1120
≈ 1.7%;

FPR =
32

32+ 95
≈ 25%.

Notice that the two errors are highly imbalanced; one is much smaller than the
other. If you think about it, it is sort of a desired situation. In reality, it is crucial
to protect against missing legitimate emails. In other words, we should be able to
well declare legitimate emails if they are indeed legitimate, meaning that we should
reduce FNR as much as possible. In this case, it is around 1.7%, which is more or
less okay.

On the other hand, we may be okay with declaring as actually spam emails as
legitimate ones, meaning that a moderate value of FPR may be acceptable in reality.
In this case, it is around 25%, which is more or less okay.

Margin-based linear classifier vs. least-squares classifier Since we figure
out the concept of the test error which is a proper performance measure, we are
now ready to compare performances of the two classifiers: the margin-based linear
classifier and the least-squares classifier.

To this end, we first gather training dataset: {(x(i), y(i))}mi=1. We then use this
to design the margin-based linear classifier (using LP) as well as the least-squares
classifier. Next we test the classifiers on test dataset {(x(i)test, y(i)test)}

mtest

i=1 to compute
TestErrorlinear and TestErrorLeastSquares. This is how we compare performances. You
may wonder which is better in terms of the test error measure. It turns out the
answer depends on datasets. In other words, there is often no concrete answer like:
one is always better than the other. In Prob 3.1, you will have a chance to check just
one case.

Regularization technique We are faced with an issue in applying the least-
squares classifier if no modification is made. In reality, a data point, say x, contains
some noise. Data points are usually obtained from measurements made by humans
or sensors. But humans and sensors are not perfect in reality, so x definitely con-
tains some error. This error incurs an issue: Large values of ‖w∗‖ can boost up such
noise.

To avoid this, we somehow want to make those values small. One way to imple-
ment this is to minimize ‖w∗‖2. But obviously at the same time, we want to make
‖Aw − b‖2 small; otherwise, w∗ would be always 0 – this is obviously what we do
not want to get. This motivates people to come up with a natural idea, which is to

68 Convex Optimization Basics

regulate the two objectives at the same time:

min
w∈Rd
‖Aw − b‖2 + λ‖w‖2 (1.136)

where λ ≥ 0. Notice that for one extreme case of λ = 0, we obtain the conventional
least-squared solution while for the other extreme case of λ = ∞, we get w∗ = 0
in which we declare spam emails randomly. In case a prior knowledge is given, one
can take a smarter action. For instance, if the probability of a randomly selected
email being spam (called a priori probability) is known, then one can declare any
randomly selected email is spam with the known probability.

The above technique is called regularization and λ is called the regularization
factor. In the machine learning community, the regularization factor is considered
as a hyperparameter that can be arbitrarily chosen as per our design.

How to choose λ? One natural question that arises is then: how to choose such
a hyperparameter λ. To figure this out, we need to understand how performances
vary in terms of the regularization factor λ. First consider the training error which
is defined as:

TrainError =
1

m

m∑
i=1

1
{

ŷ(i) 6= y(i)
}

(1.137)

where ŷ(i) = sign(x(i)T w∗). Obviously the training error is minimized at λ = 0
because the case focuses only on the error induced by the training dataset. And it
monotonically increases with an increase in λ. Notice that the larger λ, the more
we regulate, penalizing more on the training error. So we will get something like a
blue curve, as plotted in Fig. 1.22.

error
train error

test error

Figure 1.22. Training and test errors as a function of regularization factor λ.

LS: Test Error, Regularization and CVXPY Implementation 69

On the other hand, the situation is different for the test error:

TestError =
1

mtest

mtest∑
i=1

1
{

ŷ(i)test 6= y(i)test

}
. (1.138)

When λ = 0, the test error would be small but larger than the training error because
the λ = 0 case focuses only on the training error. Increasing λ, we would have a
regularization effect, so we can make the performance less dependent on the train
data. This then puts an indirect emphasis on the test dataset, thus yielding a smaller
test error. But if λ is too big, the classifier would be close to w∗ = 0 in which the
test error would be obviously very large. So one can expect there is a sweet spot on
λ that minimizes the test error. Hence, we may obtain something like a red curve,
as plotted in Fig. 1.22. Actually this is indeed the case. This suggests a natural idea:
Choosing λ∗ that minimizes the test error.

Validation data But you may recognize an issue here. Remember that test data is
defined as unseen data which is never employed during training. However, finding
such λ∗ is included in the process of designing a model; hence, any data employed
for finding λ∗ is actually “seen data”. So we may need another dataset for searching
such a hyperparameter. The data used for that purpose is validation data. It is still
“seen data”. But it is employed for the purpose of validating the goodness of a
trained model. In other words, it is for the hyperparameter search. One important
note on validation data: While constructing datasets, it is important to ensure that
the distribution of validation dataset is similar to that of test dataset as much as
possible. This is because hyperparameters (tuned due to validation data) are desired
to be set so as to yield a good performance w.r.t. unseen test data.

How to solve the regularized problem? Going back to the regularized least-
squares problem (1.136), how can we solve the problem? If you think about it, this is
nothing but another least-squares problem. Why? Applying the same simplification
trick as Gauss did earlier, we obtain:

‖Aw − b‖2 + λ‖w‖2 =

∥∥∥∥[A
√
λI

]
w −

[
b
0

]∥∥∥∥2

= ‖A′w − b′‖2

where

A′ :=

[
A
√
λI

]
∈ R(m+d)×d and b′ :=

[
b
0

]
∈ Rm+d . (1.139)

Hence, we get:

min
w∈Rd
‖A′w − b′‖2. (1.140)

70 Convex Optimization Basics

So the solution would be:

w∗ = (A′T A′)−1A′T b′. (1.141)

CVXPY implementation We have figured out that many types of the LS prob-
lems with (or without) regularization and/or bias terms can be cast into:

min
w
‖Aw − b‖2. (1.142)

So constructing (A, b) from data and formulating an objective function accordingly
is the key to CVXPY implementation. For illustrative purpose, let us dig into imple-
mentation details under a simple example in which there are no regularization and
bias terms, and a dataset is given by:

{(x(i), y(i))}m =

2

3
1

, 5

,

−1
2
3

,−7

3

1
4

,−9

,

7
4
2

,−12

.

Here is a code for implementation:

import cvxpy as cp
import numpy as np
optimization variable
w = cp.Variable(3)
construct (A,b)
A = np.array([[2, 3, 1],

[-1, 2, 3],
[3, 1, 4],
[7, 4, 2]])

b = np.array([5,-7,-9,-12])
objective function
cost = cp.sum_squares(A @ w - b)
obj_min = cp.Minimize(cost)
set up a problem
prob = cp.Problem(obj_min)
solve the problem
prob.solve()
#print the solution
print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal w*: ’, w.value)

LS: Test Error, Regularization and CVXPY Implementation 71

status: optimal
optimal value: 71.90174092652698
optimal w*: [-1.23989377 1.23517262 -2.36470935]

Here a good thing about CVXPY is that the square of the matrix norm
(the key operation that arises in the LS problem) is already implemented as
cp.sum_squares(A @ w - b). So the only thing that you should do is to construct
(A, b) with numpy.array and then to plug the objective function properly. One
can also readily check that the above w∗ coincides with the closed-form solution
(AT A)−1AT b.

Look ahead In the next section, we will study another application in which the
least-squares problem has played a crucial role. The application is the one that arises
in a completely different field, the medical field. That is, Computed Tomography that
you often hear of simply as CT.

72 Convex Optimization Basics

1.10 LS: Computed Tomography

Recap During the past two sections, we have studied a couple of stuffs on the
2nd instance of convex optimization, Least Squares (LS):

min ‖Ax − b‖2 (1.143)

where x ∈ Rd , A ∈ Rm×d , b ∈ Rm and m ≥ d . In particular, we studied those stuffs
in the context of one very important machine learning application: the classification
problem. Specifically we developed another linear classifier which can be designed
via an LS problem. We also discussed a popular performance measure, called the
test error, which is instrumental in making a fair comparison between distinct
classifiers.

Outline In this section, we are going to study another application that arises
in quite a different domain: the medical imaging field. The application that we
will investigate is: Computed Tomography, CT for short. Very interestingly, there
is a mathematical principle behind the idea of CT and the principle is based
on LS. To see how the LS problem is related to CT, we need to understand
the principle of CT. But to this end, we first need to understand the principle
of X-ray which forms the basis of CT. So we are going to proceed in the fol-
lowing sequence. We will first study what X-ray is together with its key prin-
ciple. We will then figure out the motivating context behind the invention of
CT. Next we will explore the idea of CT. Finally we will formulate CT as an LS
problem.

X-ray X-ray is a form of electromagnetic radiation. It was discovered in 1895 by
a German physicist, named Wilhelm Röntgen (Rosenbusch and de Knecht-van
Eekelen, 2019). The discovery opened up a new medical field, called radiology. The
radiology is now a very well-known and well-established field in medical imaging,
but there was no such field before the discovery of X-ray. In addition, the X-ray
played a significant role in other areas beyond the medical field, like Physics and
Chemistry. So the discovery won Röntgen the first Nobel Prize in Physics in 1901.
Take a look at the very short 5-year gap between the discovery year 1895 and the
award year 1901. It is a very rare case because it usually takes much longer time
(around more than 10∼20 years) to receive a Nobel Prize since the discovery or
invention.

Principle of X-ray The principle of X-ray that we will focus on was discovered
through Röntgen’s key observation made while he was working in his laboratory.

LS: Computed Tomography 73

While Röntgen was dealing with experimental tubes, he observed a type of uniden-
tified radiation emanating from the tubes. The naming “X-ray” was originated from
the nature of the unidentified radiation, since “X” typically refers to an unknown.
And he made an interesting observation about the mysterious radiation. When pass-
ing through an object, it absorbs photons and its energy (typically quantified as the
intensity) is proportional to the number of photons absorbed: the more photons
(denser), the stronger intensity.

In fact, he did lots of experiments which support the observation, and he tested
even on his wife’s hand, obtaining a scary picture that shows the bone structure of
the hand.5 It was a sort of the first historical medical X-ray image. The discovery
together with such medical images made many people excited about the X-ray. In
particular, people used the X-ray for the purpose of investigating the inside structure
of interested objects (like human bodies) without drilling it, and this could open
up a new medical field: radiology, which later opened up a broader field of medical
imaging.

Limitations of X-ray However, the X-ray has some limitations in figuring out
an internal structure of interested objects. Usually an object of interest is 3-
dimensional. But the X-ray can generate only a projected 2-dimensional image, so
this gives a challenge in identifying a complicated 3D object structure. For exam-
ple, it is hard to spot tumors behind bones. Another clear example is illustrated in
Fig. 1.23. Here a 2D image projected on the wall looks like a human hand, but

Figure 1.23. An example in which the projected 2D image does not well represent the 3D

structure.

5. At that time, Röntgen had no idea of how detrimental X-ray is to human bodies. Perhaps this may be the
reason that his wife passed away 6 years later since the discovery. Who knows?

74 Convex Optimization Basics

the actual 3D object is a rabbit. This implies that much of the key structure-related
information can be lost while being projected. This clearly shows the limitations
of X-ray.

Invention of Computed Tomography (CT) Many people tried to solve such
information-missing problem. A history was made in 1967 among such efforts.
At the time, a smart way to address the problem was developed, named Com-
puted Tomography (CT). The technique together with a computer-aided machine
was invented by two people: one is a British electrical engineer, named Godfrey
Hounsfield; and the other is a South African-American physicist, named Allan Cor-
mack (Cormack and Hounsfield). In fact, this invention was not done in a coop-
erative manner – rather it was done independently. While Hounsfield’s invention
was slightly earlier, the credit was also fully given to Cormack, so they could be
co-awarded the Nobel Prize in Physiology or Medicine in 1979.

Idea of CT The idea of CT is very well reflected in the name. “Tomos” is a Greek
word which means “projected section (or slice)”; and “graphy” means “describe”.
So in words, it means “describing an object using slices.” Details on the idea are the
following:

1. Project X-ray beams onto an object from many different angles;
2. Calculate the intensities of the projected images (slices);
3. Use them to reconstruct (describe) the object.

A simple example To explain what it means in detail, let us consider the follow-
ing example in which an object of interest is comprised of four equal-sized grids –
see Fig. 1.24. For illustrative purpose, we consider a 2D object, although many of
interested objects are 3D. Once you grasp the idea, you will soon understand that

1+0.1

1-0.05

noise

0-0.03

Figure 1.24. A simple grid example that well illustrates the idea of CT.

LS: Computed Tomography 75

the idea can readily be extended to a 3D object case. The object has two black grids
on left upper and right bottom, while having two white grids on right upper and
left bottom. Suppose that X-ray absorbs no photon when passing through a black
grid, i.e., the density is 0. Here we define the unit of the density as the number of
photons per unit length. On the other hand, assume that X-ray absorbs something
(say, the density is 1) when passing through a white grid.

Suppose we project a horizontal X-ray beam to the upper part of the object so
that it passes through the two upper grids. Then, it would absorb nothing in the
black grid zone while absorbing something in the white grid zone. Since the unit
of the density that we define here is w.r.t. the unit length, the intensity of the X-ray
beam would be proportional to the width of the white grid zone. For simplicity,
assume that the width is 1 unit length. Then, the intensity would be 1. But there is
always an error in measurement, say that the measurement noise here is 0.1 (marked
in red in Fig. 1.24). We also project another horizontal X-ray beam to the bottom
part of the object. We then measure the corresponding intensity, say 1 − 0.05.
Projecting two vertical downward beams, we get two measurements, say: 1+ 0.02
and 1− 0.1.

Shooting a top-left to bottom-right diagonal beam to the object, we would
absorb nothing since it passes only through the black grids, so the measurement
would be close to 0, say 0 − 0.03. On the other hand, the other bottom-left to
top-right diagonal beam would pass only through the white grids. Since the length
of the passing zone is 2

√
2, the intensity measurement would be close to 2

√
2, say

2
√

2+ 0.2.
What we want to figure out are the densities of the four grids, so let us denote

those by unknown variables, say d1 (top left), d2 (top right), d3 (bottom left), d4

(bottom right). Using these notations, we can express the above six measurements
as the following linear equations:

d1 + d2 = 1.1

d3 + d4 = 0.95

d1 + d3 = 1.02

d2 + d4 = 0.9
√

2d1 +
√

2d4 = −0.03
√

2d2 +
√

2d3 = 2
√

2+ 0.2.

(1.144)

Least squares formulation Notice in (1.144) that we have six equations while
having four unknowns. So there is no solution in general. This is indeed the
no-solution case. But we can invoke Gauss’s idea to address this case. In other words,

76 Convex Optimization Basics

we can formulate it as an LS problem. Defining

A :=

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1
√

2 0 0
√

2

0
√

2
√

2 0

and b :=

1.1
0.95
1.02
0.9
−0.03

2
√

2+ 0.2

,

we can formulate it as:

min ‖Ad − b‖2. (1.145)

Then, the solution would be d∗ = (AT A)−1AT b. For the above example, we
obtain:

(d∗1 , d∗2 , d∗3 , d∗4) = (0.0400, 1.0613, 1.0463,−0.0950).

The solution makes an intuitive sense, as it is close to the ground truth (0, 1, 1, 0).

A more realistic example In fact, the example in Fig. 1.24 is too simple. In
reality, an object is of an arbitrary shape and also the density of the object con-
tinuously changes over regions. To understand how to apply the idea into a more
realistic object, let us consider another example in Fig. 1.25.

Here what we want to figure out is the density, say d(x, y), which indicates the
density at a coordinate (x, y). Suppose we project to the object an X-ray beam (with
a bottom-left to top-right diagonal direction), as illustrated in Fig. 1.25. Let t be
the length of the beam trajectory from the starting point (x0, y0) at t = 0. Let θ be
the angle of the beam in reference to the x-axis. Then, the coordinate p(t) that the

X-ray beam

intensity:

noise

position coordinate at time t

Figure 1.25. A more realistic example for illustration of CT idea.

LS: Computed Tomography 77

beam indicates when the beam length is t would be:

p(t) = (x0, y0)+ t(cos θ , sin θ). (1.146)

Remember that the intensity is: (density) × (length that the beam traverses).
Here the density changes over the regions that the beam swipes. So it can be repre-
sented as d(p(t)). And the length of the beam w.r.t. the very small region where the
density is almost constant can be represented by dt. So the intensity measurement
would be:

b =
∫

d(p(t))dt + v (1.147)

where v indicates a measurement noise.

Discretization A question arises. How to estimate the density d(p(t)) only from
such measurement (1.147)? Specifically, one can ask: How is it related to the LS
problem which does not deal with such integral-involved term? The idea is applying
the discretization illustrated in Fig. 1.26. We make many minuscule grids in the
space so that the density for each tiny grid can be assumed to be constant. Let di be
the density of the ith grid. Denoting by ai the length of the beam traversed at the
ith grid, we can approximate the intensity absorbed through the ith grid as aidi.
Letting Sbeam the set of the indices of the grids that the beam travels, we can v
approximate the aggregated intensity measured as:

b ≈
∑

i∈Sbeam

aidi + v. (1.148)

length of the beam traversed at the ith grid

set of grid indices that the
beam travels

Figure 1.26. The discretization idea for CT.

78 Convex Optimization Basics

Now shooting many X-ray beams from many different angles, we obtain the
following measurements:

b1 ≈
∑

i∈Sbeam1

aidi + v1

b2 ≈
∑

i∈Sbeam2

aidi + v2

...

bm ≈
∑

i∈Sbeam-m

aidi + vm.

(1.149)

LS formulation Notice in (1.149) that we have m equations and the number
of unknowns is the same as the number of grids that the object spans. With a
sufficiently large number m of measurements (this is subject to our design), we can
make m always larger than the number of unknowns. And for this setting, we can
again apply Gauss’s idea to formulate an LS problem as follows:

min ‖Ad − b‖2 (1.150)

where

A :=

{ai}i∈Sbeam1

{ai}i∈Sbeam2

...
{ai}i∈Sbeam-m

, b :=

b1

b2
...

bm

 .

Here {ai}i∈Sbeam1
an ngrid-dimensional row vector wherein we read ai’s for i ∈ Sbeam1

while 0 otherwise, and ngrid denotes the total number of grids. For instance, if
ngrid = 10 and Sbeam1 = {1, 5, 9}, then

{ai}i∈Sbeam1
= [a1 0 0 0 a5 0 0 0 a9 0]. (1.151)

History of CT scanners This is the idea that Hounsfield came up with. While
he mimicked Gauss’s idea, we believe that the way to mimick is highly non-trivial.
Applying this idea, Hounsfield could also develop a prototype CT scanner in
1971 (Beckmann, 2006); see the first left picture in Fig. 1.27.

Remember that he was an electrical engineer – he was good enough to build an
electrical computer-aided machine. The prototype supported m = 160 measure-
ments (X-ray beams). The scanning time for each beam was a little over 5 minutes.
So the total scanning time was around 13 hours. Also, the computation time for
reconstructing an object with measurements (solving the LS problem) was around

LS: Computed Tomography 79

Prototype CT scanner A historical EMI-scanner CT scanner nowadays

Figure 1.27. History of CT scanners.

2.5 hours on a computer that he had. So it could not be commercialized as it took
lots of time.

Fortunately, at that time, Hounsfield was working at a big and supportive com-
pany: EMI (Electric & Music Industries). While EMI was a music-record company,
it was rich enough to invest some money to a field which has nothing to do with
the music industries. Actually EMI was even going further. There was a rumour
that with tons of money from the sales of The Beatles records in the 1960s, EMI
helped fund the development of CT scanners. Anyhow the fact is that in the same
year 1971, Hounsfield could develop the first commercial CT scanner with gener-
ous support from EMI, named the EMI-scanner (Bhattacharyya, 2016) – see the
middle picture in Fig. 1.27. The performance of the scanner was remarkable rela-
tive to the prototype scanner. The scanning and reconstruction times were around
4 minutes and 7 minutes, respectively. So it could be commercialized.

CT scanners nowadays are beyond remarkable. For example, Siemens CT scan-
ner (2017 model) in Fig. 1.27 takes only ∼ 0.33 seconds for the whole process.

Look ahead So far, we have studied two instances of convex optimization: LP
and LS. In the next section, we will study another instance which subsumes LP and
LS as special cases: Quadratic Program.

80 Convex Optimization Basics

Problem Set 3

Prob 3.1 (Margin-based linear vs. Least-Squares classifiers) Consider
the legitimate-vs-spam email classification. We are given {(x(i), y(i))}mi=1 training
dataset. This is the same as that in the file “train.csv” that we employed in Prob 2.3.
Remember the file is placed in:

http://csuh.kaist.ac.kr/convex book/PS2/train.csv

In this problem, you will build up two classifiers: (i) the margin-based linear classi-
fier; and (ii) the Least-Squares classifier. You will also compare the test error perfor-
mances with test dataset {(x(i)test, y(i)test)}

mtest

i=1 . The test dataset is another file “test.csv”
uploaded on:

http://csuh.kaist.ac.kr/convex book/PS3/test.csv

You need to write a script for CYXPY implementation.

(a) Formulate an LP for the margin-based linear classifier. Solve the problem
(using the training data) to design the classifier.

(b) Formulate an optimization for the least-squares classifier. Solve the problem
to design the classifier.

(c) Use Python to compute the test errors of the two classifiers designed in parts
(a) and (b). Which classifier is better in terms of test error?

(d) State the two types of errors together with their definitions. Also explain
which type should be further minimized relative to the other in this prob-
lem.

Prob 3.2 (Bias-allowing least-squares problem) In this problem, you will
design least squares classifiers which allow for bias terms, for legitimate-vs-spam
email classification. Suppose that a linear classifier reads:

y = xT w + c (1.152)

where x ∈ Rd and y ∈ R denote the input and output of the classifier, respectively.
Also w ∈ Rd and c ∈ R indicate the linear weight and bias, respectively. Let

A :=

x(1)T 1
x(2)T 1

...
x(m)T 1

 ∈ Rm×(d+1),

Problem Set 3 81

w̄ :=

[
w
c

]
∈ Rd+1,

b :=

y(1)

y(2)
...

y(m)

 ∈ Rm

where {(x(i), y(i))}mi=1 indicate the training dataset employed in Prob 3.1. You need
to write a script for CVXPY implementation.

(a) Formulate the bias-allowing least squares problem. Use the training dataset
to design a classifier.

(b) Use the trained classifier together with the test dataset in Prob 3.1 to com-
pute the test error. Also compare its performance to that of the ordinary
least squares classifier designed in Prob 3.1.

Prob 3.3 (Regularized least-squares problem) In this problem, you will
design regularized least-squares classifiers for legitimate-vs-spam email classifica-
tion. Use the same datasets employed in Prob 3.1. You also need to write a script
for CVXPY implementation.

(a) Formulate a regularized least squares problem. Use the training dataset to
design classifiers for different regularization factors λ. You may want to set
up a range of λ like:

import numpy as np
lambda_ = np.logspace(-2,3,51)

(b) Define the training error. Use Python to plot the training error as a function
of λ. Also explain the shape of the curve and describe why.

(c) Define the test error. Use the classifiers (trained in part (a)) together with
the test dataset to plot the test error as a function of λ. Also explain the
shape of the curve and describe why.

Prob 3.4 (2nd-order condition of convexity) Suppose f : Rd
→ R is twice

differentiable, i.e., its second derivative ∇2f (also called Hessian) exists at each
point in domf . In addition to the 1st-order condition of convexity that we proved
in Prob 1.5, another well-known fact w.r.t. convexity is: f is convex if and only if

domf is convex;

∇
2f (x) is positive semidefinite, i.e., ∇2f (x) � 0 ∀x ∈ domf .

(1.153)

82 Convex Optimization Basics

This problem explores the proof of this via the following subproblems.

(a) State the definition of a positive semidefinite matrix.
(b) Suppose d = 1. Show that if f (x) is convex, then (1.153) holds.
(c) Suppose d = 1. Show that if (1.153) holds, then f (x) is convex.
(d) Prove the 2nd-order condition for arbitrary d .

Prob 3.5 (Concepts)

(a) In binary classification, four types of events are emphasized in Section 1.9.
What are those? Also explain the rationale behind the naming of two types
of errors.

(b) In the legitimate-vs-spam email classification, which type of errors do we
need to minimize further? Also explain why.

(c) State the definitions of hyperparameter and validation set.
(d) What are the meanings of tomos and graphy? Describe the idea of Computed

Tomography (CT).
(e) In the least squares problem for CT, what is the size of the matrix A? What

is the condition on the size? Can the condition easily be satisfied? Also
explain why.

Prob 3.6 (Regularized CT) Consider the LS problem that we formulated for
CT in Section 1.10:

min
d
‖Ad − b‖2 (1.154)

where d ∈ Rn indicates the density vector, A ∈ Rm×n denotes the measurement
matrix, and b ∈ Rm is the measurement vector. Here m denotes the number of
X-ray beams projected to an object of interest, and n indicates the number of grids
that span the object. We assume that d is a vectorized version of a matrix which
discretizes the object with n1 horizontal grids and n2 vertical grids. See Fig. 1.28
for such vectorization. In the example, n1 = 50, n2 = 50 and n = n1n2 = 2500.

In practice, people use a slightly different version of the ordinary LS prob-
lem (1.154), in an effort to exploit some prior information on d . The density vector
d is a conversion of image information. One of the common properties of natural
images is that it is smooth; neighboring pixel values are not very much different
from each other. One way to enforce the smoothness is to minimize the differences
across horizontally-neighboring pixel values, i.e., minimize:

‖d1 − d2‖
2
+ ‖d2 − d3‖

2
+ · · · + ‖dn1−1 − dn1‖

2

+ ‖dn1+1 − dn1+2‖
2
+ ‖dn1+2 − dn1+3‖

2
+ · · · + ‖d2n1−1 − d2n1‖

2

Problem Set 3 83

Figure 1.28. Vectorization of a discretized matrix for a 2-dimensional object.

+
...

+ ‖dn1(n2−1)+1 − dn1(n2−1)+2‖
2
+ · · · + ‖dn1n2−1 − dn1n2‖

2. (1.155)

(a) Suppose we want to express (1.155) into a matrix-vector form as follows:

(1.155) = ‖Dhd‖2. (1.156)

What is Dh?
(b) Another way to enforce the smoothness is to make sure that the vertically-

neighboring pixel values are small, i.e., minimize the following quantity:

‖d1 − dn1+1‖
2
+ ‖dn1+1 − d2n1+1‖

2
+

· · · + ‖dn1(n2−2)+1 − dn1(n2−1)+1‖
2

+ ‖d2 − dn1+2‖
2
+ ‖dn1+2 − d2n1+2‖

2
+

· · · + ‖dn1(n2−2)+2 − dn1(n2−1)+2‖
2

+
...

+ ‖dn1 − d2n1‖
2
+ ‖d2n1+1 − d3n1‖

2
+ · · · + ‖dn1(n2−1) − dn1n2‖

2.
(1.157)

84 Convex Optimization Basics

Again we want to express (1.157) into a matrix-vector form like:

(1.157) = ‖Dvd‖2. (1.158)

What is Dv?
(c) As we did before, we want to formulate a regularized LS problem which

minimizes ‖Ad − b‖2 and ‖Dhd‖2 + ‖Dvd‖2 at the same time. Suppose
we employ a regularization factor λwhich would be multiplied to ‖Dhd‖2+
‖Dvd‖2. Formulate such regularized LS problem – your final form should
follow the standard form of an LS.

Prob 3.7 (Implementation of regularized CT) We implement the regularized
CT formulated in Prob 3.6. Suppose we project many X-ray beams to an interested
2-dimensional image from different angles, as illustrated in Fig. 1.29.

Let m be the number of X-ray beams projected. We discretize the 2D image with
n1 horizontal and n2 vertical grids so that the total number n of grids is n1n2. We
apply this method to obtain a measurement matrix A ∈ Rm×n and a measurement
vector b ∈ Rm. This data is given in the files: (i) “CT data1.csv” (for image 1); and
(ii) “CT data2.csv” (for image 2). These are uploaded on:

http://csuh.kaist.ac.kr/convex book/PS3/CT data1.csv

http://csuh.kaist.ac.kr/convex book/PS3/CT data2.csv

Figure 1.29. Projecting many X-ray beams to an interested 2D image from different

angles.

Problem Set 3 85

(a) What are m, n1, n2 and n?
(b) For image 1, consider the regularized least squares problem formulated in

Prob 3.3. For the regularization factor λ ∈ {0, 1, 100}, solve the problem
to estimate the density vector d . Also visualize it. For visualization, you may
want to use the following Python script:

import numpy as np
import matplotlib.pyplot as plt
Img = np.reshape(dhat,(n_1,n_2))
Img = np.rot90(Img,3)
Img = np.fliplr(Img)
plt.imshow(Img,’gray’)
plot.show()

where dhat indicates the estimated density vector. Also write a script for
CVXPY implementation.

(c) Repeat part (b) for image 2.

Prob 3.8 (CT) Let d(x, y) be the density of an object at coordinate (x, y). Suppose
we project to the object an X-ray beam. Let t be the length of the beam trajectory
from the starting from (x0, y0) at t = 0. Let θ be the angle of the beam in reference
to the x-axis. Let v be an additive noise in the intensity measurement. Express the
intensity measurement in terms of d(·, ·) and v. Then, explain the discretization
idea (that we learned in Section 1.10) to express an approximation of the intensity
measurement. Moreover, use the idea of Computed Tomography (CT) to formulate
a least-squares problem. Specify a condition on the size of the matrix (multiplied
to the density vector) and discuss if the condition can be easily satisfied in reality.

Prob 3.9 (True or False?)

(a) Consider the regularized least squares classifier that we learned in Sec-
tion 1.9:

min
w∈Rd
‖Aw − b‖2 + λ‖w‖2 (1.159)

where A ∈ Rm×d , m denotes the number of training samples, and λ ≥ 0
indicates the regularization factor. There exists a sweet spot, say λ∗ > 0,
such that the test error is minimized, and this can be found via test data in
practice.

(b) In real applications, the misdetection error is desired to be smaller than the
false positive error.

(c) The regularized CT can be formulated as an ordinary least-squares problem.

86 Convex Optimization Basics

1.11 Quadratic Program

Recap During several past sections, we have studied two instances of convex opti-
mization: LP and LS. For LP, we investigated a bunch of important examples that
can be formulated as LPs or can be solved via LP relaxation. For LS, we explored
two applications to demonstrate the power of the LS problem.

Outline In this section, we are going to study the follow-up instance that includes
LP and LS as special cases: Quadratic Program (QP). Specifically we are going
to cover five stuffs. First we will study what QP is and show its convexity. We
will then verify that QP indeed subsumes LP and LS. Next, we will investigate
a special case of QP which exhibits a closed-form solution. The focused prob-
lem is Constrained Least Squares. In the fourth part, we will discuss how to deal
with general QP yet in a very brief manner. Lastly we will investigate CVXPY

implementation.

Quadratic Program The standard form of QP reads:

min wT x + xT Qx :

Ax − b ≤ 0

Cx − e = 0

(1.160)

where Q = QT
∈ Rd×d

� 0 is a positive semi-definite (PSD) matrix. We say
that a symmetric matrix, say Q = QT

∈ Rd×d , is positive semi-definite if vT Qv ≥
0, ∀v ∈ Rd . Equivalently, one often uses the following condition instead: All the
eigenvalues of Q are non-negative. One can prove the equivalence between the two
conditions, relying upon eigenvalue value decomposition (w.r.t. Q) together with
some manipulation. Please exercise by yourself if you are not convinced. The PSD
condition is simply denoted by Q � 0. Here (w, A, b, C , e) are of compatible size.
Using the 2nd-order condition of convexity (check in Prob 3.4), one can readily
show that QP is indeed a convex optimization problem:

∇
2(wT x + xT Qx) = ∇(w + (Q + QT)x)

= ∇(w + 2Qx)

= 2Q � 0

where the 1st and 3rd equalities are due to the definition of gradient w.r.t. a vector
x ∈ Rd (please check Prob 1.2); and the 2nd and last come from our hypothesis
(QT
= Q � 0).

Quadratic Program 87

Obviously QP includes LP as a special case in which Q = 0. To check whether
it subsumes LS, consider:

min
x∈Rd
‖Ax − b‖2 = min

x∈Rd
xT (AT A)x − 2bT Ax + bT b. (1.161)

First observe that bT b does not alter the optimal solution. The second to notice is
that AT A is PSD. Why? Notice that

xT AT Ax = (Ax)T (Ax) = ‖Ax‖2 ≥ 0 ∀x ∈ Rd . (1.162)

Equality-constrained LS As mentioned in the beginning, there is a special (yet
important) case in which the closed-form solution exists. The special case is very
similar to the ordinary LS – the only distinction is that we additionally include an
equality constraint. Let us call such a problem equality-constrained LS:

min
x∈Rd
‖Ax − b‖2 :

Cx − e = 0
(1.163)

where A ∈ Rm×d , b ∈ Rd , C ∈ Rp×d and e ∈ Rp.
Obviously we are interested in the case of m ≥ d . Why? Remember what we

discussed in Section 1.8. Depending on the values of p and d , we can now think of
two cases: (i) p ≥ d ; and (ii) p < d . The first is not an interesting case because in
the case x∗ is simply determined solely by the equality constraint (so it has nothing
to do with minimizing the squared error) or there is no solution. Hence, the second
case p < d is of interest. Regarding the wide (or square) matrix C , assume that

rank(C) = p. (1.164)

We also assume that

rank

([
A
C

])
= d , (1.165)

meaning that all the columns of

[
A
C

]
are linearly independent. Actually these often

hold in reality. Later you will figure out the assumptions (1.164) and (1.165) are
instrumental in deriving the closed-form solution.

Closed-form solution Consider the case in which m ≥ d , p < d , and (1.164)
and (1.165) hold. Under the case, the closed-form solution to (1.163) reads:

x∗ = d -Components

{[
2AT A CT

C 0

]−1 [
2AT b

e

]}
(1.166)

88 Convex Optimization Basics

where d -Components(·) is an operator that takes the first d components of (·).
Notice that the inside of the operator is an (d + p)-dimensional vector.

In fact, once we start with the given formula (1.166) for x∗, the proof is straight-
forward, although directly deriving the formula is highly non-trivial. Here we will
take an easy way, formally stated below.

1. Show that if ∃(x∗, z) ∈ Rd+p such that[
2AT A CT

C 0

] [
x∗

z

]
=

[
2AT b

e

]
, (1.167)

then x∗ must be the optimal solution, i.e., ‖Ax − b‖2 ≥ ‖Ax∗ − b‖2, ∀x
subject to Cx − e = 0.

2. Show that[
2AT A CT

C 0

]
is invertible due to (1.164) and (1.165). (1.168)

A site note: The direct derivation of the formula (1.166) requires the identifica-
tion of the optimality condition for x∗ (which is non-straightforward to derive) as
well as some concepts (e.g., Lagrange functions) that we did not study yet. Lagrange
functions will be covered in Part II. Hence, this derivation is omitted herein. But
the detailed derivation will be given in Section 2.2. You will also have a chance to
get some sense of the direct derivation in Prob 4.2.

Remark Prior to proving (1.166), let us say a few words about the interested
matrix that appears in (1.166): [

2AT A CT

C 0

]
. (1.169)

This is a very famous matrix, named the KKT matrix. Why do people name it
KKT? Because it is the key matrix recognized by three prominent scholars: Karush,
Kuhn and Tucker. Kuhn is famous as a friend of John Nash, who received the Nobel
Prize in economics for the game theory and is a model for the main character in
the movie Beautiful Mind. Tucker is famous as a PhD advisor of John Nash. In
fact, they recognized the matrix in the process of deriving necessary conditions for
optimality of general optimization problems, named KKT conditions that you may
hear of. The KKT conditions are very important conditions that form the basis
of strong duality that we will study in Part II. So we will discuss more on this
later.

A side note: The KKT conditions were publicized in a conference paper by
Kuhn and Tucker in 1951 (Kuhn and Tucker, 2014). But later it was revealed

Quadratic Program 89

that the same conditions were already derived in the master thesis by Karush in
1939 (Karush, 1939).

Proof: (1.167) H⇒ ‖Ax−b‖2 ≥ ‖Ax∗−b‖2, ∀x : Cx−e = 0 As mentioned earlier,
the proof is straightforward. Consider

‖Ax − b‖2 = ‖(Ax − Ax∗)+ (Ax∗ − b)‖2

= ‖Ax − Ax∗‖2 + ‖Ax∗ − b‖2 + 2(Ax − Ax∗)T (Ax∗ − b)

(a)
= ‖Ax − Ax∗‖2 + ‖Ax∗ − b‖2

≥ ‖Ax∗ − b‖2.

The only thing that remains to complete the proof is to show the step (a) in the
above. See below for the proof:

2(Ax − Ax∗)T (Ax∗ − b) = 2(x − x∗)T AT (Ax∗ − b)

(b)
= −(x − x∗)T CT z

= −(Cx − Cx∗)T z

(c)
= −(e − e)T z = 0

where (b) comes from the fact that 2AT Ax∗ − 2AT b = −CT z, which is the first
component in (1.167); and (c) is due to Cx∗ = e, which is the second component
in (1.167).

Proof of (1.168) The proof idea is by contradiction. Suppose[
2AT A CT

C 0

]
is not invertible. (1.170)

Here not being invertible means that any column in the matrix in (1.170) can be
expressed as a linear combination of the other columns in the matrix. This implies
that

∃

[
x̄
z̄

]
6= 0 :

[
2AT A CT

C 0

] [
x̄
z̄

]
= 0. (1.171)

This then gives:

2AT Ax̄ + CT z̄ = 0. (1.172)

90 Convex Optimization Basics

Multiplying x̄T to both sides from the left, we get:

2x̄T AT Ax̄ + x̄T CT z̄ = 0. (1.173)

Since Cx̄ = 0 due to (1.171), x̄T CT
= 0. Applying this to (1.173), we get:

‖Ax̄‖2 = 0, which then yields: Ax̄ = 0. This together with Cx̄ = 0 gives:[
A
C

]
x̄ = 0. (1.174)

Recall one of our assumptions made earlier (1.165). This implies that all the

columns of

[
A
C

]
are linearly independent. So (1.174) must imply that

x̄ = 0. (1.175)

Applying this to (1.172), we get:

CT z̄ = 0. (1.176)

Again recall the other assumption made earlier (1.164). This implies that all the
rows of C (i.e., all the columns of CT) are linearly independent. Hence,

z̄ = 0. (1.177)

This together with (1.175) yields contradiction with (1.171), thus completing the
proof (1.168).

General QP Recall the general QP taking the following standard form:

min wT x + xT Qx :

Ax − b ≤ 0

Cx − e = 0

(1.178)

where Q = QT
� 0 is a PSD matrix. Now how to solve the general QP? Unfor-

tunately, there is no closed-form solution in general. As mentioned in Section 1.3,
strong duality provides algorithmic insights. So we will study how to solve the prob-
lem later when dealing with strong duality in Part II.

CVXPY implementation While we will cover the algorithm in Part II, here we
investigate how to use CVXPY for solving QP. CVXPY implementation depends
highly on the standard form (1.178). So the key procedure includes: (i) construct-
ing the interested matrices and vectors (i.e., Q , w, A, b, C , e); and (ii) formulating a

Quadratic Program 91

problem object using QP-tailored built-in functions properly. For illustrative pur-
pose, we consider a simple example:

Q =

26 3 10
3 10 1
10 1 6

, w =

1
3
2

,

A =
[
1 −4 3

]
, b = 10, C =

[
2 −1 2

]
, e = 3.

See below a code for implementation:

import cvxpy as cp
import numpy as np

optimization variable
x = cp.Variable(3)
construct (Q,w,A,b,C,e)
Q = np.array([[26, 3, 10],

[3, 10, 1],
[10, 1, 6]])

w = np.array([1,3,2])
A = np.array([[1, -4, 3]])
b = np.array([10])
C = np.array([[2, -1, 2]])
e = np.array([3])

objective function
cost = cp.quad_form(x, Q) + w.T @ x
obj_min = cp.Minimize(cost)
constraints
constraints = [A @ x <= b, C @ x == e]
set up a problem
prob = cp.Problem(obj_min,constraints)
solve the problem
prob.solve()
#print the solution
print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal x*: ’, x.value)

status: optimal
optimal value: 10.573694029850747
optimal x*: [-0.27425373 -0.55223881 1.49813433]

Here we use a built-in function, cp.quad_form(x,Q), to compute xT Qx. w.T @ x

indicates wT x. The syntax for constraints is also simple.

92 Convex Optimization Basics

Second-Order Cone Program
(SOCP)

……

1994

1994

Least Squares Linear Program
(LP)

Quadratic Program (QP)

19391800s

1956

Semi-Definite Program
(SDP) 1994

Convex Optimization

Figure 1.30. Hierarchy of convex optimization problems.

Look ahead So far, we have studied three instances of convex optimization: LP,
LS and QP. In the next section, we will embark on the follow-up instance: Second-
Order Cone Program (SOCP). Recall the hierarchy of convex optimization prob-
lems in Fig. 1.30.

Second-order Cone Program 93

1.12 Second-order Cone Program

Recap So far we have studied three instances of convex optimization: LP, LS
and QP. In the last section, we studied QP, investigating a special case of QP in
which there is a closed-form solution: the equality-constrained LS. In particular we
emphasized that the KKT matrix that appears in the closed-form solution is one of
the components that arises in the KKT conditions that we will study in depth in
Part II.

Outline In this section, we are going to study a follow-up instance that includes
LP, LS and QP as special cases: Second-Order Cone Program, SOCP for short.
What we are going to do are four folded. First we will study what SOCP is together
with the verification of the convexity of the problem. We will then demonstrate
that it subsumes LP and QP. Next, we will discuss applications in which SOCP
plays a role and therefore one can see the efficacy of the problem. Lastly, we will
investigate CVXPY implementation.

Second-Order Cone Program (SOCP) The standard form of SOCP is as
follows:

min
x∈Rd

wT x :

‖Aix − bi‖ ≤ cT
i x + ei, i ∈ {1, . . . , m},

Fx = g

(1.179)

where Ai ∈ Rki×d , bi ∈ Rki , ci ∈ Rd , ei ∈ R, F ∈ Rp×d , and g ∈ Rp. The
operator ‖ · ‖ indicates the Euclidean norm. By convention, people use the expres-
sion cT

i x + ei instead of cT
i x − ei (which is consistent with Aix − bi). Here the

complicated-looking inequality constraint is the one that you have never seen. Let
us first verify that the problem belongs to convex optimization. To this end, we
need to show that the left-hand-side function in the standard form (in which the
right-hand-side is 0 with the “≤” type inequality) is convex:

‖Aix − bi‖ − cT
i x − ei.

Notice that the latter term−cT
i x− ei in the above is affine and also the inside term

of the Euclidean norm is affine. Since convexity preserves under addition and affine
transformation, it suffices to show that ‖x‖ is convex. In the one-dimensional case,
the function ‖x‖ is “V”-shaped, so it is convex. It turns out it is the case for an
arbitrary dimension. Please check this by yourself.

94 Convex Optimization Basics

Figure 1.31. Illustration of the second-order cone: {(x, t) ∈ Rd+1 : ‖x‖ ≤ t} and d = 2.

Why do we call SOCP? As you may guess, the naming comes from the never-
seen inequality constraint:

‖Aix − bi‖ ≤ cT
i x + ei. (1.180)

To see the rationale behind the naming, let us consider a very simple setting which
can give a hint: Ai = I , bi = 0, ci = 0, ei = t. In this case, the constraint is
simplified as: ‖x‖ ≤ t. Now consider a set of (x, t) ∈ Rd+1 subject to the con-
straint (1.180).

C := {(x, t) ∈ Rd+1 : ‖x‖ ≤ t}. (1.181)

Take a look at the shape of the set, illustrated in Fig. 1.31. It looks like an ice-cream
cone. Also the norm that appears in the set is the Euclidean norm, which is the `2

norm. Hence, it is called the second-order cone (SOC). Another names are quadratic
cone, ice-cream cone or Lorentz cone.

Since the constraint (1.181) is a special case of the original constraint (1.180),
you may still wonder why the problem (1.179) is called SOCP. Here a key obser-
vation is that the set of affine transformation of x is an SOC:

(Aix − bi, cT
i x + ei) ∈ C.

Since convexity preserves under affine transformation, one can also view the original
constraint (1.180) as an SOC upto affine transformation. So one can interpret the
problem (1.179) as an SOC-constraint-based Program, which can be simply called
SOCP.

Subsumes QP: QP→ SOCP Let us show that the problem (1.179) includes LP
and QP as special cases. One can immediately see the inclusion of LP by setting:

Ai = 0 ∀ ∈ {1, . . . , m}

in the original problem.

Second-order Cone Program 95

The proof of the inclusion of QP is slightly involved. To this end, we will show
that any QP can be cast into the form of SOCP. So let us start with the standard
form of QP:

min wT x + xT Qx :

Ax − b ≤ 0

Cx − e = 0

(1.182)

where Q ∈ Rd×d
� 0, A ∈ Rm×d and C ∈ Rp×d . Here what is annoying is

the quadratic term xT Qx that appears in the objective function. In an effort to
translate the annoying term into an affine term, let us first manipulate the matrix
Q via eigenvalue decomposition (EVD). Since Q is symmetric, one can apply EVD
to obtain:

Q = U3U T

where U ∈ Rd×d is a unitary matrix (i.e., U T U = I) and 3 is a diagonal matrix:
3 = diag(λ1, . . . , λd) where λi indicates the ith eigenvalue of Q . Now we define
y := Q1/2x where

Q1/2 := U31/2U T

where31/2 := diag(
√
λ1, . . . ,

√
λd). This definition is valid because λi’s are non-

negative due to Q � 0. This then yields: yT y = xT Qx. Introducing this new
variable into (1.182), we get:

min
x, y

wT x + yT y :

Ax − b ≤ 0

Cx − e = 0

y = Q1/2x.

(1.183)

While the newly introduced constraint y = Q1/2x is okay as it is affine, the
quadratic term yT y in the objective is still problematic. To translate this into an
affine term, we introduce a new variable, say t, such that

t ≥ yT y. (1.184)

Here the key observation is that minimizing t is equivalent to minimizing yT y.
Why? By minimizing t, one can set the upper bound of yT y smaller, hence one can

96 Convex Optimization Basics

reduce yT y upto the limit. Similarly by minimizing yT y, we can choose t (our opti-
mization variable) so that it exactly touches upon the minimized yT y. Therefore,
we can replace yT y in the objective with t while adding the constraint (1.184), thus
obtaining:

min
x, y, t

wT x + t :

Ax − b ≤ 0

Cx − e = 0

y = Q1/2x

yT y ≤ t.

(1.185)

Is yT y ≤ t an SOC constraint? Is the newly introduced constraint yT y ≤ t is an
SOC? At first glance, it looks not the case, as it can be represented as: ‖y‖ ≤

√
t.

Notice that
√

t is not affine in t. But it turns out it can be the case with some
modification. To see this, let us first manipulate it as: 4‖y‖2 ≤ 4t. An interesting
trick is to represent 4t as (t + 1)2 − (t − 1)2. This then yields:

4‖y‖2 + (t − 1)2 ≤ (t + 1)2.

Observe in the above that we have square exponents in every term. What does this
remind you of? It reminds you of the Gauss’s trick that we have seen multiple times:
representing the sum of squares as the Euclidean norm of a stacked matrix. In other
words, we employ the trick to obtain:∥∥∥∥[2y

t − 1

]∥∥∥∥2

≤ (t + 1)2.

Dropping the square exponents in both sides and then using the defini-
tion (1.181) of SOC (together with the non-negativity of t), we see that the set

of

([
2y

t − 1

]
, t + 1

)
(affine transformation of the variables) is an SOC:

([
2y

t − 1

]
, t + 1

)
∈ C.

Hence, we obtain the following SOCP (from QP):

min
x, y, t

wT x + t :

Ax − b ≤ 0

Second-order Cone Program 97

Cx − e = 0

y = Q1/2x (affine)∥∥∥∥[2y
t − 1

]∥∥∥∥ ≤ t + 1 (SOC). (1.186)

Applications You may wonder why we care about SOCP. One obvious reason is
that it has many applications like LP and LS. In particular, here we highlight two
specific settings in which the problem is instrumental.

The first setting represents practically-relevant scenarios in which there is uncer-
tainty in data and/or parameters. For example, in the legitimate-vs-spam email clas-
sification, data points can be viewed as sort of random quantities. It turns out that
taking this probabilistic aspect into account, one can modify the original LP (that
we formulated in Section 1.5) into an SOCP. In fact, such a modified LP is cat-
egorized into a broader class of LPs, called robust LP, which covers all the proba-
bilistic variations of LPs (Ben-Tal and Nemirovski, 1998; El Ghaoui and Lebret,
1997).

Another example is the LS problem with an uncertain matrix A. For instance,
in the CT application that we investigated in Section 1.10, the matrix A contains
the length information of a beam trajectory that traverses small grids. Since the
length is a measured quantity, it may contain some measurement noise, thus incur-
ring some uncertainty. Taking this aspect, one can modify the original LS into an
SOCP.

The second setting concerns scenarios in which optimization problems are for-
mulated with Euclidean norms. Examples include: (i) distance-minimizing location
planning in which one wants to locate a warehouse so as to serve many service loca-
tions while minimizing the transportation cost, which is usually proportional to the
Euclidean distance (Drezner and Hamacher, 2004); (ii) image denoising wherein
the task is to remove the noise effect on the edges of an image while incorporating a
sort of regularization term which involves an Euclidean norm; and (iii) penalized LS
in which one wants to minimize a noise effect while adding an Euclidean-norm-
associated term (in the object function) for the purpose of penalizing the noise
effect.

Here we will not cover all of the above applications due to the interest of focus.
Instead we are going to cover one application: robust LP.

An example of robust LP: Chance Program (CP) (Geletu et al., 2013)

The application that we would like to put an emphasis on is a prominent example
of robust LP, named Chance Program (CP). For illustrative purpose, let us consider

98 Convex Optimization Basics

a simple LP containing only one inequality constraint:

min
x∈Rd

wT x : aT x ≤ b (1.187)

where w, a ∈ Rd and b ∈ R. In the legitimate-vs-spam email classification, here
a, marked in red , indicates a data point. As mentioned earlier, such a data point
can be viewed as a random quantity. So in this case, a can be modeled as a random
vector.

In an effort to deal with uncertainty, one may want to instead consider a proba-
bilistic constraint that can be stated as:

P
(

aT x ≤ b
)
≥ 1− ε (1.188)

for some small ε > 0. Actually one can interpret the margin-based linear classifier as
another probabilistic approach, since outliers are dealt with margins. The approach
considered herein is a more direct approach that employs the probability directly in
the constraint. The inequality (1.188) means that the constraint holds with high
probability, e.g., with probability 1 − ε. Now the question is: How to compute
P(aT x ≤ b)?

Gaussian approximation for P(aT x ≤ b) In fact, the exact computation is
almost impossible in reality as we have no idea of the probability distribution that
the vector a is subject to. One way to handle is to instead approximate the compu-
tation assuming that the vector a follows a well-known distribution in which the
probability calculation is tractable. One such well-known distribution is the Gaus-
sian distribution. The Gaussian distribution is not only computationally tractable,
but it also well represents many practical settings.

So we will use the Gaussian distribution to approximate the probability compu-
tation. Specifically assume that the random vector a respects the Gaussian distribu-
tion like:

a ∼ N (ā, K) (1.189)

where ā indicates the mean E[a] and K denotes its covariance matrix, defined as
K := E[(a − ā)(a − ā)T]. Here the symbol “∼” means “is distributed according
to”, and N denotes the Gaussian (or called Normal) distribution.

Consider a linear combination of a, aT x, which is of our interest. Under the
Gaussian assumption (1.189), aT x is also Gaussian:

aT x ∼ N (āT x, xT Kx).

Second-order Cone Program 99

Figure 1.32. Cumulative density function (CDF)8(x) of the standard Gaussian distribution

N (0, 1).

Why? Check in Prob 4.3. Using this, we can compute:

P
(

aT x ≤ b
)
= P

(
aT x − āT x
√

xT Kx
≤

b− āT x
√

xT Kx

)

= 8

(
b− āT x
√

xT Kx

) (1.190)

where 8(·) indicates the cumulative distribution function (CDF) of the standard
Gaussian distribution (i.e., with mean zero and variance 1): 8(x) := P(t ≤ x)
where t ∼ N (0, 1); also see Fig. 1.32 for the illustration of the CDF.

Applying (1.190) into (1.188), we get:

8

(
b− āT x
√

xT Kx

)
≥ 1− ε.

Since8(·) is a non-decreasing one-to-one mapping function (again see Fig. 1.32),
we can invert the function to get:

b− āT x
√

xT Kx
≥ 8−1(1− ε),

which in turns yields:

8−1(1− ε)
√

xT Kx ≤ b− āT x. (1.191)

CP→ SOCP Applying (1.191) to (1.187), we obtain:

min
x∈Rd

wT x : 8−1(1− ε)
√

xT Kx ≤ b− āT x. (1.192)

100 Convex Optimization Basics

Now the question is: Is the constraint in the above an SOC? To figure this out, let
us simplify the constraint by letting y := K 1/2x. Since K is PSD, one can define
K 1/2. We then get:

‖y‖ ≤
b− āT x

8−1(1− ε)
.

Here the inequality preserves since 8−1(1 − ε) > 0 (due to 1 − ε > 1
2). Notice

that the set of affine transformation of the optimization variables is an SOC:

(
y,

b− āT x
8−1(1− ε)

)
∈ C.

Hence, we get the following SOCP (from CP):

min
x,y

wT x :

y = K 1/2x (affine)

‖y‖ ≤
b− āT x

8−1(1− ε)
(SOC). (1.193)

A side note: One can use the same idea to cover a more general scenario in which
there are multiple data points. In such a general case, we are able to end up with an
SOCP yet with multiple SOC constraints. Please check.

How to solve SOCP? Like QP, there is no closed-form solution for SOCP in
general. So as mentioned earlier, we should rely on strong duality to gain algorith-
mic insights. Hence, we will study it in depth in Part II.

CVXPY implementation Lastly we present how to write a CVXPY script for
solving SOCP with the standard form:

min
x∈Rd

wT x :

‖Aix − bi‖ ≤ cT
i x + ei, i ∈ {1, . . . , m},

Fx = g

(1.194)

where Ai ∈ Rki×d , bi ∈ Rki , ci ∈ Rd , ei ∈ R, F ∈ Rp×d , and g ∈ Rp. For instance,
we consider a simple case in which m = 1 and the corresponding matrices and

Second-order Cone Program 101

vectors read:

w =

1
3
2

 , A1 =

10 2 −3
3 5 1
−1 1 7

, b1 =

2
4
7

c1 =

3
3
1

, e1 = 4, F =
[
2 −1 2

]
, g = 3.

Here is a code for implementation:

import cvxpy as cp
import numpy as np

optimization variable
x = cp.Variable(3)
construct (w,A_1,b_1,c_1,e_1,F,g)
w = np.array([1,3,2])
A1 = np.array([[10, 2, -3],

[3, 5, 1],
[-1, 1, 7]])

b1 = np.array([2,4,7])
c1 = np.array([3,3,1])
e1 = np.array([4])
F = np.array([[2, -1, 2]])
g = np.array([3])

objective function
obj_min = cp.Minimize(w.T @ x)
constraints
soc_constraints = [cp.SOC(c1.T @ x + e1, A1 @ x - b1)]
constraints = soc_constraints + [F @ x == g]
set up a problem
prob = cp.Problem(obj_min,constraints)
solve the problem
prob.solve()
#print the solution
print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal x*: ’, x.value)

status: optimal
optimal value: 0.5920529977190627
optimal x*: [0.55721217 -0.46268371 0.71144597]

102 Convex Optimization Basics

Here we can easily construct the SOC constraint with the built-in function:
cp.SOC(c1.T @ w + e1, A1 @ x – b1).

Look ahead So far, we have studied four instances of convex optimization: LP,
LS, QP and SOCP. We will embark on the final instance (from this book’s point
of view) that subsumes all of the prior problems as special cases: Semi-Definite
Program (SDP).

Semi-definite Program (SDP) 103

1.13 Semi-definite Program (SDP)

Recap In the last section, we studied SOCP and figured out that the problem is
instrumental in very practical contexts in which there is uncertainty in data and/or
parameters.

Outline In this section, we are going to study another instance that includes all
of the prior problems as special cases: Semi-Definite Program (SDP). First we will
study what SDP is and show that the feasible set in the problem is convex, thus
proving the convexity of the problem. Next, we will demonstrate that it indeed
subsumes LP, LS, QP and SOCP. Here we will put a particular emphasis on one
key lemma that plays a crucial role in translating the prior problems into an SDP:
Schur complement lemma (Zhang, 2006). We will also prove the lemma accordingly.

Semi-definite program The standard form of SDP reads:

min
x∈Rd

wT x :

G + x1F1 + · · · + xd Fd � 0

Cx = e

(1.195)

where w ∈ Rd , C ∈ Rp×d , e ∈ Rp and G, Fi’s ∈ Rm×m are symmetric matrices.
Here the inequality involves a bunch of matrices which are related with the com-
ponents of x := (x1, x2, . . . , xd) in a linear manner. Hence, it is called the Linear
Matrix Inequality (LMI).

Proof of convexity To prove the convexity of SDP, we need to demonstrate that
the following set induced by the inequality constraint is convex:

S := {x : G + x1F1 + · · · + xd Fd � 0}.

The proof is straightforward. Suppose x, y ∈ S. Fix λ ∈ [0, 1]. Let us check if a
convex combination λx + (1− λ)y is in the set S. So we consider:

G + (λx1 + (1− λ)y1)F1 + · · · + (λxd + (1− λ)yd)Fd

= λ [G + x1F1 + · · · + xd Fd]︸ ︷︷ ︸
(a)
�0

+(1− λ)
[
G + y1F1 + · · · + yd Fd

]︸ ︷︷ ︸
(b)
�0

(c)
� 0

where (a) and (b) come from the hypothesis x, y ∈ S; and (c) follows from the
fact that a convex combination of two PSD matrices is also PSD. Why? Please see

104 Convex Optimization Basics

below for the proof. This implies that the convex combination is also in the set:
λx + (1 − λ)y ∈ S. Hence, this proves the convexity of S, thereby showing the
convexity of the problem (1.195).

Proof of the step (c): For notational simplicity, denote the two interested matrices
by A, B ∈ Rm×m

� 0. Let v ∈ Rm. Multiplying this and its transpose to the
interested linear component on right and left, we get:

vT (λA+ (1− λ)B)v

= λvT Av + (1− λ)vT Bv

≥ 0

(1.196)

where the inequality is due to the hypothesis of A, B � 0 and λ ∈ [0, 1]. This
completes the proof.

Subsumes LP, LS and QP It is trivial to prove the inclusion of LP. Setting G
and Fi’s as diagonal matrices in the problem (1.195), one can reduce the problem
into an LP:

[G]ii + [F1]iix1 + · · · + [Fd]iixd ≥ 0 i ∈ {1, 2, . . . , m} (1.197)

where [G]ii (or [Fk]ii) indicates the (i, i) entry of G (or Fk), k ∈ {1, 2, . . . , d}. Here
we use the fact that a diagonal PSD should have non-negative elements.

As for LS and QP, showing inclusion is almost equally difficult to showing the
inclusion of SOCP. Since SOCP is shown to subsume LS and QP, we will focus on
proving the inclusion of SOCP.

Inclusion of SOCP We will demonstrate that SOCP can be cast into the form
of SDP. So let us start with the standard form of SOCP:

min
x∈Rd

wT x :

‖Aix − bi‖ ≤ cT
i x + ei, i ∈ {1, . . . , m},

Fx = g

(1.198)

where w ∈ Rd , Ai ∈ Rki×d , bi ∈ Rki , ci ∈ Rd , ei ∈ R, F ∈ Rp×d , and g ∈ Rp.
Manipulating the SOC constraint in (1.198), we get:

(cT
i x + ei)

2
≥ ‖Aix − bi‖

2. (1.199)

Notice that cT
i x + ei is non-negative for a feasible x. This is due to the inequality

constraint in (1.198); otherwise x is not feasible. Also, without loss of generality, we
can assume that cT

i x+ ei > 0. Otherwise, the constraint becomes ‖Aix− bi‖ = 0.

Semi-definite Program (SDP) 105

Then, it becomes an equality constraint, so it can be merged into Fx = g . Hence,
one can divide cT

i x + ei on both sides to get:

cT
i x + ei ≥

‖Aix − bi‖
2

cT
i x + ei

. (1.200)

An alternative yet insightful expression of (1.200) reads:

(cT
i x + ei)− (Aix − bi)

T
{(cT

i x + ei)Iki×ki}
−1(Aix − bi) ≥ 0 (1.201)

where Iki×ki denotes the ki-by-ki identity matrix. Here a key observation is that
the left-hand-side in (1.201) is the very famous Schur complement of the matrix
(cT

i x + ei)Iki×ki . See below for the definition of the Schur complement.

Definition: (Schur complement) Suppose that p and q are non-negative integers,
and A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×q. Let

X :=

[
A B

BT C

]
∈ R(p+q)×(p+q). (1.202)

If A is invertible, then the Schur complement S of the block A in matrix X is defined
as:

S := C − BT A−1B. (1.203)

We see the following mapping: A = (cT
i x+ei)Iki×ki (marked in blue), B = Aix−bi

(marked in red) and C = cT
i x + ei (marked in green).

In fact, there is a very famous lemma concerning Schur complement, which plays
a key role in translating (1.201) into the standard form of inequality constraints that
appear in SDP. That is, Schur complement lemma, formally stated below.

Schur complement lemma: Suppose A ∈ Rp×p is positive definite, i.e., vT Av > 0
for all v ∈ Rp. It is simply denoted by A � 0. Also suppose C is symmetric. Then,

X :=

[
A B

BT C

]
� 0 ⇐⇒ S := C − BT A−1B � 0. (1.204)

Proof: We will present it at the end of this section. �
From the mapping A = (cT

i x + ei)Iki×ki (marked in blue), B = Aix − bi

(marked in red) and C = cT
i x+ ei (marked in green), we can write down the SOC

constraint (1.201) as an LMI of our desired form:

Fi(x) :=

[
(cT

i x + ei)Iki×ki Aix − bi

(Aix − bi)
T cT

i x + ei

]
� 0. (1.205)

106 Convex Optimization Basics

Note that the matrix Fi(x) ∈ R(ki+1)×(ki+1) is symmetric and its entries are affine
in x. The question of interest is then: Is Fi(x) � 0 an LMI? It turns out the answer
is yes. In fact, one can readily prove it by showing that all the matrices associated
with xi’s in (1.205) are symmetric. See below for the proof.

Proof: F (x) :=

[
(cT x + e)Ik×k Ax − b
(Ax − b)T cT x + e

]
� 0 is an LMI For notational simplicity,

we drop the subscript index i in every place. Also we use a different notation, say k,
to indicate the row dimension of the matrix A. We first write the interested matrix
F (x) as the sum of two separated matrices:[

(cT x + e)Ik×k Ax − b
(Ax − b)T cT x + e

]
=

[
eIk×k −b
−bT e

]
+

[
cT xIk×k Ax
xT AT cT x

]
. (1.206)

Here the first matrix in the RHS is symmetric. Let A = [a1 a2 · · · ad] ∈ Rk×d

and c = [c1, c2, . . . , cd]T
∈ Rd where ai ∈ Rk and ci ∈ R. Using these notations,

one can represent the second matrix in the RHS as:

[
cT xIk×k Ax
xT AT cT x

]
=

[∑d
i=1 cixiIk×k

∑d
i=1 aixi∑d

i=1 aT
i xi

∑d
i=1 cixi

]

=

d∑
i=1

xi

[
ciIk×k ai

aT
i ci

]
.

Notice that the matrices

[
ciIk×k ai

aT
i ci

]
’s are symmetric for all i. This together with

the fact that the first matrix in the RHS of (1.206) is symmetric argues that F (x) �
0 is an LMI, thus completing the proof.

SOCP −→ SDP We have figured out that Fi(x) � 0 is an LMI for all i. So we
have multiple LMIs, while we need a single LMI to meet the standard form of SDP.
Here the good news is that such multiple LMIs can be merged into a single LMI.
The trick is the following:

F1(x), . . . , Fm(x) � 0⇐⇒ F (x) :=

F1(x) 0 · · · 0

0 F2(x) · · ·
...

...
...

. . . 0
0 · · · 0 Fm(x)

 � 0.

(1.207)

Semi-definite Program (SDP) 107

The proof of (1.207) is straightforward. It requires only the definition of PSD –
please exercise by yourself. Using this, one can rewrite the problem (1.198) as:

min
x∈Rd

wT x :

F (x) � 0

Fx = g .

(1.208)

Hence, we show that SOCP can be translated into SDP, thus proving the inclusion
of SOCP.

Recall “Schur complement lemma” Suppose A � 0 and C is symmetric.
Then,

X :=

[
A B

BT C

]
� 0 ⇐⇒ S := C − BT A−1B � 0. (1.209)

The proof requires the implication of two directions. Let us do it one by one.

Proof of the forward direction Notice that the starting point is X � 0. This
together with the definition of PSD motivates us to ponder on the following func-
tion:

f (x, y) = [xT yT]

[
A B

BT C

] [
x
y

]
(1.210)

where x ∈ Rp and y ∈ Rq. A key observation w.r.t. the function f (x, y) allows us
to see the relationship with the complement S of our interest, thereby proving the
forward direction. To figure out what it means, let us first rewrite (1.210) as:

f (x, y) = xT Ax + 2xT By + yT Cy. (1.211)

Here the key observation is that f (x, y) is strictly convex in x. Why? Because of A � 0
(from the given hypothesis) as well as the 2nd order condition of convexity. Hence,
f (x, y) has the minimum and it is achieved at the point that satisfies∇xf (x∗, y) = 0.
A straightforward calculation then gives: x∗ = −A−1By.

In an effort to relate this key observation to the complement S of our interest,
let us define the minimum as:

g(y) := min
x

f (x, y).

108 Convex Optimization Basics

Plugging x∗ = −A−1By into the above, we can obtain:

g(y) = f (x∗, y)

= (A−1By)T A(A−1By)− 2(A−1By)T By + yT Cy

= yT (C − BT A−1B)y

= yT Sy

(1.212)

where the second last step comes from (A−1)T = A−1 (A is symmetric and
invertible).

This together with (1.210) enables us to easily prove the forward direction.
Suppose that the interested matrix X is PSD. Then, the formula (1.210) implies
that f (x, y) ≥ 0 for all x, y. Hence, one can also say that for a particular x,
say x∗, the function is non-negative: f (x∗, y) ≥ 0 ∀y. This together with
g(y) = f (x∗, y) = yT Sy (see (1.212)) yields: yT Sy ≥ 0 for all y. This implies
S � 0, thus completing the proof.

Proof of the reverse direction (converse) Given the above formulas (1.210)
and (1.212), the converse proof is also straightforward. Suppose S � 0. Then, by
the definition of PSD, 0 ≤ g(y) for all y (see (1.212)). This together with the
definition g(y) := minx f (x, y) then gives:

0 ≤ g(y) ≤ f (x, y) ∀x, y. (1.213)

This implies X � 0 (see (1.210)), thus completing the proof.

Look ahead One natural question is: Why do we care about SDP? One obvious
reason is that SDP has many applications. In particular, SDP plays a crucial role in
approximating difficult non-convex optimization problems via a famous technique,
called SDP relaxation. In the next section, we will explore SDP relaxation in depth.

SDP Relaxation 109

1.14 SDP Relaxation

Recap In the previous section, we have studied what SDP is, and showed in par-
ticular that it subsumes SOCP using a variety of interesting techniques. One key
lemma that we put a particular emphasis on was: Schur complement lemma. We
also proved the lemma. At the end, we claimed that SDP has many interesting
applications.

Outline In this section, we are going to discuss such applications. Specifically what
we are going to do are four folded. First we will discuss two specific settings in
which SDP plays a powerful role. We will then focus on one particular technique
that is very instrumental in addressing many difficult non-convex problems. The
technique is SDP relaxation. Next, we will study SDP relaxation in depth in the
context of one certain problem, called the MAXCUT problem (Karp, 1972). Lastly
we will present how to do CVXPY implementation for SDP.

Two settings of SDP’s interest The first is the setting which concerns very
difficult non-convex problems. As mentioned earlier, SDP relaxation plays a role in
tacking the difficult problems. In fact, it serves to approximate them.

The second is the problem context in which the maximum eigenvalue of a matrix
or the nuclear norm are interested entities that we wish to minimize. Here the
nuclear norm, denoted by ‖A‖∗, is defined as: ‖A‖∗ :=

∑
i σi(A) where σi(A)

indicates the ith singular value of A. One of the recent popular applications where
such problems arise is: matrix completion in which one wishes to identify missing
entries of a matrix only from partially revealed entries (Candès and Recht, 2009).

Here we will discuss only one thing in depth: SDP relaxation. We will study
SDP relaxation in the context of one specific yet famous problem: the MAXCUT

problem.
A side note: For those who forgot about the concept of singular values, let us leave

some details. For a matrix A ∈ Rm×n, a non-negative real number σ is a singular
value of A if and only if there exist vectors u ∈ Rm and v ∈ Rn such that Av = σu
and AT u = σ v. A way to find the singular values and the corresponding vectors
are as follows. Let r = min(m, n). We consider AT A ∈ Rn×n. Since AT A � 0, we
can obtain the eigenvalue decomposition as:

AT A = V62V T (1.214)

where V ∈ Rn×r is a unitary matrix and 6 := diag(σ1, . . . , σr) ∈ Rr×r . For
AAT
∈ Rm×m, we can do the same thing to get:

AAT
= U62U T (1.215)

where U ∈ Rm×r is a unitary matrix.

110 Convex Optimization Basics

1

5

23

4

6

Figure 1.33. MAXCUT problem: Finding a set that maximizes a cut. In this example, the

set S = {1, 3, 5} and the cut w.r.t. the set S is w54 + w14 + w36 + w12 + w32.

MAXCUT problem (Karp, 1972) The goal of the problem is to find a set that
maximizes a cut. To understand what it means, we need to know about the concepts
of three things: (i) set; (ii) weight; and (iii) cut. The context in which the problem
is defined is a graph G which consists of a vertex set V and an edge set E . The
problem is concerned about a undirected graph in which each edge does not have
a direction, meaning that one edge in E , say (1, 2), is the same as its counterpart
(2, 1). For the example in Fig. 1.33, the edge set reads:

E = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (3, 6), (4, 5)}.

Here what it means by a set S is a subset of the vertex set V . For example,
in Fig. 1.33, the set is S = {1, 3, 5} ⊂ V . The weight is a real value that is
associated with an edge. It is denoted by wij for an edge (i, j) ∈ E . The cut is
defined as the aggregation of all the weights of the edges that come across the set
S and its complement Sc. In the example of Fig. 1.33, the crossing edges are:
{(5, 4), (1, 4), (3, 6), (1, 2), (3, 2)}. Hence the cut w.r.t. the set S is:

Cut(S) = w54 + w14 + w36 + w12 + w32. (1.216)

Optimization for MAXCUT To formulate an optimization problem for
MAXCUT, we first need to come up with a proper optimization variable. Obvi-
ously the optimization variable should serve to make a choice of a set S. Hence,
we consider the following variable xi such that it indicates whether node i is in
the set S:

xi =

{
+1, if xi ∈ S;
−1, otherwise.

(1.217)

Here a key observation is that when xi 6= xj , the edge (i, j) (if exists) crosses the
two sets S and Sc, and hence, this should contribute to Cut(S) by the amount of

SDP Relaxation 111

wij . For (i, j) /∈ E , we set wij = 0. On the other hand, when xi = xj (meaning the
edge (i, j) does not cross the sets), there should be no contribution to the cut. This
motivates us to formulate the following optimization:

max
xi

d∑
i=1

d∑
j=1

1

2
wij(1− xixj) :

x2
i = 1, i ∈ {1, . . . , d}

(1.218)

where d indicates the size of the vertex set. Notice in the objective function that we
get wij whenever xi 6= xj ; 0 otherwise. The constraint x2

i = 1 respects the fact that
xi is only either +1 or −1.

A translation technique: Lifting Observe in the objective function (1.218)
that we have a quadratic term like xixj . Also we have a quadratic equality-constraint.
So these do not match the standard form of any convex instance that we have
studied thus far.

In an effort to translate such undesirable terms into favourable terms (e.g., affine
terms), we introduce a well-known technique, called lifting. Here the lifting means
raising a space that the optimization variable lives in. In the considered example, the
optimization variables xi’s can be represented as a vector, like: x := [x1, . . . , xd]T .
So the lifting in this context is to convert the vector x into a higher dimensional
entity, say a matrix. For instance, one may introduce a new matrix, say X , such that
its (i, j)-entry [X]ij is defined as:

Xij := xixj . (1.219)

We can then represent X in a very succinct way:

X =

X11 X12 · · · X1d

X21 X22 · · · X2d
...

...
. . .

...
Xd1 Xd2 · · · Xdd

 =

x1x1 x1x2 · · · x1xd

x2x1 x2x2 · · · x2xd
...

...
. . .

...
xd x1 xd x2 · · · xd xd

=

x1

x2
...

xd

[x1 x2 · · · xd
]
= xxT .

(1.220)

In fact, there is one thing that we need to worry about whenever doing change of
variables. That is, the constraint that is newly imposed by the introduction of a new
variable. Here a new constraint kicks in. To figure this out, notice that the matrix

112 Convex Optimization Basics

X is of rank 1. Why? Remember the eigenvalue decomposition for a symmetric
matrix: X = U3U T . From X = xxT , we see that X has only one eigenvector x.
Its eigenvalue reads xT x, since

X x = (xxT)x = x(xT x) = (xT x)x. (1.221)

Obviously the eigenvalue xT x is non-negative. So the change of variable induces
the following constraints:

Xii = 1, X � 0, rank(X) = 1. (1.222)

Actually the above also implies that Xii = 1 and X = xxT . Why? Think about it.
Hence, with a new matrix variable X , the problem (1.218) can be rewritten as:

p∗ := max
X

d∑
i=1

d∑
j=1

1

2
wij(1− Xij) :

Xii = 1, i ∈ {1, . . . , d} (affine)

X � 0 (LMI)

rank(X) = 1 (rank constraint).

(1.223)

Notice that X � 0 is an LMI. Why? For example, consider the d = 2 case in which

X =
[

X11 X12

X12 X22

]
= X11

[
1 0
0 0

]
+ X12

[
0 1
1 0

]
+ X22

[
0 0
0 1

]
.

It is affine in Xij ’s and the associated matrices are all symmetric.

SDP relaxation Notice in (1.223) that the objective function is affine in Xij , the
first equality constraint is affine, and the second inequality constraint is an LMI.
However, it contains an undesirable constraint: rank(X) = 1 (rank constraint). So
it is not an SDP.

This is where a technique, called SDP relaxation, comes in. The idea of SDP
relaxation is simply to ignore the rank constraint. By ignoring the constraint, the
search space in the optimization problem becomes expanded and hence it is indeed
relaxation. Applying the technique, we get:

p∗SDP := max
X

d∑
i=1

d∑
j=1

1

2
wij(1− Xij) :

Xii = 1, i ∈ {1, . . . , d} (affine)

X � 0 (LMI).

(1.224)

Obviously p∗SDP ≥ p∗, since it is relaxation for the maximization problem.

SDP Relaxation 113

Interestingly, in many cases, the gap between p∗SDP and p∗ is not so large. In some
cases, the gap can be large. But it was shown by Nesterov (a Russian mathematician
who has been playing an important role in the convex optimization field) that the
gap is not arbitrarily large (Nesterov, 1998). The worst-case bound was shown to
be:

p∗SDP − p∗

p∗SDP

≤
π

2
− 1 ≈ 0.571.

The proofs of these are out of the scope of this book.

How to convert X ∗SDP into an interested vector? You may wonder how to
convert X ∗SDP (obtained from (1.224)) into an associated vector of the problem’s
interest that serves to find a set. This is because X ∗SDP may not be of the following
desired form: X ∗SDP = xxT . In such an undesirable yet frequently-occurring case,
one way to go is to apply a very well-known technique in statistics: Principal Com-
ponent Analysis (PCA) (Pearson, 1901). The way it works is as follows. We first do
eigenvalue decomposition to get:

X ∗SDP = U diag(λ1, λ2, . . . , λd)U
T (1.225)

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. Here the number of non-zero eigenvalues
determines the rank of the matrix. So the idea is to take only the first (principal)
largest eigenvalue λ1 while ignoring others to approximate it as:

X̃ ∗SDP := U diag(λ1, 0, . . . , 0)U T . (1.226)

This way, we can ensure rank(X̃ ∗SDP) = 1, enabling us to obtain the interested
vector.

A note: Notice that the solution X̃ ∗SDP is an approximated one obtained from
sort of a heuristic. So it has nothing to do with respecting the constraints in the
optimization problem (1.224). As you may easily image, the approximated solution
X̃ ∗SDP readily violates a constraint like Xii = 1.

How to solve general SDP? Like QP and SOCP, there is no closed-form solu-
tion for SDP in general. So as mentioned earlier, we should rely on strong duality
and KKT conditions to gain algorithmic insights. Hence, later in Part II, we will
study the content in depth.

CVXPY implementation Lastly we investigate how to write a CVXPY script for
solving SDP. For ease of implementation, we often rely upon another standard form

114 Convex Optimization Basics

Least-squares Linear Program
(LP)

Quadratic Program (QP)

Second-Order Cone Program
(SOCP)

Semi-Definite Program
(SDP)

Convex Optimization

19391800s

1956

1994

1994

Very few applications in this class

Figure 1.34. Hierarchy of convex optimization problems.

that incorporates the trace operation and a PSD matrix:

min
X∈Rn×n

trace(WX) :

X � 0

trace(AiX) = bi, i ∈ {1, . . . , p}

(1.227)

where W , Ai ∈ Rm×m are symmetric matrices and bi ∈ R. Here the trace operation
is defined for a square matrix, say A ∈ Rn×n:

trace(A) :=
n∑

i=1

Aii, (1.228)

where Aii indicates the ith diagonal entry of A. Actually one can represent the objec-
tive trace(WX) as a linear combination of the optimization variables Xij ’s (the
entries of X). Similarly for trace(AiX). Check in Prob 4.9(f). As shown earlier,
X � 0 is an LMI.

For code implementation, we consider the following example in which n = 3,
p = 1 and the corresponding matrices and parameters read:

W =

34 −2 −6
−2 18 15
−6 15 30

 , A1 =

19 2 0
2 6 1
0 1 22

, b1 = 10.

A code is given by:

import cvxpy as cp
import numpy as np

optimization variable
X = cp.Variable((3,3), symmetric=True)

SDP Relaxation 115

construct (W,A_1,b_1)
W = np.array([[34, -2, -6],

[-2, 18, 15],
[-6, 15, 30]])

A1 = np.array([[19, 2, 0],
[2, 6, 1],
[0, 1, 22]])

b1 = np.array([10])

objective function
cost = cp.trace(W @ X)
obj_min = cp.Minimize(cost)
constraints
ineq_constraints = [X >> 0]
constraints = ineq_constraints + [cp.trace(A1 @ X) == b1]
set up a problem
prob = cp.Problem(obj_min,constraints)
solve the problem
prob.solve()
#print the solution
print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal X*: ’, X.value)

status: optimal
optimal value: 6.795868612485915
optimal X*: [[0.00610944 -0.0485969 0.04867967]
[-0.0485969 0.38656275 -0.38722108]
[0.04867967 -0.38722108 0.38788063]]

Here we use cp.trace() for the trace operation; and use the symbol “»” to imple-
ment the matrix inequality.

Look ahead So far, we have studied five instances of convex optimization: LP,
LS, QP, SOCP and SDP. In fact, we have more instances which are convex but not
belonging to the prior problems. However, there is very little application that such
an instance plays a role in. Hence, we stop here. Instead we will focus on studying
algorithms for general QP, SOCP and SDP, which we have deferred. So we will
embark on Part II to start investigating strong duality.

116 Convex Optimization Basics

Problem Set 4

Prob 4.1 (Invertibility of the KKT matrix) Consider the equality-constrained
least-squares problem:

min ‖Ax − b‖2 : Cx − e = 0 (1.229)

where A ∈ Rm×d and C ∈ Rp×d . Assume that m ≥ d and p ≤ d . In Section 1.11,
we showed that if

rank(C) = p and rank

([
A
C

])
= d , (1.230)

then the KKT matrix [
2AT A CT

C 0

]
is invertible. It turns out the other way around also holds: if the KKT matrix is
invertible, then (1.230) holds. Prove the converse.

Prob 4.2 (KKT equations) In this problem, you are guided to do the direct
derivation of the formula (1.166), which we omitted in Section 1.11. For ease of
illustration, let us echo the formula:

x∗ = d -Components

{[
2AT A CT

C 0

]−1 [
2AT b

e

]}
(1.231)

where d -Components(·) is an operator that takes the first d components of (·),
and (A, C , b, e) are the matrices and vectors associated with the constrained least-
squared problem (1.229) in Prob 4.1.

The direct derivation is based on the optimality condition that we did not derive
yet, but which can be understood in Part II. In this problem, we will proceed by
simply adopting the optimality condition:

∇f (x∗)T (x − x∗) ≥ 0, ∀x : Cx = e. (1.232)

(a) Let v = x − x∗. Show that the condition (1.232) is equivalent to:

∇f (x∗)T v ≥ 0, ∀v : Cv = 0. (1.233)

(b) For notational simplicity, let us use w instead of ∇f (x∗). Then, the condi-
tion (1.233) reads:

wT v ≥ 0 ∀v : Cv = 0. (1.234)

Problem Set 4 117

Suppose that d = 2, p = 1 and C = [1 − 1]. Prove Fact 1 below:

Fact 1: (1.234) H⇒ wT v = 0 ∀v : Cv = 0. (1.235)

Hint: You may want to use the proof-by-contradiction: if wT v 6= 0, then there
exists v such that wT v < 0 and Cv = 0.

(c) Suppose that d = 4, p = 1 and C = [1 − 1 0 0]. Prove Fact 2 below:

Fact 2: (1.235) H⇒ w ∈ range(CT). (1.236)

(d) Prove Fact 1 for arbitrary (d , p, C).
(e) Prove Fact 2 for arbitrary (d , p, C).
(f) Using the above proofs, show that there exists z ∈ Rp such that

2(AT A)x∗ − 2AT b+ CT z = 0. (1.237)

Prob 4.3 (Gaussian distribution) Let X and Y be independent continuous
random variables with fX (·) and fY (·) respectively. Let Z = X + Y .

(a) Express the probability density function (pdf) fZ (·) in terms of fX (·) and
fY (·).

(b) Compute the two-sided Laplace transform of fZ (·) defined as FZ (s) =∫
+∞

−∞
e−safZ (a)da.

(c) Suppose that X ∼ N (0, σ 2
X) and Y ∼ N (0, σ 2

Y). Compute the Laplace
transforms of fX (·) and fZ (·): FX (s) and FZ (s).

(d) Using the uniqueness theorem of Laplace transform (i.e., the transform is

one-to-one mapping) argue that the inverse Laplace transform of e
σ2s2

2 is
the Gaussian density with mean 0 and variance σ 2.

(e) Consider X and Y in part (c). Let W = aX + bY where a, b 6= 0. Show
that W is Gaussian.

Prob 4.4 (Basics)

(a) Consider a function f : Rd
→ R : f (x) = ‖x‖. Show that the function f

is convex.
(b) Show that F1, F2 � 0 if and only if[

F1 0
0 F2

]
� 0.

(c) Suppose that F1, F2 � 0. Show that ∀λ ∈ [0, 1],

λF1 + (1− λ)F2 � 0.

118 Convex Optimization Basics

Prob 4.5 (Linear Matrix Inequality)

(a) State the definition of a linear matrix inequality (LMI).
(b) Let X ∈ R2×2 be symmetric. Show that X � 0 is an LMI.
(c) Let x, c ∈ Rd . Show that [

(cT x)I 0
0 cT x

]
� 0

is an LMI.
(d) Let A ∈ R2×2 and x ∈ R2. Show that[

0 Ax
xT AT 0

]
� 0

is an LMI.
(e) Let A ∈ Rm×d , x, c ∈ Rd , b ∈ Rm and e ∈ R. Show that[

(cT x + e)I Ax − b
(Ax − b)T cT x + e

]
� 0

is an LMI.
(f) Represent the inequality

‖Ax − b‖ ≤ γ

with γ > 0 and a variable x, as an LMI.

Prob 4.6 (Robust LS) Consider an LS problem where A has some uncertainty:

A = A0 + A1δ (1.238)

where A0, A1 ∈ Rm×d (m ≥ d) and δ is a random variable with zero mean and
σ 2 variance. The objective function is now a random variable, as it depends on δ.
We aim at minimizing the expectation of such a random function, which can be
formulated as:

min
x
E
[
‖Ax − b‖2

]
(1.239)

where b ∈ Rm and the expectation is taken over δ.

(a) Show that the problem is convex.
(b) To which class does it belong to? Also cast it into the class.

Problem Set 4 119

Prob 4.7 (Schur complement lemma)

(a) Consider a set:

S =

x ∈ R6 : x6 ≥ 0, x4 ≥
x2

5

x6
, x2 ≥

x2
3

x4 −
x2

5
x6

 . (1.240)

Is the set S convex? If so, prove it; otherwise disprove it.
(b) Consider a function f : R6

→ R:

f (x) =
x2

1

x2 −
x2

3

x4−
x2
5

x6

(1.241)

where x is defined on the set S in part (a). Is f (x) convex in x? If so, prove
it; otherwise disprove it.

Prob 4.8 (Generalized Schur complement lemma) Let A ∈ Rn×n and C ∈
Rm×m. Suppose A � 0 and C is symmetric. Suppose the eigenvalue decomposition
of A reads:

A = U6U T (1.242)

where U ∈ Rn×n is a unitary matrix, i.e., U T U = I and 6 := diag(λ1, . . . , λn).
Define the pseudo-inverse of A as: A† := U6−1U T where6−1 is a diagonal matrix
whose elements respect:

[6−1]ii :=

{
λ−1

i if λi 6= 0;
0 if λi = 0.

(1.243)

Prove that

X :=

[
A B

BT C

]
� 0⇐⇒

S := C − BT A†B � 0, and Bv ∈ range(A) ∀v ∈ Rm.

(1.244)

Prob 4.9 (Basics on traces) Consider a square matrix A ∈ Rn×n. Denote the
trace of a square matrix by:

trace(A) :=
n∑

i=1

Aii (1.245)

where Aii indicates the ith diagonal entry of A.

120 Convex Optimization Basics

(a) Suppose A � 0. Show that A can be represented as

A = XX T (1.246)

for some X ∈ Rn×n.
(b) Show that AAT

� 0.
(c) Consider A, B ∈ Rn×n. Show that for A � 0 and B � 0,

trace(AB) ≥ 0. (1.247)

(d) Show that for A ∈ Rn×m and B ∈ Rm×n,

trace(AB) = trace(BA). (1.248)

(e) Show that for A ∈ Rn×n,

trace(A) =
n∑

i=1

λi(A) (1.249)

where trace(A) :=
∑

i=1 Aii and λi(A) indicates the ith eigenvalue of A.
(f) Let X , Z ∈ Rn×n be symmetric matrices. Show that

n∑
i=1

n∑
j=1

ZijXij = trace(ZX). (1.250)

Prob 4.10 (A lemma) Suppose X ∈ Rm×n and t ∈ R. Show that

‖X‖∗ ≤ t ⇐⇒

∃Y ∈ Rm×m, Z ∈ Rn×n :

[
Y X

X T Z

]
� 0, trace(Y)+ trace(Z) ≤ 2t.

(1.251)

Here ‖X‖∗ indicates the nuclear norm:

‖X‖∗ :=
min{m,n}∑

i=1

σi(X) (1.252)

where σi(X) denotes the ith singular value of X .

Prob 4.11 (Matrix completion) Let M ∈ Rm×n where m ≥ n. Let � be the set
of (i, j)’s such that the (i, j) entries of M are revealed (observed). Suppose that the
revealed entries are bij ’s:

Mij = bij , (i, j) ∈ �. (1.253)

Problem Set 4 121

The problem of matrix completion is to reconstruct non-revealed missing entries of
M from the revealed ones.

(a) Suppose that m = n = 3 and the revealed entries are:

M =

1 ∗ 2
∗ 9 ∗

2 ∗ ∗

 (1.254)

where (∗) denotes a missing value. Suppose that rank(M) = 1, i.e., M is of
the form: M = axxT where a ∈ R, x ∈ R3. Is matrix completion possible?
If so, perform matrix completion to find the missing entries of M . If not,
explain why. What if rank(M) = 2?

(b) It has been shown in the literature that one can perform matrix comple-
tion by solving an optimization problem that minimizes the rank of the
interested matrix M , as long as the number of revealed entries is sufficiently
large. As a surrogate of the rank, one may often use the nuclear norm:

‖M‖∗ :=
n∑

i=1

σi(M) (1.255)

where σi(M) denotes the ith singular value of M . So the nuclear-norm-
based optimization problem reads:

min
M
‖M‖∗ : Mij = bij (i, j) ∈ �. (1.256)

Suppose M � 0. Translate (1.256) into an SDP.
Hint: You may want to use a trace trick that you proved in Prob 4.9(e).

(c) Again consider the optimization problem (1.256). Now suppose M is a gen-
eral matrix, neither symmetric nor PSD. Show even in this case that (1.256)
can be translated into an SDP.

Hint: You may want to use the lemma proved in Prob 4.10.

Prob 4.12 (SDP relaxation) Consider the MAXCUT problem that we studied in
Section 1.14. See Fig. 1.35. The weights wij ’s associated with edges are given as:

(w12, w14, w15) = (1, 2, 6);

(w23, w24) = (2, 5);

w36 = 1;

w45 = 1.5.

122 Convex Optimization Basics

1

5

23

4

6

Figure 1.35. MAXCUT problem: Finding a set that maximizes a cut. In this example, the

set S = {1, 3, 5} and the cut w.r.t. the set S is w54 + w14 + w36 + w12 + w32.

Let xi denote whether node i is in the set S:

xi =

{
+1, x ∈ S;
−1, otherwise.

(1.257)

(a) Formulate an optimization problem that intends to find a set that maximizes
a cut. Derive the optimal value p∗ and the optimal solution x∗. You can do
this by hand or by computer.

(b) Formulate an SDP relaxation problem. Solve this problem (derive p∗SDP)
using CVXPY. Also write a script for CVXPY implementation. Is p∗SDP = p∗?

Prob 4.13 (SOCP and/or SDP) Consider an optimization problem:

min wT x :

aT x ≤ b, ∀a ∈ Rd : ‖a− ā‖2 ≤ t
(1.258)

where ā ∈ Rd , b ∈ R and t ≥ 0. Which class does this problem belong to among
all the instances that you learned so far? Also cast it into the class.

Prob 4.14 (True or False?)

(a) Consider a Chance Program (CP):

min
x∈Rd

wT x : P(aT x ≤ b) ≥ 1− ε (1.259)

where w ∈ Rd , ε ∈ (0, 1) and a is a random vector with meanE[a] = ā and
covariance matrix K = E[(a− ā)(a− ā)T]. Consider a random variable:

Y :=
aT x − āT x
√

xT Kx
. (1.260)

Problem Set 4 123

Suppose that the cumulative density function (CDF) of Y and its inverse
function are given, i.e., numerical values of CDF evaluated at any point
Y = y (and also their inverse function values) are known. Then, the CP
can always be cast into an SOCP.

(b) Let A ∈ Rn×n. Then, the eigenvalue decomposition of A reads:

A = U6U T (1.261)

where U ∈ Rn×n is a unitary matrix and 6 := diag(λ1, . . . , λn).
(c) Consider the MAXCUT problem that we studied in Section 1.14. Using the

lifting technique, we formulated the problem as:

p∗ := max
X

∑
(i,j)∈E

1

2
wij(1− Xij) :

Xii = 1, i ∈ {1, 2, . . . , d},

X � 0,

rank(X) = 1

(1.262)

where wij indicates a weight associated with (i, j) ∈ E ; E denotes an edge
set in a graph given in the problem; and d is the number of nodes in the
graph. Let p∗SDP be the optimal value of an approximated optimization due
to SDP relaxation. Then, there exists a rank-1 matrix X that achieves p∗SDP.

(d) Suppose that F (x) ∈ Rm×m is symmetric and affine in x ∈ Rd . Then,
F (x) � 0 is a linear matrix inequality.

(e) Consider the MAXCUT problem that we studied in Section 1.14. Using the
lifting technique, we formulated the problem as:

p∗ := max
X

∑
(i,j)∈E

1

2
wij(1− Xij) :

Xii = 1, i ∈ {1, 2, . . . , d},

X � 0,

rank(X) = 1

(1.263)

where wij indicates a weight associated with (i, j) ∈ E , E denotes an edge set
in a graph given in the problem, and d is the number of nodes in the graph.
Let p∗SDP be the optimal value of an approximated optimization due to SDP
relaxation. Since the search space in the relaxed optimization is bigger and
also the optimization is about maximization, p∗SDP > p∗.

DOI: 10.1561/9781638280538.ch2

Chapter 2

Duality

2.1 Strong Duality

Recap We have thus far studied several instances of convex optimization prob-
lems: LP, Least Squares, QP, SOCP and SDP. Actually we have one more well-
known instance which is convex but not belonging to the prior classes. That is,
cone programm (CP for short). In fact, understanding CP requires lots of mathe-
matical concepts, definitions and techniques, although there are few applications.
Hence, we will not go further along this direction. Instead we will focus on study-
ing what we have missed so far. That is, generic algorithms that can be applied to
general QP, SOCP and SDP. The reason that we have deferred the content is that
algorithms for the general settings are based on strong duality and KKT conditions
that we are supposed to cover in Part II. So from now on, we will move onto Part
II to start investigating the contents.

Outline In this section, we are going to cover four stuffs. Strong duality is based
on the concepts of primal and dual problems. So we will first study what the primal
and dual problems are. We will then study what it means by strong duality. Next, we
will figure out the KKT conditions and the intimate connection with strong duality.
Finally we will understand why they give insights into the design of algorithms. In
the next section, we will study an algorithm inspired by them.

124

http://dx.doi.org/10.1561/9781638280538.ch2

Strong Duality 125

Least Squares Linear Program
(LP)

Quadratic Program (QP)

Second-Order Cone Program
(SOCP)

Semi-Definite Program
(SDP)

Convex Optimization

19391800s

1956

1994

1994

Very few applications in this class

Figure 2.1. Hierarchy of convex optimization problems.

Primal & dual problems Let us start by recalling the standard form of convex
optimization:

min f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m},

Ax − b = 0
(2.1)

where f (x) and fi(x)’s are convex functions, A ∈ Rp×d and p < d . Without loss of
generality, assume that rank(A) = p; otherwise, one can remove dependent rows in
A to make it full-ranked. The primal problem is defined as a problem that we start
with, and hence the above is the primal problem.

There is another problem which is intimately related to the primal problem,
called the dual problem. But to explain what it means, we need to first know
about a function, called the Lagrange function. The Lagrange function is denoted
by L(x, λ, ν). It takes three arguments. The first is the interested optimization vari-
able x. The second argument λ is a real-valued vector of size m, which coincides
with the number of inequality constraints: λ := [λ1, . . . , λm]T . The last argument
ν (pronounced as “nu”) is also a real-valued vector yet of different size p, which is
the number of equality constraints: ν := [ν1, . . . , νp]T . The Lagrange function is
defined as:

L(x, λ, ν) := f (x)+
m∑

i=1

λifi(x)+ νT (Ax − b). (2.2)

Notice in the second summation term that fi(x) (that appears in the ith inequality
constraint) is multiplied by with λi. Similarly the ith equality-constraint function
is multiplied by with νi to form the last term νT (Ax − b). Hence, λi’s and νi’s are
called Lagrange multipliers.

126 Duality

Are we now ready to define the dual problem? No. To explain what the dual
problem is, we need to know about one more function, called the Lagrange dual
function, or simply the dual function. Let us just use the simpler version: the dual
function. It is denoted by g(λ, ν) and defined as:

g(λ, ν) := min
x∈X

L(x, λ, ν)

= min
x∈X

f (x)+
m∑

i=1

λifi(x)+ νT (Ax − b).
(2.3)

Two things to note. The first and very important one is that the minimization
here is over the entire space that x lies in w.r.t. f (x) and fi(x)’s: X := domf ∩
domf1 ∩ · · · ∩ domfm. Notice that the search space is not limited to the feasible set
induced by inequality and equality constraints in the primal problem. The second
thing to note is that in general L(x, λ, ν) is not necessarily convex in x. On the
other hand, when λi ≥ 0 ∀i, L(x, λ, ν) is simply a summation of convex and affine
functions. So in this case, the function is convex. However, λi’s could be negative,
as there is no sign constraint on λ in defining L(x, λ, ν). In such a case, g(λ, ν)
could be−∞. For instance, think about a situation in which λ1 = −1, f1(x) = ex

(convex) and X ∈ R. In this case, taking x = +∞ yields g(λ, ν) = −∞.
We are now ready to define the dual problem of our primary interest. Observe

in (2.3) that g(λ, ν) is a pointwise minimum of affine functions (in (λ, ν)) over
all x’s in X . Hence, it is concave in (λ, ν). Why? Think about what we proved in
Prob 1.6(c): the maximum of convex functions is convex. More generally, one can
prove that the maximum of affine functions is convex (similarly the minimum of
affine functions is concave). Someone may still wonder about the above case (2.3)
in which the minimum is taken over potentially infinitely many candidates of x
not over only a few candidates. Even in this case, one can readily prove the claim
still holds. The proof is not that difficult – think about it. Hence, the maximum is
always attained. The dual problem is an optimization problem that intends to find
the maximum. So it is formulated as:

(Dual problem): max
λ,ν

g(λ, ν) : λ ≥ 0. (2.4)

Notice that there is a constraint on λ (λ ≥ 0) while there is none for ν. This
together with the definition (2.3) of the dual function gives the following equivalent
expression:

max
λ,ν

min
x∈X

f (x)+
m∑

i=1

λifi(x)+ νT (Ax − b) : λ ≥ 0. (2.5)

Strong Duality 127

What strong duality means? Here is a summary of the primal and dual
problems:

(Primal): p∗ := min f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m}, Ax − b = 0;

(Dual): d∗ := max
λ,ν

min
x∈X

f (x)+
m∑

i=1

λifi(x)+ νT (Ax − b) : λ ≥ 0.

We denote by p∗ (or d∗) the optimal value for the primal (or dual) problem.
Using these, we can now state what strong duality is. What it means is that the

optimal values of the two problems are equal:

(Strong duality): p∗ = d∗. (2.6)

It has been shown that in general, the optimal values are different, i.e., strong
duality does not hold. But interestingly strong duality (2.6) does hold for convex
optimization of our interest, under a very mild condition.1 We call this the strong
duality theorem.

Now you may wonder why the strong duality theorem matters in the design
of algorithms. The reason is that when strong duality holds, one can derive nec-
essary and sufficient conditions (in order for strong duality to hold), which pro-
vide algorithmic insights. So for the rest of this section, we will derive such
conditions. For upcoming sections, we will understand why the conditions shed
lights as to how to design algorithms. We will then prove the strong duality
theorem.

Necessary conditions for strong duality to hold Let us first focus on the
derivation of necessary conditions. Suppose that strong duality holds p∗ = d∗,
and x∗ and (λ∗, ν∗) are the optimal solutions of the primal and dual problems,
respectively.

Since f (x∗) = p∗ = d∗ = g(λ∗, ν∗) under the hypothesis, we get:

f (x∗) = g(λ∗, ν∗)

(a)
= min

x∈X
f (x)+

m∑
i=1

λ∗i fi(x)+ ν∗T (Ax − b)

1. The mild condition says that there exists x such that strict inequality holds fi(x) < 0 ∀i subject to Ax = b.
The condition holds for almost all the problem instances that arise in reality. So one can say that strong
duality usually holds for convex optimization. We will later discuss on this in detail.

128 Duality

(b)
≤ f (x∗)+

m∑
i=1

λ∗i fi(x∗)+ ν∗T (Ax∗ − b)

(c)
≤ f (x∗) (2.7)

where (a) is due to the definitions of the dual function (2.3) and the Lagrange
function (2.2); (b) comes from the fact that x∗ is a particular choice in view of
the minimization problem in step (a); and (c) follows from the fact that λ∗i ≥ 0,
fi(x∗) ≤ 0 ∀i, and Ax∗ − b = 0 (since (x∗, λ∗) must be feasible points).

In the above, the left hand side and the right hand side are the same as f (x∗),
suggesting that the two inequalities in steps (b) and (c) are tight. From the tightness
of the inequality (b), we see that x∗ indeed minimizes L(x, λ∗, ν∗) over x. Since it
is unconstrained, the optimality condition is that its gradient at x∗ is zero:

∇xL(x∗, λ∗, ν∗) = 0. (2.8)

On the other hand, the tightness of the second inequality (c) implies∑m
i=1 λ

∗
i fi(x∗) = 0, which in turn yields:

λ∗i fi(x∗) = 0 ∀i. (2.9)

This is because λ∗i ≥ 0, fi(x∗) ≤ 0 ∀i for feasible points (x∗, λ∗). There is a
name for this condition. It is called the complementary slackness condition. Why
do we have the naming? The term λ∗fi(x∗) captures sort of slack (gap) between
d∗ := g(λ∗, ν∗) and p∗ := f (x∗); see the 1st, 3rd and 4th line in (2.7). The
condition (2.9) implies: ∀i,

fi(x∗) < 0 H⇒ λ∗i = 0;

λ∗i > 0 H⇒ fi(x∗) = 0.

This says that whenever one of the inequality constraints is strict, the other inequal-
ity must be tight, i.e., both are sort of complementary in view of ensuring the
equality.

The conditions (2.8) and (2.9) together with the constraints in the primal and
dual problems then constitute the following necessary conditions for strong duality
to hold:

∇xL(x∗, λ∗, ν∗) = 0; (2.10)

λ∗i fi(x∗) = 0 ∀i; (2.11)

Strong Duality 129

fi(x∗) ≤ 0 ∀i; (2.12)

Ax∗ − b = 0; (2.13)

λ∗ ≥ 0 (2.14)

where (2.12) and (2.13) come from the primal problem and (2.14) is from the dual
problem.

In fact, these conditions (2.10)∼(2.14) coincide with the ones that we men-
tioned in Section 1.11 while deriving the closed-form solution for the equality-
constrained least squares problem. These are the KKT conditions! Remember that
the KKT conditions are not limited to convex optimization, but are intended for
general convex & non-convex optimization problems. These are necessary condi-
tions for a solution to be optimal for a general optimization problem.

KKT conditions are also sufficient for strong duality to hold Interestingly
the KKT conditions are also sufficient for strong duality to hold:

KKT conditions H⇒ p∗ = f (x∗) = g(λ∗, ν∗) = d∗ (2.15)

where (x∗, λ∗, ν∗) are the points that respect the KKT conditions.
We will prove the following two: p∗ ≤ d∗ and p∗ ≥ d∗. Focus on the former.

To this end, we will first show that f (x∗) = g(λ∗, ν∗). Recall the definition of the
Lagrange function (2.2) to obtain:

L(x∗, λ∗, ν∗) := f (x∗)+
m∑

i=1

λ∗i fi(x∗)+ ν∗T (Ax∗ − b)

= f (x∗)

(2.16)

where the second equality follows from (2.11) and (2.13). On the other hand, from
the definition of the dual function (2.3), we get:

g(λ∗, ν∗) := min
x∈X

L(x, λ∗, ν∗)

= min
x∈X

f (x)+
m∑

i=1

λ∗i fi(x)+ ν∗T (Ax − b)

(a)
= f (x∗)+

m∑
i=1

λ∗i fi(x∗)+ ν∗T (Ax∗ − b)

= L(x∗, λ∗, ν∗)

(2.17)

130 Duality

where (a) comes from the fact that the condition (2.10) in the unconstrained con-
vex minimization suggests that x∗ is the minimizer of L(x, λ∗, ν∗). This together
with (2.16) gives:

f (x∗) = g(λ∗, ν∗). (2.18)

Since p∗ is the optimal value in the primal minimization problem, p∗ ≤ f (x∗).
Also d∗ ≥ g(λ∗, ν∗) as it is the optimal value in the dual maximization problem.
These together with (2.18) yield:

p∗ ≤ d∗. (2.19)

Now we will below prove that

p∗ ≥ d∗ (2.20)

to complete the proof of sufficiency of the KKT conditions for ensuring strong
duality. To prove (2.20), consider a primal optimal point, say x̃, that achieves p∗.
Also consider a dual optimal point, say (λ̃, ν̃), that achieves d∗. Then,

p∗ = f (x̃)

(a)
≥ f (x̃)+

m∑
i=1

λ̃ifi(x̃)+ ν̃T (Ax̃ − b)

≥ min
x∈X

f (x)+
m∑

i=1

λ̃ifi(x)+ ν̃T (Ax − b)

(b)
= g(λ̃, ν̃)

= d∗

(2.21)

where (a) follows from the fact that λ̃i ≥ 0, fi(x̃) ≤ 0 ∀i and Ax̃ − b = 0 (since
(x̃, λ̃, ν̃) must be feasible points); and (b) is due to the definition (2.3) of the dual
function.

Actually the relationship between p∗ and d∗ stated in (2.20) is called weak dual-
ity. It turns out weak duality holds for any optimization problem (including non-
convex optimization), and this will be explored further in a later section.

Look ahead What can we do with the KKT conditions in the design of algo-
rithms? In the next section, we will study details on this, and will demonstrate that
the conditions indeed play a crucial role in gaining algorithmic insights.

Interior Point Method 131

2.2 Interior Point Method

Recap In the previous section, we embarked on Part II and started investigating
strong duality and KKT conditions which we claimed several times that they pro-
vide a detailed guideline as to how to design algorithms. Strong duality relies on
the concept of primal and dual problems:

(Primal): p∗ := min f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m}, Ax − b = 0;

(Dual): d∗ := max
λ,ν

min
x∈X

f (x)+
m∑

i=1

λifi(x)+ νT (Ax − b) : λ ≥ 0

where X := domf ∩ domf1 ∩ · · · ∩ domfm. Using these, we figured out what
strong duality means:

(Strong duality): p∗ = d∗. (2.22)

We then stated (yet without proof) that strong duality (2.22) holds for convex opti-
mization, under a mild condition. Next we derived necessary and sufficient condi-
tions (KKT conditions) in order for strong duality to hold under a feasible point
of (x∗, λ∗, ν∗):

∇xL(x∗, λ∗, ν∗) = 0; (2.23)

λ∗i fi(x∗) = 0 ∀i; (2.24)

fi(x∗) ≤ 0 ∀i; (2.25)

Ax∗ − b = 0; (2.26)

λ∗ ≥ 0. (2.27)

Lastly we claimed that the KKT conditions give algorithmic insights.

Outline In this section, we are going to study details as to why that is the case. We
will support the claim in the context of the following three problem settings. The
first is a somewhat special yet prominent problem setting where we already saw the
KKT conditions (in Section 1.11): the equality-constrained least squares problem.
In this case, we will demonstrate that the KKT conditions indeed lead to the closed-
form solution that we saw. The second is a broader setting which however has still
only the equality constraints. In this setting, we will show that the KKT conditions
can be solved via gradient descent that we studied in Section 1.3. The last is a
general setting which contains inequality constraints as well. We will introduce one
very powerful algorithm, called the interior point method (Wright, 2005), which

132 Duality

can approximately implement the KKT conditions and therefore can approach the
optimal value with a reasonably small performance gap to the optimality.

Equality-constrained least squares Recall the equality-constrained least
squares problem:

min ‖Ax − b‖2 : Cx − e = 0.

Let us verify that the KKT conditions (2.23)∼(2.27) lead to the closed-form
solution x∗ that respects [

2AT A CT

C 0

] [
x∗

z

]
=

[
2AT b

e

]
(2.28)

for some z. Let L(x, ν) be the Lagrange function:

L(x, ν) = ‖Ax − b‖2 + νT (Cx − e).

We first simplify the KKT conditions, tailoring them for this equality-
constrained setting:

∇xL(x∗, ν∗) = 0; (2.29)

Cx∗ − e = 0. (2.30)

Taking a derivative of the Lagrange function w.r.t. x and setting it to 0, (2.29) reads:

∇xL(x∗, ν∗) = 2AT Ax∗ − 2AT b+ CT ν∗ = 0. (2.31)

This together with the equality constraint yields:

2AT Ax∗ − 2AT b+ CT ν∗ = 0; (2.32)

Cx∗ − e = 0. (2.33)

Compared to the setting investigated in Section 1.11, the only distinction here is
that we used a different notation ν∗ instead of z.

Equality-constrained convex optimization What about for general convex
optimization problems? It turns out that solving the KKT conditions, one can
develop some algorithms. In particular, for equality-constrained optimization prob-
lems, one can come up with a simple algorithm.

So let us first consider the equality-constrained setting:

min f (x) : Ax − b = 0. (2.34)

Interior Point Method 133

The Lagrange function is defined as: L(x, ν) = f (x) + νT (Ax − b). Under this
setting, the KKT conditions (2.23)∼(2.27) read:

∇xL(x∗, ν∗) = 0; (2.35)

Ax∗ − b = 0. (2.36)

Here the second condition can be rewritten as:

Ax∗ − b = 0⇐⇒ ∇νL(x∗, ν∗) = 0. (2.37)

Since strong duality holds p∗ = d∗ in the convex optimization setting (due
to the strong duality theorem), it suffices to develop an algorithm that achieves the
optimal value in the dual problem. So we focus on:

d∗ := max
ν

g(ν)

= max
ν

min
x∈X

L(x, ν).

Here one can make the following observations: (i) L(x, ν) is convex in x; (ii)
minx∈X L(x, ν) is concave in ν; (iii) minx∈X L(x, ν) is unconstrained (w.r.t. x); and
(iv) maxν minx∈X L(x, ν) is unconstrained (w.r.t. ν). Remember in Section 1.3 that
the optimal condition for unconstrained convex minimization (or maximization) is
that the gradient evaluated at the optimal point must be 0. More specifically, the
optimality condition for the inner minimization problem is: given a ν,

∇xL(x∗(ν), ν) = 0 (2.38)

where x∗(ν) := arg minx∈X L(x, ν). The optimality condition for the outer maxi-
mization problem is:

∇νL(x∗(ν∗), ν∗) = 0 (2.39)

where L(x∗(ν), ν) = minx∈X L(x, ν). Letting x∗ := x∗(ν∗), the two condi-
tions (2.38), (2.39) yield:

∇xL(x∗, ν∗) = 0;

∇νL(x∗, ν∗) = 0.

This then naturally motivates us to find a point (x∗, ν∗) such that the two gradients
are zeros.

134 Duality

Figure 2.2. Alternating gradient descent for equality-constrained optimization.

Gradient descent In Section 1.3, we studied one popular algorithm which
allows us to find a stationary point where its gradient is 0. That was: gradient descent.
So we can use the same algorithm. The only distinction here is that we have two
points (x, ν) to optimize over and so we have two corresponding gradients to com-
pute. Below is how a modified algorithm works.

Let (x(t), ν(t)) be the estimates at the tth iteration; see Fig. 2.2. First we compute
a gradient w.r.t. x at the point: ∇xL(x(t), ν(t)). Since L(x, ν) is convex in x (see
Fig. 2.2 as well), we should move the point to the opposite direction (in reference
to the gradient) so as to approach the optimal solution. So we update x(t) as:

x(t+1)
← x(t) − α(t)∇xL(x(t), ν(t))

where α(t) > 0 indicates the learning rate, which is usually set as a decaying func-
tion like α(t) = 1

2t .
Next, we compute a gradient w.r.t. ν: ∇νL (x(t), ν(t)). Notice that minx

L(x, ν)(=: L(x∗(ν), ν)) is concave in ν; see the bottom part of the curve in Fig. 2.2
where the minimum of L(x, ν) is attained over x. So we should move the point to
the same direction (in reference to the gradient) so as to approach the optimal solu-
tion. So we update ν(t) as:

ν(t+1)
← ν(t) + β(t)∇νL(x(t), ν(t))

where β(t) > 0 indicates another learning rate, which is not necessarily the same as
α(t). Precisely speaking, this algorithm is called gradient ascent instead of gradient
descent, although many people usually call it gradient descent nonetheless. So the
above entire procedure is often called alternating gradient descent.

Interior Point Method 135

We repeat the above procedures until (x(t), ν(t)) converges. It turns out: as t →
∞, it actually converges:

(x(t), ν(t)) −→ (x∗, ν∗), (2.40)

as long as the learning rates (α(t),β(t)) are properly chosen (like decaying func-
tions). As in Section 1.3, we will not touch upon the convergence proof.

Interior point method (Wright, 2005) What about for general convex opti-
mization settings which also involve inequality constraints? It turns out this is a bit
challenging case. It is not that simple to solve the KKT conditions (2.23)∼(2.27)
directly. Instead there are algorithms which can approximate the KKT conditions.
One such very popular algorithm is the interior point method.

The idea of the method is to take the following two steps:

1. Approximate the primal problem into an equality-constrained optimization.
2. Apply equality-constraint-tailored algorithms (like alternating gradient

descent explained earlier) to the approximated optimization.

Since the method is based on an approximation trick, one may wonder how the
performance of such an approach is far from optimality. It turns out that with
a proper approximation trick (that we will investigate soon), we can achieve the
optimal solution with a small gap to the optimality. To see this, let us first investigate
what the approximation trick is.

Approximation trick Recall the standard form of general convex optimization
including inequality constraints:

min f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m},

Ax − b = 0
(2.41)

where f (x) and fi(x)’s are convex functions, A ∈ Rp×d and p < d .
How to handle the inequality constraints? What we wish to do is to merge them

with the objective function f (x) so that we have only equality constraints. To this
end, we can set up a specific goal as:

fi(x) ≤ 0 −→ the merged objective function = f (x);

fi(x) > 0 −→ the reformulated optimization is infeasible.

In an effort to implement the goal, we introduce a function, called the barrier
function, defined as:

I−(z) =
{

0, z ≤ 0;
∞, z > 0.

(2.42)

136 Duality

Now inputting fi(x) to the barrier function as an argument, we get:

I−(fi(x)) =
{

0, fi(x) ≤ 0;
∞, fi(x) > 0.

This then motivates the following natural idea: Adding I−(fi(x)) to the objective
function f (x). This leads to the following reformulated problem:

min f (x)+
m∑

i=1

I−(fi(x)) : Ax − b = 0. (2.43)

Notice that when fi(x) ≤ 0 ∀i, the objective function is unchanged; on the other
hand, whenever fi(x) > 0 for some i, f (x) takes infinity, making the problem
infeasible.

A surrogate of the barrier function In the reformulated problem (2.43), how-
ever, one critical issue arises. The issue comes from the fact that I−(·) is not differ-
entiable. Notice that the first KKT condition (2.35) includes the gradient term. So
it requires differentiability of the barrier functions as they appear in the Lagrange
function. However, since I− is not differentiable, we cannot implement the KKT
conditions.

To resolve the critical issue, we consider a surrogate of the barrier function, which
is differentiable and well approximates the barrier function. One very well-known
surrogate is the logarithmic barrier:

LB(z) := −µ log(−z), µ > 0. (2.44)

The function is indeed differentiable, and it well approximates the barrier function
for a small µ. See Fig. 2.3. Moreover, it is convex in z, and hence, we can maintain
the objective function as a convex one.

Approximated convex optimization Replacing the barrier function with the
logarithmic barrier in (2.43), we can approximate (2.43) as:

min f (x)− µ
m∑

i=1

log(−fi(x)) : Ax − b = 0. (2.45)

There is one caveat here. That is, the search space of x should be:

{x : f1(x) < 0, . . . , fm(x) < 0, Ax − b = 0}. (2.46)

This is because the equality fi(x) = 0 for some i makes the logarithmic barrier
function blow up. So we assume that the set in (2.46) is not empty. Actually this

Interior Point Method 137

-3 -2.5 -2 -1.5 -1 -0.5 0

-1

0

1

2

3

4

5

Figure 2.3. Logarithmic barrier functions for different control parameters µ.

suggested the naming of “interior point method”, since the method searches over
interior points.

Since the approximated optimization (2.45) contains only the equality con-
straint, we can apply exactly the same approach that we took for the earlier equality-
constrained setting. In other words, we first compute the Lagrange function:

L(x, ν) = f (x)− µ
m∑

i=1

log(−fi(x))+ νT (Ax − b). (2.47)

We then try to find a stationary point (x∗, ν∗) that satisfies the KKT conditions:

∇xL(x∗, ν∗) = 0;

∇νL(x∗, ν∗) = 0.
(2.48)

Again one can use alternating gradient descent to solve this.

Performance gap to the optimality Once we employ the interior point
method that is based on the approximated optimization (2.45), one natural ques-
tion that arises is: How far is the performance of the approximation approach from
optimality?

To figure this out, we first consider the stationary point (x∗, ν∗) that respects the
KKT conditions (2.48). At this point, we obtain f (x∗) and obviously f (x∗) ≥ p∗,
since x∗ (that satisfies (2.48) intended for the approximated optimization) is not
necessarily the optimal solution of the original non-approximated optimization.

138 Duality

So the performance gap can be quantified as f (x∗)−p∗. The gap depends obviously
on µ, which is a control parameter adjusting the closeness to the barrier function.
Let us figure out how it varies over µ. Remember that the smaller µ, the more
precise the approximation is. Hence, one can expect that the smaller µ, the smaller
gap. It turns out it is the case:

f (x∗)− p∗ ≤ mµ. (2.49)

Observe that the gap is at most mµ, so we approach the optimality for a small
value of µ.

A special note on the choice of µ: One may want to set µ arbitrarily small to
ensure almost the optimal performance. In practice, however, this is not suggested.
The reason is that the KKT conditions (2.48) are implemented via an algorithm
(like alternating gradient descent) whose convergence speed is significantly affected
by µ. The smaller µ, the slower speed. Hence, in practice, the choice should be
carefully made taking the tradeoff into consideration.

Proof of f (x∗)−p∗ ≤ mµ Here x∗ together with ν∗ denotes the stationary point of
the approximated optimization (not necessarily the optimal solution to the original
optimization):

∇xLapp(x∗, ν∗)

= ∇x

(
f (x)− µ

m∑
i=1

log(−fi(x))+ νT (Ax − b)

)
= 0 (2.50)

where Lapp(x, ν) denotes the Lagrange function of the approximated optimization.
Starting with strong duality, we get:

p∗ = d∗

= max
λ≥0,ν

g(λ, ν)

(a)
≥ g(λ∗, ν∗)

(b)
= min

x∈X
f (x)+

m∑
i=1

λ∗i fi(x)+ ν∗T (Ax − b)

(2.51)

where (a) follows from the fact that ν∗ is a feasible point that satisfies (2.50) (not
necessarily the one that maximizes g(λ, ν)), and λ∗ is another particular feasible

Interior Point Method 139

point which will be detailed soon; and (b) is due to the definition of the dual
function.

Remember that (x∗, ν∗) is a point that satisfies (2.50), and hence:

∇xLapp(x∗, ν∗) = ∇f (x∗)+
m∑

i=1

−µ

fi(x∗)
∇fi(x∗)+ AT ν∗ = 0. (2.52)

From this, we see that the particular point λ∗i can be chosen as:

λ∗i =
−µ

fi(x∗)
. (2.53)

Under this particular choice (2.53), the condition (2.52) implies that x∗ is a mini-
mizer of the optimization in step (b) in (2.51) under (−µ/f (x∗), ν∗):

min
x∈X

L(x,−µ/f (x∗), ν∗) = L(x∗,−µ/f (x∗), ν∗) (2.54)

whereL(·, ·, ·) indicates the Lagrange function of the original optimization. Hence,
applying this to (2.51), we get:

p∗ ≥ min
x∈X

f (x)+
m∑

i=1

λ∗i fi(x)+ ν∗T (Ax − b)

= f (x∗)+
m∑

i=1

−µ

fi(x∗)
fi(x∗)+ ν∗T (Ax∗ − b)

(c)
= f (x∗)− mµ

(2.55)

where (c) comes from Ax∗ − b = 0 (since x∗ must be a feasible point). This then
yields the upper bound of the gap to complete the proof:

f (x∗)− p∗ ≤ mµ.

Look ahead So far we have studied what strong duality is, and derived the KKT
conditions, which are necessary and sufficient conditions for strong duality to hold
in convex optimization. We also demonstrated that the KKT conditions provide
detailed guidelines as to how to design algorithms. In the next section, we will
prove the strong duality theorem which we only stated without proving.

140 Duality

Problem Set 5

Prob 5.1 (Lagrange function & dual function) Consider a general optimiza-
tion problem (not necessarily convex):

min
x∈Rd

f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m},

Ax − b = 0
(2.56)

where A ∈ Rp×d , b ∈ Rp and p < d . Assume that f : Rd
→ R and fi : Rd

→ R
are differentiable.

(a) State the Lagrange function L(x, λ, ν), the dual function g(λ, ν), and the
dual problem.

(b) Prove that g(λ, ν) is concave in (λ, ν).
Note: Please do not use any properties that we learned in Sections and/or Problem
Sets (without derivation). Use only the definition of concavity.

(c) Let p∗ (or d∗) be the optimal value of the primal (or dual) problem. Show
that

p∗ ≥ d∗. (2.57)

Prob 5.2 (KKT conditions for Quadratic Program) Consider an equality-
constrained least-squares problem:

min ‖Ax − b‖2 : Cx − e = 0 (2.58)

where A ∈ Rm×d and C ∈ Rp×d . Assume that m ≥ d and p < d .

(a) State the KKT matrix. Also prove that the following condition is necessary
and sufficient for the KKT matrix to be invertible:

rank(C) = p, rank

([
A
C

])
= d . (2.59)

(b) State the KKT conditions. Suppose that the KKT matrix is invertible and
there exist x∗ ∈ Rd and z ∈ Rp such that the KKT conditions are satisfied.
Show that:

‖Ax − b‖2 ≥ ‖Ax∗ − b‖2 ∀x : Cx − e = 0. (2.60)

Prob 5.3 (Performance of the interior point method) Consider a convex
optimization problem:

p∗ := max
λ,ν

g(λ, ν) : λ ≥ 0 (2.61)

Problem Set 5 141

where λ ∈ Rm and ν ∈ Rp are optimization variables, and g(λ, ν) is a concave
function. Using the logarithmic barrier function:

LB(z) := −µ log(−z) for µ > 0,

we formulate an approximated optimization problem:

max
λ,ν

g(λ, ν)+ µ
m∑

i=1

log λi. (2.62)

(a) Suppose (λ̃, ν̃) is a feasible point that satisfies the KKT conditions w.r.t. the
approximated problem (2.62). State the KKT conditions.

(b) State the Lagrange functionLdual (λ, ν, λdual) of the primal problem (2.61).
Also state the dual function gdual(λdual) of Ldual (λ, ν, λdual). Here λdual

denotes a Lagrange multiplier w.r.t. (2.61).
(c) Suppose (λ∗, ν∗) is a feasible point that satisfies the KKT conditions w.r.t.

the primal problem (2.61). State the KKT conditions.
(d) Show that:

p∗ − g(λ̃, ν̃) ≤ mµ. (2.63)

Prob 5.4 (True or False?)

(a) Consider primal and dual problems with the optimal values p∗ and d∗,
respectively. Then, the KKT conditions are necessary and sufficient condi-
tions for p∗ = d∗ to hold.

(b) Consider a convex optimization problem:

p∗ := max
λ,ν

g(λ, ν) : λ ≥ 0 (2.64)

where λ ∈ Rm and ν ∈ Rp are optimization variables, and g(λ, ν) is a
concave function. Consider another optimization problem:

max
λ,ν

g(λ, ν)+ µ
m∑

i=1

log λi (2.65)

where µ > 0. Let λ̃ be a feasible point, i.e., λ̃ ≥ 0. Then,

p∗ − g(λ̃, ν̃) ≤ mµ. (2.66)

as long as ν̃ is a feasible point that satisfies the KKT conditions w.r.t. the
approximated optimization (2.65).

142 Duality

(c) Consider a convex optimization problem:

max
x∈Rd

f (x) : Ax − b = 0 (2.67)

where A ∈ Rp×d and b ∈ Rp. Let L(x, ν) be the Lagrange function where
ν ∈ Rp denotes the Lagrange multiplier. Suppose x̃ is a stationary point,
i.e., ∇xL(x̃, ν) = 0. Then, L(x̃, ν) is always concave in ν.

(d) Consider a convex optimization problem:

p := min
x∈Rd

f (x) : fi(x) ≤ 0 i ∈ {1, . . . , m},

hi(x) = 0 i ∈ {1, . . . , p}.
(2.68)

Let x∗ be a feasible point that achieves the optimal value p∗. Suppose that
there exists a feasible point (λ̃, ν̃) w.r.t. the dual problem such that the KKT
conditions are satisfied:

∇xL(x∗, λ̃, ν̃) = 0;

λ̃ifi(x∗) = 0 ∀i;

fi(x∗) ≤ 0 ∀i;

hi(x∗) = 0 ∀i;

λ̃i ≥ 0 ∀i

(2.69)

where L(x, λ, ν) indicates the Lagrange function. Then, the feasible point
(λ̃, ν̃) also achieves the optimal value d∗ of the dual problem.

Proof of Strong Duality Theorem (1/2) 143

2.3 Proof of Strong Duality Theorem (1/2)

Recap During the past sections, we have investigated strong duality. In order to
understand what it means, we studied the concept of primal and dual problems:

(Primal): p∗ := min f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m}, Ax − b = 0;

(Dual): d∗ := max
λ,ν

g(λ, ν) : λ ≥ 0.

Using these, we stated:

(Strong duality): p∗ = d∗. (2.70)

We then argued that strong duality (2.70) holds for convex optimization under a
mild condition. The mild condition was:

∃x : f1(x) < 0, . . . , fm(x) < 0, Ax − b = 0. (2.71)

Next we derived necessary and sufficient conditions (KKT conditions) in order for
strong duality to hold. In the last section, we found that the KKT conditions indeed
give algorithmic insights.

Outline In this section, we are going to move onto the strong duality theorem that
we deferred the proof of. Actually the proof is not that easy. Not only the proof
takes many non-trivial steps together with a bunch of ideas, but it also requires
some important theorem that we did not dig into. So we will prove it step-by-step
so that you can easily grasp how the proof goes on. Specifically we will investigate
from simple to general cases: (i) unconstrained case; (ii) equality-constrained case;
(iii) inequality-constrained case; and (iv) general case (including both equality-&-
inequality constraints). In this section, we will cover the 1st and 2nd cases. In the
next section, we will prove the 3rd and last cases to complete. Throughout the proof,
we will assume that a minimum is attained, i.e., p∗ is finite. Otherwise, p∗ = −∞
or +∞. This is definitely not an interested scenario.

Unconstrained optimization This is a trivial case. In this case, the primal and
dual problems read:

p∗ := min f (x);

d∗ := max g .

144 Duality

Since d∗ is simply g , we get:

d∗ = g :
(a)
= min

x∈X
L(x)

= min
x∈X

f (x) = p∗,

where (a) is due to the definition of the dual function.

Equality-constrained optimization Consider:

p∗ := min f (x) : Ax − b = 0;

d∗ := max
ν

g(ν)

where A ∈ Rp×d and p < d . Without loss of generality, assume that rank(A) =
min(p, d) = p. Why? Otherwise, one can remove dependent rows in A to make
it full-ranked. Remember that p ≥ d is not of our interest, since in the case x∗ is
solely decided by the equality constraint, having nothing to do with the objective
function. We will prove strong duality by showing the following two:

p∗ ≥ d∗; (2.72)

p∗ ≤ d∗. (2.73)

In fact, (2.72) is what we proved earlier in Section 2.1 for a more general context.
In the sequel, we will repeat the proof for those who do not remember details.

Review of the proof of (2.72): p∗ ≥ d∗ Suppose that a feasible point in the
primal problem, say x∗, achieves p∗; similarly, another feasible point in the dual
problem, say ν∗, achieves d∗. Using the fact that (x∗, ν∗) are the minimizer and
maximizer of the primal and dual problems respectively, we get:

p∗ = f (x∗)

(a)
= f (x∗)+ ν∗T (Ax∗ − b)

≥ min
x∈X

f (x)+ ν∗T (Ax − b)

(b)
= g(ν∗)

= d∗

where (a) follows from Ax∗ − b = 0 for a feasible point x∗; and (b) comes from
the definition of the dual function.

Proof of Strong Duality Theorem (1/2) 145

Proof of (2.73): p∗ ≤ d∗ The proof of this is not that straightforward. It relies
upon some trick which is based on a smartly-manipulated set (that you will see
soon), as well as a well-known theorem, concerning the role of a hyperplane2 when
there are two disjoint convex sets. As of now, you may have no idea of what we are
talking about. Don’t worry. This will be clearer soon.

Let us start by defining the smartly-manipulated set:

S := {(v, t) ∈ Rp+1 : ∃x such that f (x) ≤ t, Ax − b = v}. (2.74)

Three key properties of the set S: We point out three key properties of S, which
will play a crucial role in proving (2.73). The first is that the set S contains the
optimal point p∗ of the primal problem when v = 0, i.e., (0, p∗) ∈ S. Also the
point p∗ is the minimum when v = 0, i.e., (0, p∗) is on the boundary of the set.
Why? Suppose that p∗ is not the minimum, i.e., (0, p∗) is strictly inside S. Then,
there exists some arbitrarily small ε > 0 such that another point (0, p∗ − ε) is in
S, which contradicts with the fact that p∗ is the optimal value.

The second property is that:

(v, t) ∈ S H⇒ (v, t ′) ∈ S, ∀t ′ ≥ t. (2.75)

This is obvious, since f (x) ≤ t implies that f (x) ≤ t ′ for t ′ ≥ t. For instance, any
point (0, t ′) ∈ S whenever t ′ ≥ p∗. See a blue line in Fig. 2.4 for illustration.

The last property that we would like to emphasize is that the set S is convex. The
proof of this is straightforward. Suppose (v1, t1), (v2, t2) ∈ S. Then, this together
with the definition (2.74) of the set S yields: there exist some points, say x1 and x2,

Figure 2.4. The set S := {(v, t) ∈ Rp+1 : ∃x such that f (x) ≤ t, Ax − b = v} contains the point

(0, p∗) as well as any point (0, t ′) where t ′ ≥ p∗. This figure is a simplified version when the

dimension of v is 1.

2. For those who do not remember the definition of the hyperplane, here we echo. A hyperplane is a linear
subspace whose dimension is one less than that of its ambient space.

146 Duality

such that

f (x1) ≤ t1, Ax1 − b = v1;

f (x2) ≤ t2, Ax2 − b = v2.

Applying an λ-weighted convex combination to the above, we get: for λ ∈ [0, 1],

λv1 + (1− λ)v2 = A(λx1 + (1− λ)x2)− b;

λt1 + (1− λ)t2 ≥ λf (x1)+ (1− λ)f (x2)

(a)
≥ f (λx1 + (1− λ)x2)

where (a) follows from the convexity of f (x). This implies that there exists x =
λx1 + (1− λ)x2 such that:

f (x) ≤ λt1 + (1− λ)t2;

Ax − b = λv1 + (1− λ)v2,

which in turn yields that λ(v1, t1)+(1−λ)(v2, t2) ∈ S, thus proving the convexity
of S.

How the set S looks like and the use of the separating hyperplane theorem: Using
the second and third properties mentioned above, one can imagine how the set
looks like. Since it is convex and also any point above the boundary is in the set, the
boundary of the set would be bowl-shaped, as illustrated in Fig. 2.5.

We are now ready to introduce a well-known theorem regarding a hyperplane,
so called the separating hyperplane theorem. The theorem says: If there are two
disjoint convex sets, then there exists a hyperplane which separates the two con-
vex sets. Intuitively this makes sense. Why? Think about two disjoint circles in a
2-dimensional space, which are obviously convex. Then, there must be a line some-
where in between the two circles, which separates the two. Actually the proof of this

bowl-shaped

Figure 2.5. The boundary (marked in the blue curve) of the convex set S := {(v, t) ∈ Rp+1 :
∃x such that f (x) ≤ t, Ax − b = v} is of a bowl shape.

Proof of Strong Duality Theorem (1/2) 147

trivially-looking theorem is non-trivial. Here we will not cover the proof, but you
will have a chance to prove it in Prob 6.1.

Now you may wonder why the theorem kicks in. The reason is that the theorem
allows us to come up with a hyperplane which passes through the boundary point
(0, p∗) while separating the set S from another disjoint convex set, and this will
help us to prove (2.73) in the end. Why does the theorem ensure the existence of
such a hyperplane? To see this, consider another set, say S ′, defined as:

S ′ := {(0, s) ∈ Rp+1 : s < p∗}. (2.76)

Obviously this is convex (as it is just a line) and disjoint with S. Now using the
separating hyperplane theorem, we can say that there exists a hyperplane which

separates S from S ′ while passing through the boundary point (0, p∗). Let

[
ν

µ

]
∈

Rp+1 be the support vector of the hyperplane, being perpendicular to its tangent
vector. Then, the hyperplane is represented as:[

ν

µ

]T ([
v
t

]
−

[
0
p∗

])
= 0. (2.77)

Why? Notice that the slope is the support vector and this plane passes through the
point (0, p∗). The separating hyperplane theorem says that whenever (v, t) ∈ S, it
always lies in the right-hand-side space in reference to the hyperplane, i.e.,

(v, t) ∈ S H⇒
[
ν

µ

]T ([
v
t

]
−

[
0
p∗

])
≥ 0. (2.78)

See Fig. 2.6 to help your understanding.
Last step of the proof: Using (2.78), we see:

µp∗ ≤ νT v + µt ∀(v, t) ∈ S. (2.79)

Figure 2.6. There exists a hyperplane that passes through (0, p∗) in the set S while sepa-

rating S from another disjoint convex set.

148 Duality

One important thing to notice here is that µ ≥ 0. To prove this, suppose µ < 0.
Then, one can make t → ∞. Observe that such (v, t) = (v,∞) is still in S due
to the second property (2.75) of S. But this yields a contradiction with (2.79) as:

µp∗ ≤ νT v + µt = −∞.

Notice that for finite p∗ (which we assumed), µp∗ is also finite, which can never go
below −∞. Another thing to notice is that:

µ 6= 0. (2.80)

We will prove this soon. This together with µ ≥ 0 gives: µ > 0. This then enables
us to divide both sides in (2.79) by µ > 0, thus obtaining:

p∗ ≤
(
ν

µ

)T

v + t ∀(v, t) ∈ S. (2.81)

Recall the definition of the interested set: S := {(v, t) ∈ Rp+1 : ∃x such that
f (x) ≤ t, Ax− b = v}. The fact that (v, t) ∈ S means that there exists x such that
f (x) ≤ t and Ax − b = v. Applying such x’s to the above (2.81), we obtain:

p∗ ≤ min
x:f (x)≤t

t +
(
ν

µ

)T

(Ax − b)

(a)
= min

x:f (x)≤t
f (x)+

(
ν

µ

)T

(Ax − b)

(2.82)

where (a) follows from the fact that minimizing t is equivalent to minimizing f (x).
Notice in the above that f (x) ≤ t becomes unconstrained by taking t → ∞.

Hence, taking t →∞, we get:

p∗ ≤ min
x

f (x)+
(
ν

µ

)T

(Ax − b)

(a)
= g

(
ν

µ

)
(b)
≤ d∗,

where (a) is due to the definition of the dual function; and (b) comes from the
definition of d∗. This completes the proof of (2.73).

Proof of Strong Duality Theorem (1/2) 149

Proof of (2.80): µ 6= 0 The proof idea is by contradiction. Suppose µ = 0.
Then, (2.79) implies:

νT v ≥ 0 ∀(v, t) ∈ S. (2.83)

Two things to note. The first is that ν 6= 0. This is obvious. Otherwise (ν,µ) = 0,
and this implies that there does not exist a hyperplane that passes through (0, p∗)
in S while separating S from another disjoint convex set. This then violates the
separating hyperplane theorem. The second is that v can be chosen arbitrarily as
long as there exists x such that Ax − b = v and f (x) ≤ t. Due to the second
property of S mentioned earlier, (v,∞) ∈ S whenever (v, t) ∈ S. Hence, the only
thing that we need to worry about is whether there exists x satisfying Ax − b = v.
Now remember what we assumed in the beginning: A has full rank (rank(A) = p).
This suggests that we can choose x such that Ax−b points to an arbitrary direction.
Hence, there exists some point, say x′, such that the direction of Ax′ − b = v is
somewhat opposite to ν so that:

νT v < 0.

This contradicts with (2.83), thus completing the proof of (2.80).

Look ahead It turns out that using the techniques employed so far, one can prove
p∗ ≤ d∗ for the inequality-constrained case and general case. We will cover the two
remaining cases to complete the proof in the next section.

150 Duality

2.4 Proof of Strong Duality Theorem (2/2)

Recap In the last section, we proved the strong duality theorem for two simple
cases: (i) unconstrained optimization; and (ii) equality-constrained optimization.
The key trick was to introduce the following set:

S := {(v, t) ∈ Rp+1 : ∃x such that Ax − b = v, f (x) ≤ t} (2.84)

where v ∈ Rp and t ∈ R. By using the key properties of S (e.g., the convexity of
S and (0, p∗) ∈ S) together with the separating hyperplane theorem, we proved
p∗ ≤ d∗ where p∗ and d∗ are the optimal solutions of the primal and dual problems
respectively. Combining this with the already-proven fact p∗ ≥ d∗, we completed
the proof.

Outline In this section, we are going to cover the two remaining cases (inequality-
constrained and general optimization) to complete the proof. Again we assume that
p∗ is finite. Actually in a more general setting that includes inequality constraints,
the statement of the strong duality theorem should be made carefully. The precise
statement reads: p∗ = d∗ holds under a mild condition:

∃x such that strict inequalities hold i.e., f1(x) < 0, . . . , fm(x) < 0 (2.85)

where fi(x)’s indicate the LHS functions in the standard form of inequality con-
straints. This condition is called Slater’s conditon, since it was found by a math-
ematician Morton L. Slater (Slater, 2014). It serves as a sufficient condition for
strong duality to hold. It is considered to be mild, as the condition often holds in
practice.

Inequality-constrained optimization For illustrative purpose, we first con-
sider a simple case having only one inequality constraint:

p∗ := min f (x) : f1(x) ≤ 0;

d∗ := max
λ≥0

g(λ).

It turns out one can readily extend this to a general case . So let us focus on this
simple setting for now. Like the equality-constrained case, one can easily show that
p∗ ≥ d∗. The proof is almost same. Please check this by yourself. So it suffices to
prove the other way around:

p∗ ≤ d∗. (2.86)

Proof of Strong Duality Theorem (2/2) 151

Proof of (2.86): p∗ ≤ d∗ Like the equality-constrained case, we introduce a
smartly-manipulated set that plays an important role in the proof. The set is defined
similarly to (2.84):

S = {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f (x) ≤ t} (2.87)

where u ∈ R. One distinction is that we now have u (instead of v) which acts as
an upper bound on f1(x). Similar to (2.84), the newly-defined set S (2.87) also
exhibits three properties:

(i) It contains the boundary point (0, p∗);
(ii) (u, t) ∈ S ⇒ (u′, t ′) ∈ S whenever u′ ≥ u and t ′ ≥ t;

(iii) S is convex.

The first and second are obvious. The third property makes an intuitive sense if
we think about a picture, as illustrated in Fig. 2.7. Consider a case in which u >
0. Actually this is a more relaxed scenario relative to u = 0. This is because the
constraint f1(x) ≤ u has a larger search space compared to f1(x) ≤ 0. Hence, the
minimum t ∈ S would be smaller than or equal to p∗. On the other hand, when
u < 0, the constraint f1(x) ≤ u yields a shrinked search space; and therefore the
minimum t ∈ S would be larger than or equal to p∗. With this argument, one can
image a shape of the set S like the one in Fig. 2.8 (a cyan-colored region). So one
can conjecture that the set S is convex. It turns out it is indeed the case. The proof
is almost the same as in the equality-constrained case.

Proof of the convexity of S: Suppose (u1, t1), (u2, t2) ∈ S. Then, this together
with the definition (2.87) of the set S yields: there exist some points, say x1 and x2,
such that

f1(x1) ≤ u1, f (x1) ≤ t1;

f1(x2) ≤ u2, f (x2) ≤ t2.

Figure 2.7. The set S = {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f (x) ≤ t} contains the point (0, p∗) as

well as any point (0, t ′) where t ′ ≥ p∗. Also for u > 0, the minimum t in the set S is smaller

than or equal to p∗; when u < 0, the minimum t is larger than or equal to p∗.

152 Duality

Figure 2.8. There exists a hyperplane (a line in this example) that passes through (0, p∗)
in the set S = {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f (x) ≤ t}.

Applying an λ-weighted convex combination to the above, we get: for λ ∈ [0, 1],

λu1 + (1− λ)u2 ≥ λf1(x1)+ (1− λ)f1(x2)

(a)
≥ f1(λx1 + (1− λ)x2)

where (a) follows from the convexity of f1(x). Similarly, using the convexity of f (x),
we get:

λt1 + (1− λ)t2 ≥ f (λx1 + (1− λ)x2).

Hence, λ(u1, t1)+ (1− λ)(u2, t2) ∈ S. This completes the proof. �

Now using the separating hyperplane theorem, we argue that there exists

[
λ

µ

]
∈

R2
6= 0 s.t.

(u, t) ∈ S H⇒
[
λ

µ

]T ([
u
t

]
−

[
0
p∗

])
≥ 0. (2.88)

Looking at the hyperplane in Fig. 2.8, we see that the support vector w.r.t. the
hyperplane has a positive direction. Hence, one may conjecture that

λ ≥ 0, µ ≥ 0. (2.89)

It turns out this is indeed the case.
Proof of (2.89): Notice that (2.88) gives:

µp∗ ≤ λu+ µt ∀(u, t) ∈ S. (2.90)

Let us first prove µ ≥ 0. Suppose µ < 0. We then make t → ∞. Here such
(u,∞) is still in S due to the second property of S. But this yields a contradiction:

µp∗ ≤ λu+ µt = −∞. (2.91)

Similarly, one can prove λ ≥ 0. �

Proof of Strong Duality Theorem (2/2) 153

Let us go back to the main stream of the proof. Like the equality-constrained
case, it turns out:

µ 6= 0 (2.92)

where the proof will be given soon. This together with (2.89) givesµ > 0. Dividing
both sides in (2.90) by µ > 0, we obtain:

p∗ ≤ t +
λ

µ
u ∀(u, t) ∈ S. (2.93)

Recall the definition of the interested set:

S := {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f (x) ≤ t}. (2.94)

The fact (u, t) ∈ S means that there exists x such that f1(x) ≤ u and f (x) ≤ t. By
applying such x’s to (2.93), we obtain:

p∗ ≤ min
x:f1(x)≤u,f (x)≤t

t +
λ

µ
u

(a)
= min

x:f1(x)≤u,f (x)≤t
f (x)+

λ

µ
f1(x)

(2.95)

where (a) follows from the fact that minimizing t and u are equivalent to minimiz-
ing f (x) and f1(x), respectively. Notice in the above that f1(x) ≤ u and f (x) ≤ t
become unconstrained as (u, t)→ (∞,∞). Hence, we get:

p∗ ≤ min
x

f (x)+
λ

µ
f1(x)

= g
(
λ

µ

)
≤ d∗.

This completes the proof.

Proof of (2.92): µ 6= 0 The proof is by contradiction. Suppose µ = 0.
Then, (2.90) implies that:

λu ≥ 0 ∀(u, t) ∈ S. (2.96)

Here one thing to notice is that λ (which was claimed to be non-negative in (2.89))
is strictly positive:

λ > 0. (2.97)

154 Duality

Why? Otherwise, (λ,µ) = 0 and this contradicts with the separating hyperplane
theorem. Next, consider f1(x). Actually we have never used the mild condition thus
far: ∃x such that f1(x) < 0. This is where the mild condition kicks in. Due to the
condition, there exists a point, say x̄, such that:

f1(x̄) < 0. (2.98)

Given x̄, pick up (u, t) such that f1(x̄) ≤ u < 0 and f (x̄) ≤ t. Applying this to the
definition (2.87) of the set S, we see that (u, t) ∈ S. But for such u,

λu < 0 (2.99)

due to (2.97) and u < 0. This contradicts with (2.96), thus completing the proof.

Multiple-inequality-constrained optimization Next consider a multiple-
inequality-constrained convex optimization:

p∗ := min f (x) : fi(x) ≤ 0 i ∈ {1, . . . , m},

d∗ := max
λ≥0

g(λ).

The proof of p∗ ≤ d∗ is almost the same as in the single-inequality case. The only
distinction here lies in the definition of the smartly-manipulated set:

S =
{
(u, t) ∈ Rm+1 : ∃x such that fi(x) ≤ ui i ∈ {1, . . . , m}

and f (x) ≤ t
} (2.100)

where u ∈ Rm. Like the single-inequality case, one can readily show the following
to prove p∗ ≤ d∗:

1. S is convex;

2. There exists a hyperplane

[
λ

µ

]
∈ Rm+1

6= 0 such that

(u, t) ∈ S H⇒
[
λ

µ

]T ([
u
t

]
−

[
0
p∗

])
≥ 0; (2.101)

3. λ ≥ 0, µ > 0;
4. p∗ ≤ t + λT u

µ ∀(u, t) ∈ S;

5. p∗ ≤ minx f (x)+
∑m

i=1
λi
µ fi(x) = g

(
λ
µ

)
≤ d∗.

Proof of Strong Duality Theorem (2/2) 155

General optimization Lastly consider a general convex optimization problem
which has now both equality-&-inequality constraints:

p∗ := min f (x) : fi(x) ≤ 0 i = 1, . . . , m,

Ax − b = 0;

d∗ := max
λ≥0,ν

g(λ, ν)

where A ∈ Rp×d , p < d and rank(A) = p. Again the key distinction is in the
definition of the smartly-manipulated set:

S =
{
(u, v, t) ∈ Rm+p+1 : ∃x s.t. fi(x) ≤ ui, i ∈ {1, . . . , m},

Ax − b = v, f (x) ≤ t
} (2.102)

where u ∈ Rm and v ∈ Rp. The procedure would look very much complicated.
But the key procedure follows simply a combination of the ideas that we studied
while tackling the above simpler cases. Concretely, one can show the following to
prove p∗ ≤ d∗:

1. S is convex;

2. There exists a hyperplane

λν
µ

 ∈ Rm+p+1
6= 0 such that

(u, v, t) ∈ S H⇒

λν
µ

T u
v
t

−
 0

0
p∗

 ≥ 0; (2.103)

3. λ ≥ 0, µ > 0;
4. p∗ ≤ t + λT u

µ +
νT v
µ ∀(u, v, t) ∈ S;

5. p∗ ≤ minx f (x)+
∑m

i=1
λi
µ fi(x)+

νT (Ax−b)
µ = g

(
λ
µ , νµ

)
≤ d∗.

You will also have a chance to dig into details of the proof in Prob 6.3.

Look ahead In Part I, we studied a variety of convex optimization problems: all
the problems in Fig. 2.9. However, we did not learn how to design generic algo-
rithms that can be applied to arbitrary scenarios. To this end, during the past sec-
tions, we learned about strong duality and KKT conditions. We then studied a
generic algorithm building upon them: the interior point method. And in this and
last sections, we proved the strong duality theorem that we deferred proving earlier.
So we are essentially done with the convex optimization story.

156 Duality

Least-squares Linear Program
(LP)

Quadratic Program (QP) 1956

Second-Order Cone Program
(SOCP)

Convex Optimization

19391800s

1994

1994
Semi-definite Program

(SDP)

Figure 2.9. Convex optimization instances that we explored in Part I.

What is next? We may want to ask some interesting questions that can spark
future studies. One very natural follow-up question is: What about for non-convex
optimization? Can the techniques that we have learned w.r.t. convex optimization
problems help address the general case? Fortunately, it is indeed the case. It turns
out those techniques can help approximating optimal solutions in general problems.
In order to understand what it means, we need to study another important theory,
so called weak duality, which forms the content of the next section.

Problem Set 6 157

Problem Set 6

Prob 6.1 (Separating hyperplane theorem) Suppose that S and S ′ are two
disjoint non-empty convex sets which do not intersect, i.e., S ∩ S ′ = ∅. The
separating hyperplane theorem that we mentioned in Section 2.3 says: There exist
a 6= 0 ∈ Rd and b ∈ R such that

x ∈ S H⇒ aT x − b ≥ 0;

x ∈ S ′ H⇒ aT x − b ≤ 0.
(2.104)

This problem explores the proof of this theorem. Define the Euclidean distance
between the two sets S and S ′ as:

‖S − S ′‖ := min{‖s − s′‖ : s ∈ S, s′ ∈ S ′}. (2.105)

(a) State the definitions of the closed set, the open set, and the bounded set.
(b) Suppose:

S and S ′ are closed and one set, say S, is bounded . (2.106)

Show that ‖S−S ′‖ is positive and there exist points s ∈ S and s′ ∈ S ′ that
minimize ‖S − S ′‖, i.e., ‖s − s′‖ = ‖S − S ′‖.

(c) Suppose (2.106) holds. Prove the separating hyperplane theorem.
(d) Consider the set D := {s − s′ : s ∈ S, s′ ∈ S ′}. Show that D is convex and

does not contain the origin.
(e) Suppose (2.106) does not necessarily hold. Prove the separating hyperplane

theorem.

Prob 6.2 (Proof of the strong duality theorem: Exercise 1) Consider a
convex optimization problem:

p∗ := min
x∈Rd

f (x) : f1(x) ≤ 0; aT x − b = 0

where a ∈ Rd and b ∈ R. The dual problem is then:

d∗ := max
λ≥0,ν

g(λ, ν)

where g(λ, ν) indicates the dual function. Define a set:

S = {(u, v, t) ∈ R3 : ∃x s.t. f1(x) ≤ u, aT x − b = v, f (x) ≤ t}.

Assume that p∗ is finite and there exists x̄ ∈ Rd such that

f1(x̄) < 0, aT x̄ − b = 0. (2.107)

158 Duality

(a) Prove that p∗ ≥ d∗.
(b) Prove that S is convex.
(c) State the separating hyperplane theorem. Use the theorem to prove that

there exists (λ, ν,µ) 6= 0 such that

µp∗ ≤ λu+ νv + µt ∀(u, v, t) ∈ S. (2.108)

(d) For (λ,µ) in part (c), show that

λ ≥ 0,µ > 0. (2.109)

(e) Prove that p∗ ≤ d∗.

Prob 6.3 (Proof of the strong duality theorem: Exercise 2) Consider a
convex optimization problem:

p∗ := min
x∈Rd

f (x) : fi(x) ≤ 0 i ∈ {1, . . . , m}; Ax − b = 0

where A ∈ Rp×d , b ∈ Rp, p < d and rank(A) = p. The dual problem is then:

d∗ := max
λ≥0,ν

g(λ, ν)

where g(λ, ν) indicates the dual function. Define a set:

S = {(u, v, t) ∈ Rm+p+1 : ∃x s.t. fi(x) ≤ ui,∀i, Ax − b = v, f (x) ≤ t}

where u ∈ Rm and v ∈ Rp. Assume that p∗ is finite and Slater’s condition is satisfied,
i.e., there exists x̄ ∈ Rd such that

f1(x̄) < 0, . . . , fm(x̄) < 0, Ax̄ − b = 0. (2.110)

(a) Prove that p∗ ≥ d∗.
(b) Prove that S is convex.
(c) Using the separating hyperplane theorem, show that there exists (λ, ν,µ) 6=

0 such that

µp∗ ≤ λT u+ νT v + µt ∀(u, v, t) ∈ S. (2.111)

(d) For µ in part (c), show that µ > 0.
(e) Prove that p∗ ≤ d∗.

Problem Set 6 159

Prob 6.4 (Trace tricks) Consider a square matrix A ∈ Rn×n. Denote the trace
of a square matrix by:

trace(A) :=
n∑

i=1

Aii (2.112)

where Aii indicates the ith diagonal entry of A.

(a) Suppose A � 0. Show that A can be represented as

A = XX T (2.113)

for some X ∈ Rn×n.
(b) Show that AAT

� 0.
(c) Consider A, B ∈ Rn×n. Suppose A � 0 and B � 0. Show that

trace(AB) ≥ 0. (2.114)

(d) Let X , Z ∈ Rn×n be symmetric matrices. Show that

n∑
i=1

n∑
j=1

ZijXij = trace(ZX). (2.115)

Prob 6.5 (KKT conditions for SDP) Consider an optimization problem:

p∗ := min
X

trace(WX) :

X � 0, Xii = 1, i ∈ {1, . . . , d}
(2.116)

where W ∈ Rd×d , X ∈ Rd×d and Xii indicates the ith diagonal entry of X . Let
Z ∈ Rd×d be symmetric and ν ∈ Rd . Define the Lagrange function as:

L(X , Z , ν) := trace(WX)+
d∑

i=1

d∑
i=1

Zij(−Xij)+

d∑
i=1

νi(1− Xii). (2.117)

(a) Is the problem (2.116) convex? If so, specify the class of the problem.
(b) Show that

L(X , Z , ν) = trace((W − Z − Dν)X)+ νT 1 (2.118)

where Dν := diag(ν1, . . . , νd).
(c) Derive the dual function. Also state the dual problem with a constraint

Z � 0.

160 Duality

(d) Let d∗ be the optimal value of the dual problem that you formulated in part
(c). Derive necessary conditions for strong duality to hold (i.e., p∗ = d∗)
in this problem context.

(e) Are the necessary conditions also sufficient for p∗ = d∗? If so, prove the
sufficiency. Otherwise, are there any further necessary conditions that are
also sufficient for p∗ = d∗?

Prob 6.6 (Strong duality theorem for SDP) Consider the same optimization
problem (2.116) as in Prob 6.5:

p∗ := min
X

trace(WX) :

X � 0, Xii = 1, i ∈ {1, . . . , d}
(2.119)

where W ∈ Rd×d , X ∈ Rd×d and Xii indicates the ith diagonal entry of X .
The dual problem is then:

d∗ := max
Z�0

g(Z , ν)

where g(Z , ν) indicates the dual function, Z ∈ Rd×d is a Lagrange multiplier for
the inequality constraint, and ν ∈ Rd is the equality constraint counterpart.

Define a set:

S = {(u, v, t) ∈ Rm+p+1 : ∃x s.t. fi(x) ≤ ui,∀i, Ax − b = v, f (x) ≤ t}.

Assume that p∗ is finite and there exists x̄ ∈ Rd such that

f1(x̄) < 0, . . . , fm(x̄) < 0, Ax̄ − b = 0. (2.120)

(a) Prove that p∗ ≥ d∗.
(b) Prove that S is convex.
(c) Using the separating hyperplane theorem, show that there exists (λ, ν,µ) 6=

0 such that

µp∗ ≤ λT u+ νT v + µt ∀(u, v, t) ∈ S. (2.121)

(d) For µ in part (c), show that µ > 0.
(e) Prove that p∗ ≤ d∗.

Prob 6.7 (True or False?)

(a) Consider a convex optimization problem:

min
x

f (x) : f1(x) ≤ 0 (2.122)

Problem Set 6 161

where f1(x) is a convex function. Let

S = {(u, t) ∈ R2 : ∃x such that f1(x) ≤ u, f (x) ≤ t}. (2.123)

Then, there exists (0, t) ∈ S.
(b) Suppose that S and S ′ are two disjoint non-empty convex sets which do not

intersect, i.e., S∩S ′ = ∅. Then, there exists the unique pair of a 6= 0 ∈ Rd

and b ∈ R such that

x ∈ S H⇒ aT x − b ≥ 0;

x ∈ S ′ H⇒ aT x − b ≤ 0.
(2.124)

(c) Suppose that S and S ′ are two disjoint non-empty convex sets which do
not intersect, i.e., S ∩ S ′ = ∅. Suppose there exists the unique pair of
a 6= 0 ∈ Rd and b ∈ R such that

x ∈ S H⇒ aT x − b ≥ 0;

x ∈ S ′ H⇒ aT x − b ≤ 0.
(2.125)

Then, at least one among S and S ′ must be open.

162 Duality

2.5 Weak Duality

Recap In Part I, we investigated many instances of convex optimization prob-
lems, ranging from LP, Least Squares, QP, SOCP and all the way up to SDP. See
Fig. 2.10. But in Part I, the algorithm part was not complete. We studied only two
algorithms: the simplex algorithm and gradient descent. These can be applied only
to specific problem settings: LP and some classes of QP. In other words, we did not
learn how to design generic algorithms intended for general convex optimization.
To this end, during the past sections, we learned about strong duality and KKT
conditions. We then studied a generic algorithm inspired by them. That was, the
interior point method. Over the last two sections, we proved the strong duality theo-
rem which forms the basis of the interior point method. With all of these, we could
finally end the convex optimization story.

A natural follow-up question that one can think of is: What if optimization
problems of interest are non-convex? Can the techniques that we have studied so
far help saying something about non-convex optimization? It turns out the answer
is yes. Interestingly it has been shown that the techniques can serve to approximate
optimal solutions of such non-convex optimization. In fact, in order to understand
what it means, we need to study another important theory. That is, weak duality.

Outline In this section, we are going to explore weak duality in depth. Specifically
what we are going to do are three folded. First of all, we will figure out what weak
duality means. Like strong duality, there is a relevant important theorem, named
the weak duality theorem. So in the first part, we will prove the theorem. Next we will
investigate how weak duality can serve the claimed role: help approximating non-
convex optimization problems. Lastly we will discuss how good the approximated
solution is. To this end, we will figure out a gap to the optimality of the original
optimization.

Least-squares Linear Program
(LP)

Quadratic Program (QP) 1956

Second-Order Cone Program
(SOCP)

Convex Optimization

19391800s

1956

1994
Semi-definite Program

(SDP)

Figure 2.10. Convex optimization problems that we explored in Part I.

Weak Duality 163

Primal & dual problems Like strong duality, weak duality is stated in the con-
text of primal and dual problems. To define a primal problem, let us first recall the
standard form of general optimization problems that we introduced in Section 1.2:

min
x∈Rd

f (x) : fi(x) ≤ 0, i ∈ {1, . . . , m};

hi(x) = 0, i ∈ {1, . . . , p}
(2.126)

where (f (x), fi(x), hi(x)) are arbitrary scalar functions (Rd
→ R), not necessarily

convex or affine functions. Since we start with the above problem, we can say that
the problem is primal.

In order to figure out the dual problem, we need to come up with the Lagrange
and dual functions. First consider the Lagrange function:

L(x, λ, ν) := f (x)+
m∑

i=1

λifi(x)+
p∑

i=1

νihi(x) (2.127)

where λ = [λ1, . . . , λm]T
∈ Rm and ν = [ν1, . . . , νp]T

∈ Rp are Lagrange
multipliers. The dual function is then defined as:

g(λ, ν) := min
x∈X

L(x, λ, ν). (2.128)

Here X indicates the entire space that the optimization variable x lies in:

X := domf ∩ domf1 ∩ · · · ∩ domfm ∩ domh1 ∩ · · · ∩ domhp.

Using this dual function, we can formulate the dual problem as:

(Dual problem): max
λ,ν

g(λ, ν) : λ ≥ 0. (2.129)

What does weak duality mean? Like strong duality, we can state weak duality
using the optimal values (p∗, d∗) of the primal and dual problems:

(Primal): p∗ := min f (x) : fi(x) ≤ 0, 1 ≤ i ≤ m, hi(x) = 0, 1 ≤ i ≤ p;

(Dual): d∗ := max
λ,ν

g(λ, ν) : λ ≥ 0.

What weak duality means is that the optimal values of the two problems respect:

(Weak duality): p∗ ≥ d∗. (2.130)

As you may notice, we already saw weak duality (2.130) before. Actually we saw
twice; one in Section 2.1, and the other in Section 2.3. But we proved this is the
case only for a specific context: the convex optimization context. Here the most

164 Duality

critical point that we would like to emphasize is that weak duality (2.130) holds
for any optimization problems which include non-convex optimization, i.e., no
matter what the function types of (f (x), fi(x), hi(x)) are. We call this the weak
duality theorem.

Proof of the weak duality theorem (2.130): p∗ ≥ d∗ The proof is almost
the same as before. The proof is not tailored for the convexity condition, i.e., it
can carry over to non-convex optimization as well. Let us verify that it is indeed
the case.

Suppose that a feasible point in the primal problem, say x∗, achieves p∗; similarly,
another feasible point in the dual problem, say (λ∗, ν∗), achieves d∗. Using the
fact that x∗ and (λ∗, ν∗) are the minimizer and maximizer of the primal and dual
problems respectively, we get:

p∗ = f (x∗)

(a)
≥ f (x∗)+

m∑
i=1

λ∗i fi(x∗)+
p∑

i=1

ν∗i hi(x∗)

≥ min
x∈X

f (x)+
m∑

i=1

λ∗i fi(x)+
p∑

i=1

ν∗i hi(x)

(b)
= g(λ∗, ν∗)

= d∗

(2.131)

where (a) follows from the fact that fi(x∗) ≤ 0, λ∗i ≥ 0 and hi(x∗) = 0 for a
feasible point (x∗, λ∗, ν∗); and (b) is due to the definition of the dual function.

Take a careful look at the procedures in (2.131). We never used anything about
function types of (f (x), fi(x), hi(x)). Hence, weak duality holds for any optimiza-
tion.

Why does weak duality matter? You may wonder why we brought up the
weak duality theorem. As claimed earlier, it can serve to approximate the primal
non-convex optimization problem. To figure out what it means, let us first point out
one critical fact about the dual problem. The critical fact is that the dual problem is
always convex no matter what the optimization type is, and therefore it is tractable
(i.e., solvable). The convexity of the problem then allows us to simply focus on the
tractable dual problem. It turns out by solving the tractable dual problem, one can
obtain an approximated solution of the original non-convex primal problem with
a gap of p∗ − d∗.

Weak Duality 165

For the rest of this section, we will provide details on the above. First we will
prove that the dual problem is indeed convex. We will then figure out how the gap
p∗ − d∗ comes up.

Proof of the convexity of the dual problem Let us prove that the dual prob-
lem is always convex no matter what the function types of (f (x), fi(x), hi(x)) are.
Let us start by considering the dual function:

g(λ, ν) = min
x∈X

f (x)+
m∑

i=1

λifi(x)+
p∑

i=1

νihi(x).

Here one can make two key observations. The first is that for a particular value of x,

f (x)+
m∑

i=1

λifi(x)+
p∑

i=1

νihi(x)

is affine in (λ, ν), for any types of the functions (f (x), fi(x), hi(x)). The second
observation is that taking the minimum of any affine functions, we obtain a concave
function. Why? This is what we checked before. Hence,

g(λ, ν) is always concave in (λ, ν),

no matter what the function types of (f (x), fi(x), hi(x)) are. Therefore, the dual
problem that maximizes the concave function is convex optimization.

How to solve the dual problem? As mentioned earlier, weak duality together
with the convexity of the dual problem motivates us to focus on solving the dual
problem to obtain an approximate solution. So let us first discuss how to solve the
dual problem:

(Dual) d∗ := max
λ,ν

g(λ, ν) : λ ≥ 0. (2.132)

Notice that the dual problem contains an inequality constraint. So one cannot rely
simply upon gradient descent. We should instead employ another more sophisti-
cated algorithm. One such algorithm that we studied in Section 2.2 is: the interior
point method. Remember that it takes the following two procedures:

1. We first approximate the problem into an unconstrained problem via the
logarithmic barrier function:

LB(z) := −µ log(−z), for some µ > 0. (2.133)

But we should employ a slight variant of LB(z) in approximation. Since the
interested dual problem is about maximization (instead of minimization), we

166 Duality

-3 -2.5 -2 -1.5 -1 -0.5 0

-1

0

1

2

3

4

5

Figure 2.11. Shape of the logarithmic barrier function for different µ’s.

should employ the minus version of LB(z) so that it takes −∞ (instead of
+∞) when z→ 0:

−LB(z) = +µ log(−z), for some µ > 0.

Applying this to the dual problem (2.132), we can obtain an approximated
unconstrained optimization:

(Approximated optimization) max
λ,ν

g(λ, ν) + µ
m∑

i=1

log λi. (2.134)

Notice that log λi comes from log(−(−λi)) in the standard form −λ ≤ 0
of the inequality constraint.

2. The next thing to do is to apply alternating gradient descent into the approx-
imated optimization (2.134). The Lagrange function of the approximated
optimization reads:

Lapp(λ, ν) = g(λ, ν)+ µ
m∑

i=1

log λi. (2.135)

Alternating gradient descent then allows us to find a stationary point, say
(λ̃, ν̃):

∇λLapp(λ̃, ν̃) = 0; ∇νLapp(λ̃, ν̃) = 0. (2.136)

Performance of the interior point method Remember that the performance
of the interior point method depends on the control parameter µ that appears in
the logarithmic barrier (2.133). To see how it depends, consider the stationary point

Weak Duality 167

(λ̃, ν̃). Then, the dual function evaluated at the point should be larger than or equal
to d∗, as the dual problem is about maximization. Hence, we get:

d∗ ≥ g(λ̃, ν̃).

Also remember what we derived w.r.t. the gap in Section 2.2. Therein, we con-
sidered the minimization problem. In the context, what we showed is that the gap
to the optimality is upper-bounded by mµ. Actually we can apply the same trick
to obtain the same bound even w.r.t. the maximization problem of this section’s
interest. In other words, we can derive:

d∗ − g(λ̃, ν̃) ≤ mµ. (2.137)

If you are not crystal clear about this, you may want to derive it, by consulting with
Prob 5.3. From (2.137), we can now say that for a sufficient small value of µ,

g(λ̃, ν̃) ≈ d∗.

Performance gap to optimality p∗ So under a choice of sufficiently small µ,
the gap to the optimal value p∗ in the primal problem would be:

Gap ≈ p∗ − d∗.

There is a terminology which indicates the gap. Since the gap is w.r.t. the dual
problem, it is called the duality gap.

Let us introduce another naming which refers to the approximation technique
based on weak duality. We call the technique Lagrange relaxation. Why? Notice that
the dual problem yields a smaller solution (d∗ ≤ p∗), and the primal problem is
about minimization. Hence, we can interpret the dual problem as the one with more
relaxed constraints. Also it is about duality, so it employs the Lagrange function in
the process. That’s why we call it Lagrange relaxation.

Whenever we study a relaxation technique, we need to worry about how good
the relaxation technique is. So one can ask: How far is the bound due to Lagrange
relaxation from the optimal value p∗?

How good is Lagrange relaxation? Here we intend to address the question
by comparing to other relaxation techniques that we investigated earlier. The first
relaxation technique is the one that we studied in Section 1.5 in the context of LP.
That was, LP relaxation. The second is the one that we studied in Section 1.14
for a different problem context. That was, SDP relaxation. So we are interested
particularly in how good Lagrange relaxation is relative to LP and SDP relaxation
techniques.

168 Duality

Lagrange relaxation vs. LP relaxation First let us compare to LP relaxation.
Actually such relaxation arose in a very difficult problem class that we studied
before: the Boolean problem. So let us make a comparison under the Boolean prob-
lem. It turns out that for such a problem:

Lagrange relaxation has the same performance as that of LP relaxation.

Lagrange relaxation vs. SDP relaxation What about for SDP relaxation? It
turns out that in general,

Lagrange relaxation is at least as good as SDP relaxation.

Another interesting result comes in for a variety of important and classical problem
instances including the MAXCUT problem that we studied in Section 1.14. It turns
out that for such problem instances:

Lagrange relaxation and SDP relaxation yield the same performance.

Look ahead During upcoming sections, we will study how to implement
Lagrange relaxation for the interested Boolean and MAXCUT problems.

Lagrange Relaxation for Boolean Problems 169

2.6 Lagrange Relaxation for Boolean Problems

Recap In the previous section, we switched gears to move onto non-convex opti-
mization. We emphasized that the techniques that we have learned so far play a
crucial role in approximating non-convex optimization. To understand how the
approximation is implemented, we needed to study another important theory
regarding duality. That is, the weak duality theorem:

p∗ ≥ d∗ holds for any optimization problem. (2.138)

Here p∗ and d∗ indicate the optimal values of the primal and dual problems, respec-
tively. One important thing that we proved next is that the dual problem is always
convex no matter what the types of the functions that appear in the optimization
problem are. This motivates us to focus on solving the solvable dual problem, and
one can solve it using the interior point method. Assuming that we use a suffi-
ciently small value of the control parameterµ that appears in the logarithmic barrier
employed for the interior point method, we can achieve d∗ approximately, which
in turn ensures the performance gap to the optimality to be roughly p∗ − d∗. This
gap is called the duality gap, and the approximation technique that leads to the gap
is called Lagrange relaxation. At the end, we mentioned that Lagrange relaxation
plays a significant role especially for two interested non-convex problems that we
investigated earlier: Boolean and MAXCUT problems.

Outline In this section, we are going to investigate how to implement Lagrange
relaxation for one such problem: the Boolean problem. Specifically what we are
going to do are four folded. First of all, we will review the Boolean problem. Next
we will express the Boolean problem in the standard from. We will then employ
Lagrange relaxation to derive the dual problem. Finally we will show that the trans-
lated dual problem belongs to one convex instance that we studied in Part I: SDP.

Review of Boolean problems Remember that we discussed the Boolean prob-
lems in the context of LP. So the problems are basically on top of LP, but one special
constraint is added. That is, the optimization variable x takes binary values. So the
problem respects the following form:

p∗ :=min wT x :

Ax − b ≤ 0, Cx − e = 0,

xi ∈ {0, 1}, i ∈ {1, . . . , d}.

(2.139)

Here the last additional constraint says that the optimization variable is constrained
to be boolean.

170 Duality

Standard form Before studying how to implement Lagrange relaxation, let us
convert the above into the standard form that contains only canonical types of
constraints: inequality and/or equality constraints. Notice that the boolean con-
straint above (marked in red) is neither of inequality nor of equality type. But the
translation to an equality constraint type is easy. The boolean constraint can be
equivalently expressed as follows:

xi(xi − 1) = 0 i ∈ {1, . . . , d}. (2.140)

We now have two types of equality constraints: one is the affine constraint Cx −
e = 0; and the other is the above (2.140). In an effort to exhibit only one type of
equality constraints, let us convert the affine constraint Cx− e = 0 into inequality
constraints. This way, we can merge them with Ax − b ≤ 0, making notations
simpler. We have already known how to convert the affine constraint. That is to
represent it with two inequality constraint: Cx − e ≤ 0 and Cx − e ≥ 0. Taking
the conversion, we can then simplify (2.139) as:

p∗ :=min wT x :

Ax − b ≤ 0,

xi(xi − 1) = 0, i ∈ {1, . . . , d}. (2.141)

where (A, b) are not the same as those in the original optimization (2.139), but
being the merged version with Cx − e ≤ 0 and Cx − e ≥ 0.

Lagrange function Let us think about how to implement Lagrange relaxation.
To this end, first consider the Lagrange function:

L(x, λ, ν) = wT x + λT (Ax − b)+
d∑

i=1

νixi(xi − 1)

= (w + ATλ− ν)T x − λT b+
d∑

i=1

νix2
i

= (w + ATλ− ν)T x − λT b+ xT diag(ν1, . . . , νd)x

= (w + ATλ− ν)T x − λT b+ xT Dνx

(2.142)

where the last equality follows from the definition of Dν := diag(ν1, . . . , νd).

Dual function Next consider the dual function:

g(λ, ν) = min
x∈X

xT Dνx + (w + ATλ− ν)T x − λT b (2.143)

Lagrange Relaxation for Boolean Problems 171

where X denotes the entire space (Rd in this example). Here g(λ, ν) looks like a
QP, as it contains a quadratic term xT Dνx and Dν is symmetric. But it is not clear
whether the associated optimization is indeed a QP. Why? The reason is that Dν is
not necessarily positive semi-definite (PSD). Notice that Dν is what we can opti-
mize over in view of the dual problem taking ν (together with λ) as an optimization
variable.

Depending on what to choose for Dν , we can think of two cases. The first is sort
of an easy case where the problem is indeed a QP and therefore the solution can be
readily derived. In the easy case, the symmetric matrix Dν respects:

Case I: Dν � 0. (2.144)

In this case, Dν is indeed PSD, so the optimization problem in (2.143) becomes
an unconstrained QP. So one can solve it by finding the stationary point x∗ that
satisfies:

∇xL(x∗, λ, ν) = 2Dνx∗ + w + ATλ− ν = 0. (2.145)

But there is a caveat here. The caveat is that there may be no solution x∗ that satis-
fies (2.145). To see this clearly, let us consider two subcases depending on whether
the solution exists.

The first is the no-solution case:

Case I-1: Dν � 0, w + ATλ− ν /∈ range(Dν). (2.146)

In this case, there is no stationary point x∗. This implies that the Lagrange function
L(x, λ, ν) can decrease arbitrarily small, being all the way down to −∞. What
people in the literature say about this behaviour is that L(x, λ, ν) is unbounded
below. So in this case, the dual function g(λ, ν) is obviously−∞. This is definitely
not an interested case. Why? The dual problem (that we will formulate soon) is
about maximization, so g(λ, ν) = −∞ is definitely not the one that we want to
achieve. The second is the case in which there is indeed a solution:

Case I-2: Dν � 0, w + ATλ− ν ∈ range(Dν). (2.147)

This is definitely of our interest. In this case, we can solve such x∗ by resorting to
the generalized definition of D−1

ν :

[D−1
ν]ii :=

{
ν−1

i if νi 6= 0;
0 if νi = 0.

(2.148)

This generalized definition is needed because νi = 0 makes ν−1
i blow up. In the

case of νi = 0, the corresponding xi can be anything, so xi = 0 could be a feasible

172 Duality

point. Hence, one can set the minimizer x∗ simply as:

x∗ = −
1

2
D−1
ν (w + ATλ− ν). (2.149)

Plugging this into the objective function in (2.143), we can obtain the dual func-
tion as:

g(λ, ν) = L(x∗, λ, ν)

=
1

4
(w + ATλ− ν)T (D−1

ν)T DνD−1
ν (w + ATλ− ν)

−
1

2
(w + ATλ− ν)T D−1

ν (w + ATλ− ν)− λT b

= −
1

4
(w + ATλ− ν)T D−1

ν (w + ATλ− ν)− λT b.

(2.150)

On the other hand, one may want to consider the other case:

Case II: Dν � 0. (2.151)

Being Dν � 0 means that there exists νi < 0 for some i. This is obviously not an
interested case. Why? Recall the expression (2.142) of the Lagrange function:

L(x, λ, ν) = (w + ATλ− ν)T x − λT b+ xT Dνx. (2.152)

By setting xi = ∞ for such i, we getL(x, λ, ν) = −∞. This then leads to g(λ, ν) =
−∞. Again this is not what we want to achieve because the dual problem is about
maximization.

Dual problem In summary, what we are interested in is only Case I-2 (2.147)
wherein g(λ, ν) is finite. Focusing on this case, we obtain the dual problem as:

max
λ≥0, ν≥0

−
1

4
(w + ATλ− ν)T D−1

ν (w + ATλ− ν)− λT b :

w + ATλ− ν ∈ range(Dν)

(2.153)

where the constraint ν ≥ 0 comes from Dν � 0 (2.144) and the dual function
g(λ, ν) is due to (2.150). As mentioned earlier, the definition of D−1

ν is subject
to (2.148).

Notice in the above that the first term in the objective function (marked in red)
is not compatible with the standard form of any convex optimization problem that
we studied earlier. But interestingly it turns out we can convert it into a form that
we are familiar with: SDP. So for the rest of this section, we will translate (2.153)
into an SDP.

Lagrange Relaxation for Boolean Problems 173

We first introduce a new optimization variable, say t, such that

t ≤ −
1

4
(w + ATλ− ν)T D−1

ν (w + ATλ− ν).

A key observation here is that by maximizing t, one should make the RHS larger,
and also by maximizing the RHS, one can set t larger. So this implies that max-
imizing t is equivalent to maximizing the RHS. Hence, with this new variable t,
one can write (2.153) as:

max
λ≥0,ν≥0

g(λ, ν) = max
λ≥0, ν≥0, t

t − λT b :

w + ATλ− ν ∈ range(Dν);

t ≤ −
1

4
(w + ATλ− ν)T D−1

ν (w + ATλ− ν).

(2.154)

The newly-introduced inequality constraint here can be alternatively written as:

−t − (w + ATλ− ν)T (4Dν)
−1(w + ATλ− ν) ≥ 0. (2.155)

This is the one that you should be familiar with. Why? This reminds you of
the Schur complement lemma. More precisely, the generalized Schur complement
lemma. Notice that the interested matrix Dν is PSD, not necessarily PD.

Generalized Schur complement lemma: Suppose A � 0. Then,

X =
[

A B
BT C

]
� 0⇐⇒ S := C − BT A†B � 0; Bv ∈ range(A) ∀v

(2.156)

where A† := U6−1U T when A = U6U T . Here6−1 is subject to the definition
of (2.148). �

As per the above generalized lemma, as long as we define D−1
ν as the one

in (2.148), the two constraints in (2.154) are equivalent to:[
4Dν w + ATλ− ν

(w + ATλ− ν)T −t

]
� 0. (2.157)

Taking this conversion, we can write (2.154) as:

d∗ := max
λ, ν, t

t − λT b :[
4Dν w + ATλ− ν

(w + ATλ− ν)T −t

]
� 0,

λ ≥ 0, ν ≥ 0.

(2.158)

174 Duality

Notice that all the inequalities are the ones that we are familiar with. These are all
LMIs. So this problem belongs to an SDP.

Look ahead In the next section, we will study how to implement Lagrange relax-
ation for another interested problem: the MAXCUT problem.

Lagrange Relaxation for the MAXCUT Problem 175

2.7 Lagrange Relaxation for the MAXCUT Problem

Recap In the previous section, we studied how to implement Lagrange relaxation
in the context of the Boolean problem. We derived the dual function in closed
form. We then employed the generalized Schur complement lemma to translate
the dual problem into a tractable SDP. In an effort to say a few words about the
performance of Lagrange relaxation, we also discussed in brief the comparison to LP
relaxation.

Outline In this section, we will do the same thing yet w.r.t. a different prob-
lem: the MAXCUT problem, explored in Section 1.14. Specifically we are going
to cover the following five stuffs. First off, we will review what the MAXCUT prob-
lem is. We will then express the MAXCUT problem in the standard form. Next we
will derive the dual function in closed form, by employing the technique that we
learned in the prior section. In the fourth part, we will show that the dual prob-
lem can be formulated as an SDP. Lastly we will discuss comparison to SDP relax-
ation that we employed for the purpose of approximating the MAXCUT problem in
Section 1.14.

Review of the MAXCUT problem Let us start by reviewing the MAXCUT prob-
lem. The goal of the problem is to find a set that maximizes a cut. See Fig. 2.12 to
refresh your memory.

To formulate an optimization problem, we introduced an optimization variable
xi that indicates whether node i is in a candidate set S:

xi =

{
+1, x ∈ S;
−1, otherwise.

(2.159)

1

5

23

4

6

Figure 2.12. The MAXCUT problem in which the goal is to find a set that maximizes a cut.

In this example, the set S = {1, 3, 5} and the cut w.r.t. the set S is w54 +w14 +w36 +w12 +w32.

Here wij denotes a weight associated with an edge (i, j) ∈ E .

176 Duality

We then made a key observation. When xi 6= xj , the edge (i, j) comes across the
two sets S and Sc, and hence, this should contribute to a cut by the amount of wij .
On the other hand, when xi = xj , there should be no contribution to the cut. This
yielded the following optimization:

max
xi

d∑
i=1

d∑
j=1

1

2
wij(1− xixj) :

x2
i = 1, i ∈ {1, . . . , d}

(2.160)

where d denotes the number of nodes in the graph and the constraint x2
i = 1

respects the fact that xi can be only either +1 or −1. Here we allow for double
counting, as it does not alter the optimal solution.

Standard form For simplification, let us multiply the objective function by 2.
Since the standard form is about minimization, we also flip the sign in the objective
to convert the problem into:

(Primal): p∗ :=min
xi

d∑
i=1

d∑
j=1

wij(xixj − 1) :

x2
i = 1, i ∈ {1, . . . , d}.

(2.161)

Say that this is the primal problem that we start with.

Lagrange function How to implement Lagrange relaxation for the primal prob-
lem (2.161)? To this end, first consider the Lagrange function:

L(x, ν) =
d∑

i=1

d∑
j=1

wij(xixj − 1)+
d∑

i=1

νi(1− x2
i)

= −

d∑
i=1

d∑
j=1

wij + ν
T 1+

d∑
i=1

d∑
j=1

wijxixj −

d∑
i=1

νix2
i

(2.162)

where ν ∈ Rd denotes a Lagrange multiplier associated with the equality con-
straints.

Notice that the Lagrange function (2.162) contains some complicated-looking
terms, which are summation terms. One way to succinctly represent the dirty terms
is to rely upon matrix and vector notations. To apply this way, consider a matrix,

Lagrange Relaxation for the MAXCUT Problem 177

say W , which is defined as:

W :=

w11 w12 · · · w1d

w21 w22 · · · w2d
...

...
. . .

...
wd1 wd2 · · · wdd

 ∈ Rd×d . (2.163)

Note that the matrix W is symmetric, i.e., W = W T , as we consider the undirected
graph for the MAXCUT problem. We also set wij = 0 when (i, j) /∈ E . So the
diagonal entries must be zero: wij = 0.

With this W notation, we can represent the summation terms in (2.162) as:

d∑
i=1

d∑
j=1

wij = [1, 1, . . . , 1]

w11 w12 · · · w1d

w21 w22 · · · w2d
...

...
. . .

...
wd1 wd2 · · · wdd

1
1
...
1

= 1T W 1;

d∑
i=1

d∑
j=1

wijxixj=

d∑
i=1

xi

d∑
j=1

wijxj

= [x1, x2, . . . , xd]

w11 w12 · · · w1d

w21 w22 · · · w2d
...

...
. . .

...
wd1 wd2 · · · wdd

x1

x2
...

xd

 .

Applying the above into (2.162), we then get:

L(x, ν) = −1T W 1+ νT 1+ xT Wx − xT Dνx (2.164)

where Dν := diag(ν1, ν2, . . . , νd).

Dual function Next consider the dual function:

g(ν) = min
x∈X

xT (W − Dν)x − 1T W 1+ νT 1 (2.165)

where X indicates the entire space. Here g(ν) looks like a QP, as it contains a
quadratic term xT (W −Dν)x and W −Dν is symmetric. But as we encountered in
Section 2.6, it is not clear whether the associated optimization problem is indeed a
QP. The reason is that W −Dν is not necessarily positive semi-definite (PSD). So
let us consider two cases depending on whether W − Dν is PSD.

178 Duality

The first case is:

Case I: W − Dν � 0 (PSD). (2.166)

In this case, the optimization problem in (2.165) is an unconstrained QP. So one
can solve it by finding x∗ such that

∇xL(x∗, ν) = 2(W − Dν)x∗ = 0 (2.167)

if such x∗ exists. Notice that there always exists such x∗ satisfying the optimality
condition. Hence, by putting x∗ into L(x, ν), we obtain the optimal value as:

g(ν) = L(x∗, ν) = x∗T (W − Dν)x∗ − 1T W 1+ νT 1

= −1T W 1+ νT 1
(2.168)

where the last equality comes from (2.167).
On the other hand, the second case is:

Case II: W − Dν � 0 (not PSD). (2.169)

This non-PSD condition implies that there exists x ∈ Rd such that

xT (W − Dν)x < 0.

Here by scaling up such x infinitely, we get L(x, ν) = −∞, which in turn leads
to g(ν) = −∞. Obviously this is not what we want to achieve, so we ignore the
second case.

Dual problem Focusing on the first case (2.166) in which g(ν) is finite and we
have the PSD constraint of W − Dν � 0, we can obtain the dual problem as:

d∗ :=max
ν

g(ν)

=max
ν
−1T W 1+ νT 1 :

W − Dν � 0

(2.170)

where g(ν) is due to (2.168). Notice that this problem is the one that we are familiar
with. That is, an SDP.

Comparison to SDP relaxation Let us say a few words about the performance
of Lagrange relaxation relative to another relaxation technique that we applied to
the MAXCUT problem before (Section 1.14): SDP relaxation. To make a concrete

Lagrange Relaxation for the MAXCUT Problem 179

comparison, let us review what the optimization problem due to SDP relaxation
was. To this end, first recall the primal problem (2.161) that we started with.

p∗ :=min
x

d∑
i=1

d∑
j=1

wijxixj − 1T W 1 :

x2
i = 1, i ∈ {1, . . . , d}.

(2.171)

Here we represent the problem using matrix-vector notations, in an effort to ease
comparison with the Lagrange-relaxed problem (2.170), represented with such
notations.

In Section 1.14, we employed a technique, called the lifting, to enable SDP relax-
ation. The idea of lifting is to raise a vector space that the optimization variable lives
in, into a matrix space. In order to apply this idea, we introduced a new matrix X
such that its (i, j)-entry [X]ij is defined as:

Xij := xixj . (2.172)

A more succinct way to represent this was: X = xxT . This then yielded the follow-
ing constraints:

Xii = 1, X � 0, rank(X) = 1. (2.173)

Dropping the last rank constraint was essentially the key idea of SDP relaxation.
So the SDP-relaxed problem was:

p∗SDP := min
X

d∑
i=1

d∑
j=1

wijXij − 1T W 1 :

Xii = 1, i ∈ {1, . . . , d},

X � 0.

(2.174)

Looking at (2.170) and (2.174), a comparison seems not that straightforward.
The problem (2.170) is about maximization, while the problem (2.174) is about
minimization. In order to ease comparison, we can apply the strong duality theorem
to obtain the dual problem of (2.174). This would be then definitely about max-
imization. However, there is an issue in formulating the dual problem of (2.174).
The issue comes from the inequality constraint form in (2.174). Why? The inequal-
ity is now w.r.t. a symmetric matrix, not a scalar or a vector. Actually we never for-
mulated a Lagrange function w.r.t. an optimization problem which involves such
matrix-associated inequality. So we do not know what is a proper Lagrange multiplier

180 Duality

for the problem. But it turns out that there is a proper way of defining a Lagrange
function in the matrix-inequality context. Interestingly, by applying the trick, one
can show that the dual problem of (2.174) is exactly the same as that (2.170) of
Lagrange relaxation. This implies that the two relaxation techniques yield the same
performance. We will not delve into details here. But you will have a chance to
check this in Prob 7.4 (with the help of Prob. 7.5).

Summary of Part I and Part II We have thus far studied lots of stuffs for both
convex and non-convex optimization problems. In Part I, we have investigated
many instances of convex optimization problems together with some algorithms
(like the simplex algorithm and gradient descent) that can be applied to certain
settings. One critical thing that we missed is about the development of generic algo-
rithms that can be applied to arbitrary settings under the class.

To fill up the missing part, in Part II, we studied an important concept about
duality: strong duality. We studied what it means and then figured out that it pro-
vides algorithmic insights into convex optimization. It leads to a famous algorithm,
called the interior point method. With strong duality, we could complete the con-
vex optimization story.

We then moved onto non-convex optimization problems. What we could figure
out is that another important theory regarding duality helps approximating optimal
solutions of non-convex optimization. That is, the weak duality theorem. We also
studied an approximation technique based on weak duality (called Lagrange relax-
ation) that offers good performances for some class of difficult problems including
the Boolean and MAXCUT problems. All of the above form the contents of Part I
and Part II.

Outline of Part III A natural follow-up question arises. What can do we further
with the techniques that we have learned so far? It turns out we can do something
crucial in a wide variety of research fields. One such field that is quite trending
during the past decades is: Machine learning.

So in Part III, we are going to study how the optimization techniques that we
learned can play a role in the trending field. In machine learning, there are two rep-
resentative learning methods: (i) supervised learning in which training data contain
label information (like the identity of emails among spam vs. legitimate emails); and
(ii) unsupervised learning in which such label information is not available. Actually
supervised learning is the one that we already investigated in Part I, specifically in
the context of spam filter design. In supervised learning, we will explore further,
particularly the role of convex optimization, in the design of potentially better clas-
sifiers that yield sometimes the optimal performance in a certain sense. In unsu-
pervised learning, we will study one very popular technique based on Generative

Lagrange Relaxation for the MAXCUT Problem 181

Adversarial Networks (GANs). In this context, we will figure out a powerful role of
strong duality that we learned in Part II. In addition to these popular methodolo-
gies, we will investigate the role of the regularization technique and KKT conditions
in the design of trending machine learning classifiers, called fair classifiers, which
ensure fairness for disadvantageous against advantageous groups.

182 Duality

Problem Set 7

Prob 7.1 (The dual problem of LP relaxation) Consider an LP which is
relaxed from a Boolean problem:

min
x∈Rd

wT x :

Ax − b ≤ 0,

0 ≤ x ≤ 1

(2.175)

where A ∈ Rm×d and b ∈ Rm. Show that the dual problem can be represented as:

max
λ,ν,t

t − λT b :

w + ATλ+ ν ≥ 0,

−t − νT 1 ≥ 0,

λ ≥ 0, ν ≥ 0 (2.176)

where λ ∈ Rm, ν ∈ Rd and t ∈ R.

Prob 7.2 (Lagrange relaxation vs. LP relaxation) Consider the Lagrange-
relaxed problem of a Boolean problem that we formulated in Section 2.6:

d∗ :=max
λ,ν,t

t − λT b :[
4Dν w + ATλ− ν

(w + ATλ− ν)T −t

]
� 0,

λ ≥ 0, ν ≥ 0

(2.177)

where Dν := diag(ν1, . . . , νd), λ ∈ Rm, A ∈ Rm×d , b ∈ Rm and t ∈ R. Also
consider the dual problem of the LP-relaxed problem that we claimed in Section 2.6
and you proved in Prob 7.1:

d∗LP := max
λ,ν,t

t − λT b :

w + ATλ+ ν ≥ 0,

−t − νT 1 ≥ 0,

λ ≥ 0, ν ≥ 0.

(2.178)

Show that d∗LP ≤ d∗.

Problem Set 7 183

Prob 7.3 (Lagrange relaxation) Consider a Boolean problem:

p∗ :=min wT x :

Ax − b ≤ 0,

xi(xi − 1) = 0, i ∈ {1, . . . , d}

(2.179)

where x, w ∈ Rd ; A ∈ Rm×d ; and b ∈ Rm. Also consider an LP relaxation of the
problem (2.179):

p∗LP :=min wT x :

Ax − b ≤ 0,

0 ≤ x ≤ 1.

(2.180)

(a) Derive a Lagrange-relaxed optimization problem of (2.179) as an SDP. Also
explain why it is an SDP.

(b) Derive the dual problem of (2.180) as an SDP. Also explain why it is an
SDP.

(c) Let d∗ be the optimal value of the Lagrange-relaxed optimization problem
derived in part (a). Let d∗LP be the optimal value of the dual problem derived
in part (b). A student claims that there exists a case in which d∗LP < d∗. Prove
or disprove this claim.

Prob 7.4 (Lagrange relaxation vs. SDP relaxation) Consider the optimiza-
tion problem of the MAXCUT problem that we studied in Section 2.7.

p∗ := min
x=(x1,...,xd)

d∑
i=1

d∑
j=1

wij(1− xixj) : x2
i = 1 (2.181)

where wij ∈ R denotes a weight associated with an edge (i, j) in an undirected
graph G.

(a) Using Lagrange relaxation, derive the dual problem of (2.181) as an SDP.
Also explain why it is an SDP.

(b) Using SDP relaxation together with the lifting technique, show that the
optimization (2.181) can be approximated as:

p∗SDP :=min
X

d∑
i=1

d∑
j=1

wij(Xij − 1) : Xii = 1, X � 0. (2.182)

184 Duality

(c) Let d∗ be the optimal value of the dual problem derived in part (a). Let
d∗SDP be the optimal value of the dual problem w.r.t. the SDP-relaxed opti-
mization (2.182). A student claims that d∗SDP = d∗. Prove or disprove this
claim.

Prob 7.5 (Weak duality for SDP) Consider an optimization problem:

p∗ := max
x∈Rd

f (x) :

G + x1F1 + · · · + xd Fd � 0
(2.183)

where G ∈ Rm×m and Fi ∈ Rm×m are symmetric. Assume that f (x) is finite.

(a) Propose a proper way of defining the Lagrange function, the dual function
and the dual problem that leads to the weak duality theorem.

(b) Employing the way proposed in part (a), derive the dual problem
of (2.183).

(c) Let d∗ be the optimal value of the dual problem derived in part (b). State
the weak duality theorem that shows the relationship between p∗ and d∗.
Also prove the theorem.

Prob 7.6 (Weak duality for SDP) Consider an optimization problem:

p∗ := min f (x) :

G + x1F1 + · · · + xd Fd � 0
(2.184)

where x := [x1, . . . , xd]T
∈ Rd , and G ∈ Rm×m and Fi ∈ Rm×m are symmetric.

Assume that f (x) is finite. Let Z ∈ Rm×m be symmetric. Define the Lagrange
function as:

L(x, Z) := f (x)− trace(Z(G + x1F1 + · · · + xd Fd)). (2.185)

(a) Derive the dual problem of (2.184).
(b) Prove that p∗ ≥ d∗.

Prob 7.7 (True or False?)

(a) Consider an optimization problem:

min f (x) :

G + x1F1 + · · · + xd Fd � 0
(2.186)

where x ∈ Rd , and G ∈ Rm×m and Fi ∈ Rm×m are symmetric. Then, one
can derive the dual problem only when f (x) is finite ∀x.

DOI: 10.1561/9781638280538.ch3

Chapter 3

Machine Learning Applications

3.1 Supervised Learning and Optimization

Recap In Part II, we focused on the study of the two important theorems:
(i) strong duality theorem; (ii) weak duality theorem. The strong duality theorem
provided algorithmic insights, thus leading to the interior point method that can
be applied to generic settings that we have investigated in Part I. The weak duality
theorem helped us to approximate optimal solutions for non-convex optimization
problems, which are intractable in general.

At the end of Part II, we emphasized that what we have learned so far are instru-
mental in addressing important issues that arise in a trending research field: Machine
learning. So the goal of Part III is to support this claim.

Outline In this section, we will start investigating the field of machine learning
and the role of optimization therein. What we are going to do are three folded. First
of all, we will study what machine learning is and what the mission of the field is.
We will then explore one very popular & traditional way to achieve the mission:

Supervised learning .

Lastly we will figure out how optimization techniques are related to supervised
learning.

185

http://dx.doi.org/10.1561/9781638280538.ch3

186 Machine Learning Applications

computer system
(machine)

algorithm

training

(together w/ data)
Figure 3.1. Machine learning is the study of algorithms which provide a set of instructions

to a computer system so that it can perform a specific task of interest. Let x be an input

indicating information employed to perform a task. Let y be an output to denote a task

result.

Machine learning Machine learning is about an algorithm which is defined to
be a set of instructions that a computer system can execute. Formally speaking,
machine learning is the study of algorithms with which one can train a computer
system so that it can perform a specific task of interest. See Fig. 3.1 for pictorial
illustration.

The entity that we are interested in building up is a computer system, which is
definitely a machine. Since it is a system (i.e., a function), it has input and output.
The input, usually denoted by x, indicates information employed to perform a task
of interest. The output, usually denoted by y, denotes a task result. For instance, if
a task is legitimate-vs-spam email filtering that we studied in Part I, then x could
be features (e.g., frequencies of some keywords that appear in an email), and y is
an email entity, e.g., y = +1 indicates a legitimate email while y = −1 denotes a
spam email. Or if an interested task is cat-vs-dog classification, x could be image-
pixel values and y is a binary value indicating whether the fed image is a cat (say
y = 1) or a dog (y = 0).

Machine learning is about designing algorithms, wherein the main role is to train
the computer system so that it can perform the task well. In the process of designing
algorithms, we use something, called data.

A remark on the naming One can easily see the rationale behind the naming
via changing a viewpoint. From a machine’s perspective, a machine learns the task
from data. Hence, it is called machine learning. This naming was coined in 1959
by Arthur Lee Samuel (Samuel, 1967). See Fig. 3.2.

Arthur Samuel is one of the pioneers in Artificial Intelligence (AI) which includes
machine learning as a sub-field. The AI field is the study of creating intelligence by
machines, unlike the natural intelligence displayed by intelligent beings like humans
and animals.

Supervised Learning and Optimization 187

Arthur Samuel ’59 checkers
Figure 3.2. Arthur Lee Samuel is an American pioneer in the field of artificial intelligence.

One of his prominent achievements in early days is to develop computer checkers which

later formed the basis of AlphaGo.

One of his achievements in early days is to develop a human-like computer player
for a board game, called checkers; see the right figure in Fig. 3.2. He proposed many
algorithms and ideas while developing computer checkers. Those algorithms could
form the basis of AlphaGo (Silver et al., 2016), a computer program for the board
game Go which defeated one of the 9-dan professional players, Lee Sedol, with 4
wins out of 5 games in 2016 (News, 2016).

Mission of machine learning The end-mission of machine learning is achieving
artificial intelligence (AI). So it can be viewed as one methodology for AI. In light
of the block diagram in Fig. 3.1, one can say that the goal of ML is to design an
algorithm so that the trained machine behaves like intelligent beings.

Supervised learning There are some methodologies which help us to achieve
the goal of ML. One specific yet very popular method is the one called:

Supervised learning .

What supervised learning means is learning a function f (·) (indicating a functional
of the machine) with the help of a supervisor. See Fig. 3.3.

What the supervisor means in this context is the one who provides input-output
paired samples. Obviously the input-output samples form data employed for train-
ing the machine, usually denoted by:

{(x(i), y(i))}mi=1 (3.1)

where (x(i), y(i)) indicates the ith input-output sample (or called a training sample
or an example) and m denotes the number of samples. Using this notation (3.1),
one can say that supervised learning is to:

Estimate f (·) using the training samples {(x(i), y(i))}mi=1. (3.2)

188 Machine Learning Applications

machine

Figure 3.3. Supervised learning: A methodology for designing a computer system f (·)
with the help of a supervisor which offers input-output pair samples, called a training

dataset {(x(i), y(i))}mi=1.

Optimization A common way to estimate f (·) is via optimization. This is exactly
how the optimization techniques that we learned are related to supervised learning.

In view of the goal (3.2) of supervised learning, what we want is:

y(i) ≈ f (x(i)), ∀i ∈ {1, . . . , m}.

Then, a natural question arises. How to quantify closeness between the two quan-
tities: y(i) and f (x(i))? One very common way that has been used in the field is to
employ a function, called a loss function, usually denoted by:

`(y(i), f (x(i))). (3.3)

One obvious property that the loss function `(·, ·) should have is that it should
be small when the two arguments are close, while being zero when the two are
identical. One prominent loss function that you saw earlier is: the squared error
loss, introduced by the father of optimization, Gauss: ‖y(i) − f (x(i))‖2.

Using the loss function (3.3), one can then formulate an optimization problem
as follows:

min
f (·)

m∑
i=1

`(y(i), f (x(i))). (3.4)

In fact, this is not of the conventional optimization problem structure that we
are familiar with. In (3.4), the quantity that we optimize over is the function f (·),
marked in red.

We never saw this type of optimization, called function optimization. How to
deal with such function optimization? There is one typical approach in the field.
The approach is to specify a function class (e.g., linear or quadratic), represent the
function with parameters (or called weights), denoted by w, and then consider the

Supervised Learning and Optimization 189

Frank Rosenblatt ‘57
Figure 3.4. Frank Rosenblatt (1928–1971) is an American psychologist notable as the

inventor of Perceptron. One sad story is that he died in 1971 on his 43rd birthday, in a

boating accident.

weights as an optimization variable. Taking this approach, one can translate the
problem (3.4) into:

min
w

m∑
i=1

`(y(i), fw(x(i))) (3.5)

where fw(x(i)) denotes the function f (x(i)), parameterized by w.
Now how is the optimization problem (3.5) related to convex optimization that

we have thus far learned about? To see this, we need to check whether the objective
function `(y(i), fw(x(i))) is convex in the optimization variable w. Obviously the
convexity depends on how we define the two functions: (i) fw(x(i)) w.r.t. w; and
(ii) the loss function `(·, ·). In machine learning, lots of works have been done for
the choice of the functions.

Introduction of neural networks Around at the same time when the ML field
was founded, one architecture was suggested for the first function fw(·) in the con-
text of simple binary classifiers in which y takes one among the two options only.
The architecture is called:

Perceptron,

and was invented in 1957 by one of the pioneers in the AI field, named Frank
Rosenblatt (Rosenblatt, 1958). See Fig. 3.4. Interestingly, Frank Rosenblatt was a
psychologist. So he was interested in how brains of intelligent beings work and his
study on brains led him to come up with Perceptron which is inspired by the brain
structure and therefore gave significant insights into neural networks.

How brains work Here are details on how the brain structure inspired the archi-
tecture of Perceptron. Inside a brain, there are many electrically excitable cells, called
neurons; see Fig. 3.5. Here a red-circled one indicates a neuron. So the figure shows

190 Machine Learning Applications

neuron
(voltage)

voltage

activation

Figure 3.5. Neurons are electrically excitable cells and are connected through synapses.

neuron

synapse

activation

Figure 3.6. The architecture of Perceptron.

three neurons in total. There are three major properties about neurons that led to
the architecture of Perceptron.

The first is that a neuron is an electrical quantity, so it has a voltage. The second
property is that neurons are connected with each other through mediums, called
synapses. So the main role of synapses is to deliver electrical voltage signals across
neurons. Depending on the connectivity strength level of a synapse, a voltage signal
from one neuron to another can increase or decrease. The last is that a neuron takes
a particular action, called activation. Depending on its voltage level, it generates an
all-or-nothing pulse signal. For instance, if its voltage level is above a certain thresh-
old, then it generates an impulse signal with a certain magnitude, say 1; otherwise,
it produces nothing.

Perceptron The above three properties about neurons led Frank Rosenblatt to
propose the architecture of Perceptron, as illustrated in Fig. 3.6.

Let x be an n-dimensional real-valued signal: x := [x1, x2, . . . , xn]T . Suppose
each component xi is distributed to each neuron, and let us interpret xi as a voltage
level of the ith neuron. The voltage signal xi is then delivered through a synapse
to another neuron (placed on the right in the figure, indicated by a big circle).

Supervised Learning and Optimization 191

Remember that the voltage level can increase or decrease depending on the con-
nectivity strength of a synapse. To capture this, a weight, say wi, is multiplied to
xi so wixi is a delivered voltage signal at the terminal neuron. Based on another
observation that people made on neurons that the voltage level at the terminal
neuron increases with more connected neurons, Rosenblatt introduced an adder
which simply aggregates all the voltage signals coming from many neurons, so he
modeled the voltage signal at the terminal neuron as:

w1x1 + w2x2 + · · · + wnxn = wT x. (3.6)

Lastly in an effort to mimic the activation, he modeled the output signal as

fw(x) =
{

1 if wT x > th,
0 o.w.

(3.7)

where “th” indicates a certain threshold level. It can also be simply denoted as

fw(x) = 1{wT x > th}. (3.8)

Activation functions Taking the Percentron architecture in Fig. 3.6, one can
formulate the optimization problem (3.5) as:

min
w

m∑
i=1

`
(

y(i), 1{wT x(i) > th}

)
. (3.9)

This is an initial optimization problem that people developed, inspired by Per-
ceptron. However, people immediately figured out there is an issue in solving this
optimization. The issue comes from the fact that the objective function contains an
indicator function, so it is not differentiable. Why is the non-differentiability prob-
lematic? Remember the algorithms that we learned in the past: gradient descent
and the interior point method. All of them involve derivatives operations. So the
non-differentiability of the objective function does not allow us to enjoy the algo-
rithms.

What can we do? One typical way that people have taken in the field is to approx-
imate the activation function. There are many ways for approximation. From below,
we will investigate one popular approach.

Logistic regression The popular approximation approach is to take sort of a
smooth transition from 0 to 1 for the abrupt indicator function:

fw(x) =
1

1+ e−wT x
. (3.10)

192 Machine Learning Applications

Figure 3.7. Logistic function: σ(z) = 1
1+e−z .

Notice that fw(x) ≈ 0 when wT x is very small; it then grows exponentially with an
increase in wT x; later grows logarithmically; and finally saturates as 1 when wT x
is very large. See Fig. 3.7. Actually the function (3.10) is a very popular one used
in statistics, called the logistic1 function (Garnier and Quetelet, 1838). There is
another name: the sigmoid 2 function.

There are two good things about the logistic function. First it is differentiable.
Second, it can play a role as the probability for the output in the binary classifier,
e.g., P(y = 1) where y denotes the ground-truth label in the binary classifier. So it
is very much interpretable.

For this function, people came up with a loss function, which turns out to be
optimal in some sense and expressed as:

`(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ). (3.11)

This function is called cross entropy loss (Cover, 1999) and the rationale behind
the naming will be explained later. Taking the logistic function together with cross
entropy loss, we can then formulate the problem (3.5) as:

min
w

m∑
i=1

−y(i) log
1

1+ e−wT x(i)
− (1− y(i)) log

e−wT x(i)

1+ e−wT x(i)
. (3.12)

It turns out this optimization problem is convex and provides the optimal perfor-
mance in some sense. The name of this classifier is logistic regression.

Look ahead In the next section, we will show that logistic regression is indeed a
convex classifier. We will also study in what sense logistic regression is optimal and
will prove the optimality.

1. The word logistic comes from a Greek word which means a slow growth, like a logarithmic growth.

2. Sigmoid means resembling the lower-case Greek letter sigma, S-shaped.

Logistic Regression 193

3.2 Logistic Regression

Recap In the last section, we embarked on Part III which focuses on machine
learning applications. We emphasized that the optimization techniques play a sig-
nificant role in the field. Specifically we focused on one machine learning method-
ology: supervised learning, which serves as a powerful and classical methodology in
achieving the goal of ML. Recall that the goal of supervised learning is to estimate
a function fw(·) of a machine using input-output samples: {(x(i), y(i))}mi=1 where m
denotes the number of training samples. Here w indicates a collection of parameters
which serve to implement the function fw(·). For the function fw(·), we studied one
specific yet historical architecture, inspired by brains’ neural networks: Perceptron.
It first takes a linear operation with an input, say x, to compute wT x. It then passes
it to an activation function to yield an output, say ŷ := fw(x).

Next, we formulated an optimization problem accordingly:

min
w

m∑
i=1

`(y(i), fw(x(i))) (3.13)

where `(y(i), fw(x(i))) indicates a loss function which quantifies closeness between
the ground truth label y(i) and its estimate fw(x(i)). Since the stair-shaped activation
function that Frank Rosenblatts introduced initially is not differentiable and thus
inapplicable to algorithms like gradient descent, we approximated the activation via
the logistic function fw(x) = 1

1+e−wT x
. Taking this together with a loss function,

called cross entropy loss,

`CE(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ), (3.14)

we obtained a predictor, named logistic regression. We then claimed that logistic
regression is formulated as a convex optimization problem. We also claimed that
the predictor based on cross entropy loss (3.14) yields the optimal performance in
some sense.

Outline In this section, we will prove this claim. What we are going to do are
three folded. First, we will show that logistic regression is indeed a convex predictor.
Next, we will investigate in what sense the predictor is optimal. We will then prove
the optimality. In addition, we will discuss how to solve logistic regression.

Objective function in logistic regression Taking the logistic function and
cross entropy loss (3.14), we obtain:

min
w

m∑
i=1

`CE(y(i), fw(x(i)))

194 Machine Learning Applications

= min
w

m∑
i=1

`CE

(
y(i),

1

1+ e−wT x(i)

)

= min
w

m∑
i=1

−y(i) log
1

1+ e−wT x(i)
− (1− y(i)) log

e−wT x(i)

1+ e−wT x(i)
. (3.15)

Proof of convexity Let us first prove that the optimization problem (3.15) is
indeed convex. Since convexity preserves under addition, it suffices to prove:

(i)− log
1

1+ e−wT x
is convex in w;

(ii)− log
e−wT x

1+ e−wT x
is convex in w.

Since the 2nd function can be represented as the sum of an affine function and the
1st function:

− log
e−wT x

1+ e−wT x
= wT x − log

1

1+ e−wT x
,

it suffices to prove the convexity of the 1st function.
Notice that the 1st function can be rewritten as:

− log
1

1+ e−wT x
= log(1+ e−wT x). (3.16)

Taking a derivative of the RHS formula in (3.16) w.r.t. w, we get:

∇w log(1+ e−wT x) =
−xe−wT x

1+ e−wT x
.

This is due to a chain rule of derivatives. Taking another derivative of the above,
we obtain a Hessian as follows:

∇
2
w log(1+ e−wT x) = ∇w

(
−xe−wT x

1+ e−wT x

)
(a)
=

xxT e−wT x(1+ e−wT x)− xxT e−wT xe−wT x

(1+ e−wT x)2

=
xxT e−wT x

(1+ e−wT x)2

(b)
� 0

(3.17)

Logistic Regression 195

logistic
regression

Figure 3.8. Logistic regression.

where (a) is due to the derivative rule of a quotient of two functions and (b) follows
from the fact that the eigenvalue of xxT is xT x ≥ 0 (why?). As the Hessian is PSD,
we prove the convexity.

In what sense logistic regression is optimal? Notice that the range of the
output ŷ is in between 0 and 1:

0 ≤ ŷ ≤ 1.

Hence, one can interpret this as a probability quantity. The optimality of a pre-
dictor can be defined under the following assumption inspired by the probabilistic
interpretation:

Assumption : ŷ = P(y = 1|x). (3.18)

To understand what it means in detail, consider the likelihood of the ground-
truth predictor:

P
(
{y(i)}mi=1 | {x

(i)
}
m
i=1

)
. (3.19)

Notice that the output ŷ is a function of weights w. Hence, we see that assum-
ing (3.18), the likelihood (3.19) is also a function of w.

We are now ready to define the optimal w. The optimal weight, say w∗, is defined
as the one that maximizes the likelihood (3.19):

w∗ := arg max
w
P
(
{y(i)}mi=1|{x

(i)
}
m
i=1

)
. (3.20)

Of course, there are other ways to define the optimality. Here, we employ the max-
imum likelihood principle, the most popular choice. This is exactly where the defi-
nition of the optimal loss function, say `∗(·, ·) kicks in. We say that `∗(·, ·) is defined

196 Machine Learning Applications

as the one that satisfies:

arg min
w

m∑
i=1

`∗
(

y(i), ŷ(i)
)
= arg max

w
P
(
{y(i)}mi=1|{x

(i)
}
m
i=1

)
. (3.21)

It turns out the condition (3.21) would give us the optimal loss function `∗(·, ·)
that yields a well-known classifier: logistic regression, in which the loss function
reads:

`∗(y, ŷ) = `CE(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ). (3.22)

Now let us prove (3.22).

Proof of `∗(·, ·) = `CE(·, ·) Usually samples are obtained from different data x(i)’s.
Hence, it is reasonable to assume that such samples are independent with each
other:

{(x(i), y(i))}mi=1 are independent over i. (3.23)

Under this assumption, we can rewrite the likelihood (3.19) as:

P
(
{y(i)}mi=1|{x

(i)
}
m
i=1

)
(a)
=
P
(
{(x(i), y(i))}mi=1

)
P
(
{x(i)}mi=1

)
(b)
=

∏m
i=1 P

(
x(i), y(i)

)∏m
i=1 P(x(i))

(c)
=

m∏
i=1

P
(

y(i)|x(i)
)

(3.24)

where (a) and (c) are due to the definition of conditional probability; and (b)
comes from the independence assumption (3.23). Here P(x(i), y(i)) denotes the
probability distribution of the input-output pair of the system:

P(x(i), y(i)) := P(X = x(i), Y = y(i)) (3.25)

where X and Y indicate random variables of the input and the output, respectively.
Recall the probability-interpretation-related assumption (3.18) made with

regard to ŷ:

ŷ = P(y = 1|x).

Logistic Regression 197

This implies that:

y = 1 : P(y|x) = ŷ;

y = 0 : P(y|x) = 1− ŷ.

Hence, one can represent P(y|x) as:

P(y|x) = ŷy(1− ŷ)1−y.

Now using the notations of (x(i), y(i)) and ŷ(i), we obtain:

P
(

y(i)|x(i)
)
= (ŷ(i))y

(i)
(1− ŷ(i))1−y(i) .

Plugging this into (3.24), we get:

P
(
{y(i)}mi=1|{x

(i)
}
m
i=1

)
=

m∏
i=1

P(x(i))
m∏

i=1

(ŷ(i))y
(i)
(1− ŷ(i))1−y(i) .

(3.26)

This together with (3.20) yields:

w∗ := arg max
w

m∏
i=1

(ŷ(i))y
(i)
(1− ŷ(i))1−y(i)

(a)
= arg max

w

m∑
i=1

y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

(b)
= arg min

w

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i))

(3.27)

where (a) comes from the fact that log(·) is a non-decreasing function and∏m
i=1(ŷ

(i))y
(i)
(1 − ŷ(i))1−y(i) is positive; and (b) is due to changing a sign of the

objective while replacing max with min.
Note that the term inside the summation in the last equality in (3.27) respects

the formula of cross entropy loss:

`CE(y, ŷ) := −y log ŷ − (1− y) log(1− ŷ). (3.28)

198 Machine Learning Applications

Hence, the optimal loss function that yields the maximum likelihood solution is:

`∗(·, ·) = `CE(·, ·).

Remarks on cross entropy loss (3.28) Before moving onto the next topic
about how to solve the optimization problem (3.15), let us say a few words about
why the loss function (3.28) is called cross entropy loss. This naming comes from
the definition of cross entropy, which is a measure used in the field of information
theory. The cross entropy is defined w.r.t. two random variables. For simplicity, let
us consider two binary random variables, say X ∼ Bern(p) and Y ∼ Bern(q)
where X ∼ Bern(p) indicates a binary random variable with p = P(X = 1). For
such two random variables, the cross entropy is defined as (Cover, 1999):

H(p, q) := −p log q − (1− p) log(1− q). (3.29)

Notice that the formula of (3.28) is exactly the same as the term inside summation
in (3.27), except for having different notations. Hence, it is called cross entropy loss.

Here you may wonder why H(p, q) in (3.29) is called cross entropy. The rationale
comes from the following fact:

H(p, q) ≥ H(p) := −p log p− (1− p) log(1− p) (3.30)

where H(p) is a very-well known quantity in information theory, named entropy or
Shannon entropy (Shannon, 2001). One can actually prove the inequality in (3.30)
using Jensen’s inequality. Also one can verify that the equality holds when p = q.
We will not prove this here. But you will have a chance to check this in Prob 8.3(b).
So from this, one can interpret H(p, q) as an entropic-measure of discrepancy across
distributions. Hence, it is called cross entropy.

How to solve logistic regression (3.15)? Let J (w) be the objective function
normalized by the number m of samples:

J (w) :=
1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)). (3.31)

Remember in the beginning of this section that we proved the convexity of the
objective function. Also the optimization problem (3.15) is unconstrained. Hence,
we can use gradient descent to find the optimal solution. Specifically one can take
the following update rule:

w(t+1)
← w(t) − α(t)∇J (w(t))

Logistic Regression 199

where w(t) denotes the estimate of weights at the tth iteration, and α(t) indicates
the learning rate. The gradient of the normalized objective function can be com-
puted as:

∇J (w) =
1

m

m∑
i=1

−y(i)
∇ ŷ(i)

ŷ(i)
+ (1− y(i))

∇ ŷ(i)

1− ŷ(i)
. (3.32)

Here the gradient of y(i) (marked in red) can be expressed as:

∇ ŷ(i) =
x(i)e−wT x(i)

(1+ e−wT x(i))2
= x(i)ŷ(i)(1− ŷ(i))

Plugging this to (3.32), we get:

∇J (w) =
1

m

m∑
i=1

x(i)
{
−y(i)(1− ŷ(i))+ (1− y(i))ŷ(i)

}

=
1

m

m∑
i=1

x(i)
{

ŷ(i) − y(i)
}

.

Notice that ∇J (w) is simple to calculate.

AI boomed in the 1960s but … As we verified above, logistic regression is the
best binary classifier in a sense of maximizing the likelihood of training data, assum-
ing that the overall architecture is based on Perceptron. But as you can see, the Per-
ceptron architecture is somewhat restricted. So you may guess that the performance
of logistic regression based on the restricted architecture may not be that good in
many applications. It turns out this is the case. Actually it was already verified in
1969 by two pioneers in the AI field, named Marvin Minsky and Seymour Papert;
see Fig. 3.9 for their portraits.

Marvin Minsky Seymour Papert ‘69
Figure 3.9. Two AI pioneers, Minsky & Papert, demonstrated limitations of the architec-

ture of Perceptron in a book titled “Perceptrons”. Unfortunately, this led to a very long

depression period in the AI field, called the AI winter.

200 Machine Learning Applications

Alex Krizhevsky Geoffrey HintonIlya Sutskever

Figure 3.10. A giant in the AI field, Geoffrey Hinton, together with his PhD students,

Alex Krizhevsky and Ilya Sutskever, developed a deep neural network, named AlexNet,

intended for image classification (Krizhevsky et al., 2012). AlexNet achieved almost

human-level recognition performances, which were never attained earlier. This won them

the ImageNet competition in 2012. More importantly, this recognition anchored the start

of deep learning revolution.

They published a book, titled “Perceptrons” (Minsky and Papert, 1969), where
they demonstrated that the Perceptron architecture cannot implement even very
simple functions, like XOR. Their results made many people at that time disap-
pointed. This finally led to a very long depression period of the AI field, called the
AI winter.

AI revived in 2012 The AI winter had continued until recently. However, a
big event happened in 2012, enabling the AI field to revive. The big event was
the winning of ImageNet recognition competition by the following three people:
Geoffrey Hinton (a very well-known figure in the AI field, known as the Godfather
of deep learning) and his two PhD students (Alex Krizhevsky and Ilya Sutskever);
see Fig. 3.10.

They built a Perceptron-like neural network but which consists of many layers,
called a deep neural network (DNN) (Krizhevsky et al., 2012). They then showed
that their DNN, which they named AlexNet, could achieve almost human-level
recognition performances, which were astonishing at the time. This enabled deep
learning revolution in the AI field.

Look ahead For a couple of next sections, we will investigate deep neural net-
works (DNNs) and the role of optimization in that context. Specifically we will
cover the following four stuffs. First we will study the architecture of DNNs. We
will then formulate a corresponding optimization problem. Next, we will explore
an efficient way of solving the problem. We will also discuss why DNNs offer
great performances yet in a brief manner. Lastly, we will investigate how to imple-
ment DNNs using one of the most popular deep learning software frameworks,
TensorFlow.

Deep Learning I 201

3.3 Deep Learning I

Recap During the past two sections, we have studied one of application topics
of optimization: supervised learning. The goal of supervised learning is to learn a
function of a machine using training samples. We considered a specific yet brain-
inspired architecture for the function structure: Perceptron; see Fig. 3.11. Taking the
logistic function together with cross entropy loss, we obtained logistic regression.
We then proved that logistic regression is optimal in a sense of maximizing the
likelihood of training samples.

At the end of the last section, we mentioned briefly about how the AI field has
evolved with research on neural networks. While one of the first neural networks,
Perceptron, enabled the AI revolution in the 1960s, the boom ended shortly after
publication of a book by Minsky & Papert, titled “Perceptrons”. The book criticized
limitations of the Perceptron architecture, and this freezed the passion of many
people working on the AI field, thus leading to the AI winter.

The AI field boomed again in 2012 by Hinton & his group members. They
developed a neural network (which they called AlexNet) that demonstrated human-
level performances of image recognition, thus making people excited about the field
again. AlexNet is based on a deep neural network architecture (DNN for short).

Outline In this section, we are going to start investigating deep neural networks
(DNNs). Specifically we will cover the following four stuffs. First, we will study
what DNNs mean and the network architecture. We will then investigate how
DNNs were proposed, i.e., who the inventor was, as well as, what the motivation
was. Next, we will discuss why DNNs were recently appreciated, in other words,
why they were not appreciated during the AI winter. Finally we will formulate a

activ.

input layer output layer

no layer btw input/output layers

Figure 3.11. Input and output layers in Perceptron.

202 Machine Learning Applications

corresponding optimization problem to start talking about connection to optimiza-
tion of this book’s focus.

Terminologies Recall the Perceptron architecture in Fig. 3.11. Before defining
the deep neural network (DNN), we need to introduce a couple of terminologies.
The first is the input layer. We say that a collection of neurons which take input x
is the input layer. Similarly, the output layer is defined as a collection of the output
neuron(s). A shallow neural network is defined as a network which consists of only
input and output layers, i.e., there is no intermediate layer between the two, like
Perceptron in Fig. 3.11.

Definition of deep neural networks (DNNs) We say that a neural network is
deep if it has at least one intermediate layer between input and output layers. Such
in-between-placed layer is called a hidden layer. So a deep neural network is defined
as a network which contains hidden layer(s).

Two-layer DNN architecture Here are details on how the DNN looks like. For
illustrative purpose, let us explain the architecture with a simple setting in which
there is only one hidden layer, named a 2-layer neural network in the field3; also
see Fig. 3.12.

input layer

activ.

output layerhidden layer

Figure 3.12. The operation at a neuron in a hidden layer is exactly the same as that in

Perceptron.

3. Someone may argue that this is a 3-layer neural network as it has input/hidden/output layers. But the con-
vention in the deep learning field, adopted by many of the pioneers in the field, is that the number of layers
is counted as the total number of layers minus 1. The reason is that the input layer is not counted in com-
puting the total number, as it does not have an activation function. Personally this way of defining a network
is confusing. Nonetheless, we will adopt this convention as it has already been so widely used.

Deep Learning I 203

Let us consider an operation at the first neuron in the hidden layer. The operation
is exactly the same as the operation that we saw earlier in Perceptron. First it takes
a linear combination to yield:

z[1]
1 := w[1]

11 x1 + w[1]
12 x2 + · · · + w[1]

1n xn (3.33)

where w[1]
1j indicates a weight associated with xj and the 1st neuron in the (1st)

hidden layer. Here the upper-script (·)[1] denotes the index of hidden layers. In
general, a bias term, say b[1]

1 , can be added into (3.33). But for illustrative simplicity,
we will drop all the bias terms throughout. Next the linear combination is passed
onto an activation function, so we get:

a[1]
1 := σ [1](z[1]

1) (3.34)

where σ [1](·) indicates an activation function employed in the 1st hidden layer.
Usually we are allowed to use different activation functions across different layers,
while the same activation function applies within the same layer by convention.
Applying the same operation to the other neurons in the hidden layer, we obtain a
picture like the one in Fig. 3.13.

For notational simplicity, we introduce a matrix, say W [1], which aggregates all
the weight components associated with the input layer and the hidden layer:

W [1] :=

w[1]

11 w[1]
12 · · · w[1]

1n

w[1]
21 w[1]

22 · · · w[1]
2n

...
...

. . .
...

w[1]
n[1]1

w[1]
n[1]2

· · · w[1]
n[1]n

 ∈ Rn[1]
×n (3.35)

input layer output layerhidden layer

Figure 3.13. The architecture of a hidden layer in a 2-layer DNN.

204 Machine Learning Applications

input layer output layerhidden layer

Figure 3.14. The architecture of a 2-layer DNN.

where n[1] denotes the number of neurons in the (1st) hidden layer. Using this
matrix notation, we can then represent the output of the hidden layer as:

a[1]
= σ [1]

(
W [1]x

)
∈ Rn[1]

(3.36)

where σ [1](·) indicates a component-wise function.
Applying the same operation into the one between the hidden and output layers,

we obtain a picture like the one in Fig. 3.14. Using another matrix notation, say

W [2]
∈ R1×n[1]

, we can represent the output in the output layer as:

ŷ = σ [2]
(

W [2]a[1]
)
∈ R (3.37)

where σ [2] indicates an activation function at the output layer, which can possibly
be different from σ [1](·), as mentioned earlier.

General DNN architecture In general, an (L + 1)-layer DNN (an L-hidden-
layer DNN) can be expressed as:

a[1]
= σ [1]

(
W [1]x

)
∈ Rn[1]

,

a[2]
= σ [2]

(
W [2]a[1]

)
∈ Rn[2]

,

...

a[L]
= σ [L]

(
W [L]a[L−1]

)
∈ Rn[L]

,

ŷ = σ [L+1]
(

W [L+1]a[L]
)
∈ R

(3.38)

Deep Learning I 205

where a[i]
∈ Rn[i]

indicates the output of the ith hidden layer; σ [i](·) denotes the

component-wise activation function at the ith hidden layer; and W [i]
∈ Rn[i]

×n[i−1]

denotes the weight matrix associated with the ith hidden layer and (i − 1)th hid-
den layer. For notational consistency, one can define the 0th hidden layer as the
input layer; (L + 1)th hidden layer as the output layer, and hence, n[0] := n and
n[L+1] := 1.

How DNNs were proposed We explain how the DNN expressed in (3.38) was
developed. The first DNN was proposed in 1965 by an Ukrainian mathematician,
named Alexey Ivakhnenko (Ivakhnenko, 1971); see the first left picture in Fig. 3.16.
He noticed that the Perceptron architecture is too simple to represent a somewhat
complex system. So he believed that a proper architecture should incorporate much
more neurons as well as capture much higher connectivities across neurons. Obvi-
ously the most complex structure is the one in which each neuron is connected
with all of the other neurons. But it was not that clear to him as to whether such
complex structure is indeed the case in biological networks for brains of intelligent
beings.

He was trying to gain some insights into this from another field: evolution in
biology. In particular, he was inspired by genetic natural selection in evolution. What
he was inspired is that a complex species is a consequence of evolution through many
generations by natural genetic selection. He then made an analogy between such evo-
lution process and the process of a complex system (machine) of interest. Specifi-
cally he came up with operations/entities in a complex system which correspond to
species, generation and selection that appear in the evolution process. See Fig. 3.15.

species

activation = selection

another generation
generation

Figure 3.15. Analogy between the evolution process (by genetic natural selection in biol-

ogy) and the process of a complex system (machine).

206 Machine Learning Applications

First of all, the species was mapped to the output ŷ in an interested system. The
generation was interpreted as the process that occurs in between two consecutive
layers in the system. So the process with two generations yields a 2-layer neural
network. Lastly the selection was captured by the activation process in the system.
These analogies naturally led to the DNN architecture illustrated in Fig. 3.15.

Some pioneering efforts on DNNs Initially, the DNN architecture in
Fig. 3.15 was investigated in depth by only a few people in the field. One of the rea-
sons was that there was no theoretical basis which supports that the architecture can
represent any arbitrary complex functional of a system. The architecture was based
solely on the hypothesis. There was no proof. Even worse, it was not that simple to
do experimental verification because the technology of the day was so immature that
the time required to train a DNN was very long from days to weeks. Nonetheless,
there were some people who studied this architecture in depth. Here we list three
of them below.

The first is obviously the inventor of the DNN architecture: Alexey Ivakhnenko.
One of his great achievements in this field was to propose a 7-hidden-layer DNN
in 1971. The second pioneer is a Japanese computer scientist, named Kunihiko
Fukushima; see the middle picture in Fig. 3.16. He developed a specially-structured
DNN intended for pattern recognition in computer vision in 1980 (Fukushima,
1980). That was actually the first convolutional neural network (CNN), which is
now known as the most famous and widely-used DNN in the computer vision
field. The third pioneer is a French computer scientist, which is now very famous
in the deep learning field and also a winner of the 2018 Turing Award (considered
as the Nobel Prize in computer science). In 1989, he trained a CNN for the purpose
of recognizing handwritten ZIP codes on mails (LeCun et al., 1989). This devel-
opment played a role to vitalize the deep learning field because the trained CNN
worked very well and so was commercialized. Nonetheless, it was not enough to
enable the deep learning revolution. One of the reasons was that the training time
required 3 days with the technology of the day.

Alexey
Ivakhnenko

Kunihiko
Fukushima Yann LeCun

Figure 3.16. Three deep learning pioneers in early days.

Deep Learning I 207

Not appreciated much in early days There were more critical reasons as to
why the DNN architecture was not appreciated much at that time. These are two
folded. The first reason is concerning performances. The DNN-based algorithms at
the time were easily outperformed by much simpler approaches. One of the simpler
approaches was Support Vector Machines (SVMs), which is sort of a variant of the
margin-based LP classifier that we learned in Part I. Remember that the margin-
based LP classifier is very simple and runs very fast. On the other hand, the DNN
architecture was relatively much more complex, yet even worse, the performance
was not better. The second reason is about model complexity. The DNN model was
so complex considering the technology of the day, so it required very long training
time, from days to weeks.

Why appreciated nowadays? But as many of you know, the DNN is greatly
appreciated nowadays. Why is that? As mentioned earlier, this is mainly due to
the recent big event by Hinton4 and his PhD students who demonstrated that
DNNs can achieve human-level recognition performances. Then, how that hap-
pened? There are two technology breakthroughs that enabled the deep learning
revolution; see Fig. 3.17.

The first breakthrough is the advent of big data. Nowadays we are living in the big
data era. There are tons of data that are floating in the cyber-world. So it is possible
to gather lots of training data. One such huge dataset gathered for the purpose of
image cognition was ImageNet (Russakovsky et al., 2015). The dataset was created
in 2009 by a computer-vision team at Stanford, led by Professor Fei-Fei Li. It turned
out this dataset played a crucial role for Hinton’s team to demonstrate the power of
DNN by offering a sufficiently large number of training samples enough to learn
a complex model.

Figure 3.17. Two technology breakthroughs that enabled the deep learning revolution.

4. Geoffrey Hinton is also a co-winner of the 2018 Turing Award with Yann LeCun and another giant in the
field, named Yoshua Bengio.

208 Machine Learning Applications

The second breakthrough is the supply of very fast and not-so-expensive
Graphic Processing Units (GPUs). The major company that provided such GPUs
is NVIDIA. GPUs offered great computational power to reduce training time of
DNNs significantly.

An optimization problem Now let us connect the DNN architecture to opti-
mization of this book’s interest. For illustrative purpose, let us formulate an opti-
mization problem for the simple two-layer DNN in Fig. 3.14. The optimization
problem based on the DNN reads:

min
w

m∑
i=1

1

m
`(y(i), ŷ(i)) (3.39)

where:

ŷ(i) = σ [2]
(

W [2]a[1],(i)
)

,

a[1],(i)
= σ [1]

(
W [1]x(i)

)
,

w = (W [1], W [2]).

Optimal loss function Suppose we use the logistic function for

σ [2](z) = σ(z) :=
1

1+ e−z .

Then, using exactly the same argument that we made in Section 3.2, one can show
that the optimal loss is cross entropy loss:

`∗(y, ŷ) = `CE(y, ŷ) = −y log y − (1− y) log(1− ŷ). (3.40)

Is it convex? Pugging cross entropy loss into (3.39), we obtain:

arg min
w

1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (3.41)

where ŷ(i) = σ
(
W [2]a[1],(i)

)
. Now a natural question arises. How to solve the

problem? We are familiar with solving only convex optimization problems. So the
question of our interest is: Is the objective function convex? Obviously it depends
on how to choose an activation function in the hidden layer: σ [1](·).

Deep Learning I 209

Look ahead There is a very well-known and powerful activation function for
σ [1](·). Unfortunately, under the choice of the function, the optimization prob-
lem (3.41) was shown to be non-convex. But there is a good news. That is, we have
a way to handle such a non-convex problem. In the next section, we will study
details on the way.

210 Machine Learning Applications

3.4 Deep Learning II

Recap In the previous section, we learned about the architecture of DNNs which
have been shown to be quite powerful in recent years. We also discussed a brief his-
tory of DNNs; who the inventor was; what the motivation was; why they were not
appreciated until recently; and what led to the deep learning revolution. We then
formulated an optimization problem for DNNs to start talking about connection
to optimization topics of this book’s interest. Here is the optimization problem
intended for a 2-layer DNN:

arg min
w=(W [1],W [2])

1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (3.42)

where

ŷ(i) = σ
(

W [2]a[1],(i)
)

; a[1],(i)
= σ [1]

(
W [1]x(i)

)
.

Here σ(·) indicates the component-wise logistic function defined as:

σ(z) :=
1

1+ e−z . (3.43)

On the other hand, σ [1](·) denotes a possibly-different activation function used at
the hidden layer.

At the end of the last section, we claimed that for a widely-used σ [1](·), the
objective function in (3.42) is non-convex, which is intractable in general. We also
claimed that there is a proper way to address such a non-convex optimization prob-
lem.

Outline In this section, we are going to support these claims. Specifically what
we are going to do are four folded. First of all, we will study what the widely-used
activation function is. We will then check that the objective function is not convex.
Next we will investigate what the proper way is. Finally we will discuss how to solve
the optimization problem in detail.

Widely-used activation function Consider an operation that occurs at one
neuron in the hidden layer; see Fig. 3.18. As mentioned earlier, the DNN archi-
tecture takes the Perception architecture as the basic operation unit. So the basic
operation consists of two procedures. First we perform a linear operation by aggre-
gating weighted signals coming from neurons in the preceding layer, thus yielding
an output, say z. The output z is then passed onto an activation function, so we
get an output, say a.

Deep Learning II 211

ReLU

Figure 3.18. Rectified Linear Unit (ReLU).

The activation function which has been widely used during recent years is a
function named the Rectified Linear Unit, simply called ReLU. The functional is
very simple; it simply bypasses the input if it is non-negative; yields 0 otherwise:

a =
{

z, if z ≥ 0;
0, if z < 0.

(3.44)

So it can be represented as:

a = max(0, z). (3.45)

A brief history of ReLU In fact, the ReLU function was introduced in very early
days in a variety of fields, not limited to the deep learning field. It appeared even in
Fukushima’s 1980 paper on convolutional neural networks (CNNs) (Fukushima,
1980).

But the function was not frequently used in DNNs until recently. Instead
more interpretable activation functions like the logistic function were widely used.
Another popular activation function was a shifted version of the logistic function,
called the tanh function:

tanh(z) :=
ez
− e−z

ez + e−z

=
1

1+ e−2z −
e−2z

1+ e−2z

= σ(2z)− (1− σ(2z))

= 2σ(2z)− 1.

(3.46)

Note that tanh(z) = 2σ(2z)−1, so the range of the function is shifted from (0, 1)
to (−1, 1).

A common rule of thumb that had been applied in the deep learning field until
recently was to use the logistic function only at the output layer while taking the

212 Machine Learning Applications

Yoshua Bengio Seppo Linnainmaa

Figure 3.19. Yoshua Bengio (left) is one of the giants in the deep learning field, and also

a co-recipient of the 2018 Turing Award. One of his main achievements is to demonstrate

the power of ReLU activation function, thus popularizing the use of the function in the

deep learning society. Seppo Linnainmaa (right) is the inventor of backpropagation which

serves as an efficient way of computing gradients in DNNs.

tanh function at all of the other neurons placed in hidden layers. Many empirical
results have demonstrated that the rule of thumb always yields a better or equal
performance, as compared to the other alternative which takes the logistic func-
tion at all places. There is no theoretical justification on this. But it looks more or
less making-sense. The reason is that taking the tanh function at hidden neurons
broadens the output range, thus yielding a more degree of freedom relative to the
one by the logistic function.

ReLU became prevalent since 2011 A recent big wave arose in the domain
of activation functions. In 2011, one of the deep learning heroes, named Yoshua
Bengio (see the left picture in Fig. 3.19), together with his group members, Xavier
Glorot (PhD student) and Antoine Bordes (postdoc), demonstrated via extensive
simulation results that ReLU enables faster and more effective training of DNNs,
compared to the logistic and/or tanh functions (Glorot et al., 2011). This also was
empirically confirmed by numerous practitioners on many datasets. Hence, ReLU

now acts as a default activation function in hidden layers.
They also provided some intuitions as to why that is the case. One intuition

is that ReLU better mimicks how brains of intelligent beings work. A report by
neuroscientists says that only a few percentages of the neurons in human brains are
activated even during active brain activities. This is somewhat consistent with a
consequence of taking ReLU, as that way leads many of the neurons to be simply
set to 0 when their values take negative.

Another explanation concerns a technical operation, being tailored for a par-
ticular yet popular learning algorithm. One of the popular training algorithms
employed in the field is based on computation of gradients of the objective function
w.r.t. weights (optimization variables). Dynamics of gradients for the logistic or

Deep Learning II 213

tanh functions are somewhat limited. They are close to 0 for a large or small value
of z. Why? Think about the shape of the function. It takes somewhat a meaningful
gradient only when z is in a narrow range. On the other hand, the gradient of ReLU

does not vanish even when z is very large. Notice that the gradient of ReLU reads:

dReLU(z)
dz

=

1, if z > 0;
0, if z < 0;
undefined, if z = 0.

(3.47)

Note that the gradient takes 1 even when z is very large. So they believed that this
non-vanishing gradient effect yields a better training.

Remark on ReLU As you may see from (3.47), there is an issue in computing the
gradient of ReLU. The issue is that the function is not differentiable. The gradient is
undefined at z = 0. But this is not a big deal in practice. In reality, the event z = 0
rarely happens. Actually the exactly-zero-event never happened. It has a measure-
zero-event. So there is no problem to use in practice, although it is mathematically
problematic.

Convex vs. non-convex? Let us go back to the optimization problem. When
taking the ReLU activation function, we obtain:

arg min
w=(W [1],W [2])

1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (3.48)

where

ŷ(i) = σ
(

W [2] max(0, W [1]x(i))
)

.

The question of this book’s interest is: Is the objective function convex? As claimed
earlier, the answer is no. The objective function is non-convex in general. The proof
of this is a bit involved, as it may include a complicated Hessian calculation. So this
may distract us from the main stream of the contents of this section. So we omit
the proof here. But you will have a chance to prove this in Prob 8.5 for a simple
setting, illustrated in Fig. 3.20.

Figure 3.20. A simple 2-layer DNN in which an associated objective function is non-

convex.

214 Machine Learning Applications

non-convex

Figure 3.21. Shape of the objective function of the simple 2-layer DNN in Fig. 3.20.

If you are not interested in the proof, you may want to be convinced about non-
convexity from the following numerical plot in Fig. 3.21. Notice in the figure that
the objective function in this simple setting is indeed non-convex.

A way to handle such a non-convex problem As mentioned earlier, there
is a proper way to handle such a non-convex optimization problem. The way is
inspired by the observation made by numerous practitioners working on the field.
Many experimental results by them revealed that in most cases:

Any local minimum is the global minimum. (3.49)

What this means is that in many of the practical settings, there is no spurious
local minimum. As you may conjecture, this is not a mathematically correct state-
ment. Actually this was proven to be mathematically wrong, meaning that there are
counter-examples in which there are spurious local minima. But it was also empir-
ically shown that those counter-examples rarely happen in many of the working
DNNs. In fact, we are still very much lacking in our understanding on this. In
other words, currently we have no idea what is the necessary/sufficient condition
for (3.49) to hold.

Nonetheless, in many realistic scenarios, (3.49) was observed. So many people
believe that in most interested cases, the landscape of the objective function for an
DNN-based optimization problem looks like the one in Fig. 3.22.

Note in Fig. 3.22 that there is no spurious local minimum. We have only
the global minimum or saddle points.5 This observation made through many

5. A saddle point is defined as a point in which its derivative is zero while having neither a maximum nor a
minimum value.

Deep Learning II 215

saddle

global
Figure 3.22. Landscape of the objective function in DNN optimization.

experimental results suggested a good guideline in practice. That is, simply to find
any minimum and then take it as a solution, no matter what the type of an opti-
mization problem is. The question of interest is then: How to find a minimum?
One very popular way is to apply gradient descent which we are familiar with. Of
course, the gradient descent algorithm may lead us to get stuck in some saddle
point which we do not want to arrive at. But the good news in practice is that it is
extremely rare to get stuck in a saddle point when there are minima. Actually it is
even difficult to arrive at a saddle point even if we wish to do so. Hence, a general
rule of thumb is to simply apply gradient descent no matter what.

Gradient descent What is the gradient descent algorithm in the interested opti-
mization problem below?

arg min
w=(W [1],W [2])

1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i))︸ ︷︷ ︸
=:J (w)

. (3.50)

Here ŷ(i) = σ
(
W [2] max(0, W [1]x(i))

)
.

The algorithm is to iterate the following procedure: for the tth iteration, the new
(t + 1)th estimate for weights takes:

w(t+1)
← w(t) − α(t)∇wJ (w(t))

where α(t) indicates the learning rate. Since w is a collection of (W [1], W [2]), the
detailed procedure is:

W [2],(t+1)
← W [2],(t)

− α(t)∇W [2]J (w(t));

W [1],(t+1)
← W [1],(t)

− α(t)∇W [1]J (w(t)).

216 Machine Learning Applications

As you can see here, there are multiple weight update procedures – in this case,
two procedures. Actually these multiple procedures yielded a critical concern in
early days of the DNN research. The reason is that it requires computationally
heavy calculations. Especially when an DNN has many layers, it raises a critical
computational concern. So some people tried to address this problem in early days
to come up with an efficient way of computing such many gradients, called:

Backpropagation.

Backpropagation The same backpropagation method was independently devel-
oped by a bunch of research groups including Hinton’s development in 1986
together with his colleagues, David Rumelhart & Ronald Williams (Rumelhart
et al., 1986). But the first invention was earlier. It was around when the book of
Perceptrons was published – that was 1970. In 1970, a Finnish mathematician (as
well as a computer scientist), named Seppo Linnainmaa (see the right picture in
Fig. 3.19), invented the method (Linnainmaa, 1970).

The idea is very natural although it involves some complicatedly-looking math
equations. Perhaps this may be one of the reasons that there were several indepen-
dent yet same inventions. The idea is to:

Successively compute gradients in a backward manner

by using a chain rule for derivatives.

For illustrative purpose, let us first explain how it works for a simple single-example
setting (m = 1). We will then extend it to the general case.

Backpropagation in action: m = 1 The illustration of the method can be
streamlined with the help of some picture which visualizes paths of signals. One
such path is the forward path; see the top row in Fig. 3.23. The input signal x
passes through the hidden layer to yield z[1] and then a[1]. Similarly we get z[2] and
then ŷ := a[2].

Figure 3.23. Illustration of backpropagation: m = 1.

Deep Learning II 217

The backpropagation starts from backward. Consider the gradient of the objective
function J (w) w.r.t. the last output signal ŷ: dJ (w)

d ŷ . To ease illustration, we will use

the notation of d
d ŷ instead of ∇ŷ. The reason is that backpropagation is based on

the chain rule for derivatives, so the notation d
d ŷ helps us to better understand how

it works, relative to ∇ŷ. Since J (w) is simply cross entropy loss for m = 1, the
gradient reads:

dJ (w)
d ŷ
= −

y
ŷ
+

1− y
1− ŷ

. (3.51)

One can easily compute this, since y is given in the problem and ŷ is available once
we compute the forward path.

Next, we consider the gradient of J (w) w.r.t. the second last signal z[2]: dJ (w)
dz[2] .

This is where the idea of the chain rule kicks in. Using the chain rule, we get:

dJ (w)

dz[2]
=

dJ (w)
d ŷ

d ŷ

dz[2]

(a)
=

(
−

y
ŷ
+

1− y
1− ŷ

)
ŷ(1− ŷ)

= ŷ − y

(3.52)

where (a) follows from (3.51) (already computed earlier) as well as the fact that the
gradient of the logistic function can simply be expressed as:

dσ(z)
dz
=

d
dz

(
1

1+ e−z

)
=

e−z

(1+ e−z)2

=
1

1+ e−z ·
e−z

1+ e−z

= σ(z)(1− σ(z)).

(3.53)

From (3.52), we can compute one of the interested gradients: dJ (w)
dW [2] . Again using

the chain rule, we get:

dJ (w)

dW [2]
=

dJ (w)

dz[2]

dz[2]

dW [2]

(a)
=

dJ (w)

dz[2]
a[1]T

(3.54)

where (a) comes from z[2]
= W [2]a[1] (why taking a transpose to get a[1]T ?).

Notice that this can be computed from dJ (w)
dz[2] (already computed from (3.52)) and

218 Machine Learning Applications

the knowledge of a[1]. To indicate how it can be computed, we draw red-lined flows
in Fig. 3.23.

Now you may grab the idea of how backpropagation works. We compute gra-
dients w.r.t. from the last output signal (ŷ) to the inner signals (z[2], W [2]), all the
way back to (z[1], W [1]). For those who did not get this yet, let us repeat.

We next consider the gradient of J (w)w.r.t. the third last signal a[1]: dJ (w)
da[1] . Again

using the chain rule, we obtain:

dJ (w)

da[1]
=

dJ (w)

dz[2]

dz[2]

da[1]

(a)
= W [2]T dJ (w)

dz[2]

(3.55)

where (a) is due to z[2]
= W [2]a[1]. Here you may be very confused about how

the last equality comes up. Why do we take a transpose for W [2]? Why do we first
have W [2]T , followed by dJ (w)

dz[2] ? Why not the other way around? There is a rule of
thumb for this computation. First of all, you need to check what the dimension of
the final result is. In this case, the final result is dJ (w)

da[1] . The dimension should be

exactly the same as that of a[1], so dJ (w)
da[1] ∈ Rn[1]

. Next think about the dimension of
dJ (w)
dz[2] . It should be dJ (w)

dz[2] ∈ Rn[2]
. Why? This suggests that dJ (w)

dz[2] should come after

W [2]T . Otherwise, dimensions do not match – a syntax error occurs. Now why are
we taking a transpose for W [2]? Again this is due to dimension matching. With the
transpose, we can make sure that the dimension of the end result is n[1]

× 1, which
is what we want.

Again the key observation in (3.55) is that dJ (w)
da[1] can be computed from dJ (w)

dz[2]

(which we already obtained from (3.52)) and the knowledge of W [2]. See the
knowledge path marked with red lines in Fig. 3.23.

We can next do the same thing for dJ (w)
dz[1] and dJ (w)

dW [1] . Using the chain rule, we get:

dJ (w)

dz[1]
=

dJ (w)

da[1]

da[1]

dz[1]

(a)
=

dJ (w)

da[1]
.∗1{z[1]

≥ 0}

(3.56)

where (a) follows from (3.47): dReLU(z)
dz = 1{z ≥ 0}. Actually this is not quite

correct mathematically, since the ReLU function is not differentiable at z = 0. But
since it is okay to ignore the rare event in practice, we simply assume that the gradi-
ent is 1 at z = 0. Here the symbol .∗ indicates the component-wise multiplication
(MATLAB notation), not the normal multiplication. You can also easily think that

Deep Learning II 219

it should be the component-wise multiplication, since otherwise dimensions do not
match. Next we get:

dJ (w)

dW [1]
=

dJ (w)

dz[1]

dz[1]

dW [1]

(a)
=

dJ (w)

dz[1]
xT

(3.57)

where (a) is due to z[1]
= W [1]x.

Here is a summary of all the important gradients that we derived in a backward
manner:

dJ (w)

dz[2]
= ŷ − y; (3.58)

dJ (w)

dW [2]
=

dJ (w)

dz[2]
a[1]T ; (3.59)

dJ (w)

da[1]
= W [2]T dJ (w)

dz[2]
; (3.60)

dJ (w)

dz[1]
=

dJ (w)

da[1]
.∗1{z[1]

≥ 0}; (3.61)

dJ (w)

dW [1]
=

dJ (w)

dz[1]
xT . (3.62)

To run the gradient descent algorithm, what we need to use are (3.59) and (3.62).
But the other gradients are still important because they serve as bridges to compute
the interested gradients ((3.59) and (3.62)) in the end.

Backpropagation for general m What about for the general m case? The idea
is exactly the same. The only distinction is that we need to incorporate all the
examples in computing gradients. It turns out matrix notations help us to derive
such generalized gradients. Let

Y :=
[
y(1) y(2) · · · y(m)

]
∈ R1×m;

Ŷ :=
[
ŷ(1) ŷ(2) · · · ŷ(m)

]
∈ R1×m;

A[1] :=
[
a[1],(1) a[1],(2)

· · · a[1],(m)
]
∈ Rn[1]

×m;

Z [1] :=
[
z[1],(1) z[1],(2)

· · · z[1],(m)
]
∈ Rn[1]

×m;

Z [2] :=
[
z[2],(1) z[2],(2)

· · · z[2],(m)
]
∈ Rn[2]

×m;

X :=
[
x(1) x(2) · · · x(m)

]
∈ Rn×m.

(3.63)

220 Machine Learning Applications

Using these matrix notations, one can readily show that the important correspond-
ing gradients for the general m case read:

dJ (w)

dZ [2]
= Ŷ − Y ; (3.64)

dJ (w)

dW [2]
=

dJ (w)

dZ [2]
A[1]T ; (3.65)

dJ (w)

dA[1]
= W [2]T dJ (w)

dZ [2]
; (3.66)

dJ (w)

dA[1]
=

dJ (w)

dA[1]
.∗1{Z [1]

≥ 0}; (3.67)

dJ (w)

dW [1]
=

dJ (w)

dZ [1]
X T . (3.68)

Note that these are exactly the same as those in the m = 1 case except one thing.
That is, we have now all the capital letters.

Look ahead So far we have formulated an DNN-based optimization problem
for supervised learning, and found that cross entropy serves as a key component in
the design of the optimal loss function. We also learned how to solve the problem
via a famous and efficient method, called backpropagation. There would be pro-
gramming implementation of the algorithm. In the next section, we will study such
implementation details in the context of a simple classifier via TensorFlow.

Deep Learning: TensorFlow Implementation 221

3.5 Deep Learning: TensorFlow Implementation

Recap We have thus far formulated an DNN-based optimization problem in the
context of supervised learning:

min
w

m∑
i=1

`CE

(
y(i), ŷ(i)

)
(3.69)

where y(i) denotes the label of the ith example; ŷ indicates the predictor output of
the DNN (often the output of the logistic function); and `CE(y, ŷ) = −y log ŷ −
(1 − y) log(1 − ŷ). We proved that cross entropy loss `CE(·, ·) is the optimal loss
function in a sense of maximizing the likelihood. We have also learned that in many
of the interested settings, optimization problems for DNNs have no spurious local
minima, although the problems are highly non-convex. This motivated the use of
gradient descent for such problems. Lastly we studied an efficient way of computing
gradients: backpropagation, or simply called backprop.

Outline In this section, we will study how to implement the algorithm via a soft-
ware tool in the context of a simple classifier. We will first investigate what that
simple classifier setting of our focus is. We will then study four implementation
details w.r.t. the classifier: (i) dataset that we will use for training and testing; (ii)
an DNN model & ReLU activation; (iii) Softmax: a natural extension of a logistic
activation for multiple (more than two) classes; and (iv) Adam: an advanced version
of gradient descent that is widely used in practice (Kingma and Ba, 2014). Lastly
we will learn how to do programming for the classifier via one prominent deep
learning framework: TensorFlow. More specifically, we will employ a higher-level
programming language, Keras, which is fully integrated with TensorFlow.

Handwritten digit classification The simple classifier that we will focus on
for implementation exercise is a handwritten digit classifier wherein the task is to
figure out a digit from a handwritten image; see Fig. 3.24. The figure illustrates an
instance in which an image of digit 2 is correctly recognized.

digit
classifier

Figure 3.24. Handwritten digit classification.

222 Machine Learning Applications

white

black

Figure 3.25. MNIST dataset: An input image is of 28-by-28 pixels, each indicating an

intensity from 0 (whilte) to 1 (black); and each label with size 1 takes one of the 10 classes

from 0 to 9.

Figure 3.26. A two-layer fully-connected neural network where input size is 28 × 28 =

784, the number of hidden neurons is 500 and the number of classes is 10. We employ

ReLU activation for the hidden layer, and softmax activation for the output layer; see

Fig. 3.27 for details.

For training a model, we employ a popular dataset, named the MNIST (Mod-
ified National Institute of Standards and Technology) dataset. It was created by
re-mixing the examples from NIST’s origional dataset. Hence, the naming was
suggested. It was prepared by one of the deep learning pioneers, Yann LeCun. It
contains m = 60, 000 training images and mtest = 10, 000 testing images. Each
image, say x(i), consists of 28× 28 pixels, each indicating a gray-scale level ranging
from 0 (white) to 1 (black). It also comes with a corresponding label, say y(i), that
takes one of the 10 classes y(i) ∈ {0, 1, . . . , 9}. See Fig. 3.25.

A deep neural network model As a model, we employ a simple two-layer
DNN, illustrated in Fig. 3.26. As mentioned earlier, the rule of thumb for the

Deep Learning: TensorFlow Implementation 223

output layer softmax

Figure 3.27. Softmax activation for output layer. This is a natural extension of logistic

activation intended for the 2-class case.

choice of the activation function in a hidden layer is to use ReLU: ReLU(x) =
max(0, x). So we adopt this here.

Softmax activation for output layer So far we have considered binary classi-
fiers and hence employed the corresponding activation function in the output layer:
logistic function. In our digit classifier, however, there are 10 classes in total. So the
logistic function is not directly applicable. One natural extension of the logistic
function for a general classifier with more than two classes is to use a generalized
version, called softmax. See Fig. 3.27 for its operation.

Let z be the output of the last layer in a neural network prior to activation:

z := [z1, z2, . . . , zc]
T
∈ Rc (3.70)

where c denotes the number of classes. The softmax function is then defined as:

ŷj := [softmax(z)]j =
ezj∑c

k=1 ezk
j ∈ {1, 2, . . . , c}. (3.71)

Note that this is a natural extension of the logistic function: for c = 2,

ŷ1 := [softmax(z)]1 =
ez1

ez1 + ez2

=
1

1+ e−(z1−z2)

= σ(z1 − z2)

(3.72)

where σ(·) is the logistic function. Viewing z1 − z2 as the binary classifier output
ŷ, this coincides exactly with the logistic function.

224 Machine Learning Applications

Here ŷi can be interpreted as the probability that the ith example belongs to
class i. Hence, like the binary classifier, one may want to assume:

ŷi = P(y = [0, . . . , 1︸︷︷︸
ith position

, . . . , 0]T
|x), i ∈ {1, . . . , c}. (3.73)

As you may expect, under this assumption, one can verify that the optimal loss
function (in a sense of maximizing likelihood) is again cross entropy loss:

`∗(y, ŷ) = `CE(y, ŷ) =
c∑

j=1

−yj log ŷj

where y indicates a label of one-hot vector type. For instance, in the case of label= 2
with c = 10, y takes:

y =

0
0
1
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

The proof of this is almost the same as that in the binary classifier. So we will omit
the proof. Instead you will have a chance to prove it in Prob 8.2.

Due to the above rationales, the softmax activation has been widely used for
many classifiers in the field. Hence, we will also use the conventional function in
our digit classifier.

Adam optimizer Let us discuss a specific algorithm that we will employ in our
setting. As mentioned earlier, we will use an advanced version of gradient descent,
called the Adam optimizer. To see how the optimizer operates, let us first recall the
vanilla gradient descent:

w(t+1)
← w(t) − α∇J (w(t))

where w(t) indicates the estimated weight in the tth iteration, and α denotes the
learning rate. Notice that the weight update relies only on the current gradient,
reflected in ∇J (w(t)). Hence, in case ∇J (w(t)) fluctuates too much over iterations,
the weight update oscillates significantly, thereby bringing about unstable training.

Deep Learning: TensorFlow Implementation 225

To address this, people often use a variant algorithm that exploits past gradients for
the purpose of stabilization. That is, the Adam optimizer.

Here is how Adam works. The weight update takes the following formula
instead:

w(t+1)
= w(t) + α

m(t)
√

s(t) + ε
(3.74)

where m(t) indicates a weighted average of the current and past gradients:

m(t) =
1

1− β t
1

(
β1m(t−1)

− (1− β1)∇J (w(t))
)

. (3.75)

Here β1 ∈ [0, 1] is a hyperparameter that captures the weight of past gradients, and
hence it is called the momentum. So the notation m stands for momentum. The
factor 1

1−β t
1

is applied in front, in an effort to stabilize training in initial iterations

(small t). Check the detailed rationale behind this in Prob 8.9.
s(t) is a normalization factor that makes the effect of ∇J (w(t)) almost constant

over t. In case ∇J (w(t)) is too big or too small, we may have significantly different
scalings in magnitude. Similar to m(t), s(t) is defined as a weighted average of the
current and past values:

s(t) =
1

1− β t
2

(
β2s(t−1)

− (1− β2)(∇J (w(t)))2
)

(3.76)

where β2 ∈ [0, 1] denotes another hyperparameter that captures the weight of past
values, and s stands for square.

Notice that the dimensions of w(t), m(t) and s(t) are the same. So all the opera-
tions that appear in the above (including division in (3.74) and square in (3.76))
are component-wise. In (3.74), ε is a tiny value introduced to avoid division by 0 in
practice (usually 10−8).

TensorFlow: MNIST data loading Let us study how to do TensorFlow pro-
gramming for implementing the simple digit classifier that we have discussed so
far. First, MNIST data loading. MNIST is a very famous dataset, so it is offered
by a sub-library: tensorflow.keras.datasets. Even more, train and test datasets are
already therein with a proper split ratio. So we do not need to worry about how to
split them. The only script that we should write for importing MNIST is:

from tensorflow.keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train/255.
X_test = X_test/255.

226 Machine Learning Applications

Here we divide the input (X_train or X_test) by its maximum value 255 for the
purpose of normalization. This procedure is often done as a part of data prepro-
cessing.

TensorFlow: 2-layer DNN In order to implement the simple DNN, illustrated
in Fig. 3.26, we rely upon two major packages:

(i) tensorflow.keras.models;

(ii) tensorflow.keras.layers.

The models package contains several functionalities regarding a neural network
itself. One major module is Sequential which is a neural network entity and hence
can be described as a linear stack of layers. The layers package includes many ele-
ments that constitute a neural network. Examples include fully-connected dense
layers and activation functions. These two allow us to readily construct a model
illustrated in Fig. 3.26.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten

model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(500, activation=’relu’))
model.add(Dense(10, activation=’softmax’))

Here Flatten is an entity that indicates a vector expanded from a higher dimen-
sional one, like a 2D matrix. In this example, a digit image of size 28-by-28 is
flattened into a vector of size 784(= 28 × 28). add() is a method for attach-
ing an interested layer to the last part in the sequential model. Dense refers to a
fully-connected layer. The input size is automatically determined by the last part
that it will be attached to in the sequential model. So the only thing to specify is
the number of output neurons. In this example, 500 refers to the number of hid-
den neurons. We can also set an activation function with another argument, like
activation=’relu’. The output layer comes with 10 neurons (coinciding with the
number of classes) and softmax activation.

TensorFlow: Training a model For training, we need to first set up an algo-
rithm (optimizer) to be employed. Here we use the Adam optimizer. As mentioned
earlier, Adam has three key hyperparameters: (i) the learning rate α; (ii) β1 (captur-
ing the weight of past gradients); and (iii) β2 (indicating the weight of the square
of past gradients). The default choice reads: (α,β1,β2) = (0.001, 0.9, 0.999). So
these values would be set if nothing is specified.

Deep Learning: TensorFlow Implementation 227

We also need to specify a loss function. Here we employ the optimal loss func-
tion: cross entropy loss. A performance metric that we will look at during training
and testing can also be specified. One metric frequently employed is accuracy. One
can set all of these via another method compile.

model.compile(optimizer=’adam’,
loss=’sparse_categorical_crossentropy’,
metrics=[’acc’])

Here the option optimizer=’adam’ sets the default choice of the learning rate and
betas. For a manual choice, we first define:

opt=tensorflow.keras.optimizers.Adam(
learning_rate=0.01,
beta_1 = 0.92,
beta_2 = 0.992)

We then replace the above option with optimizer=opt. The option loss=

‘sparse_categorical_crossentropy’ means the use of cross entropy loss.
Now we can bring this to train the model on MNIST data. During training, we

often employ a part of the entire examples to compute a gradient of a loss function.
The part is called batch. Two more terminologies. One is the step which refers to a
loss computation procedure spanning the examples only in a single batch. The other
is the epoch which refers to the entire procedure associated with all the examples.
In our experiment, we use the batch size of 64 and the number 20 of epochs.

model.fit(X_train, y_train, batch_size=64, epochs=20)

TensorFlow: Testing the trained model For testing, we first need to make a
prediction from the model ouput. To this end, we use the predict() function as
follows:

model.predict(X_test).argmax(1)

Here argmax(1) returns the class w.r.t. the highest softmax output among the 10
classes. In order to evaluate the test accuracy, we use the evaluate() function:

model.evaluate(X_test, y_test)

Look ahead This is the end of the supervised learning part. There may be more
contents that may be of your interest. But we stop here due to the interest of other
topics. Obviously we cannot cover all the contents. If you are interested in more on
supervised learning, we recommend you to take many useful deep learning courses
offered online, e.g., Coursera.

228 Machine Learning Applications

In the next section, we will move onto another application of optimization:
unsupervised learning. Specifically we will focus on one of popular machine learn-
ing frameworks for unsupervised learning, called Generative Adversarial Networks
(GANs for short) (Goodfellow et al., 2014). It turns out the duality theorems that
we learned in Part II play a crucial role to understand the GANs. We will cover
details from the next section onwards.

Problem Set 8 229

Problem Set 8

Prob 8.1 (Logistic regression) Suppose that {(x(i), y(i))}mi=1 are independent
across all the examples. Show that

P(y(1), . . . , y(m)|x(1), . . . , x(m)) =
m∏

i=1

P(y(i)|x(i)). (3.77)

In Section 3.2, we proved under the Perceptron architecture that logistic regression
is optimal in a sense of maximizing:

P
(
{(x(i), y(i))}mi=1

)
.

Prove that logistic regression is optimal also in a sense of maximizing the following
conditional probability:

P(y(1), . . . , y(m)|x(1), . . . , x(m)). (3.78)

Prob 8.2 (Multiclass classifier & softmax) This problem explores a general
setting in which the number of classes is arbitrary, say c. Let

z := [z1, z2, . . . , zc]
T
∈ Rc (3.79)

be the output of a neural network model prior to activation. In an attempt to make
those real values zj ’s being interpreted as probability quantities that lie in between
0 and 1, people usually employ the following activation function, called softmax:

ŷj := [softmax(z)]j =
ezj∑c

k=1 ezk
j ∈ {1, 2, . . . , c}. (3.80)

Note that this is a natural extension of the logistic function: for c = 2,

ŷ1 := [softmax(z)]1 =
ez1

ez1 + ez2

=
1

1+ e−(z1−z2)

= σ(z1 − z2)

(3.81)

where σ(·) is the logistic function. Viewing z1 − z2 as the binary classifier output
ŷ, this coincides with logistic regression.

Let y ∈ {[1, 0, . . . , 0]T , [0, 1, 0, . . . , 0]T , . . . , [0, . . . , 0, 1]T
} be a label of one-

hot-vector type. Here ŷi can be interpreted as the probability that the ith example

230 Machine Learning Applications

belongs to class i. Hence, let us assume that

ŷi = P(y = [0, . . . , 1︸︷︷︸
ith position

, . . . , 0]T
|x), i ∈ {1, . . . , c}. (3.82)

We also assume that training examples {(x(i), y(i))}mi=1 are independent over i.

(a) Derive the likelihood of training examples:

P
(

y(1), . . . , y(m)|x(1), . . . , x(m)
)

. (3.83)

This should be expressed in terms of y(i)’s and ŷ(i)’s.
(b) Derive the optimal loss function that maximizes the likelihood (3.83).
(c) What is the name of the optimal loss function derived in part (b)? What is

the rationale behind the naming?

Prob 8.3 (Jensen’s inequality & cross entropy)

(a) Suppose that a function f is concave and X is a discrete random variable.
Show that

E
[
f (X)

]
≤ f (E[X]) .

Also identify conditions under which the equality holds.
(b) In Section 3.2, we defined cross entropy only for two binary random vari-

ables. Actually it can be defined for any two arbitrary distributions, say p
and q, as:

H(p, q) := −
∑
x∈X

p(x) log q(x) = Ep

[
log

1

q(X)

]
(3.84)

where X ∈ X is a discrete random variable. Show that

H(p, q) ≥ H(p) := −
∑
x∈X

p(x) log p(x) = E
[

log
1

p(X)

]
(3.85)

where H(p) is known as the Shannon entropy. Also identify conditions
under which the equality in (3.85) holds.

Problem Set 8 231

Prob 8.4 (Kullback-Leibler divergence) In statistics, information theory and
machine learning, there is a very well-known divergence measure, called Kullback-
Leibler divergence, defined as: for two distributions p and q,

KLD(p, q) :=
∑
x∈X

p(x) log
p(x)
q(x)
= Ep

[
log

p(X)
q(X)

]
(3.86)

where X ∈ X is a discrete random variable. Show that

KLD(p, q) ≥ 0. (3.87)

Also identify conditions under which the equality in (3.87) holds.

Prob 8.5 (Non-convexity of a 2-layer DNN) Consider a 2-layer DNN with
one input neuron, one hidden neuron and one output neuron. We employ ReLU

activation for the hidden neuron while using the logistic function for the output
neuron:

ŷ =
1

1+ e−w2 max(0,w1x)
(3.88)

where x ∈ R indicates an input; w1 ∈ R and w2 ∈ R denote the weights for hidden
and output layers, respectively. Let y ∈ {0, 1} be a label. Consider cross entropy loss
for an objective function:

J (w1, w2) = −y log ŷ − (1− y) log(1− ŷ). (3.89)

(a) Consider a case in which (w1, w2) = (t, t) where t ∈ R. Derive
∇tJ (w1, w2). Compute ∇tJ (w1, w2)|t=0.

(b) Still consider the case in part (a). Derive ∇2
t J (w1, w2).

(c) Now consider a different case in which (w1, w2) = (t,−t) where t ∈ R.
Derive ∇tJ (w1, w2). Compute ∇tJ (w1, w2)|t=0.

(d) Consider the case in part (c). Derive ∇2
t J (w1, w2).

(e) Show that J (w1, w2) is non-convex in (w1, w2).

Prob 8.6 (Backpropagation: 2-layer DNN with bias terms) In Section 3.3,
we considered an DNN architecture in which a linear operation that occurs at each
neuron does not allow for having a bias term:

z[i]
= W [i]a[i−1] (3.90)

where z[i]
∈ Rn[i]

and a[i]
∈ Rn[i]

indicate the pre-activation and post-activation

outputs of the ith hidden layer, respectively; and W [i]
∈ Rn[i]

×n[i−1]
denotes a

weight matrix between the (i − 1)th and ith hidden layers.

232 Machine Learning Applications

In this problem, we explore a slightly more general DNN architecture which
allows for having a bias term in the linear operation:

z[i]
= W [i]a[i−1]

+ b[i] (3.91)

where b[i]
∈ Rn[i]

. One special structural assumption on b[i] is that all the compo-
nents in b[i] are identical :

b[i]
=

bi

bi
...
bi

where bi ∈ R.

Consider a 2-layer DNN with such bias terms. We assume that the hidden layer
activation is ReLU and the output layer activation is logistic. Let {(x(i), y(i))}mi=1 be
training examples. Consider cross entropy loss for an objective function:

J (w) =
m∑

i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (3.92)

where w := (W [2], W [1]).

(a) Suppose m = 1. Show that

dJ (w)

dz[2]
= ŷ − y; (3.93)

dJ (w)

dW [2]
=

dJ (w)

dz[2]
a[1]T ; (3.94)

dJ (w)

db[2]
=

dJ (w)

dz[2]
; (3.95)

dJ (w)

da[1]
= W [2]T dJ (w)

dz[2]
; (3.96)

dJ (w)

dz[1]
=

dJ (w)

da[1]
.∗1{z[1]

≥ 0}; (3.97)

dJ (w)

dW [1]
=

dJ (w)

dz[1]
xT ; (3.98)

dJ (w)

db[1]
=

dJ (w)

dz[1]
. (3.99)

Problem Set 8 233

(b) Consider the general m case. Let

Y :=
[
y(1) y(2) · · · y(m)

]
∈ R1×m;

Ŷ :=
[
ŷ(1) ŷ(2) · · · ŷ(m)

]
∈ R1×m;

A[1] :=
[
a[1],(1) a[1],(2)

· · · a[1],(m)
]
∈ Rn[1]

×m;

Z [1] :=
[
z[1],(1) z[1],(2)

· · · z[1],(m)
]
∈ Rn[1]

×m;

Z [2] :=
[
z[2],(1) z[2],(2)

· · · z[2],(m)
]
∈ Rn[2]

×m;

X :=
[
x(1) x(2) · · · x(m)

]
∈ Rn×m.

(3.100)

Show that

dJ (w)

dZ [2]
= Ŷ − Y ; (3.101)

dJ (w)

dW [2]
=

dJ (w)

dZ [2]
A[1]T ; (3.102)

dJ (w)

db[2]
=

m∑
i=1

[
dJ (w)

dZ [2]

]
i
; (3.103)

dJ (w)

dA[1]
= W [2]T dJ (w)

dZ [2]
; (3.104)

dJ (w)

dZ [1]
=

dJ (w)

dA[1]
.∗1{Z [1]

≥ 0}; (3.105)

dJ (w)

dW [1]
=

dJ (w)

dZ [1]
X T ; (3.106)

dJ (w)

db[1]
=

m∑
i=1

[
dJ (w)

dZ [1]

]
i

(3.107)

where
[

dJ (w)
dZ [j]

]
i

indicates the ith column component of dJ (w)
dZ [j] for j ∈ {1, 2}.

Prob 8.7 (Backpropagation: 3-layer DNN) Consider a 3-layer DNN such
that:

z[i]
= W [i]a[i−1]

∈ Rn[i]
i ∈ {1, 2, 3};

a[i]
= max(0, z[i]) ∈ Rn[i]

i ∈ {1, 2};

ŷ := a[3]
=

1

1+ e−z[3] ∈ R

(3.108)

234 Machine Learning Applications

where a[0] is defined as the input x ∈ Rn, and W [i]
∈ Rn[i]

×n[i−1]
denotes a weight

matrix associated with the (i − 1)th and ith hidden layers. Let {(x(i), y(i))}mi=1 be
training examples. Consider cross entropy loss for an objective function:

J (w) =
m∑

i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (3.109)

where w := (W [3], W [2], W [1]). Describe the detailed procedure of backpropaga-
tion, i.e., draw the forward and backward paths and list all the key gradient-related
equations with a correct order.

Prob 8.8 (Implementing the XOR function) Consider a 2-layer DNN with
two input neurons, two hidden neurons and one output neuron. We employ ReLU

activation for the hidden layer while taking logistic activation for the output neu-
ron. We allow for having bias terms in all of the layers:

ŷ(i) = σ
(

W [2] max(0, W [1]x(i) + b[1])+ b[2]
)

(3.110)

where x(i) ∈ {0, 1}2 indicates the ith input example; W [1]
∈ R2×2 and W [2]

∈

R1×2 denote the weight matrices for hidden and output layers, respectively; and
b[1]
∈ R2 and b[2]

∈ R indicate the bias terms at hidden and output layers, respec-
tively. Let y(i) ∈ {0, 1} be the ith label. Let training examples be:

(x(i), y(i)) =

((0, 0), 0), i = 1;

((0, 1), 1), i = 2;

((1, 0), 1), i = 3;

((1, 1), 0), i = 4.

Consider cross entropy loss for an objective function:

J (w) =
4∑

i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)) (3.111)

where w := (W [2], W [1]). Use the same matrix notations as in (3.100).

(a) Draw the forward path. Implement a Python script for the following func-
tion:

[Yhat,Z2,A1,Z1] = ForwardPath(W1,b1,W2,b2,X)

Problem Set 8 235

where:

(Yhat,Z2,A1,Z1,W1,b1,W2,b2,X)

:=(Ŷ , Z [2], A[1], Z [1], W [1], b[1], W [2], b[2], X).

(b) Draw the backward path for backprop. Implement a Python script for the
following function:

[dZ2,dW2,db2,dA1,dZ1,dW1,db1]

= BackwardPath(Y,Yhat,W1,b1,W2,b2,A1,Z1,X)

where:

(dZ2,dW2,db2,dA1,dZ1,dW1,db1)

:=

(
dJ (w)

dZ [2]
,

dJ (w)

dW [2]
,

dJ (w)

db[2]
,

dJ (w)

dA[1]
,

dJ (w)

dZ [1]
,

dJ (w)

dW [1]
,

dJ (w)

db[1]

)
.

(c) Using the already implemented functions in parts (a) and (b), implement
a Python script for training the DNN via gradient descent.

(d) Consider the following weight initialization:

import random
from numpy.random import randn

random.seed(0)

W1 = randn(n1,n)
W2 = randn(1,n1)
b1 = randn(n1,1)
b2 = randn(1,1)

where (n1,n) := (n[1], n) = (2, 2). Set the learning rate as 0.1. Fix the num-
ber of iterations (also called epoches) as 10000. Run the code implemented
in part (c) together with the above initialization to compute (W1,b1,W2,b2).

(e) For an input x ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, use (W1,b1,W2,b2) com-
puted in part (d) to obtain ŷ.

Prob 8.9 (Optimizers) Consider the gradient descent algorithm:

w(t+1)
= w(t) − α∇J (w(t))

where w(t) indicates the weights of an interested model at the tth iteration; J (w(t))
denotes the cost function evaluated at w(t); and α is the learning rate. Note that
only the current gradient, reflected in ∇J (w(t)), affects the weight update.

236 Machine Learning Applications

(a) (Momentum optimizer) In the literature, there is a prominent variant of gra-
dient descent that takes into account past gradients as well. Using such past
information, one can damp an oscillating effect in the weight update that
may incur instability in training. To capture past gradients and therefore
address the oscillation problem, another quantity, often denoted by m(t), is
usually introduced:

m(t) = βm(t−1)
− (1− β)∇J (w(t)) (3.112)

where β denotes another hyperparameter that captures the weight of the
past gradients, simply called the momentum. Here m stands for the momen-
tum vector. The variant of the algorithm (often called the momentum opti-
mizer) takes the following update for w(t+1):

w(t+1)
= w(t) + αm(t). (3.113)

Show that

w(t+1)
= w(t) − α(1− β)

t−1∑
k=0

βk
∇J (w(t−k))+ αβ tm(0).

(b) (Bias correction) Assuming that ∇J (w(t)) is the same for all t and m(0) = 0,
show that

w(t+1)
= w(t) − α(1− β t)∇J (w(t)).

Note: For a large value of t, 1 − β t
≈ 1, so it has almost the same scaling

as that in the regular gradient descent. On the other hand, for a small value
of t, 1−β t can be small, being far from 1. For instance, when β = 0.9 and
t = 2, 1 − β t

= 0.19. This motivates people to rescale the moment m(t)

in (3.112) through division by 1− β t . So in practice, we use:

m̂(t) =
m(t)

1− β t ; (3.114)

w(t+1)
= w(t) + αm̂(t). (3.115)

This technique is so called the bias correction.
(c) (Adam optimizer) Notice in (3.112) that a very large or very small value of
∇J (w(t)) affects the weight update in quite a different scaling. In an effort
to avoid such a different scaling problem, people in practice often make
normalization in the weight update (3.115) via a normalization factor, often

Problem Set 8 237

denoted by ŝ(t):

w(t+1)
= w(t) + α

m̂(t)
√

ŝ(t) + ε
(3.116)

where the division is component-wise, and

m̂(t) =
m(t)

1− β t
1

, (3.117)

m(t) = β1m(t−1)
− (1− β1)∇J (w(t)), (3.118)

ŝ(t) =
s(t)

1− β t
2

, (3.119)

s(t) = β2s(t−1)
+ (1− β2)(∇J (w(t)))2. (3.120)

Here (·)2 indicates a component-wise square; ε is a tiny value introduced
to avoid division by 0 in practice (usually 10−8); and s stands for square.
This optimizer (3.116) is called the Adam optimizer. Explain the rationale
behind the division by 1− β t

2 in (3.120).

Prob 8.10 (TensorFlow implementation of a digit classifier) Consider a
handwritten digit classifier that we learned in Section 3.5. In this problem, you are
asked to build a classifier using a two-layer (one hidden-layer) neural network with
ReLU activation in the hidden layer and softmax activation in the output layer.

(a) (MNIST dataset loading) Use the following script (or otherwise), load the
MNIST dataset:

from tensorflow.keras.datasets import mnist
(X_train,y_train),(X_test,y_test)=mnist.load_data()
X_train = X_train/255.
X_test = X_test/255.

What are m (the number of training examples) and mtest? What are the
shapes of X_train and y_train?

(b) (Data visualization) Upon the code in part (a) being executed, report an
output for the following:

import matplotlib.pyplot as plt
num_of_images = 60
for index in range(1,num_of_images+1):

plt.subplot(6,10, index)
plt.axis(’off’)
plt.imshow(X_train[index], cmap = ’gray_r’)

238 Machine Learning Applications

(c) (Model) Using a skeleton code provided in Section 3.5, write a script for a
2-layer neural network model with 500 hidden units fed by MNIST data.

(d) (Training) Using a skeleton code in Section 3.5, write a script for train-
ing the model generated in part (c) with cross entropy loss. Use the Adam

optimizer with:

learning rate = 0.001; (β1,β2) = (0.9, 0.999)

and the number of epochs is 10. Also plot a training loss as a function of
epochs.

(e) (Testing) Using a skeleton code in Section 3.5, write a script for testing the
model (trained in part (d)). What is the test accuracy?

Prob 8.11 (True or False?)

(a) For two arbitrary distributions, say p and q, consider cross entropy H(p, q).
Then,

H(p, q) ≥ H(q) (3.121)

where H(q) is the Shannon entropy w.r.t. q.
(b) For two arbitrary distributions, say p and q, consider cross entropy:

H(p, q) := −
∑
x∈X

p(x) log q(x) = Ep

[
log

1

q(X)

]
(3.122)

where X ∈ X is a discrete random variable. Then,

H(p, q) = H(p) := −
∑
x∈X

p(x) log p(x). (3.123)

only when q = p.
(c) Consider a binary classifier in the supervised learning setup where we are

given input-output example pairs {(x(i), y(i))}mi=1. Let 0 ≤ ŷ(i) ≤ 1 be the
classifier output for the ith example. Let w be parameters of the classifier.
Define:

w∗CE := arg min
w

1

m

m∑
i=1

`CE

(
y(i), ŷ(i)

)

w∗KL := arg min
w

1

m

m∑
i=1

KLD

(
y(i), ŷ(i)

)
where `CE(·, ·) denotes cross entropy loss and KLD(y(i), ŷ(i)) indicates the
KL divergence between two binary random variables with parameters y(i)

Problem Set 8 239

and ŷ(i), respectively. Then,

w∗CE = w∗KL.

(d) Consider a 2-layer DNN with one input neuron, one hidden neuron and
one output neuron. We employ the linear activation both for the hidden
and output neurons:

ŷ = w2w1x (3.124)

where x ∈ R indicates an input; w1 ∈ R and w2 ∈ R denote the weights for
hidden and output layers, respectively. Let y ∈ {−1, 1} be a label. Consider
the squared error loss for an objective function:

J (w1, w2) = ‖y − ŷ‖2. (3.125)

Then, the objective function is convex in (w1, w2).
(e) One of the reasons that DNNs were not appreciated much during the AI

winter is that the DNN model was so complex in view of the technol-
ogy of the day although it offers better performances relative to simpler
approaches.

(f) Suppose we execute the following code:

import numpy as np
a = np.random.randn(4,3,3)
b = np.ones_like(a)
print(b[0].shape)
print(b.shape[0])

Then, the two prints yield the same results.
(g) Suppose that image is an MNIST image of numpy array type. Then, one

can use the following commands to plot the image:

import matplotlib.pyplot as plt
plt.imshow(image.squeeze(), cmap=’gray_r’)

240 Machine Learning Applications

3.6 Unsupervised Learning: Generative Modeling

Recap During the past five sections, we have studied some basic contents on
supervised learning. The goal of supervised learning is to estimate a function f (·) of
an interested computer system (machine) from input-output samples, as illustrated
in Fig. 3.28.

In an effort to translate a function optimization problem (a natural formulation
of supervised learning) into a parameter-based optimization problem that we are
familiar with, we expressed the function with parameters (or called weights) assum-
ing a certain architecture of the system.

The certain architecture was: Perceptron. Taking the logistic function together
with cross entropy loss, we obtained logistic regression. We then proved that
logistic regression is optimal in a sense of maximizing the likelihood of training
data.

We next considered the Deep Neural Networks (DNNs) architecture for f (·),
which has been shown to be more expressive. Since there is no theoretical basis
on the choice of activation functions in the DNN context, we investigated only
a rule-of-thumb which is common to use in the field: Taking ReLU at all hid-
den neurons while taking the logistic function at the output layer. We have a
theoretical justification only on the choice of a loss function: cross entropy loss.
We have also learned that in many of the interested settings, optimization prob-
lems for DNNs have no spurious local minima, although the problems are highly
non-convex. This motivated the use of gradient descent for such problems. We
also studied an efficient way of computing gradients: backpropagation, or simply
called backprop. Lastly, we investigated how to implement neural networks via
TensorFlow.

machine

Figure 3.28. Supervised learning: Learning the function f (·) of an interested system from

data {(x(i), y(i))}mi=1.

Unsupervised Learning: Generative Modeling 241

Outline What is next? In fact, we face one critical challenge in supervised learn-
ing. The challenge is that it is not that easy to collect labeled data in many realistic
situations. In general, gathering labeled data is very expensive, as it usually requires
extensive human-labour-based annotations. So people wish to do something with-
out such labeled data. Then, a natural question arises. What can we do only with
{x(i)}mi=1?

This is where the concept of unsupervised learning kicks in. Unsupervised learn-
ing is a methodology for learning something about data {x(i)}mi=1. You may then
ask: What is something? There are a few candidates for such something to learn in
the field. Depending on target candidates, there are different unsupervised learning
methods.

In this section, we will start investigating details on these. Specifically we are
going to cover the following four stuffs. First of all, we will study what such can-
didates for something to learn are. We will then investigate what the correspond-
ing unsupervised learning methods are. Next we will focus on arguably the most
prominent and fundamental learning method among them: Generative modeling.
Finally, we will connect this to optimization of this book’s interest, by formulating
an optimization problem for generative models.

Candidates for something to learn There are three candidates for something
to learn, from simple to complex. The first candidate, which is perhaps the simplest,
is the basic structure of data. For instance, when {xi}

m
i=1 indicates users/customers

data, such basic structures could be membership of individuals, community type,
gender type, or race type. For products-related data, it could be abnormal (defect) vs
normal information. The second candidate is the one that we learned about in Part
I, which is features: expressive (and/or compressed) components that well describe
characteristics of data. The last is a sort of the most complex yet most fundamental
information: the probability distribution of data, which allows us to create data as
we wish.

Three unsupervised learning methods Depending on which candidate we
focus on, we have three different unsupervised learning methods. The first is cluster-
ing, which serves to identify the basic structures of data. You may hear of k-means,
k-nearest neighbors, community-detection, or anomaly-detection algorithms. All
of these belong to this category. The second is feature learning (or called representa-
tion learning), which allows us to extract some well-representative features. You may
hear of autoencoder, matrix factorization, principal component analysis, or dictio-
nary learning, all of which can be categorized into this class. The last is generative
modeling, which enables us to create arbitrary examples that well mimick character-
istics of real data. This is actually the most famous unsupervised learning method,

242 Machine Learning Applications

Richard Feynman ‘88

Figure 3.29. Richard Feynman left a quote on the relationship between understanding
and creating on a blackboard around right before he died in 1988. The quote says, “What

I cannot create, I do not understand.” What this quote suggests is that being able to

create convincing examples of data is a strong evidence of having understood it.

which has received a particularly significant attention in the field nowadays. So in
this book, we are going to focus on this method.

Why is generative modeling prominent? Before explaining details on gen-
erative modeling, let us say a few words about why generative modeling is
most prominent in the field. We list three reasons below which we believe
major.

The first reason is somewhat related to a famous quote by Richard Feynman; see
Fig. 3.29. Right before he died in 1988, he left an intriguing quote in his black-
board: “What I cannot create, I do not understand.” What this quote implies in the
context of unsupervised learning is that creating convincing examples of data is a
necessary condition for complete understanding. In this regard, a generative model
serves an important role as it enables us to create arbitrary yet plausible examples
that mimick real data.

The second reason is related to a recent breakthrough made in the history of the
AI field by a research scientist, named Ian Goodfellow; see Fig. 3.30. During his
PhD, he could develop a powerful generative model, which he named “Generative
Adversarial Networks (GANs)” (Goodfellow et al., 2014). The GANs are shown
to be extremely instrumental in a wide variety of applications, even not limited
to the AI field. Such applications include: image creation, human image synthesis,
image inpainting, coloring, super-resolution image synthesis, speech synthesis, style
transfer, robot navigation, to name a few. Since it works pretty well, in 2019, the
state of California passed a bill that would ban the use of GANs to make fake
pornography without the consent of the people depicted. So the GANs have played
a crucial role to popularize generative modeling.

The third reason is related to optimization of this book’s interest. The GANs
borrow very interesting ideas from optimization, thus making many optimization
experts excited about the generative models. In particular, the duality theorems that

Unsupervised Learning: Generative Modeling 243

Ian Goodfellow 2014

Figure 3.30. Ian Goodfellow, a young figure in the modern AI field. He is best known as

the inventor of the Generative Adversarial Networks (GANs), which made a big wave in

the history of the AI field.

generative
model

real data

fake data

Figure 3.31. A generative model is the one that generates fake data which resembles

real data. Here what resembling means in a mathematical language is that it has a similar
distribution.

we studied in Part II play a crucial role to understand the GANs as well as many
GAN variants.

Generative modeling Let us dive into details on generative modeling. Gener-
ative modeling is a technique for generating fake data so that it has a similar dis-
tribution as that of real data. See Fig. 3.31 for pictorial representation. The model
parameters are learned via real data so that the learned model outputs fake data that
resemble real data. Here an input signal can be either an arbitrary random signal or
a specifically synthesized signal that forms the skeleton of fake data. The type of
the input depends on applications of interest – this will be detailed later on.

Remarks on generative models In fact, the problem of designing a generative
model is one of the most important problems in statistics, so it has been a classical
age-old problem in that field. This is because the major goal of the field of statistics
is to figure out (or estimate) the probability distribution of data that arise in the real

244 Machine Learning Applications

world (that we call real data), and the generative model plays a role as a underlying
framework in achieving the goal. Actually the model can do even more. It provides
a concrete function block (called the generator in the field) which can create realistic
fake data. There is a very popular name in statistics that indicates such a problem,
that is the density estimation problem. Here the density refers to the probability
distribution.

As you may guess from the second reason mentioned above regarding why gen-
erative modeling is prominent, this problem was not that popular in the AI field
until very recently, precisely 2014 when the GANs were invented.

How to formulate an optimization problem? Let us relate generative mod-
eling to optimization of our interest. As mentioned earlier, we can feed some input
signal (that we call fake input) which one can arbitrarily synthesize. Common ways
employed in the field to generate them are to use Gaussian or uniform distribu-
tions. Since it is an input signal, we may wish to use a conventional “x” notation.
So let us use x ∈ Rk to denote a fake input where k indicates the dimension of the
signal.

Notice that this has a conflict with real data notation {x(i)}mi=1. To avoid the
conflict, let us use a different notation, say {y(i)}mi=1, to denote real data. Please
don’t be confused with labeled data. These are not labels. In fact, the convention
in the machine learning field is to use a notation z to indicate a fake input while
maintaining real data notation as {x(i)}mi=1. This may be another way to go; perhaps
this is the way that you should take when writing papers. Anyhow let us take the
first unorthodox yet reasonable option for this book.

Let ŷ ∈ Rn be a fake output. Considering m examples, let {(x(i), ŷ(i))}mi=1 be such
fake input-output m pairs and let {y(i)}mi=1 be m real data examples. See Fig. 3.32.

Goal Let G(·) be a function of the generative model. Then, the goal of the gen-
erative model can be stated as: Designing G(·) such that

{ŷ(i)}mi=1 ≈ {y
(i)
}
m
i=1 in distribution.

real data

fake outputfake input
generative
model

Figure 3.32. Problem formulation for generative modeling.

Unsupervised Learning: Generative Modeling 245

Here what does it mean by “in distribution”? To make it clear, we need to quan-
tify closeness between two distributions. One natural yet prominent approach
employed in the statistics field is to take the following two steps:

1. Compute empirical distributions or estimate distributions from {y(i)}mi=1 and
{(x(i), ŷ(i))}mi=1. Let such distributions be:

QY ,QŶ

for real and fake data, respectively.
2. Next employ a well-known divergence measure in statistics which can serve to

quantify the closeness of two distributions. Let D(·, ·) be one such divergence
measure. Then, the similarity between QY and QŶ can be quantified as:

D(QY ,QŶ).

Taking the above natural approach, one can concretely state the goal as: Designing
G(·) such that

D(QY ,QŶ) is minimized.

Optimization under the approach Hence, under the approach, one can for-
mulate an optimization problem as:

min
G(·)

D(QY ,QŶ). (3.126)

As you may easily notice, there are some issues in solving the above problem (3.126).
There are three major issues.

The first is that it is function optimization which we are not familiar with. Notice
that the optimization is over the function G(·). Second, the objective function
D(QY ,QŶ) is a very complicated function of the knob G(·). Note that QŶ is a
function of G(·), as ŷ = G(x). So the objective is a twice folded composite function
of G(·). The last is perhaps the most fundamental issue. It is not clear as to how to
choose a divergence measure D(·, ·).

Look ahead It turns out there are some ways to address the above issues. Inter-
estingly, one such way leads to an optimization problem for GANs. So in the next
section, we will study what that way is, and then will take the way to derive an
optimization problem for GANs.

246 Machine Learning Applications

3.7 Generative Adversarial Networks (GANs)

Recap In the previous section, we started investigating unsupervised learning. The
goal of unsupervised learning is to learn something about data, which we newly
denoted by {y(i)}mi=1, instead of {x(i)}mi=1. Depending on target candidates for some-
thing to learn, there are a few unsupervised learning methods. Among them, we
explored one prominent method, which is generative modeling. We formulated an
optimization problem for generative modeling:

min
G(·)

D(QY ,QŶ) (3.127)

where QY and QŶ indicate the empirical distributions (or the estimates of the
true distributions) for real and fake data, respectively; G(·) denotes the function
of a generative model; and D(·, ·) is a divergence measure. We then encountered a
couple of issues that arise in the problem: (i) it is a function optimization which we
are not familiar with; (ii) the objective is a very complicated function of G(·); and
(iii) it is not that clear as to how to choose D(·, ·).

At the end of the last section, we claimed that there are some ways to address such
issues, and interestingly, one such way leads to an optimization problem for a recent
powerful generative model, named Generative Adversarial Networks (GANs).

Outline In this section, we are going to explore details on GANs. What we are
going to do are three folded. First we will investigate what that way leading to GANs
is. We will then take the way to derive an optimization problem for GANs. Lastly
we will demonstrate that GANs indeed address the issues: (i) the GAN optimization
problem is tractable; and (ii) the problem can also be expressed as that in (3.127).

What is the way to address the issues? Remember one challenge that we
faced in the optimization problem (3.127): D(QY ,QŶ) is a complicated function
of G(·). To address this, we take an indirect way to represent D(QY ,QŶ). We first
observe how D(QY ,QŶ) should behave, and then based on the observation, we
will come up with an indirect way to mimic the behaviour. It turns out the way
leads us to explicitly compute D(QY ,QŶ). Below are details.

How D(QY ,QŶ) should behave? One observation that we can make is that if
one can easily discriminate real data y from fake data ŷ, then the divergence must be
large; otherwise, it should be small. This naturally motivates us to:

Interpret D(QY ,QŶ) as the ability to discriminate.

Generative Adversarial Networks (GANs) 247

We introduce an entity that can play this discriminating role. The entity is the one
that Ian Goodfellow, the inventor of GAN, introduced, and he named it:

Discriminator.

Goodfellow considered a simple binary-output discriminator which takes as an
input, either real data y or fake data ŷ. He then wanted to design D(·) such that
D(·) well approximates the probability that the input (·) is real data:

D(·) ≈ P((·) = real data).

Noticing that

P(y = real) = 1;

P(ŷ = real) = 0,

he wanted to design D(·) such that:

D(y) is as large as possible, close to 1;

D(ŷ) is as small as possible, close to 0.

See Fig. 3.33.

How to quantity the ability to discriminate? Keeping the picture in Fig. 3.33
in his mind, he wanted to quantify the ability to discriminate. To this end, he first
observed that if D(·) can easily discriminate, then we should have:

D(y) ↑; 1− D(ŷ) ↑.

One naive way to capture the ability is simply adding the above two terms. But
Goodfellow did not take the naive way. Instead he took the following logarithmic
summation:

log D(y)+ log(1− D(ŷ)). (3.128)

Discriminator

fake data

real data

Figure 3.33. Discriminator wishes to output D(·) such that D(y) is as large as possible

while D(ŷ) is as small as possible.

248 Machine Learning Applications

real data

fake data
Generator

Discriminator
Player #1

Player #2

Figure 3.34. A two-player game for GAN: Discriminator D(·), wishes to maximize the

quantified ability (3.129), while another player, generator G(·), wants to minimize (3.129).

In NeurIPS 2016, Goodfellow gave a tutorial on GANs, mentioning that the prob-
lem formulation was inspired by a paper published in AISTATS 2010 (Gutmann
and Hyvärinen, 2010). See Eq. (3) in the paper.

Making the particular choice, the ability to discriminate for m examples can be
quantified as:

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))). (3.129)

A two-player game Goodfellow then introduced a two-player game in which
player 1, discriminator D(·), wishes to maximize the quantified ability (3.129),
while player 2, generator G(·), wants to minimize (3.129). See Fig. 3.34 for
illustration.

Optimization for GANs The two-player game motivated him to formulate the
following min max optimization problem:

min
G(·)

max
D(·)

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))). (3.130)

You may wonder why not max min. That may be another way to go, but Good-
fellow made the above choice. In fact, there is a reason why the way is taken. This
will be clearer soon. Notice that the optimization is over the two functions of D(·)
and G(·), meaning that it is still a function optimization. Luckily the year of 2014
(when the GAN paper was published) was after the starting point of the deep learn-
ing revolution, the year of 2012. So Goodfellow was very much aware of the power
of neural networks:

“Deep neural networks can well represent any arbitrary function."

Generative Adversarial Networks (GANs) 249

This motivated him to parameterize the two functions with DNNs, which in turn
led to the following optimization problem:

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.131)

where N denotes a set of DNN-based functions. This is exactly the optimization
problem for GANs.

Related to original optimization? Remember what we mentioned earlier. The
way leading to the GAN optimization is an indirect way of solving the original
optimization problem:

min
G(·)

D(QY ,QŶ). (3.132)

Then, a natural question arises. How are the two problems (3.131) and (3.132)
related? It turns out these are very much related. This is exactly where the choice
of min max (instead of max min) plays the role; the other choice cannot establish a
connection. It has been shown that assuming that deep neural networks can repre-
sent any arbitrary function, the GAN optimization (3.131) can be translated into
the original optimization form (3.132). We will prove this below.

Simplification & manipulation Let us start by simplifying the GAN optimiza-
tion (3.131). Since we assume that N can represent any arbitrary function, the
problem (3.131) becomes unconstrained :

min
G(·)

max
D(·)

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))). (3.133)

Notice that the objective is a function of D(·), and the two functions D(·)’s
appear but with different arguments: one is y(i), marked in blue; the other is ŷ(i),
marked in red. So in the current form (3.133), the inner (max) optimization prob-
lem is not quite tractable to solve. In an attempt to make it tractable, let us express
it in a different manner using the following notations.

Define a random vector Y which takes one of the m real examples with proba-
bility 1

m (uniform distribution):

Y ∈ {y(1), . . . , y(m)} =: Y ; QY (y(i)) =
1

m
, i ∈ {1, 2, . . . , m}

where QY indicates the probability distribution of Y . Similarly define Ŷ for fake
examples:

Ŷ ∈ {ŷ(1), . . . , ŷ(m)} =: Ŷ ; QŶ (ŷ
(i)) =

1

m
, i ∈ {1, 2, . . . , m}

250 Machine Learning Applications

where QŶ indicates the probability distribution of Ŷ . Using these notations, one
can rewrite the problem (3.133) as:

min
G(·)

max
D(·)

m∑
i=1

QY (y(i)) log D(y(i))+QŶ (ŷ
(i)) log(1− D(ŷ(i))). (3.134)

Still we have different arguments in the two D(·) functions.
To address this, let us introduce another notation. Let z ∈ Y ∪ Ŷ . Newly define

QY (·) and QŶ (·) such that:

QY (z) := 0 if z ∈ Ŷ \ Y ; (3.135)

QŶ (z) := 0 if z ∈ Y \ Ŷ . (3.136)

Using the z notation, one can then rewrite the problem (3.134) as:

min
G(·)

max
D(·)

∑
z∈Y∪Ŷ

QY (z) log D(z)+QŶ (z) log(1− D(z)). (3.137)

We see that the same arguments appear in the two D(·) functions.

Solving the inner optimization problem We are ready to solve the inner opti-
mization problem in (3.137). Key observations are: log D(z) is concave in D(·);
log(1− D(z)) is concave in D(·); and therefore, the objective function is concave
in D(·). This implies that the objective has the unique maximum in the function
space D(·). Hence, one can find the maximum by searching for the one in which
the derivative is zero. Taking a derivative and setting it to zero, we get:

Derivative =
∑

z

[
QY (z)
D∗(z)

−
QŶ (z)

1− D∗(z)

]
= 0.

Hence, we get:

D∗(z) =
QY (z)

QY (z)+QŶ (z)
∀z ∈ Y ∪ Ŷ . (3.138)

Plugging this into (3.137), we obtain:

min
G(·)

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z)+QŶ (z)
+QŶ (z) log

QŶ (z)

QY (z)+QŶ (z)
.

(3.139)

Generative Adversarial Networks (GANs) 251

Jensen-Shannon divergence Let us massage the objective function in (3.139)
to express it as:

min
G(·)

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z)+QŶ (z)
2

+QŶ (z) log
QŶ (z)

QY (z)+QŶ (z)
2︸ ︷︷ ︸

−2 log 2.

(3.140)

The above underbraced term can be expressed with a well-known divergence mea-
sure in statistics, called Jensen-Shannon divergence6: for any two distributions, say p
and q,

JSD(p, q) :=
1

2

∑
z

p(z) log
p(z)

p(z)+q(z)
2

+
1

2

∑
z

q(z) log
q(z)

p(z)+q(z)
2

. (3.141)

This is indeed a valid divergence measure, i.e., it is non-negative, being equal to
zero if and only if p = q. We will not prove this here, but you will have a chance
to prove it in Prob 9.1.

Equivalent form Using the divergence, one can then rewrite the prob-
lem (3.140) as:

min
G(·)

2JSD(QY ,QŶ)− 2 log 2. (3.142)

Hence, we get:

G∗GAN = arg min
G(·)

JSD(QY ,QŶ). (3.143)

We see that this indeed belongs to the original optimization form (3.132) if one
makes a choice as: D(·, ·) = JSD(·, ·).

Look ahead So far we have formulated an optimization problem for GANs and
made an interesting connection to the Jensen-Shannon divergence. In the next sec-
tion, we will study how to solve the GAN optimization (3.131) and implement it
via TensorFlow.

6. One may guess that this is the divergence that Johan Jensen (the inventor of Jensen’s inequality) and Claude
Shannon (the father of information theory) developed. But it is not the case. Johan Jensen died in 1925
when Claude Shannon was a child, so there was no collaboration between the two. Actually it was invented
much later days in 1991 by a Taiwanese information theorist, named Jianhua Lin (Lin, 1991).

252 Machine Learning Applications

3.8 GANs: TensorFlow Implementation

Recap In the prior section, we investigated Goodfellow’s approach to deal with
an optimization problem for generative modeling, which in turn led to GANs. He
started with quantifying the ability to discriminate real against fake samples:

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.144)

where y(i) and ŷ(i) := G(x(i)) indicate real and fake samples, respectively; D(·)
denotes the output of discriminator; and m is the number of examples. He then
introduced two players: (i) player 1, discriminator, who wishes to maximize the
ability; (ii) player 2, generator, who wants to minimize it. This naturally led to the
optimization problem for GANs:

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(G(x(i)))) (3.145)

where N denotes a class of neural network functions. Lastly we demonstrated that
the problem (3.145) can be stated in terms of the Jensen-Shannon divergence, thus
making a connection to statistics.

Two natural questions arise. First, how to solve the problem (3.145)? Second,
how to do programming via a popular deep learning framework TensorFlow?

Outline In this section, we will answer these two questions. Specifically we are
going to cover four stuffs. First we will investigate a practical method to solve the
problem (3.145). We will then do one case study for the purpose of exercising the
method. In particular, we will study how to implement an MNIST style hand-
written digit image generator. Next we will explore one important implementation
detail: Batch Normalization (Ioffe and Szegedy, 2015), particularly useful for very
deep neural networks. Lastly we will learn how to write a TensorFlow script for
software implementation.

Parameterization Solving the problem (3.145) starts with parameterizing the
two functions G(·) and D(·) with neural networks:

min
w

max
θ

1

m

m∑
i=1

log Dθ (y(i))+ log(1− Dθ (Gw(x(i))))︸ ︷︷ ︸
=:J (w,θ)

(3.146)

where w and θ indicate parameters for G(·) and D(·), respectively. Now the ques-
tion of interest is: Is the parameterized problem (3.146) the one that we are familiar

GANs: TensorFlow Implementation 253

with? In other words, is J (w, θ) is convex in w? Is J (w, θ) is concave in θ ? Unfor-
tunately, it is not the case. In general, the objective is highly non-convex in w and
also highly non-concave in θ .

Then, what can we do? Actually there is nothing we can do more beyond what
we know. We only know how to find a stationary point via a method like gradient
descent. So one practical way that we can take is to simply look for a stationary
point, say (w∗, θ∗), such that

∇wJ (w∗, θ∗) = 0, ∇θ J (w∗, θ∗) = 0,

while cross-fingering that such a point yields a near optimal performance. It turns
out luckily it is often the case in reality, especially when employing neural networks
for parameterization. There have been huge efforts by many theorists in figuring
out why that is the case, e.g., (Arora et al., 2017). However, a clear theoretical
understanding is still missing despite their serious efforts.

Alternating gradient descent One practical method to attempt to find (yet
not necessarily guarantee to find) such a stationary point in the context of the min-
max optimization problem (3.146) is: alternating gradient descent. Actually we saw
this in Section 2.2. For those who do not remember, let us explain again how it
works yet in the context of GANs.

At the tth iteration, we first update generator’s weight:

w(t+1)
← w(t) − α1∇wJ (w(t), θ (t))

where w(t) and θ (t) denote the weights of generator and discriminator at the tth
iteration, respectively; and α1 is the learning rate for generator. Given (w(t+1), θ (t)),
we next update discriminator’s weight as per:

θ (t+1)
← θ (t) + α2∇θ J (w(t+1), θ (t))

where α2 is the learning rate for discriminator. Here one important thing to notice
is that we should perform gradient ascent, i.e., the direction along which the dis-
criminator’s weight is updated should be aligned with the gradient, reflected in the
plus sign colored in blue. Lastly we repeat the above two until converged.

In practice, we may wish to control the frequency of discriminator weight update
relative to that of generator. To this end, we often employ k : 1 alternating gradient
descent:

1. Update generator’s weight:

w(t+1)
← w(t) − α1∇wJ (w(t), θ (t·k)).

254 Machine Learning Applications

2. Update discriminator’s weight k times while fixing w(t+1): for i=1:k,

θ (t·k+i)
← θ (t·k+i−1)

+ α2∇θ J (w(t+1), θ (t·k+i−1)).

3. Repeat the above.

You may wonder why we update discriminator more frequently than generator.
Usually more updates in the inner optimization yield better performances in prac-
tice. Further, we often employ the Adam counterpart of the algorithm together
with batches. Details are omitted although we will apply such a practical version
for programming assignment in Prob 9.4.

A practical tip on generator Before moving onto a case study for implemen-
tation, let us say a few words about generator optimization. Given discriminator’s
parameter θ : the generator wishes to minimize:

min
w

1

mB

∑
i∈B

log Dθ (y(i))+ log(1− Dθ (Gw(x(i))))

where B indicates a batch of interest and mB is the batch size (the number of exam-
ples in the interested batch). Notice that log Dθ (y(i)) in the above is irrelevant of
generator’s weight w. Hence, it suffices to minimize the following:

min
w

1

mB

∑
i∈B

log(1− Dθ (Gw(x(i))))︸ ︷︷ ︸
generator loss

where the underbraced term is called “generator loss”. However, in practice, instead
of minimizing the generator loss directly, people often rely on the following proxy:

min
w

1

mB

∑
i∈B
− log Dθ (Gw(x(i))). (3.147)

You may wonder why. There is a technically detailed rationale behind the use of
the proxy for the generator loss. Check this in Prob 9.2.

Task Let us discuss one case study for implementation. The task that we will focus
on is the one related to the simple digit classifier that we exercised on in Section 3.5.
The task is to generate MNIST style handwritten digit images, as illustrated in
Fig. 3.35. Here we intend to train generator with MNIST dataset so that it outputs
an MNIST style fake image when fed by a random input signal.

GANs: TensorFlow Implementation 255

GeneratorA random
signal

MNIST dataset

MNIST-like
fake image

Figure 3.35. Generator for MNIST-style handwritten digit images.

100 128
256

512
1024 784

ReLU logistic
BN

Figure 3.36. Generator: A 5-layer fully-connected neural network where the input size

(the dimension of a latent signal) is 100; the numbers of hidden neurons are 128, 256, 512,

1024; and the output size is 784 (=28 × 28). We employ ReLU activation for every hidden

layer, and logistic activation for the output layer to ensure 0-to-1 output signals. We also

use Batch Normalization prior to ReLU at each hidden layer. See Fig. 3.37 for details.

Model for generator As a generator model, we employ a 5-layer fully-connected
neural network with four hidden layers, as depicted in Fig. 3.36. For activation at
each hidden layer, we employ ReLU. Remember that an MNIST image consists of
28-by-28 pixels, each indicating a gray-scaled value that spans from 0 to 1. Hence,
for the output layer, we use 784 (= 28 × 28) neurons and logistic activation to
ensure the range of [0, 1].

The employed network has five layers, so it is deeper than the 2-layer case that
we used earlier. In practice, for a somewhat deep neural network, each layer’s signals
can exhibit quite different scalings. It turns out such dynamically-swinged scaling
yields a detrimental effect upon training: unstable training. So in practice, people
often apply an additional procedure (prior to ReLU) so as to control the scaling in
our own manner. The procedure is called: Batch Normalization.

256 Machine Learning Applications

A hidden layer

1. Normalization

2. Customized scaling

component-wise

(learnable parameters)

BN

Figure 3.37. Batch Normalization (BN): First we do zero-centering and normalization

with the mean µB and the variance σ 2
B computed over the examples in an associated

batch B. Next we do a customized scaling by introducing two new parameters that would

also be learned during training: γ ∈ Rn and β ∈ Rn.

Batch Normalization (Ioffe and Szegedy, 2015) Here is how it works; see
Fig. 3.37. For illustrative purpose, focus on one particular hidden layer. Let z :=
[z1, . . . , zn]T be the output of the considered hidden layer prior to activation. Here
n denotes the number of neurons in the hidden layer.

Batch Normalization (BN for short) consists of two steps. First we
do zero-centering and normalization using the mean and variance w.r.t. examples
in an associated batch B:

µB =
1

mB

∑
i∈B

z(i), σ 2
B =

1

mB

∑
i∈B
(z(i) − µB)

2 (3.148)

where (·)2 indicates a component-wise square, and hence σ 2
B ∈ Rn. In other words,

we generate the normalized output, say znorm, as:

znorm =
z(i) − µB√
σ 2
B + ε

(3.149)

where division and multiplication are all component-wise. Here ε is a tiny value
introduced to avoid division by 0 (typically 10−5).

Second, we do a customized scaling as per:

z̃(i) = γ z(i)norm + β (3.150)

where γ ,β ∈ Rn indicate two new scaling parameters which are learnable via train-
ing. Again the operations in (3.150) are all component-wise.

GANs: TensorFlow Implementation 257

256
512

784

ReLU

logistic
1

Figure 3.38. Discriminator: A 3-layer fully-connected neural network where the input size

(the dimension of a flattened vector of a real (or fake) image) is 784 (=28× 28); the num-

bers of hidden neurons are 512, 256; and the output size is 1. We employ ReLU activation

for every hidden layer, and logistic activation for the output layer.

BN lets the model learn the optimal scale and mean of the inputs for
each hidden layer. This technique is quite instrumental in stabilizing and speed-
ing up training especially for a very deep neural network. This has been verified
experimentally by many practitioners, although no clear theoretical justification
has been provided thus far.

Model for discriminator As a discriminator model, we use a simple 3-layer fully-
connected network with two hidden layers; see Fig. 3.38. Here the input size must
be the same as that of the flattened real (or fake) image. Again we employ ReLU at
hidden layers and logistic activation at the output layer.

TensorFlow: How to use BN? Let us talk about how to do TensorFlow pro-
gramming for implementation. Loading MNIST data is exactly the same as before.
So we omit it. Instead let us discuss how to use BN.

As you expect, TensorFlow provides a built-in class for BN:

BatchNormalization()

This is placed in tensorflow.keras.layers. Here is how to use the class in our setting:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import ReLU

generator = Sequential()

258 Machine Learning Applications

generator.add(Dense(128,input_dim=latent_dim))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(256))
generator.add(BatchNormalization())
: : :

where latent dim is the dimension of the latent signal (which we set as 100).

TensorFlow: Models for generator & discriminator Using the DNN archi-
tectures for generator and discriminator illustrated in Figs. 3.36 and 3.38, we can
implement a code as below.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import ReLU

latent_dim =100
generator=Sequential()
generator.add(Dense(128,input_dim=latent_dim))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(256))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(512))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(1024))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(28*28,activation=’sigmoid’))

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import ReLU

discriminator=Sequential()
discriminator.add(Dense(512,input_shape=(784,)))
discriminator.add(ReLU())
discriminator.add(Dense(256))
discriminator.add(ReLU())
discriminator.add(Dense(1,activation= ’sigmoid’))

GANs: TensorFlow Implementation 259

TensorFlow: Optimizers for generator & discriminator We use Adam opti-
mizers with lr=0.0002 and (b1,b2)=(0.5,0.999). Since we have two models (gen-
erator and discriminator), we employ two optimizers accordingly:

from tensorflow.keras.optimizers import Adam
lr = 0.0002
b1 = 0.5
b2 = 0.999 # default choice
optimizer_G = Adam(learning_rate=lr, beta_1=b1)
optimizer_D = Adam(learning_rate=lr, beta_1=b1)

TensorFlow: Generator input As a generator input, we use a random signal
with the Gaussian distribution. In particular, we use:

x ∈ Rlatent dim
∼ N (0, Ilatent dim).

Here is how to generate the Gaussian random signal in TensorFlow:

from tensorflow.random import normal
x = normal([batch_size,latent_dim])

TensorFlow: Binary cross entropy loss Consider the batch version of the
GAN optimization (3.146):

min
w

max
θ

1

mB

∑
i∈B

log Dθ (y(i))+ log(1− Dθ (Gw(x(i)))). (3.151)

Now introduce the ground-truth real-vs-fake indicator vector [1, 0]T (real=1,
fake=0). Then, the term log Dθ (y(i)) can be viewed as the minus binary cross
entropy between the real/fake indicator vector and its prediction counterpart
[Dθ (y(i)), 1− Dθ (y(i))]T :

log Dθ (y(i)) = 1 · log Dθ (y(i))+ 0 · log(1− Dθ (y(i)))

= −`BCE(1, Dθ (y(i))).
(3.152)

On the other hand, another term log(1−Dθ (ŷ(i))) can be interpreted as the minus
binary cross entropy between the fake-vs-real indicator vector (fake=0, real=1) and
its prediction counterpart:

log(1− Dθ (ŷ(i))) = 0 · log Dθ (ŷ(i))+ 1 · log(1− Dθ (ŷ(i)))

= −`BCE(0, Dθ (ŷ(i))).
(3.153)

From this, we see that cross entropy plays a role in computation of
the objective function. TensorFlow offers a built-in class for cross entropy:

260 Machine Learning Applications

BinaryCrossentropy(). This is placed in tensorflow.keras.losses. Here is how to
use it in our setting:

from tensorflow.keras.losses import BinaryCrossentropy
CE_loss = BinaryCrossentropy(from_logits=False)
loss = CE_loss(real_fake_indicator, output)

where output denotes an output of discriminator, and real fake indicator is
real/fake indicator vector (real=1, fake=0). Here one important thing to notice is
that output is the result after logistic activation; and real fake indicator is also a
vector with the same dimension as output. The function BinaryCrossentropy()

automatically detects the number of examples in an associated batch, thus yielding
a normalized version (through division by mB).

TensorFlow: Generator loss Recall the proxy (3.147) for the generator loss
that we will use:

min
w

1

mB

∑
i∈B
− log Dθ (Gw(x(i)))

(a)
= min

w

1

mB

∑
i∈B

`BCE

(
1, Dθ (Gw(x(i)))

) (3.154)

where (a) follows from (3.152). Hence, we can use the function CE_loss imple-
mented above to easily write a code as below:

g_loss = CE_loss(valid, discriminator(gen_imgs))

where gen imgs indicate fake images (corresponding to Gw(x(i))’s) and valid

denotes an all-1’s vector with the same dimension as gen imgs.

TensorFlow: Discriminator loss Recall the batch version of the optimization
problem:

max
θ

1

mB

∑
i∈B

log Dθ (y(i))+ log(1− Dθ (Gw(x(i)))).

Taking the minus sign in the objective, we obtain the equivalent minimization
optimization:

min
θ

1

mB

∑
i∈B
− log Dθ (y(i))− log(1− Dθ (Gw(x(i))))︸ ︷︷ ︸

discriminator loss

GANs: TensorFlow Implementation 261

Léon Bottou 2017
Figure 3.39. Léon Bottou is the inventor of Wasserstain GANs. He is another big figure

in the AI field.

where the discriminator loss is defined as the minus version. Using (3.152)
and (3.153), we can implement the discriminator loss as:

real_loss = CE_loss(valid, discriminator(real_imgs))
fake_loss = CE_loss(fake, discriminator(gen_imgs))
d_loss = real_loss + fake_loss

where real imgs indicate real images (corresponding to y(i)’s) and fake denotes an
all-0’s vector with the same dimension as gen imgs.

TensorFlow: Training Using all of the above, one can implement a code for
training. Here we omit details. But you will have a chance to be guided in detail in
Prob 9.4.

Look ahead We have investigated the GAN optimization problem together with
its TensorFlow implementation. While GANs work well in practice, there is one
critical issue which we did not delve into. In fact, the issue can be understood
from the equivalent form of the GAN optimization that we derived in the previous
section:

G∗GAN = arg min
G(·)

JSD(QY ,QŶ). (3.155)

The issue could be figured out by the team of Professor Léon Bottou, a computer
scientist as well as a mathematician. See Fig. 3.39 for his portrait. Since he is strong
at math and stats, he could understand that the critical issue comes from some
undesirable property of JSD. More importantly, he knew how to address the issue.
In the course of addressing the issue, he could develop a variant of GAN, which he
called (Arjovsky et al., 2017):

Wasserstein GAN.

In the next section, we will figure out what that critical issue is. We will then inves-
tigate how Bottou came up with Wasserstein GAN.

262 Machine Learning Applications

Problem Set 9

Prob 9.1 (Jensen-Shannon divergence) Recall the Jensen-Shannon diver-
gence that we encountered in Section 3.7. Let p and q be two distributions.

(a) Show that

JSD(p, q) = JSD(q, p). (3.156)

(b) Show that

JSD(p, q) ≥ 0. (3.157)

Also identify conditions under which the equality in (3.157) holds.

Prob 9.2 (Proxy for generator loss in GAN) Consider the optimization prob-
lem for GAN that we learned in Section 3.7:

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.158)

where N indicates a neural network, and y(i) and ŷ(i) := G(x(i)) denote real and
fake samples respectively. Here x(i) denotes an input to the generator that one can
synthesize arbitrarily, and m is the number of examples. Suppose that the inner
optimization is solved to yield D∗(·). Then, the optimization problem reduces to:

min
G(·)∈N

1

m

m∑
i=1

log D∗(y(i))+ log(1− D∗(ŷ(i))). (3.159)

(a) Show that the optimization problem (3.159) is equivalent to:

min
G(·)∈N

1

m

m∑
i=1

log(1− D∗(ŷ(i))). (3.160)

(b) Let w be the weights of the generator model. Show that

d log(1− D∗(ŷ(i)))
dw

=
1

D∗(ŷ(i))− 1

dD∗(ŷ(i))

d ŷ(i)
d ŷ(i)

dw
, (3.161)

d(− log D∗(ŷ(i)))
dw

=
−1

D∗(ŷ(i))

dD∗(ŷ(i))

d ŷ(i)
d ŷ(i)

dw
. (3.162)

Problem Set 9 263

(c) Suppose that the Discriminator works almost optimally, i.e., D∗(ŷ(i)) is very
close to 0. Which is larger in magnitude between (3.161) and (3.162)?
Instead of solving (3.160), many researchers including the inventors of
GAN prefer to solve the following for G(·):

min
G(·)∈N

1

m

m∑
i=1

− log D∗(ŷ(i)). (3.163)

Explain the rationale behind this alternative.

Prob 9.3 (Batch normalization (Ioffe and Szegedy, 2015)) Consider a
deep neural network. Let z(i) := [z(i)1 , . . . , z(i)n]T be the output of a hidden layer
prior to activation for the ith example where i ∈ {1, 2, . . . , m} and m is the number
of examples. Here n denotes the number of neurons in the hidden layer.

(a) Let

µ =
1

m

m∑
i=1

z(i), σ 2
=

1

m

m∑
i=1

(z(i) − µ)2 (3.164)

where (·)2 indicates a component-wise square, and hence σ 2
∈ Rn. Consider

z(i)norm =
z(i) − µ
√
σ 2 + ε

(3.165)

z̃(i) = γ z(i)norm + β (3.166)

where γ ,β ∈ Rn. Again the division and multiplication are all component-
wise. Here ε is a tiny value introduced to avoid division by 0 (typically
10−5). This is called a smoothing term. Assuming that ε is negligible and
z(i)’s are independent over i, what are the mean and variance of z̃(i)?

(b) Many researchers often employ z̃(i) instead of z(i) during training. These
operations include zero-centering and normalization (hence it is named
batch normalization), followed by rescaling and shifting with two new
parameters (γ and β) which are learnable via training. In other words, these
operations let the model learn the optimal scale and mean of the inputs for
each layer. It turns out this technique plays a significant role in stabilizing
and speeding up training especially for a very deep neural network. This has
been verified experimentally by many practitioners, but no clear theoretical
justification has been provided thus far.

264 Machine Learning Applications

In practice, this operation is done over the current mini-batch, so the
whole procedure is summarized as follows: for the current mini-batch B
with the size mB,

µB =
1

mB

mB∑
i=1

z(i), σ 2
B =

1

mB

mB∑
i=1

(z(i) − µB)
2,

z(i)norm =
z(i) − µB√
σ 2
B + ε

, z̃(i) = γ z(i)norm + β.
(3.167)

At test time, there is no mini-batch to compute the empirical mean and
standard deviation. What can we do then? Suggest a way to handle this
issue and also explain the rationale behind your suggestion. You may want
to consult with some well-known literature if you wish.

Prob 9.4 (TensorFlow implementation of GAN) Consider the GAN that
we learned in Section 3.7. In this problem, you are asked to build a simple GAN
that generates MNIST style handwritten digit images. We employ a 5-layer neural
network for generator with ReLU in all the hidden layers and logistic activation in
the output layer.

(a) (MNIST dataset loading) Use the following script (or otherwise), load the
MNIST dataset:

from tensorflow.keras.datasets import mnist
(X_train,y_train),(X_test, y_test)=mnist.load_data()
X_train = X_train/255.
X_test = X_test/255.

Explain the role of the following script:

import numpy as np
def get_batches(data, batch_size):

batches = []
for i in range(int(data.shape[0] // batch_size)):

batch=data[i*batch_size:(i +1)*batch_size]
batches.append(batch)

return np.asarray(batches)

(b) (Data visualization) Assume that the code in part (a) is executed. Using a
skeleton code provided in Prob 8.10(b), write a script that plots 60 images
in the first batch of X_train in one figure. Also plot the figure.

Problem Set 9 265

(c) (Generator) Draw a block diagram for generator implemented by the fol-
lowing:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import ReLU

latent_dim =100
generator=Sequential()
generator.add(Dense(128,input_dim=latent_dim))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(256))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(512))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(1024))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(28*28,activation=’sigmoid’))

(d) (Generator check) Upon the above codes being executed, report an output
for the following:

from tensorflow.random import normal
import matplotlib.pyplot as plt

batch_size = 64
x = normal([batch_size,latent_dim])
gen_imgs = generator.predict(x)
gen_imgs = gen_imgs.reshape(-1,28,28)

num_of_images = 60
for index in range(1,num_of_images+1):

plt.subplot(6,10, index)
plt.axis(’off’)
plt.imshow(gen_imgs[index], cmap = ’gray_r’)

(e) (Discriminator) Draw a block diagram for discriminator implemented by
the following:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import ReLU

266 Machine Learning Applications

discriminator=Sequential()
discriminator.add(Dense(512,input_shape=(784,)))
discriminator.add(ReLU())
discriminator.add(Dense(256))
discriminator.add(ReLU())
discriminator.add(Dense(1,activation= ’sigmoid’))

(f) (Training) Suppose we create the generator and discriminator as follows:

from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam

adam = Adam(learning_rate=0.0002, beta_1=0.5)

discriminator compile
discriminator.compile(loss=’binary_crossentropy’,

optimizer=adam)
fix disc’s weights while training generator
discriminator.trainable = False

define GAN with fake input and disc. output
gan_input = Input(shape=(latent_dim,))
x = generator(inputs=gan_input)
output = discriminator(x)
gan = Model(gan_input, output)
gan.compile(loss=’binary_crossentropy’, optimizer=adam)

where generator() and discriminator() are the classes designed in parts (c)
and (e), respectively.

Now explain how generator and discriminator are trained in the follow-
ing code:

import numpy as np
from tensorflow.random import normal

EPOCHS = 50
k=2 # k:1 alternating gradient descent
d_losses = []
g_losses = []

for epoch in range(1,EPOCHS + 1):
train per each batch
np.random.shuffle(X_train)
for i, real_imgs in enumerate(get_batches(X_train, batch_size)):

Problem Set 9 267

#####################
train discriminator
#####################
fake input generation
gen_input = normal([batch_size,latent_dim])
fake images
gen_imgs = generator.predict(gen_input)
real_imgs = real_imgs.reshape(-1,28*28)
input for discriminator
d_input = np.concatenate([real_imgs,gen_imgs])
label for discriminator
(first half: real (1); second half: fake (0))
d_label = np.zeros(2*batch_size)
d_label[:batch_size] = 1
train Discriminator
d_loss = discriminator.train_on_batch(d_input, d_label)

#####################
train generator
#####################
if i%k: # 1:k alternating gradient descent

fake input generation
g_input = normal([batch_size,latent_dim])
label for fake image
Generator wants fake images to be treated
as real ones
g_label = np.ones(batch_size)
train generator
g_loss = gan.train_on_batch(g_iput, g_label)

d_losses.append(d_loss)
g_losses.append(g_loss)

(g) (Training check) For epoch= 10, 30, 50, 70, 90: plot a figure that shows 25
fake images from generator trained in part (f) or by other methods of
yours. Also plot the generator loss and discriminator loss as a function of
epochs. Include Python scripts as well.

Prob 9.5 (Minimax theorem) Let f (x, y) be a continuous real-valued function
defined on X × Y such that

(i) f (x, y) is convex in x ∈ X ∀y ∈ Y ; and

(ii) f (x, y) in concave in y ∈ Y ∀x ∈ X

where X and Y are convex and compact sets.

268 Machine Learning Applications

Note: You do not need to solve the optional problems below.

(a) Show that

min
x∈X

max
y∈Y

f (x, y) ≥ max
y∈Y

min
x∈X

f (x, y). (3.168)

Does (3.168) hold also for any arbitrary function f (·, ·)?
(b) Suppose

α ≤ min
x∈X

max
y∈Y

f (x, y) H⇒ α ≤ max
y∈Y

min
x∈X

f (x, y). (3.169)

Then, argue that (3.169) implies:

min
x∈X

max
y∈Y

f (x, y) ≤ max
y∈Y

min
x∈X

f (x, y). (3.170)

(c) Suppose that α ≤ minx∈X maxy∈Y f (x, y). Then, show that there are finite
y1, . . . , yn ∈ Y such that

α ≤ min
x∈X

max
y∈{y1,...,yn}

f (x, y). (3.171)

(d) (Optional) Suppose that α ≤ minx∈X maxy∈{y1,y2} f (x, y) for any y1, y2 ∈

Y . Then, show that there exists y0 ∈ Y such that

α ≤ min
x∈X

f (x, y0). (3.172)

(e) (Optional) Suppose that α ≤ minx∈X maxy∈{y1,...,yn} f (x, y) for any finite
y1, . . . , yn ∈ Y . Then, show that there exists y0 ∈ Y such that

α ≤ min
x∈X

f (x, y0). (3.173)

Hint: Use the proof-by-induction and part (d).

Note: (3.173) implies that α ≤ maxy∈Y minx∈X f (x, y). This together with the
results in parts (b) and (c) proves (3.170). Combining this with (3.168) proves the
minimax theorem:

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y). (3.174)

Prob 9.6 (Training instability) Consider a function:

f (x, y) = (2+ cos x)(2+ cos y) (3.175)

where x, y ∈ R.

Problem Set 9 269

(a) Solve the following optimization (i.e., find the optimal solution as well as
the points that achieve it):

min
x

max
y

f (x, y). (3.176)

(b) Solve the reverse version of the optimization:

max
y

min
x

f (x, y). (3.177)

(c) Suppose that we perform 1 : 1 alternating gradient descent for f (x, y) with
an initial point (x(0), y(0)) = (π+0.1,−0.1). Plot f (x(t), y(t)) as a function
of t where (x(t), y(t)) denotes the estimate at the tth iteration. What are the
limiting values of (x(t), y(t))? Also explain why.
Note: You may want to set the learning rates properly so that the convergence
behaviour is clear.

(d) Redo part (c) with a different initial point (x(0), y(0)) = (0.1,π − 0.1).

Prob 9.7 (Alternating gradient descent) Consider a function:

f (x, y) = x2
− y2 (3.178)

where x, y ∈ R.

(a) Solve the following optimization:

min
x

max
y

f (x, y). (3.179)

(b) Suppose that we perform 1 : 1 alternating gradient descent for f (x, y) with
an initial point (x(0), y(0)) = (1, 1). Plot f (x(t), y(t)) as a function of t where
(x(t), y(t)) denotes the estimate at the tth iteration. What are the limiting
values of (x(t), y(t))? Also explain why.
Note: You may want to set the learning rates properly so that the convergence
behaviour is clear.

(c) Redo part (c) with a different initial point (x(0), y(0)) = (−1,−1).

Prob 9.8 (True or False?)

(a) Consider the following optimization:

min
x∈R

max
y∈R

x2
− y2.

With 1:1 alternating gradient descent with a proper choice of the learning
rates, one can achieve the optimal solution to the above.

270 Machine Learning Applications

(b) Consider the following optimization:

min
x∈R

max
y∈R

(2+ cos x)(2+ cos y).

Suppose we perform 1:1 alternating gradient descent with a proper choice
of the learning rates. Then, the converging points can be distinct depending
on different initial points.

(c) Autoencoder can be categorized as a feature learning method.

Wasserstein GAN I 271

3.9 Wasserstein GAN I

Recap During a couple of past sections, we formulated the optimization problem
for GANs. Given data {y(i)}mi=1,

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.180)

where G(·) and D(·) indicate the functions of the generator and the discriminator,
respectively; and N denotes a set of DNN-based functions. We then showed that
the GAN optimization belongs to a generic divergence-based optimization problem
(an age-old problem in statistics), assuming that DNNs can represent any arbitrary
function.

At the end of the previous section, however, we claimed that there is a critical
issue in the GAN optimization, and this is what Léon Bottou figured out. We also
claimed that in the course of addressing the issue, Bottou came up with a variant
of GANs, which he named: Wasserstein GAN (WGAN for short).

Outline Supporting these claims form the contents of this section. We will cover
the following three stuffs. First, we will figure out what the critical issue is. We will
then investigate how Bottou addressed the issue. Lastly we will discuss how Bottou’s
way leads to the optimization problem for WGAN.

What is the critical issue that arises in the GAN optimization? Recall in
the GAN optimization that the optimal generator G∗(·) reads:

G∗ = arg min
G(·)

JSD(QY ,QŶ) (3.181)

where QY and QŶ indicate the empirical distributions of real samples Y ∈

{y(1), . . . , y(m)} =: Y and fake samples Ŷ ∈ {ŷ(1), . . . , ŷ(m)} =: Ŷ respectively,
and

JSD(QY ,QŶ)

=
1

2

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z)+QŶ (z)
2

+QŶ (z) log
QŶ (z)

QY (z)+QŶ (z)
2

. (3.182)

Here z indicates a dummy variable which takes an element either from Y or from
Ŷ . One key observation is that in almost all practically-relevant settings, fake and
real samples are different with each other:

Y ∩ Ŷ = ∅. (3.183)

272 Machine Learning Applications

Why? Consider an image data setting in which the dimension of data is usually very
large, e.g., the dimension of an image in ImageNet is: 227× 227× 3 = 154, 587.
In this setting, the probability that any fake image is exactly the same as one of the
real images is almost 0, so it is a measure-zero event. This (3.183) together with the
definitions of QY and QŶ (that we established in Section 3.7) then yields:

QY (z)
QY (z)+QŶ (z)

2

=

1
m

1
m+0

2

= 2, if z ∈ Y ;

0
1
m+0

2

= 0, if z ∈ Ŷ ;

QŶ (z)
QY (z)+QŶ (z)

2

=

0

1
m+0

2

= 0, if z ∈ Y ;

1
m

0+ 1
m

2

= 2, if z ∈ Ŷ .

(3.184)

Plugging this into (3.182), we get:

JSD(QY ,QŶ)

=
1

2

∑
z∈Y

QY (z) log
QY (z)

QY (z)+QŶ (z)
2

+
1

2

∑
z∈Ŷ

QŶ (z) log
QŶ (z)

QY (z)+QŶ (z)
2

=
1

2

∑
z∈Y

QY (z) log 2+
1

2

∑
z∈Ŷ

QŶ (z) log 2

= log 2

(3.185)

where the last equality comes from
∑

z∈Y QY (z) = 1 and
∑

z∈Ŷ QŶ (z).
From (3.185), we can now see the critical issue:

JSD(QY ,QŶ) is irrelevant of how we choose G(·),

meaning that

G∗ = arg min
G(·)

JSD(QY ,QŶ) = arg min
G(·)

log 2 could be anything. (3.186)

This implies that we may arrive at a stupid solution from the JSD-based optimiza-
tion (3.181), since any G(·) can be optimal.

Here you may see that something weird is happening. Why? We already knew
that GANs are working well in practice. This suggests that the phenomena observed
by many researchers look inconsistent with the theory due to the above simple
derivation (3.186). Any mistake in the above derivation? Or something wrong in
simulations done by many practitioners? Or something else? It turns out the answer

Wasserstein GAN I 273

is “something else”. Remember in the GAN optimization (3.180) that G(·) and
D(·) should be DNN-based functions, not arbitrary functions. So precisely speaking,
the optimal generator should read:

G∗GAN := arg min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))).

In practice, DNN is not perfectly expressive, and hence:

G∗GAN 6= G∗.

This is the reason why there is inconsistency between the theory and the practice.
There are some groups of people (including Prof. Sanjeev Arora at Princeton, a theo-
retical computer scientist) who have been investigating why the GANs with DNN-
function constraints lead to good performances (Arora et al., 2017). Nonetheless,
we have no clear understanding on this.

Motivated the use of the Wasserstein distance The critical issue, reflected
in (3.186), motivated Bottou to reconsider the generic divergence-based optimiza-
tion problem:

min
G(·)

D(QY ,QŶ) (3.187)

where D(·, ·) is of our design choice. He knew that there are some good divergence
measures which do not yield the critical issue (3.186). One of the measures that he
chose was the 1st order Wasserstein distance that we studied in Part I. This led him
to obtain:

min
G(·)

W (QY ,QŶ) (3.188)

where

W (QY ,QŶ) = min
QY ,Ŷ

E[‖Y − Ŷ ‖]

= min
QY ,Ŷ

m∑
i=1

m∑
j=1

QY ,Ŷ (y
(i), ŷ(j))‖y(i) − ŷ(j)‖.

(3.189)

Notice that ‖y(i) − ŷ(j)‖ placed inside the doubled summation (marked in blue)
depends on the values of {ŷ(i)}mi=1 themselves. Hence, we can readily see that the
objective is indeed a function of G(·) which directly controls {ŷ(i)}mi=1.

274 Machine Learning Applications

How to solve the Wasserstein-distance-based optimization? Replacing
D(·, ·) with the Wasserstein distance in (3.187), we can rewrite the optimization
problem (3.188) as:

min
G(·)

min
QY ,Ŷ

m∑
i=1

m∑
j=1

QY ,Ŷ (y
(i), ŷ(j))‖y(i) − ŷ(j)‖ :

m∑
j=1

QY ,Ŷ (y
(i), ŷ(j)) = QY (y(i)), i ∈ {1, . . . , m};

m∑
i=1

QY ,Ŷ (y
(i), ŷ(j)) = QŶ (ŷ

(j)), j ∈ {1, . . . , m}.

(3.190)

Consider the inner optimization problem in (3.190). This is the problem
that we are familiar with. That is an LP. We know how to solve an LP using
the simplex algorithm. Then, no problem? Unfortunately, that is not the case.
There are some issues in solving the above problem. We encounter two major
issues.

First, there is no closed-form solution for LP, so this gives a challenge in find-
ing G∗(·) in the end. The second issue is a more critical one. Notice in practice
that the number of optimization variables, which are m2 of QY ,Ŷ (y

(i), ŷ(j)), in the
inner problem is huge. In the big data era, m is typically an order of more than
thousands or million, or even billion. So m2 is typically a huge number. Even if we
use a fast algorithm, like the simplex algorithm, it would take long time. So it is
computationally expensive.

Bottou recognized the issues. More importantly, he knew how to address them.
The idea is to rely on the father of LP: Kantorovich. In fact, Kantorovich already
established the strong duality theorem for the Wasserstein-distance-based LP, called
Kantorovich duality or Kantorovich-Rubinstein duality (Villani, 2009). What
Kantorovich showed is that the dual problem of the Wasserstein-distance-based
LP yields exactly the same solution as that of the primal problem,7 and more
importantly, the dual problem is computationally much more efficient. So he sim-
ply applied Kantorovich duality to come up with an optimization problem, which
is now known as the WGAN optimization. We will describe Kantorovich duality
in detail below.

7. This is what we already know. But at that time, the strong duality theorem for convex optimization was
not established yet. In fact, Kantorovich duality formed the basis of the strong duality theorem for generic
convex problems.

Wasserstein GAN I 275

Notational simplification Let us consider the inner optimization problem
in (3.190). For notational simplification, we employ the dummy variable z that we
introduced earlier: z ∈ Y ∪ Ŷ . Let us use z and ẑ to indicate y(i) and ŷ(j), respec-
tively. Using this notation, we can then rewrite the inner optimization problem as:

min
QY ,Ŷ

∑
z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

QY ,Ŷ (z, ẑ)‖z − ẑ‖ :

∑
ẑ∈Y∪Ŷ

QY ,Ŷ (z, ẑ) = QY (z) ∀z ∈ Y ∪ Ŷ ;

∑
z∈Y∪Ŷ

QY ,Ŷ (z, ẑ) = QŶ (ẑ) ∀ẑ ∈ Y ∪ Ŷ .

(3.191)

For further notational simplification, let

x(z, ẑ) := QY ,Ŷ (z, ẑ) ≥ 0. (3.192)

Then, the problem can be rewritten as:

min
x(z,ẑ)

∑
z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

‖z − ẑ‖x(z, ẑ) :

− x(z, ẑ) ≤ 0, ∀z, ẑ ∈ Y ∪ Ŷ ;∑
ẑ∈Y∪Ŷ

x(z, ẑ) = QY (z) ∀z ∈ Y ∪ Ŷ ;

∑
z∈Y∪Ŷ

x(z, ẑ) = QŶ (ẑ) ∀ẑ ∈ Y ∪ Ŷ .

(3.193)

Lagrange function, dual function & dual problem In an effort to derive
the dual problem, we first consider the Lagrange function:

L(x, λ, ν,µ) =
∑

z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

‖z − ẑ‖x(z, ẑ)

−

∑
z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

λ(z, ẑ)x(z, ẑ)

+

∑
z∈Y∪Ŷ

ν(z)

QY (z)−
∑

ẑ∈Y∪Ŷ

x(z, ẑ)

276 Machine Learning Applications

+

∑
ẑ∈Y∪Ŷ

µ(ẑ)

QŶ (ẑ)−
∑

z∈Y∪Ŷ

x(z, ẑ)

=

∑
z∈Y∪Ŷ

∑
ẑ∈Y∪Ŷ

(
‖z − ẑ‖ − λ(z, ẑ)− ν(z)− µ(ẑ)

)
x(z, ẑ)

+

∑
z∈Y∪Ŷ

ν(z)QY (z)+
∑

ẑ∈Y∪Ŷ

µ(ẑ)QŶ (ẑ) (3.194)

where (λ, ν,µ) are Lagrange multipliers. Notice that the multiplication factors
associated with x(z, ẑ)’s in the double summation term in the above last equation
(marked in red) should be zeros:

‖z − ẑ‖ − λ(z, ẑ)− ν(z)− µ(ẑ) = 0 ∀z, ẑ ∈ Y ∪ Ŷ . (3.195)

Otherwise, one can set x(z, ẑ) = ∞ (or −∞) depending on the sign of a non-
zero such term while setting x(z, ẑ) = 0 for the other terms. This then yields
L(x, λ, ν,µ) = −∞, and hence g(λ, ν,µ) = −∞. Obviously this is not an inter-
ested case. Hence, applying (3.195), we derive the dual function as:

g(λ, ν,µ) =
∑

z∈Y∪Ŷ

ν(z)QY (z)+
∑

ẑ∈Y∪Ŷ

µ(ẑ)QŶ (ẑ). (3.196)

Now notice that λ(z, ẑ) ≥ 0 is a constraint that appears in the dual problem. This
together with (3.195) then yields:

‖z − ẑ‖ − ν(z)− µ(ẑ) = λ(z, ẑ) ≥ 0 ∀z, ẑ ∈ Y ∪ Ŷ . (3.197)

Using this, we can formulate the dual problem as:

d∗ := max
ν,µ

∑
z∈Y∪Ŷ

ν(z)QY (z)+
∑

ẑ∈Y∪Ŷ

µ(ẑ)QŶ (ẑ) :

ν(z)+ µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ .

(3.198)

How to deal with two functions in the optimization? How to solve the dual
problem (3.198)? Actually it is not that simple. One may think of the following
native approach: Searching for all the possible functions of ν(·) and µ(·) in finding
the maximum.

Kantorovich did not take this approach. Instead he came up with a very interest-
ing and smart idea. The idea is to translate the problem (3.198) with two functions
(ν(·) and µ(·)) that one can control over, into an equivalent problem but with only

Wasserstein GAN I 277

one function, say ψ(·). It turns out the idea led Kantorovich to come up with the
following equivalent problem:

d∗∗ := max
ψ

∑
z∈Y∪Ŷ

QY (z)ψ(z) −
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)ψ(ẑ) :

|ψ(z)− ψ(ẑ)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ .

(3.199)

Notice in the translated problem that we have only one function to optimize over,
so the complexity is significantly reduced.

Relying on the proof of d∗ = d∗∗ together with the outer optimization problem
(w.r.t. G(·)), Bottou was able to derive a simpler form of an optimization problem,
which is now known as the WGAN optimization.

Look ahead In the next section, we will prove that d∗ is indeed d∗∗. We will
then demonstrate that this proof leads to the WGAN optimization.

278 Machine Learning Applications

3.10 Wasserstein GAN II

Recap In the previous section, we figured out there is a critical issue in GANs:
JSD(QY ,QŶ) is irrelevant of G(·), which in turn suggests that the optimal G∗

could be anything – this is definitely not what we want. In an effort to address this
issue, we considered the 1st-order Wasserstein distance which does not have the
undesirable property:

min
G(·)

W (QY ,QŶ) (3.200)

where QY and QŶ indicate the empirical distributions of real samples Y ∈

{y(1), . . . , y(m)} =: Y and fake samples Ŷ ∈ {ŷ(1), . . . , ŷ(m)} =: Ŷ , respectively.
We then checked that the objective function in (3.200) is a sensitive function of
G(·).

Since the inner optimization in (3.200) involves so many optimization variables
(whose number scales at m2) and hence is not computationally tractable (which is
often the case in the current big data era), we started considering the dual problem
which is known to be computationally tractable due to Kantorovich duality. Apply-
ing a bunch of dual problem tricks together with introducing (z, ẑ) notations and
the extended set Ȳ := Y ∪ Ŷ notation, we expressed the dual problem as:

d∗ := max
ν,µ

∑
z∈Y∪Ŷ

QY (z)ν(z)+
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)µ(ẑ) :

ν(z)+ µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ

(3.201)

where ν(z) and µ(z) denote Lagrange multipliers w.r.t. the marginal-distribution-
associated equality constraints, one for QY and the other for QŶ .

At the end of the last section, we claimed that the above problem is equivalent
to the following simpler optimization problem containing only one function ψ(·):

d∗∗ := max
ψ

∑
z∈Y∪Ŷ

QY (z)ψ(z) −
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)ψ(ẑ) :

|ψ(z)− ψ(ẑ)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ .

(3.202)

Also we mentioned that this simpler optimization leads to the WGAN
optimization.

Outline In this section, we will prove the above claim and then derive the WGAN
optimization accordingly. What we are going to cover are three folded. We will first
prove d∗ = d∗∗. We will then use the claim to derive an optimization for WGAN.

Wasserstein GAN II 279

Finally we will discuss on the optimality of the Wasserstein distance for divergence-
measure based optimization problems.

Proof of d∗ ≥ d∗∗ We will show the following two inequalities: d∗∗ ≤ d∗ and
d∗ ≤ d∗∗. First let us prove the former. Consider:

d∗∗ := max
ψ

∑
z∈Y∪Ŷ

QY (z)ψ(z)−
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)ψ(ẑ)

≤ max
ψ

max
µ

∑
z∈Y∪Ŷ

QY (z)ψ(z)+
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)µ(ẑ)

= max
ν

max
µ

∑
z∈Y∪Ŷ

QY (z)ν(z)+
∑

ẑ∈Y∪Ŷ

QŶ (ẑ)µ(ẑ) (3.203)

where the inequality follows from the fact that −ψ(ẑ) (next to QŶ (ẑ) in the first
equation) can be interpreted as a particular choice among general functions repre-
sented byµ(·); and the last equality comes from a notational change:ψ(·)→ ν(·).

On the other hand, with the notational changes w.r.t. functions (−ψ(ẑ) →
µ(ẑ) and ψ(z)→ ν(z)), one can represent the constraint in (3.202) as:

|ν(z)+ µ(ẑ)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ . (3.204)

Since the RHS in the above is non-negative, the constraint implies that:

ν(z)+ µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Y ∪ Ŷ . (3.205)

This constraint (3.205) definitely yields a larger search space relative to (3.204),
since (3.205) does not necessarily imply (3.204). Since the above optimization is
about maximization, the larger search space gives:

d∗∗ ≤ max
ν

max
µ

∑
z∈Ȳ

QY (z)ν(z)+
∑
ẑ∈Ȳ

QŶ (ẑ)µ(ẑ) :

ν(z)+ µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Ȳ .

(3.206)

Notice that the RHS in the above is exactly the same as the original dual prob-
lem (3.201) with the optimal value d∗. Hence, this proves:

d∗∗ ≤ d∗. (3.207)

280 Machine Learning Applications

Proof of d∗ ≤ d∗∗ Let us start by recalling the original dual problem (3.201):

d∗ := max
ν,µ

∑
z∈Ȳ

QY (z)ν(z)+
∑
ẑ∈Ȳ

QŶ (ẑ)µ(ẑ) :

ν(z)+ µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Ȳ .

(3.208)

By massaging the constraint in the above dual problem, we can relate it to the
constraint in the translated problem (3.202). To see this, let us first move the ν(z)
term in the constraint to the RHS. This then yields:

µ(ẑ) ≤ −ν(z)+ ‖z − ẑ‖. (3.209)

Since this holds for all z, ẑ ∈ Ȳ , we obtain:

µ(ẑ) ≤ min
z∈Ȳ
{−ν(z)+ ‖z − ẑ‖}. (3.210)

Next we define the RHS in the above as −ψ(ẑ):

−ψ(ẑ) := min
z∈Ȳ
{−ν(z)+ ‖z − ẑ‖}. (3.211)

This definition then yields:

µ(ẑ) ≤ −ψ(ẑ) ∀ẑ ∈ Ȳ . (3.212)

On the other hand, in (3.211), consider a particular choice for z as ẑ. This then
gives:

−ψ(ẑ) ≤ −ν(ẑ) ∀ẑ ∈ Ȳ . (3.213)

With a notational change in the above from ẑ to z, we get:

ν(z) ≤ ψ(z) ∀z ∈ Ȳ . (3.214)

Applying the derived inequalities (3.214) and (3.212) into the original dual
problem (3.208), we get:

d∗ ≤ max
ψ

∑
z∈Ȳ

QY (z)ψ(z) −
∑
ẑ∈Ȳ

QŶ (ẑ)ψ(ẑ). (3.215)

This coincides with the objective function in the other interested optimiza-
tion (3.202).

The next is to figure out how the constraint |ψ(z) − ψ(ẑ)| ≤ ‖z − ẑ‖ in the
translated optimization (3.202) comes up. It turns out that the definition (3.211)

Wasserstein GAN II 281

incurs the constraint: |ψ(z) − ψ(ẑ)| ≤ ‖z − ẑ‖, ∀z, ẑ ∈ Ȳ . To see this clearly,
consider:

ψ(z) = max
t∈Ȳ
{ν(t)− ‖t − z‖} ∀z ∈ Ȳ ;

−ψ(ẑ) = min
t ′∈Ȳ
{−ν(t ′)+ ‖t ′ − ẑ‖} ∀ẑ ∈ Ȳ .

(3.216)

This comes simply from the definition (3.211). Adding the above two, we get:
∀z, ẑ ∈ Ȳ ,

ψ(z)− ψ(ẑ) = max
t∈Ȳ
{ν(t)− ‖t − z‖} +min

t ′∈Ȳ
{−ν(t ′)+ ‖t ′ − ẑ‖}

(a)
≤ max

t∈Ȳ
{ν(t)− ‖t − z‖ − ν(t)+ ‖t − ẑ‖}

(b)
≤ ‖z − ẑ‖

(3.217)

where (a) follows from choosing t ′ = t in the minimization part; and (b) comes
from the triangular inequality:

‖t − ẑ‖ ≤ ‖t − z‖ + ‖z − ẑ‖.

Swapping the roles of z and ẑ in (3.217), one can also get: ∀z, ẑ ∈ Ȳ ,

ψ(ẑ)− ψ(z) ≤ ‖z − ẑ‖. (3.218)

This together with (3.217) then yields:

|ψ(ẑ)− ψ(z)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Ȳ . (3.219)

The above implied constraint definitely yields a larger search space relative to the
definition (3.211). Applying this to (3.215), we get:

d∗ ≤ max
ψ

∑
z∈Ȳ

QY (z)ψ(z)−
∑
ẑ∈Ȳ

QŶ (ẑ)ψ(ẑ) :

|ψ(ẑ)− ψ(z)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Ȳ .

(3.220)

This completes the proof d∗ ≤ d∗∗.

1-Lipschitz constraint Notice the constraint in (3.202). Actually this is a very
well-known constraint in math and stats, called the 1-Lipschitz constraint. It comes
from the definition of an 1-Lipschitz function. We say that a function f (·) is 1-Lip if

|f (x1)− f (x2)| ≤ ‖x1 − x2‖ ∀x1, x2. (3.221)

282 Machine Learning Applications

An intuition of an 1-Lip function is that the function values evaluated at x1 and
x2 are not different too much as long as the distance ‖x1 − x2‖ between the two
points is small, meaning that the function changes sort of smoothly over x.

Using this definition, one can therefore say that the function ψ(·) in (3.202) is
1-Lip. Applying this to (3.202), we can obtain a simpler expression for the opti-
mization problem as:

max
ψ(·): 1-Lip

∑
z∈Ȳ

QY (z)ψ(z) −
∑
ẑ∈Ȳ

QŶ (ẑ)ψ(ẑ). (3.222)

Wasserstein GAN Recall the definitions of QY and QŶ :

QY (z) =

{
1
m , if z ∈ Y ;

0, if z ∈ Ŷ \ Y ;

QŶ (ẑ) =

{
1
m , if ẑ ∈ Ŷ ;

0, if ẑ ∈ Y \ Ŷ .

Also in the original optimization (3.200), we have the outer minimization
over G(·). Taking all of these into consideration, we can translate the original
Wasserstein-distance-based optimization into:

min
G(·)

max
ψ(·): 1-Lip

1

m

m∑
i=1

ψ(y(i))−
1

m

m∑
i=1

ψ(ŷ(i)). (3.223)

Obviously this is a function optimization problem. Hence, as Goodfellow did, Bot-
tou employed neural networks for G(·) and ψ(·) to approximate the optimization
problem (3.223) as:

min
G(·)∈N

max
ψ(·)∈N : 1-Lip

1

m

m∑
i=1

ψ(y(i))−
1

m

m∑
i=1

ψ(ŷ(i)) (3.224)

where N indicates a set of DNN-based functions. This is exactly the optimization
problem for WGAN. It turns out the WGAN works pretty well. So as of now, it is
the state of the art – many GAN variants that work best for some applications are
based on WGAN.

A fundamental question Recall the generic divergence-based optimization
problem:

min
G(·)

D(QY ,QŶ).

Wasserstein GAN II 283

Obviously the WGAN optimization (3.200) belongs to the above generic problem.
Then, one very natural question arises. Is the Wasserstein distance the best choice
for D(·, ·)? In other words,

D∗(·, ·) = W (·, ·)? (3.225)

A special case In an effort to address this question, a few groups including
our group have investigated a special setting in which the optimal generator G∗ is
known. The special setting is so called the Gaussian linear-generator setting wherein
data {y(i)}mi=1 follows a Gaussian distribution, say:

y(i) ∼ N (0, KY) where KY = U3U T , (3.226)

and the generator is subject to a linear operation:

ŷ(i) := G(x(i)) = Gx(i) where G ∈ Rn×k. (3.227)

Here one natural assumption that one can make on the distribution of x(i) is:

x(i) ∼ N (0, I), (3.228)

as this way suggests that fake samples are also Gaussian, which coincides with the
same type of distribution as that of real samples:

ŷ(i) ∼ N (0,E[(Gx(i))(Gx(i))T]) = N (0, GGT). (3.229)

Fortunately, under the above Gaussian setting, the optimal G∗ is well-known.
Here what it means by being optimal is in a sense of maximizing the likelihood of
the data, as we adopted while discussing on the optimality of cross entropy loss in
Section 3.2. It turns out the optimal G∗ is the one that performs Principle Com-
ponent Analysis (PCA):

E[ŷ(i)ŷ(i)T] = G∗G∗T = U diag(λ1, . . . , λk, 0, . . . , 0)U T (3.230)

where (λ1, . . . , λk) denote the k principal (largest) eigenvalues8 of KY = U3U T .
In a usual setting in which k < n, the PCA solution looks making sense. The rank
of GGT is limited by k, so it may not fully represent KY as the rank of KY can be n.
In this case, what one can do for the best is to make GGT as close as possible to KY .
One such natural way is to take the k largest eigenvalues of KY to form a covariance

8. One may ask how to compute the principal eigenvalues when KY is unknown, which is often the case in
reality. In this case, the optimal way is to compute an empirical covariance matrix S := 1

m

∑m
i=1 y(i)y(i)T

and then to take the k largest eigenvalues of S.

284 Machine Learning Applications

matrix. It turns out it is the best way in a sense of maximizing the likelihood of the
data. The proof of this will be explored in Prob 10.4.

Now under the special Gaussian linear-generator setting, one can ask the funda-
mental question (3.225):

G∗ = G∗WGAN = arg min
G∈Rn×k

W (QY ,QŶ)? (3.231)

It turns out the answer is yes. Actually the proof is not that short. So due to the
interest of other topics, we will not prove it; if you are interested, you can consult
with a paper (Cho and Suh, 2019).

However, the answer holds under the special Gaussian setting. So you may won-
der if that is the case also under general settings in which the data distribution is
arbitrary. Unfortunately it has been unanswered. We believe this is one of the fun-
damental and intriguing questions in the context of the GAN-based framework.
Someone may believe that the answer depends on what distribution of data we
consider. This may be the case, but even this was not answered. So any progress on
this will be interested.

Look ahead In the past two sections, we derived the WGAN optimization. In
the next section, we will investigate how to implement the optimization problem
via TensorFlow.

Wasserstein GAN: TensorFlow Implementation 285

3.11 Wasserstein GAN: TensorFlow Implementation

Recap In the prior section, we employed Kantorovich duality to translate the
Wasserstein-distance-based optimization into:

min
G(·)

max
ψ(·): 1-Lip

1

m

m∑
i=1

ψ(y(i))−
1

m

m∑
i=1

ψ(ŷ(i)). (3.232)

Then, by parameterizing G(·) and ψ(·), we derived the WGAN optimization:

min
G(·)∈N

max
ψ(·)∈N : 1-Lip

1

m

m∑
i=1

ψ(y(i))−
1

m

m∑
i=1

ψ(ŷ(i)) (3.233)

where N indicates a set of DNN-based functions. We also discussed on the opti-
mality of WGAN under a simple Gaussian linear-generator setting.

Outline In this section, we will study how to solve the optimization (3.233) as
well as how to implement it via TensorFlow. Specifically we are going to cover
three stuffs. First we will investigate a practical method to respect the 1-Lipschitz
constraint that appears in the design ofψ(·) in (3.233). Next, we will explore imple-
mentation details that the WGAN paper (Arjovsky et al., 2017) introduced, regard-
ing optimizers, neural network architecture and activation functions. Lastly, we
will study TensorFlow implementation in the context of the same task considered
in the GAN implementation: MNIST style handwritten digit image generation
(see Fig. 3.40).

A practical method for ensuring the 1-Lipschitz constraint Under the
neural network architecture, it is difficult to fully respect the 1-Lipschitz constraint.
Hence, the WGAN paper came up with sort of a heuristic for satisfying the con-
straint. The heuristic is based on the following observation: a small range of model

Generator A random
signal

MNIST dataset

MNIST-like
fake image

Figure 3.40. MNIST-style handwritten digit image generation.

286 Machine Learning Applications

parameters yields a small variation of the neural network function, thus encourag-
ing the 1-Lipschitz continuity. So the method confines the values of parameter into
a small range, say [−c, c] where c is a certain positive value. For instance, c was set to
0.01 in the WGAN paper. This method is called weight clipping and its operation
reads:

w =

−c, if w < −c;

w, if w ∈ [−c, c];

c, if w > c.

(3.234)

We will employ this for our implementation.

RMSprop optimizer (Hinton et al., 2012) Recall the Adam optimizer that we
learned in Section 3.5. The weights w(t) therein are updated as per:

w(t+1)
= w(t) + α

m(t)
√

s(t) + ε
(3.235)

where m(t) indicates a weighted average of the current and past gradients and s(t) is a
normalization factor that makes the effect of the gradient∇J (w(t)) almost constant
over t. The WGAN paper employs a simpler version of Adam that takes only care
of the normalization factor s(t) while ignoring the momentum m(t). The simpler
optimizer is also a famous one, named RMSprop, and it had been widely used until
Adam came around. What the WGAN paper found is that RMSprop is enough
to achieve good performances. So in our implementation, we will use this simpler
version. Details on the weight update in RMSprop are given below:

w(t+1)
= w(t) − α

∇J (w(t))
√

s(t) + ε
. (3.236)

Here the normalization factor s(t) is updated according to:

s(t) = βs(t−1)
− (1− β)(∇J (w(t)))2 (3.237)

where β ∈ [0, 1] denotes a hyperparameter that captures the weight of past values,
typically set to 0.9. In our implementation, we will employ the same hyperparam-
eters as in the WGAN paper: the learning rate α = 0.00005; and β = 0.9.

Leaky ReLU We mentioned several times that the default choice for activation
functions at hidden layers is ReLU. Actually there are many ReLU variants used in
practice. One such variant is “leaky ReLU” and it is the one that the WGAN paper
employed. The operation is very similar to that of ReLU. The only distinction is

Wasserstein GAN: TensorFlow Implementation 287

that the output is a scaled version of the input for negative values:

a =
{

z, if z ≥ 0;
αslopez, if z < 0

(3.238)

where αslope is a hyperparameter indicating a small slope applied for a negative
input. Notice that αslope = 0 gives ReLU while αslope = 1 yields linear activation.
Hence, one can view this as a generalized version of ReLU. In our implementation,
we will employ αslope = 0.2.

Convolutional neural networks (CNNs) The WGAN paper uses a certain
type of DNNs, specialized for image data. That is, convolutional neural networks,
CNNs for short. So we will also utilize this in our implementation. Since there are
lots of stuffs for studying CNNs, here we explain some key features of CNNs in a
brief manner and then present the architectures of the CNN-based models to be
employed in our implementation.

CNNs consist of two building blocks. The first is the conv layer. The key fea-
ture of the conv layer is that it is sparsely connected with input values. The sparse-
connectivity feature comes from an interesting scientific finding w.r.t. visual neu-
rons of intelligent beings: visual neurons react only to a limited region of an image
(not the entire region). The second building block is the pooling layer. The role
of pooling is not inspired by how visual neurons work. Rather it is mainly for
implementation. The role is to downsample signals in an effort to reduce the com-
putational load and the memory size.

Model for generator As a generator model, we employ a 5-layer CNN with four
hidden layers, as depicted in Fig. 3.41. For activation at each hidden layer, we utilize
leaky ReLU (marked in light blue). As in the GAN implementation (in Section 3.8),
we also use Batch Normalization (BN), marked in green, prior to activation at the
second and third hidden layers. Since an MNIST image consists of 28-by-28 pixels,
the output layer has 28-by-28 neurons spread in the 2-dimensional space, and we
use tanh activation (a shifted version of logistic activation) to ensure the range of
[−1, 1].

As the first hidden layer, we employ a fully-connected dense layer with 6272(=
7×7×128) neurons. It is then reshaped into a 3D tensor with a size of 7×7×128.
Next, we upsample it to have an expanded tensor of size 14 × 14 × 128.9 Again
we upsample it to yield another expanded tensor of size 28× 28× 128. Lastly we
have a conv layer to output 28-by-28 sized 2D neurons.

9. Explanation for its detailed operations is omitted here. We only present its role and will leave TensorFlow

implementation in the sequel.

288 Machine Learning Applications

50

6272

BNLeaky ReLU

7*7*128 14*14*128

tanh

28*28*128 28*28

Figure 3.41. Generator: A 5-layer CNN where the input size (the dimension of a latent

signal) is 50; we use a 6272-sized dense layer for the first hidden layer; and we utilize

conv layers for the remaining layers. The role of the second and third hidden layers is to

upsample input to yield an expanded 3D tensor (e.g., from 7 × 7 × 128 to 14 × 14 × 128 in

the second hidden layer). We employ leaky ReLU activation for every hidden layer, and

tanh activation for the output layer to ensure −1-to+1 output signals.

1

3136

BN
Leaky
ReLU

7*7*6414*14*64
28*28

Figure 3.42. Critic: A 4-layer CNN where the input size (the dimension of a real or fake

image) is 28 × 28; we use conv layers for the first and second hidden layers; and we

utilize a dense layer in the last layer. The role of the conv layers here is to downsample

input unlike generator. We employ leaky ReLU activation for every hidden layer, and linear

activation for the output layer.

Model for critic Instead of using a discriminator to classify generated images as
being real or fake, WGAN replaces the discriminator with a critic that scores the
realness or fakeness of a given image. So we call it critic here. As a model for critic, we
use a 4-layer CNN with three hidden layers, illustrated in Fig. 3.42. Here the input
size must be the same as that of a real (or fake) image, so it should read 28× 28. In
the first hidden layer, unlike the generator operation, we downsample the input to
yield a shrinked map of size 14×14. We generate 64 different maps independently.
We then stack all of them to construct a 3D tensor of size 14 × 14 × 64. In the
next layer, we perform a similar operation to generate another 3D tensor of size

Wasserstein GAN: TensorFlow Implementation 289

7×7×64. It is then flattened to form a vector of size 3136(= 7×7×64). Lastly,
we have a fully-connected layer to output a single neuron with linear activation
(no activation).

TensorFlow: Model for generator TensorFlow implementation for the gen-
erator model described in Fig. 3.41 is given below.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Reshape
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Conv2DTranspose
from tensorflow.keras.layers import ReLU
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.initializers import RandomNormal

latent_dim = 50
weight initialization
init = RandomNormal(stddev=0.02)

generator=Sequential()
generator.add(Dense(128*7*7,input_dim=latent_dim))
generator.add(LeakyReLU(0.2))
generator.add(Reshape((7,7,128)))
upsample to 14*14
generator.add(Conv2DTranspose(128, (4,4), strides=(2,2),

padding=’same’, kernel_initializer = init))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
upsample to 28*28
generator.add(Conv2DTranspose(128, (4,4), strides=(2,2),

padding=’same’, kernel_initializer = init))
generator.add(BatchNormalization())
generator.add(LeakyReLU(0.2))
output 28*28*1
generator.add(Conv2D(1, (7,7), activation=’tanh’,

padding=’same’, kernel_initializer = init))

Here we use a built-in class Conv2DTranspose for the purpose of upsampling. It has
a couple of input arguments concerning strides, padding and kernel_initializer.
These are all hyperparameters subject to our design choice. We omit all the details
in order not to distract you. Remember that these are just particular choices.

TensorFlow: Model for critic Unlike generator, the critic model intends
to respect the 1-Lipschitz constraint. As mentioned earlier, to this end, we

290 Machine Learning Applications

employ weight clipping. Specifically we rely upon the following class for code
implementation:

from tensorflow.keras import backend
from tensorflow.keras.constraints import Constraint

clip model weights to a given hypercube
class ClipConstraint(Constraint):

set clip value when initialized
def _ _init_ _(self, clip_value):

self.clip_value = clip_value
clip model weights to hypercube
def _ _call_ _(self, weights):

return backend.clip(weights,
-self.clip_value, self.clip_value)

def get_config(self):
return {’clip_value’: self.clip_value}

We use a built-in function backend.clip to implement weight clipping (3.234).
This can then be employed to apply weight clipping in the design of a critic model.
See below for TensorFlow implementation.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Reshape
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Conv2DTranspose
from tensorflow.keras.layers import ReLU
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.initializers import RandomNormal

in_shape = (28,28,1)
clip value
c = 0.01
weight initialization
init = RandomNormal(stddev=0.02)
weight constraint
const = ClipConstraint(c)

critic=Sequential()
downsample to 14*14
critic.add(Conv2D(64,(4,4),strides=(2,2),padding=’same’,

kernel_initializer=init,
kernel_constraint=const,
input_shape = in_shape))

Wasserstein GAN: TensorFlow Implementation 291

critic.add(BatchNormalization())
critic.add(LeakyReLU(0.2))
downsample to 7*7
critic.add(Conv2D(64,(4,4),strides=(2,2),padding=’same’,

kernel_initializer=init,
kernel_constraint=const,
input_shape = in_shape))

critic.add(BatchNormalization())
critic.add(LeakyReLU(0.2))
scoring, linear activation
critic.add(Flatten())
critic.add(Dense(1))

Here we use c = 0.01 for a clipping value as in the WGAN paper, and
ClipConstraint(c) is employed as an argument in Conv2D to apply weight clip-
ping.

TensorFlow: Generator input As a generator input, we use a random signal
with the Gaussian distribution. In particular, we use:

x ∈ Rlatent dim
∼ N (0, Ilatent dim).

Here is how to generate the Gaussian random signal in TensorFlow:

from tensorflow.random import normal
x = normal([batch_size,latent_dim])

TensorFlow: Optimizers for generator & critic We use RMSprop optimizers
with lr=0.00005 and the default choice of β = 0.9. We can readily implement it
via a built-in-class RMSprop:

from tensorflow.keras.optimizers import RMSprop
opt = RMSprop(lr=0.00005)

Now how about loss functions for generator and critic? To answer this, consider
the batch version of the WGAN optimization (3.233):

min
w

max
θ

1

mB

∑
i∈B

ψθ (y(i))−
1

mB

∑
i∈B

ψθ (Gw(x(i))). (3.239)

In light of critic, taking the minus sign in the objective, we obtain the equivalent
minimization problem:

min
θ
−

1

mB

∑
i∈B

ψθ (y(i))+
1

mB

∑
i∈B

ψθ (Gw(x(i)))︸ ︷︷ ︸
critic loss

292 Machine Learning Applications

where the critic loss is defined as the minus version. Here is how to implement the
critic loss:
from tensorflow.keras import backend
def wasserstein_loss(y_true,y_pred):

return backend.mean(y_true*y_pred)

For a real image, we can set y_true = -1 and take its corresponding critic output
for y_pred. On the other hand, for a fake image, y_true = +1 and y_pred should
read the critic output fed by the fake image.

Since ψθ (y(i)) is irrelevant of the generator weights w in (3.239), the generator
loss is:

min
w
−

1

mB

∑
i∈B

ψθ (Gw(x(i)))︸ ︷︷ ︸
generator loss

.

Hence, we can also implement this via the class wasserstein_loss that we defined
above. Here y_true should always be set to −1 and y_pred should be the critic
output fed by a fake image.

Taking all the above into consideration, we can compile generator and critic as
below.

from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras import backend

RMSprop optimizer
opt = RMSprop(lr=0.00005)

Define "Wassterstein loss"
def wasserstein_loss(y_true,y_pred):

return backend.mean(y_true*y_pred)

critic compile
critic.compile(loss=wasserstein_loss, optimizer=opt)

define the GAN model with fake input and critic output
fix critic’s weights while training generator
critic.trainable = False
gan_input = Input(shape=(latent_dim,))

Wasserstein GAN: TensorFlow Implementation 293

x = generator(inputs=gan_input)
output = critic(x)
gan = Model(gan_input, output)
generator compile
gan.compile(loss=wasserstein_loss, optimizer=opt)

TensorFlow: Getting batches Since we use batches with batch_size, we pro-
vide a code that segments data in the form of batches.

import numpy as np
def get_batches(data, batch_size):

batches = []
for i in range(int(data.shape[0] // batch_size)):

batch = data[i*batch_size:(i+1)*batch_size]
batches.append(batch)

return np.asarray(batches)

TensorFlow: Training Putting all of the above together, we can now train gen-
erator and critic via alternating gradient descent:

import numpy as np
from tensorflow.random import normal
EPOCHS = 50
k=2 # k:1 alternating gradient descent
c_losses = []
g_losses = []

for epoch in range(1,EPOCHS + 1):
train per each batch
np.random.shuffle(X_train)
for i, real_imgs in enumerate(get_batches(X_train, batch_size)):

#####################
train critic
#####################
fake input generation
gen_input = normal([batch_size,latent_dim])
fake images
gen_imgs = generator.predict(gen_input)
real_imgs = real_imgs.reshape(-1,28,28,1)
input for critic
c_input = np.concatenate([real_imgs,gen_imgs])
label for critic

294 Machine Learning Applications

first half: real (-1); second half: fake (+1)
c_label = np.ones(2*batch_size)
c_label[:batch_size] = -1
train critic
c_loss = critic.train_on_batch(c_input,c_label)

#####################
train generator
#####################
if i % k: # train once every k steps

fake input generation
g_input = normal([batch_size,latent_dim])
label for fake images
Create inverted labels for fake images
g_label = - np.ones(batch_size)
train generator
g_loss = gan.train_on_batch(g_input, g_label)

c_losses.append(c_loss)
g_losses.append(g_loss)

Look ahead So far we have investigated several applications that arise in machine
learning, ranging from logistic regression, deep learning, unsupervised learning,
GANs, all the way up to WGAN. From the next section, we will move onto the
last application which concerns societal issues relevant to optimization techniques.
That is, fair machine learning.

Problem Set 10 295

Problem Set 10

Prob 10.1 (An issue in Goodfellow’s GAN) Let

QY (z) =

1
m , if z ∈ Y ;

0, if z ∈ Ŷ \ Y ;

QŶ (ẑ) =

1
m , if ẑ ∈ Ŷ ;

0, if ẑ ∈ Y \ Ŷ ,

(3.240)

where Y := {y(1), . . . , y(m)} and Ŷ := {ŷ(1), . . . , ŷ(m)} indicate the sets of real and
fake samples, respectively.

(a) In Section 3.9, we argued that in many practical settings,

Y ∩ Ŷ = ∅. (3.241)

Explain why.
(b) Assuming (3.241), show that

JSD(QY ,QŶ) = log 2. (3.242)

(c) In Section 3.7, we showed that the original GAN by Goodfellow can
be translated into the JSD-based optimization problem under a certain
assumption. Explain why the original GAN works well in practice although
the JSD-based optimization does not guarantee a good performance due
to (3.242).

Prob 10.2 (Wasserstein GAN) Consider the 1st-order Wasserstein distance:

W (QY ,QŶ) := min
QY ,Ŷ

E
[
‖Y − Ŷ ‖

]
(3.243)

where QY and QŶ indicate the empirical distributions of real and fake samples
defined as:

QY (z) =
{ 1

m , if z ∈ Y ;
0, if z ∈ Ŷ \ Y ;

QŶ (ẑ) =

{
1
m , if ẑ ∈ Ŷ ;
0, if ẑ ∈ Y \ Ŷ .

(3.244)

Here QY ,Ŷ should respect the marginal distributions of QY and QŶ . Let Ȳ :=

Y ∪ Ŷ .

296 Machine Learning Applications

(a) Show that the dual problem of (3.243) can be derived as:

max
ν,µ

∑
z∈Ȳ

QY (z)ν(z)+
∑
ẑ∈Ȳ

QŶ (ẑ)µ(ẑ) :

ν(z)+ µ(ẑ) ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Ȳ .

(3.245)

(b) Show that the dual problem (3.245) is equivalent to the following optimiza-
tion:

max
ψ

∑
z∈Ȳ

QY (z)ψ(z)−
∑
ẑ∈Ȳ

QŶ (ẑ)ψ(ẑ) :

|ψ(z)− ψ(ẑ)| ≤ ‖z − ẑ‖ ∀z, ẑ ∈ Ȳ .

(3.246)

Prob 10.3 (2nd-order Wasserstein distance) Consider the 2nd -order
Wasserstein distance, defined as:

W 2
2 (QY ,QŶ) := min

QY ,Ŷ

E
[
‖Y − Ŷ ‖2

]
(3.247)

where QY and QŶ indicate the empirical distributions of real and fake samples
defined as in (3.244). Here QY ,Ŷ should respect the marginal distributions of QY

and QŶ . Let Ȳ := Y ∪ Ŷ .

(a) Show that

W 2
2 (QY ,QŶ) = E

[
‖Y ‖2

]
+ E

[
‖Ŷ ‖2

]
+ 2 min

QY ,Ŷ

E
[
−Ŷ T Y

]
.

(3.248)

(b) Let

T (QY ,QŶ) := min
QY ,Ŷ

E
[
−Ŷ T Y

]
. (3.249)

Show that the dual problem of (3.249) can be derived as:

d∗ := max
ν,µ

∑
z∈Ȳ

QY (z)ν(z)+
∑
ẑ∈Ȳ

QŶ (ẑ)µ(ẑ) :

ν(z)+ µ(ẑ) ≤ −ẑT z ∀z, ẑ ∈ Ȳ .

(3.250)

(c) Show that the dual problem (3.250) is equivalent to the following optimiza-
tion:

d∗∗ := max
ψ(·): convex

−

∑
z∈Ȳ

QY (z)ψ(z)−
∑
ẑ∈Ȳ

QŶ (ẑ)ψ̂(ẑ) (3.251)

Problem Set 10 297

where

ψ̂(ẑ) := max
z∈Ȳ

{
−ψ(z)+ ẑT z

}
∀ẑ ∈ Ȳ . (3.252)

Prob 10.4 (Gaussian linear generator) Consider a Gaussian linear-generator
setting in which the data {y(i)}mi=1 follows a Gaussian distribution, say:

y(i) ∼ N (0, KY) where KY = U3U T , (3.253)

and the generator is subject to a linear operation:

ŷ(i) := G(x(i)) = Gx(i) where G ∈ Rn×k. (3.254)

Assume that rank(KY) = n; k < n; and

x(i) ∼ N (0, I). (3.255)

Also assume that x(i)’s are independent and identically distributed (i.i.d.); so
are y(i)’s.

(a) Show that the distribution of ŷ(i) is:

ŷ(i) ∼ N (0, GGT). (3.256)

(b) Let K := GGT . With the eigenvalue decomposition, let us express K as:

K = V6V T (3.257)

where 6 := diag(σ1, . . . , σk, 0, . . . , 0) and V ∈ Rn×n indicates a unitary
matrix. Here σi’s are eigenvalues of K . Let K † := V6−1V T be the pseudo-
inverse of K where 6−1 is defined as:

6−1 := diag(σ−1
1 , . . . , σ−1

k , 0, . . . , 0). (3.258)

Consider a density function defined on the projected space w.r.t. G:

fŶ (t) =
1√

(2π)k|K |
exp

(
−

1

2
tT K †t

)
(3.259)

where t ∈ Rn and |K | :=
∏k

i=1 σi. Express

log

{
m∏

i=1

fŶ (y
(i))

}
(3.260)

in terms of a sample covariance matrix S := 1
m

∑m
i=1 y(i)y(i)T .

(c) Derive the optimal K ∗ = G∗G∗T such that the log-likelihood func-
tion (3.260) is maximized.

298 Machine Learning Applications

Prob 10.5 (Uniform linear generator) Suppose Y = [Y1, Y2]T is a two-
dimensional random vector where Yi’s are independent and identically distributed
(i.i.d.) ∼ Unif[0, 1], i.e., the probability density function fYi(y) = 1 for y ∈ [0, 1]
and i ∈ {1, 2}. Let X ∼ Unif[0, 1], being independent of Y . Let Ŷ = [g1X , g2X]T

where g1, g2 ∈ R. Let fŶ (·) be the probability density function w.r.t. Ŷ . A student
claims that JSD(fY , fŶ) is irrelevant of how we choose (g1, g2). Prove or disprove
this claim.

Prob 10.6 (True or False?)

(a) Let {y(i)}mi=1 and {ŷ(i)}mi=1 be real and fake samples in generative modeling.
Let Y := {y(1), . . . , y(m)} and Ŷ := {ŷ(1), . . . , ŷ(m)}. Suppose |Y| = |Ŷ| =
m and Y ∩ Ŷ = ∅. Then, the Jensen-Shannon divergence between the
empirical distributions of real and fake samples is irrelevant of the generator
function G(·), i.e., JSD(QY ,QŶ) does not change over G(·).

(b) Consider a Gaussian linear-generator setting in which the data {y(i)}mi=1
follows a Gaussian distribution, say y(i) ∼ N (0, KY), where y(i) ∈ Rn and
KY has full rank; the generator is subject to a linear operation ŷ(i) = Gx(i)

where G ∈ Rn×k and x(i) ∈ Rk. Assume that k < n and x(i) ∼ N (0, I).
Also assume that x(i)’s are independent and identically distributed (i.i.d.);
so are y(i)’s. Consider a regime in which m→∞. Then, under this setting,
Wasserstein GAN can yield the optimal G that maximizes the likelihood
(probability density function) of the data.

(c) Suppose Y = [Y1, Y2]T is a two-dimensional random vector where Yi’s
are i.i.d. ∼ Unif[0, 1], i.e., fYi(y) = 1 for y ∈ [0, 1]. Let X ∼ Unif[0, 1],
being independent of Y . Let Ỹ = [g1X , g2X]T where gi ∈ R. Consider
KLD(fY , fỸ) and JSD(fY , fỸ). Both of them are invariant of the values of
(g1, g2).

Fair Machine Learning 299

3.12 Fair Machine Learning

Recap During the past sections, we have explored two prominent methodologies
for machine learning: (i) supervised learning; and (ii) unsupervised learning. The
goal of supervised learning is to estimate the function f (·) of an interested system
from input-output example pairs, as illustrated in Fig. 3.43(a).

In an effort to translate a function optimization problem (a natural formulation
of supervised learning) into a parameter-based optimization problem, we parame-
terized the function with a deep neural network. We also investigated some com-
mon practices adopted by many practitioners: Employing ReLU (or leaky ReLU)
activation at hidden layers and softmax at the output layer; using cross entropy
loss (the optimal loss function in a sense of maximum likelihood); and applying
advanced versions of gradient descent, Adam and RMSprop optimizers.

We also learned about unsupervised learning. We put a special emphasis on one
famous unsupervised learning method: generative modeling, wherein the goal is to
generate fake examples so that their distribution is as close as possible to that of real
examples; see Fig. 3.43(b). In particular, we focused on one powerful generative
model based on Generative Adversarial Networks (GANs), which have played a
revolutionary role in the modern AI field. We explored its interesting connection
to a well-known divergence measure in statistics: Jensen-Shannon divergence. We
also studied a variant of GAN, named Wasserstein GAN, which addresses a critical
issue that arises in Goodfellow’s GAN under very expressive DNN architectures.
Moreover, we learned how to do TensorFlow implementation both for GAN and
WGAN.

Next application As the final application, we will explore one recent trending
topic that arises in the modern machine learning: Fair machine learning. There are
three reasons that we emphasize this topic.

The first reason is motivated by the recent trend in the machine learning field. As
machine learning becomes prevalent in our daily lives involving a widening array of

Neural
network

Generator fake samples

(a) (b)

Figure 3.43. (a) Supervised learning: Learning the function f (·) of an interested system

from input-output example pairs {(x(i), y(i))}mi=1; (b) Generative modeling (an unsupervised

learning methodology): Generating fake data that resemble real data, reflected in {x(i)}mi=1.

300 Machine Learning Applications

Figure 3.44. Machine learning-based recidivism score predictor of the US Supreme

Court: Black defendants were 77.3 percent more likely than white defendants to receive

high recidivism scores.

applications such as medicine, finance, job hiring and criminal justice, one morally
& legally motivated need in the design of machine learning algorithms is to ensure
fairness for disadvantageous against advantageous groups. The fairness issue has
received a particular attention from the learning algorithm by the US Supreme
Court that yields unbalanced recidivism (criminal reoffending) scores across dis-
tinct races, e.g., predicts higher scores for blacks against whites (Larson et al.); see
Fig. 3.44. Hence, we wish to touch upon the trending & important topic for this
book. The second is regarding an interesting connection to two contents that we
learned in Parts I and II, respectively: (i) the regularization technique; and (ii) the
optimality condition of convex optimization, characterized by the KKT condition.
It turns out that these two play a key role in formulating an optimization prob-
lem for fair machine learning algorithms. The last reason is that the optimization
problem is closely related to the GAN optimization that we learned in the past sec-
tions. You may see the perfect coherent sequence of applications, from supervised
learning, GANs to fair machine learning.

During upcoming sections For a couple of upcoming sections, we will inves-
tigate fair machine learning in depth. What we are going to cover are four folded.
First off, we will figure out what fair machine learning is. We will then study two
prominent fairness concepts that have been established in the recent literature. We
will also formulate an optimization for fair machine learning algorithms which
respect the fairness constraints based on the concepts. Next we will demonstrate
that the regularization technique forms the basis of such an optimization and the
optimization can be rewritten as the GAN optimization that we learned in the prior
application. Lastly we will learn how to solve the optimization and implement via
TensorFlow. In this section, we will cover the first two.

Fair machine learning Fair machine learning is a subfield of machine learning
that focuses on the theme of fairness. In view of the definition of machine learning,

Fair Machine Learning 301

fair machine learning can concretely be defined as a field of algorithms that train a
machine so that it can perform a specific task in a fair manner.

Like traditional machine learning, there are two methodologies for fair machine
learning. One is fair supervised learning, wherein the goal is to develop a fair clas-
sifier using input-output sample pairs: {(x(i), y(i))}mi=1. The second is the unsuper-
vised learning counterpart. In particular, what is a proper counterpart for generative
modeling? A natural one is: fair generative modeling in which the goal is to generate
fairness-ensured fake data which are also realistic. For instance, we may want to gen-
erate class-balanced generated samples even when trained with size-biased real data
across different demographics. In this book, we will focus only on fair supervised
learning.

Two major fairness concepts In order to develop a fair classifier, we first need
to understand what it means by fairness. Fairness is a terminology that arises in law
that deals with justice. So it has a long and rich history, and there are numerous
concepts prevalent in the field of law. We focus only on two major and promi-
nent concepts on fairness, which have received particular attention in the modern
machine learning field.

The first is disparate treatment (DT). This means an unequal treatment that
occurs directly because of some sensitive information (such as race, sex, and reli-
gion), often called sensitive attributes in the literature. It is also called direct discrim-
ination, since such attributes directly serve to incur discrimination.

The second is disparate impact (DI). This means an action that adversely
affects one group against another even with formally neutral rules wherein sensitive
attributes are never used in classification and therefore the DT does not occur. It is
also called indirect discrimination, since a disparate action is made indirectly through
biased historical data.

Criminal reoffending predictor How to design a fair classifier that respects
the above two fairness concepts: DT and DI? For simplicity, let us explore this
in the context of a simple yet concrete classification setting: Criminal reoffending
prediction, wherein the task is to predict whether or not an interested individual
with criminal records would reoffend in the near future, say within two years. This
is indeed the classification being done by the US Supreme Court for the purpose
of deciding parole.

A simple setting For illustrative purpose, we consider a simplified version of
the predictor wherein only a few information are employed for prediction. See
Fig. 3.45.

There are two types of data employed: (i) objective data; (ii) sensitive data (or
called sensitive attributes). For objective data that we denote by x, we consider only

302 Machine Learning Applications

Criminal reoffending
predictor

objective

sensitive

Figure 3.45. A criminal reoffending predictor.

two features, say x1 and x2. Let x1 be the number of prior criminal records. Let x2

be a criminal type, e.g., misdemeanour or felony. For sensitive data, we employ a
different notation, say z. We consider a simple scalar and binary case in which z
indicates a race type only among white (z = 0) and black (z = 1). Let ŷ be the
classifier output which aims to represent the ground-truth conditional distribution
P(y|x, z). Here y denotes the ground-truth label: y = 1 means reoffending within
2 years; y = 0 otherwise. This is a supervised learning setup, so we are given m
example triplets: {(x(i), z(i), y(i))}mi=1.

How to avoid disparate treatment? Firs of all, how to deal with disparate
treatment? Recall the DT concept: An unequal treatment directly because of sensi-
tive attributes. Hence, in order to avoid the DT, we should ensure that the predic-
tion should not be a function of the sensitive attribute. A mathematically precise
expression for this is:

P(y|x, z) = P(y|x) ∀z. (3.261)

How to ensure the above? The solution is very simple: Not using the sensitive
attribute z at all in the prediction, as illustrated with a red-colored “x” mark in
Fig. 3.45. Here an important thing to notice is that the sensitive attribute is offered
as part of training data although it is not used as part of input. So z(i)’s can be
employed in the design of an algorithm.

What about disparate impact? How about for the other fairness concept:
disparate impact? How to avoid DI? Again recall the DI concept: An action that
adversely affects one group against another even with formally neutral rules. Actu-
ally it is not that clear as to how to implement this mathematically.

To gain some insights, let us investigate the precise mathematical definition of
DI. To this end, let us introduce a few notations. Let Z be a random variable that
indicates a sensitive attribute. For instance, consider a binary case, say Z ∈ {0, 1}.
Let Ỹ be a binary hard-decision value of the predictor output Ŷ at the middle
threshold: Ỹ := 1{Ŷ ≥ 0.5}. Observe a ratio of likelihoods of positive example

Fair Machine Learning 303

events Ỹ = 1 for two cases: Z = 0 and Z = 1.

P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
. (3.262)

One natural interpretation is that a classifier is more fair when the ratio is closer
to 1; becomes unfair if the ratio is far away from 1. The DI is quantified based on
this, so it is defined as (Zafar et al., 2017):

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
. (3.263)

Notice that 0 ≤ DI ≤ 1 and the larger DI, the more fair the situation is.

Two cases In view of the mathematical definition (3.263), reducing disparate
impact means maximizing the mathematical quantity (3.263). Now how to design
a classifier so as to maximize DI then? Depending on situations, the design method-
ology can be different. To see this, think about two extreme cases.

The first is the one in which training data is already fair:

{(x(i), z(i), y(i))}mi=1 → large DI.

In this case, a natural solution is to simply rely on a conventional classifier that aims
to maximize prediction accuracy. Why? Because maximizing prediction accuracy
would well respect training data, which in turn yields large DI. The second is a
non-trivial case in which training data is far from being fair:

{(x(i), z(i), y(i))}mi=1 → small DI.

In this case, the conventional classifier would yield a small value of DI. This is indeed
a challenging scenario where we need to take some non-trivial action for ensuring
fairness.

In fact, the second scenario can often occur in reality, since there could be biased
historical records which form the basis of training data. For instance, the Supreme
Court can make some biased decisions for blacks against whites, and these are likely
to be employed as training data. See Fig. 3.46 for one such unfair scenario. In
Fig. 3.46, a hollowed (or black-colored-solid) circle indicates a data point of an
individual with white (or black) race; and the red (or blue) colored edge (ring)
denotes the event that the interested individual reoffends (or non-reoffends) within
two years. This is an unfair situation. Notice that for positive examples y = 1, there
are more black-colored-solid circles than hollowed ones, meaning sort of biased
historical records favouring whites against blacks. Similarly for negative examples
y = 0, there are more hollowed circles relative to solid ones.

304 Machine Learning Applications

Figure 3.46. Visualization of a historically biased dataset: A hollowed (or black-colored-

solid) circle indicates a data point of an individual with white (or black) race; the red (or

blue) colored edge denotes y = 1 reoffending (or y = 0 non-reoffending) label.

How to ensure large DI? How to ensure large DI under all possible scenarios
including the above unfair challenging scenario? To gain insights, first recall an
optimization problem that we formulated earlier in the design of a conventional
classifier:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i)) (3.264)

where `CE(·, ·) indicates binary cross entropy loss, and w denotes weights (parame-
ters) for a classifer. One natural approach to ensure large DI is to incorporate an DI-
related constraint in the optimization (3.264). Maximizing DI is equivalent to min-
imizing 1−DI (since 0 ≤ DI ≤ 1). So we can resort to the regularization technique
that we learned in Part I. That is, adding the two objectives with different weights.

Regularized optimization Here is a regularized optimization:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · (1− DI) (3.265)

where λ denote a regularization factor that balances predication accuracy against
the DI-associated objective (minimizing 1 − DI). However, here an issue arises in
solving the regularized optimization (3.265). Recalling the definition of DI

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
,

we see that DI is a complicated function of w. We have no idea as to how to express
DI in terms of w.

Fair Machine Learning 305

Another way Since directly expressing DI as a function of w is not doable, one
can rely on another way to go. Another way that we will take is inspired by one
popular information-theoretic measure: mutual information (Cover, 1999). Notice
that DI = 1 means that the sensitive attribute Z is independent of the hard deci-
sion Ỹ of the prediction. One key property of mutual information is that mutual
information between two input random variables being zero is the “sufficient and
necessary condition” for the independence between the two inputs. This motivates
us to represent the constraint of DI = 1 as:

I(Z ; Ỹ) = 0. (3.266)

This captures the complete independence between Z and Ỹ . Since the predictor
output is Ŷ (instead of Ỹ), we consider another stronger condition that concerns
Ŷ directly:

I(Z ; Ŷ) = 0. (3.267)

Notice that the condition (3.267) is indeed stronger than (3.266), i.e., (3.267)
implies (3.266). This is because

I(Z ; Ỹ)
(a)
≤ I(Z ; Ỹ , Ŷ)
(b)
= I(Z ; Ŷ).

(3.268)

Here the step (a) is due to two key properties that mutual information has: (i) the
chain rule holds for mutual information, i.e., I(Z ; Ỹ , Ŷ) = I(Z ; Ỹ)+ I(Z ; Ŷ |Ỹ);
and (ii) mutual information is non-negative like Kullback-Leibler divergence; in
this case, I(Z ; Ŷ |Ỹ) ≥ 0. The step (b) is also because of the chain rule. To see this,
we employ the chain rule to have:

I(Z ; Ỹ , Ŷ) = I(Z ; Ŷ)+ I(Z ; Ỹ |Ŷ).

Here I(Z ; Ỹ |Ŷ) = 0 since Ỹ is a function of Ŷ : Ỹ := 1{Ŷ ≥ 0.5}. Notice
that (3.267) together with (3.268) gives (3.266).

Strongly regularized optimization In summary, the condition (3.267) indeed
enforces the DI = 1 constraint. This then motivates us to consider the following
optimization:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · I(Z ; Ŷ). (3.269)

306 Machine Learning Applications

Now the question of interest is: How to express I(Z ; Ŷ) in terms of classifier param-
eters w? It turns out interestingly there is a way to express it. Also it is intimately
related to the GAN optimization that we learned.

Look ahead In the next section, we will employ the way to explicitly formulate
an optimization for a fair classifier, and then make an interesting connection with
the GAN optimization.

A Fair Classifier and Its Connection to GANs 307

3.13 A Fair Classifier and Its Connection to GANs

Recap In the previous section, we introduced the last machine learning applica-
tion: A fair classifier. As an example of a fair classifier, we considered a recidivism
predictor wherein the task is to predict if an interested individual with prior crim-
inal records would reoffend within two years; see Fig. 3.47 for illustration.

In order to avoid disparate treatment (one famous fairness notion), we made
the sensitive attribute not included as part of the input. To address another fair-
ness notion (disparate impact, DI for short), we introduced a regularized term into
the conventional optimization (taking only into account prediction accuracy), thus
arriving at:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · I(Z ; Ŷ) (3.270)

where λ ≥ 0 is a regularization factor that balances prediction accuracy (reflected
in cross entropy loss) against the quantified fairness constraint, reflected in I(Z ; Ŷ).
Remember that I(Z ; Ŷ) = 0 is a sufficient condition for ensuring DI = 1. At the
end of the last section, we then claimed that one can express the mutual information
I(Z ; Ŷ) in terms of an optimization parameter w, thereby enabling us to train the
model parameterized by w. We also mentioned that the expressible optimization to
be formulated has an intimate connection to GANs.

Outline In this section, we will support the claim. Specifically we are going
to cover the following four stuffs. First we will explore an interesting connec-
tion between mutual information and a well-known divergence measure that we
introduced in Prob 8.4: the Kullback-Leibler (KL) divergence. Building upon the
connection and applying the optimality condition of convex optimization (fully

recidivism
predictor

Figure 3.47. A simple recidivism predictor: Predicting a recidivism score ŷ from x = (x1, x2).

Here x1 indicates the number of prior criminal records; x2 denotes a criminal type (mis-

demeanor or felony); and z is a race type among white (z = 0) and black (z = 1).

308 Machine Learning Applications

characterized by the KKT condition), we will show that I(Z ; Ŷ) can be expressed
in terms of a model parameter w. Next, we will translate the expressible optimiza-
tion into an implementable form, thereby coming up with a concrete way to solve
the optimization. Lastly we will make an analogy with GANs.

Connection between mutual information vs. KL divergence There are
two versions of definition for mutual information. The first is based on the Shannon
entropy that we mentioned in Section 3.2. The second is expressed in terms of the
KL divergence. Here we adopt the second version to explore an connection between
mutual information and the KL divergence (Cover, 1999):

I(Z ; Ŷ) := KLD

(
PŶ ,Z ,PŶ PZ

)
. (3.271)

If you think about it, this definition makes an intuitive sense. Notice that the
independence between Z and Ŷ implies PŶ ,Z = PŶ PZ , which in turn leads to

KLD(PŶ ,Z ,PŶ PZ) = 0, thereby I(Z ; Ŷ) = 0.

Manipulation of (3.271) Starting with (3.271), we can express the mutual infor-
mation as:

I(Z ; Ŷ) = KLD

(
PŶ ,Z ,PŶ PZ

)
(a)
=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)PZ (z)

(b)
=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)

+

∑
z∈Z

PZ (z) log
1

PZ (z)

(c)
=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)
+H(Z)

(3.272)

where (a) is due to the definition of the KL divergence; (b) comes from the total
probability law; and (c) is due to the definition of the Shannon entropy.

Now define the term placed in the last line marked in blue as:

D∗(ŷ, z) :=
PŶ ,Z (ŷ, z)

PŶ (ŷ)
. (3.273)

A Fair Classifier and Its Connection to GANs 309

Due to the total probability law, D∗(ŷ, z) should respect the sum-up-to-one
constraint w.r.t. z: ∑

z

D∗(ŷ, z) = 1 ∀ŷ. (3.274)

Mutual information via function optimization Instead of D∗(ŷ, z), one can
think about another function, say D(ŷ, z), which respects only the sum-up-to-one
constraint (3.274). It turns out D∗(ŷ, z) is the optimal choice among such D(ŷ, z)
in a sense of maximizing: ∑

ŷ,z

PŶ ,Z (ŷ, z) log D(ŷ, z), (3.275)

and this gives insights into expressing I(Z ; Ŷ) in terms of w. To see this clearly,
let us formally state that D∗(ŷ, z) is indeed the optimal choice via the following
theorem.
Theorem: The mutual information I(Z ; Ŷ), reflected in the last line of (3.272),
can be represented as the following function optimization:

I(Z ; Ŷ) = H(Z)+ max
D(ŷ,z):

∑
z D(ŷ,z)=1

∑
ŷ,z

PŶ ,Z (ŷ, z) log D(ŷ, z). (3.276)

Proof: The proof relies upon what we learned in Part II: the optimality condi-
tion for convex optimization. Notice that the optimization (3.276) is convex in
D(·, ·), since the log function is concave and the convexity preserves under addi-
tivity. Hence, by checking the KKT condition (the optimality condition for con-
vex optimization), one can prove that the optimal D(·, ·) indeed respects (3.273)
and (3.274). See below for details. Consider the Lagrange function:

L(D(ŷ, z), ν(ŷ)) =
∑
ŷ,z

PŶ ,Z (ŷ, z) log D(ŷ, z)+
∑

ŷ

ν(ŷ)

(
1−

∑
z

D(ŷ, z)

)
(3.277)

where ν(ŷ)’s indicate Lagrange multipliers w.r.t. the equality constraints. Consider
the KKT condition:

dL(D(ŷ, z), ν(ŷ))
dD(ŷ, z)

∣∣∣∣
D=Dopt,ν=νopt

=
PŶ ,Z (ŷ, z)

Dopt(ŷ, z)
− νopt(ŷ) = 0; (3.278)

∑
z

Dopt(ŷ, z) = 1. (3.279)

310 Machine Learning Applications

So we get Dopt(ŷ, z) =
PŶ ,Z (ŷ,z)
νopt(ŷ)

. Plugging this into (3.279), we obtain:

∑
z

Dopt(ŷ, z) =

∑
z PŶ ,Z (ŷ, z)

νopt(ŷ)
= 1, (3.280)

which yields:

νopt(ŷ) =
∑

z

PŶ ,Z (ŷ, z) = PŶ (ŷ). (3.281)

This together with (3.278) then gives:

Dopt(ŷ, z) =
PŶ ,Z (ŷ, z)

νopt(ŷ)
=
PŶ ,Z (ŷ, z)

PŶ (ŷ)
= D∗(ŷ, z). (3.282)

This completes the proof of the theorem. �

How to express I(Z ; Ŷ) in terms of w? Are we done with expressing I(Z ; Ŷ) in
terms of w? No. This is because PŶ ,Z (ŷ, z) that appears in (3.276) is not available.
To resolve this problem, we rely upon the empirical distribution instead:

QŶ ,Z (ŷ
(i), z(i)) =

1

m
∀i ∈ {1, . . . , m}.

In practice, the empirical distribution is very likely to be uniform, since ŷ(i) is real-
valued and hence the pair (ŷ(i), z(i)) is unique with high probability. By parametriz-
ing the function D(·, ·) with another, say θ , we can approximate I(Z ; Ŷ) as:

I(Z ; Ŷ) ≈ H(Z)+ max
θ :
∑

z Dθ (ŷ,z)=1

m∑
i=1

1

m
log Dθ (ŷ(i), z(i)). (3.283)

From the above parameterization building upon the function optimization (3.276),
we can now approximately express I(Z ; Ŷ) in terms of w and θ .

Implementable optimization (Cho et al., 2020) Notice in (3.283) that
H(Z) is irrelevant to the introduced optimization variables (w, θ). Hence, the
mutual information (MI)-based optimization (3.270) that we started with can be
(approximately) translated into:

min
w

max
θ :
∑

z Dθ (ŷ,z)=1

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))+ λ
m∑

i=1

log Dθ (ŷ(i), z(i))

}
. (3.284)

The objective function is a function of (w, θ) and hence it is implementable, for
instance, via famous neural networks. Since we have “min max”, we can apply the

A Fair Classifier and Its Connection to GANs 311

variant of gradient descent that we learned in Section 2.2. That is, alternating gra-
dient descent, in which given w, θ is updated via the inner optimization and then
given the updated θ , w is newly updated via the outer optimization, and this pro-
cess iterates until it converges.

The architecture of the fair classifier The architecture of the implementable
optimization (3.284) is illustrated in Fig. 3.48. On top of a classifier, we introduce
a new entity, called discriminator, which corresponds to the inner optimization.
In discriminator, we wish to find θ∗ that maximizes 1

m

∑m
i=1 log Dθ (ŷ(i), z(i)). On

the other hand, the classifier wants to minimize the term. Hence, Dθ (ŷ, z) can be
viewed as the ability to figure out z from prediction ŷ. Notice that the classifier
wishes to minimize the ability for the purpose of fairness, while the discriminator
has the opposite goal. So one natural interpretation that can be made on Dθ (ŷ, z) is
that it captures the probability that z is indeed the ground-truth sensitive attribute
for ŷ. Here the softmax function is applied to ensure the sum-up-to-one constraint.

Analogy with GANs Since the classifier and the discriminator are competing,
one can make an analogy with Goofellow’s GAN, in which the generator and the
discriminator also compete like a two-player game. While the fair classifier and the
GAN bear strong similarity in their nature, these two are distinct in their roles. See
Fig. 3.49 for the detailed distinctions.

Look ahead We are now done with the optimization formulation for a fair clas-
sifier. In the next section, we will study how to solve the optimization (3.284), as
well as how to implement it via TensorFlow.

softmax

classifier discriminator

Figure 3.48. The architecture of the MI-based fair classifier. The prediction output ŷ is fed

into the discriminator wherein the goal is to figure out sensitive attribute z from ŷ. The

discriminator output Dθ (ŷ, z) can be interpreted as the probability that ŷ belongs to the

attribute z. Here the softmax function is applied to ensure the sum-up-to-one constraint.

312 Machine Learning Applications

MI-based fair classifier

classifier

GAN

generator

discriminator discriminator
Goal: Distinguish real samples

from fake ones.
Figure out sensitive attribute
from prediction

Generate realistic fake samplesMaximize prediction accuracy

Figure 3.49. MI-based fair classifier vs. GAN: Both bear similarity in structure (as illus-

trated in Fig. 3.48), yet distinctions in role.

A Fair Classifier: TensorFlow Implementation 313

3.14 A Fair Classifier: TensorFlow Implementation

Recap Previously we formulated an optimization that respects two fairness con-
straints: disparate treatment (DT) and disparate impact (DI). Given m example
triplets {(x(i), z(i), y(i))}mi=1:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · I(Z ; Ŷ)

where ŷ(i) indicates the classifier output, depending only on x(i) (not on the sen-
sitive attribute z(i) due to the DT constraint); and λ is a regularization factor that
balances prediction accuracy against the DI constraint, quantified as I(Z ; Ŷ). Using
the connection between mutual information and KL divergence, as well as the KKT
condition (the optimality condition for convex optimization), we could approxi-
mate I(Z ; Ŷ) in the form of optimization:

I(Z ; Ŷ) ≈ H(Z)+ max∑
z D(ŷ,z)=1

m∑
i=1

1

m
log D(ŷ(i), z(i)). (3.285)

We then parameterized D(·) with θ to obtain:

min
w

max
θ :
∑

z Dθ (ŷ,z)=1

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))+ λ
m∑

i=1

log Dθ (ŷ(i), z(i))

}
.

(3.286)

Two questions that arise are: (i) how to solve the optimization (3.286)?; and (ii)
how to implement it via TensorFlow?

Outline In this section, we will address these two questions. What we are going
to do are four folded. First we will investigate a practical algorithm that allows
us to attack the optimization (3.286). We will then do a case study for the pur-
pose of exercising the algorithm. The case study is the one that we introduced
earlier: recidivism prediction. In the process, we will put a special emphasis on
one implementation detail: synthesizing an unfair dataset that we will use in our
experiments. Lastly we will learn how to implement programming via TensorFlow.
For illustrative purpose, we will focus on a simple binary sensitive attribute
setting.

314 Machine Learning Applications

Observation Let us start by translating the optimization (3.286) into the one
that is more programming-friendly:

min
w

max
θ :
∑

z Dθ (ŷ,z)=1

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))+ λ
m∑

i=1

log Dθ (ŷ(i), z(i))

}

(a)
= min

w
max
θ

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))

+λ

 ∑
i:z(i)=1

log Dθ (ŷ(i))+
∑

i:z(i)=0

log
(

1− Dθ (ŷ(i))
)

(b)
= min

w
max
θ

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))

+λ

(
m∑

i=1

z(i) log Dθ (ŷ(i))+ (1− z(i)) log
(

1− Dθ (ŷ(i))
))}

(c)
= min

w
max
θ

1

m

{
m∑

i=1

`CE

(
y(i), ŷ(i)

)
− λ

m∑
i=1

`CE

(
z(i), Dθ (ŷ(i))

)}

(d)
= min

w
max
θ

1

m

{
m∑

i=1

`CE

(
y(i), Gw(x(i))

)
− λ`CE

(
z(i), Dθ (Gw(x(i)))

)}
︸ ︷︷ ︸

=:J (w,θ)

where (a) is because we consider a binary sensitive attribute setting and we denote
Dθ (ŷ(i), 1) simply by Dθ (ŷ(i)); (b) is due to z(i) ∈ {0, 1}; (c) follows from the def-
inition of binary cross entropy loss `CE(·, ·); and (d) comes from Gw(x(i)) := ŷ(i).

Notice that J (w, θ) contains two cross entropy loss terms, each being a non-
trivial function of Gw(·) and/or Dθ (·). Hence, in general, J (w, θ) is highly non-
convex in w and non-concave in θ .

Alternating gradient descent Similar to the prior GAN setting in Section 3.8,
what we can do in this context is to apply the only technique that we are aware
of: alternating gradient descent. And then hope for the best. So we employ k : 1
alternating gradient descent:

1. Update classifier (generator)’s weight:

w(t+1)
← w(t) − α1∇wJ (w(t), θ (t·k)).

A Fair Classifier: TensorFlow Implementation 315

2. Update discriminator’s weight k times while fixing w(t+1): for i=1:k,

θ (t·k+i)
← θ (t·k+i−1)

+ α2∇θ J (w(t+1), θ (t·k+i−1)).

3. Repeat the above.

Similar to the GAN setting, one can use the Adam optimizer possibly together with
the batch version of the algorithm.

Optimization used in our experiments Here is the optimization that we will
use in our experiments:

min
w

max
θ

1

m

{
m∑

i=1

(1− λ)`CE

(
y(i), Gw(x(i))

)
− λ`CE

(
z(i), Dθ (Gw(x(i)))

)}
.

(3.287)

In order to restrict the range of λ into 0 ≤ λ ≤ 1, we apply the (1 − λ) factor to
the loss term w.r.t. prediction accuracy.

Like the prior GAN setting, let us define two loss terms. One is “classifier (or
generator) loss”:

min
w

max
θ

1

m

{
m∑

i=1

(1− λ)`CE

(
y(i), Gw(x(i))

)
− λ`CE

(
z(i), Dθ (Gw(x(i)))

)}
︸ ︷︷ ︸

“classifier (generator) loss"

.

Given w, discriminator wishes to maximize:

max
θ
−
λ

m

m∑
i=1

`CE

(
z(i), Dθ (Gw(x(i)))

)
.

This is equivalent to minimizing the minus of the objective:

min
θ

λ

m

m∑
i=1

`CE

(
z(i), Dθ (Gw(x(i)))

)
︸ ︷︷ ︸

“discriminator loss"

. (3.288)

This is how we define “discriminator loss”.

Performance metrics Unlike to the prior settings (supervised learning and
GAN), here we need to introduce another performance metric that captures the
degree of fairness. To this end, let us first define the hard-decision value of the
prediction output w.r.t. a test example:

Ỹtest := 1{Ŷtest ≥ 0.5}.

316 Machine Learning Applications

The test accuracy is then defined as:

1

mtest

mtest∑
i=1

1{y(i)test = ỹ(i)test}

where mtest denotes the number of test examples. This is an empirical version of
the ground truth P(Ytest = Ỹtest).

How to define a fairness-related performance metric? Recall the mathematical
definition of DI:

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
. (3.289)

Here you may wonder how to compute two probabilities of interest: P(Ỹ = 1|Z =
0) and P(Ỹ = 1|Z = 1). Using their empirical versions together with the Law of
Large Numbers (i.e., the empirical mean converges to the true mean as the number
of samples tends to infinity), we can estimate them. For instance,

P(Ỹ = 1|Z = 0) =
P(Ỹ = 1, Z = 0)

P(Z = 0)
≈

∑mtest

i=1 1{ỹ(i)test = 1, z(i)test = 0}∑mtest

i=1 1{z(i)test = 0}

where the first equality is due to the definition of conditional probability and the
second approximation comes from the Law of Large Numbers. The above approx-
imation is getting more and more accurate as mtest gets larger. Similarly we can
approximate the other interested probability P(Ỹ = 1|Z = 1). This way, we can
evaluate DI (3.289).

A case study Let us exercise what we have learned so far with a simple exam-
ple. As a case study, we consider the same simple setting that we introduced earlier:
recidivism prediction, wherein the task is to predict if an interested individual reof-
fends within two years, as illustrated in Fig. 3.50.

Synthesizing an unfair dataset One thing that we need to be careful about
in the context of fair machine learning is w.r.t. unfair datasets. For simplicity, we
will employ a synthetic dataset, not a real-world dataset. In fact, there is a real-world
dataset that concerns the recidivism prediction, called COMPAS (Angwin et al.,
2020). But this contains many attributes, so it is a bit complicated. Hence, we will
take a particular yet simple method to synthesize a much simpler unfair dataset.

Recall the visualization of an unfair data scenario that we investigated in Sec-
tion 3.12 and will form the basis of our synthetic dataset (to be explained in the
sequel); see Fig. 3.51 for the visualization. In Fig. 3.51, a hollowed (or black-
colored-solid) circle indicates a data point of an individual with white (or black)

A Fair Classifier: TensorFlow Implementation 317

Recidivism
predictor

Figure 3.50. Predicting a recidivism score ŷ from x = (x1, x2). Here x1 indicates the number

of prior criminal records; x2 denotes a criminal type: misdemeanor or felony; and z is a

race type among white (z = 0) and black (z = 1).

non-reoffend

reoffend

Figure 3.51. Visualization of a historically biased dataset: A hollowed (or black-colored-

solid) circle indicates a data point of an individual with white (or black) race; the red (or

blue) colored edge denotes y = 1 reoffending (or y = 1 non-reoffending) label.

race; and the red (or blue) colored edge (ring) denotes the event that the interested
individual reoffends (or non-reoffends) within two years. This is indeed an unfair
scenario: for y = 1, there are more black-colored-solid circles than hollowed ones;
similarly for y = 0, there are more hollowed circles relative to solid ones.

To generate such an unfair dataset, we employ a simple method. See Fig. 3.52
for illustration of the method. We first generate m labels y(i)’s so that they are inde-
pendent and identically distributed (i.i.d.), each being according to a uniform dis-
tribution, i.e., P(Y = 1) = P(Y = 0) = 1

2 . We denote the uniform distribution
by Bern(1

2), since the associated random variable is known as a Bernoulli random
variable. Here the number 1

2 inside the parenthesis indicates the probability of a
Bernoulli random variable being 1. For indices of positive examples (y(i) = 1),
we then generate i.i.d. x(i)’s according to N ((1, 1), 0.52I); and i.i.d. z(i)’s as per
Bern(0.8), meaning that 80% are blacks (z = 1) and 20% are whites (z = 0)

318 Machine Learning Applications

Figure 3.52. A simple way to synthesize an unfair dataset.

classifier discriminator

Figure 3.53. The architecture of the MI-based fair classifier.

among the positive individuals. Notice that the generation of x(i)’s is not quite real-
istic. The first and second components in x(i) do not precisely capture the number
of priors and a criminal type. You can view this generation as sort of a crude abstrac-
tion of the realistic data. On the other hand, for negative examples (y(i) = 0), we
generate i.i.d. (x(i), z(i))’s with different distributions: x(i) ∼ N ((−1,−1), 0.52I)
and z(i) ∼ Bern(0.2), meaning that 20% are blacks (z = 1) and 80% are whites
(z = 0). This way, z(i) ∼ Bern(1

2). This is because

P(Z = 1)
(a)
= P(Y = 1)P(Z = 1|Y = 1)+ P(Y = 0)P(Z = 1|Y = 0)

(b)
=

1

2
· 0.8+

1

2
· 0.2 =

1

2

where (a) follows from the total probability law and the definition of conditional
probability; and (b) is due to the rule of the data generation method employed.
Here Z and Y denote generic random variables for z(i) and y(i), respectively.

A Fair Classifier: TensorFlow Implementation 319

logistic

input

logistic

input

(a) (b)

output output

Figure 3.54. Models for (a) the classifier and (b) the discriminator.

Model architecture Fig. 3.53 illustrates the architecture of the MI-based fair
classifier. Since we focus on the binary sensitive attribute, we have a single output
Dθ (ŷ) in the discriminator. For models of the classifier and discriminator, we
employ very simple single-layer neural networks with logistic activation in the out-
put layer; see Fig. 3.54.

TensorFlow: Synthesizing an unfair dataset Let us discuss how to imple-
ment such details via TensorFlow. First consider the synthesis of an unfair dataset.
To generate i.i.d. Bernoulli (binary) random variables for labels, we use:

import numpy as np
y_train = np.random.binomial(1,0.5,size=(train_size,))

where the first two arguments of (1,0.5) specify Bern(0.5); and the null space fol-
lowed by train_size indicates a single dimension. Remember we generate i.i.d.
Gaussian random variables for x(i)’s. To this end, one can use:

x = np.random.normal(loc=(1,1),scale=0.5, size=(train_size,2))

TensorFlow: Optimizers for classifier & discriminator For classifier, we use
the Adam optimizer with the learning rate of 0.005 and (β1,β2) = (0.9, 0.999).
For discriminator, we use another much simpler optimizer, named Stochastic Gra-
dient Descent, SGD for short. SGD is the naive gradient descent yet with a batch
size of 1. We use SGD with the learning rate of 0.005.

from tensorflow.keras.optimizers import Adam
from tensorflow.keras.optimizers import SGD
adam=Adam(learning_rate=0.005,beta_1=0.9, beta_2=0.999)
sgd=SGD(learning_rate=0.005)

320 Machine Learning Applications

TensorFlow: Classifier (generator) loss Recall the optimization problem of
interest:

min
w

max
θ

1

m

{
m∑

i=1

(1− λ)`CE

(
y(i), Gw(x(i))

)

−λ

m∑
i=1

`CE

(
z(i), Dθ (Gw(x(i)))

)}
.

To implement the classifier loss (the objective in the above), we use:

from tensorflow.keras.losses import BinaryCrossentropy
CE_loss = BinaryCrossentropy(from_logits=False)
p_loss = CE_loss(y_pred,y_train)
f_loss = CE_loss(discriminator(y_pred),z_train)
c_loss = (1-lamb)*p_loss - lamb*f_loss

where y pred indicates the classifier output; y train denotes a label; and z train is a
binary sensitive attribute.

TensorFlow: Discriminator loss Recall the Discriminator loss that we defined
in (3.288):

min
θ

λ

m

m∑
i=1

`CE

(
z(i), Dθ (Gw(x(i)))

)
.

To implement this, we use:

f_loss = CE_loss(discriminator(y_pred),z_train)
d_loss = lamb*f_loss

TensorFlow: Evaluation Recall the DI performance:

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
.

To evaluate the DI performance, we rely on the following approximation:

P(Ỹ = 1|Z = 0) ≈

∑mtest

i=1 1{ỹ(i)test = 1, z(i)test = 0}∑mtest

i=1 1{z(i)test = 0}
.

A Fair Classifier: TensorFlow Implementation 321

Here is how to implement this in detail:

import numpy as np
y_tilde = (y_pred>0.5).int().squeeze()
z0_ind = (z_train == 0.0)
z1_ind = (z_train == 1.0)
z0_sum = int(np.sum(z0_ind))
z1_sum = int(np.sum(z1_ind))
P_y1_z0 = float(np.sum((y_tilde==1)[z0_ind]))/z0_sum
P_y1_z1 = float(np.sum((y_tilde==1)[z1_ind]))/z1_sum

Closing Let us conclude the book. In Part I, we investigated several instances of
convex optimization problems, ranging from LP, Least Squares, QP, SOCP, and all
the way up to SDP. We studied how such problems are categorized, as well as how
to formulate some real-world problems into such specialized problems via some
translation techniques possibly aided by matrix-vector notations. For some certain
settings including LP, unconstrained optimization and equality-constrained QP, we
also studied how to solve the problems explicitly.

In Part II, we studied two important theorems: (1) strong duality theorem; (2)
weak duality theorem. With the strong duality theorem, we came up with a generic
algorithm which provides detailed guidelines as to how to solve arbitrary convex
optimization problems: the interior point method. With the weak duality theorem,
we investigated a certain yet powerful method, called Lagrange relaxation, which
can provide reasonably-good approximation solutions for a variety of non-convex
problems.

In Part III, we explored one recent killer application where optimization tools
that we learned play central roles: Machine learning. In particular, we explored two
certain yet popular methodologies of machine learning: (1) supervised learning;
and (2) unsupervised learning. For supervised learning, we put an emphasis on
deep learning, which is based on deep neural network architectures which received
significant attention recently. We found that the optimization tools and concepts
that we learned are instrumental particularly in choosing objective functions as well
as gaining algorithmic insights. As for unsupervised learning, we investigated the
most fundamental learning method, called generative modeling, and then studied
one specific yet powerful framework for generative modeling, named GANs. In
this context, we observed that the duality theorems play a crucial role in enabling
a practical implementation for the state-of-the-art GAN, which is WGAN. As the
last application, we explored fair machine learning to demonstrate the power of the
regularization technique and the KKT condition.

322 Machine Learning Applications

It is no doubt that tools for convex optimization are very powerful. The use-
fulness has already been proved by many researchers working on a wide variety of
fields. While this book puts an emphasis on a particular application (machine learn-
ing), it is shown to have much broader applicability. So we hope you would find all
of these useful in your own research field.

Problem Set 11 323

Problem Set 11

Prob 11.1 (Equalized Odds) In Section 3.12, we studied two fairness concepts:
(i) disparate treatment; and (ii) disparate impact. In this problem, we explore
another prominent fairness notion that arises in the field: Equalized Odds (EO for
short) (Hardt et al., 2016). Let Z ∈ Z be a sensitive attribute. Let Y and Ŷ be the
ground-truth label and its prediction.

(a) For illustrative purpose, let us investigate a simple setting where Z and Y
are binary. Let Ỹ = 1{Ŷ ≥ 0.5}. For this setting, EO is defined as:

EO := min
y∈{0,1}

min
z∈{0,1}

P(Ỹ = 1|Y = y, Z = 1− z)

P(Ỹ = 1|Y = y, Z = z)
. (3.290)

Show that I(Z ; Ŷ |Y) = 0 implies EO = 1.
(b) Suppose now that Z and Y are not necessarily binary. The conditional

mutual information is defined as:

I(Z ; Ŷ |Y) := KLD(PŶ ,Z |Y ,PŶ |Y PZ |Y)

where PŶ ,Z |Y ,PŶ |Y and PZ |Y indicate the conditional probability of

(Ŷ , Z), Ŷ , and Z , respectively, given Y . Using this definition, show that

I(Z ; Ŷ |Y) =
∑

y∈Y ,ŷ∈Ŷ ,z∈Z

PŶ ,Z ,Y (ŷ, z, y) log
PŶ ,Z |y(ŷ, z)

PŶ |y(ŷ)
+H(Z |Y)

(3.291)

where PŶ ,Z ,Y indicates the joint distribution of (Ŷ , Z , Y); and PŶ ,Z |y and

PŶ |y denote the conditional distributions of (Ŷ , Z) and Ŷ , respectively,
given Y = y.

(c) Show that

I(Z ; Ŷ |Y) = H(Z |Y)

+ max
D(ŷ,z,y):

∑
z∈Z D(ŷ,z,y)=1

×

∑
ŷ∈Ŷ ,y∈Y ,z∈Z

PŶ ,Z ,Y (ŷ, z, y) log D(ŷ, z, y).

(3.292)

324 Machine Learning Applications

(d) Explain the rationale behind the following approximation:

I(Z ; Ŷ |Y) ≈ H(Z |Y)

+ max
D(ŷ,z,y):

∑
z∈Z D(ŷ,z,y)=1

m∑
i=1

1

m
log D(ŷ(i), z(i), y(i)).

(3.293)

(e) Formulate an optimization for a fair classifier that attempts to mini-
mize both predication accuracy and the approximated I(Z ; Ŷ |Y), reflected
in (3.293). Use a notation λ for a regularization factor that balances pre-
diction accuracy against the quantified fairness constraint. Also draw the
classifier-&-discriminator architecture which respects the formulated opti-
mization.

Prob 11.2 (A variant of the MI-based fair classifier) Let Z ∈ {0, 1} be a
binary sensitive attribute. Let Y and Ŷ be the ground-truth label and its prediction
of a classifier. Let Ỹ = 1{Ŷ ≥ 0.5}.

(a) Show that I(Z ; Ỹ) = 0 is a necessary and sufficient condition for DI = 1.
(b) Approximate I(Z ; Ỹ) as claimed in part (d) in Prob 11.1. Also explain the

rationale behind the approximation.
(c) Formulate an optimization for a fair classifier that attempts to minimize

both prediction accuracy and the approximated I(Z ; Ỹ), done in the prior
part. Use a notation λ for a regularization factor that balances predic-
tion accuracy against the fairness constraint. Also draw the classifier-&-
discriminator architecture which respects the formulated optimization.

Prob 11.3 (TensorFlow implementation of the MI-based fair classifier)

Consider the MI-based fair classifier that we learned in Sections 3.13 and 3.14. In
this problem, you are asked to build a simple fair classifier that predicts recidivism
scores of individuals with prior criminal records. See Fig. 3.55. We employ very

Recidivism
predictor

Figure 3.55. Predicting a recidivism score ŷ from x = (x1, x2). Here x1 indicates the number

of prior criminal records; x2 denotes a criminal type: misdemeanor or felony; and z is a

race type among white (z = 0) and black (z = 1).

Problem Set 11 325

simple single-layer neural networks for classifier (generator) and discriminator with
logistic activation in the output layer.

(a) (Unfair dataset synthesis) Explain how an unfair dataset is generated in the
following code:

import numpy as np
n_samples = 2000
p = 0.8
numbers of positive and negative examples
n_Y1 = int(n_samples*0.5)
n_Y0 = n_samples - n_Y1
generate positive samples
Y1 = np.ones(n_Y1)
X1 = np.random.normal(loc=[1,1],scale=0.5,

size=(n_Y1,2))
Z1 = np.random.binomial(1,p,size=(n_Y1,))
generate negative samples
Y0 = np.zeros(n_Y0)
X0 = np.random.normal(loc=[-1,-1],scale=0.5,

size=(n_Y0,2))
Z0 = np.random.binomial(1,1-p,size=(n_Y0,))
merge
Y = np.concatenate((Y1,Y0))
X = np.concatenate((X1,X0))
Z = np.concatenate((Z1,Z0))
Y = Y.astype(np.float32)
X = X.astype(np.float32)
Z = Z.astype(np.float32)
shuffle and split into train & test data
shuffle = np.random.permutation(n_samples)
X_train = X[shuffle][:int(n_samples*0.8)]
Y_train = Y[shuffle][:int(n_samples*0.8)]
Z_train = Z[shuffle][:int(n_samples*0.8)]
X_test = X[shuffle][int(n_samples*0.8):]
Y_test = X[shuffle][int(n_samples*0.8):]
Z_test = X[shuffle][int(n_samples*0.8):]

(b) (Data visualization) Using the following code or otherwise, plot randomly
sampled data points (say 200 random points) among the entire data points
generated in part (a).

import matplotlib.pyplot as plt
randomly select the number n_s of samples
n_s = 200
Xs = X_train[:n_s]
Ys = Y_train[:n_s]

326 Machine Learning Applications

Zs = Z_train[:n_s]
choose part of X and Y assiciated with a certain Z
X_Z0 = Xs[Zs==0.0]
X_Z1 = Xs[Zs==1.0]
Y_Z0 = Ys[Zs==0.0]
Y_Z1 = Ys[Zs==1.0]
plot
plt.figure(figsize=(14,10))
plt.scatter(

X_Z0[Y_Z0==1.0][:,0], X_Z0[Y_Z0==1.0][:,1],
color=’red’,marker=’o’,facecolors=’none’,
s=120, linewidth=1.5, label=’White reoffend’)

plt.scatter(
X_Z0[Y_Z0==0.0][:,0], X_Z0[Y_Z0==0.0][:,1],
color=’blue’,marker=’o’,facecolors=’none’,
s=120, linewidth=1.5, label=’White non-reoffend’)

plt.scatter(
X_Z1[Y_Z1==1.0][:,0], X_Z1[Y_Z1==1.0][:,1],
color=’red’,marker=’o’,facecolors=’black’,
s=120, linewidth=1.5, label=’Black reoffend’)

plt.scatter(
X_Z1[Y_Z1==0.0][:,0], X_Z1[Y_Z1==0.0][:,1],
color=’blue’,marker=’o’,facecolors=’black’,
s=120, linewidth=1.5, label=’Black non-reoffend’)

plt.legend(fontsize=16)

(c) (Classifier & discriminator) Draw block diagrams for the classifier and the
discriminator implemented by the following:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

classifier=Sequential()
classifier.add(Dense(1,input_dim=2,

activation=’sigmoid’))
discriminator=Sequential()
discriminator.add(Dense(1,input_dim=1,

activation=’sigmoid’))

(d) (Optimizers and loss functions) Explain how the optimizers and loss func-
tions for the discriminator and the classifier are implemented in the follow-
ing code. Also draw a block diagram for the GAN model implemented as
the name of gan.

from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam

Problem Set 11 327

from tensorflow.keras.optimizers import SGD
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.layers import Concatenate

optimizers for classifier & discriminator
c_opt=Adam(learning_rate=0.005,beta_1=0.9,beta_2=0.999)
d_opt=SGD(learning_rate=0.005)

define dicriminator loss
def d_loss(y_true,y_pred):

CE_loss = BinaryCrossentropy(from_logits=False)
lamb = 0.1
return lamb*CE_loss(y_pred,y_true)

discriminator compile
discriminator.compile(loss=d_loss, optimizer=d_opt)

define classifier (generator) loss
def c_loss(y_true,y_pred):

y_true[:,0]: Y_train (label)
y_true[:,1]: Z_train (sensitive attribute)
y_pred[:,0]: classifier output G(x)
y_pred[:,1]: discriminator output fed by
classifier output D(G(x))
CE_loss = BinaryCrossentropy(from_logits=False)
lamb = 0.1
p_loss = CE_loss(y_pred[:,0],y_true[:,0])
f_loss = CE_loss(y_pred[:,1],y_true[:,1])
return (1-lamb)*p_loss - lamb*f_loss

define the GAN model
input: x
output: [G(x), D(G(x))]
discriminator.trainable = False
gan_input = Input(shape=(2,))
Gx = classifier(inputs=gan_input)
DGx = discriminator(Gx)
output = Concatenate()([Gx,DGx])
gan = Model(gan_input, output)
The GAN model compile
gan.compile(loss=c_loss, optimizer=c_opt)

328 Machine Learning Applications

(e) (Training) Explain how classifier and discriminator are trained in the fol-
lowing code:

import numpy as np

EPOCHS = 400
k=2 # k:1 alternating gradient descent
c_losses = []
d_losses = []

for epoch in range(1,EPOCHS+1):
#####################
train discriminator
#####################
input for discriminator
d_input = classifier.predict(X_train)
label for discriminator
d_label = Z_train
train discriminator
d_loss = discriminator.train_on_batch(d_input,d_label)

#####################
train classifier
#####################
if epoch % k == 0: # train once every k steps

label for classifier
1st component: Y_train
2nd component: Z_train (sensitive attribute)
c_label = np.zeros((len(Y_train),2))
c_label[:,0] = Y_train
c_label[:,1] = Z_train
train classifier
c_loss = gan.train_on_batch(X_train,c_label)

c_losses.append(c_loss)
d_losses.append(d_loss)

(f) (Evaluation) Suppose we train classifier and discriminator using the code
in part (e) with EPOCHS=400. Plot the tradeoff performance between test
accuracy and DI by sweeping λ from 0 to 1. Also include the Python script.

DOI: 10.1561/9781638280538.ch4

Appendix A

Python Basics

A.1 Jupyter Notebook

Outline Python requires another software platform which serves to play around
it. The platform is Jupyter notebook. In this section, we will learn about some
basic stuffs regarding Jupyter notebook. What we are going to do are four folded.
First we will figure out the role of Jupyter notebook in light of Python. We will
then investigate how to install the software, as well as how to launch a new file
for scripting a code. Next, we will study some useful interfaces which enable an
easy scripting of a Python code. Lastly, we will introduce several shortcuts that are
frequently used in writing and executing a code.

What is Jupyter notebook? Jupyter notebook is a powerful tool for writing
and running a Python code. As you can see below, the key benefit of the tool is that
we are able to execute each line of the code rather than the entire code. Hence, we
are particularly benefiting from an easy debugging especially when the code is very
long.

a=1
b=2
a+b

329

http://dx.doi.org/10.1561/9781638280538.ch4

330 Python Basics

3

a=1

b=2

a+b

3

There are two typical ways to use Jupyter notebook. The first runs a code based
on the server (or cloud) machine. The second is via a local machine. Here we will
present the second way.

Installation & launch The use of local machine requires the installation of a
popular software tool, named Anaconda. You can download and install the latest
version of it via

https://www.anaconda.com/products/individual

You can choose one of the Anaconda installers depending on the operating sys-
tem of your machine. Please see the three versions presented in Fig. A.1. During
installation, you may encounter some errors. One error that often occurs is regard-
ing ‘non-ascil character’. To resolve the error, you should make sure that the name of
your destination folder path for Anaconda does not include any non-ascil character
like Korean. Another error message that you may see is about permission for access
to the indicated path. To avoid this, run the Anaconda installer under the ‘run
as administrator’ mode. The mode can be seen by right-clicking the downloaded
execution file.

In order to launch Jupyter notebook, you can use anaconda prompt (for Win-
dows) or terminal (for mac and linux). The way it works is very simple. You
can just type Jupyter notebook in the prompt and then press Enter. Then, a
Jupyter notebook window will pop up accordingly. If the window does not appear

Figure A.1. Three versions of Anaconda installers.

Jupyter Notebook 331

Figure A.2. How to launch Jupyter notebook in the Anaconda prompt.

Figure A.3. Web browser of a successfully launched Jupyter notebook.

Figure A.4. How to create a Jupyter notebook file on the web browser.

automatically, you can instead copy and paste the URL (indicated by the arrow in
Fig. A.2) on your web browser, so as to manually open it. If it works properly, you
should be able to see the window like the one in Fig. A.3.

Creating a new notebook file is also simple. First navigate a folder in which you
want to save a notebook file. Next you can click the New tap placed on the top
right (marked in a blue box) and then click the Python 3 tap (as indicated in a red
box). See Fig. A.4 for the location of the taps.

332 Python Basics

Figure A.5. Kernel is a computational engine which runs the code. There are several

relevant functions under the Kernel tap.

Figure A.6. How to choose the Code or Markdown option in the edit mode.

Interface In Jupyter notebook, there are two key components required to run a
code. The first is a computational engine which does execute the code. The engine is
named Kernel and it can be controlled via several functions provided in the Kernel

tab. See Fig. A.5 for details.
The second component is an entity, called cell, in which you can write a script.

The cell consists of two modes. The first is so called the edit mode which allows you
to type either: (i) a code script for running a program; or any text like a normal text
editor. The code script can be written under the Code tap (marked in a red box) as
illustrated in Fig. A.6. Text-editing can be done under the Markdown tap, marked
in a blue box. The other mode is the one, named the command mode. Under this
mode, we can edit a notebook as a whole. For instance, we can copy or delete some
cells, and move around cells under the command mode.

Shortcuts There are many shortcuts that are quite instrumental in editing and
navigating a notebook. Here we emphasize three types of shortcuts frequently used.
The first is a set of the shortcuts for changing a state across the edit and command
modes. We type Esc for changing from the edit to command modes. We use Enter

for the other way around. The second is for inserting or deleting a cell. The shortcut,

Jupyter Notebook 333

a, is for inserting a new cell above the current cell. Another shortcut b plays a similar
role, yet inserting it below the current cell. d+d is for deleting a cell. Notice that
these should be typed under the command mode to serve proper roles. The last
is a set of the shortcuts for executing a cell. Arrow keys are used to move around
distinct cells. Shift + Enter is for running the current cell (and move to the next
cell). In order to stay in the current cell (even after execution), we use Ctrl + Enter

instead.

334 Python Basics

A.2 Basic Python Syntaxes

Outline In this section, we will learn some basic Python syntaxes required to write
a script for convex optimization problems of this book’s focus. In particular, three
basic concepts are emphasized: (i) class; (ii) package; and (iii) function. We will
also introduce a collection of optimization-related Python packages.

A.2.1 Data Structure

There are two prominent data-structure components in Python: (i) list; and (ii)
set.

(i) List: List is a built-in data type which allows us to store multiple elements
in a single variable. The elements are listed with an order and the list allows for
duplication. Please see below for some popular use.

x = [1, 2, 3, 4] # construct a simple list
print(x)

[1, 2, 3, 4]

x.append(5) # add an item
print(x)

[1, 2, 3, 4, 5]

x.pop() # delete an item located in the last
print(x)

[1, 2, 3, 4]

checking if a particular element exists in the list
if 3 in x:

print(True)
if 5 in x:

print(True)
else:

print(False)

True
False

Basic Python Syntaxes 335

A single-line construction of a list
y = [x for x in range(1,10)]
print(y)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Retrieving all the elements through a "for" loop
for i in x:

print(i)

1
2
3
4

(ii) Set: Set is another built-in data type which plays a similar role as List. Two
key distinctions are: (i) it is unordered; and (ii) it does not allow for duplication.
See below for some examples of how to use.

x = set({1, 2, 3}) # construct a set
print(f"x: {x}, type of x: {type(x)}")

x: {1, 2, 3}, type of x: <class ’set’>

Here the f in front of strings in the print command tells Python to look at the
values inside {·}.

x.add(1) # add an existing item
print(x)

{1, 2, 3}

x.add(4) # add a new item
print(x)

{1, 2, 3, 4}

checking if a particular element exists in the list
if 1 in x:

print(True)
if 5 in x:

print(True)
else:

print(False)

True
False

336 Python Basics

Retrieving all the elements through a "for" loop
for i in x:

print(i)

1
2
3
4

A.2.2 Package

We will investigate five popular packages which are particularly instrumental in
scripting a code for convex optimization problems: (i) math; (ii) random; (iii)
itertools; (iv) numpy; and (v) scipy.stats.

(i) math: This module provides a collection of useful math expressions such as
exponent, log, square root and power. See some relevant examples below.

import math

math.exp(1) # exp(x)

2.718281828459045

print(math.log(1, 10)) # log(x, base)
print(math.log(math.exp(20))) # base-e logarithm
print(math.log2(4)) # base-2 logarithm
print(math.log10(1000)) # base-10 lograithm

0.0
20.0
2.0
3.0

print(math.sqrt(16)) # square root
print(math.pow(2,4)) # x raised to y (same as x**y)
print(2**4)

4.0
16.0
16

print(math.cos(math.pi)) # cosine of x radians
print(math.dist([1,2],[3,4])) # Euclidean distance

-1.0
2.8284271247461903

Basic Python Syntaxes 337

The erf() function can be used to compute traditional
statistical functions such as the CDF of
the standard Gaussian distribution
def phi(x):

CDF of the standard Gaussian distribution
return (1.0 + math.erf(x/math.sqrt(2.0)))/2.0

phi(1)

0.8413447460685428

(ii) random: This module yields random number generation. See below for some
examples.

import random

random.randrange(start=1, stop=10, step=1)
a random number in range(start, stop, step)
random.randrange(10) # integer from 0 to 9 inclusive

5

returns random integer n such that a<=n<=b
random.randint(1, 10)

7

(iii) itertools: This package provides a succinct way of searching for all the possi-
ble cases in many combinatorics-related scenarios. It is particularly useful for solving
Boolean problems (that we learned in Section 1.5) in brute force.

from itertools import permutations, combinations

generating all permutations of [1, 2, 3]
p = permutations([1, 2, 3])

for i in p:
print (i)

(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)

338 Python Basics

generating all length-2 combinations of [1, 2, 3]
c = combinations([1, 2, 3], 2)

for i in c:
print (i)

(1, 2)
(1, 3)
(2, 3)

generating all length-3 combinations of [1, 2, 3, 4, 5]
c = combinations([1, 2, 3, 4, 5], 3)

for i in c:
print (i)

(1, 2, 3)
(1, 2, 4)
(1, 2, 5)
(1, 3, 4)
(1, 3, 5)
(1, 4, 5)
(2, 3, 4)
(2, 3, 5)
(2, 4, 5)
(3, 4, 5)

(iv) numpy: Numpy is the most popular package for handling matrices and vec-
tors. It offers many useful functions. We list a couple of the prominent functions
frequently employed.

(a) numpy.array(): numpy.array() is a specialized array data structure in
numpy. This differs from Python data type array().

import numpy as np

np.array([1, 2, 3]) # construct an array

array([1, 2, 3])

np.array([[1, 2], [3, 4]]) # construct a 2D array

array([[1, 2],
[3, 4]])

Basic Python Syntaxes 339

x = np.ones((2,2))
construct an all-one matrix with size of 2-by-2
x = np.zeros((2,2))
construct an all-zero matrix with size of 2-by-2
print(np.ones_like(x))
all-one matrix with the same shape and type of input
print(np.zeros_like(x))
all-zero matrix with the same shape and type of input

[[1. 1.]
[1. 1.]]

[[0. 0.]
[0. 0.]]

(b) numpy.random() This module is designed to perform random sampling
from various probability distributions. Below we list a few popular examples. To
learn more, you may want to consult with:

https://numpy.org/doc/1.16/reference/routines.random.html

sampling a number from standard Gaussian distribution
np.random.normal(loc = 0, scale = 1)
loc: mean, scale: standard deviation
np.random.randn() # plays the same role

-2.5459976698222495

sampling multiple numbers as per the standard Gaussian
np.random.normal(0, 1, size = (2, 2))
Here the size determines the output shape
np.random.randn(2,2) # plays the same role

array([[-1.8133258 , -1.01151295],
[-0.37375747, 0.36005748]])

np.random.rand(2,2) # Uniform over [0,1]

array([[0.06535694, 0.2507505],
[0.17559137, 0.60967901]])

(c) numpy.linalg This package offers many useful linear-algebra related func-
tions. Here are a few of them.
from numpy import linalg

x = np.random.randn(2,2)
print(linalg.det(x)) # Determinant of a matrix x

340 Python Basics

print(linalg.inv(x)) # Inverse of a matrix x
print(linalg.norm(x)) # Matrix or vector norm
print(linalg.svd(x)) # Singular value decomposition
print(linalg.eig(x)) # Eigenvalue decomposition

0.7125655927348966
[[0.77007826 -0.38835738]
[2.33455331 0.64504946]]

1.832010151997132
(array([[-0.2060815, 0.97853483],

[0.97853483, 0.2060815]]), array([1.78814528, 0.39849424]),
array([[-0.96330981, 0.2683919],

[0.2683919 , 0.96330981]]))
(array([0.50418566+0.67702467j, 0.50418566-0.67702467j]),
array([[0.02479485-0.37684352j, 0.02479485+0.37684352j],

[0.92594502+0.j , 0.92594502-0.j]]))

(d) resizing: The resizing is often used for transforming the dimension of one
into another.
x = np.random.randn(4,4,1)
y = x.view(dtype=np.float_).reshape(-1,2)
’-1’ can be inferred from the context: Shape of (8,2)
print(y)
z = x.squeeze()
print(z.shape)

[[-0.85719316 2.99692221]
[1.16327996 -0.11955541]
[-0.76229609 0.79871494]
[0.99757568 0.69329723]
[-1.52198295 -0.74430996]
[0.17174063 0.25343301]
[0.07151011 -2.90945412]
[1.1874155 -0.64209109]]

(4, 4)

(v) scipy.stats: This module provides a large collection of probability distribu-
tions and related statistics. Below we present only a few of them. For more infor-
mation, you can refer to:

https://docs.scipy.org/doc/scipy/reference/stats.html

from scipy import stats

Basic Python Syntaxes 341

A random variable with the standard Gaussian
X = stats.norm(loc = 0, scale = 1)
loc:mean, scale:standard deviation
print(X.cdf(np.array([-1, 0, 1])))
computes the CDF at each numpy array
print(X.rvs(size = 3))
generating a sequence of random variables

[0.15865525 0.5 0.84134475]
[0.39460402 -0.8042592 -0.71404882]

Another random variable with the uniform distribution
Y = stats.uniform(loc = 0, scale = 1)
uniform distribution in [loc, loc + scale]
print(Y.cdf(np.array([-1, 0, 0.5, 1])))
print(Y.rvs(size = 3))

[0. 0. 0.5 1.]
[0.72953474 0.67879248 0.47947748]

A.2.3 Visualization

The most popular function for drawing a graph is matplotlib.pyplot. Here is how
to use it.
import matplotlib.pyplot as plt

x_value = [x for x in range(10)]
y_value = [y for y in range(10, 20)]
plt.plot(x_value, y_value) # create a plot
plt.xlabel(’x’) # labeling x-axis
plt.ylabel(’y’) # labeling y-axis
plt.show
No need to use show() in jupyter notebook.

<function matplotlib.pyplot.show(close=None, block=None)>

Figure A.7. Plotting a simple function via matplotlib.pyplot.

342 Python Basics

Drawing multiple graphs in a single plot

x = [x for x in range(10)]
y_1 = [3*y for y in range(10)]
y_2 = [2*y for y in range(10)]

plt.plot(x, y_1) # plot_1
plt.plot(x, y_2) # plot_2
plt.xlabel(’x’) # labeling x-axis
plt.ylabel(’y’) # labeling y-axis
plt.legend([’y=3x’, ’y=2x’])

<matplotlib.legend.Legend at 0x1d9e45c7a00>

Figure A.8. Multiple functions and legend.

DOI: 10.1561/9781638280538.ch5

Appendix B

CVXPY Basics

Outline There are a couple of high-level software packages specialized for solv-
ing convex optimization problems. One very convenient and user-friendly pack-
age is CVX which has been developed by Michael Grant and Stephen P. Boyd.
While it is very intuitive and therefore easy to learn, it is built upon a non-open-
source platform MATLAB which requires a license for use. In contrast, there are
two other packages that run in an open-source platform Python. These are CVXPY

and scipy.optimize. Among these two, this book focuses on the use of CVXPY

which we believe is more friendly and is evolving from the contributions of many
researchers and engineers. In this section, we are going to cover four very basic stuffs
for CVXPY. First, we will present how to install CVXPY library in Python. Writ-
ing a CVXPY script consists of three key procedures: (i) defining an optimization
problem; (ii) calling a solver for the problem; and (iii) obtaining the solution. So
in the second part, we will figure out how to define an optimization problem based
on some known concepts (that we have learned thus far) like variables, constraints
and objective. We will then study how to solve the problem accordingly. For ease
of illustration, we will demonstrate the whole procedure via a simple example.

Installation The use of CVXPY requires the installtion of Python 3. For
Python 3, we can rely upon virtual environment tools like Anaconda which we
described in Section A.1 for installation.

343

http://dx.doi.org/10.1561/9781638280538.ch5

344 CVXPY Basics

Installing CVXPY library is very simple. We can do it by using the library man-
ager pip.

pip install cvxpy

Collecting cvxpy
Downloading cvxpy-1.2.0-cp39-cp39-win_amd64.whl (832 kB)

Collecting ecos>=2Note:
you may need to restart the kernel to use updated packages.

Downloading ecos-2.0.10-cp39-cp39-win_amd64.whl (68 kB)
Collecting scs>=1.1.6

Downloading scs-3.2.0-cp39-cp39-win_amd64.whl (8.1 MB)
Requirement already satisfied: numpy>=1.15 in
c:\programdata\anaconda3\lib\site-packages (from cvxpy) (1.20.3)
Collecting osqp>=0.4.1

Downloading osqp-0.6.2.post5-cp39-cp39-win_amd64.whl (278 kB)
Requirement already satisfied: scipy>=1.1.0 in
c:\programdata\anaconda3\lib\site-packages (from cvxpy) (1.7.1)
Collecting qdldl

Downloading qdldl-0.1.5.post2-cp39-cp39-win_amd64.whl (83 kB)
Installing collected packages: qdldl, scs, osqp, ecos, cvxpy
Successfully installed cvxpy-1.2.0 ecos-2.0.10 osqp-0.6.2.post5
qdldl-0.1.5.post2 scs-3.2.0

The command pip list allows us to check whether CVXPY is successfully
installed. Please see below the created cvxpy in the middle.

pip list

Package Version
---------------------------------- --------------------
alabaster 0.7.12
anaconda-client 1.9.0
anaconda-navigator 2.1.1
anaconda-project 0.10.1

cvxpy 1.2.0

jupyter 1.0.0
jupyter-client 6.1.12
jupyter-console 6.4.0
jupyter-core 4.8.1

CVXPY Basics 345

jupyter-server 1.4.1
jupyterlab 3.2.1
jupyterlab-pygments 0.1.2
jupyterlab-server 2.8.2
jupyterlab-widgets 1.0.0

zict 2.0.0
zipp 3.6.0
zope.event 4.5.0
zope.interface 5.4.0

Alternatively, one can attempt to import CVXPY library.

import cvxpy

Without any error, you are ready to use. For any errors that you may encounter yet
we do not mention here, you may want to consult with the installation guide on:

https://www.cvxpy.org/install/index.html

How to define an optimization problem In CVXPY, an optimization prob-
lem is comprised of four components: (i) variables; (ii) constraints; (iii) objective;
and (iv) parameters. Let us dig into details on how to define them.

1. Variables: The variables refer to the optimization variables that we have played
with throughout. We define a scalar variable via cp.Variable(). We construct a vector
by putting the size inside the parenthesis. We can even create a matrix by indicating
two numbers inside the parenthesis. But the variable cannot go beyond a 2D matrix,
so it cannot be a 3D or 4D tensor. Here are some examples.

import cvxpy as cp
Construct a scalar opt. var. with a blank parenthesis
x = cp.Variable()
Can construct another in case we have more variables.
y = cp.Variable()

Or we can construct a 3-by-1 vector.
z = cp.Variable(3)
Or a matrix with a proper size, say (2,3)
w = cp.Variable((2,3))

2. Constraints: There are two types of constraints: (i) equality; and (ii) inequality
constraints. We do not rely upon the standard form that we learned in Section 1.2,
allowing for more flexible descriptions. We use ==, <= and <= symbols to imple-
ment. Here is an example:

346 CVXPY Basics

constraints = [x+y == 10, x-y <= 3]

3. Objective: The objective refers to the objective function that we wish to mini-
mize or maximize. Depending on the optimization type between min and max, we
use either of the following two:

obj_min = cp.Minimize((x-3*y)**2)
obj_max = cp.Maximize((x-3*y)**2)

4. Parameters: Parameters indicate the ones that are employed for perturb-
ing an optimization problem. For instance, we introduce a parameter, say a,
which plays a multiplication role in front of y in the above minimization, e.g.,
cp.Minimize((x-a*y)**2). The way to introduce the parameter is very simple:

a = cp.Parameter(nonneg=True)
a.value = 3 # assigning a value 3 for ‘a‘

Here nonneg=True indicates the non-negativity property of the parameter. If it
is non-positive, we can type it like nonpos=True. A good thing about the use
of parameters is that the change of an optimization problem does not require re-
defining it from scratch.

Once the variables, constraints, objective and parameters are defined as above,
the last step is to formulate a problem object via cp.Problem().

prob = cp.Problem(obj_min, constraints)

How to solve an optimization problem We can solve a formulated problem
by calling a solver. The implementation is very simple, requiring a single-line code:

prob.solve() # Solve ‘prob’ and print the optimal value

16.0

The command prob.status allows us to check whether or not the derived solu-
tion is optimal. The optimal value and the corresponding variables can also be
retrieved with prob.value, x.value and y.value.

print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal variables: ’, x.value, y.value)

status: optimal
optimal value: 16.0
optimal variables: 6.5 3.5

CVXPY Basics 347

Here is a script for the entire code that also incorporates the use of the parameter
a in the objective cp.Minimize((x-a*y)**2).

x = cp.Variable()
y = cp.Variable()

constraints = [x+y == 10, x-y <= 3]
a = cp.Parameter(nonneg=True)
a.value = 3
obj_min = cp.Minimize((x-a*y)**2)
prob = cp.Problem(obj_min, constraints)
prob.solve()

print(’status: ’, prob.status)
print(’optimal value: ’, prob.value)
print(’optimal variables: ’, x.value, y.value)

status: optimal
optimal value: 16.0
optimal variables: 6.5 3.5

Notice that we have exactly the same solution as before. A different value of
a.value=5 leads to a different solution below. Please check.

status: optimal
optimal value: 121.0
optimal variables: 6.5 3.5

DOI: 10.1561/9781638280538.ch6

Appendix C

TensorFlow and Keras Basics

Outline One of the machine learning applications that we studied in Part III is
deep learning. Deep learning is a learning methodology that takes a deep neural
network (DNN) as a basic model for an interested prediction module. There are
many prevalent software tools that ease deep learning implementation. Such tools
are called the machine learning frameworks or application programming interfaces
(APIs). Examples include TensorFlow, Keras, Pytorch, DL4J, Caffe and mxnet.
The frameworks exhibit pros and cons, depending on what we pursue in the design
of a deep learning model like good usability, fast training, functionality, high scal-
ability in distributed training. This book aims at the great usability aspect, so we
are going to study the most high-level API with a focus on enabling fast user exper-
imentation: Keras. The Keras API allows us to go from idea to implementation
with very few steps. In this appendix, we are going to present four very basic con-
tents regarding Keras. In fact, Keras is fully integrated with TensorFlow, meaning
that Keras comes completely packaged with the TensorFlow installation. So in the
first part, we will learn how to install TensorFlow. Deep learning implementation
requires three key procedures: (i) preparing and processing data; (ii) building a neu-
ral network model; and (iii) training a model and testing the trained model. So in
the second part, we will touch upon some easy way to deal with data, offered in
Keras. We will then study how to build a neural network model based on some pop-
ular packages including keras.models and keras.layers. Lastly, we will investigate
how to train/test a model accordingly. For ease of illustration, we will demonstrate
the entire procedures via a simple example.

348

http://dx.doi.org/10.1561/9781638280538.ch6

TensorFlow and Keras Basics 349

digit
classifier

Figure C.1. Handwritten digit classification.

Installation The use of Keras requires the installation of the TensorFlow package.
The installation procedure is very simple:

pip install tensorflow

TensorFlow 2 packages that fully support Keras and hence we will use require
a pip version higher than 19.0 (or higher than 20.3 for macOS). So you may need
to install the lastest pip via: pip install --upgrade pip. To figure out whether it is
successfully installed, one can attempt to import keras as follows.

from tensorflow import keras

Without any error, you are ready to use. For any errors that you may encounter,
you may want to consult with the installation guideline on:

https://www.tensorflow.org/install

A simple task of focus A simple task that we will focus on for illustration of
how to use Keras is handwritten digit classification wherein the goal is to figure
out a digit from a handwritten image. See Fig. C.1 for a sample image. The figure
illustrates an instance in which an image of digit 2 is correctly recognized.

Preparing and processing data There is a popular dataset associated with
the digit classification task. That is, MNIST (Modified National Institute of Stan-
dards and Technology) dataset. It contains m = 60, 000 training images and
mtest = 10, 000 testing images. Each image, say x(i), consists of 28×28 pixels, each
indicating a gray-scale level raning from 0 (white) to 1 (black). It also comes with
a corresponding label, say y(i), that takes one of the 10 classes y(i) ∈ {0, 1, . . . , 9}.
See Fig. C.2.

One great benefit about Keras is that such popular datasets including MNIST
are stored in a sub-library: keras.datasets. Even more, train and test datasets are

350 TensorFlow and Keras Basics

white

black

Figure C.2. MNIST dataset:An input image is of 28-by-28 pixels, each indicating an inten-

sity from 0 (white) to 1 (black); each label with size 1 takes one of the 10 classes from

0 to 9.

already therein with a proper split ratio. So we don’t need to worry about how to
split them. The only script that we should write for importing MNIST is:

from tensorflow.keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train/255.
X_test = X_test/255.

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-
datasets/mnist.npz
11493376/11490434 [==============================] - 1s 0us/step
11501568/11490434 [==============================] - 1s 0us/step

Here we divide the input (X_train or X_test) by its maximum value 255 for the
purpose of normalization. This procedure is often done as a part of data prepro-
cessing. In case keras.datasets does not offer a dataset of our interest, we have to
know some data preprocessing techniques that require the use of another promi-
nent library, named pandas. pandas is particularly instrumental in handling .csv
files. Here we will not explain how to use pandas in detail. If you want to learn
more, you may want to consult with:

https://pandas.pydata.org/

For data visualization, we employ matplotlib.pyplot. Below is a simple code for
plotting one sample image.

import matplotlib.pyplot as plt

plt.imshow(X_train[0], cmap = ’gray_r’)

TensorFlow and Keras Basics 351

Figure C.3. A sample image in MNIST dataset.

plt.colorbar()
plt.title(’{}’.format(y_train[0], fontsize=30))

Text(0.5, 1.0, ’5’)

See Fig. C.3 for the output. Here the option cmap = ’gray_r’ is for enabling the
white background and a black letter. We use cmap = ’gray’ for the flipped one,
i.e., a white letter with the black background. The colorbar() function displays the
color bar on the right as in Fig. C.3.

We can also plot many images in one figure. Here is an example of displaying
60 images.

num_of_images = 60
for index in range(1,num_of_images+1):

plt.subplot(6,10, index)
plt.axis(’off’)
plt.imshow(X_train[index], cmap = ’gray_r’)

See Fig. C.4 for the output.

Building a neural network model Let us employ a two-layer neural network
that we studied in Sections 3.3 and 3.4. Specifically we introduce a hidden layer
with 500 neurons. See Fig. C.5 for illustration of the network architecture. As we
learned in Section 3.4, we employ the ReLU activation in the hidden layer, and
softmax activation in the output layer.

Keras includes two major packages:

(i) tensorflow.keras.models;

(ii) tensorflow.keras.layers.

352 TensorFlow and Keras Basics

Figure C.4. Plotting many image samples in a single figure.

500 hidden neurons 10 classesinput size = 784

softmax
activation

ReLU activation
Figure C.5. A two-layer fully-connected neural network where input size is 28 × 28 =

784, the number of hidden neurons is 500 and the number of classes is 10. We employ

ReLU activation for the hidden layer, and softmax activation for the output layer.

The models package contains several functionalities regarding a neural network
itself. One major module is Sequential which is a neural network entity and hence
can be described as a linear stack of layers. The layers package includes many ele-
ments that constitute a neural network. Examples include fully-connected dense
layers and activation functions. These two allow us to readily construct a model
illustrated in Fig. C.5.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten

model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(500, activation=’relu’))
model.add(Dense(10, activation=’softmax’))
model.summary()

TensorFlow and Keras Basics 353

Model: "sequential_1"

Layer (type) Output Shape Param #

===
flatten (Flatten) (None, 784) 0

dense (Dense) (None, 500) 392500

dense_1 (Dense) (None, 10) 5010

===
Total params: 397,510
Trainable params: 397,510
Non-trainable params: 0

Here Flatten is an entity that indicates a vector expanded from a higher dimen-
sional one, like a 2D matrix. In this example, a digit image of size 28-by-28 is flat-
tened into a vector of size 784(= 28×28). add is a method for attaching an inter-
ested layer to the last part in the sequential model. Dense refers to a fully-connected
layer. The input size is automatically determined by the last part that it will be
attached to in the sequential model. So the only thing to specify is the number of
output neurons. In this example, 500 refers to the number of hidden neurons. We
can also set an activation function with another argument, like activation=’relu’.
The output layer comes with 10 neurons (coinciding with the number of classes)
and softmax activation (representing the probability of an output belonging to a
certain class). The summary() method presents a list of the entire layers specifying
the size and the number of associated parameters.

Training a model For training, we need to first set up an algorithm (optimizer)
to be employed. One popular algorithm that we have often played with is gradi-
ent descent. But here we will utilize its advanced version that we also learned in
Section 3.5. That is, the Adam optimizer. The Adam optimizer can be viewed as
a smart tweak of gradient descent that enables more stable training. As mentioned
earlier, Adam has three key hyperparameters: (i) the learning rate α; (ii) β1 (captur-
ing the weight of past gradients); and (iii) β2 (indicating the weight of the square
of past gradients). The default choice reads: (α,β1,β2) = (0.001, 0.9, 0.999). So
these values would be set if nothing is specified.

We also need to specify a loss function. As we learned in Section 3.2 (also via
Prob 8.2 for the more-than-two class case), the optimal choice in a sense of maxi-
mizing likelihood is cross entropy. A performance metric that we will look at during
training and testing can also be specified. One metric frequently employed is accu-
racy. One can set all of these via another method compile.

354 TensorFlow and Keras Basics

model.compile(optimizer=’adam’,
loss=’sparse_categorical_crossentropy’,
metrics=[’acc’])

Here the option optimizer=’adam’ sets the default choice of the learning rate and
betas. For a manual choice, we first define:

opt=tensorflow.keras.optimizers.Adam(
learning_rate=0.01,
beta_1 = 0.92,
beta_2 = 0.992)

We then replace the above option with optimizer=opt. The option loss=

’sparse_categorical_crossentropy’ means the use of the cross entropy loss.
Now we can bring this to train the model on MNIST data. During training, we

often employ a part of the entire examples to compute a gradient of a loss function.
The part is called batch. Two more terminologies. One is the step which refers to a
loss computation procedure spanning the examples only in a single batch. The other
is the epoch which refers to the entire procedure associated with all the examples.
In our experiment, let us use the batch size of 64 and the number 20 of epochs.

history = model.fit(X_train, y_train, batch_size=64, epochs=20)

Epoch 1/20
938/938 [==================] - 2s 2ms/step - loss: 0.0025 - acc: 0.9992
Epoch 2/20
938/938 [==================] - 2s 2ms/step - loss: 0.0059 - acc: 0.9981
Epoch 3/20
938/938 [==================] - 2s 2ms/step - loss: 0.0031 - acc: 0.9990
Epoch 4/20
938/938 [==================] - 2s 2ms/step - loss: 0.0074 - acc: 0.9976
Epoch 5/20
938/938 [==================] - 2s 2ms/step - loss: 0.0025 - acc: 0.9993
Epoch 6/20
938/938 [==================] - 2s 2ms/step - loss: 0.0043 - acc: 0.9984
Epoch 7/20
938/938 [==================] - 2s 2ms/step - loss: 0.0044 - acc: 0.9984
Epoch 8/20
938/938 [===============] - 2s 2ms/step - loss: 0.0010 - acc: 0.9998
Epoch 9/20
938/938 [============] - 2s 2ms/step - loss: 1.2813e-04 - acc: 1.0000
Epoch 10/20
938/938 [============] - 2s 2ms/step - loss: 3.5169e-05 - acc: 1.0000
Epoch 11/20
938/938 [=============] - 2s 2ms/step - loss: 2.1899e-05 - acc: 1.0000

TensorFlow and Keras Basics 355

Epoch 12/20
938/938 [=============] - 2s 2ms/step - loss: 1.6756e-05 - acc: 1.0000
Epoch 13/20
938/938 [=============] - 2s 2ms/step - loss: 1.2778e-05 - acc: 1.0000
Epoch 14/20
938/938 [=============] - 2s 2ms/step - loss: 9.8947e-06 - acc: 1.0000
Epoch 15/20
938/938 [===============] - 2s 2ms/step - loss: 0.0082 - acc: 0.9981
Epoch 16/20
938/938 [===============] - 2s 2ms/step - loss: 0.0090 - acc: 0.9971
Epoch 17/20
938/938 [===============] - 2s 2ms/step - loss: 0.0016 - acc: 0.9995
Epoch 18/20
938/938 [=============] - 2s 2ms/step - loss: 3.9583e-04 - acc: 0.9999
Epoch 19/20
938/938 [=============] - 2s 2ms/step - loss: 7.6672e-05 - acc: 1.0000
Epoch 20/20
938/938 [=============] - 2s 2ms/step - loss: 2.4958e-05 - acc: 1.0000

One good thing about the fit() function is that it returns a dictionary of the
metrics collected during training. We can check the collected metrics via:

list all data in history object
print(history.history.keys())

dict_keys([’loss’, ’acc’])

Using this data, we can also plot an accuracy curve as a function of epochs.

plt.plot(history.history[’acc’])
plt.title(’model accuracy’)
plt.xlabel(’epoch’)
plt.ylabel(’accuracy’)

Text(0, 0.5, ’accuracy’)

Testing the trained model For testing, we first need to make a prediction from
the model ouput. To this end, we use the predict() function as follows:

model.predict(X_test).argmax(1)

array([7, 2, 1, …, 4, 5, 6], dtype=int64)

Here argmax(1) returns the class w.r.t. the highest softmax output among the
10 classes. In order to evaluate the test accuracy, we use the evaluate() function:

model.evaluate(X_test, y_test)

356 TensorFlow and Keras Basics

Figure C.6. Accuracy as a function of epochs.

313/313 [================] - 0s 751us/step - loss: 0.1001 - acc: 0.9847

[0.10007859766483307, 0.9847000241279602]

Saving and loading Saving the trained model and loading the saved model later
is very simple. See below.

model.save(’saved_classifier’)

INFO:tensorflow:Assets written to: saved_classifier\assets

import tensorflow
loaded_model = tensorflow.keras.models.load_model(
’saved_classifier’)

References

Alizadeh, F. (1991). “Combinatorial optimization with interior point methods and
semi-definite matrices”. Ph. D. thesis, University of Minnesota.

Angwin, J., J. Larson, S. Mattu, and L. Kirchner. (2020). “There’s software used
across the country to predict future criminals and it’s biased against blacks.
2016”.

Arjovsky, M., S. Chintala, and L. Bottou. (2017). “Wasserstein generative adver-
sarial networks”. In: International conference on machine learning. PMLR.
214–223.

Arora, S., R. Ge, Y. Liang, T. Ma, and Y. Zhang. (2017). “Generalization and equi-
librium in generative adversarial nets (gans)”. In: International Conference on
Machine Learning. PMLR. 224–232.

Beckmann, E. C. (2006). “CT scanning the early days”. The British journal of radi-
ology. 79(937): 5–8.

Ben-Tal, A. and A. Nemirovski. (1998). “Robust convex optimization”. Mathemat-
ics of operations research. 23(4): 769–805.

Bhattacharyya, K. B. (2016). “Godfrey Newbold Hounsfield (1919–2004): The
man who revolutionized neuroimaging”. Annals of Indian Academy of Neurol-
ogy. 19(4): 448.

Candès, E. J. and B. Recht. (2009). “Exact matrix completion via convex optimiza-
tion”. Foundations of Computational mathematics. 9(6): 717–772.

Cho, J., G. Hwang, and C. Suh. (2020). “A fair classifier using mutual informa-
tion”. In: 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE. 2521–2526.

Cho, J. and C. Suh. (2019). “Wasserstein GAN can perform PCA”. In: 2019 57th
Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton). IEEE. 895–901.

357

358 References

Cormack, A. M. and G. N. Hounsfield. ‘The Nobel Prize in Physiology or
Medicine 1979 Explore Perspectives”.

Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.
Dantzig, G. B. (1951). “Maximization of a linear function of variables subject to

linear inequalities”. Activity analysis of production and allocation. 13: 339–347.
Dijkstra, E. W. et al. (1959). “A note on two problems in connexion with graphs”.

Numerische mathematik. 1(1): 269–271.
Dikin, I. (1967). “Iterative solution of problems of linear and quadratic program-

ming”. In: Doklady Akademii Nauk. Vol. 174. No. 4. Russian Academy of
Sciences. 747–748.

Drezner, Z. and H. W. Hamacher. (2004). Facility location: applications and theory.
Springer Science & Business Media.

El Ghaoui, L. and H. Lebret. (1997). “Robust solutions to least-squares problems
with uncertain data”. SIAM Journal on matrix analysis and applications. 18(4):
1035–1064.

Frank, M. and P. Wolfe. (1956). “An algorithm for quadratic programming”. Naval
research logistics quarterly. 3(1–2): 95–110.

Fukushima, K. (1980). “A self-organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position”. Biol. Cybern.. 36:
193–202.

Gardner, R. (1990). “LV Kantorovich: the price implications of optimal planning”.
Journal of Economic Literature. 28(2): 638–648.

Garnier, J.-G. and A. Quetelet. (1838). Correspondance mathématique et physique.
Vol. 10. Impr. d’H. Vandekerckhove.

Gauss, C. F. (1887). Abhandlungen zur Methode der kleinsten Quadrate. P.
Stankiewicz.

Geletu, A., M. Klöppel, H. Zhang, and P. Li. (2013). “Advances and applications
of chance-constrained approaches to systems optimisation under uncertainty”.
International Journal of Systems Science. 44(7): 1209–1232.

Glorot, X., A. Bordes, and Y. Bengio. (2011). “Deep sparse rectifier neural net-
works”. In: Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics. JMLR Workshop and Conference Proceedings.
315–323.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. (2014). “Generative adversarial nets”. Advances in
neural information processing systems. 27.

Gutmann, M. and A. Hyvärinen. (2010). “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models”. In: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics. Orga-
nizition. PMLR. 297–304.

References 359

Hardt, M., E. Price, and N. Srebro. (2016). “Equality of opportunity in supervised
learning”. Advances in neural information processing systems. 29.

Hinton, G., N. Srivastava, and K. Swersky. (2012). “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent”. Cited on.
14(8): 2.

Ioffe, S. and C. Szegedy. (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on
machine learning. PMLR. 448–456.

Ivakhnenko, A. G. (1971). “Polynomial theory of complex systems”. IEEE transac-
tions on Systems, Man, and Cybernetics. (4): 364–378.

Kantorovich, L. V. (1960). “Mathematical methods of organizing and planning
production”. Management science. 6(4): 366–422.

Kantorovich, L. V. (1989). “Mathematics in economics: Achievements, difficulties,
perspectives”. The American Economic Review. 79(6): 18–22.

Karp, R. M. (1972). “Reducibility among combinatorial problems”. In: Complexity
of computer computations. Springer. 85–103.

Karush, W. (1939). “Minima of functions of several variables with inequalities as
side constraints”. M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago.

Kingma, D. P. and J. Ba. (2014). “Adam: A method for stochastic optimization”.
arXiv preprint arXiv:1412.6980.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. (2012). “Imagenet classification
with deep convolutional neural networks”. Advances in neural information pro-
cessing systems. 25.

Kuhn, H. W. and A. W. Tucker. (2014). “Nonlinear programming”. In: Traces and
emergence of nonlinear programming. Springer. 247–258.

Larson, J., S. Mattu, L. Kirchner, and J. Angwin. (2016). ‘How we analyzed the
COMPAS recidivism algorithm”.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. (1989). “Backpropagation applied to handwritten zip code
recognition”. Neural computation. 1(4): 541–551.

Lin, J. (1991). “Divergence measures based on the Shannon entropy”. IEEE Trans-
actions on Information theory. 37(1): 145–151.

Linnainmaa, S. (1970). “Alogritmin kumulatiivinen pyöristysvirhe yksittäisten
pyöristysvirheiden Taylor-kehitelmänä”. Ph.D. thesis, Master’s thesis, Univer-
sity of Helsinki.

Minsky, M. and S. Papert. (1969). “Perceptrons.”
Monge, G. (1781). “Mémoire sur la théorie des déblais et des remblais”. Histoire de

l’Académie Royale des Sciences de Paris.
Nesterov, Y. (1998). “Semidefinite relaxation and nonconvex quadratic optimiza-

tion”. Optimization methods and software. 9(1–3), 141–160.

360 References

Nesterov, Y. and A. Nemirovskii. (1994). Interior-point polynomial algorithms in
convex programming. SIAM.

News, B. (2016). “Artificial Intelligence: Google’s AlphaGo Beats Go Master
Lee Se-Dol”.

Pearson, K. (1901). “LIII. On lines and planes of closest fit to systems of points in
space”. The London, Edinburgh, and Dublin philosophical magazine and journal
of science. 2(11): 559–572.

Rosenblatt, F. (1958). “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” Psychological review. 65(6): 386.

Rosenbusch, G. and A. de Knecht-van Eekelen. (2019). “A New Kind of Rays”.
In: Wilhelm Conrad Röntgen. Springer. 79–113.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. (1986). “Learning represen-
tations by back-propagating errors”. Nature. 323(6088): 533–536.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al. (2015). “Imagenet large scale visual recog-
nition challenge”. International journal of computer vision. 115(3): 211–252.

Samuel, A. L. (1967). “Some studies in machine learning using the game of
checkers. II—Recent progress”. IBM Journal of research and development. 11(6):
601–617.

Serio, G. F., A. Manara, P. Sicoli, and W. F. Bottke. (2002). Giuseppe Piazzi and the
discovery of Ceres. University of Arizona Press.

Shannon, C. E. (2001). “A mathematical theory of communication”. ACM SIG-
MOBILE mobile computing and communications review. 5(1): 3–55.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. (2016).
“Mastering the game of Go with deep neural networks and tree search”. Nature.
529(7587): 484–489.

Slater, M. (2014). “Lagrange multipliers revisited”. In: Traces and emergence of non-
linear programming. Springer. 293–306.

Vaserstein, L. N. (1969). “Markov processes over denumerable products of spaces,
describing large systems of automata”. Problemy Peredachi Informatsii. 5(3):
64–72.

Villani, C. (2009). “Optimal Transport. Grundlehren der Mathematischen
Wissenschaften”.

Wright, M. (2005). “The interior-point revolution in optimization: history, recent
developments, and lasting consequences”. Bulletin of the American mathemati-
cal society. 42(1): 39–56.

References 361

Zafar, M. B., I. Valera, M. G. Rogriguez, and K. P. Gummadi. (2017). “Fairness
constraints: Mechanisms for fair classification”. In: Artificial Intelligence and
Statistics. PMLR. 962–970.

Zhang, F. (2006). The Schur complement and its applications, Vol. 4. Springer
Science & Business Media.

Index

1-Lipschitz constraint, 281, 285, 289
1st-order Wasserstein distance, 33, 54, 273,

278, 295
2nd-order Wasserstein distance, 296
a priori probability, 68
activation, 38, 190, 191, 193, 202–206,

208–213, 221–224, 226, 229, 231,
232, 234, 237, 239, 240, 255–257,
260, 263, 264, 285–289, 299, 319,
325, 351–353

adam, 221, 225, 226, 254, 286,
353

adam optimizer, 224–226, 236–238, 259,
286, 315, 319, 353

affine functions, 16, 18, 126, 165
affine set, 13, 14
algorithms, 6, 9, 18, 21–23, 28, 41, 42,

115, 124, 127, 130–132, 135, 139,
155, 162, 180, 186, 187, 191, 193,
207, 212, 241, 300, 301

AlexNet, 200, 201
AlphaGo, 187
alternating gradient descent, 134, 135,

137, 138, 166, 253, 269, 270, 293,
311, 314

Anaconda, 50, 330, 343

application programming interfaces (APIs),
348

artificial intelligence (AI), 187
autoencoder, 241, 270
backprop, 221, 235, 240
backpropagation, 212, 216–218, 220, 221,

234, 240
barrier function, 135–138, 141, 165, 166
batch, 227, 254, 256, 259, 260, 264, 291,

315, 319, 354
batch normalization (BN), 256, 287
betas, 227, 354
bi-directed graph, 39
bias-allowing LS classifier, 62
bias correction, 236
binary cross entropy (BCE), 259, 304, 314
bipartite matching problem, 55
Boolean optimization problem, 55
Boolean problem, 39, 41, 42, 168, 169,

175, 182, 183, 337
bounded set, 157
cat-dog classification problem, 37
chain rule, 20, 194, 217, 218, 305
chance program (CP), 97, 122
classification problem, 23, 35–37, 42, 53,

54, 58, 60, 72

362

Index 363

classifier loss, 320
closed set, 157
clustering, 241
colorbar, 351
COMPAS, 316
COMPAS dataset, 316
complementary slackness condition, 128
computed tomography (CT), 74, 82, 85
concave functions, 16, 27
concavity, 140
constrained least squares, 86, 129, 131, 132
constrained optimization, 37
constraints, 3, 8, 11, 17, 30, 32, 33, 36,

37, 43–47, 49, 51, 56, 91, 100, 105,
112, 113, 125, 126, 128, 131, 135,
143, 150, 155, 167, 170, 173, 176,
179, 273, 278, 300, 309, 343, 345,
346

convex classifier, 192
convex combination, 12–14, 16, 103, 104,

146, 152
convex functions, 10–12, 15, 16, 18, 19,

25, 126, 135
convexity, 16, 25, 81, 86, 93, 94, 103, 104,

107, 146, 150–152, 164, 165, 189,
194, 195, 198, 309

convex optimization, 8–12, 17–19, 22, 28,
42, 49, 50, 53, 58, 64, 72, 79, 86,
92, 93, 102, 113–115, 124, 125,
127, 129, 132, 133, 135, 136,
139–142, 154–158, 160, 162–165,
172, 180, 189, 193, 208, 274, 300,
307, 309, 313, 321, 322, 336, 343

convex sets, 10, 12, 13, 16–18, 24, 25,
145, 146, 157, 161

conv layer, 287, 288
convolutional neural networks (CNNs),

211, 287

covariance matrix, 98, 122, 283, 284, 297
critic, 288–293
critic loss, 292
cross entropy, 192, 193, 198, 220, 230,

238, 259, 353
cross entropy loss, 192, 193, 197, 198,

201, 208, 217, 221, 224, 227, 231,
232, 234, 238, 240, 283, 307, 314,
354

cumulative density function (CDF), 99,
123

cumulative distribution function (CDF),
99

CVXPY, 2, 3, 23, 49–55, 57, 58, 64, 70,
71, 81, 85, 86, 90, 93, 100, 109,
113, 122, 343–345

data, 35–38, 55, 60, 61, 64, 65, 67, 69, 70,
84, 85, 97, 98, 100, 103, 180, 196,
207, 225, 226, 240–244, 246, 247,
257, 271, 272, 274, 278, 283, 284,
293, 297–299, 301–304, 316–318,
325, 334, 335, 338

deep learning, 2, 200–202, 206, 207,
210–212, 221, 222, 227, 248, 252,
294, 321, 348

deep neural networks, 38, 200–202, 240,
249, 252

density estimation problem, 244
differentiable, 18, 24, 25, 28, 81, 136, 140,

191–193, 213, 218
discriminator, 247, 248, 252–254,

257–261, 263, 265–267, 271, 288,
311, 315, 319, 320, 324–326, 328

discriminator loss, 260, 315, 320
disparate impact (DI), 301, 313
disparate treatment (DT), 301, 313
divergence measure, 231, 245, 246, 251,

273, 299, 307

364 Index

domain, 14, 20, 72, 212
downsample, 287, 288
dual function, 126, 128–130, 139–141,

144, 148, 157–160, 163–165, 167,
170–172, 175, 177, 184, 275, 276

dual problem, 124–129, 131, 140–144,
150, 157–160, 163–167, 169, 171,
172, 175, 178–180, 182–184,
274–276, 278–280, 296

duality, 9, 22, 36, 42, 88, 90, 100, 113,
124, 127–131, 133, 139, 143, 144,
150, 155, 160, 162–165, 179–181,
184, 185, 228, 242, 274, 285, 321

duality gap, 167, 169
eigenvalue, 86, 95, 109, 112, 113, 119,

120, 123, 195, 297
eigenvalue decomposition (EVD), 95
eigenvector, 112
empirical distributions, 245, 246, 271,

278, 295, 296, 298
entropy, 192, 193, 197, 198, 201, 208,

217, 221, 224, 227, 231, 232, 234,
238, 240, 283, 307, 308, 314, 354

epoch, 235, 238, 267, 355, 356
equality constraints, 11, 17, 44, 45, 51,

126, 131, 170, 278, 309
equality-constrained LS, 87, 93
equalized odds (EO), 323
Euclidean norm, 5, 6, 24, 32, 93, 94, 96,

97
examples, 2, 11, 13, 15, 16, 23, 28, 35, 41,

50, 52, 65, 86, 97, 219, 222, 226,
227, 230, 234, 241, 242, 248, 249,
254, 256, 260, 299, 303, 317, 318,
335, 336, 348, 352, 354

fair classifiers, 9, 181
fair generative modeling, 301
fair machine learning, 294, 299–301, 316,

321
fake data, 243–247, 299, 301

fake samples, 252, 262, 271, 278, 283,
295, 296, 298

false alarm, 66
false negative rate (FNR), 66
false positive rate (FPR), 66
fat matrix, 59
feasible set, 103, 126
feature learning, 241, 270
features, 287
function class, 188
function optimization, 188, 245, 246, 282,

299, 309, 310
GAN optimization, 246, 249, 251, 259,

261, 271, 273, 300, 306
Gauss’s trick, 96
Gaussian approximation, 98
Gaussian distribution, 98, 99, 283, 297,

298
Gaussian elimination, 4, 6, 47, 48
generalized Schur complement lemma,

119, 173, 175
generative adversarial networks (GANs), 9,

33, 181, 242, 243, 246, 299
generative model, 242–244, 246, 299
generative modeling, 241–244, 246, 252,

298, 299, 301, 321
generator, 248, 253–255, 258, 259, 262,

264–266, 271, 273, 283, 287–289,
291–293, 297, 298, 311

generator loss, 254, 260, 267, 292
genetic natural selection in evolution,

205
global minimum, 214
gradient, 21, 25, 58, 86, 128, 133, 134,

191, 199, 213, 217, 218, 227, 286,
354

gradient ascent, 134, 253
gradient descent, 18, 21, 22, 26, 28, 37,

131, 134, 138, 162, 165, 180, 191,
193, 198, 215, 219, 221, 224, 235,

Index 365

236, 240, 253, 269, 270, 299, 311,
319, 353

half-plane, 14
handwritten digit classification, 221,

349
Hessian, 194, 195, 213
hidden layer, 38, 202–205, 208, 210, 212,

216, 222, 223, 231, 232, 234, 237,
255–257, 263, 264, 286–288, 299,
351, 352

hyperparameter, 68, 69, 82, 225, 236, 286,
287

hyperplane, 13, 24, 145–147, 149, 150,
152, 154, 155, 157, 158, 160

ice-cream cone, 94
ImageNet, 200, 207
ImageNet competition, 200
indicator function, 65, 191
inequality constraints, 11, 17, 30, 36, 44,

105, 128, 131, 150, 170, 345
inner optimization problem, 250, 274, 275
input layer, 202, 203, 205
interior point method, 42, 131, 135, 137,

140, 155, 162, 165, 166, 169, 180,
185, 191, 321

invertible, 88, 89, 105, 108, 116, 140
iterative algorithm, 26, 28, 45
itertools, 336, 337
Jensen-Shannon (JS) divergence, 251, 252,

262, 298, 299
Jensen’s inequality, 25, 198, 251
Jupyter notebook, 2, 329–332
Kantorovich duality, 274, 278, 285
Kantorovich’s plywood cutting problem,

29, 35, 42, 50, 52
Kantorovich-Rubinstein distance, 33
Kantorovich-Rubinstein duality, 274
Keras, 221, 226, 237, 257–260, 264–266,

289–292, 319, 320, 326, 348, 349
kernel, 344

KKT conditions, 88, 93, 113, 124,
129–133, 135–143, 155, 162, 181

Kullback-Leibler (KL) divergence, 307
label, 55, 61, 65, 180, 192, 193, 221, 222,

224, 229, 323, 324, 350
labeled data, 241, 244
Lagrange dual function, 126
Lagrange function, 88, 125, 128, 129, 132,

133, 136–142, 159, 163, 166,
170–172, 176, 179, 180, 184, 275,
309

Lagrange multipliers, 125, 163, 276, 278,
309

Lagrange relaxation, 167–170, 174–176,
178, 180, 183, 321

Laplace transform, 117
leaky ReLU, 286–288, 299
learning rate, 21, 26, 134, 135, 199, 215,

224, 226, 227, 235, 253, 269, 270,
286, 319, 353, 354

least squares (LS), 53, 58, 72
least-squares classifier, 60–63, 65, 67, 80,

81, 193
legitimate-vs-spam emails classification,

60
lifting, 111, 123, 179, 183
likelihood, 195, 196, 198, 199, 201, 221,

224, 230, 240, 283, 284, 297–299,
302, 353

linear activation, 287–289
linear algebra, 1, 2
linear classification, 42, 54
linear classifiers, 60, 98
linear matrix inequality (LMI), 103, 118
linear program (LP), 7, 10, 17, 18, 22, 28
linear projector, 61
linearly independent, 59, 87, 90
linearly separable, 37
list, 16, 50, 206, 234, 242, 334, 338, 339,

353

366 Index

local minimum, 214
log-likelihood, 297
log-likelihood function, 297
logarithmic barrier, 136, 137, 141, 165,

166, 169
logistic function, 26, 192, 193, 201, 208,

210–212, 217, 221, 223, 229, 231,
240

logistic regression, 191–193, 195, 196,
198, 199, 201, 229, 240, 294

Lorentz cone, 94
LP relaxation, 23, 34, 35, 39, 41, 42, 50,

55, 57, 86, 167, 168, 182, 183
machine learning, 2, 9, 23, 33, 35–38, 53,

58, 60, 68, 72, 180, 181, 185–187,
189, 193, 228, 231, 244, 294,
299–301, 307, 321, 322, 348

margin-based linear classifier, 64, 67, 80,
98

MATLAB, 50, 218, 343
matplotlib, 55, 85, 237, 239, 265, 325,

341, 350
matplotlib.pyplot, 55, 341, 350
matrix completion, 109, 120, 121
MAXCUT problem, 110
maximum likelihood, 195, 198, 299
medical imaging, 72, 73
minimax theorem, 267, 268
minimizer, 12, 30, 130, 139, 144, 164, 172
misdetection, 66, 85
misdetection rate, 66, 85
MNIST, 222, 225, 227, 237–239, 252,

254, 255, 257, 264, 285, 287,
349–351, 354

MNIST data, 222, 225, 227, 237, 238,
257, 264, 350, 351, 354

Modified National Institute of Standards
and Technology (MNIST) data,
222, 349

momentum, 225, 286

momentum optimizer, 236
Monge’s problem, 31, 54, 57
Monge’s transportation problem, 31, 35,

42
multiclass classifier, 229
mutual information, 305, 307–310, 313,

323
natural genetic selection, 205
network flow problem, 23
neural networks, 38, 189, 193, 200, 201,

240, 248, 252, 253, 282, 287, 310,
319, 325

neurons, 190, 191, 202–205, 210, 212,
222, 226, 234, 240, 255–257, 263,
287, 352, 353

non-convex optimization, 108, 129, 130,
162, 164, 169, 180, 185, 210,
214

non-convex optimization problem, 108,
129, 162, 180, 185

non-linear classifier, 38
normal Gaussian distribution, 99
numpy, 70, 81, 85, 91, 101, 114, 235,

239, 264, 266, 293, 319, 321, 325,
328, 336, 338, 339

numpy.array, 71, 338
numpy.linalg, 339
numpy.random, 339
objective function, 6, 8, 11, 17–19, 26, 29,

30, 33, 37, 43, 44, 51, 55, 58, 61,
70, 71, 95, 111, 112, 118, 135, 136,
144, 172, 176, 189, 191, 198, 199,
208, 210, 213–215, 217, 231, 232,
234, 239, 245, 250, 251, 259, 278,
280, 310, 321, 346

one-hot vector, 224
open set, 157
optimal solution, 8, 10, 12, 18–20, 26, 37,

41, 46, 47, 49, 51, 52, 55, 63, 87,
88, 122, 127, 134, 135, 137, 138,

Index 367

150, 156, 162, 176, 180, 185, 198,
269

optimal value, 12, 51–53, 55, 59, 122,
123, 127, 130, 132, 133, 140–142,
145, 160, 163, 167, 169, 178, 183,
184, 279, 346

optimization, 1–11, 17, 18, 22, 23, 26, 29,
32, 33, 36–40, 43, 48, 51, 54, 55,
59–62, 80, 86, 88, 92, 96, 97, 100,
110–114, 121–127, 129, 130, 132,
138–141, 143, 160, 162–164, 166,
169, 171, 173, 175, 177–180,
183–185, 188, 189, 191–194, 198,
200–202, 208–210, 213–215, 220,
221, 228, 240–242, 244–246,
248–254, 260, 262, 269, 271,
273–275, 277–280, 282, 284, 285,
294–296, 299, 300, 304–308, 310,
311, 313–315, 320–322, 324, 334,
336, 343, 345, 346

optimization variable, 2, 3, 11, 23, 29, 32,
33, 36, 37, 39, 43, 51, 59, 96, 100,
110, 111, 114, 125, 141, 163, 169,
171, 173, 175, 179, 189, 212, 274,
278, 310, 345

optimization variable, 51, 70, 91, 101, 114
output layer, 38, 201, 202, 204, 205, 211,

222, 223, 226, 231, 232, 234, 237,
239, 240, 255, 257, 287, 288, 299,
319, 325, 351–353

padding, 289–291
parameters, 5, 97, 103, 114, 137, 193,

238, 240, 243, 252, 256, 263, 286,
306, 345, 346

pattern recognition, 206
penalized LS, 97
Perceptron, 189, 199–202, 205, 229
pointwise minimum, 126
polygon, 14
polyhedron, 14

polytope, 14, 25, 49
pooling layer, 287
positive semidefinite, 81, 82
positive semidefinite matrix (PSD), 82
primal problem, 125, 126, 129, 135, 141,

144, 145, 163, 164, 167, 176, 179,
274

principal component analysis (PCA), 113
probability, 1, 2, 4, 33, 54, 68, 98, 117,

196, 224, 229, 243, 244, 247, 249,
250, 272, 298, 308–311, 316–318,
323, 340, 353

probability distribution, 241, 339
pseudo-inverse, 119, 297
Python, 2, 3, 23, 26, 50, 55, 80, 81, 85,

234, 235, 267, 328, 329, 331, 334,
335, 338, 343

quadratic cone, 94
quadratic program (QP), 8, 86
radiology, 72, 73
random processes, 2
range, 60, 81, 195, 211–213, 255,

285–287, 315
range space, 59, 60
real data, 241–244, 246, 247, 299, 301
real samples, 271, 278, 283
recidivism score predictor, 300
rectified linear unit (ReLU), 211
regularization, 63, 64, 68–70, 81, 84, 85,

97, 181, 300, 304, 307, 313, 321,
324

regularization factor, 68
regularization technique, 67
representation learning, 241
resizing, 340
resource allocation, 28
resource allocation problems, 28
RMSprop, 286, 291, 299
RMSprop optimizer, 286, 291, 299
robust LP, 97

368 Index

robust LS, 118
samples, 35, 85, 187, 188, 193, 196, 198,

201, 207, 240, 252, 301, 316
Schur complement, 103, 105, 107, 109,

173, 175
Schur complement lemma, 103, 105, 107,

109, 119, 173, 175
scipy, 340
scipy.stats, 336, 340
SDP, 103, 108, 109, 112, 113, 122, 123,

167, 168, 175, 178, 179, 183
SDP relaxation, 108, 109, 112, 121–123,

168, 175, 178, 179, 183
second-order cone (SOC) constraint, 96,

100, 102, 104, 105
second-order cone program (SOCP), 8, 92,

93
seen data, 69
semi-definite program (SDP), 8, 51, 102,

103
sensitive attributes, 301, 302
separating hyperplane theorem, 146, 150,

152, 154, 157, 158, 160
set, 2, 11–14, 16, 17, 24, 25, 27, 29,

37–40, 45–48, 56, 69, 77, 81,
94–96, 100, 103, 110, 111, 119,
120, 122, 123, 134–136, 138,
145–147, 151, 152, 154, 157, 172,
173, 175, 177, 186, 212, 226, 227,
235, 249, 258, 269, 271, 276, 278,
282, 285, 286, 292, 332, 333, 353

SGD, 319
Shannon entropy, 198, 230, 238, 308
shortest path problem, 39, 41, 42, 57
sigmoid function, 192
simplex algorithm, 42, 43, 45–47, 49, 50,

53, 56, 57, 162, 180, 274
singular values, 109
singular value decomposition (SVD), 340
slack form, 43, 44, 56, 57

slack variable, 44, 45, 56
Slater’s condition, 158
SOC, 94, 96, 102, 104
SOC constraint, 96, 102, 104
SOCP, 9, 93, 96, 100, 103, 104, 107, 109,

115, 124, 162
softmax, 221–224, 226, 227, 229, 237,

299, 311, 351–353, 355
spurious local minima, 214, 221, 240
squared error, 61, 87, 188, 239
standard form, 11, 17, 28–30, 36, 42, 43,

54, 56, 84, 86, 90, 93, 95, 100,
103–106, 111, 113, 125, 135, 150,
163, 166, 170, 172, 175, 176, 345

standard Gaussian distribution, 99
standard Gaussian distribution, 337, 339
stationary point, 19, 28, 58, 134, 137,

138, 142, 166, 171, 253
stochastic gradient descent (SGD),

319
stride, 289, 290
strong duality, 9, 22, 28, 36, 37, 42, 88,

90, 100, 113, 115, 124, 127–131,
133, 138, 139, 143, 144, 150, 155,
157, 158, 160, 162, 163, 179–181,
185, 274, 321

strong duality theorem, 127, 133, 139,
143, 150, 155, 158, 160, 162, 179,
185, 274, 321

supervised learning, 9, 180, 185, 187, 188,
193, 201, 220, 221, 227, 238, 240,
241, 299–302, 315, 321

support vector machines (SVMs), 207
SVD, 340
symmetric matrix, 112, 171
synapses, 190
tall matrix, 59
tanh function, 211–213
TensorFlow, 2, 3, 200, 220, 221, 225, 240,

251, 252, 257, 259, 261, 284, 285,

Index 369

287, 290, 291, 299, 300, 311, 313,
319, 348, 349

test data, 65, 69, 85, 225
test error, 63–69, 72, 80, 81, 85
TNR, 66
total probability law, 33, 54, 308, 309, 318
TPR, 66
trace, 114, 115, 119–121, 159
tractable optimization problems, 8, 10
train data, 65, 69
training instability, 268
transportation problems, 23, 33
transportation theory, 28, 31, 33
true negative rate (TNR), 66
true positive rate (TPR), 66
two-player game, 248, 311
two-sided Laplace transform, 117
unbounded below, 171
unconstrained optimization, 58, 143, 150,

166, 321
unconstrained QP, 171, 178
undirected graph, 183
uniqueness theorem of Laplace transform,

117

unseen data, 65
unsupervised learning, 9, 180, 228, 241,

242, 246, 294, 299, 301,
321

validation data, 69
Wasserstein distance, 33, 273, 274, 278,

279, 283, 295, 296
Wasserstein GAN, 34, 261, 271, 282, 285,

295, 298, 299
weak duality, 9, 130, 156, 162–165, 167,

169, 180, 184, 185, 321
weak duality theorem, 162, 164, 169, 180,

184, 185, 321
weight clipping, 286, 290,

291
weights, 110, 121, 188, 189, 195, 199,

212, 215, 231, 235, 239, 240, 253,
262, 286, 292, 304

WGAN, 271, 274, 277, 278, 282–288,
291, 294, 299, 321

WGAN optimization, 274, 277, 278,
283–285, 291

wide matrix, 59
X-ray, 72–76, 78, 82, 84, 85

About the Author

Dr. Changho Suh is an Associate Professor of Electrical
Engineering at KAIST. He received the B.S. and M.S.
degrees in Electrical Engineering from KAIST in 2000
and 2002 respectively, and the Ph.D. degree in Electrical
Engineering and Computer Sciences from UC Berkeley
in 2011. From 2011 to 2012, he was a postdoctoral asso-
ciate at the Research Laboratory of Electronics in MIT.
From 2002 to 2006, he was with Samsung Electronics.

Prof. Suh is a recipient of numerous awards in
research and teaching: the 2022 Google Research Award, the 2021 James L.
Massey Research & Teaching Award for Young Scholars from the IEEE Information
Theory Society, the 2020 LINKGENESIS Best Teacher Award (the campus-wide
Grand Prize in Teaching), the 2019 AFOSR Grant, the 2019 Google Education
Grant, the 2018 IEIE/IEEE Joint Award, the 2015 IEIE Haedong Young Engi-
neer Award, the 2015 Bell Labs Prize finalist, the 2013 IEEE Communications
Society Stephen O. Rice Prize, the 2011 David J. Sakrison Memorial Prize (the
best dissertation award in UC Berkeley EECS), the 2009 IEEE ISIT Best Stu-
dent Paper Award, and the five Department Teaching Awards (2013, 2019, 2020,
2021, 2022). Dr. Suh is a Distinguished Lecturer of the IEEE Information The-
ory Society from 2020 to 2022, the General Chair of the Inaugural IEEE East
Asian School of Information Theory 2021, an Associate Head of the KAIST AI
Institute from 2021 to 2022, and a Member of the Young Korean Academy of
Science and Technology. He is also an Associate Editor of Machine Learning for
IEEE TRANSACTIONS ON INFORMATION THEORY, a Guest Editor for

370

About the Author 371

the IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY,
the Editor for IEEE INFORMATION THEORY NEWSLETTER, an Area Edi-
tor for IEEE BITS the Information Theory Magazine, an Area Chair of NeurIPS
2021–2022 and a Senior Program Committee of IJCAI 2019–2021.

	Copyright
	Preface
	Chapter 1 Convex Optimization Basics
	1.1 Overview of the Book
	1.2 Definition of Convex Optimization
	1.3 Tractability of Convex Optimization and Gradient Descent
	Problem Set 1
	1.4 Linear Program (LP)
	1.5 LP: Examples and Relaxation
	1.6 LP: Algorithms
	1.7 LP: CVXPY Implementation
	Problem Set 2
	Problem Set 2
	1.8 Least Squares (LS)
	1.9 LS: Test Error, Regularization and CVXPY Implementation
	1.10 LS: Computed Tomography
	Problem Set 3
	Problem Set 3
	1.11 Quadratic Program
	1.12 Second-order Cone Program
	1.13 Semi-definite Program (SDP)
	1.14 SDP Relaxation
	Problem Set 4
	Problem Set 4

	Chapter 2 Duality
	2.1 Strong Duality
	2.2 Interior Point Method
	Problem Set 5
	Problem Set 5
	2.3 Proof of Strong Duality Theorem (1/2)
	2.4 Proof of Strong Duality Theorem (2/2)
	Problem Set 6
	Problem Set 6
	2.5 Weak Duality
	2.6 Lagrange Relaxation for Boolean Problems
	2.7 Lagrange Relaxation for the MAXCUT Problem
	Problem Set 7
	Problem Set 7

	Chapter 3 Machine Learning Applications
	3.1 Supervised Learning and Optimization
	3.2 Logistic Regression
	3.3 Deep Learning I
	3.4 Deep Learning II
	3.5 Deep Learning: TensorFlow Implementation
	Problem Set 8
	Problem Set 8
	3.6 Unsupervised Learning: Generative Modeling
	3.7 Generative Adversarial Networks (GANs)
	3.8 GANs: TensorFlow Implementation
	Problem Set 9
	Problem Set 9
	3.9 Wasserstein GAN I
	3.10 Wasserstein GAN II
	3.11 Wasserstein GAN: TensorFlow Implementation
	Problem Set 10
	Problem Set 10
	3.12 Fair Machine Learning
	3.13 A Fair Classifier and Its Connection to GANs
	3.14 A Fair Classifier: TensorFlow Implementation
	Problem Set 11
	Problem Set 11

	Chapter A Python Basics
	A.1 Jupyter Notebook
	A.2 Basic Python Syntaxes
	A.2.1 Data Structure
	A.2.2 Package
	A.2.3 Visualization

	Chapter B CVXPY Basics
	Chapter C TensorFlow and Keras Basics
	References
	Index
	About the Author

