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Preface

To the first edition, May 2018:

Exactly 100 years ago prof. Joukowsky, one of the founders of modern aerody-
namics, published the first rotor performance prediction. The tools of Joukowsky
and his contemporaries were mathematics and wind tunnel experiments, nowa-
days we use mathematics, numerics, full scale experiments and, still, wind tunnel
experiments. A century of research has expanded the knowledge of rotor aerody-
namics enormously, with modern computer power and measurement techniques
enabling detailed analyses of flows which were out of reach 100 years ago. How-
ever, the concepts for modelling a rotor in performance calculations as proposed
by Froude, Betz, Joukowsky and Glauert are still used, be it with modifications
and expansions. Especially the fast development of wind energy has revitalised
the use of these concepts as they enable fast and accurate rotor designs.

Although the early models for a rotor have a proven track record, there is
room for improvement in knowledge. The author returned to these models ex-
pecting that the combination of mathematics, dedicated computations and wind
tunnel experiments would bring more physical insight. Furthermore, to the au-
thor’s opinion several old questions were still waiting to be resolved. The result of
this curiosity driven work is this book. Although most work has been published
in papers, the book adds a storyline and connects topics. When the research
started, there was not a storyline at all, only questions. None of the hours spent
by the author has been part of any official R&D project as it would have been
impossible to define objectives, deliverables or deadlines.

Although numerical methods and experiments have contributed to the book,
most of the content is a mathematical treatment of the fluid dynamic aspects of
rotor modelling as, quoting Maxwell (1831-1879): ‘there is nothing more practical
than a good theory’.1 A good knowledge of (inviscid) fluid mechanics is required
to read the book, which is written for proficient students and researchers.

Finally: on average the name of Joukowsky appears once per page, as his
ideal rotor concept is examined in detail. The book is published one century after
his first power prediction for a propeller in still air, a ship screw in still water or
a hovering helicopter rotor, so it is dedicated to Nikolay Yegorovich Joukowsky.

1see http://listverse.com/2009/02/26/another-10-most-influential-scientists/, last
visited March 21, 2022. The quote is sometimes attributed to social psychologist Lewin (1890-
1947) but he lived after Maxwell.
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vi PREFACE

To the second edition, May 2022:

In the first edition the question why the absolute velocity at the disc is practi-
cally constant, was not yet answered satisfactorily. Additional research gave this
answer (van Kuik, 2020), which is included in the new chapter 7. This chapter
now contains all information about the velocity distribution, which were part of
chapters 5 and 6 in the previous edition. In this second edition these chapters
treat only the average velocity. Other changes in the book concern textual cor-
rections and rearrangements, an update of the reference list, and corrections in
equations. Luckily these corrections turned out to be without consequences for
the derivations and (numerical) results. In appendix D.1 of the first edition, the
complete elliptic integrals were presented as programmed in the computer code,
instead of how these integrals are described in literature like Branlard (2017). In
this edition appendix D.1 has been adapted accordingly. Inspection and calibra-
tion by Peter Schaffarczyk confirmed previous calculations.

Gijs van Kuik, May 2018, May 2022.

Reading guide

The book intends to be interesting for all branches in rotor aerodynamics: wind
turbines, propellers, ship screws, helicopter rotors. However, with the background
of the author in wind energy, many references relate to the wind turbine field
of science. Chapter 1 treats the historical context, gives the motivation of the
book and formulates several research questions. Chapters 2 and 3 are best read
together, as they treat the advantage of the dynamic method (force fields as input
in the equations of motion) over the kinematic method (force fields determined
once the flow is solved), with emphasis on the two phenomena governing the
flow: energy, and vorticity. Chapter 4 shows why the actuator disc concept still
is the correct basis for rotor design and analysis. The performance prediction
by actuator disc theory is the topic of chapters 5 and 6: in 5 the Froude disc
concept (no torque, no angular momentum in the wake) and in 6 the Joukowsky
disc (with torque and angular momentum). Both analyses are complemented by
results of potential flow calculations. In chapter 7 the velocity distribution at
the disc is discussed, for both types of disc. As a side step chapter 8 treats two
special topics: the role for conservative forces acting on a disc with thickness, and
on a rotor blade with non-zero chord and thickness. Chapter 9 is a chapter with
an open end. Herein some results of previous chapters are combined to explore
improvements in design and analysis methods. Finally chapter 10 looks back.

The book is not written as a summation of independent chapters but follows
a certain storyline. There is no forward referencing but quite some backward
referencing. Chapters may be read apart from the others when these referenced
equations and results are accepted, but it is advised to begin at the beginning
and end at the end. An extract of the book has been published as chapter in the
Handbook of Wind Energy Aerodynamics, (van Kuik, 2021)
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Nomenclature

Symbols appearing only locally are explained in the text, so not listed here.

Symbols Description units
e a bold symbol is a vector

a induction a = 1− vx,d/U0 -
A area of a stream tube cross-section m2

B number of blades -
c chord m
C cross-section m2

Cl lift coefficient L/( 12ρU
2
0 c) -

Cp power coefficient* P/( 12ρU
3
0πR

2) -
CT thrust coefficient* T/( 12ρU

2
0πR

2) -
Ct local thrust coefficient BdLx/

(
ρU2

0πrdr
)

-
C distribution of vϕ in vortex kernel -
d numerical damping -
D induced drag N
e unit vector -
f force density N m−3

F surface force N m−2

F potential of f N m−2

F tip correction function -
F1 additional tip correction function -
G distribution of vx at the actuator disc -
H Bernoulli parameter p+ 1

2ρv · v N m−2

J advance ratio U0/(2nR) -
KE kinetic energy per unit mass kg m−1 s−2

L lift N m−1

L contour m
n revolutions per second s−1

N number of vortex rings -
p pressure N m−2

P power N m s−1

*To avoid confusion with other definitions
of Cp and CT see the footnote at page 37.

xiii



xiv NOMENCLATURE

Symbols Description, continued units
q dimensionless vortex strength Γ/(2πRU0) -
Q torque N m
R radius m
R aerodynamic force vector N m−1

S spanwise load N
S surface m2

t time s
T thrust N
U0 undisturbed velocity m s−1

v velocity vector m s−1

V volume m3

α angle of attack ◦

γ vortex sheet strength m s−1

Γ vortex strength or circulation m2 s−1

δ radius vortex core m
Δ jump in parameter value -
ε thickness m
η propeller efficiency P/TU0 -
λ tip speed ratio ΩR/U0 = π/J -
ρ fluid density kg m−3

Φ flow potential m2 s−1

Ψ Stokes’ stream function m3 s−1

ω vorticity s−1

Ω rotational speed rad s−1

Subscripts
ann annulus of a stream tube
B at the position of the blade
cons conservative force
non-cons non-conservative force
rot in rotating coordinate system
0,d,1 far upstream, at the disc, far downstream
h static or hovering disc
i induced
K-J Kutta-Joukowsky
C Coriolis
ΔH connected to a change in H
Δvϕ connected to a change in vϕ
0, d, 1 far upwind in the stream tube, at the disc, far downwind

Superscripts
- averaged value

Coordinate Systems
x, r, ϕ cylindrical, see fig. 2.2
x, r, ϕrot rotating cylindrical, see eqs. (2.5, 2.6)
s, n, ϕ local, see fig. 2.2



NOMENCLATURE xv

Abbreviations
2-D, 3-D two-, three-dimensional
AD Actuator Disc
AL Actuator Line
BEM Blade Element Momentum theory
CFD Computational Fluid Dynamics
LES Large Eddy Simulation
LL Lifting Line
PGS Prandtl-Glauert-Shen tip correction
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Chapter 1

More than a century of rotor research

1.1. Introduction

Rotor aerodynamics has a history of more than a century, with the first perfor-
mance prediction that still holds today published exactly 100 years ago. Joukowsky
(1918) used a very simplified model of a rotor, the actuator disc, to connect thrust,
velocity and power for predicting the performance of a ‘static’ rotor like a hov-
ering helicopter rotor. A century later, rotor aerodynamics has several branches:
ship screws, propellers, helicopter rotors and wind turbine rotors. All branches
have excellent textbooks and survey papers, like Breslin and Andersen (1994) for
ship propellers, Wald (2006) for propellers, Leishman (2006) for helicopter rotors
and Schaffarczyk (2020) for wind turbine rotors. Especially the latter applica-
tion, wind turbines, has been growing very fast over the last decades, giving rise
to more specialised books like Sørensen (2015) and Branlard (2017), textbooks
like Hansen (2008), Burton et al. (2011) and Manwell et al. (2009) in which ro-
tor aerodynamics is treated as part of wind turbine design, and survey papers
like Okulov et al. (2015) and van Kuik et al. (2015a). Loads, performance and
dynamic behaviour can now be calculated with high accuracy under conditions
that were unimaginable 100 years ago: rotors having diameters approaching 200
m, operating in the earth boundary layer with often high turbulence levels and
extreme gusts, interacting with the neighbouring turbines when placed in a wind
farm, and designed for 20 years lifetime.

This book returns to the rotor theories as developed in the first decades of
rotor aerodynamic history, with the objective to renew the physical interpretation
of some flow phenomena observed for heavily loaded discs and rotors, to comple-
ment the theory with knowledge about flow details which has become into reach
by modern computing power, and to expand the theory to its limits of operation.
Section 1.4 presents the questions which will be addressed, preceded by sections
on the history of rotor aerodynamics, with special attention to the development
of the actuator disc model. With its origin in the late 19th century this model is
the basis for modern rotor design and analysis methods.

1



2 CHAPTER 1. MORE THAN A CENTURY OF ROTOR RESEARCH

Table 1.1. From actuator disc theory to BEM: the main contributions and contributors

contributions British school German school Russian school
Actuator disc theory 1865 Rankine

1889 Froude
1904 Finsterwalder
1910 Bendemann

1913 Vetchinkin
1917 Bothezat

First power performance 1918 Joukowsky
for the static disc

Confirmation by vortex theory 1919 Betz, Prandtl 1912-1918 Joukowsky

Expansion to wind turbines, Aug.1920 Munk Febr.1920 Joukowsky
formulation of Cp,max Sept.1920 Betz

Jul.1921 Hoff

Blade element theory 1920 Drzewiecki

BEM: the Blade Element 1935 Glauert
Momentum theory

1.2. History of the actuator disc momentum theory

The three European aerodynamic research schools that were famous in the first
half of the 20th century have contributed significantly to actuator disc momentum
theory: the British school led by Froude and Lanchester, the German school led
by Prandtl and Betz, and the Russian school led by Joukowsky and Vetchinkin.
These contributions are reviewed in retrospect, based on van Kuik (2007) and
Okulov and van Kuik (2012). In table 1.1 the main contributions are shown.

1.2.1. The British School

The idea to replace a rotor by an actuator disc goes back to the work of Rank-
ine (1865). However, only in 1889 Froude has for the first time found a correct
dynamic interpretation of the actuator disc action showing that for such a theo-
retical propeller one half the acceleration must take place before the propeller and
the other half behind it. Unfortunately, the discussion on the question whether
the contraction or expansion of the stream tube takes place before or behind the
disc continued after Froude’s paper, despite his formal mathematical treatment.
Vetchinkin (1913, 1918), who was a pupil of Joukowsky, sought an explanation
for the denial of Froude’s result in the misunderstanding of the relation between
the action of a disc and of real rotor blades. Most scientists at that time thought,
erroneously, that the flow before the rotor plane is undisturbed, then receives
a full speed alteration when it moves through the rotor blades, after which the
flow behind the rotor is undisturbed too. From 1910 to 1915 there was a lively
discussion in the Institution of Naval Architects (see issues 52, 53, 55 and 56 of
their Transactions). The author of the last article is Lanchester (1915). In his
analysis, Lanchester supports the energy and momentum balance as defined by
Froude. However, Lanchester continues the discussion on the ‘difficulties of
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Explanation 1.1. Froude’s actuator disc Froude (1889) formulated the
earliest concept of the actuator disc: a permeable disc with a uniform pressure
jump, representing a propeller with infinite rotational speed operating in a uni-
form parallel flow. The associated momentum theory is sometimes called the
one-dimensional theory as it includes only the momentum balance in the axial
direction. This concept is called ‘Froude’s disc’ in contrast to Joukowsky’s
actuator disc. Joukowsky (1912) formulated the concept of the actuator disc
with wake rotation: a permeable disc with an axial load and a torque, repre-
senting a propeller with a finite rotational speed operating in a uniform parallel
flow. The associated momentum theory is sometimes called the two-dimensional
theory as it includes not only the momentum balance in axial direction, but also
the balance of angular momentum. See also Explanation 3.1.

regime’ started by Froude, in particular on the pressure discontinuity at the disc
edge. Although Lanchester says that ‘the admitted difficulty relating to the edge
of the actuator disc is probably more apparent than real’, his next step is to
substitute the continuously operating disc by an intermittently operating disc
shedding vortex rings into the flow. Lanchester states that a considerable portion
of the change in kinetic energy is now to be found in the outer portions of the
vortex rings, so outside the stream tube passing through the disc. According to
modern insights in vorticity dynamics, Lanchester’s statement is incorrect since he
should include also the pressure- and unsteady terms arising from the intermittent
operation in the energy equation. It is here where Lanchester deviates from
Froude and leaves the possibility open that the velocity at the disc is not the
average of the velocities far up- and downstream.

1.2.2. The German and Russian School

In 1917 Bothezat has generalised the result about the doubling of the induced
velocity in the wake for actuator discs producing not only a forward but also
a rotary movement in the wake. Joukowsky published a series of 4 papers on
propeller aerodynamics in 1912; 1914; 1915; 1918. In the 4th paper he finally
formulated the modern state of Froude’s theory. This history has been supported
and extended by Hoff (1921) who indicated Finsterwalder as the scientist who
established the theory too, which was extended by Bendemann (1910).

Although Froude’s theory was accepted by many scientists, it was not yet
possible to show a connection between the abstraction of the actuator disc and
the action of real blades on the flow. During the first two decades of the 20th
century this led to a struggle of viewpoints, that was resolved by vortex theory.

1.2.3. The contribution of Joukowsky and Betz to the vortex theory
of propellers

The first article of Joukowsky from his cycle Vortex theory of the screw propeller
has been published in 1912. Herein he created the vortex model of a propeller
based on a rotating horseshoe vortex, which expanded the elementary vortex
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Figure 1.1. Rotor vortex models of Joukowsky, (a), and Betz, (b), for a 1-bladed propeller.

model of a wing with a finite span. In his vortex theory each of the blades is
replaced by a lifting line about which the circulation, associated with the bound
vorticity, is constant, resulting in a free vortex system consisting of helical vortices
with finite cores trailing from the tips of the blades and a rectilinear hub vortex,
as sketched in figure 1.1a. In 1918 in the last, fourth, article of the cycle, he
not only expounds the theory of an ideal propeller based on Froude’s actuator
disc theory but also derived the performance of a static disc. This is considered
to be the very first performance prediction for a rotor. His static disc result is
still valuable as a first indication for the power required to keep a helicopter or a
modern drone hovering.

Simultaneously Betz (1919) worked on the creation of the propeller vortex
theory. He proposed a model for rotors equivalent to Prandtl’s model of a wing
with an elliptically distributed load giving a uniform induced velocity with mini-
mum induced drag. Each of the rotor blades is replaced by a lifting line releasing
a free vortex sheet with constant velocity in axial direction, see figure 1.1b.

The models of Joukowsky and Betz are supposed to represent the ideal rotor.
At the time of these pioneers it was not yet possible to evaluate which model was
more ideal than the other. Both models neglected wake expansion or contraction,
so were valid only for lightly loaded rotors. Goldstein (1929) found an analytical
solution for the wake of Betz’s rotor restricted to lightly loaded propellers. Wald
(2006) pays great attention to the Goldstein solution as this is considered to be
the optimal one for propellers. Okulov et al. (2015, chapter 4) present an overview
of the development towards a complete non-linear solution to Betz’s problem in-
cluding wake expansion or contraction. A similar solution was published by Wood
(2015). Both confirm the main result of Froude’s analysis that the averaged axial
velocity at the disc or rotor is the mean of the velocities far up- and downstream,
and satisfies the results of momentum theory. Furthermore Okulov et al. (2015,
chapter 4) show that Joukowsky rotors perform slightly better than Betz rotors
for the same tip speed ratio. For the analyses in the next chapters it is relevant to
know that in the limit for an infinite number of blades rotating with infinite speed,
both models converge to Froude’s actuator disc, so they become identical. For
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the Betz rotor this is shown by Okulov and Sørensen (2008), for the Joukowsky
rotor the limit transition is presented in section 4.3.

Concluding this subsection we may say that Joukowsky (1912, 1914, 1915,
1918) and Betz (1919, 1921) have shown for the first time the connection between
a real rotor and an abstract actuator disc.

1.2.4. The Betz-Joukowsky limit for wind turbines

Joukowsky (1920) and Betz (1920) have independently published articles to de-
velop Froude’s theory to the theory of the ideal wind turbine, predicting the
maximum energy which can be extracted from wind. Munk (1920) did the same.
In addition to this Hoff (1921) remarked that his article with the same topic was
written somewhat later than the mentioned papers but was independent of them.
Because the independent publications by Joukowsky and Betz are the result of
their great achievements in vortex theory, their names are connected to this limit,
see Okulov and van Kuik (2012). The maximum efficiency of an energy extracting
device was known as the Joukowsky limit in Russia, and as the Betz limit in the
rest of the world.

The reason why Joukowsky’s name was not connected outside Russia may be
explained by the following. The paper of Joukowsky (1920) had a quite special
purpose: it was a response to an inventor, in which he formulated the maximum of
wind energy utilisation for the ideal wind turbine. The paper of Betz (1920) has
a title that shows the topic clearly: The maximum efficiency of a wind turbine.
In addition to this Betz has published the remarkable book Wind energy and
its utilisation by windmills which made the name of Betz well-known amongst
wind energy engineers. Furthermore, the paper of Betz has been published in
a journal, whereas the paper of Joukowsky was part of the Transactions of his
scientific institute, with a possibly more limited distribution. Joukowsky was 73
in 1920 and it was his last article. The paper remained unknown outside Russia,
until it was rediscovered by van Kuik (2007).

The history of the analyses by Betz and Joukowsky has been published by
Okulov and van Kuik (2012), where after the maximum efficiency of a wind
turbine is known as the Betz-Joukowsky limit.

1.3. From actuator disc to rotor aerodynamics

The actuator disc is the basis for the industry standard rotor design method,
the Blade Element Momentum method, BEM (see Explanation 1.2 for a brief
description). There is a good reason for this, as shown in figure 1.2. The black
line shows the result of Froude’s momentum theory for the wind turbine mode,
left part, and the propeller mode, right part. The vertical axis gives the average
induced velocity at the disc, the horizontal axis the undisturbed wind speed with
respect to the disc, both made dimensionless by the velocity at the static disc
(representing a rotor in hover, so U0 = 0). This representation is well-known in
helicopter literature like Leishman (2006) as it is able to show the results for zero
wind speed, but for the same reason only rarely used in wind turbine references,
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Figure 1.2. Actuator disc momentum theory compared with experiments and calculations.
The vertical axis gives the induced velocity at the disc, the horizontal axis the undisturbed
wind speed with respect to the disc, both made dimensionless by the velocity at the static or
hovering disc at U0 = 0
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Figure 1.3. Actuator disc momentum theory including an engineering extension compared
with experiments and calculations for wind turbine flow states. The vertical axis shows the
velocity at the (rotor) disc, the horizontal axis the thrust coefficient.
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see e.g. Sørensen et al. (1998). In this branch of rotor aerodynamics figure 1.3
is used, showing the average velocity at the disc for the wind energy flow states
as a function of the thrust coefficient CT = T/( 12ρU

2
0Ad). Added to both graphs

are results of experiments in the 80thies of the previous century, Anderson et al.
(1982), Wilmshurst et al. (1984), van Kuik (1989), more recent experiments,
Leishman (2006), Medici and Alfredsson (2006), Haans et al. (2008), Parra et al.
(2016) and Lignarolo et al. (2016a), and calculations found in literature from
the 70thies, Greenberg (1972), up to recent times, Sørensen et al. (1998), Spalart
(2003), Rosen and Gur (2008), Mikkelsen et al. (2009), Madsen et al. (2010).
The correspondence between the momentum theory and the data is quite good,
except close to the static disc and close to the maximum load on a wind turbine
disc. Figure 1.3 shows the engineering extension of the momentum theory for the
heavily loaded disc developed by Glauert (1926) in the form presented by Hansen
(2008).

The classical actuator disc momentum theory is not able to say anything
about radial or azimuthal distributions of velocity and load for real rotors. The
disc concept has been adapted by many as to make it useful for rotors with a fi-
nite number of blades. A major contribution was delivered by Glauert (1935, ch.
III) who coupled disc loads to blade loads and introduced the torque in the mo-
mentum theory, resulting in the Blade Element Momentum method. One of the
assumptions Glauert made to make the method executable is that the pressure
in the far wake is uniform, despite the pressure gradient necessary to maintain
swirl. Many authors have published similar adaptations with slightly different
results, reviewed by Sørensen (2015). The main problems that were left after
Glauert’s work were the refinement of the blade model, the effect of swirl, the
tip correction, the optimisation procedure and the adaptation of BEM to atmo-
spheric and rotor conditions conditions not covered by the first versions of BEM.
Much effort has been spent in making BEM suitable for real screws, propellers,
helicopter and wind turbine rotors and to make it ready for digital computing, as
done by Wilson and Lissaman (1974). For the wind energy application, models
have been added for wind, wind shear, turbulence, three-dimensional flow along
the blade surface, blade deformations, tip effects, yawed flow, dynamic inflow,
unsteady aerofoil behaviour, dynamic stall, rotor and turbine control, et cetera.
Similar adaptations and extensions have been developed for the other branches of
rotor aerodynamics. Propeller, helicopter and wind energy textbooks like Bres-
lin and Andersen (1994), Leishman (2006), Burton et al. (2011), Manwell et al.
(2009), and Schepers (2012) present surveys of these BEM-adaptations, although
improved corrections are continuously being published, e.g. by Sørensen (2015),
Hjort (2019) and Schaffarczyk (2020).

Besides momentum theory also vortex theory is used to model the action of
a B-bladed rotor. Breslin and Andersen (1994) presented, besides the actuator
disc theory, a thorough treatment of the lifting line theory and propeller design
optimisation. Branlard (2017) gives a comprehensive survey of vorticity based
modelling for wind turbine aerodynamics. Modern computer power has enabled
vortex lattice methods like the one described by Micallef et al. (2013), where
boundary conditions are applied at the true blade surface. The potential flow
solution provides details of the wake as well as the blade loads. Full solutions in-
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cluding viscous effects using Computational Fluid Dynamics (CFD) are presented
in early publications like Sørensen and Myken (1992) and Madsen and Paulsen
(1990), and more recent publications like Madsen et al. (2010), Sibuet Watters
et al. (2010) and Troldborg et al. (2010). Since the calculation time required for
a complete solution of blade and wake flow is still too long, the blade is often
represented by an actuator line as first proposed by Sørensen and Shen (2002).
In the actuator line method the blade is represented by a prescribed load dis-
tributed along a line replacing the blade, see e.g. Shives and Crawford (2013),
Réthoré et al. (2014), Asmuth et al. (2020). This method is very successful in
wake analyses where details of the flow around the blade cross-section are not
very relevant. Specially in the combination with atmospheric turbulence, rotor
generated turbulence, interaction between multiple wakes and intervention by ro-
tor control actions, methods based on the actuator line, disc or surface are the
method of choice. A survey of CFD methods in wind energy is published by
Sanderse et al. (2011). The actuator line method has found its way to helicopter
analysis too, see Merabet and Laurendeau (2021) for a recent paper.

Despite the progress in blade aerodynamics, the actuator disc has received and
still receives continuous attention. Wu (1962) has derived a differential equation
describing the flow in terms of the stream function, the circulation around the
axis and the component of the disc load perpendicular to the stream tube. When
the disc has a uniform normal load, the wake is bounded by a vortex sheet and
the flow inside the wake is free of vorticity. This enables rewriting Wu’s equation
as a potential flow equation, with the position and strength of the vortex sheet as
unknowns to be solved by numerical methods. Greenberg (1972) has published
results for such a uniformly loaded disc. Øye (1990) and Mikkelsen et al. (2009)
represented the vortex sheet emanating from the edge of a uniformly loaded disc
by a series of concentric vortex rings. The strength and position of these rings
is calculated with the appropriate boundary conditions. Recently this vortex
ring method was applied by van Kuik and Lignarolo (2016), and extended to
propeller research by Bontempo and Manna (2018a,b, 2019). Several authors,
amongst which Sørensen and van Kuik (2011), van Kuik (2016), have presented
an extension to Glauert’s theory for rotating disc force fields including torque
when the rotational speed tends to zero. Conway (1998) has presented exact
analytical solutions for non-uniform load distributions in inviscid flow. His results
have become a benchmark to test other flow solvers. Rosen and Gur (2008)
developed a semi-analytical actuator disc model, in which the disc is represented
by a distribution of sinks. They found a close correspondence with Conway’s
results. Réthoré et al. (2014) used Conway’s work to successfully validate a CFD
actuator disc method. A first CFD calculation for many actuator disc flow states
is presented by Sørensen et al. (1998). An example of the calculation of the hover
flow state is published by Spalart (2003). Experimental verification is shown by
e.g. Lignarolo et al. (2016a,b) and Ranjbar et al. (2020). Bontempo and Manna
(2016) studied a disc with a hub, Dighe et al. (2019) a disc inside a duct and Yu
et al. (2017, 2019) unsteady discs flows.
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Explanation 1.2. BEM, the Blade Element Momentum method In
its most elementary form, BEM proceeds from a rotor placed in a uniform,
undisturbed, parallel flow aligned with the rotor axis. The Momentum part uses
the actuator disc momentum theory, see section 5.2, to find the induction at the
position of the rotor. However, instead of doing so for the entire rotor disc, it is
done for each radial element Δr of the rotor blades. The corresponding annulus
contains the flow from far upstream to far downstream passing through the rotor
in between the radii of the blade element. It is known that applying the disc
momentum theory to annuli instead of the stream tube is not valid, but still it is
used as the error is assumed to be limited, except close to the tip where all BEM
codes apply a tip correction to modify the axial velocity and local load. The
Momentum part of BEM requires the blade load as input. This is taken from the
Blade Element part where 2-D aerofoil properties are used to determine lift and
drag for a given axial induction. Both parts are solved by iteration. Based on
the assumption of independent annuli, Burton et al. (2011, page 70) shows that
the Joukowsky distribution of uniform circulation (see Explanation 3.1, at p. 28)
results from BEM based rotor design optimisation. However, the independence
of annuli is not correct, as will be discussed and quantified in chapter 7.

This brief representation of the state-of-the-art in rotor aerodynamics shows
that it has a long history with a well developed foundation in analytical theory,
vorticity modelling and CFD calculations, and with BEM as well validated design
method. The research area Rotor Aerodynamics is much wider than treated in
this book. Especially for wind turbine aerodynamics the following references may
help the interested reader to get acquainted: Sørensen and Shen (2002) for the first
application of an actuator line, Calaf et al. (2010) for a Large Eddy Simulation
(LES) study of wind turbine array boundary layers, Churchfield et al. (2012) for a
LES study of wind plant aerodynamics, Porté-Agel et al. (2011) for a LES study
of atmospheric boundary layer flow through a wind farm, Schepers (2012) for a
survey of engineering models, Hölling et al. (2014) for the impact of turbulence,
Fleming et al. (2015) for a comparison of wake mitigation control strategies, Simão
Ferreira (2009) for the aerodynamics of vertical axis wind turbines, Stevens and
Meneveau (2017) for a review of flow phenomena and models in wind turbine
wakes and wind farms interacting with the earth boundary layer. Analytical and
numerical solutions for rotor designs based on the models of Betz and Joukowsky,
shown in figure 1.1, are presented by Sørensen et al. (2022). Since 2019, a living
reference work on wind energy aerodynamics is being composed, Stroevesandt
et al. (2019). The relation between aerodynamic research and other branches
of wind energy research is discussed in van Kuik et al. (2016) where long term
research questions are reviewed. Veers et al. (2019) put the progress in wind
energy science in perspective of the grand challenges in developing the potential
of wind energy.
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1.4. Why this book?

The fluid dynamic basis of rotor aerodynamics is revisited with emphasis on the
first rotor model, the actuator disc. Three approaches characterise the analysis:

• in most fluid dynamic analyses the flow induced by lifting surfaces is solved
using boundary conditions at the surface, with the resulting load on the surface
as output. In doing so, the force field term in the equation of motion is absent.
However, the equation of motion allows using a force field as input instead of
output, with the force field determining the flow. In contrast to many other
fields of fluid dynamics, this is common practice in most rotor aerodynamic
models, so this approach is adopted here. This leads to relations between force
fields and (conversion of) vorticity or energy which are underexposed in modern
fluid dynamic textbooks.

• the actuator disc is supposed to represent a real rotor sufficiently accurate. The
relation between a disc and a rotor is investigated analytically and numerically,
and the respective flow fields measured in a wind tunnel are compared.

• using modern computer power, it has become possible to show several details
of actuator disc flows which could not be determined by the pioneers in rotor
aerodynamics. This numerical approach uses the same equations of motion as
used by them: the inviscid, incompressible Euler equations.

The questions which are addressed are listed below. Several of these questions
lead to improved understanding, others to improved rotor modelling:

Q1 Most aerodynamic models calculate the load on a lifting body by integration
of the pressure at a surface after the flow is solved: the load is output. In
many rotor aerodynamic models the reverse method is used, with the load as
input and the flow field as output. Are these approaches consistent and what
are the benefits and drawbacks of the force field method?

Q2 In solid mechanics it is useful to classify forces as conservative or non-conser-
vative. Is this a relevant distinction in the force field method?

Q3 It seems obvious to interpret Bernoulli’s law as conservation of energy, but
fluid dynamic textbooks are very cautious to do so. Is it possible to show that
conservative forces conserve H, the Bernoulli parameter, and non-conservative
forces change H? If so, can pressure be interpreted as potential energy?

Q4 Textbooks learn that lifting surfaces like wings and rotor blades, when mod-
elled as a bound vortex, form a closed vortex system with the trailing vortices:
vorticity and circulation are conserved, often explained by Helmholtz’s conser-
vation laws. However, the most simple rotor representation, the actuator disc,
produces vorticity instead of conserving it. Are both approaches compatible?

Q5 Physical intuition as well as numerical examples show that a rotor subjected
to the limit B → ∞, B being the number of blades, becomes the actuator disc.
Can we show this analytically?
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Q6 How close does the velocity field of an actuator disc resemble the velocity field
of a rotor? In more detail: can we use the velocity distribution at the disc to
represent the velocity distribution at the position of the rotor blade?

Q7 Actuator disc momentum theory does not provide detailed results like the dis-
tribution of vorticity along the wake boundary. This boundary is a cylindrical
vortex sheet with its leading edge coinciding with the disc edge. Leading edges
of vortex sheets are known to be singular in the vorticity strength. Can modern
computations be used to investigate the leading edge behaviour of this vortex
sheet?

Q8 Some actuator disc momentum theories including swirl have a remarkable re-
sult for energy extracting discs with a rotational speed approaching zero: the
efficiency becomes infinite. This is is not physically acceptable. What goes
wrong in the theory?

Q9 The wake behind a disc or rotor with finite rotational speed includes an az-
imuthal velocity vϕ. Some publications consider this to be a loss of energy. Is
this true?

Q10 What are the main differences between actuator disc flows extracting energy
and adding energy, apart from wake expansion versus contraction?

Q11 The actuator disc momentum theory gives the average velocity at the disc.
Can we say something about the radial distribution of the velocity?

Q12 It is known that the actuator disc momentum theory can not be applied per
stream annulus instead of the entire stream tube. Is it possible to modify the
theory to become a useful prediction method per annulus?

Q13 Several experiments on wind turbine model rotors show that the tip vortex
first moves inboard, so to a lower radius, before the wake expansion starts.
What is the explanation?

Q14 Joukowsky’s model for an optimal rotor with a finite number of blades has
uniform circulation along the radius while the model of Betz for such a rotor
has a non-uniform circulation. The tip correction used in BEM has been
formulated by Prandtl using Betz’s model. Is it correct to apply a tip correction
derived for Betz’s concept in BEM calculations based on Joukowsky’s concept?

Each of the next chapters ends with a section Evaluation, in which the answers
to these questions will be summarised. Only actuator discs representing rotors
operating in unbounded fluid are considered. Discs used to model devices in flows
that are restricted laterally by walls, e.g. tubes, cascade disc flows and disc flows
through flame fronts, are treated by Horlock (1978).
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Chapter 2

Force fields in fluid dynamics

2.1. Introduction

Rotor aerodynamics is one of the few areas in aerodynamics where force fields
are used as input in flow calculations: the flow field induced by predefined forces
is solved (the dynamic method). In most other aerodynamic analyses the force
field is the output instead of input: the flow field around a surface is solved using
surface boundary conditions, after which the pressure and so the load are known
(the kinematic method). One of the reasons why force fields as input are not
used often is twofold: usually they are not known in advance, and the kinematic
method for which Lanchester, Prandtl and Joukowsky laid the basis, has been
shown to be very powerful. However, the use of force fields has some advantages,
especially for rotor aerodynamics since the thrust, being the integrated load, is the
main parameter defining flow states. The use of force fields as input is common
practice in classical actuator disc theory, in the Momentum part of BEM methods,
and in actuator line (AL) analyses. In the AL analyses the blade is replaced by a
load carrying line in order to have a much lower computation time compared to
full Computational Fluid Dynamics (CFD) solutions. The load in these methods
is determined either by the definition of the problem (in actuator disc analyses:
based on physical arguments a load distribution is assumed, e.g. Sørensen et al.
(1998)) or by iteration with other methods (in AL and momentum methods: for a
given flow field the load is taken from a Blade Element calculation, e.g. Shen et al.
(2014)). Besides its modest computational effort, the force field approach offers
the advantage of a force-field based interpretation of the three processes governing
disc and rotor flows: the change of momentum, the generation or conservation of
vorticity and the conversion or conservation of energy. van Kuik (2022) offers an
extensive treatise on the fluid dynamic background of the force field method.

Before discussing vorticity and energy, we treat the role of the force field term
in the Euler equation of motion, involving a distinction between conservative and
non-conservative force fields. Furthermore we show that the kinematic approach
(no force field, boundary condition of zero normal velocity at the lifting surface)
and the dynamic approach (external force fields) are equivalent.

13
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Figure 2.1. Properties of a bound vortex sheet with thickness ε and force density distribution
f : pressure jump p− − p+ = Fn, velocity jump v− − v+ = γ.

2.2. The equation of motion and the coordinate systems

The flow is assumed to be incompressible, inviscid and isentropic, so the Euler
equation

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇p+ f (2.1)

is valid as well as the continuity equation

∇ · v = 0, (2.2)

with v being the velocity vector, ρ the flow density, p the pressure and f the
force density, volume force or force field. Rewriting (2.1) with the vector identity
(v · ∇)v = ∇ (v · v) /2− v × ω yields

∇H = f − ρ
∂v

∂t
+ ρv × ω, (2.3)

where H is the Bernoulli constant p+ 1
2ρv ·v, and ω the vorticity. Most textbooks

pay some attention to the force term but at some moment assume that f is
conservative, like the gravity force field ρg. Then f = ρg = −∇G where G is the
potential of ρg. The right-hand side of (2.1) then becomes −∇(p+ G). With the
potential G considered to be part of the pressure, the conservative f disappears
from the equation of motion. Here this assumption is not made. Instead, force
fields are assumed to be confined to thin surfaces having thickness ε, see figure
2.1. Integration of f along the normal n, becoming a Dirac delta function for
ε → 0, gives the surface load F ,

F =

∫
ε

fdn. (2.4)

More integrations result in a line force or a discrete force, which will be named
after its function, e.g. lift or thrust.

Most analyses in this book use the cylindrical coordinate system (x, r, ϕ)
with the disc centre line coinciding with the positive x-axis and with e denoting
the unit vector with an appropriate index, as well as the local coordinate system
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Figure 2.2. The coordinate systems of an actuator disc and rotor acting as a wind turbine. Ψ

is the Stokes stream function. All vectors are in positive direction except Γaxis and γϕ. Shown
are the flow states decelerating the flow.

(s, n, ϕ), see figure 2.2. The coordinates s and n are in the meridian plane tangent
respectively normal to a streamline. Besides these inertial coordinate systems also
the rotating system (x, r, ϕ)rot is used, rotating with respect to the inertial system
with the angular velocity Ω of the force field. The velocity and vorticity in the
inertial and rotating systems are related by

vrot = v − eϕΩr (2.5)
ωrot = ω − 2exΩ. (2.6)

Batchelor (1970, eq. (3.5.20))1, gives the steady Euler equation in the rotating
coordinate system, including the centrifugal force −Ω × (Ω× r) = erΩ

2r =
1
2∇ (Ωr)

2 and Coriolis force vrot × 2Ω,

f+
ρ

2
∇ (Ωr)

2
+ ρvrot × 2Ω = ∇Hrot − ρvrot × ωrot. (2.7)

With (2.6) and with ∇Hrot = ∇
(
H − ρvϕΩr +

ρ
2 (Ωr)

2
)

this becomes

f = ∇ (H − ρvϕΩr)− ρvrot × ω for steady flows. (2.8)

2.3. Equivalence of the kinematic and dynamic methods

Prandtl (1918) showed that the pressure distribution acting on a translating lift-
ing surface is equivalent to a distribution of normal forces acting on the surface
modelled as a bound vortex sheet γ. The line of thoughts is the following. In
the kinematic method usually the space occupied by a body is excluded from

1Batchelor’s equation is without f . He has included the centrifugal term 1
2
∇ (Ωr)2 in ∇H.
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Figure 2.3. Comparison of the flow around a Joukowsky aerofoil. Left: the analytical solution,
right: the numerical solution with the lift as input, copied with permission from Martínez-Tossas
et al. (2017)

the flow domain, with appropriate boundary conditions like zero normal velocity
applied at the surface. The flow and pressure around it are determined by solv-
ing ρ∂v

∂t + ρ (v · ∇)v = −∇p resulting in the pressure acting at the surface. In
the force field approach this exclusion of the body volume is not made, but the
surface S is considered as a layer of infinitely thin thickness ε, see figure 2.1, at
which a normal force field f is distributed. After integration across ε the force
term becomes F defined by (2.4) with f behaving as a Dirac delta function for
ε → 0. Integration of (2.3) across ε gives

F = lim
ε→0

∫
ε

(∇H − ρv × ω) dn, (2.9)

in which the unsteady term is absent as F ⊥ v. In the limit ε → 0 the first
term in the integrand results in a jump in H, while the second term becomes∫ (−ρvs

∂vs

∂n

)
dnε =

1
2ρ

(
v2− − v2+

)
with the subscripts + and − explained in figure

2.1. Herewith
F = enΔH − ρv × γ (2.10)

in which v is the average of the velocity on both sides of the vortex sheet and γ
is the vortex sheet strength

γ =

∫
ε

ωdn = −eφΔvs. (2.11)

Equation (2.10) shows that every vortex sheet having a non-zero velocity expe-
riences a jump in Bernoulli parameter H or carries a normal load F . In case
ΔH = 0 the famous Kutta-Joukowsky relation for the load on a vortex sheet
results. If the sheet is the surface of an aerofoil contour, the pressure and velocity
inside the aerofoil are constant, so ΔH = constant, by which (2.10) gives for the
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lift on a 2 D aerofoil

L2−D =

∮
F ds = −ρ

∮
v × γds, (2.12)

with s following the contour of the aerofoil. As

F = −ρv × γ = −enΔ

(
1

2
ρv2s

)
= enΔp, (2.13)

this becomes

L2−D =

∮
F ds = ρ

∮
enpds. (2.14)

This shows the equivalence of the force field F and the pressure enp.

Besides showing the equivalence in equations, it is worthwhile to see some
numerical implementations. The modelling of the force field F in CFD methods
requires a distribution of f on a number of grid cells, satisfying (2.4), see for
example Martínez-Tossas et al. (2017). He demonstrates the equivalence of the
kinematic method and a numerically implemented dynamic method for a two-
dimensional aerofoil flow. The left side of figure 2.3 shows the analytically resolved
potential flow around a cambered Joukowsky aerofoil at 12◦ angle of attack, where
the right side gives the flow induced by the Joukowsky lift for the same aerofoil.
The flow is solved with a linearised equation of motion and the lift is approximated
by an elliptic Gaussian distribution of which the centre is at at the chord of the
aerofoil. The position of the centre and the length parameters in the direction of
the chord and thickness are optimised for a best fit with the analytical solution.
Despite these approximations the flow field at 1 chord distance from the quarter
chord point is almost identical for both methods as it follows the r−1 behaviour
for a potential vortex. This example shows the pros and cons of the dynamic
method: one has to know important information from the aerofoil such as the
lift coefficient before running a CFD simulation, but if so, it allows an accurate
calculation of the flow field without the need to resolve all aerofoil flow details.

A second example of the equivalence is shown in figure 2.4, where the axial
velocity in the rotor plane of a 3 bladed rotor with constant bound circulation is
shown, calculated by a lifting line (LL) method and an actuator line (AL) method
as reported in van Kuik et al. (2015b). The LL method is the kinematic method:
the blade is modelled as a line with prescribed constant bound circulation Γ. The
AL method prescribes forces acting at the line. The force distribution is chosen
such that the resulting circulation around the lines is identical to the prescribed
constant circulation in the LL method. The load case shown is the wind turbine
for tip speed ratio λ = 7 where λ is the tip speed ΩR divided by the wind speed
U0, for the thrust coefficient CT = T/( 12ρU

2
0πR

2) = −8/9. The results of both
methods agree reasonably well except for minor differences for r < 0.1R and near
the tip, due to differences in the desingularisation of the vortices. In section 4.4
both methods will be used to compare actuator disc and rotor flows.
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Figure 2.4. Distribution of vx/U0 at the rotor plane x=0 according to the actuator line (AL),
and lifting line (LL) model, for λ = 7 and CT = −8/9, from van Kuik et al. (2015b). The
direction of rotation is anti-clockwise

2.4. Conservative and non-conservative force fields

The use of the force field f is discussed in old text books and papers, like Prandtl
(1918) and von Kármán and Burgers (1935) without making an explicit distinction
between conservative and non-conservative components. In general, the force field
can have both components:

A non-conservative force field is defined by

∇× f �= 0, (2.15)

and is able to generate vorticity as shown by the curl of (2.3) (see Saffman, 1992,
pp. 10-11):

1

ρ
∇× f =

Dω

Dt
− (ω · ∇)v, (2.16)

with the last term, absent in 2 − D, denoting the change of vorticity due to
stretching or tilting of already existing vortex filaments. When f is distributed
on a surface with thickness ε as shown in figure 2.1, integration of ∇ × f and
taking the limit for ε → 0 gives

1

ρ
∇× F =

Dγ

Dt
− (γ · ∇)v. (2.17)

For inviscid flow around a 2-D aerofoil
∮ ∇ × F ds = 0 with s taken along the

aerofoil contour, so the force field is conservative and no vorticity is produced.
The force field of a 3-D lifting surface is non-conservative, producing trailing
vorticity according to (2.17). An example is a half-wing with

∫ ∇ × F ds �= 0
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because of the spanwise gradient of the load. However, when integrated over the
entire surface S of a wing or rotor blade,∮

S

∇× F dS = 0 (2.18)

since the integrand consists of the derivatives of the normal load in spanwise
direction, yielding 0 after integration on a closed contour. The force field of a
lifting surface generates vorticity locally, but as an equal amount of opposite sign
is produced somewhere else at the surface, the nett generation is zero. This is
the force field based explanation of the fact that any lifting surface produces the
same amount of positive and negative vorticity.

Since the generation of vorticity implies that fluid particles receive an angular
speed, it is expected that (2.16) represents the differential balance of angular
momentum. The Euler equation possesses a number of conserved quantities like
the angular- or moment of momentum, as shown by e.g. Marshall (2001, p.50).
However, an explicit relation between this balance and force fields is not found in
literature. In appendix B it is shown that ∇ × f expresses, in differential form,
the torque applied to a fluid element and similarly that (2.16) is the balance of
angular momentum. The analysis is restricted to 2−D and 3−D axisymmetric
flows without swirl.

A conservative force field satisfies ∇× f = 0 or, equivalently,

f = −∇F (2.19)

where F is the potential of f . With (2.19) the Euler equation (2.1) becomes

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇ (p∗ + F) = −∇p, (2.20)

with p = p∗ + F where p∗ indicates the pressure in absence of F . When only
conservative forces act, the flow is free of vorticity so v can be expressed in its
potential Φ, v = ∇Φ. Analogous to (2.3) the unsteady Bernoulli equation follows,

∇
(
H + ρ

∂Φ

∂t

)
= 0 for f = f cons. (2.21)

with H = H∗ + F . This can be compared with the Bernoulli equation derived
from (2.8) for flows without a force field and free of vorticity,

∇ (H − ρvϕΩr) = 0, (2.22)

which has been derived previously by Thwaites (1960, p. 473) and de Vries
(1979, app. C2). A comparison shows that in the wake of a rotor or disc, where
f = −∇F = 0,

∂Φ

∂t
= −vφΩr in the wake where ω = 0. (2.23)

Equation (2.20) also shows that the effect of a conservative f is to change the
pressure field. According to (2.21) a conservative force acting in a steady flow
conserves H = p+ ρ

2 |v|2, so changing p implies changing ρ
2 |v|2, positioning p in

the role of potential energy. This is examined further in section 2.5.



20 CHAPTER 2. FORCE FIELDS IN FLUID DYNAMICS

2.5. Force fields and energy

2.5.1. Work done by force fields

Batchelor (1970, p. 157) shows that the work per volume per second done by a
distribution of volume forces is given by the dot product f · v. This is evaluated
using (2.3), integrated on volume V with surface S encompassing the area at
which f is distributed. With en,S as the unit vector normal to S and using
Gauss’s theorem, this gives

∫
V

f · vdV =

∫
V

ρ

2

∂ |v|2
∂t

dV +

∫
V

(v ·∇)HdV

=

∫
V

ρ

2

∂ |v|2
∂t

dV +

∫
S

H (v · en,S) dS. (2.24)

The choice of the volume V determines which of the terms at the right-hand side
contribute. Figure 2.5 shows the wake of an energy adding disc with two versions
of V . In figure 2.5a V is large enough to encompass the wake including the start
vortex which is convected downstream. The flow within V is unsteady, but at the
surface S the flow and pressure are undisturbed. Figure 2.5b shows the volume
in which the flow is steady. V is large enough to include a fully developed wake.
Furthermore the stream tube passing through the disc is displayed, with the
subscript 0 to indicate the undisturbed flow, subscript 1 for the fully developed
wake, and subscript d for the disc itself. If the force field starts to work at a
certain time and V is taken so large that at S the velocity and pressure remain
undisturbed, figure 2.5a applies, and the second integral at the right-hand side
of (2.24) is 0. The work done is expressed as the increase per second in kinetic
energy contained within V ,
∫
V

f · vdV =

∫
V

ρ

2

∂ |v|2
∂t

dV when control volume V extends to infinity. (2.25)

This holds for force fields representing wings or rotors when an inertial frame of
reference is used, and V is sufficiently large to encompass the entire wake behind
these lifting surface after the start.

In case V is chosen smaller such that S crosses the fully developed wake,
figure 2.5b applies, so the unsteady integrand may be either zero (for the steady
actuator disc) or periodic (for the rotor), yielding a zero result after integration
over time Δt required for 1 revolution of the force field. The work done per second
is ∫

V

f · vdV =

∫
S

H (v · en,S) dS for steady or periodic flows, finite V , (2.26)

so is expressed in the flux of flow times H, where H is the energy level of the fluid
particles.
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b 

Figure 2.5. Control volume V used to assess the power converted by the disc: (a) is the volume
extending to infinity encompassing the start vortex, (b) is the volume containing steady flow as
the start vortex is far enough outside V to have no influence at the flow inside V .

2.5.2. Choice of reference system

The use of (2.25) implies that an inertial reference system is used, with V ex-
tending to infinity. To use (2.26) the reference system need to be fixed to the
position of the force field in order to achieve steady or periodic flow within V ,
with V having finite dimensions. In case (2.26) is used it is important to check
where and how the work is done. Let us consider a force field representing the ac-
tion of a wing. The force field experiences a non-zero undisturbed velocity U far
upstream. At the wing surface the velocity v is tangent to the surface while the
force F is perpendicular, so the wing load does not perform work as F · v = 0.
This situation is not an invented case, as this is what happens in wind tunnel
tests: the energy required to maintain the flow against the drag is delivered by
the wind tunnel fan. Consequently, for the energy balance V should be chosen
large enough to include the force field of this fan. For a wing flying in a reference
frame fixed to the earth (2.25) applies: the wing has a velocity U in unbounded
air which is undisturbed at infinite distance from the wing. The flow vector at the
surface is v − U and the work done by the force field is (the integrated value of)
F ·U , to be delivered by the wing engines. As the amount of work to be delivered
by either the wing force field, (2.25), or the fan force field, (2.26), is the same,
the right-hand side of (2.26) is conveniently used to assess the work required to
keep a wing flying.

Comparison of the performance of a rotor in a (non-rotating) coordinate sys-
tem fixed to the axis, with the performance of a rotor moving in an inertial system,
reveals a remarkable difference as already noted by Betz (1920). Represented as
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an actuator disc, it is clear that in both systems F · v �= 0. The power extracted
by a wind turbine or disc fixed to earth is calculated as T · v where T is the
thrust acting against the wind speed U0 and v the averaged wind speed at the
rotor or disc, with v < U0. When the same wind turbine or disc is mounted on
an aeroplane having flying speed U0 in still air, the power required to overcome
the thrust is T · U0. According to Corten (2001b) the difference T · (v − U0)
is the kinetic energy dissipated into heat in the flow outside of the stream tube
passing the disc. He derives this result by including in his analysis the mixing of
the wake with the flow outside the wake, resulting in a vanishing slipstream at a
large downstream distance. As mixing and dissipation are processes not governed
by the Euler equations, these phenomena remain outside the scope of this book.

Relevant for the present analysis is the comparison of the performance in a
co-rotating reference frame fixed to the axis (and blades), with the performance
in a similar but stationary system. In a reference system fixed to the blades
the blade force field does not perform work as at the blade surface the velocity
vco−rotating is perpendicular to the force F , similar to the wing force field in the
wing-fixed system. If the rotor reference system is a non-rotating system fixed to
the rotor centre, the work done by the rotor is the torque times rotational speed.

2.5.3. Work done by non-conservative force fields

Equations (2.25) gives the work done per second by a force field distribution,
steady or unsteady, acting in an infinite space V with undisturbed conditions at
infinite distance from the distribution. All work done is expressed in a change of
kinetic energy. By splitting f in a conservative and non-conservative part, the
contribution by each is evaluated, using (2.1), (2.3) and (2.19),

fnon−cons · v =
1

2
ρ
∂(v · v)

∂t
+ (v ·∇)(H + F). (2.27)

As we consider only force distributions originating from body forces on volumes
with finite dimensions, (H + F) → (H + F)∞ at the surface S of V , so with
Gauss’s theorem the last term integrated on V becomes∫

S

(H + F)v · en,SdS = (H + F)∞
∫
S

v · endS = 0. (2.28)

Herewith we obtain ∫
V

fnon−cons · vdV =

∫
V

1

2
ρ
∂(v · v)

∂t
dV

∫
V

f cons · vdV = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.29)

showing that conservative forces can not perform work. Consequently, f cons ·v =
0 so conservative forces are perpendicular to the local velocity vector. If a force
field performs work, it is non-conservative.
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2.5.4. Pressure as a conservative force in momentum balances

A special class of conservative forces appears in momentum balances. When this
momentum balance is drawn on a certain control volume, the pressure at the
boundaries of the volume have to be included in the balance. For the flow in the
control volume, the pressure acts as a force field normal to the boundary of the
control volume,

F =

∫
fdn = −en(p− p0) with f = −∇p, (2.30)

satisfying (2.19). When the boundary of the control volume is a streamline,
f · v = 0, so the pressure acts as a conservative force field. As will be evaluated
in chapters 5, 6 and 7 this conservative load indeed does not contribute to the
energy balance.

2.5.5. Pressure interpreted as potential energy

Lamb (1945, p.8), Milne-Thomson (1966, p. 30) Batchelor (1970, p. 138, 157) and
Kundu (1990, p. 102) mention that F can be considered as the potential energy.
The same holds for pressure as Batchelor suggests (p. 157) that ’under certain
conditions the pressure might play the part of a potential energy’. Equation (2.27)
shows that the work done by f is expressed in a change of pressure, kinetic energy
or both. Consequently the pressure is to be considered as potential energy, while
the Bernoulli value H expresses the total amount of energy which can be changed
by non-conservative forces. The interpretation of pressure as potential energy is
supported by Morrison (2006) who states that for ideal flows ‘potential energy
is stored in terms of pressure and temperature’. As here the flow is considered
to be isentropic temperature does not play a role, leaving pressure as a measure
for potential energy. The conversion of potential to kinetic energy depends on
the evolution of the wake behind the force field. As an example we take the flow
through the actuator disc without swirl. The load on an energy extracting disc
decreases the potential energy in the near wake, which is converted to a loss of
kinetic energy in the far wake having recovered undisturbed pressure. For a disc
adding energy to the flow the same happens in an opposite way. In section 6.3.2
an energy adding disc flow will be treated where the increase of energy in the
wake is found to be only potential energy, so is expressed in pressure.

2.6. Definition of (non-)conservative forces as used in this book

The mathematical definition of non-conservative and conservative forces is given
by (2.15) and (2.19) respectively. These equations define the local character of
the force field, not of the entire distribution. For the analyses in this book the
following unambiguous characterisation of a force field distribution is used:
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Definition 2.1. A force field distribution integrated on a surface S or
a volume V with finite dimensions is non-conservative when it releases
vorticity into the flow. It is conservative when this is not done. Non-
conservative forces perform work, conservative forces do not.

2.7. Evaluation

In this chapter we answered research question Q1 in section 1.4: the kinematic
method (loads as output of flow analyses) is consistent with the dynamic method
(loads as input). The advantage of the dynamic method is that it gives explicit
relations for the work done by the load on lifting surfaces. Also Q2 and Q3
are answered: the distinction between conservative and non-conservative forces
is useful for the interpretation of the physical processes: conservative forces do
not produce vorticity and do not convert energy but convert potential energy
(pressure) to kinetic energy or vice-versa. Non-conservative forces do produce
vorticity and convert energy. This distinction will play a role in the momentum
theory chapters 5, 6, 7, and in special topics chapter 8. For steady actuator disc
flows and steadily rotating rotors the work done by the force field is expressed in
a change of Bernoulli value H. For the flows considered here the pressure term
in H represents the potential energy.

In the next chapter the relation between loads and vorticity is analysed in
more detail.



Chapter 3

Force fields and vorticity

3.1. Introduction

One of the distinct features of the force field approach is the direct link with the
generation of vorticity according to (2.16) or (2.17). The literature on creation
of vorticity by force fields is limited. Several authors, e.g. Betz (1950), mention
viscosity as the main source of vorticity while the force fields discussed here act
in an inviscid flow. This is brought up for discussion by some authors. von
Kármán and Burgers (1935) and Saffman (1992) treat the impulsive motion of
respectively a force field and a body as a source of vorticity. With the equivalence
of the kinematic and dynamic method, both impulsive actions become the same.
von Kármán and Burgers (1935) also treat the continuous creation of vorticity
for which they show that ∇×F �= 0 is the requirement. Prandtl (1924) presents
how vortex sheets emanate from a sharp aerofoil trailing edge in inviscid flow, but
this solution is given another interpretation by van Kuik (2004). Batchelor (1970,
section 5.4) describes the creation of vorticity by moving surfaces in inviscid fluid
at rest. All of these analyses are presented in the inviscid Euler flow representation.
Analyses for viscous flow have been published by Lighthill (1963), Morton (1984),
Hornung (1989), Wu et al. (2005), Wu and Wu (1998) and Terrington et al. (2020,
2021). Lighthill (1963) was the first to show that the source strength of vorticity
generated at a solid boundary in steady flow is proportional to the tangential
pressure gradient along the boundary. The contribution by the pressure gradient
is shown to be independent of the viscosity (Morton (1984);Wu et al. (2005,
section 4.1.3)) when the limit of vanishing viscosity is taken. Therefore it is
better to speak of ’effectively inviscid flow’ instead of inviscid flow (Batchelor,
1970, Ch. 7). The observation that vorticity generation in effectively inviscid
flow is proportional to the tangential pressure gradient, is the link between the
study of the vorticity generation process started by Lighthill (1963), and the
force field analysis in the present paper. By (2.13) a non-zero tangential pressure
gradient ∂p/∂s is the same as a non-conservative force derivative ∂Fn/∂s.

This limited literature study does not cover the topic of vorticity generation
comprehensively, but is sufficient for the purpose of this chapter: vorticity genera-
tion in inviscid flows is possible by non-conservative force fields. Equations (2.16)
and (2.17) connect the force field to the generation of vorticity. This seems to be
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� � 

� 

Figure 3.1. The rotor model of Joukowsky, left, and wing model of Prandtl, right. Joukowsky
uses J as symbol for circulation, where Prandtl uses Γ.

in contrast to Helmholtz’s conservation laws which are often used in textbooks
to show that circulation, being the integrated vorticity, is conserved when going
from bound to free vortices. This will be analysed in section 3.2, after which
the generation of vorticity by an actuator disc force field is treated in section
3.3. A more general treatise on the relation between force fields and vorticity is
presented in van Kuik (2022).

3.2. The role of Helmholtz’s conservation laws

A lifting surface like a wing or rotor blade can be represented by a bound vortex,
which is continued in the flow by trailing vortices. For a rotor blade the com-
bination of the root vortex, blade-bound vortex and the tip vortex constitute a
continuous vortex system, as shown at the left of figure 3.1 copied from Joukowsky
(1912). This is to be considered as the equivalent of the ’horse-shoe’ vortex of a
wing as developed by Prandtl (1918), displayed at the right of figure 3.1. When
the bound vortex Γ (J in the left part of figure 3.1) is assumed to be constant,
the models of Prandtl and Joukowsky show a continuous vortex line of uniform
strength which is often explained by the vorticity conservation laws of Helmholtz,
see e.g. Clancy (1986), Kundu (1990), Katz and Plotkin (1991), Anderson (2010)
and Rathakrishnan (2013). However, when the wing or blade is represented by
a distribution of force fields F , (2.17) shows that vorticity is generated instead
of conserved. To solve this apparent contradiction, the original publication of
Helmholtz (1858) has been studied. He clearly states that his conservation laws
assume that there are no non-conservative force fields. Furthermore the concept of
bound vorticity does not appear in his paper as this was introduced only half a cen-
tury later by Lanchester (1907) and Prandtl (1918, I. Mitteilung). Prandtl himself
notes that the concept of bound vorticity is not covered by Helmholtz’s conser-
vation laws. Consistent with this, Meyer (1982, p. 42) shows that Helmholtz’s
laws are not applicable to bound vorticity. Saffman (1992, p. 10) confirms that
these vorticity conservation laws are not applicable, since these have been derived
assuming only conservative forces. In other words, the laws of Helmholtz cannot
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be used to explain the continuation of bound vorticity in trailing vorticity.
The correct kinematic explanation for the creation of trailing vorticity is well

described by e.g. Batchelor (1970) and Lighthill (1986) who use Stokes’ theorem
to show that for a wing

γtrailing = −dΓbound/dy, (3.1)

with y the spanwise coordinate. Their derivation does not need Helmholtz’s
theorems for the conservation of vorticity or Kelvin’s circulation theorem. The
circulation around any closed contour enclosing the bound or free vortices equals
Γ, so is constant. However, this is not because of vorticity conservation since
Kelvin’s theorem is derived assuming 1) only conservative forces, 2) the contour
being a material contour convected with the flow, see Saffman (1992, §1.6). This
is not the case for lifting surfaces, since a material contour around the tip vortex
was a circulation-free contour when it was still upstream of the surface position.

The conclusion is that a lifting surface generates vorticity which may be
modelled by the dynamic method using (2.17) and by the kinematic method using
(3.1). There is no conflict with Helmholtz’s laws since these do not apply. The
circulation of bound and free vortices is the same, although this is not based on
Helmholtz’s laws or Kelvin’s theorem. By this result the apparent contradiction
between a rotor and actuator disc is removed: both generate vorticity governed
by the curl of the force field.

3.3. Generation of actuator disc vorticity

An axisymmetric contour L enclosing the upstream part of the stream tube is
free of circulation Γ. It remains so when moving downstream enclosing the wake,
as can be explained in terms of the force field. Branlard (2017, eq. 2.159) shows
that for incompressible inviscid flow dΓ

dt =
∮
L(t) F · dl. In case the force field is

absent Kelvin’s theorem follows, but also when
∮
F · dl = 0. For a rotor or disc

force field,
∮ ∇ × F dS = 0 when integrated over the entire surface of a rotor or

disc, as in (2.18). Consequently,
∮
L(t) F · dl = 0 so Kelvin’s theorem applies to a

contour enclosing the stream tube. This implies that the total of axial vorticity
enclosed by L must be zero, irrespective of the stream wise position of L. Here
we analyse how the generation of vorticity by the disc force field satisfies Kelvin’s
theorem.

For the Joukowsky actuator disc, shown in figure 3.2 and described in Ex-
planation 3.1, the generation and convection of vorticity is analysed in detail. As
only the pressure and azimuthal velocity will be discontinuous across the infinitely
thin disc, integration of (2.1) across the disc gives

F = exΔp+ eϕρvxΔvϕ. (3.2)

The Bernoulli equation p+ 1
2ρv · v = H, integrated across the disc, is

Fx = Δp = ΔH − 1

2
ρΔv2ϕ, (3.3)
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Explanation 3.1. Joukowsky circulation distribution Figure 3.2 shows
the rotor and disc model of Joukowsky, characterised by a constant circulation
Γ. For the 1-bladed rotor shown in the figure the vortices at the axis, blade
and tip have equal strength. The disc vorticity system has the same vortex at
the axis and constant Γ = −γdisc2πr. The azimuthal velocity in the wake of a
rotor, averaged over a revolution, and the local velocity in the disc wake are:
vϕ = Γ/(2πr). For both systems the flux of vϕΩr represents the work done
by the disc or rotor force field, see section 4.2. For a disc with Ω → ∞ the
azimuthal velocity vanishes like Ω−1 as will be shown in section 4.3.

so

F = ex

(
ΔH − 1

2
ρΔv2ϕ

)
+ eϕρvxΔvϕ. (3.4)

Evaluation of ∇× F gives

ex
1

ρ

∂ (rFϕ)

r∂r
− eϕ

1

ρ

∂Fx

∂r
= ex

∂ (rvxΔvϕ)

r∂r
− eϕ

∂
(

1
ρΔH − 1

2Δv2ϕ

)
∂r

. (3.5)

For any load distribution the integration of ∂(rFϕ)/(r∂r) over the entire disc
gives a nett zero result, so the total amount of axial vorticity produced by the
disc is zero. This is not the same for the ∂Fx/∂r term: the nett production of
azimuthal vorticity is non-zero. Three regions are distinguished to analyse (3.5).

The disc region: δ < r < R where δ is the radius of the vortex core at the
axis and where Δvϕ = Γ/(2πr). With ∂vϕ/∂r = −vϕ/r (3.4) and (3.5) become

ex
1

ρ

∂ (rFϕ)

r∂r
− eϕ

1

ρ

∂Fx

∂r
= ex (rΔvϕ)

∂vx
r∂r

− eϕ
Δ2vϕ
r

, (3.6)

with rΔvϕ being independent of r as it concerns a Joukowsky disc.
This shows that the distribution of rFϕ is responsible for the distribution of

the angular momentum rvxΔvϕ, thereby creating the disc vortex sheet strength
erγ, defined by the velocity discontinuity across the disc:

erγ = −erΔvϕ. (3.7)

The axial load derivative provides the required centripetal pressure distribution
1
ρ
∂Δp
∂r = Δ2vϕ/r. Furthermore Fx depends only on vϕ where Fϕ depends too on

the distribution of vx, as shown by

Fx ∝ r−2 + constant, Fϕ ∝ vx
r
. (3.8)

This describes the load on an infinitely thin disc. For a disc with thickness, several
other terms contribute to the right-hand side of (3.5). In chapter 8 the role of
these additional terms is evaluated for a disc load generating a wake with a solid
body rotation like a Rankine vortex.



3.3. GENERATION OF ACTUATOR DISC VORTICITY 29

U0 

��
x 

r 

��

�axis�

�tip�

�blade�

���

�x ,��r 

�r 

�axis�

���

��
U0 U0 

s 
n 

a b c 

Figure 3.2. The Joukowsky circulation distribution for (a) a one-bladed lifting line rotor, (b)
the Joukowsky actuator disc with swirl, and (c) the Froude disc without swirl, see Explanations
1.1 and 3.1.

The disc centre: r ≤ δ. If a Rankine core is assumed1 Δvϕ = r
δ

Γ
2πδ . Inte-

gration of (3.5) across the core yields, with ( 1ρΔH − 1
2Δv2ϕ) =

1
ρ (Δp + v2x − U2

0 )
remaining finite for δ → 0,

1

ρ
lim
δ→0

δ∫
0

∇× F 2πrdr = lim
δ→0

δ∫
0

ex
Γ

2πδ2
∂
(
r2vx

)
r∂r

2πrdr (3.9)

= lim
δ→0

δ∫
0

exvx
Γ

πδ2
2πrdr (3.10)

= exvxΓ for r < δ, (3.11)

showing that the force field produces the centreline vortex Γ.
The disc edge: r = R. Integration of the right-hand side of (3.5) across the

disc edge gives

1

ρ

∫
edge

∇× F 2πrdr = −ex (2πRvxΔvϕ)r=R + eϕ2πR

(
ΔH

ρ
− 1

2
Δv2ϕ

)
r=R

(3.12)

= −exvxΓ + eϕ2πRFx for r = R, (3.13)

where (3.3) has been used. The axial component shows that the force field pro-
duces the axial vorticity having the same circulation as the root vortex but with
a negative sign. The azimuthal component of the left-hand side also follows from
(2.16) integrated over the edge area Aedge and multiplied by 2π. The last term
in (2.16) denotes the stretching or tilting of existing vorticity, so is 0 as upstream
of the edge ω = 0. With the azimuthal circulation defined as Γϕ

∫
ωϕdAedge, the

1The Rankine core is known as a viscous core, but the same distribution of Δvϕ can be
generated by a force field F , see van Kuik et al. (2014) and chapter 8.
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combination with (3.13) gives

DΓϕ

Dt
=

1

ρ
RFx,edge, (3.14)

so only the pressure jump at the edge defines the increase of Γϕ.
In summary we see that the force field

• creates the disc bound vorticity γr,

• sheds equal amounts of positive and negative axial vorticity: the root vortex Γ
and the wake boundary with the axial component equalling −Γ,

• sheds azimuthal vorticity being part of the wake boundary.

3.4. Convection of actuator disc vorticity

So far the occurrence of free radial vorticity does not follow from the equations
in the preceding section. In other words: the disc force field does not generate
the radial component of the wake boundary vorticity but it is a consequence of
convection. Once generated, vorticity is convected with the flow v and is subject
to stretching and tilting, described by (ω · ∇)v. In the wake f = 0 so the
azimuthal component of the steady version of (2.16) becomes

(v · ∇)ωϕ = (ω · ∇) vϕ − ωr
vϕ
r

+ ωϕ
vr
r

. (3.15)

By substitution of the axial and radial components of (A.7), (ω · ∇) vϕ =
ωx∂vϕ/∂x+ ωr∂vϕ/∂r = −ωrvϕ/r is obtained, so

(v · ∇)ωϕ = −2ωr
vϕ
r

+ ωϕ
vr
r
. (3.16)

According to Darmofal (1993) the first term on the right-hand side describes
the change of azimuthal vorticity due to tilting of radial vorticity. The second
term describes the stretching of vorticity, also described by Saffman (1992, p. 14).
Further simplification of (3.16) is achieved by considering (2.8) and (2.22). In the
wake but also outside the wake, ∇ (H − ρvϕΩr) = 0 so this term vanishes after
the integration of (2.8) across the free vortex sheet forming the wake boundary,
resulting in vrot × ω = 0. The x−component reads vrωϕ = vϕ,rotωr. With (2.5)
this becomes vrωϕ = (vϕ − Ωr)ωr. Substitution in (3.16) yields

(v · ∇)ωϕ = −
(vϕ

r
+Ω

)
ωr. (3.17)

Equation (3.17) shows that ωr depends on the convection of ωϕ, so is needed to
transport the azimuthal vorticity to other radii. Once generated, the azimuthal
vorticity is determined by the boundary conditions for a free vortex sheet, satis-
fying conservation of circulation within a contour moving with the flow.

The axial vorticity contained in the cent-reline vortex and wake boundary
are related, as shown in figure 3.2b, where the wake vorticity is decomposed. The
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Figure 3.3. Details of the vortices trailing from a rotor blade in hover and a wing.

centre-line vorticity, the disc bound vorticity and the axial wake boundary vortic-
ity constitute a system of connected vortex lines of equal (integrated) strength.
Conservation of circulation on a contour L enclosing the stream tube is satisfied,
as discussed in the previous section. This vortex system induces the swirl in the
wake, which is, for a given rotational speed, the measure for the work done by
the force field as will be shown in the next chapter.

3.5. Convection of rotor vorticity

Figure 3.1 shows the linearised vortex models of Joukowsky for a two-bladed
rotor and of Prandtl for a wing. Comparison with the physical models as shown
in figure 3.3 show the simplifications of the early models: Joukowsky kept the
wake radius R constant, Δr = 0, as well as the pitch θ = arctan x

rϕ of the wake
spirals constant, so Δx = Rϕ tan θ. Prandtl (1918) assumes zero inboard and
downward movement of the tip vortices, Δx = Δy = 0 (see also Milne-Thomson
(1966)). The distances Δx, Δy and Δr are shown in figure 3.3. For a wing Δx
and Δy indicate the location of the wing tip vortices with respect to the plane
defined by the undisturbed wind speed vector and the vector along the wing span,
for a rotor blade Δx and Δr give the downwind respectively inboard displacement
of the tip vortex.

Conservation of wake circulation by Kelvin’s theorem as discussed in section
3.2 shows that the summation of all axial vorticity in the rotor wake at any
downstream x−position has to be zero, so

∫
ωxdAx,root = − ∫

ωxdAx,tip where
Ax is the cross-section of the vortices with the plane x = constant. This leads to
Γx, root = −Γx, tip. At first sight this may conflict the rotor equivalent of (3.1),
expressing that the root and tip vortices equal the +/− strength of the bound
blade vortex: Γroot = −Γtip. However, this equation originates from

∫ |ω|dAroot =
− ∫ |ω|dAtip in which A is the cross-section of the vortex perpendicular to the
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direction of the vorticity ω. Geometric considerations show that
∫
ωxdAx,root =∫ |ω|dAroot.

A characteristic difference between the linearised rotor and wing models is
observed. First is that Δx �= 0 in the rotor model while Δx = 0 in the wing
model. Converted to the components of the vorticity, this implies that Γx = 0
for the linearised wake of a wing, while for a rotor it is essential to have Γx �= 0
since Γx defines the swirl. In the next chapter we show that the swirl defines the
converted power. In other words: the vorticity component that is least important
for determining the performance of a wing is essential for a rotor.

3.6. Evaluation

This chapter contributes to the answer of question Q2 in section 1.4: the force
field approach allows explicit expressions for the generation of vorticity by non-
conservative force fields acting on lifting surfaces. Furthermore this chapter gives
an answer to research question Q4: with respect to vorticity dynamics, there is
no conceptual difference between the most simple model of a rotor, the actuator
disc, and real rotor models. In both type of models vorticity is produced by the
disc or rotor blade instead of conserved. The continuation of the blade bound
vorticity into free tip vorticity is not governed by Helmholtz’s conservation laws
as often assumed. Furthermore the components of bound and free vorticity in
actuator disc flows have been characterised. The relations between forces, energy
and vorticity will be used in subsequent chapters. Particularly equation (3.3) will
play a major role in chapter 6.



Chapter 4

The disc as representation of a rotor

4.1. Introduction

The actuator disc momentum theory is the basis for the design and load calcula-
tions of real rotors with a finite number of blades. In this chapter the expressions
for thrust and power for a disc and rotor are derived and compared in order to
find similarities and differences. Furthermore the limit transitions to convert a
real rotor to a disc with an axisymmetric load will be presented as an answer
to the question: is the actuator disc the result of a rotor subjected to the limit
of the number of blades B → ∞, the blade cross-section C → 0, the rotational
speed Ω → ∞, meanwhile keeping the converted power P and thrust T constant?
Thereafter, section 4.4 compares the velocity fields of a disc and a rotor having
the same size and having been measured in the same wind tunnel.

4.2. Loads and power of a Joukowsky disc and rotor

Joukowsky discs and rotors (in equations abbreviated as J-disc and J-rotor) are
characterised by a constant circulation Γ around the axis, as shown in figure 3.2
and mentioned in Explanation 3.1. This centreline vortex is modelled with a
vortex core having radius δ. For r ≥ δ, vϕ = Γ/(2πr), inside the core vϕ depends
on the assumed characteristics of the core.

4.2.1. The actuator disc equation

The power produced or absorbed by an annulus dr of the actuator disc can
be expressed in two ways. First as torque Q times rotational speed Ω giving
ΩdQ = 2πΩfϕr

2dr, second by integration of f · v using the steady version of
(2.3), resulting in 2πr(v.∇)Hdr. Comparison shows that

f · v = Ωrfϕ = (v.∇)H. (4.1)

The expression for fϕ is derived from the ϕ-component of the steady version of
(2.1), with the help of (A.4), resulting in

rfϕ = ρ(v ·∇)rvϕ. (4.2)

33



34 CHAPTER 4. THE DISC AS REPRESENTATION OF A ROTOR

Substitution in (4.1) gives

f · v = ρ(v.∇) (Ωrvϕ) = (v.∇)H, (4.3)

so
1

ρ
∇H = ∇ (Ωrvϕ) = ∇

(
ΩΓ

2π

)
. (4.4)

This relation between converted power and azimuthal velocity has been obtained
in chapter 2 for flows without force fields and vorticity, see (2.22), but is now
shown to be valid at the disc too. Equation (4.4) shows that the work done by
the force field is expressed in a change in the total pressure or Bernoulli constant
H. Integrated across the disc this gives

ΔHd = ρΩrvϕ, (4.5)

which, combined with (3.3), yields

Fx = Δpd,ΔH +Δpd,vϕ = ρΩrvϕ − 1

2
ρv2ϕ. (4.6)

Both terms at the right-hand side are pressure jumps: ρΩrvϕ converts power so
is a non-conservative disc load, − 1

2ρv
2
ϕ is required for the radial pressure gradient

balancing vϕ. The increase of kinetic energy, 1
2ρv

2
ϕ is balanced by the change in

potential energy Δpd,vϕ = − 1
2ρv

2
ϕ and is not a measure of the work done.

A combination of (4.4) with (2.8) gives the actuator disc equation

f = −ρvrot × ω, (4.7)

expressing f in kinematic terms only. An alternative way to derive (4.7) is to
express (4.4) in ω: ∇ (Ωrvϕ) = eϕΩr × ω. Substitution in the steady version
of the Euler equation (2.3) using the coordinate transformations (2.5) and (2.6)
results in (4.7). Equation (4.7) is the equation of motion for the steady actuator
disc converting power for any radial distribution of f . The subscript rot in (4.7)
distinguishes it from the expression of a Kutta-Joukowsky force: the disc load
is the cross product of the velocity as experienced in the rotating system with
the vorticity in the inertial system. Since it is expressed in kinematic terms
it enables an easier physical interpretation of the relation between loads and
vorticity compared to the Euler equation including H.

The thrust T is obtained by integration of (4.7) on the disc volume. With
ε denoting the thickness of the disc, the limit ε → 0 gives, analogous to the
conversion of (2.9) to (2.10),

∫
ε
vrot × ωdε = vrot × γd. For a Joukowsky disc

2πrγd = −Γ, see (3.7), so the thrust becomes, using (2.5),

T = ρ

∮ R∫
0

vϕ,rotγrdϕdrd = −ρΓ

R∫
0

vϕ,rotdrd

= ρ
ΩΓ

2
R2 − ρΓ

R∫
δ

vϕ,ddrd for a J-disc, δ → 0 (4.8)



4.2. LOADS AND POWER OF A JOUKOWSKY DISC AND ROTOR 35

The power converted by the force field of a steady actuator disc or a steadily
rotating rotor is given by (2.26), here written as

P =

∫
S

H (v · en,S) dS, (4.9)

with volume V having surface S shown in figure 2.5b. At the cross-section with
the wake v · en,S = vx. At the cross-section with the stream tube far upstream
the velocity is undisturbed U0. For the part of V outside the stream tube H = H0

and
∫
(v · en,S) dS = 0 so the expression for the converted power becomes∫

V

f · vdV =

∫
A1

HvxdA1 −H0U0A0, (4.10)

where A0 is the cross-section of the stream tube far upstream and A1 the same far
downstream. For a Joukowsky disc (4.4) shows that in the wake H is constant.
Mass conservation U0A0 = vxA1 gives

P = (H −H0)

∫
A1

vxdA1 for a J-disc, δ → 0, (4.11)

or, with (2.22),

P = ρΩΓ

R1∫
δ1

vxr1dr1 = ρ
ΩΓ

2π
vx,dR

2 for a J-disc, δ → 0, (4.12)

where conservation of mass is used to convert the integral from plane A1 to the
disc area, and where vx,d is the disc averaged axial velocity.

4.2.2. The rotor blade

Figure 4.1 shows a rotor blade having a cross-section C at which the bound
vorticity is distributed. The sectional load on a blade is derived in the rotating
coordinate system by integration of (2.8) on C, giving

L = −ρ

∫
C

vrot × ωdC +

∫
C

∇ (H − ρvϕΩr) dC. (4.13)

According to (4.4) the gradient term is zero for an actuator disc, but for a rotor
this is not yet clear. The integral is converted by Green’s theorem to

∮
(H −

ρvϕΩr)endS where S is a contour enclosing C and en the outward unit vector at
S in the plane of C. According to (2.22) the integrand is constant when ω = 0,
so outside of the vortex sheet leaving the aerofoil. As we consider inviscid flows,
any vorticity leaving the aerofoil trailing edge is concentrated in an infinitely thin
sheet. At the sheet the integrand (H − ρvϕΩr) has to behave as a Delta function
in order to contribute to the integral. As H and ρvϕΩr remain finite, this is
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Figure 4.1. The load on bound radial vorticity of a wind turbine rotor blade.

not the case. Consequently
∮
(H − ρvϕΩr)endS = 0, by which the sectional load

(4.13) becomes

L = −ρ

∫
C

vrot × ωdC. (4.14)

Depending on the orientation of vrot and ω the sectional load may have a radial
component, besides the axial and azimuthal components. Figure 4.1 shows the
load on the radial bound vorticity but also, close to the blade tip and root, on
the chordwise bound vorticity, being able to carry an additional axial and radial
load. This is treated in detail in chapter 8. In case the blade is modelled as a
lifting line, so C → 0, only the radial bound vorticity is taken into account, and

lim
C→0

L = −ρ

∫
C

vrot × erωrdC = −ρvrot,B × ΓB (4.15)

with the blade bound vortex strength ΓB = er
∫
C
ωrdC remaining invariant for

C → 0, and with vrot,B the velocity at the position of the lifting line. This is the
expression for the Kutta-Joukowsky load used in rotor aerodynamic textbooks like
Stepniewski and Keys (1978), Leishman (2006) and Schaffarczyk (2020). Blade
Element Momentum design methods as presented by Sørensen (2015) and wind
turbine textbooks like Burton et al. (2011) express the inviscid load as Lblade =
Cl

1
2ρv

2
relc where c is the chord, Cl the lift coefficient and vrel the velocity perceived

by the blade, so identical to vrot. This expression is equivalent to −ρvB,rot × Γ.
The thrust at the rotor is defined by the axial component of (4.15). With

(2.5) and with Γ = −BΓB ,

T = −ρΓ

R∫
δ

vϕ,rot,Bdrd = ρ
ΩΓ

2
R2 − ρΓ

R∫
δ

vϕ,Bdrd for a J-rotor, δ → 0. (4.16)
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The converted power P is torque Q times Ω, so with the azimuthal component
of (4.15),

P = QΩ = −ΩBρ

R∫
δ

∫
C

vxωrrddrddC. (4.17)

In (4.15) the limit C → 0 was included, so
∫
C
vxωrdC = vx,BΓB . As before

Γ = −BΓB , yielding

P = ρΩΓ

R∫
δ

vx,Brdr for a J-rotor, δ → 0. (4.18)

Equations (4.16) and (4.18) are equivalent to the disc equations (4.8) and (4.12)
apart from the indication B in (4.18).

A contribution by the vortex kernel itself is not included in P and T as we
have assumed a Rankine-like distribution of vϕ with vϕ = 0 at r = 0. Evaluation
of the contribution to P and T then shows that the kernel does not contribute
when δ → 0.

For the disc as well as rotor the conversion of power by the force field is
expressed in the in- or decrease of the amount of wake swirl. The sign conventions
shown in figure 2.2 are that the rotational speed Ω > 0 and Γ < 0 for energy
extracting discs, so ΔH < 0. For an energy adding disc Γ and ΔH > 0.

4.2.3. Power and thrust coefficients for Joukowsky discs / rotors

The disc: Equation (4.12) gives the expression for the power P converted by
the disc. With the introduction of the non-dimensional vortex strength q =
Γ/(2πRU0) and tip speed ratio λ = ΩR/U0, (4.5) becomes

ΩΓ

2π
= 2qλ for r ≥ δ. (4.19)

Herewith the dimensionless power coefficient Cp becomes1

Cp =
P

1
2ρU

3πR2
= 2qλ

vx,d
U0

for a J-disc, δ → 0. (4.20)

The thrust T is given by (4.8). As the first term on the right-hand side of (4.8) is
the thrust converting power and the second term the thrust due to the pressure
gradient connected to the rotation of the wake, the dimensionless thrust coefficient
is written as

CT =
T

1
2ρU

2πR2
= CT,ΔH + CT,Δvϕ

CT,ΔH = 2λq

CT,Δvϕ
= −q2 ln

(
R

δ

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for a J-disc, δ → 0. (4.21)

1the definitions for Cp and CT used here differ from the definitions used by Wald (2006),
where Cp = P/(ρn3D5) and CT = T/(ρn2D4), but are the same as his coefficients Kp and KT .
The definitions used by Leishman (2006) are Cp,Leishman = Cp/(2λ3), CT,Leishman = CT /(2λ2).
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For δ → 0, CT,Δvϕ
→ ∞. The consequences of this will be discussed at the end

of this section.
The rotor: The power is given by (4.18). As for the disc, the power coefficient
becomes

Cp = 2λq
vx,B
U0

for a J-rotor, δ → 0. (4.22)

The thrust is given by (4.16), so in dimensionless form

CT = 2λq − 4q

R∫
δ

vϕ,B

UδR
dr. (4.23)

The local thrust coefficient Ct, defined as BdLx/
(
ρU2

0πrdr
)

with Lx being the
axial component of (4.15), is

Ct = 2λq − 2q
vϕ,B

U0

R

r
, for a J-disc, r ≥ δ. (4.24)

In the wake the azimuthally averaged value vϕ = Γ/ (2πr) but in the rotor plane
it is half this value, vϕ,x=0 = Γ/ (4πr) . The azimuthal distribution of vϕ will be
approximately uniform for low values of r/R as the induction by the root vortex
dominates. However, for larger r/R values the tip vortices will add a harmonic
distribution. With the actuator line and lifting line calculations of which the
axial velocity is shown in figure 2.4, the order of magnitude of the approximation
vϕ,B = vϕ = Γ/ (2πr) is estimated: the deviation in ΔCT is < 1%�, so the
approximation is well in place. When the non-uniformity of vϕ is neglected,
vϕ,B/U0 ≈ Γ/ (4πrU0) for r > δ and ≈ Γr/

(
4πδ2U0

)
for r < δ when vϕ = 0

for r = 0 is assumed. For δ → 0 the contribution of the area πδ2 to the thrust
vanishes, so the result for CT is

CT = CT,ΔH + CT,Δvϕ

CT,ΔH = 2λq

CT,Δvϕ = −4q

R∫
δ

vϕ,B

U0R
dr ≈ −q2 ln

(
R

δ

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

for a J-rotor, δ → 0, (4.25)

and for the local thrust coefficient Ct

Ct = Ct,ΔH + Ct,Δvϕ

Ct,ΔH = 2λq

Ct,Δvϕ = −2q
vϕ,B

U0

R

r
≈ −q2

(
R

δ

)2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for a J-rotor, δ → 0. (4.26)

The expressions for the disc, (4.20) and (4.21), and rotor, (4.22) and (4.25), are
identical, apart from the approximation in (4.25) for the rotor thrust component
CT,Δvϕ

.
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Figure 4.2. Maximum power coefficients |Cp| of an optimum rotor as function of tip speed
ratio λ and number of blades 1 to 4. Left: Joukowsky rotor; Right: Betz rotor. From Okulov
and Sørensen (2010) with permission.

CT,Δvϕ , representing the contribution to the thrust by the radial pressure
gradient balancing the radial distribution of vϕ, becomes ∞ for δ → 0. With
δ � R the singular term is positive, so it adds up to CT,ΔH for a wind turbine
rotor but is opposite to this for a propeller. For practical wind turbine conditions
δ mimics the root cut-out radius, which is the radius below which the nacelle
and blade root connection occupy the space. A practical value is 0.15R so for
λ > 7 and 2λq > −1 we find that CT,Δvϕ ≤ 0.02CT,ΔH so this contribution to
the thrust may be ignored. In forthcoming results and figures CT,ΔH will be
used as parameter defining flow states, together with the tip speed ratio λ for
wind turbine discs and the advance ration J = U0/(nD) for propeller discs, with
λ = π/J .

4.3. The transition from a B-bladed rotor to the Joukowsky disc

The actuator disc carrying a constant pressure jump is supposed to represent a
rotor with an infinite number of blades by which the rotor load is distributed over
the entire disc. Physical arguments support this notion, as well as a numerical
approach by Okulov and Sørensen (2010). Figure 4.2 shows the power coeffi-
cients Cp as a function of λ and the number of blades for the load distributions
according to Betz and Joukowsky. For both distributions the |Cp| values grow
to the actuator disc maximum for an increasing number of blades. A remarkable
property of this analysis is that the distance between the tip vortices, modelled
with a core diameter δ to avoid velocity singularities, will not vanish for B → ∞
as Bδ remains non-zero. Apparently the transition from spiralling vortices with
a vortex core to a continuous vortex sheet with a velocity jump is not an auto-
matically generated result. Apart from the numerical and physical arguments, an
analytical transition from rotor to disc, based on the relevant equations for the
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Figure 4.3. Axial velocity field in the wake of the AD (top) and of the WT (bottom), both
operating at CT = −0.93.

rotor and disc, has to provide the formal basis for the statement that the disc
represents the rotor with an infinite number of blades. The limit transitions with
which Joukowsky rotors turn into a Froude disc are: B → ∞, Ω → ∞, C → 0,
meanwhile keeping the thrust T and power P constant.

The power converted by a disc and rotor is given by (4.12) and (4.18), and
the thrust by (4.8) and (4.16). The limit C → 0 has already been used in their
derivation. For B → ∞ the velocity at the rotor plane will become azimuthally
uniform, so with invariant power and thrust, vx,B → vx,d and vϕ,B → vϕ,d, and

lim
C→0
B→∞

PJ−rotor = ρΩΓ

R∫
0

vxrdr = ρ
ΩΓ

2π
vx,dAd = PJ−disc, (4.27)

lim
C→0
B→∞

TJ−rotor = ρΩΓR2 − ρΓ

R∫
0

vϕdr = TJ−disc. (4.28)

So far the rotor blade and the disc still have a finite Ω. With increasing Ω the
torque Q disappears and the load becomes normal. For constant P but Ω → ∞,
(4.1) and (4.3) yield

rfϕ ∝ Ω−1 and rvϕ ∝ Ω−1 if lim
Ω→∞

f · v = constant. (4.29)
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Figure 4.4. Axial velocity profiles at five different locations in the wake of the AD and of the
WT.

This implies that fϕ and vϕ vanish but not vϕΩr = ΩΓ/(2π). By (4.4) at the
disc ρΩΓ/(2π) = ΔH = Δp so (4.27) and (4.28) become

lim
C→0
B→∞
Ω→∞

PJ−rotor = ρΔpvx,dAd = PFroude disc (4.30)

and
lim
C→0
B→∞
Ω→∞

TJ−rotor = ρΔpAd = TFroude disc. (4.31)

Herewith a Joukowsky rotor with B blades has been transferred to Froude’s disc
with a constant pressure jump Δp by the limits C → 0, B → ∞ and Ω → ∞.

4.4. Comparison of the flow fields of a disc and rotor

In the previous sections we showed the conformity of the loads and power con-
version by a rotor and an actuator disc. However, this does not yet include the
development of the wake behind both. An experimental analysis compares the
wake development of a 2-bladed model rotor and of an actuator disc tested in
identical circumstances: the same wind tunnel, wind speed and turbulence level,
size of rotor and disc, Reynolds number and thrust coefficient. This experimental
comparison is entirely based on Lignarolo et al. (2016a), with permission of the
authors.

A porous disc2 and a two bladed horizontal axis wind turbine model running
at tip speed ratio λ = 7, both with a 0.6m diameter, have been tested in the
low speed closed loop Open Jet Facility at a wind speed of 4.7m/s. The OJF

2A porous disc changes H by dissipation and heat exchange, instead of changing angular
momentum or swirl. However, as shown in section 4.3, swirl disappears for Ω→∞, so a porous
disc represents the Froude disc at the right-hand sides of (4.30) and (4.31). The difference is in
the origin of the disc force field: an externally applied force field for Froude’s disc, versus the
viscous drag for the porous disc, and the type of extracted energy: QΩ with Q → 0, Ω → ∞
for Froude’s disc, heat for the porous disc.
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Figure 4.5. AD’s and WT’s wake expansion and relative difference. The curves represent the
loci of the points where the axial velocity is 99% of the free stream value.

is a wind tunnel located at Delft University of Technology, faculty Aerospace
Engineering. It has an octagonal test section with an equivalent diameter of 3
m and a contraction ratio of 3:1, delivering a uniform stream with about 0.5%
turbulent intensity up to 1m from the nozzle and lower than 2% at 6m from the
nozzle exit. The disc and turbine model have been tested in identical conditions
with identical measurement systems, described in Lignarolo et al. (2016a). This
paper presents a comprehensive analysis of both experiments, while here only the
data on the axial velocity and the wake expansion are reproduced. The thrust
coefficient CT = −0.93.

Figure 4.3 shows the axial velocity vx of the disc (AD) flow field and the
azimuthally averaged vx of the wind turbine (WT) flow field. The area between
x = 0.15D and 0.55D could not be covered by the SPIV (Stereo Particle Image
Velocimetry) system, so no data are available. Figure 4.4 shows the radial distri-
bution of vx at several positions downstream of the plane of the AD-WT. Finally
figure 4.5 shows the wake expansion behind the AD and WT. Figures 4.3, 4.4 and
4.5 show a good correspondence between the AD and WT results.

Next to this experimental comparison, section 9.3 presents a numerical com-
parison of the velocity distribution in the plane of a 3-bladed rotor with the
velocity in the plane of an actuator disc. This numerical exercise uses the results
of the Lifting Line and Actuator Line methods described in section 2.3 and the re-
sults of the actuator disc method described in chapter 5 and 6, so the presentation
of the results is postponed to chapter 9.
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4.5. Evaluation

Research question Q5 listed in section 1.4 has been answered. The expressions for
the thrust and power for a Joukowsky rotor and disc are similar. A Joukowsky
rotor becomes the classical Froude disc with a uniform load after a series of limit
transitions. The power converted by the actuator disc as well as the rotor shows
itself as a change of the Bernoulli value H, being equal to the change in the
angular momentum times rotational speed.

Question Q6 has been answered positively by experiments with a wind turbine
disc and rotor having the same size and thrust, tested in the same wind tunnel.
The flow of a disc and rotor resemble enough to be confident that the disc can be
used for analyses of rotors with a finite number of blades. Chapter 5 treats the
performance of a Froude disc, chapter 6 of a Joukowsky disc.
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Chapter 5

Analysis of Froude’s actuator disc flows

5.1. Introduction

This chapter addresses the actuator disc as conceived by Froude (1889): a disc
with a uniform normal load created by a pressure jump over the disc, with the
disc placed perpendicular to a uniform inviscid flow. As shown in chapter 4
such a disc is the end product after a series of limit transitions starting with a
rotor having a finite rotational speed and finite number blades. The momentum
theory couples the disc load to the acceleration or deceleration of the flow in the
fully developed wake, allowing for optimisation of the action of the disc. This
actuator disc momentum theory, sometimes called ‘one-dimensional’ as only the
axial momentum balance is included, is repeated in section 5.2.2. The theory gives
the average value of the axial velocity at the disc, not the velocity distribution.
Modern computational approaches are able to provide flow details like the shape
and strength of the vortex tube that separates the wake from the outer flow. Using
a Computational Fluid Dynamics (CFD) solver for the Navier-Stokes equations,
the velocity field for propeller as well as wind turbine flows states was published
by Sørensen et al. (1998), and for a static or hovering disc by Spalart (2003). The
method to find details of the actuator disc flow used in this chapter is based on
the inviscid method of Øye (1990), aiming for such a high numerical accuracy
that conclusions may be drawn supporting or rejecting analytical treatments.

First section 5.2 presents the axial momentum theory with and without con-
servative force. In section 5.3 the numerical method is explained where-after in
section 5.4 flow details are investigated like the shape and strength of the wake
boundary vortex sheet, the streamline and isobar pattern and the distribution of
the pressure at the axis. Analysis of the pressure and velocity distributions at
the disc and the role of the pressure in the momentum balance per annulus, is
postponed to chapter 7. The present chapter is based on the papers by van Kuik
and Lignarolo (2016) and van Kuik (2018).

45
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Figure 5.1. Sphere with surface S as control volume for the momentum balance, crossing the
stream tube of an actuator disc far upstream with undisturbed flow, and far downstream with
a fully developed wake. Only half of the cross-section is displayed.

5.2. One-dimensional momentum theory

5.2.1. The momentum balance

The general expression for the momentum balance is given by Batchelor (1970,
p. 138). For inviscid flow the balance in x−direction drawn on a volume V
enclosed by a surface S is

T −
∮
S

ex · enpdS = ρ

∮
S

vx (vx − U0) dS, (5.1)

with p being the pressure acting at the boundary S. When the control volume is
the stream tube passing through the disc, the pressure integral becomes zero, as
will be shown in the next section.

Usually the stream tube passing through the actuator is used as the control
volume V . Several proofs have been published that the pressure acting at the
stream tube boundary does not contribute to the momentum balance, e.g. by
Thoma (1925). Here another control volume is used, equivalent to figure 2.5b:
figure 5.1 shows the control volume bounded by a sphere with radius RS , with the
centre of the sphere coinciding with the centre of the actuator disc. The advantage
of this control volume is that only the flow conditions at infinite distance need to
be known, not at the vortex sheet itself. Furthermore this control volume can be
used for the flow induced by a static disc which does not have a stream tube.

Outside the wake of the actuator disc at a large distance from the origin, the
flow can be considered as a summation of a parallel flow and a source/sink flow.
Analogous to Batchelor (1970, p. 351) momentum and pressure terms in (5.1)
at the sphere S but outside the wake vanish for RS → ∞. This is because the
summation of undisturbed Uo and source/sink induced velocities v gives rise to
momentum flux and pressure terms containing U2

o , vUo and v2. The source/sink
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velocity vanishes like R−2
S by continuity of mass, so the v2 term does not con-

tribute after integration on S for RS → ∞. The same holds for the constant
term containing U2

0 . The mixed terms containing vUo do not vanish for increas-
ing RS but do not contribute after integration on S, due to the symmetry of the
source/sink flow with respect to the plane x = 0. What remains for RS → ∞
are the contributions by the disc itself and the momentum transport at stream
tube cross-sections A0 far upstream and A1 far downstream. The pressure acting
at these cross-sections is undisturbed, p0, so the pressure integral in (5.1) van-
ishes. As Froude’s disc has a constant pressure jump Δp the momentum balance
becomes

T = ΔpAd = ρ

∫
A1

vx,1 (vx,1 − U0) dA1. (5.2)

The same result is obtained when we use the stream tube as control volume, and
assume that the pressure at the stream tube boundary does not result in an axial
force acting on the control volume. In other words: the momentum balance using
the sphere as control volume confirms this assumption, so it may be considered
as an indirect proof that the stream tube pressure does not contribute.

5.2.2. Momentum theory without conservative forces

The Bernoulli equation applied to the upstream and downstream part of a
streamline (the dashed line in figure 5.1) can be coupled by the pressure jump
Δpd, giving

Δpd =
1

2
ρ
(
v2x,1 − U2

0

)
. (5.3)

As Δpd is uniform, also the velocity in the wake vx,1 is uniform so (5.2) becomes

ΔpdAd = ρvx,1 (vx,1 − U0)A1. (5.4)

Mass conservation gives vx,dAd = vx,1A1 where vx,d is the velocity averaged on
the disc area. Elimination of Δpd from (5.3) and (5.4) gives the famous result,
first obtained by Froude (1889):

vx,d =
1

2
(vx,1 + U0) . (5.5)

The converted power P = Δpdvx,dAd so in dimensionless form the power coeffi-
cient is

Cp =
P

1
2ρU

3
0Ad

=
1

2

((
vx,1
U0

)2

− 1

)(
vx,1
U0

+ 1

)
(5.6)

or, expressed in vx,d,

Cp = 4

(
vx,d
U0

)2(
vx,d
U0

− 1

)
. (5.7)

The thrust coefficient becomes

CT =
T

1
2ρU

2
0Ad

= 4
vx,d
U0

(
vx,d
U0

− 1

)
. (5.8)
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p 

Figure 5.2. The annulus as control volume for the momentum balance, including the contri-
bution of the pressure at the surface of the annulus.

Differentiation of (5.7) to vx,d to find the coefficient for maximum of power ex-
traction gives

Cp,max = −16

27
for

vx,d
U0

=
2

3
, (5.9)

which was obtained by Joukowsky and Betz in 1920. The minus sign indicates
that the energy is taken from the flow.

For the static disc U0 = 0 so Cp loses it meaning. To cover the entire regime
of the disc it is common to non-dimensionalise velocities by the velocity at the
disc when U0 = 0. The combination of (5.4) and (5.5) gives vx,d =

√
T/(2ρAd)

which is used in figure 1.2. The power P = Tvx,d required to keep the disc static
or a helicopter hovering is

P = 2ρAdvd,x
3 =

√
T 3

2ρAd
, (5.10)

corresponding to equations 17 and 19, p. 143, in the French translation of
Joukowsky (1918)1.

5.2.3. Momentum theory including conservative forces, applied to a
stream annulus

In the previous section the momentum balance is applied to the entire stream
tube, with the disc load as the only load entering this balance. Now suppose that
forces are present in the control volume, or on its boundary, which do not affect
H so do not perform work. Instead of (5.2), the momentum balance becomes

Tnon−cons + Tcons = ρ

∫
A1

vx,1 (vx,1 − U0) dA1 (5.11)

with
Tnon−cons = ΔpAd = TΔH

Tcons = Tnot affecting H

⎫⎪⎬
⎪⎭ (5.12)

1Please note that the translation uses a reversed notation: P for thrust, T for power.
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The energy equation (5.3) is unaffected by Tcons, so in combination with (5.11)
the result is

vx,d =

(
Tcons

Tnon-cons
+ 1

)
U0 + vx,1

2
. (5.13)

Expression (5.7) for the power coefficient becomes

Cp =

(
Tcons

Tnon-cons
+ 1

)
Cp,Tcons=0 (5.14)

and for the thrust coefficient, with (5.12),

CT = CTcons + CTnon−cons . (5.15)

Equations (5.13) and (5.14) have first been derived by van Holten (1981) for discs
or rotors placed in a shroud or ring wing, without using the classification cons and
non− cons. The lift on the ring wing contributes thrust Tcons to the momentum
balance but does not convert energy. The average axial velocity at the disc is then
given by (5.13). When both trust components have the same sign the average
velocity increases and so does the power coefficient. Equation (5.17) has also been
derived by Sørensen (2011); Sørensen and Mikkelsen (2001) in order to assess the
validity of BEM for rotors operating at a very low rotational speed (the topic of
the next chapter).

Now the momentum balance is applied to a stream annulus instead of the
stream-tube. An annulus is a part of the stream tube, being the volume between
two such streamlines passing the disc at radii r and r+Δr as shown in figure 5.2.
The balance (5.11) becomes

ΔpAd,ann +

∫
ann

ex · enpdSann = ρ

∫
A1

vx,1 (vx,1 − U0) dA1,ann, (5.16)

where Sann is the surface of the annulus, Ad,ann and A1,ann the cross-sections of
the annulus with the disc and far wake, and en the unit vector normal to Sann.
The pressure, expressed as a force vector, is perpendicular to the boundary of
the annulus, so is perpendicular to the velocity vector. It does not perform work,
so the pressure term in (5.16) is a conservative contribution . Herewith (5.13)
becomes

vx,d =

⎛
⎜⎝
∫
A1

ex · enpdA1,ann

ΔpAd
+ 1

⎞
⎟⎠ U0 + vx,1

2
. (5.17)

In section 7.3.1, (5.17) will verified by a numerical evaluation of the momentum
theory applied to annuli.

5.3. Numerical assessment of Froude’s actuator disc performance

In order to supplement the results of the momentum theory with flow details like
the velocity and pressure distributions at the disc and in the wake, van Kuik and
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Figure 5.3. The vortex model. The far wake has a constant radius during the convergence
process, while the vortex rings adapt their radii and strength. The first vortex ring coincides
with the disc edge.

Lignarolo (2016) developed a numerical potential flow code which calculates the
position and strength of the wake for a prescribed axial disc load. With the wake
known, all flow details can be calculated, The potential flow model of the wake is
described in detail in appendix D, so here only a summary is presented.

5.3.1. The model and accuracy of computation

The disc generates a cylindrical vortex sheet with expanding or contracting diam-
eter, emanating from the disc edge as shown in figure 5.3 for an energy extracting
disc. The cylindrical sheet stretches from the disc to downwind infinity, and sep-
arates the flow that has passed the disc from the flow outside this stream tube.
The numerical implementation of the vortex sheet splits the sheet in two parts:

• The fully developed far wake has a constant radius R1 and is modelled as a
semi-infinite vortex tube with constant γ = eϕγ1 = eϕ(−U0 +

√
2Δp+ U2

0 )
starting at x = 30R1. An analytical solution for the axial velocity induced
by this semi-infinite tube has been derived by van Kuik and Lignarolo (2016)
and a solution including the axial and radial velocity by Branlard and Gaunaa
(2015). The properties of this far wake do not change during the iteration
process towards a converged solution.

• From the disc position x = 0 up to x = 30R1 the sheet is discretised using
N vortex rings having strength Γi(xi, ri), with 1 ≤ i ≤ N , like in the model
of Øye (1990). The velocity close to the vortex ring core is de-singularised by
adopting a core with radius δ. The boundary conditions defining the radius and
strength of each ring are: 1- the sheet is force free; 2- Stokes’ stream function
Ψ is constant or the normal velocity vn = 0. The iteration starts with all rings
having equal radius r(i) = R1, and vortex sheet strength Γ(i)/Δs(i) = γ1 where
Δs(i) is the distance between the cores of ring (i+1) and (i). In each iteration
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the radius and strength of the rings are adapted to decrease the deviation from
the boundary conditions until these are satisfied.

Appendix D gives details of the convergence scheme, the verification of the model,
a sensitivity analysis for the model parameters N and δ, and an assessment of
the accuracy. The conclusions are repeated here.

• The vortex model is verified by comparison with an analytical solution of the
semi-infinite vortex tube, yielding deviations in local velocity vectors less than
2 %� for N = 6909, δ = 0.0001, except for the velocity component normal to
the vortex sheet within a distance 0.02Rtube from its leading edge

• Solutions converged to a constant stream function Ψ have similar deviations in
normal velocity. By comparing these with solutions converged to vn ≤ 0.0002U0

it has been shown that calculated flow properties differ less than 3 %�, except
for γ deviating up to a few % for s/Rd < 0.13, with s measured from the disc
edge.

• By this uncertainty in γ or vn close to the disc edge, accurate quantitative
conclusions with respect to the vortex sheet strength close to the disc edge are
not possible. Qualitative conclusions are possible as the accuracy is limited to
a few %. It has an effect of ≤ 3 %� on other flow parameters,

• The results are, with deviations of 2 %�, insensitive to variations in N and
δ. The smoothness of the wake boundary vorticity distribution increases with
higher N .

• The overall accuracy is assessed at 3 %� except for flow details within a distance
of 0.13Rd from the disc edge.

• For thrust coefficients −1 < CT < −0.96 , the required accuracy is not achieved,
see the results in figure 5.4 indicated with a ♦.

5.3.2. Comparison of calculated performance with momentum theory
results

Figures 5.4 and 5.5 show the calculated performance in terms of the induced ve-
locity at the disc, for wind turbine and propeller discs, and the efficiency for wind
turbine discs. The results of the actuator disc momentum theory are reproduced
accurately, illustrated by examining two flow states. For CT = −8/9 , Rd/R1 de-
viates < 1%�, the induced velocity and Cp 2.5%�, with the boundary conditions
satisfied within 1%�. For CT = 16/9 the same data are: 0.4, 3, 1 %�.
These flow cases have been chosen for further analyses of flow details in section
5.4 and chapter 7 as, according to momentum theory, the absolute value of the
average induction at the disc and in the wake is the same:

• a: CT = −8/9 or U0/
√
T/(2ρA) = −2.12 gives vi/U0 = −1/3, γ1/U0 = −2/3,

• b: CT = 16/9 or U0/
√
T/(2ρA) = 1.5 gives vi/U0 = +1/3, γ1/U0 = +2/3.
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Figure 5.4. Comparison of momentum theory (—) and computed induced velocity at the disc
indicated by a � and ♦. Most data have been calculated with N = 4656 and d = 0.001, some
with N = 6909 and d = 0.0001. The data displayed by a ♦ do not have the required accuracy.
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Figure 5.5. Comparison of momentum theory (—) and computed Cp as a function of CT . For
explanation of the symbols, see the previous figure.
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x/R 

Figure 5.6. Comparison of the calculated (black) velocities and wake expansion with the mea-
sured values (red) for CT = −0.93

As figure 5.4 shows, no solutions are available for low but positive values of
U0/

√
T/(2ρA). This is due to the convergence scheme, as with the radial dis-

placement of the vortex ring cores it is not possible to converge to a wake boundary
with an increasing slope for decreasing U0/

√
T/(2ρA).

5.3.3. Comparison with experimental results

The actuator disc experiment of Lignarolo et al. (2016a) described in section 4.4
provides the flow field measured by Stereo Particle Image Velocimetry (SPIV)
The disc has a diameter of 0.6m and is realised with three layers of fine metal
mesh, with a total porosity (open to total area) of 32%, resulting in a measured
CT = −0.93. The comparison of the measured velocities and wake expansion with
the calculated values is shown in figure 5.6 taken from Lignarolo et al. (2016b).
The SPIV measurements did not cover the region immediately behind the disc.
Furthermore the disc in the experiment was mounted at a nacelle, by which the
vectors near the disc centre do not match. The experimental wake expansion
shown in the figure is determined as the position where |v| equals 0.99U0. The
measured and calculated velocity vectors and wake expansion match very well.

5.4. Flow details

5.4.1. Flow and pressure patterns

Figures 5.7 and 5.8 show the velocity vectors, streamlines, wake boundary and
isobars for CT = −8/9 and 16/9. All other flow states show similar patterns. The
isobars show a continuous pressure at the wake boundary, but a discontinuous
pressure gradient.

5.4.2. Properties of the wake boundary

A steady actuator disc with a uniform load exΔp creates a wake in which the
Bernoulli constant is uniform. This becomes clear by applying Bernoulli’s law
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Figure 5.7. a, CT = −8/9: (a) shows the velocity field and wake boundary, (b) stream tube
value Ψ/Ψ1, (c) isobars (p− p0) / |Δpd|, both with increments of 0.1.
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separately to a the up- and downstream part of a streamline passing the disc, and
combining both by the pressure jump. It also follows from (2.3) which reduces in
the wake to ∇H = 0. Upstream of the disc and outside the wake also ∇H = 0.
The difference ΔH across the wake boundary follows from the combination of
(2.3) and (2.4), so

Δ

(
1

2
ρ|v|2

)
= ΔH, (5.18)

as the vortex sheet forming the wake boundary is force free. With γ = (v−− v+)
denoting the strength of the vortex sheet, v− and v+ the velocities at the wake
side and outer side of the sheet and vs = 1

2 (v− + v+) the velocity of the sheet,
(5.18), becomes

ρvsγ = ΔH = constant, (5.19)

or
vsγ

vs,1γ1
= 1. (5.20)

For a disc accelerating the flow, the velocity of the vortex sheet vs increases to
vs,1 when going downstream, so γ/γ1 decreases to become 1 in the far wake.
As γ is positive the maximum value is at the leading edge of the sheet. For a
disc decelerating the flow the opposite is true: as vs/vs,1 decreases when going
downstream, γ/γ1 increases with a minimum value of γ/γ1 at the leading edge.
As γ1 is negative, this implies that γ reaches a maximum at the leading edge.
However, this reasoning assumes that the velocity of the sheet is in- or decreasing
everywhere along the sheet, so dγ/ds �= 0 along the sheet. Figure 5.9 shows the
calculated distribution γ(s). For CT = 16/9 the above reasoning is confirmed:
the maximum value of γ is at s = 0. For the flow decelerating case CT = −8/9
the maximum of γ occurs at s/Rd = 0.0513. In both cases the distribution tends
to become singular for s/Rd → 0 but with a different slope dγ/ds: for positive CT

dγ/ds < 0 at s = 0, while dγ/ds > 0 at s = 0 for negative CT . Using (5.20) this
implies that in the flow accelerating case vs increases smoothly from the disc edge
to the far wake, but in the flow decelerating case vs increases immediately after
s = 0 reaching a maximum value at a small distance behind the disc, where-after
vs decreases until vs,1 is reached in the far wake.

Despite the differences between the vortex sheet development for propeller
and wind turbine discs, the vortex sheet characteristics at the leading edge of
the sheet are similar. For all flow cases the shape of the vortex sheet close to
its leading edge is somewhat curved but does not show a particular behaviour.
For wind turbine discs the slope of the vortex sheet at x = 0 is always less than
90◦ so the sheet does not turn upwind of x = 0. For CT = −0.998 the slope is
65◦, for CT = −8/9 it is 46◦. For all calculated propeller disc flows the same
holds, with a slope −30.5◦ for CT = 16/9. For very high values of CT , as in
case of a static disc (U0 = 0), the vortex sheet is known to turn upwind, see
e.g. Spalart (2003). The strength of the vortex sheet seems to exhibit a singular
behaviour at the disc leading edge as shown in figure 5.9. For s → 0 the strength
|γ| tends to go to ∞, but as discussed in appendix D the uncertainty in local
flow properties close to the disc edge is a few %. Consequently it is not possible
to draw quantitative conclusions with respect to the singular behaviour. The
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Figure 5.8. b, CT = 16/9: (a) shows the velocity field and wake boundary, (b) stream tube
value Ψ/Ψ1, (c) isobars (p− p0) / |Δpd|, both with increments of 0.1.
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Figure 5.9. The distribution γ(s) for a: CT = −8/9, b: CT = 16/9.

numerical solution does not resemble the two-dimensional solutions published by
Schmidt and Sparenberg (1977) and Chattot (2021). Chattot used thin aerofoil
theory to derive the behaviour of the velocity normal to an aerofoil with constant
γ. This normal velocity is proportional to − γ

2π ln x, with x denoting the distance
from the leading edge. This matches very well the velocity normal to the semi-
infinite vortex tube with constant γ (van Kuik and Chattot, 2021), which is used
in section 5.3.1 as the first step of the calculations. The vortex tube resulting
from the fully converged solution does not exhibit constant γ as shown in figure
5.9, so the logarithmic singularity does not apply. Schmidt and Sparenberg (1977)
have derived a 2-D solution of an infinite vortex sheet carrying a constant jump
in Bernoulli value H. This solution is a 45o spiral (the tangent is at 45o with the
radial vector in all positions) with constant γ. Both properties are not present in
the calculated potential flow solution. van Kuik (2009) showed that their spiral
is a particular member of a family of vortex sheet spirals developed by Prandtl
(1924). These spirals are defined at a Riemann surface instead of a plane 2-D
surface, see van Kuik (2004), so do not represent a 2-D solution.

5.4.3. Pressure and velocity at the disc

The isobar patterns shown in figures 5.7 and 5.8 seem to indicate that the pressure
at the disc is uniform for CT = −8/9 but non-uniform for CT = 16/9. When
the pressure at the disc is constant the absolute value of the velocity at the disc
will be constant, based on Bernoulli’s law. Figure 5.10 shows the absolute, axial
and radial velocity components for flow case a and b. Further analyses of the
distributions is done in chapter 7.
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Figure 5.10. The velocity components at x = 0 for a: CT = −8/9, b: CT = 16/9.

5.4.4. Pressure at the axis

Figure 5.11 shows the pressure distribution at the axis for CT = −8/9 and CT =
16/9. The pressure jump across the disc is not symmetric: |(p − p0)|upstream �=
|(p − p0)|downstream. A symmetric jump would require, by the Bernoulli equa-
tion, that at the upstream side of the disc 1

2ρ(v
2
x,r=0 − U2

0 ) = 1
2Δp, leading to

vx,r=0/U0 = 0.745 respectively 1.247. This differs from the calculated values
shown in figure 5.10. Apart from this numerical disagreement there is no argu-
ment found in the momentum theory why the pressure jump should be symmetric.

5.5. Evaluation

This chapter has provided details of Froude actuator disc flows, so without swirl,
by potential flow calculations confirming and complementing the results of the
momentum theory. The pressure and flow fields as well as properties of the wake
boundary vortex sheet have been analysed. This enables an answer to question
Q7 listed in section 1.4 about a possible singularity at the leading edge of this
vortex sheet. The calculations indeed show a singularity in the strength of the
vortex sheet at its leading edge, which is at the same time the disc edge. This
singularity is not strong enough to give a non-zero vortex strength at the disc
leading edge. This holds for propeller as well as wind turbine disc flows.

A difference between wind turbine and propeller disc flows is found in the
distribution of the velocity at the disc, giving a preliminary answer to Q11: the
absolute velocity seems to be constant for wind turbine discs, but less constant
for propeller discs. An explanation of this is postponed to chapter 7.
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Figure 5.11. The pressure distribution at the disc and stream tube axis for a: CT = −8/9, b:
CT = 16/9.



blankleftintentionallypageThis



Chapter 6

Analysis of Joukowsky’s actuator disc flows

6.1. Introduction

The basis for the momentum theory including the balance of angular momentum
in the wake has been laid by Joukowsky (1918). The angular velocity or swirl is
induced by a discrete vortex at the wake centre line, see figure 3.2. If the vortex
kernel is infinitely small, the azimuthal velocity and pressure become infinite for
the radius r → 0. The question of how to model the discrete vortex and how this
impacts the momentum balance has been studied by e.g. de Vries (1979); Sharpe
(2004); Wood (2007); Xiros and Xiros (2007), Sørensen and van Kuik (2011) and
Jamieson et al. (2018). Several of the reported performance predictions show
a remarkable result for the disc extracting energy from the flow: in the limit
to zero rotational speed, the efficiency of the disc increases to infinity, which is
highly non-physical. Within the inviscid flow regime, the analysis in Sørensen
and van Kuik (2011) is considered to be exact, apart from the choice of the
vortex core at the axis of the wake. This centreline vortex is assumed to be a
Rankine vortex of which the core diameter is proportional to the wake radius.
The analysis of Sørensen and van Kuik (2011) shows that adding a disturbance
parameter to the momentum balance removes the non-physical result of infinite
efficiency for zero rotational speed, no matter how small this disturbance is. This
is an indication that the momentum balance is very sensitive to small deviations
in the flow parameters.

Jamieson et al. (2018) have formulated equations for their general momentum
theory, accounting for the reduced pressure in the wake due to the azimuthal
velocity. By neglecting ’second-order infinitesimal terms’ in the axial momentum
rate of a disc element, they derive expressions in (radial) differential form for the
pressure at the disc and in the far wake. No quantitative results are presented,
but the conclusion is drawn that a Joukowsky disc with constant circulation is
not compatible with an accurate solution of the momentum equations, due to
the infinite pressure at the vortex core. However, such a solution is obtained by
the method presented in this chapter, without the non-physical result of infinite
efficiency for λ → 0 as well as the sensitivity to a disturbance parameter. The
singular behaviour of the pressure at the wake axis is shown to be consistent with
a robust solution.
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Wood and Limacher (2021) have followed a different approach in analysing
Joukowsky discs. They were able to obtain not only performance predictions,
but also semi-analytical results for the axial and radial velocity distribution at
the disc. To do so, three assumptions were made: 1- the pitch of the wake
vorticity is constant, even in the expanding part of the flow, 2- the pressure at
the wake boundary resulting from the swirl pressure gradient is undisturbed, and
3- the pressure jump across the disc is anti-symmetric. The assumptions allow
the derivation of the velocity distributions, but at the expense of accuracy: for
λ = 14 the power coefficient is ≈ 6% lower than the 1 − D momentum theory
gives, while it is known (Sørensen, 2015) that at such high λ the effect of wake
angular momentum is negligible. The momentum theory presented in the next
section does not use the mentioned assumptions, but, as a consequence, can not
say anything about the distribution of the velocity. The numerical approach
presented in section 6.4, is used for this, with the results discussed in chapter 7.

The next section treats the momentum theory for Joukowsky discs, including
an analysis of the vortex core model and its impact on the momentum theory,
based on van Kuik (2017) and van Kuik (2018). The general mass, momentum
and energy balances are derived and combined, with emphasis on the swirl-related
pressure acting as a conservative load. Section 6.4 describes the numerical ap-
proach and its results, which are compared with the momentum theory results
in section 6.6. This section also includes the comparison with the Betz-Goldstein
solutions reported in literature.

6.2. Two-dimensional momentum theory

6.2.1. The equations for a Joukowsky disc

The Joukowsky distribution is described in Explanation 3.1 and shown in figure
3.2. The flow is governed by the steady version of the Euler equation (2.1). The
cylindrical reference system (x, r, ϕ) is applied, see also figure 6.1. The wake
flow is characterised by a constant circulation induced by a free potential flow
vortex Γ at the axis of the wake with a vortex core having radius δ(x). Given
the assumption of inviscid, isentropic flow, the core boundary is a stream surface.
The azimuthal velocity in the wake is

vϕ =
Γ

2πr
for r ≥ δ(x)

=
Γ

2πδ(x)
C
(

r

δ(x)

)
for r < δ(x)

⎫⎪⎪⎬
⎪⎪⎭ (6.1)

The functions δ(x) and C(r/δ(x)) remain unspecified apart from C = 0 for r = 0
and C = 1 for r = δ(x), with finite values for 0 ≤ r ≤ δ(x). The core radius at
the disc is indicated as δ and the radius in the far wake as δ1. Figure 6.1 shows
(half of) the cross-section through the stream tube in the meridian plane, with
the disc and fully developed wake indicated. The shaded area is the vortex core
with an increasing radius towards the far wake due to the flow deceleration. The
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analysis starts with δ being non-zero after which the limit of δ → 0 is taken. The
only assumption made is that

δ1 → 0 when δ → 0. (6.2)

6.2.2. The disc load

In section 4.2.3 the disc load has been formulated for the disc area outside the
vortex core, assuming that the core area does not contribute for δ → 0. Here this
will be extended to include the vortex core. Equation (4.5) applies in the vortex
core so with (6.1)

1

ρ
ΔHd =

ΩΓ

2π
for r ≥ δ(x)

=
ΩΓ

2π

r

δ(x)
C
(

r

δ(x)

)
for r < δ(x)

⎫⎪⎪⎬
⎪⎪⎭ (6.3)

Outside the core ΔHd = constant equal to (4.19) for r ≥ δ(x). The thrust T is
obtained by integration of (3.3) on the disc area resulting in (4.21). Including the
core, using (6.1) and (6.3), this gives for δ → 0

CT = CT,ΔH + CT,Δvϕ

CT,ΔH =
ΩΓ

2π
= 2λq

CT,Δvϕ = −q2 ln

(
R

δ

)2

for r ≥ δ(x)

= −
(

Γ

2πRU0

)2
1∫

0

C2
(r
δ

)
d
(r
δ

)2

= 0 for r < δ(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.4)

This is the same expression as (4.21) but now including the core area. The
contribution of the vortex core to the thrust is zero for δ(x) → 0 as C(0) = 0,
C(1) = 1 and C(r/δ) is finite in between. The thrust component CT,Δvϕ is absent
in the one-dimensional momentum theory.

6.2.3. The far wake outside the vortex core

The Bernoulli equation (6.3) for r ≥ δ1 is written as

1

ρ
(p0 − p1) =

1

2

(
v2x,1 − U2

0 + v2ϕ,1

)− ΩΓ

2π
. (6.5)

Differentiation with respect to r yields ∂p1/∂r1 = ρ(v2ϕ,1/r1−vx,1∂vx,1/∂r). Com-
parison with the expression for radial pressure equilibrium obtained from the
radial component of the (steady) equation of motion (A.10), with vr = 0,

∂p1
∂r1

= ρ
v2ϕ,1

r1
(6.6)
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shows that vx,1 is constant. By this (6.5) can be written as

p1 − p0 = −1

2
ρv2ϕ,1 + p∗, (6.7)

with p∗ = 1
2

(
U2
0 − v2x,1

)
+ ΩΓ

2π = constant. At the wake boundary the pressure has
to be undisturbed (p0), so p∗ = 1

2ρv
2
ϕ,R1

= 1
2ρΓ

2/(2πR1)
2. Herewith

p1 − p0 = −1

2
ρv2ϕ,1 +

1

2
ρ

(
Γ

2πR1

)2

. (6.8)

This shows that the pressure variation in the far wake is caused only by the swirl,
similar to the pressure jump across the disc. By substitution of (6.8) in (6.5) and
with (6.3), the second term on the right-hand side appears as a loss in H due to
swirl,

ΔH =
1

2
ρ
(
v2x1

− U2
0

)
+

1

2
ρ

(
Γ

2πR1

)2

. (6.9)

This is consistent with the optimisation of rotors according to Glauert’s theory
which involves minimisation of the swirl, see e.g. Sørensen (2015).

6.2.4. The vortex core

The momentum theory results are very sensitive to the choice of δ(x), or more
specifically, δ and δ1. This is caused by the logarithmic singularity resulting
from the integration of the pressure due to the azimuthal velocity: at the disc
−ρπ

∫ R

δ
v2ϕrdr = −ρΓ2

4π ln R
δ and similarly in the far wake −ρΓ2

4π ln R1

δ1
. Previous

solutions have dealt with the singularity in different ways. Sørensen and van Kuik
(2011) have adopted δ/δ1 = R/R1, assuming that the vortex core grows with the
stream tube radius. This removes the singularity as −ρΓ2

4π ln R
δ + ρΓ2

4π ln R1

δ1
= 0.

For the energy extracting disc this leads to Cp → −∞ for λ → 0. van Kuik (2016)
assumes δ = δ1 leading to the power coefficient Cp → 0 for λ → 0. However, as
discussed in van Kuik (2016), both core models do not comply with the inviscid
flow equations, so the impact of the vortex core model to the momentum balance
merits an additional investigation.

Both analyses used the vortex core boundary as lower limit in the integra-
tion of momentum and energy on the control volume used in momentum theory.
This implies that the vortex core itself is excluded, motivated by its vanishing
dimension in the limit δ, δ1 → 0. Here the vortex core will be included in the
momentum balance, while still the same limit is taken.

With δ(x) denoting the local core radius the Bernoulli equation (6.3) in the
vortex core region becomes

1

ρ
(p0 − p) =

1

2

(
v2s − U2

0 +

(
Γ

2πδ(x)
C
(

r

δ(x)

))2
)

− ΩΓ

2π

r

δ(x)
C
(

r

δ(x)

)

with
r

δ(x)
≤ 1, (6.10)
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where vs is the velocity in the meridian plane. As vs, U0 and the last term on
the right-hand side remain finite in the limit δ(x) → 0, the pressure becomes in
this limit

lim
δ(x)→0

1

ρ
(p0 − p) =

1

2

(
Γ

2πδ(x)
C
(

r

δ(x)

))2

with
r

δ(x)
≤ 1. (6.11)

With vs remaining finite, the momentum flux through the control volume bound-
ary becomes 0 for δ(x) → 0. The momentum balance reduces to a balance of
pressures acting on the control volume boundary, integrated as a load in x direc-
tion, yielding:

δ∫
0

(p− p0) 2πrdr −
δ1∫
0

(p1 − p0) 2πrdr +

δ1∫
δ

(p (x, δ(x))− p0) 2πδ(x)dδ(x) = 0,

(6.12)
where the path of integration of the third integral is the core boundary δ(x) with
0 ≤ x ≤ x1. The third integral is evaluated with (6.11) so

lim
δ(x)→0

⎡
⎣ δ1∫

δ

(p (x, δ(x))− p0) 2πδ(x)dδ(x)

⎤
⎦ = −1

2
ρπ

δ1∫
δ

Γ2

2πδ(x)
dδ(x) = −ρ

Γ2

4π
ln

δ1
δ
.

(6.13)
The combination of (6.12) and (6.13) gives

lim
δ(x)→0

⎡
⎣ δ∫

0

(p− p0) 2πrdr −
δ1∫
0

(p1 − p0) 2πrdr

⎤
⎦ = ρ

Γ2

4π
ln

δ1
δ
, (6.14)

irrespective of the choice of core model δ(x), C (r/δ(x)) .

6.2.5. The momentum, mass and energy balance

The momentum balance is (5.1), drawn on the stream tube as control volume
shown in figure 6.1. The boundaries of the momentum balance volume are the
stream tube boundary and the cross-sections A0 and A1 far up- and downstream.
As discussed in section 5.2 the pressure at the stream tube boundary does not
contribute to the momentum balance, so (5.1) becomes

T −
∫
A1

(p1 − p0) 2πrdr = ρ

∫
A1

vx,1 (vx,1 − U0) dA1. (6.15)

Figure 6.1 shows the pressure distributions appearing on the left-hand side of
(6.15) including the thrust. The distributions (a) and (b) are defined at the disc
for δ ≤ r ≤ R, (c) and (d) at the far wake cross-section for δ1 ≤ r ≤ R1, and (e)
at the vortex core cross-sections:



66 CHAPTER 6. ANALYSIS OF JOUKOWSKY’S ACTUATOR DISC FLOWS

di
sc

 

R1 

� �1 

r 

x 

. � b a d c 

e 

cexpansion Rd 

R1 

� �1 

b a d c 

e 

bcontraction 

Rd 

r 

x 

. � 

Figure 6.1. Pressure distributions acting in the momentum balance sketched for an energy
extracting disc flow (above) and energy adding disc (below). The arrows give the direction of
the pressure fields acting on the flow. The meaning of a, b, c, d and e is given in section 6.2.5.

a constant pressure jump across the disc giving the jump in Bernoulli parameter
H according to the first term on the right-hand side of (3.3).

b pressure distribution due to jump in vϕ for r ≥ δ according to the second term
on the right-hand side of (3.3). This term conserves H.

c apart from correction by (d) the pressure distribution in the far wake due to
the vϕ distribution is identical to (b) for r ≥ δ1 according to the first term on
the right-hand side of (6.8), conserving H.

d a correction to (c) to achieve p1 − p0 = 0 according to the second term on the
right-hand side of (6.8).

e the contribution by the vortex core cross-sections, (6.14).

When all contributions are expressed in Γ by (6.1) and (6.3), integrated,
subjected to lim δ → 0, substituted in (6.15) and divided by the disc surface πR2

the result is

a d b c e

ΩΓ

2π
− 1

2

(
Γ

2πR

)2

−
(

Γ

2πR

)2 [
ln

R

δ
− ln

R1

δ1
− ln

δ1
δ

]
=

ΩΓ

2π
− 1

2

(
Γ

2πR

)2

−
(

Γ

2πR

)2

ln
R

R1
= vx,1 (vx,1 − U0)

(
R1

R

)2

, (6.16)

where the terms on the left-hand side have been named in accordance with figure
6.1. The ratio δ/δ1 has disappeared from the momentum balance, by which the
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impact of (b), (c) and (e) is limited to the wake expansion area (cexpansion) or
wake contraction area (bcontraction), shown as part of (c) and (b) in figure 6.1.

The mass balance is
vx,d
vx,1

=

(
R1

R

)2

(6.17)

with the bar above vx,d indicating that it is the average value. The energy balance
follows from (6.9)

ΩΓ

2π
− 1

2

(
Γ

2πR1

)2

=
1

2

(
v2x,1 − U2

0

)
. (6.18)

Mixing (6.16) and (6.17) simplifies the momentum balance, which becomes

ΩΓ

2π
− 1

2

(
Γ

2πR

)2

−
(

Γ

2πR

)2

ln
R

R1
= vxd

(vx,1 − U0) . (6.19)

As in section 4.2.3, the non-dimensional vortex q = Γ
2πRUo

is introduced. Herewith
(6.3) becomes

1

ρ

ΔHd

U2
0

= λq. (6.20)

The momentum balance comes

− 2λq + q2

(
1 + ln

(
R

R1

)2
)

= 2
vx,d
U0

(
1− vx,1

U0

)
(6.21)

and the energy balance

− 2λq + q2
(

R

R1

)2

=

(
1−

(
vx,1
U0

)2
)
. (6.22)

By mixing (6.21) and (6.22) the velocity at the disc can be written as

vx,d
U0

=
1

2

(
vx,1
U0

+ 1

) 2λq − q2
(
1 + ln

(
R
R1

)2
)

2λq − q2
(

R
R1

)2 . (6.23)

This equation is equivalent to (5.13), indicating that the ratio contains conserva-
tive and non-conservative contributions. This will be discussed in section 6.5.

An analytical solution of (6.21) and (6.22) is not found. An implicit expression
of vx,1/U0 in the independent variables λ, q is obtained by writing (6.22) as an
expression for vx,1 with the help of (6.17) and substituting this in (6.21):

(
1− vx,1

U0

)
vx,1

U0
q2

1− 2λq −
(

vx,1

U0

)2 =

⎛
⎜⎝−qλ− 1

2
q2

⎛
⎜⎝1− ln

⎛
⎜⎝ q2

1− 2λq −
(

vx,1

U0

)2

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠ . (6.24)
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Figure 6.2. The axial velocity vx,d for discs extracting energy from the flow (−1 < CT,ΔH ≤ 0)
and discs adding energy (0 ≥ CT,ΔH < 2) for 0 < λ ≤ 5 and for λ = ∞. The markers a’ and
a to e refer to flow cases defined in Table 6.1 and analysed in the next sections. Flow states a
and b correspond to the flow states with the same markers in chapter 5.

This can be solved numerically for vx,1/U0. The wake expansion or contraction
follows from (6.22) and the velocity at the disc from (6.17). The power coefficient
is given by (4.20), repeated here for completeness,

CP = 2λq
vx,d
U0

. (6.25)

Figures 6.2 and 6.3 show the solutions of (6.24) and (6.25) for 0 ≤ λ ≤ 5 and
−1 < CT,ΔH ≤ +2 plus λ = ∞, representing the Froude disc of Chapter 5. The
front left sides show vx,d/U0 respectively Cp for wind turbine discs, right behind
for propeller discs. Several particularities can be observed, to be addressed in the
next sections:

• for very low λ the velocity at propeller discs is < 1, so the wake expands as for
wakes of energy extracting discs,

• a minimum λ > 0 exists at which the velocity at the disc is 0,

• the maximum efficiency |Cp| of energy extracting discs decreases to 0 for de-
creasing λ.
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Figure 6.3. The power coefficient Cp for wind turbine discs (CT,ΔH < 0) and propeller
(CT,ΔH > 0) for 0 ≤ λ ≤ 5 and λ = ∞. The markers a to e refer to flow cases defined in
Table 6.1 and analysed in the next sections.

6.3. Limit values of the Joukowsky momentum theory

6.3.1. Results for λ → ∞, λ → 0.

For large values of λ the wake angular momentum should go to 0, and the momen-
tum theory should become the one-dimensional theory. For an energy extracting
disc the well-known Betz-Joukowsky maximum value for Cp should be recovered.
According to (6.20) q is inversely proportional to λ for constant ΔH. In the bal-
ances (6.21) and (6.22) the q2 terms vanish for λ → ∞ with which the momentum
theory without wake swirl is indeed recovered.

For the limit λ → 0 the energy balance (6.22) shows that the highest value

Table 6.1. Definition of actuator disc flow cases a to e and a’ as shown in figures 6.2 and 6.3,
giving the average axial velocity at the disc vx,d. Flow states a’ and e have the same far wake
induction. Flow states a and b have equal but opposite far wake induction. The same holds for
c and d.

CT,ΔH = −8/9 CT,ΔH = 16/9

λ =∞ a: vx,d = 0.666 b: vx,d = 1.333 J = 0
1 c: 0.553 d: 1.195 π

0.5 e: 0.679 2π

CT,ΔH = −0.714
λ =∞ a’: vx,d = 0.766 J = 0
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for q2(R/R1)
2 is obtained for vx,1/U0 = 0, giving

− 2λq + q2
(

R

R1

)2

= 1. (6.26)

With vx,1/U0 = 0 the right-hand side of the momentum balance is 0 as is clear
from (6.16), by which it becomes

− 2λq + q2

(
1− ln

(
R1

R

)2
)

= 0. (6.27)

Elimination of q2 from (6.26) and (6.27) gives the wake expansion or contraction
for the highest q, lowest λ, solved from

(
R1

R

)2
(
1− ln

(
R1

R

)2
)

=
2λq

2λq + 1
. (6.28)

As an example, 2λq = ΔH/( 12ρU
2
0 ) = −8/9 results in R1/R = 2.77, q = −0.924

from (6.26) and λ = 0.48. Both vx,d and vx,1 are 0, but the ratio of vx,d/vx,1 →
7.69. This flow state is characterised by a full blockage by the disc, creating a
wake with azimuthal flow only, so there is no change in axial momentum. A lower
value of λ is not possible for this value of CT,ΔH = 2λq. For λq = 0 with λ = 0

(6.28) gives ln (R1/R)
2
= 1, so R1/R =

√
e, and (6.26) gives q = −√

e = −1.648
although vx,d = vx,1 = 0. In the wake only the azimuthal velocity is non-zero,
reaching qR/R1 = −1 at the far wake boundary r = R1. The wake expansion is
close to the experimental value ≈ 1.6 of the wake expansion behind a solid disc
reported in Craze (1977).

A complete blockage of the flow by an energy adding disc is also possible as
shown by figure 6.2 for CT,ΔH > 0. For low λ the axial velocity vx,d < U0 so the
flow decelerates, with vx,d = 0 for the lowest possible λ. Figures 6.2 and 6.3 show
the lowest attainable λ as a function of CT,ΔH , being the solution of (6.26) and
(6.28). This behaviour for low λ is explained in the next section.

6.3.2. Propeller discs with a wake of constant radius or with wake
expansion

For discs adding energy to the flow, the sign of pressure distribution (b) in figure
6.1 is opposite to the sign of (a), so flow states with a zero pressure jump at r = R
are possible. With (4.6) this gives the condition ΩR = 1

2vϕ or λ = q/2. The
result is a flow with everywhere vx = U0, vr = 0, and in the wake vϕ = Γ/(2πr).
The wake boundary consists of a cylindrical vortex sheet with constant radius R,
having only axial vorticity carrying ΔH = 1

2 (ΩR)2. At the disc edge distributions
(a) and (b) cancel each other, in the far wake (cexpansion) or (bcontraction) are
absent and finally (d) equals -(a). In other words: the swirl induces a lower
pressure which is compensated by a higher pressure due to an increase in H by
distribution (a), as shown by (3.3): for Δpd = 0 at r = R, ΔHd = ρΩRvϕ,R or,
by (4.5), λ = 1

2vϕ,R/U0 = 1
2q. With this, the line in figure 6.2 separating the
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propeller disc with a contracting wake from the disc with an expanding wake is
given by λ = 1

2

√
CT,ΔH .

For λ > q/2 the wake contracts as expected for a disc in propeller mode.
However, for λ < q/2 the wake expands as for a disc in wind turbine mode.
Figure 6.2 shows where this transition takes place. Flow states a’ and e have
the same far wake deceleration. The corresponding flow patterns are shown in
section 6.4, figure 6.9.

6.3.3. The static disc or disc in hover

This is a special flow state as U0 = 0, so the non-dimensional equations (6.20) to
(6.25) loose they meaning and an alternative derivation is required. Substitution
of U0 = 0 in the balances (6.18) and (6.19) and merging (6.17) with (6.19) gives
two expressions for v2x,1. Equating these yields

ΩΓ

2π

(
2

(
R1

R

)2

− 1

)
=

1

2

(
Γ

2πR

)2
(
1 + ln

(
R1

R

)2
)
. (6.29)

As in (5.10) and figure 5.4 the velocity at the static disc according to the one-
dimensional momentum theory is used: vx,reference =

√
T/(2ρAd) =

√
Δp/(2ρ).

Here we use ΔH = ΩΓ/(2π) instead of Δp, so with (6.3) vx,ref =
√

ΩΓ/(4π).
With the introduction of the non-dimensional vortex qh = Γ/(2πRvx,ref ) and
tip speed ratio λh = ΩR/vx,ref , and with division of (6.29) by the square of the
reference velocity, we arrive at

2

(
2

(
R1

R

)2

− 1

)
= 1

2q
2
h

(
1 + ln

(
R1

R

)2)
λhqh = 2.

⎫⎪⎬
⎪⎭ (6.30)

The wake contraction R1/R depends only on qh or λh. Figure 6.4 shows R1/R
as a function of λh. For high λh the wake contraction becomes 1

2

√
2 being the

solution in the one-dimensional theory. For low values of λh R1/R > 1 so the
wake expands corresponding to the results in section 6.3.2. The straight wake,
R1 = R, is obtained for λh = 1.

6.3.4. The maximum efficiency of a wind turbine disc

Figure 6.5 shows the maximal attainable |Cp| for discs in the wind turbine mode,
and the |Cp| − λ curves for some values of CT,ΔH . For λ → 0 the efficiency
|Cp| → 0, as derived in section 6.2. For λ → 0 the efficiency Cp → 0. The
difference with Cp →→ obtained in Sørensen and van Kuik (2011) is caused
by the different treatment of the vortex core: - instead of assuming that δ(x)
increases linear with the wake expansion, now δ(x) is not specified apart from
condition (6.2), - the contribution of the vortex core to the momentum balance
is included.

In section 6.6 the |Cp,max| − λ curve of Joukowsky discs will be compared
with the same curve of Betz-Goldstein discs.
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Figure 6.4. The wake expansion or contraction for a static (hovering) disc as function of λh.

6.3.5. The efficiency of propeller discs

For discs representing propellers the efficiency μ is defined as the ratio of the
effective work TV where V is the flying speed, and the work done by the propeller
QΩ. In our notation V is replaced by U0, and, with (4.1) integrated over the disc,
P = Tvx,d, so for the flows considered here,

η =
U0

vx,d
. (6.31)

This implies that the efficiency is the inverse of figure 6.2 for CT,ΔH > 0. The
efficiency η < 1 for operation at λ > λvx,d=U0

, η > 1 for λmin < λ < λvx,d=U0
,

with the limit η → ∞ for λ → λmin. It is clear that this infinite efficiency is a
consequence of the definition, not of the physics involved.

6.4. Numerical assessment of flow details

6.4.1. The numerical model

The numerical method described in section 5.3 has been adapted to include wakes
with swirl. Axial and radial velocities are calculated by summation of the in-
duction by each of the vortex rings which constitute the wake boundary. The
azimuthal velocities are calculated from (6.1). The shape and strength of the
vortex rings are adapted in the convergence scheme to satisfy the two boundary
conditions: zero pressure jump across the wake boundary, and zero cross flow.
The numerical implementation is given by (D.11) and (D.12) or (D.13), with ΔH
given by (3.3), so at the wake boundary

ΔH = Δ

(
1

2
ρv2

)
= Δpd +

1

2
ρv2ϕ (6.32)

The strength of the vortex at the axis follows from (6.20) expressed in H and
λ: q = ΔH/(ρU2

0λ). q and λ depend on the disc radius, which is unknown



6.4. NUMERICAL ASSESSMENT OF FLOW DETAILS 73

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

Cp 

8/9 

CT,�H =  16/9 

- 0.2 
 

- 0.6 
 

- 8/9 

Cp 

� 

               wake contraction 
 
 
 
 wake expansion 

max |Cp| 

Figure 6.5. The Joukowsky momentum theory results (black lines), calculated values (�, see
section 6.4) and the maximum wind turbine |Cp| (grey line).

at the start of the convergence towards a solution. Therefore, the computation
uses q1 and ΔH as independent parameters. When Rd is known, q = q1R1/R and
λ = q−1ΔH/(ρU2

0 ) by (3.3). Apart from these changes the code and the numerical
parameters are unmodified. The results satisfy the same accuracy requirements
as described in section 5.3.1. Figure 6.5 shows the calculated Cp(λ) for fixed
values of 2λq = ΔH/1

2ρU
2
0 and the momentum theory values. The data match

very well, for discs adding energy as well as extracting energy. Also indicated are
the λ-values below which the wake expands for positive Cp or CT,ΔH as indicated
in figure 6.2. For λ = 5 the difference in Cp compared with the values for λ → ∞,
so with the one-dimensional momentum theory, is less than 0.7%. Consequently,
swirl may be ignored for λ > 5.

6.4.2. Comparison of wind turbine and propeller discs at λ = 1

Figure 6.6 shows the streamlines and isobars of the disc flow with λ = 1 for
CT,ΔH = −8/9 and +16/9 (flow states c and d in figure 6.2). The isobars in the
wake show the pressure gradient due to the swirl. The distribution of the vortex
sheet strength γ is shown in figure 6.7, and the absolute and axial velocity at
the upstream side of the disc in figure 6.8. As for the Froude disc flows a and
b shown in chapter 5, the absolute velocity in the meridian plane is constant for
wind turbine discs, and approximately constant for propeller discs, to be discussed
in section 7.2. Apparently the presence of swirl in the wake does not affect this
property. The role of swirl is the topic of section 6.5.



74 CHAPTER 6. ANALYSIS OF JOUKOWSKY’S ACTUATOR DISC FLOWS

c d 

0.0 0.0 

Figure 6.6. Flow states c and d with λ = 1 corresponding to the indications in figure 6.2: c
shows streamlines with Δψ = 0.1Δψ1 and isobars with Δp = 0.1ΔH for CT,ΔH = −8/9, d for
CT,ΔH = +16/9. Isobars close to the wake axis are not plotted.

6.4.3. Comparison of a wind turbine and propeller disc with similar
wake expansion

Figure 6.9 shows the flow patterns of flow states a’ and e in figure 6.2 having
the same wake deceleration, so the same negative value for γ1. Flow state a’ is
generated by a wind turbine disc, e by a propeller disc. As for the flow states a
and c shown in figure 6.2, the pressure distribution at the upwind side of wind
turbine disc a’ is constant. Similarly the pressure is non-uniform in case of
propeller disc e, as for flow states b and d. By the Bernoulli equation this gives
a uniform absolute velocity |v| upstream of disc a’. Figure 6.10 shows the values
of the axial velocity component at the disc as well as the absolute value of the
velocity vector in the meridian plane, vs,d =

√
vx2 + vr2.

6.5. The role of swirl and conservative pressure distributions

The ratio in (6.23) is the ratio between the left-hand sides of the momentum bal-
ance (6.21) and energy balance (6.22) or, in other words, between the total load
exerted on the flow in the stream tube control volume and the non-conservative
load which is the load performing work. By this, (6.23) is equivalent to (5.13)
which shows how conservative forces in the momentum balance cause the induced
velocity at the disc to deviate from Froude’s result that it is the average of the
velocities far up- and downstream. Inspection of the pressure distributions con-
tributing to the momentum balance as shown in figure 6.1 and listed in section
6.2.5 shows that
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Figure 6.8. The velocity distribution at the disc for the flow states shown in figure 6.6. Left
is shown the velocity in the meridian plane, |vs,d| =

√
vx2 + vr2, right the axial velocity.

• all distributions appear in the momentum balance (6.18) with (b), (c) and (e)
cancelling each other apart from the remaining (cexpansion) or (bcontraction),

• distributions (a) and (d) appear in the energy balance (6.9), so are non-
conservative,

• distributions (b), (c) and (e) do not appear in the energy balance, so are
conservative.

Direct evaluation of (a+d+bcontraction) or (cexpansion) for the counter of the ratio
Ttotal/Tcons in (5.13) and (a+d) for the denominator returns (6.23). The differ-
ence between the momentum and energy balances for the discs of Froude and
Joukowsky is caused by the swirl-related pressure in the far wake: the conserva-
tive (bcontraction) or (cexpansion) and the non-conservative (d).

The swirl related pressure distributions (b) and (c) are conservative as the
gradient of the pressure and azimuthal velocity results in a conservation of po-
tential and kinetic energy: ∂(p+ 1

2ρv
2
ϕ)/∂r = 0 as is best illustrated by the flow
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a' e
0.0 0.0

Figure 6.9. Flow states a’ and e with the same axial velocity in the far wake, corresponding
with the indications in figure 6.2. a’ shows CT,ΔH = −0.7138, λ = ∞, R1/R = 1.197, e:
CT,ΔH = 16/9 = 1.7777, λ = 0.5, R1/R = 1.126. The explanation is as in figure 6.6.

without wake expansion or contraction, analysed in section 6.3.2. Still swirl has
an impact on the energy balance by distribution (d). The change of H from
undisturbed to its value in the far wake is given by (6.9) with the first term on
the right-hand side expressing the change in kinetic energy and the second term,
being the pressure (d), the change in potential energy.

The conclusion is that swirl does not contribute to a change in energy level of
flow particles, expressed in H, but affects the performance through swirl-induced
changes in pressure. These changes modify the shape and strength of the wake
boundary vortex sheet compared with the no-swirl results of Froude discs, by
which the mass flow through the disc decreases for increasing swirl. Although
swirl is an essential component of disc flows, it leads to a loss of performance
which is minimised by choosing λ as high as possible.

6.6. Comparison of the Joukowsky and Betz-Goldstein solutions

A comparison of the |Cp,max|−λ curve for wind turbine discs having a Joukowsky
circulation distribution with discs having a Betz-Goldstein distribution of the cir-
culation is shown in figure 6.11. As shown by Okulov and Sørensen (2008) and
Okulov (2014) the original Betz-Goldstein solution for a rotor with a finite num-
ber of blades resulted in |Cp,max| = 1, as the pitch of the helicoidal wake was
based on the undisturbed velocity. With the pitch based on the velocity in the
rotor plane, Okulov (2014) showed that |Cp,max| reaches the well-known Betz-
Joukowsky maximum 16/27 for high λ. Expansion of this solution to a rotor with
an infinite number of blades is shown in figure 3 of Okulov (2014). An alternative
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solution is published in Wood (2015) where the Goldstein formulation is adapted
to allow for non-zero torque when λ → 0. A comparison of the Joukowsky maxi-
mum |Cp| curve and corresponding Betz-Goldstein-Okulov/Wood curves is given
in figure 6.11. The Joukowsky distribution gives higher |Cp,max| than the Betz-
Goldstein-based distributions, with the difference vanishing for higher λ. This
is confirmed by Okulov and Sørensen (2010) where rotors with a finite number
of blades having a Joukowsky and Betz-Goldstein-based distribution have been
compared. The same conclusion is presented by Sørensen et al. (2022), who have
compared Betz-, Joukowsky- and Glauert rotor designs.

6.7. Evaluation

The momentum theory including swirl developed in this chapter solves the prob-
lem left by some other momentum theories, that the efficiency |Cp| of a wind
turbine disc becomes infinite when λ → 0. The difference is in the treatment of
the singular flow inherent to a vortex at the disc and wake axis with an infinitely
small core. Now this core is included in the momentum balance, the singular con-
tributions to the momentum balance annihilate each other, giving |Cp,max| → 0
for λ → 0. The same holds for propeller discs. With this result question Q8,
listed in section 1.4, is answered.

Question Q9 is answered by the same momentum theory. The product of
Ω and wake angular velocity is a measure for the work done by the force field,
so swirl is essential. At the same time the swirl related pressure field acts as a
conservative contribution to the momentum balance, giving a lower performance
compared with disc flows without swirl. Swirl does not affect the energy content
of a volume of flow as the change in kinetic energy is compensated by a change
in pressure, keeping H the same. Swirl represents a loss in performance by the
angular momentum, not by a change in kinetic energy.

As wind turbine discs and propeller discs are treated simultaneously, some
characteristic differences have been observed, providing an answer to Q10. For a
wind turbine disc, the distribution of the vortex sheet strength γ along the wake
boundary shows a local maximum at a small distance after its leading edge, while
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the distribution of γ for propeller discs shows a smooth decrease from the leading
edge to the far wake. A remarkable correspondence is that for very low λ not
only the wind turbine wake expands, but also the propeller wake.



Chapter 7

The velocity distribution at the disc

7.1. Introduction

The distribution of the velocity components along the radius has already been
presented: figure 5.10 shows the distribution for flow states a and b, defined in
table 6.1, while figure 6.8 does so for flow cases c, d and e. These distributions
are combined in figure 7.1, to enable a detailed analysis in this chapter, based on
van Kuik (2020).

7.2. The absolute velocity

The velocity in the meridional plane is vs =
√
v2x + v2r , so equals |v| in absence of

vϕ. This is true in flow cases a and b, at the upstream side of the disc and outside
the wake in flow cases c, d, e. Most striking in figure 7.1 is that the distribution
of vs is practically uniform, except close to the disc edge. In all flow cases except
e, vs(r/R) increases or decreases monotonically towards r = R. Except for flow
case e, the amount of non-uniformity is defined as vs(0.97)/vs(0) − 1, expressed
in percentages. The choice for r = 0.97R is somewhat arbitrary, but is motivated
by the argument that the sharp transition at r/R = 1 shown in Fig. 7.1, is
not physically realistic. Viscosity will smooth this transition depending on the
Reynolds number used, as shown in Sørensen et al. (1998). In flow case e, vs
increases with increasing r, with the maximum reached at r/R = 0.8 after which
it decreases towards the disc edge. For flow case e the non-uniformity number
indicates vs(0.8)/vs(0)− 1.

7.2.1. Wind turbine flows

Flow case a, CT,ΔH = −8/9 with λ = ∞, shows the lowest non-uniformity: −0.2
%. For λ = 1 the non-uniformity is stronger: −1.8 % for flow case c. The
non-uniformity is checked (but not shown in a figure) for several other flow cases:

• CΔH = −8/9, λ = 5 instead of ∞: the result differs less than 0.1 %.

79
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Figure 7.1. The velocity distribution at the disc, for flow cases a to e defined in table 6.1.
Black line: vs, red line: vx, blue line |vr|, all made dimensionless by U0. All vertical axes have
the same scale. The percentages denoting the non-uniformity of vs are explained in section 7.2.

• λ = ∞ but with heavier disc loads: the non-uniformity in vs is −0.7 % for
CT,ΔH = −0.97, −0.8 % for CT,ΔH = −0.995.

The optimal operational regime of modern wind turbines is λ > 5 with CTΔH
>

−0.9, so the non-uniformity in vs of flow cases representing this optimal regime,
is negligible.

7.2.2. Propeller flows

The non-uniformity in vs is 2 % in flow case b, J = 0. It decreases to 1.3 % in
flow case d, J = π, and becomes strongly negative for higher J as shown in flow
case e: −5 % for J = 2π. Usually the advance ratio J is lower than 2.5, see for
example McCormick (1994, figure 6.12). Fig. 6.2 shows that in this regime the
impact of wake swirl is very limited, so flow case b is considered representative,
with a non-uniformity of ≈ 2 %.

7.2.3. Explanation of the (non-)uniformity of vs

The Euler equation of motion (2.1) offers the first step to explain the observation
that vs is practically uniform. The radial component of the steady version of (2.1)
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reads
∂p

∂r
= −ρvs

∂vr
∂s

+
v2ϕ
r
. (7.1)

The combination of vφ = Γ/(2πr) with the radial derivative of Bernoulli’s equa-
tion (6.3), written as p+ 1

2ρ(v
2
s+v2ϕ) = p0+

1
2ρU

2
0 −(ΩΓ

2π )in the wake, gives a second
equation for ∂p/∂r,

∂p

∂r
= −ρvs

∂vs
∂r

+
v2ϕ
r
, (7.2)

so the result is
∂vs
∂r

=
∂vr
∂s

. (7.3)

This is valid irrespective of the thrust coefficient or rotational speed. The radial
distribution of vs at the disc appears to be determined by the derivative ∂vr/∂s
along the streamline. In case vr has a maximum or minimum at the disc, measured
along a streamline, vs is uniform.

Qualitative observations regarding the in- or decrease of vr are possible when
moving along a streamline in the meridian plane. The radial velocity depends
only on the position and strength of the vorticity γϕ distributed along the wake
boundary, and the position of observation s∗. For a disc with an expanding wake,
the following relations hold when position s∗ moves along a streamline, from far
upwind to far downwind of the disc, with the disc at s∗ = 0:

(i) At the upwind side of the streamline: when moving towards the disc, the
distance to γϕ decreases, so vr increases, and ∂vr/∂s > 0.

(ii) At the downwind side of the disc the streamline is to be distinguished in two
parts: upstream and downstream of s∗. The upstream vorticity induces a
negative vr,upstream, becoming more negative when s∗ moves downstream,
leading to ∂vr,upstream/∂s < 0. The part of the wake downstream of s∗

remains a semi-infinite wake, so vr,downstream is expected to vary only little
for increasing s∗ (this is to be verified later), leading to ∂vr,downstream/∂s ≈
0. This gives for the total induction in the wake ∂vr/∂s < 0.

Consequently, according to (i) and (ii) ∂vr/∂s = 0 at the disc and with (7.3)
∂vs/∂r = 0 so vs is uniform at the disc. For flow cases with a contracting wake
the same reasoning is valid, with an appropriate change of signs, leading to a
minimum vr at the disc and a uniform vs.

However, these qualitative considerations miss the effect that a vortex ring
does induce a non-zero ∂vr/∂s at the plane of the ring, although the radial velocity
itself is 0. Figure 7.2 shows the calculated vr induced by a vortex ring positioned
at x = 0, R = 1 along the lines r/R = 0.8, 0.9, 0.97. As is clear by figure 7.2, this
effect is strongest close to the position of the ring, as ∂vr/∂x → ∞ for r/R → 1.
Apart from the distance to the ring, the strength of the ring determines the local
value of ∂vr/∂x, as its value is linear in this strength.

For a vorticity tube, like the wake boundary of the disc, things are slightly
different. At sufficiently large s, measured along the vortex tube, vr = 0 due to
symmetry considerations. Near and at the beginning of the tube, symmetry is
lacking, so the elementary vortex ring γds at the opening of the tube induces a
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non-zero ∂vr/∂s in its own plane, qualitatively similar to the slopes of the v(r)
curves in figure 7.2, so at s∗ = 0 the vortex tube induces ∂vr/∂s �= 0. The sign
of the contribution at s = 0 depends on the sign of γ of the vortex tube, and is
opposite to the sign of ∂vr/∂s far upstream, as is clear from the line r = 0.97R
in Fig. 7.2.

The argument of non-zero ∂vr/∂s at s∗ = sd due to the vortex sheet leading
edge has to be added to the arguments (i) plus (ii):

(iii) At s∗ = 0 the induction by the leading edge vorticity at the disc edge adds
a contribution to ∂vr/∂s depending on the local vorticity strength and the
inverse of the distance to the disc edge. The sign of the contribution is
opposite to the sign of ∂vr/∂s upstream of sd.

(iv) According to (i) and (ii), the position where ∂vr/∂s = 0, is at the disc.
With (3) it moves upstream of the disc, for all disc flows. How far it moves
upstream depends on the strength of the leading edge vorticity. For discs
with an expanding wake, using (7.3), ∂vr,d/∂s = ∂vs,d/∂r < 0, for discs
with a contracting wake ∂vr,d/∂s = ∂vs,d/∂r > 0. This is in agreement
with Fig. 7.1, showing that vs,d diminishes towards r = R for flow cases a,
c and e, while it increases for flow cases b and d.

The qualitative line of arguments (i) - (iv) is supported by a numerical con-
firmation of (7.3) at the disc position, for flow cases a to e. Fig. 7.3 shows the
calculated vr along a streamline passing the disc at r/R = 0.97 (curved lines) and
the tangent at r/R = 0.97 of the distribution vs(r) (straight line), plotted through
the s = 0 position on the curved line. As is clear from the graphs, these straight
lines coincide with the tangents to the vr(s) distribution, confirming (7.3). In
van Kuik (2020) similar results for the other flow cases are given. Downstream of
the disc vr decreases for flow cases a, c and e, and increases for b and d, thereby
confirming the assumption made in (ii).
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Figure 7.3. Curved lines: the radial velocity along the streamline passing the disc at
r/R = 0.97. Its slope is the right-hand side of (7.3). Straight lines: the left-hand side of
(7.3) at s/R = 0, r/R = 0.97, plotted through the s = 0 position at the curved line. Shown are
the results for flow states a and e. The other flow cases show similar results.

The absolute value of the tangents is lowest in flow case a, highest in e, both
shown in figure 7.3. This is in agreement with the strength of the leading edge
singularity of γϕ(x)/γϕ,1. The calculated wake vorticity γϕ(x)/γϕ,1 is shown in
Fig. 7.4, with γϕ,1 being the azimuthal vorticity in the far wake: γϕ,1 = vx,1−U0.
In all flow cases the distributions show a singular behaviour at the leading edge.
Flow case a has the weakest singularity, flow case e the strongest. In all flow
cases vr(s) reaches a maximum or minimum just upstream of the disc: at s/R =
−0.00155 for a, and −0.00252 for e, with the values for other flow cases in between
these positions.

The conclusion is that at the disc the absolute velocity vs =
√
v2x + v2r is

constant when the singular behaviour of the vorticity at the wake leading edge
may be neglected. With an impact of a few per mil, this is true for wind turbine
discs with λ > 5. For other disc flow states, the impact of the leading edge
vorticity is a few percent.

These results do not support the assumption mentioned in several wind tur-
bine textbooks and papers that the axial velocity is constant. As discussed by
Xiros and Xiros (2007), this is based on the expression for the vorticity being
zero,

ω =
∂vr
∂x

− ∂vx
∂r

= 0 for x = 0, r < Rd, (7.4)

combined with the assumption that the inflection points, defined as ∂vr/∂x = 0,
are located at x = 0 leading to ∂vx/∂r = 0. Mikkelsen (2011) noted that the
deflection point may be at x �= 0 which is confirmed by the present calculations.
Figure 7.5 shows the positions where ∂vr/∂x = 0 as calculated for CT = −8/9 and
+16/9, located upstream, respectively downstream of the disc. The explanation is
that for a flow decelerating disc ∂vr/∂x is always lower than ∂vr/∂s as the wake
expansion gives lower values of Ψ and vr when moving in x−direction instead
of s−direction. Consequently ∂vr/∂x = 0 is reached at x < 0. Furthermore
figure 7.5 shows where ∂vn/∂s = 0 marking the inflection from concave or convex
streamlines to convex or concave streamlines.

The conclusion that vs is uniform, not vx, contradicts the assumption of
uniform vx made in BEM. This assumption finds its roots in vortex models used
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Figure 7.4. The distribution of the vortex sheet strength γϕ(x)/|γϕ,1|, for flow cases a to e,
defined in table 6.1. The vertical axes have the same scale, except the axis of e, which covers a
4 times larger range of γ.

to analyse actuator disc and rotor flows. In most vortex models it is assumed
that the wake expansion may be neglected, by which analytical treatments come
into reach, e.g. Okulov and Sørensen (2010), Burton et al. (2011), Okulov et al.
(2015) , Branlard et al. (2014), Branlard and Gaunaa (2015) and Branlard (2017).
The vortex models reproduce the result of momentum theory that the averaged
induced velocity at the disc is the average of the velocities far up- and downstream.
However, the present analysis reveals an essential difference between the two
approaches:

• for the semi-infinite vortex tube with constant radius: vx is uniform,
|v| is non-uniform

• for the high λ actuator disc extracting energy: vx is non-uniform,
|v| ≈ uniform.

This conceptual difference is caused by the wake expansion / contraction, by
which the pressure at expanding annuli acts as a conservative load, as will be
treated in the next section. As long as expansion or contraction may be neglected,
the vortex tube offers elegant analytical treatments providing physical insights.
However, modern wind turbines operate at thrust coefficients |CT | > 0.6 at which
the expansion is significant so the non-uniformity in vx,d has to be taken into
account.
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Figure 7.5. The inflection points in the streamlines for a: CT = −8/9, b: CT = 18/9.

7.3. The axial velocity

The axial velocity is known to be non-uniform, with a sharp decrease close to
the disc edge, and towards the disc centre a higher than average value. This
gives the remarkable result that for a wind turbine disc the local power coefficient
exceeds the Betz-Joukowsky limit. This was already found by previous actuator
disc analyses, like Madsen (1996), Sørensen et al. (1998), Sørensen and Mikkelsen
(2001), Crawford (2006), Mikkelsen et al. (2009) and Madsen et al. (2007, 2010).

An explanation of the non-uniformity has been found in the momentum bal-
ance applied per annulus instead of the entire stream tube.

7.3.1. Momentum balance per annulus

In the actuator disc momentum theory for Froude discs the change in the mo-
mentum of the flow passing the disc is uniquely coupled to the thrust at the disc.
The pressure at the boundary of the stream tube does not play a role, as shown
in chapter 5. The calculations confirm this: for CT = −8/9 the resultant force
in x−direction equals 0.5%� of the disc thrust. When the momentum theory is
applied per annulus instead of the stream tube this may not be valid any more,
as discussed in section 5.2.3. Still this is done in the Blade Element Momentum
theory where the results of the actuator disc theory are assumed to be valid per
annulus with each annulus being independent of the other annuli. It is known that
this assumption is invalid, as shown theoretically by Goorjian (1972) and numeri-
cally by Sørensen and Mikkelsen (2001), but the consequences of this assumption
are assumed to be modest.

In section 5.2.3 the role of conservative forces in the momentum theory ap-
plied to an annulus is treated, with the pressure at the boundary of an annulus
integrated to become an axial load Tannulus, see figure 5.2. Equation (5.17) shows
that the ratio of Tannulus/Td determines the deviation from the momentum theory
without conservative forces, with Td = ΔpAd and Tannulus =

∫
ex ·enpdSannulus.

This ratio has been calculated for the annuli defined by Ψ = n
10Ψd with n from

0 to 10 for both Froude disc flow cases a, CT = −8/9, and b, CT = +16/9, with
Ψd being the value of the Stokes stream function for the entire disc. The pressure
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Figure 7.6. The axial velocity at the disc for a: CT = −8/9, b: CT = 16/9.

integral is calculated with x/R = ±15R1 as up- and downstream limits. The
subscript 1 denotes the value in the fully developed far wake.

Figure 7.6 shows the calculated distribution of vx, the calculated average value
in the respective annulus, the result of the annulus momentum theory (5.17) with
calculated Tannulus/Td, and the disc averaged value (U0 + vx,1) /2. The results
show a very good match of the calculated average per annulus and the momentum
theory value except close to the disc edge where the steep change of vx,d requires a
finer resolution of annuli to capture the distribution accurately. The fact that vx
is not uniform appears to be a consequence of the contribution of the pressure to
the momentum balance of the annuli. The annulus method gives the momentum
balance in a number of discrete steps Δr. When it is applied in a differential form
the contribution of the pressure is expressed in the pressure gradient normal to
the streamline, so in ∂p/∂n, which is the pressure gradient due to the expansion
or contraction of the wake.

For Joukowsky discs, the balance for the stream tube is defined by (6.15).
In this equation the pressure acting at the stream tube boundary is absent as
confirmed by the calculations for flow state c: the force in x direction resulting
from the pressure integrated along the wake boundary for −15 < x/R1 < 15 is
0.2% of the disc load CT,ΔH = −8/9. When applying the momentum balance to
an annulus instead of the entire stream tube, the same procedure is applied as for
Froude discs using the equations in section 5.2.3. Figure 7.7 shows the distribution
of vx,d resulting from the flow field calculation, the associated average value per
annulus and the value resulting from (5.16) and (5.17). Figure 7.7 shows the
result: as in figure 7.6 the calculated average per annulus coincides everywhere
except at the disc edge with the momentum theory value. This confirms the
results found for the Froude discs: the annuli cannot be assumed as independent,
as the pressure field contributes to the axial momentum exchange leading to the
non-uniform distribution of vx,d.

Several authors have have formulated an explanation for the non-uniformity
of the axial velocity. Sørensen and Mikkelsen (2001) did so by viscous CFD cal-
culations, with approximately the same result. They attribute the large deviation
from the disc-averaged value near the disc edge to the strong influence of viscous
effects. Madsen et al. (2007) explain the high vx for low r/R by the effect of
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Figure 7.7. vx at the disc for load case c with CT,ΔH = −8/9 and λ = 1: the calculated
distribution, the calculated average per annulus and the result from the momentum balance per
annulus. The two annuli lines coincide except in the outboard annulus.

wake rotation instead of pressure gradients due to wake contraction or expansion.
Furthermore they analyse the decrease of the axial velocity near the tip and pro-
pose a correction method based on the radial velocity. Qualitatively the results
of Madsen et al. (2007) correlate well with the present calculations but quanti-
tatively they differ, e.g. the correction near the tip (r > 0.8R) is approximately
half of the correction presented in the next section.

The conclusion is that the non-uniformity of the induction is due to the pres-
sure at the annuli acting as a conservative contribution to the momentum balance,
not viscous effects or wake rotation. The non-uniform induction has consequences
for the application of the momentum theory in BEM. This is discussed in chapter
9.

7.3.2. An engineering model for the axial velocity at a high λ wind
turbine disc

The momentum balance per annulus may serve as the explanation of the non-
uniformity of vx, but cannot be used as a prediction model, as the pressure is
not known in advance. For Froude discs the vx distribution has been calcu-
lated for −1 < CT,ΔH < 0 enabling a surface-fit engineering approximation for
vx,d(

r
R , CT,ΔH), first published in van Kuik and Lignarolo (2016, section 5.2).

With the distribution of vx,d calculated for all CT < 0 values shown in figure 5.4
a surface fit to vx,d has been made, showing the non-uniformity as defined by the
ratio Tannulus/Td in (5.17). This is presented as an annulus-correction G(r, CT ).
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Figure 7.8. The function G(r, CT ) defined in (7.5) accounting for the non-uniformity of vx.

Surface fitting gives the following engineering equation1:

G(r, CT ) = 1 + a1

(
1− 1.00076

(
1−

( r

R

)a2
)0.0015

)

with a1 = 62.05(1 + CT )
0.42 − 47.56

a2 = 5 + 2.5(CT + 0.8)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

CT ≤ −0.5 (7.5)

G(r, CT ) = 1
}− 0.5 < CT < 0 (7.6)

The surface fit matches the calculated data with a difference less than < 1% for
CT ≥ −0.995 and r/R < 0.95, and < 1.4% for CT ≥ −0.995 and r/R < 0.99. For
CT > −0.5 the deviation of vx,d from vx,d is negligible.

With the average velocity vx,d at the disc determined by momentum theory,
the distribution is vx,d(r, CT ) becomes

vx,d = G
U0 + vx,1

2

vx,1 = U0

√
1 + CT

⎫⎪⎪⎬
⎪⎪⎭ (7.7)

A comparison of (7.7) with (5.13) shows that G − 1 represents the ratio of
Tcons/Tnon−cons.

1When using (7.5) to (7.7), be aware of the sign of CT . Contrary to the custom in wind
energy design, the sign of CT is negative for wind turbine discs, as it is throughout the book.
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The function G(r, CT ) will be used in chapter 9 to evaluate the effect on the
non-uniformity of vx,d in BEM.

7.4. The radial velocity

The radial velocity receives little attention in actuator disc and rotor publica-
tions compared to the axial velocity. Some exceptions are Madsen et al. (2010),
presenting an engineering model for the decreased axial velocity close to the disc
edge based on the radial velocity, Micallef et al. (2013), comparing calculated and
measured radial velocity near rotor blade tips to asses blade bound chordwise
vorticity in order to explain the initially inward motion of the tip vortex, and van
Kuik et al. (2014, section 4), quantifying this chordwise vorticity and the associ-
ated tip load responsible for this inward tip vortex motion and Sørensen (2015,
section 3.2), analysing ∂vr/∂x at the plane of the disc resulting in vr−r/R distri-
butions similar to those shown in figure 7.1. Micallef et al. (2020) have compared
actuator disc experimental data with results of CFD calculations for a disc and
for an Actuator Line representing a model rotor. The calculated results match
the experimental radial velocity and wake expansion in the outboard areas rea-
sonably well, but with a poor agreement in the inboard to mid-board regions.
Applying tip corrections did not improve the prediction of the wake expansion.
Limacher and Wood (2021) found a relation between the axial and radial velocity
component at the rotor or disc plane,

∫
Sd

((
vr,d
U0

)2

− a2

)
dS = 0, from Limacher and Wood (2021), (7.8)

with the induction a = 1 − vx,d/U0, and with Sd defined as the plane at the
upwind side of the disc stretching from r = 0 to ∞. Based on (7.8), the authors
conclude that vr,d/U0 and a have to be equal close to the disc edge or rotor tip,
resulting in

vx,d
U0

+
vr,d
U0

= 1 at r ≈ R, adapted from Limacher and Wood (2021). (7.9)

Equations (7.8) and (7.9) have been evaluated using the velocity distributions
of Fig. 7.1. For flow case a the left-hand side of (7.8) indeed approaches 0
for increasing radius of Sd. Table 7.1 gives the radial coordinate where (7.9) is
satisfied: almost at the disc edge for the flow cases with an expanding wake a, c
and e, while flow cases b and d with a contracting wake show this property at a
smaller radius. The expanding flows exhibit steep changes in vx and vr close to
r = R, so an accurate assessment of the radial position where (7.9) is satisfied is
difficult, for which reason a range is indicated.

Table 7.1. The radial position where (7.9) is satisfied, for flow cases a to e.

a: 0.99 < r/R < 1 b: r/R = 0.912
c: 0.99 < r/R < 1 d: r/R = 0.932

e: 0.99 < r/R < 1
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Equation (7.9) provides a second relation between vx,d and vr,d, besides the
conclusion of section 7.2 that vs is practically constant for r < R. This allows
an engineering estimate of the wake expansion at the disc for wind turbine flows
When it is assumed that v2x,d + v2r,d/U0 = constant and vx,d+ vr,d = U0 at r/R =
1. As an example the flow with vx,d = vr,d = 0.5U0 at r = R is evaluated,
giving vs = 0.707 and a slope of the vortex sheet shape of 450 at r = R. This is
close to flow state a, where the numerically calculated slope is 460, and vs = 0.684
which is 3.3% lower than the estimate. Further exploration of such an engineering
estimate is left for future work.

7.5. Evaluation

A remarkable result of this chapter is that the absolute velocity at the (upstream
side of the) disc is constant, when the impact of the singular behaviour of the
vorticity strength at the leading edge of the wake may be ignored. For high λ
wind turbine discs this is allowed, so |v| = √

v2x + v2r is constant, with a deviation
smaller than 1 % near the edge of the disc. This is the answer to question Q11
in section 1.4. Question Q12 addresses the validity of applying the momentum
balance per annulus instead of the entire stream tube. The change in axial mo-
mentum per annulus is accurately captured by a momentum balance in which
the pressure at the surface of the annulus is included. The contribution of this
pressure appears as a conservative load in the momentum balance, and does not
appear in the energy balance. This explains the deviation of the results for vx,d
per annulus compared with the result per stream tube. The distribution of vx,d of
Froude discs, as a function of r/R and CT , is presented in an engineering surface
fit equation.



Chapter 8

Special topics: cons. loads at a thick disc &
blade tip

8.1. Introduction

So far only infinitely thin actuator discs and rotor blades modelled as lifting or
actuator lines have been treated, carrying only radial vorticity. In this chapter two
flows are discussed in which the other components of bound vorticity play a role.
In section 8.2 the actuator disc has a non-zero thickness containing axial bound
vorticity. Section 8.3 treats a rotor blade with non-zero chord where azimuthal
bound chordwise vorticity plays a role. For the thick disc, the disc force field is
sought which generates a Rankine vortex: a solid body rotation of the vortex core
and potential vortex flow around it. For the rotor blade the load near the tip of
a wind turbine rotor blade is studied, to find an explanation for the phenomenon
that sometimes the tip vortex moves inboard after being released, before wake
expansion drives it outboard. In both flows conservative forces are present, acting
on the axial or azimuthal bound vorticity. This chapter is based on van Kuik et al.
(2014) presenting a more detailed treatment of the same topics.

8.2. The generation of a Rankine vortex

8.2.1. Wu’s actuator disc equation

Wu (1962) has formulated the axisymmetric actuator disc equation of motion
expressed in the Stokes’ stream function Ψ and circulation Γ. The actuator
disc is placed normal to the undisturbed flow Uo, having an axisymmetric but
otherwise arbitrary load distribution rotating with an angular velocity Ω. Since
the flow field induced by the force field is axisymmetric, it is possible to use the
three-dimensional Stokes stream function ψ. Breslin and Andersen (1994) present
an extensive discussion on Wu’s equation as the authors consider his publication
‘a landmark paper’. Here it suffices to say that it is the normal component of the
Euler equation (2.3):

∂H

∂n
= en · f − ρvsωϕ + ρvϕωs, (8.1)
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with all kinematic terms expressed in ψ and Γ. Furthermore H is expressed in Γ
using (4.4) resulting in

∂2ψ

∂x2
+

∂2ψ

∂r2
− 1

r

∂ψ

∂r
=

1

2π

∂Γ

∂ψ

(
Ωr2 − Γ

2π

)
− r

ρ

fn
vs

. (8.2)

The last term fn is the same as the normal component of (4.7), being a conser-
vative force. Without the fn term, (8.2) is known as the Bragg and Hawthorne
(1950) equation. Wu (1962) suggests that fn may be neglected, as he considers
this to be the component of the axial force density normal to the stream tube. A
significant value of fn then requires a large radial velocity component at the disc,
which is not present in general.

To test this hypothesis a solution of Wu’s equation was sought without wake
expansion of contraction, so with vr = 0. There are two possibilities for a wake
generated by a disc force field with a constant radius, as becomes clear by combin-
ing the Bernoulli equation (6.5) with the expression for radial pressure equilibrium
(6.6), showing that

∂v2x
∂r

= 2
(
Ω− vϕ

r

) ∂(rvϕ)

∂r
. (8.3)

A flow with ∂vr/∂r = 0 requires a constant vx which can be established either as
a rotating body, so vϕ = Ωr, or as the Joukowsky flow vϕ = Γ/(2πr). A Rankine
vortex combines both flows: the kernel of it has a solid body rotation whereas
outside the kernel the flow is a vortex flow with vϕ ∝ r−1.

8.2.2. The force field required to generate a Rankine vortex

The Rankine vortex flow is found to be an exact solution of Wu’s equation. The
kinematics of the flow generated by a force field distributed at a disc with thickness
ε, with a linear increase of the swirl at the disc, are given by

ψ = 1
2Uor

2

vϕ =
C(x)Ωr r ≤ δ

C(x)Ω δ2

r r > δ

C(x) =
x/ε 0 < x < ε
1 x ≥ ε
0 x ≤ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.4)

where δ is the radius of the vortex core. The flow is sketched in figure 8.1.
The vorticity enclosed by the disc volume is derived by applying (A.8), with the
notation ω = [ωx, ωr, ωϕ],

ωd =

⎡
⎢⎢⎢⎢⎢⎢⎣

2Ω
x

ε

−Ω
r

ε

0

⎤
⎥⎥⎥⎥⎥⎥⎦
r≤δ

ωd =

⎡
⎢⎣

0

−Ω
δ2

rε
0

⎤
⎥⎦
r>δ

, (8.5)
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Figure 8.1. An exact solution of Wu’s equation: the generation of a Rankine vortex, with core
radius δ.

which gives, after integration across the disc thickness, the vortex sheet strength
γd =

∫
ωddx,

γd =

⎡
⎣ Ωε
−Ωr
0

⎤
⎦
r≤δ

, γd =

⎡
⎢⎣

0

−Ω
δ2

r
0

⎤
⎥⎦
r>δ

. (8.6)

For the flow outside the disc volume the solution (8.4) satisfies Wu’s equation
(8.2), as is checked by substitution. At the disc itself, this substitution provides
the expression for fn, with vs = U0 and ∂/∂Ψ = (rU0)

−1
∂/∂r. It is clear that fn

is purely radial, so fn = fr. At the disc volume, fϕ is determined by (4.2) after
which fx by (4.1). For r > δ this gives an expression for fx that does not vanish
for r → ∞. This is corrected by adding a constant force field fx = −ρ (Ωδ)

2
/ε

for 0 ≤ r < ∞. This has no impact on the flow, since it adds a constant pressure
downstream of the disc. It is a conservative force field satisfying (2.19) with the
potential F = ρ (Ωδ)

2
x/ε. The result is, in dimensionless form,

f

ρΩ2r
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r2 − δ2

rε
− xr

ε2

2x

ε

(
1− x

ε

)

Uo

Ω

1

ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r≤δ

,
f

ρΩ2r
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−xr

ε2

(
δ

r

)4

0

Uo

Ωr

δ2

rε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
r>δ

. (8.7)
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The resultant expressions for the disc load F are obtained by integration of f
across the thickness ε:

F

ρ (Ωr)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
−
(
δ

r

)2

ε

3r

Uo

Ωr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r≤δ

,
F

ρ (Ωr)
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

2

(
δ

r

)4

0

Uo

Ωr

(
δ

r

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r>δ

. (8.8)

The solution satisfies the equation of motion (4.7), as is clear by substitution of
(8.4) and (8.5) in (4.7). Fx and Fϕ are independent of the thickness ε. Fr,r>δ = 0
but Fr,r<δ is O(ε), and contributes to the disc load when ε �= 0.

8.2.3. Interpretation of the radial component of the load

Inspection in the rotating frame of reference is possible by writing (4.7) as f =
−ρvrot × ωrot + vrot × 2Ω, and applying this to (8.7). This shows that fr has a
Kutta-Joukowsky as well as Coriolis part, with

fr,K−J = 2ρ

(
1−

(x
ε

)2
)
Ω2r, (8.9)

fr,C = −2ρ
(
1− x

ε

)
Ω2r. (8.10)

In the inertial frame of reference the radial component of the Euler equation (2.1)
with vr = 0 and ∂v/∂t = 0 enables the interpretation of fr: ∂p/∂r− fr = ρv2ϕ/r.
Evaluation of ρv2ϕ/r with (8.4) gives

1

ρ

(
∂p

∂r
− fr

)
= Ω

∂ (rvϕ)

∂r
− vϕ

∂vϕ
∂r

= Ω2rC(x) (2− C(x)) . (8.11)

In the wake fr = 0 and C = 1, so ρ−1∂p/∂r = Ω2r = v2ϕ/r satisfying the
centripetal balance (6.6). This is not the case at the disc, where C(x) = x/ε
results in a right-hand side of (8.11) unequal to ρv2ϕ/r. However, at the disc fr is
non-zero, and substitution of fr in (8.11) gives

1

ρ

∂p

∂r
= Ω2rC2(x) =

v2ϕ
r
, (8.12)

which shows that the radial force density is required to restore the centripetal
balance at the disc.

8.2.4. Numerical assessment of the impact of the radial load

The analytical solution shows that for r ≤ δ fr �= 0, but does not contribute to
the disc load Fr =

∫
frdx when ε → 0 since fr remains finite in this limit. The
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Figure 8.2. The generation of a Rankine vortex flow by the force field (8.7) with and without
fr. Shown is the meridian plane with the undisturbed flow U0 coming from left. This disc is
between the vertical lines. The kernel diameter δ equals the thickness ε. Left: the pressure,
middle: the swirl, right: radial velocity (not shown for fr = 0 since vr = 0 everywhere

question whether omitting fr is allowed in a flow calculation is still unanswered.
To investigate this, the flow has been calculated with the CFD code Fluent, see
van Kuik et al. (2014) for more information. The undisturbed flow has been set
to U0 = Ωδ. The thickness ε of the disc has been set to two values: ε = 0.05δ
and 1.0δ. The force density distribution (8.7) is applied, but one time with
and one time without the radial force fr. For the thin disc with ε = 0.05δ the
results with and without fr are graphically almost indistinguishable, and not
shown here: both calculations give the flow field (8.4) so the radial load does not
matter. For the thick disc with ε = δ the results with and without fr clearly show
differences as shown in figure 8.2. With the radial load included, see the upper
row, the analytical solution is reproduced exactly, and downstream of the disc the
flow does not change any more. In the absence of fr another flow field results,
displayed in the lower row. The contrast with the analytical solution is observed
in the wake, which is not fully developed immediately downstream of the disc,
but is most visible in the plot of the radial velocity. The analytical solution gives
vr = 0 in the entire flow field, but vr in absence of fr has a maximum value
vr/U0 ≈ 0.07.

In conclusion the numerical analysis shows that Fx and Fϕ do not define
the flow uniquely. For the thick disc, Fr satisfying (8.7) needs to be added to
reproduce the analytical solution, whereas Fr = 0 results in another flow solution
with non-zero vr. For thin discs Fr =

∫
ε
frdx is negligible so it has no impact.

Further interpretation of fr and Fr is presented in section 8.4.
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8.3. The rotor blade

8.3.1. Inboard motion of a tip vortex of a wind turbine blade

Akay et al. (2012) and Micallef (2012); Micallef et al. (2013, 2014) report exper-
iments on two two-bladed rotors of 2m diameter in the 3m diameter Open Jet
Facility of TU Delft, with emphasis on the root and tip region. Schepers and Snel
(2007) and Schepers et al. (2014) report experiments on a 4.5m diameter three-
bladed rotor called Mexico1 in the 9.5 ∗ 9.5 m2 open test section of the German
Dutch Wind tunnel. Xiao et al. (2011) report detailed tip vortex experiments
on a 1.25m diameter model of the NREL UAE phase VI wind turbine described
by Hand et al. (2001), in an open test section of 3.2m diameter. The flow near
the blade tip of these rotors is such that the tip vortex, when leaving the tip,
moves inboard before the wake expansion moves the vortex to a larger radius.
The tendency of any tip vortex to move inboard is known from wing aerodynam-
ics: the distance between the tip vortices in the far wake is less than the span of
the wing, see figure 3.3, as during the concentration of the vorticity in two tip
vortices the first integral moment with respect to the symmetry plane is invari-
ant, see Batchelor (1970, p. 591). This corresponds with a centroid of vorticity
at 70 − 90% of the half-span of the wing, depending on the load and circulation
distribution. Qualitative considerations based on the Biot-Savart induction rules
make clear that the inboard induction is caused by the chordwise vorticity at the
tip since all other bound or free wake vorticity components cannot induce such
an inboard velocity. As the downward movement of the tip vortices (Δx in figure
3.3) is related to the downward load exerted by the wing, being the reaction force
of the lift, the question is raised whether the inboard motion Δy is related to a
spanwise wing load. As a side step this is evaluated here for the elliptic wing.

8.3.2. Side step: conservative, spanwise load on an elliptic wing

The wing is placed in the Cartesian coordinate system of figure 3.3 with the
span b ranging from y = −b/2 to y = b/2. The chord length has an elliptical
distribution: c (y) /cmax =

√
(1− (2y/b)

2
). The undisturbed velocity U0 is in the

z−direction with the positive z pointing downstream, the x coordinate points
downwards. The elliptic planform gives an elliptic distribution of the bound
circulation Γ (y) /Γmax =

√
(1 − (2y/b)

2
), where Γmax is the circulation around

the wing at mid-span position. The velocity perpendicular to the undisturbed
velocity, the downwash, is vz = −Γmax/ (2b). The chordwise vorticity is given by
γc = −dΓ/dy so integration of the spanwise component of the Kutta-Joukowsky
load on the surface A of the half-wing gives

S = −ρ

∫
A

ey · v × γdxdz = −ρ
Γmax

2b

∫
b

cdΓ (8.13)

= −ρ

4
Γ2
max

cmax

b
. (8.14)

1Measurements and EXperiments In COntrolled conditions
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Comparison with the induced drag, D = −πρ/
(
8Γ2

max

)
, shows that the ratio

S/D = 2cmax/(bπ). For an aspect ratio b/cmax = 10 and lift coefficient CL = 1,
the spanwise force on the half wing is 6% of the induced drag and 0.5% of the lift
of the entire wing. S is directed inboard, in agreement with the inboard motion
of the wake vorticity. S is perpendicular to the flying path so it does not convert
power. It is a conservative force which is not a ‘necessary force’ like the lift and
induced drag. For a very slender wing, so for cmax/b → 0, S vanishes as the
bound chordwise vorticity vanishes, like Fr vanishes for the disc thickness ε → 0
in section 8.2.

8.3.3. Conservative and non-conservative blade loads

The vorticity dynamics involved in the creation and release of the tip vortex of
a rotor blade are less clear as the wake expansion or contraction drive the tip
vorticity outboard or inboard. For a propeller both effects add up but for a wind
turbine rotor blade the inboard movement of the tip vortex may be cancelled
by the outboard convection due to the wake expansion. It is expected that the
inboard motion as observed in the mentioned experiments, is connected to a
radial tip load acting on the bound chordwise vorticity as shown in figure 8.3.
For simplicity it shows the most simple rotor blade with a constant cross-section
C being a symmetric aerofoil without pitch or twist angle. This is not an optimal
rotor design, but although not self-starting, it acts as a wind turbine rotor once
ΩR/U0 is sufficiently high. By the chosen simple configuration the blade can carry
only radial and azimuthal vorticity components, which suffices for the present
analysis. Figures 8.3 and 8.4 show the blade as a surface with curved lines of
vorticity. Milne-Thomson (1966, §10.61) pays attention to the in-plane component
of the Kutta-Joukowsky load appearing when the lifting surface contains non-
parallel vorticity lines. Because of the limited importance for wings his analysis
is restricted to the observation that the spanwise load is non-zero. Here we analyse
the load on both components of the bound vorticity.

The load acting on a blade cross-section C is given by 4.14. With ω expressed
in its components the lift L is

L = −ρ

∫
C

vrot × erωrdC − ρ

∫
C

vrot × eϕωϕdC. (8.15)

The first integral gives the load on the radial vorticity, contributing to the rotor
thrust and torque. The second integral in (8.15) is the lift on azimuthal vorticity.
Evaluated in the (s, n, ϕ) system using (2.5), vrot×eϕωϕ = v×eϕωϕ = −envsωϕ

so the second integral gives the load is in the meridian plane normal to the stream
tube, by which it is indicated as Ln.

In order to distinguish conservative and non-conservative contributions to L,
∇×L =

∫ ∇× fdC is evaluated in the (s, n, ϕ) system, giving∫∫
C

[
es

(
∂ (rfϕ)

r∂n
− ∂fn

r∂ϕ

)
+ en

(
∂fs
r∂ϕ

− ∂fϕ
∂s

)
+ eϕ

(
∂fn
∂s

− ∂fs
∂n

)]
rdϕds.

(8.16)
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Figure 8.3. Wind turbine rotor blade bound vorticity, with loads acting on the flow. The sign
conventions are similar to figures 2.2 and 4.1: all vectors are in positive direction except Γ at
the axis and γchordwise. The loads are drawn assuming vx > 0, vϕ,rot < 0, vr = 0 near the
root and vr < 0 near the tip.

Despite the derivatives to ϕ and s being non-zero, they vanish after integration,
so

1

ρ
∇×L =

∫
C

[
es

∂ (rfϕ)

r∂n
− eϕ

∂fs
∂n

]
dC = es

∂ (rLϕ)

r∂n
− eϕ

∂Ls

∂n
. (8.17)

Ln is not included in (8.17) so it is conservative, while the other components of
L are non-conservative. With z measured from the leading edge to the trailing
edge 0 ≤ z ≤ c. Comparison of (8.15) and (8.17) allows a decomposition of L, as

Lnon−cons =− ρ

∫
C

vrot × erωrdC = −ρvrot ×
c∫

0

erγrdz, (8.18)

Lcons = Ln =− ρ

∫
C

v × eϕωϕdC = −ρv ×
c∫

0

eϕγϕdz, (8.19)

with v and vrot being the average values across the thickness of the cross-
section C. Furthermore

∫ trailing edge

leading edge
rdϕ has been replaced by

∫ c

0
dz. The non-

conservative part of L acts upon the spanwise or radial vorticity, while the conser-
vative Ln, having an axial as well as radial component, acts upon the chordwise
vorticity.

The relation between both components is now expressed in terms of the cir-
culation Γ. For any lifting surface the well-known relation between the change of
spanwise circulation and trailing vorticity is (3.1). Expressed in the rotor coordi-
nates of figures 8.3 and 8.4 this becomes γϕ = −∂Γr/∂r. The subscript r indicates
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Figure 8.4. Schematic representation of bound and free vorticity of the wind turbine blade tip
of figure 8.3.

that Γ is defined in a plane normal to a radius, enclosing radial γ. Similarly the
circulation Γϕ is defined in a plane normal to the chordwise direction, enclosing
azimuthal γ, see figure 8.4. Inspection of the derivation of this relation as pre-
sented by e.g. Lighthill (1986) shows that it also holds at the blade surface itself
with Γ∗r measured from the leading edge: γ∗ϕ = −∂Γ∗r/∂r. When measured from
a local value of r∗ to the tip then Γ∗ϕ(r) =

∫ R

r∗ γϕdr or γ∗ϕ = ∂Γ∗ϕ/∂r. Combining
both expressions for γ∗ϕ gives γ∗ϕ = −∂Γ∗r/∂r = ∂Γ∗ϕ/∂r, or

∂
(
Γ∗r + Γ∗ϕ

)
∂r

= 0, (8.20)

in which Γ∗r =
∫ leading edge

∗ position
γrrdϕ =

∫ z∗

0
γrdz and Γ∗ϕ =

∫ R

r∗ γϕdr. Expressed in

z this becomes Γ∗z = −Γ∗ϕ =
∫ R

r∗ γzdr. It provides a coupling between the radial
vorticity in (8.18) and the azimuthal vorticity (8.19). With (8.20) Γ∗z = Γ∗r for a
fixed chordwise position z∗, indicated in figure 8.4. By comparing this with (8.19)
the expression for the local L∗cons becomes

L∗cons = −ρv × ez

1∫
o

Γ∗zd
z

c
. (8.21)

The occurrence of a load acting on chordwise vorticity at the tip is known from
measurements on helicopter and propeller model rotors. Gray et al. (1980) show
the measured pressure distribution at the tip of a model rotor operating in hover,
resulting in a significant increase of the normal force for r/R > 0.98. Ragni et al.
(2011a,b) report propeller tip measurements using SPIV and CFD calculations
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Figure 8.5. The geometry of the tip of the TUD-B rotor, the coordinate system and the plane
of observation, used for the measurements and calculations. The iso-lines indicate the radial
velocity. The square contour of the plane of observation is used to determine the chordwise
bound circulation at various chordwise positions of the plane. The chordwise coordinate z is
measured from the leading edge where z = 0.

showing details of the pressure distribution at the tip. A very good agreement
between experimentally obtained and calculated tip pressure is shown in figure 8
of (Ragni et al. (2011b), but no data for the integrated loads are given. As the
pressure contours at the suction side of the propeller blade have the same sign,
this results in a non-zero radial load after integration on the radially projected
blade surface.

Here (8.21) will be evaluated using data from one of the TU Delft experiments
described in detail in Micallef (2012), with emphasis on the axial as well as radial
component.

8.3.4. Experimental and numerical results for a model wind turbine
rotor

Micallef (2012) gives the details of the experiment with the 2m diameter, two-
bladed TUD-B rotor in the 3m diameter Open Jet Facility of TU Delft. Figure
8.5 shows the almost cylindrical blade shape of the TUD-B rotor with a blunt tip
surface having a zero pitch angle at r = R. All results concern the rotor operating
at its optimal tip speed ratio λ = 7 at a wind speed of 6 m/s. Figure 8.5 also shows
the plane of observation and the coordinate systems. Besides the (x, r, ϕ) system
defined in figure 8.3 also the local (x, z, r) system is used since it is convenient
to express local flow properties in the chordwise coordinate z. Apart from the
experimental data obtained by SPIV measurements, the CFD code implemented
by Herráez et al. (2014a,b) and the vortex panel code developed by Micallef et al.
(2013) are used to capture the tip flow in detail. A summary of these models is
presented in van Kuik et al. (2014).

Figure 8.6 shows the measured and calculated radial flow in the plane of
observation as defined in figure 8.5. At the tip a large difference in radial velocity
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Figure 8.6. Comparison of the radial velocities in the plane through the quarter-chord tip
position.

Figure 8.7. The chordwise vorticity determined by difference in radial velocities.

at the pressure side of the blade tip (x < 0) and suction side is visible, indicating
chordwise vorticity bounded at the tip. This vorticity component is shown in
figure 8.7 indicating high values for r/R > 0.97. This chordwise vorticity may be
considered as the beginning of the tip vortex as shown in detail by Micallef et al.
(2014, 2015).

Figure 8.8 shows how the circulation Γ∗r measured around blade bound radial
vorticity γr is connected to the circulation Γ∗z measured around bound chordwise
vorticity γϕ, with a visual explanation of Γ∗r and Γ∗z in figure 8.4. The value
of the iso-circulation lines gives the local circulation, measured from the leading
edge divided by the maximum blade circulation. This maximum occurs at the
trailing edge at r/R = 0.825. As Γ∗rΓ

∗
z for a fixed position r∗, z∗, the iso-lines

give the value for Γ∗r , measured along the chord from the leading edge, as well
as Γ∗z, measured along the radius from the tip to inboard. As an example at the
trailing edge the spanwise circulation increases from 0 at r = R to ≈ 0.9Γ∗r,max

at r = 0.94R. In other words, 90% of the radial circulation leaves the blade as
chordwise circulation in the outer 6% of the blade. The figure shows that a small
amount of the circulation leaves the tip, see the iso-lines 0.1 and 0.2. This missing
part is not analysed further, but it is unbound vorticity or the contribution of the
flat tip surface to the bound circulation.

The measured and CFD-calculated velocity field is integrated along the con-
tour displayed in figure 8.5, to obtain the circulation Γ∗r(z) around the chordwise
vorticity at r = 0.9R at 6 chordwise positions. Details of the procedure are given
in van Kuik et al. (2014), with the results shown in the left part of figure 8.9.
The two curves agree reasonably well.
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Figure 8.8. Iso-lines of constant percentage of the local circulation Γ∗r/Γr,max around the
TUD-B rotor blade, determined by the CFD method. As Γ∗r = Γ∗z the iso-lines also give the
circulation measured from the tip.
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Figure 8.9. Left: chordwise circulation, right: axial and radial load. The squares show the
K-J method applied to the CFD data. The diamond marker indicates the same applied to the
experimental data. The triangles present the experimental momentum method. The error bars
for the K-J experimental load show the sensitivity for the position to determine vref . Tblade is
the thrust on a single blade. The sensitivity of the radial load for variations of the contour in
the momentum method is 5% of the values indicated.
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Table 8.1. The axial load Fx and radial load Fr at the tip, as % of Tblade. P, K-J and MOM
refer to the pressure, Kutta-Joukowsky and momentum methods explained in section 8.3.5.

CFD Experiment
P K-J K-J MOM

Fx 1.0 1.3± 0.3 -
−Fr 1.2 1.8 1.9± 0.4 2.2± 0.1

8.3.5. Determination of the conservative tip load

The conservative tip force (8.21), decomposed in the axial force Fx and radial
force Fr, is determined by several means.

• Equation (8.21) gives the load on the chordwise vorticity for a certain radius
so integration along r gives the total load. This is approximated by the follow-
ing procedure. The force is calculated by chordwise integration of the Kutta-
Joukowsky load −ρvref × Γ where the equivalent velocity vref is the velocity
in the (x; r) plane at a position close to the tip. The variation in the results by
varying this position is shown by the error bars in figure 8.9, giving results for
the CFD and experimental obtained data.

• The radial load Fr is obtained by direct integration of the pressure as calculated
by the CFD code.

• Furthermore the radial load is found by applying a radial momentum balance
using the measured velocity field based on a contour as shown in figure 8.5,
however with r = R as inboard boundary instead of r = 0.9R. By doing so the
pressure at the flat tip surface is the source term in the balance giving the radial
load. The sensitivity for the choice of the contour is checked by varying the
position of the other contour sides. The momentum method is described and
applied in del Campo et al. (2013, 2014, 2015) where it is applied to determine
the load on the radial circulation.

The results of figure 8.9 are integrated along the chord to obtain the normal and
radial load given in table 8.1. The results agree reasonably well, with the pressure
integrated radial load most deviating. The ratio of the radial force to the thrust
of the blade has the same order of magnitude as the ratio of the spanwise force to
the lift at one half of an elliptic wing calculated in section 8.3.2: 1 − 2%, so the
contribution of the conservative tip loads to the overall rotor load is very small.
However, when Fx and Fr are normalised by the thrust acting acting on the blade
tip for r/R > 0.9 , the order of magnitude changes to 10%.

8.3.6. The tip vortex trajectory

Besides the loads, the tip vortex trajectories are compared. Figure 8.10 shows
the calculated trajectories in comparison with the measured values. The CFD-
blade results corresponds to the CFD analysis discussed so far, the actuator line
(CFD-AL) results of Herráez et al. (2017) are presented below. The CFD-AL
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Figure 8.10. The radial coordinate of the tip vortex as a function of the azimuth angle mea-
sured from the c/4 position.

method is a standard actuator line method, applied including the tip correction
proposed by Shen et al. (2005b). Both CFD results are obtained by taking the
average position of 100 streamlines forming the tip vortex. For the panel code
the trajectory is the vorticity filament that leaves the blade at the trailing edge
of the tip. Although there are differences between the experimental data and
calculated trajectories, the CFD-blade and panel code results confirm that the
tip vortex moves somewhat inboard before expansion starts after approximately
30◦ azimuth angle after the c/4 position. The CFD-AL line does not show any
inboard movement. The wake expansion in CFD-AL starts immediately after the
tip vortex is released, while this is delayed in CFD-blade. When the expansion
part of CFD-blade is interpolated to r = R keeping the same slope for large ϕ, the
equivalent delay in wake expansion compared to CFD-AL is 50◦ azimuth angle.

Since in the AL method all chordwise information is discarded, the bound
chordwise vorticity and the loads acting on it are absent, so Lcons = 0. The
difference between the CFD-blade and CFD-AL lines in figure 8.10 is the differ-
ence in including or discarding conservative tip loads. So far both codes did not
use any tip correction. Herráez et al. (2017) have extended the AL method to
account for bound chordwise vorticity by artificially introducing conservative tip
loads. These loads are determined as Kutta-Joukowsky loads on bound chordwise
vorticity −ρv × Γchord where Γchord is assumed to be ζΓmax ,spanwise with ζ an
engineering number 0 < ζ < 1. Tentatively ζ = 0.75 is chosen, corresponding to
the circulation leaving the blade between r/R = 0.98 and 1.0 as shown in figure
8.8. The result is shown in figure 8.11 which makes clear that a conventional AL
cannot capture the inboard motion of the tip vortex. The forces acting on the
chordwise vorticity, with ζ = 0.75, have the same order of magnitude as in table
8.1: 1% of the blade thrust. Therefore the importance of this correction is not in
the determination of loads and power, but in the precise location of the tip vor-
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Figure 8.11. The radial coordinate of the tip vortex of the TU-D B rotor as determined by
AL solutions (Herráez et al., 2017). The upper line is the same as in figure 8.10.

tices required for an optimisation of the tip geometry. As shown in Herráez et al.
(2017) the correction for the tip loads leads to a modest change in the induced
velocity, angle of attack and loads for 0.9 < r/R < 1.

8.4. The role of conservative forces

In the previous sections three examples of conservative forces have been shown:
the radial load on axial disc bound vorticity in section 8.2, the spanwise load on
chordwise vorticity of an elliptic wing in section 8.3.2 and the axial and radial
load on chordwise vorticity of a rotor blade in section 8.3.3. A common property
is that the conservative loads act on bound vorticity, which existence depends on
the dimension of the lifting surface perpendicular to its main bound vorticity. For
the wing and blade the main vorticity is the spanwise vorticity, which behaves as
a Dirac delta function when the chord becomes 0 in case of lifting or actuator line
modelling. For the actuator disc the main bound vorticity is the radial vorticity,
with the axial vorticity vanishing for the thickness going to 0. This implies that
conservative and non-conservative forces depend in essentially different ways on
the geometry of the surface or volume carrying them. For analyses with non-
conservative loads, no geometrical information is necessary once the circulation is
defined. In contrast to this, conservative forces do depend on geometry since the
disc thickness or blade chord have to be known. Since conservative forces do not
convert power nor produce vorticity, they may be discarded from the force field
that induces the flow, without violating conservation laws or far field boundary
conditions. This was shown by the disc calculations without the radial force,
and the actuator line calculations for the rotor. However, the resulting flow field
differs from the ’original’ flow field as shown in figure 8.2 for the disc and figure
8.10 for the blade tip.
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The physical origin of the conservative force field is the same as of the non-
conservative one: the pressure distribution. Realising this, a different explanation
of the dependency of the spanwise or radial load on the dimensions of the cross-
section is possible. Projection of the wing or blade surface in spanwise or radial
direction gives the surface which is observed when looking from the wing - blade
tip to the inboard direction. The pressure integrated on this surface gives the
spanwise or radial load. For a vanishing chord length the projected surface disap-
pears and so does the radial load. For the conservative additional lift at the tip a
similar reasoning is possible: when the chord tends to 0 the spanwise bound vor-
ticity as well as the chordwise vorticity become concentrated in a discrete vortex,
but, unlike the spanwise vortex, the tip vortex has no length or surface to which
it is bound.

8.5. Evaluation

In previous chapters the disc was assumed to have a zero thickness, and the rotor
blade zero thickness and chord. This chapter deviates from this by analysing the
flow induced by a force field acting on a thick disc, as well the flow around a rotor
blade tip with a non-zero cross-section. In both cases conservative forces appear
in the equations of motion. These conservative forces vanish for vanishing di-
mensions, in contrast to the non-conservative forces. The role of the conservative
forces is to maintain the local flow and pressure equilibrium at the volume where
the non-conservative force density is distributed. Apart from understanding the
role of force fields, there is one result relevant for wind turbine rotor flows: the
conservative tip load on the chordwise bound vorticity at the tip explains why
some experiments show that the tip vortex moves inboard after being released,
before wake expansion drives it outboard. Question Q13 listed in section 1.4
addressed this tip flow effect.



Chapter 9

From disc theory to BEM models: the tip
correction

9.1. Introduction

In the previous chapters we have refreshed the one- and two-dimensional actuator
disc theories and shown that these are a solid basis for rotor models. However,
the step to convert actuator disc theory to rotor models has not yet been set.
The textbook by Sørensen (2015) presents an excellent overview of momentum-
based models and treats BEM with emphasis on the differences between some
versions, the limitations and the add-on engineering rules that make BEM the
most used rotor design method for wind turbines. Here we limit ourselves to
the basic form of BEM, assuming the rotor to operate in undisturbed uniform
parallel flow aligned with the rotor axis. The essential steps in the conversion
from actuator disc theory to BEM have to do with

(i) the radial distribution of the induction: apply the disc momentum theory
per annulus, including the contribution of the pressure at the boundary of
the annulus, with an assumed load on the blade element replacing the disc
load,

(ii) the azimuthal distribution of the induction: account for the azimuthal non-
uniformity in rotor flows in contrast to axisymmetric disc flows,

(iii) the radial distribution of the blade circulation: for an ideal Joukowsky rotor
this circulation is constant, which is physically not possible,

(iv) iterative optimisation: determine the lift and drag on the blade element
by blade element theory, based on the previous steps, and optimise the
performance by varying the blade geometry in an iterative procedure.

This chapter discusses step (i) to (iii), preceded by section 9.2 on the tip correction
that is most used to account for (i) to (iii). In current BEM practice, the tip
correction is the single measure to convert the disc flow to a rotor flow, for which
reason it is heavily studied. Most corrections are based on a correction of Prandtl
for (ii), but have a consequence for the radial distribution of the induction, (i),

107



108 CHAPTER 9. FROM DISC THEORY TO BEM MODELS: THE TIP CORRECTION

and thereby modify the circulation, (iii). Despite these interactions (i)-(iii) are
treated here separately to emphasise the differences in cause and effect.

9.2. Development of the tip correction

9.2.1. In BEM methods

The tip correction F used in most BEM models is based on the appendix by
Prandtl added to the paper of Betz (1919), on the ideal circulation distribu-
tion for lightly loaded discs discussed in section 1.2.3 and shown in figure 1.1.
Prandtl’s appendix presents a correction F to Betz’s model to account for a fi-
nite number of blades, resulting in a correction of the induced velocity at the
rotor plane. The correction is derived as a two-dimensional solution where Betz’s
model is three-dimensional. As this correction is most noticeable near the tip it
is commonly called a tip correction although no details of the tip geometry are
included. Prandtl himself and Glauert (1935, ch. VII-4) name it a correction for
the effect of number of blades and do not use the words ‘tip correction’. After
Prandtl, the correction has been modified by many, as can be read in Sørensen
(2015, chapter 8) and Branlard (2017, chapter 13). Glauert (1935, ch. VII-4) has
adapted Prandtl’s model, by which it corrects the induction at the blade position
instead of the azimuthally averaged induction. Thereafter many have fine tuned
the Prandtl-Glauert correction by adding tip geometry input and by validation
with experiments and CFD calculations. In particular this is done by wind en-
ergy researchers like Shen et al. (2005a),Branlard et al. (2013),Shen et al. (2014),
Schmitz and Maniaci (2016),Maniaci and Schmitz (2016), Sørensen et al. (2016),
Wimshurst and Wilden (2017), El khchine and Sriti (2017), Moens and Chatelain
(2018), Zhong et al. (2019), Pirrung et al. (2020) and Dağ and Sørensen (2020).
The analysis in the present chapter is based on the tip correction developed by
Shen et al. (2005a) and Shen et al. (2014) The contribution by Shen et al. (2005a)
adds a correction F1 to achieve 3-D tip-aerofoil properties in combination with
the Prandtl-Glauert correction for the induction at the blade position. F and F1

and their role in the momentum balance will be treated in section 9.3.
The Prandtl correction was developed for rotors having a specific circula-

tion distribution, the Betz-Goldstein distribution mentioned in section 1.2.3, and
treated by Okulov (2014); Okulov and Sørensen (2008) and Wood (2018); Wood
et al. (2016). For the Joukowsky distribution the physical meaning of the Prandtl
correction is not that clear any more: originally Prandtl derived it as a 2-D cor-
rection for the 3-D optimal Betz circulation distribution for lightly loaded discs,
but it is applied to BEM which optimises for a heavily loaded Joukowsky dis-
tribution. Furthermore, many of the adaptations and additions do not have a
basis in the circulation model of Betz and Prandtl, but in validations by exper-
iments and CFD results. The result is an efficient engineering model to obtain
the induced velocity at the blade position, 3-D tip-aerofoil properties and, in an
iterative process, the load at the outer part of the blade.
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9.2.2. In actuator disc, actuator line and lifting line methods

Shen et al. (2005b) have developed a tip correction method to be used for actuator
disc and actuator line analyses analogous to the method in Shen et al. (2005a).
The same equations for F and F1 are used as for BEM, but the application is
different. As actuator disc flows are obtained by CFD or vorticity based flow
solvers, the relation between loads and flow field is exact, apart from numerical
discretisation issues, so there is no need for a tip correction F . The same holds for
F1, correcting 2-D aerofoil properties to 3-D, when the disc load is prescribed as
in the analyses in chapter 5 and 6. If the actuator disc is to represent real blade
loads instead of an axisymmetric disc load, correction F in combination with F1 is
recommended. For actuator line and lifting line analyses with prescribed force or
circulation distributions, the same reasoning applies: F is not required to obtain
the correct flow field, and F1 is not necessary when the line load or circulation
is prescribed, as for the flow cases shown in figure 2.4. In case the load at the
actuator or lifting line is obtained in an iterative procedure with a blade element
analyses, correction F1 is required.

9.3. The distribution of the axial velocity

9.3.1. The radial distribution

At the time Prandtl derived his correction the velocity distribution at the Froude
or Joukowsky disc was not yet known. In chapter 5 this distribution has been
calculated for a range of thrust coefficients for Froude discs representing wind
turbines, so it is worthwhile to compare this with the results of BEM with a tip
correction. The tip correction used is the one of Shen et al. (2005a, 2014). In
this model the Prandtl-Glauert correction F , correcting the azimuthally averaged
induction to the induction at the blade position, is extended by a correction F1

to modify 2-D aerofoil properties to 3-D properties, originating from the tip flow.
The equation for F is

F =
2
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account for local tip shape properties, some details of the tip geometry are in-
cluded in this correction F1,
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Table 9.1. Flow cases
# λ CT

(1) 7 -0.888
(2) 7 -0.970
(3) 20 -0.888

where k is the minimum value of chord-to-radius derivative at the tip. The value
k = −0.45, used by Shen, is kept unchanged. When B, λ are given, F and F1

are known except for vx,B or the induction aB = (1 − vx,B/U0). For n = 1 and
g = 1, F1 is identical to F , the Prandtl-Glauert correction. F1 is the correction
of the blade loads by Shen et al., so the combination of F1 and F is called the
Prandtl-Glauert-Shen (PGS) correction. In BEM this is used in the momentum
balance to solve aB from1

− CtF1 = 4aBF (1− aBF ), (9.3)

with the local thrust coefficient Ct originating from blade element theory based
on 2-D aerofoil properties. For a given CtF1, the quantity aBF is solved as the
azimuthally averaged induction resulting from the momentum theory without any
radial dependency. The local induction aB follows after division by F .

For the actuator disc Ct is given by (4.26). Here we use it without the q2

term, as discussed in section 4.2.3, while Ct is treated as if it is based on aerofoil
properties. The momentum theory solution of (9.3) will be compared with the
calculated actuator disc results obtained in chapter 5, for the same uncorrected
Ct.

For wind turbine discs the radial distribution of the axial velocity is given by
the function G, described by (7.5) and (7.6), and shown in figure 7.8. It is used
in combination with the local momentum equation

−Ct = 4a(1− a)

1− aB = G(1− a)

}
(9.4)

The first equation gives the induction a as if the local and disc-averaged mo-
mentum equations are the same, the second equation gives the local value. The
comparison of both methods, (9.3) and (9.4), is done for the load cases given
in table 9.1, representing an optimal rotor (1), a heavily loaded rotor (2) and a
very fast running rotor (3). The results are shown in figure 9.1, presenting vx,B
as resulting from the PGS correction and G function. The PGS correction has
little effect for r < 0.8R so the the axial velocity is lower than the G-function for
r/R < 0.8. For r/R > 0.8 the actuator disc line G corresponds reasonably well
with the PGS corrected results.

9.3.2. The azimuthal distribution: averaged or at blade position

Actuator Line and Lifting Line models have been introduced in section 2.3: both
have a constant circulation and do not apply any correction. For rotors modelled

1The footnote at page 88 is also relevant for (9.3) and (9.4).
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Figure 9.1. The axial velocity distribution obtained from the momentum theory + PGS cor-
rection (dash line) and actuator disc function G (solid line). (1) to (3) correspond with the flow
cases in table 9.1

as an AL or LL operating in a uniform flow aligned with the rotor axis, the
induction at the position of the AL/LL by the bound vorticity of the other AL/LL
is zero. The same holds for the azimuthally averaged induction by the AL/LL, as
follows by considerations of anti-symmetry based on the Biot-Savart rules. It is
only wake vorticity that defines the induction at the AL/LL and the azimuthally
averaged induction, irrespective of the radial distribution of the bound Γ. When
the blade is modelled with a non-zero chord length, the anti-symmetry is distorted
so the induction may be different. In sections 9.3.3 and 9.4.2 the effect of non-zero
chord will be discussed.

Here we compare the velocity distribution at the disc as calculated in chapter
5 with the velocity at the position of a 3-bladed rotor modelled as an AL or LL
generating the same thrust. The load cases used in this comparison are given in
table 9.1, with the axial velocity distribution for case (1) shown in figure 2.4.

As shown in figure 3.2-a the vortex emanating from the tip of a rotor blade
has a small axial and a large azimuthal component when λ is sufficiently high.
Then the induction by wake vorticity at the rotor plane will show little non-
uniformity in azimuthal direction, apart from the induction at the outer part of
the AL/LL by the very first part of the tip vortex. This is confirmed by the
AL/LL calculations for the three load cases. In figure 9.2 the distribution of
the axial velocity of the actuator disc as given by (7.5) is compared with the
distribution calculated by the AL and LL models at the blade position. As the
AL model does not give results close to the rotor axis, see figure 2.4, the graphs
show a jump to 0 for r/R < 0.1. The numerical discretisation of both models and
the consequences for the accuracy are described in van Kuik et al. (2015b), but
some aspects are treated here. The minimum value for vx should be at r/R = 1
in case the vortex core is infinitely thin, but occurs at a lower radius for both
models. This is a consequence of the vortex core size used in the calculations,
as is confirmed by figure 9 of Segalini and Alfredsson (2013) showing the same
behaviour and explanation. Furthermore the discretisation parameters have not
been optimised per load case, given computational limitations. For r/R < 0.8
the AL, LL and disc results agree reasonably in cases (1), show a deviation of
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Figure 9.2. The axial velocity distribution at the actuator line (red dashed line), the lifting
line (black solid line) and the actuator disc (blue dashed-dot line) for cases (1), (2) and (3)
defined in table 9.1

the LL model in the heavily loaded case (2) and of the disc results in the high
λ case (3). With respect to the shape of the distribution for r/R > 0.8 the AL
and LL models agree well but show a steeper curve than the disc distribution, so
vx,B AL/LL < vx,disc, except for case (3). Case (1) is treated too in Segalini and
Alfredsson (2013). Figure 9 of this paper compares the induction at the lifting
line, aB , with the azimuthally averaged induction a, showing that aB/a > 1 so
vx,B < vx, especially near the tip. This is the effect of the nearby position of the
first part of the tip vortex, responsible for the azimuthal non-uniformity in wake-
induced vx. As in the high λ case (3) the tip vortices are less strong compared to
the strength in (1) with equal thrust, the non-uniformity in (3) is less compared
to (1) by which the distributions match better.

Figure 9.2 shows that in case the disc distribution G is used as basis for the
momentum balance in BEM, the required correction from a(r) to aB(r) is much
smaller than from the uniform induction a used in BEM, to the PGS corrected
aB(r).

9.3.3. The azimuthal distribution: decambering of aerofoils

In BEM the blades are not modelled as a line, but have a non-zero chord. The
anti-symmetry considerations mentioned in the previous section are not exact any
more. The Blade-Element part in BEM relies on two-dimensional aerofoil data
to determine the lift and drag once the local velocity vector is known. This data
assume that the induction is uniform along the chord. This is not the case as
can be observed in figure 2.4: the axial velocity at both sides of the AL-LL is not
the same. In front of the AL-LL (in anti-clockwise direction) vx is larger than at
positions after the line. For a rotor with a non-zero chord, this implies that at
the leading edge of the aerofoil vx is higher than at the aerodynamic centre, c/4.
At the trailing edge vx is lower than at the aerodynamic centre. Expressed in the
axial induction this implies that vx,induced increases from leading to trailing edge,
corresponding to figure 1 in Sørensen et al. (2015), who introduced the decamber
correction to account for the non-uniform induction. As shown in this paper,
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the non-uniform induction has the same effect as a negative camber added to the
aerofoil: it decreases the lift by increasing the zero-lift angle of attack.

Although the decambering occurs along the entire blade span, the correction
proposed by Sørensen et al. (2015) is called a refined tip correction as it is most
noticeable at the tip. It is a correction of the zero-lift angle ΔαCl=0, obtained by
an iterative calculation of the induced velocity at several chordwise positions. In
each iteration ΔαCl=0 leads to a change in the circulation Γ of the blade, so to a
change in induction. For a given rotor geometry the correction can be calculated
for various flow angles. During performance computations the actual correction
can be obtained by interpolation .

Sørensen et al. (2015) use their correction together with the Prandtl-Glauert
tip correction (9.1). Comparison of lifting line and BEM results, both with the
decamber correction, show an improved agreement with results by a vortex lattice
method, compared with uncorrected results. The vortex lattice method includes
modelling of the blade surface as a (bound) vortex sheet. The change in circula-
tion and loads for modern rotor blades is significant in the outer part of the blade
where the thrust is lowered by 7− 8%. The change in performance is small.

9.4. The radial distribution of Γblade

For Joukowsky discs and rotors the bound circulation Γ is taken to be constant,
but this is physically not possible. The circulation of a lifting surface will gradu-
ally go to 0 when r → R. For the TUD-B rotor analysed in the previous chapter
this occurs for r/R > 0.85, see figure 8.8. This figure shows a second aspect of the
tip flow: the creation of the tip vortex for r/R > 0.95. This involves strong three-
dimensional aerodynamics, in contrast to the aerodynamics of blade sections at
some distance from the root and tip, for which two-dimensional or blade element
aerodynamics is sufficient. In classical wing theory both effects are modelled as
a function of the aspect ratio A = b/c where b is the span and c the maximum
chord. The usefulness of this method is discussed in the next section, whereas
the role of chordwise bound vorticity is treated in section 9.4.2.

9.4.1. The aspect ratio as a measure for tip effects

The tip or root are the positions where the bound vorticity changes direction
from spanwise to chordwise and releases a free vortex into the flow, as shown
in figures 8.4 and 8.8. For straight rectangular wings the tip effect or effective
angle of attack is expressed in the aspect ratio A: αA = CL/(πAeff ). Glauert
(1935, ch. VI-7) discusses such an effective aspect ratio to be used in propeller
design. However, as noted by Corten (2001a) this αA is the change of α due
to the induction by the tip vortices, which is already taken into account in the
momentum balance. Not captured by the momentum balance is the following tip
effect. For large A the lift of a wing is linear in α but for A → 0 the lift becomes
quadratic in α, see e.g. Rathakrishnan (2013, section 8.3). The reason is that
the tip vortices, emerging at the suction side of the surface, give additional lift
due to their low pressure, see e.g. figure 4.34 in Küchemann (1978). For rotor
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blades the same physical phenomena occur, see e.g. Gray et al. (1980) who show
the measured pressure distribution at the tip of a model rotor operating in hover,
resulting in a significant increase of the normal force for r/R > 0.98. van Kuik
et al. (2014, figure 8) show the same behaviour for the TU-B rotor analysed in
chapter 8. This phenomenon comes back in the next section.

Although the aspect ratio is an elegant parameter to model the finiteness of
the span of a lifting surface, it does not model the physical origin of tip effects
but rather the effects of it. Expressed in terms of pressure, the origin is in the
equalisation of the over-pressure at one side of the surface to the under-pressure
at the other side, called suction-side. The equalisation is achieved by flow passing
along the tip from pressure to suction side. Wimshurst and Wilden (2018) use this
pressure approach to study the behaviour of the tip flow. Expressed in vorticity
terms, the origin is in the change of bound spanwise vorticity to free tip vorticity.
In section 8.3 this transition has been analysed, with emphasis on the bound
chordwise vorticity and the load it carries. In the next section we will discuss in
more detail how to model this.

9.4.2. Conservative tip load and the tip vortex trajectory

In section 8.3.6 the impact of the load on chordwise vorticity near the blade tip
has been studied, based rotor experiments in a wind tunnel. This conservative
load may be ignored for its contribution to the overall thrust, but it effects the
tip vortex trajectory, which, in turn, has consequences for the tip flow. A com-
prehensive study is required to evaluate the necessity to include this effect in the
tip correction.

9.5. Evaluation

The last question, Q14, listed in section 1.4, addresses the tip correction. This
chapter has analysed several tip flow properties, leaving ample room for discussion
and future work. The results of the AL/LL calculations have to be considered as
preliminary, awaiting studies with more flow cases and a higher accuracy. Still,
some conclusions can already be drawn:

• The wind turbine disc distribution G of vx,d, see (7.5,7.6), and the PGS dis-
tribution (9.2, 9.3) match reasonably well close to the edge. This may be
considered as a mutual confirmation.

• The axial velocity at the position of the blade close to the tip is lower than
the azimuthally averaged value, which is to be expected due to the induction
by the first part of the tip vortex causing the azimuthal non-uniformity in
wake-induced vx,d.

• The mutual relation between induction and load at the tip is not easy to capture
in a single correction. The PGS correction does not include the decamber
correction nor the correction for the presence of chordwise vorticity at the tip.
Both effects have a limited effect on the overall load and performance but are
relevant for a detailed, optimised tip design.
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Further research and discussion is required about the following items.

• The PGS distribution is well-tuned by many researchers but its physical basis
does not match the optimisation of rotors according to a Joukowsky distribu-
tion. Now this basis, being the distribution G for the Joukowsky disc, is known,
this could replace the PGS distribution

• In case the disc distribution G is used as basis for the momentum balance in
BEM, the correction from a(r) to aB(r) is much smaller than from the uniform
induction a used in BEM to the PGS corrected aB . The use of G could lead to
a more accurate assessment of aB

• It is not yet clear whether the PGS correction and the correction for the chord-
wise bound vorticity can be used together, as both corrections have a different
background.

These topics for discussion are left for future research. Validation by experiments
and full CFD solutions will provide insight whether there is room for improvement
compared the current practice of using BEM with the PGS correction.
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Chapter 10

Epilogue

The evaluation of the results per chapter is presented in the last section of each
chapter, and not included here in detail. This Epilogue takes some distance and
looks back at the main results.

With the force field term retained in the Euler equation of motion, the rela-
tions between a force field and the conversion of energy can be interpreted in the
conceptual framework of solid mechanics: conservative forces exchange potential
and kinetic energy but do not perform work. Non-conservative forces do so, and
change the Bernoulli parameter H. Moreover, non-conservative forces generate
vorticity, conservative forces conserve vorticity. As, from a fluid dynamic point
of view, these processes are governing rotor flows, the force field method is shown
to be very helpful in the evaluation and understanding of actuator disc and rotor
flows. A new actuator disc equation has been derived, see (4.7), valid for any
distribution of f . Thanks to the similarity with the Kutta-Joukowsky expression
for the load on a vortex, the physically plausible result that the actuator disc is
a rotor subjected to the limit of an infinite number of blades, is confirmed by
analytical limit transitions.

The momentum theory of Froude and Joukowsky actuator discs has been
formulated in terms conservative and non-conservative force fields. The non-
uniformity of the axial velocity at the disc is shown to be the consequence of the
pressure field, acting as a conservative load. The same holds for the difference
between the Joukowsky disc performance and the Froude disc performance: in
Joukowsky disc flows, part of the swirl induced pressure field appears as a conser-
vative contribution to the momentum balance, so is absent in the energy balance
leading to deviations from Froude discs. A remarkable result is that at the disc,
the velocity in the meridian plane is constant for high λ wind turbine discs, with
or without swirl. For propeller discs this velocity is non-uniform.

Conservative loads appear when the load carrying surfaces like a disc, rotor
blade or wing, are modelled with real, non-zero dimensions. The origin is found in
the distribution of bound vorticity: when bound vorticity lines are non-parallel,
e.g. at the tip of a rotor blade, the mutual induction gives rise to these conserva-
tive forces. With this phenomenon, the initially inboard motion of a tip vortex
of wind turbine rotor blades could be explained.
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Much more detailed information about disc and rotor flows is available, com-
pared with the first decades of the previous century. This makes it worthwhile to
reconsider the assumptions and engineering models with which disc results have
been made amenable for rotor modelling. A first attempt to use the obtained disc
velocity distribution has been presented, and compared with the current practice
of using the disc averaged velocity with a tip correction. Although the correspon-
dence is reasonably good, much more validation and tuning is required to give
this method a firm basis. The same holds for adding the conservative tip load
in actuator line modelling: the presented first attempt reproduces the inboard
motion of the tip vortex, but more testing on more load cases is required.
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Vector expressions in cylindrical coordinates
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Appendix B

Balance of angular momentum

This appendix is restricted to steady 3-D axisymmetric flows without swirl and
steady 2-D flows. The curl of the Euler equation (2.3) gives

1

ρ
∇× f = −∇× (v × ω) . (B.1)

In the meridian plane a circle C is defined with polar coordinates (ξ, θ), enclosing
area A. Integration of (B.1) on A shows, using Stokes’ theorem,

1

ρ

∮
C

f ·dc = −
∮
C

(v × ω) · dc =

∮
C

vξωϕξdθ (B.2)

where dc is tangent to C. Using ωϕ = ∂ (ξvθ) / (ξ∂ξ)−∂vξ/ (ξ∂θ) and
∮
vξ∂vξ = 0,

(B.2) becomes

1

ρ

∮
C

f ·dc =

∮
C

vξ
∂ (ξvθ)

∂ξ
dθ

=

∮
C

(
∂ (ξvθvξ)

ξ∂ξ
− vθ

∂vξ
∂ξ

)
ξdθ. (B.3)

Multiplication of (B.3) by ξ∗ and integration for 0 ≤ ξ∗ ≤ ξ gives the torque Q(ξ)
about the centre of C exerted by the force field f within C :

1

ρ
Q =

1

ρ

ξ∫
0

ξ∗
∮
C

f · dc dξ∗

=

ξ∫
0

∮
C

(d (ξ∗vθvξ)− vθξ
∗dvξ) ξ∗dθ

=

ξ∫
0

∮
C

d
(
ξ∗2vθvξ

)
dθ −

ξ∫
0

∮
C

ξ∗vθd (vξξ∗) dθ. (B.4)
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The second integral is evaluated with the continuity equation (2.2) expressed in
the (ξ, θ) coordinate system, so

∂vx
∂x

+
∂ (rvr)

r∂r
=

∂vx
∂x

+
∂vr
∂r

+
vr
r

=
∂ (ξvξ)

ξ∗∂ξ∗
+

∂vθ
ξ∗∂θ

+
vr
r

= 0, (B.5)

by which

ξ∫
0

∮
C

ξ∗vθd (vξξ∗) dθ = −
ξ∫

0

∮
C

ξ∗vθdvθdξ∗ −
ξ∫

0

∮
C

vθ
vr
r
ξ
∗2dξ∗dθ

= −
ξ∫

0

∮
C

vθ
vr
r
ξ∗2dξ∗dθ. (B.6)

Herewith Q is

1

ρ
Q =

ξ∫
0

∮
C

d
(
ξ∗2vθvξ

)
dθ +

ξ∫
0

∮
C

vθ
vr
r
ξ∗2dξ∗dθ

=

∮
C

ξvθvξdC +

∫∫
A

ξ∗vθ
vr
r
dA. (B.7)

This is the balance of angular momentum with control surface C. The first term on
the right-hand side gives the 2-D balance in which the torque equals the increase of
angular momentum, being the mass transport ρvξ having an angular momentum
ξvθ integrated along the contour C. The second term gives the change of angular
momentum ξ∗vθ as a consequence of the vorticity stretching, see the last term on
the right-hand side of (3.16).

This shows that (B.1) indeed is the balance of angular momentum in differ-
ential form.



Appendix C

The blade load expressed as pressure distri-
bution

In (4.14) L is expressed in kinematic terms. However, physically it is pressure
at a surface that creates a resultant load, so (4.14) has to have an equivalent
pressure formulation. In (4.14) C is the blade cross-section, see figure 4.1. Now
C is extended to V , the blade volume, with A the contour or surface. Integrated
of (4.14) on volume V gives the resultant force

R = −ρ

∫
V

vrot × ωdV = −ρ

∫
V

vrot × ωrotdV + 2ρ

∫
V

vrot × exΩdV. (C.1)

The distribution of ω at V is equivalent to the concentration of ω in an infinitely
thin vortex sheet γ =

∫
ωdn at the surface A of V , with n normal to A and

vrot = 0 inside A. Consequently, the last integral does not contribute to R.
Since γ = en × (vrot,inside − vrot,outside) and the velocity at the sheet vrot =
1
2 (vrot,inside + vrot,outside) the first integral becomes

− ρ

∫
V

vrot × ωrotdV = −ρ

2

∫
A

vrot × γdA = −ρ

2

∫
A

en|vrot,outside|2dA. (C.2)

vrot,outside is determined at streamlines tangent to the blade surface / vortex
sheet, where ω = 0 and f = 0. By combining ∇Hrot = ∇

(
H − ρvϕΩr +

ρ
2 (Ωr)

2
)

with (2.22) it follows that Hrot,outside = ρ
2 (Ωr)

2
+ c where c is a constant, so

ρ
2 |vrot,outside|2 = c − (p − p0) +

ρ
2 (Ωr)

2. The contribution of c + p0 + ρ
2 (Ωr)

2

vanishes in the closed contour integral. Herewith (C.1) becomes

R = −ρ

∫
V

vrot × ωdV =

∫
A

pendA. (C.3)

The product ex · endA is equal to dAx where Ax is the projection of the blade
surface in axial direction. R can be decomposed in the axial, radial or spanwise
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and azimuthal components,

R = ex

∫
A

pdAx + er

∫
A

pdAr + eϕ

∫
A

pdAϕ. (C.4)

The axial and azimuthal components of R contribute to the rotor thrust and
torque. The radial component does not do so, and does not perform work, by
which it is a conservative component of the blade load.



Appendix D

The potential flow model

D.1. Components of the model

The numerical model of the actuator disc wake vortex sheet has 2 components:
Axisymmetric vortex rings: From the disc position x = 0 up to x = 30 the sheet
is discretised using N vortex rings Γi(xi, ri). The distribution of rings is not
equidistant: for i = 1...N the axial position xi = (1− cos(iπ/(c1N)))c2 where c1
and c2 are constants tuned to make a smooth transition to the second component.
For the results shown here c1 = 2.72, c2 = 0.7. The values for N are given in the
main text.

The expressions for the flow field induced by a ring at position are given by
Yoon and Heister (2004):

vx =
Γi

4π
ri

[(
ri + r

A

B

)
I2 − r

B
I1

]

vr =
Γi

4π
ri

(
x− xi

B

)
(I1 −AI2)

Ψ =
Γi

2π

√
rri

[
(
2

k
− k)K(k2)− 2

k
E(k2)

]

with

A = (x− xi)
2
+ r2 + r2i B = −2rri

I1 =
4

ρ2
K(k2) I2 =

4

ρ32

E(k2)

1− k2
k =

√
1−

(
ρ1
ρ2

)2

ρ1 =

√
(x− xi)

2
+ (r − ri)

2

ρ2 =

√
(x− xi)

2
+ (r + ri)

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ρ1 ≥ δ. (D.1)
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K and E are the complete elliptic integrals of the 1st and 2nd kind. At the
position of the ring ρ1 = 0, ρ2 = 1 so k = 1. For k → 1 K(k2) ∝ log(1 − k2)
while E(k2) = 1. Evaluation of the expressions shows that close to the ring vx
is dominated by the 1/ρ1 singularity in I1, known from linear vortices, and a
weaker logarithmic singularity in I2 caused by the curvature of the ring. To avoid
infinite velocities, a vortex kernel with diameter δ is introduced. For ρ1 ≤ δ/2
the expressions given by Marshall (2001, p. 270-271) are used,

vx =
Γi

4πri

[
(log

(
16ri
δ

)
− 1

4

]

vr = 0

Ψ =
Γi

2π

[
(log

(
16ri
δ

)
− 3

2

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ρ1 <
δ

2
. (D.2)

The semi-infinite vortex tube: The far wake, starting at x = 30, is the semi-
infinite cylindrical vortex tube with constant strength γ and radius Rtube = 1.0.
The vortex tube strength is given by the velocity jump across the tube boundary
in the far wake, e.g. for a thrust coefficient CT = Δp/( 12ρU

2
0 ) = −8/9 the velocity

in the wake is vx,1/U0 = 1/3 so γ1/U0 = −2/3. Suppose the semi-infinite tube
is closed at infinity by a tube end plate with equal strength of vorticity. This
has no effect on the flow at finite distance from the opening. Then the tube
surface is a 3-D vortex sheet of uniform vorticity strength, which is equivalent to
a dipole distribution of uniform strength, see Marshall (2001, p. 204). Surfaces
with uniform dipole strength are treated by potential theory, see Courant and
Hilbert (1967, p. 232), showing that the potential is proportional to the solid
angle at the position of evaluation subtended by the aperture of the surface.

This is confirmed by an independent evaluation of the expression for the
velocity field v induced by a closed vortex line Γ as given by Saffman (1992),

v = − Γ

4π
∇Θ (D.3)

in which Θ is the solid angle, expressed in steradian, subtended by the closed
vortex line at the position of evaluation of v. For an axisymmetric tube extending
from x = x0 to x = ∞, having radius Rtube and constant strength γ, this becomes

v(x, r) = − γ

4π

∞∫
x0

∇Θ(x0, Rtube, ξ)dξ, (D.4)

or, omitting (x, r), (x0, Rtube),

vx = − γ

4π

∞∫
x0

∂Θ(ξ)

∂x
dξ =

γ

4π
(Θ(x0)−Θ(∞)). (D.5)
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Calibration of K,E and Π. The definition of the complete elliptic integrals
in mathematical references is not unambiguously with respect to the function
parameters. The following calibration is used, adopted from Branlard (2017, p.
626, 627):
K(0.5) ≈ 1.85407 Π( 0.5, 0.6) ≈ 2.86752
E(0.5) ≈ 1.35064 Π(−0.5,−0.6) ≈ 1.15001

Since Θ(∞) = 0 this becomes

vx =
γ

4π
Θ, (D.6)

where Θ now is the angle subtended by the entrance of the vortex tube. Paxton
(1959) gives the expressions for the solid angle subtended by a ring, expressed
in complete elliptic integrals. If the opening of the tube is denoted by x = x0,
r = r0, this becomes

Θ =

(
r0 − r

|r0 − r| + 1

)
π + 2

(x− x0)

ρ2

(
K(k2)− r − r0

r + r0
Π(α2, k2)

)
, α = 2

√
rr0

r + r0
,

(D.7)

where now ρ2 =

√
(x− x0)

2
+ (r + r0)

2, and Π(α2, k2) is the complete elliptic
integral of the 3rd kind.

Branlard (2017, section 36.2.2) has published a different derivation of the
same expression for the axial velocity, and gives the expression for the radial
velocity,

vr = − γ

2π

√
r0
r

((
2

k
− k

)
K(k2)− 2

k
E(k2)

)
. (D.8)

In section 36.21, he presents the vector potential of a finite vortex cylinder. By
taking the limit of his eq. (36.38) to achieve a semi-infinite cylinder, and multi-
plication by r, the Stokes stream function is achieved,

Ψ =
γ

2π

√
r0r(x− x0)k

((
1

α2
+

1− k2

k2

)
K(k2)− E(k2)

k2
+

(
1− 1

α2

)
Π(α2, k2)

)

+
γ

4r
(r20 or r2). (D.9)

where r20 is used for positions where r > r0 and r2 for r < r0. As these equations
were not yet known at the time of making the code, the continuity equation was
used to numerically determine vr and Ψ during the first set of calculations. This
was compared with (D.8) for verification, showing accurate correspondence, see
section D.3.

At r = 0 (D.6) plus (D.7) yield a simple expression at the centre line, first
published by Snel and Schepers (1995),

vx,r=0 =
γ

2

(
1 +

(x− x0)√
(x− x0)2 + r20

)
. (D.10)
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Figure D.1. Streamlines for a semi-infinite vortex tube in parallel flow

D.2. Convergence scheme

The calculation starts with the configuration presented in the previous section: all
vortex rings have the diameter and strength per unit length of the far wake tube,
so Γi = γ1(xi − xi−1) with ri = R1. In each convergence step j the discretised
part is adapted, so the shape and strength of the wake xi < 30R1 changes per
step while the far wake vortex sheet radius and strength remain the same, as
shown in figure 5.3. This implies that the disc radius, equal to the radius of the
first vortex ring, is a variable, but that the axial position is invariant.

The two boundary conditions used to adapt the shape and strength are
Ψring − Ψ1 = 0 and ΔHsheet = F . With the help of (5.19) and (6.32) this is
implemented as

ΔΓring,i|j+1 = (si+1 − si)
ΔH

ρ

dΓ
vs,i

∣∣∣∣
j

, (D.11)

Δrring,i|j+1 =
Ψring,i −Ψ1

R1

dΨ
vx,i

∣∣∣∣
j

. (D.12)

(si+1 − si) is the distance between 2 rings, d is the damping being 0.05 for both
boundary conditions. Ψ is calculated at the vortex core position, vs at a position
r/ri = 0.95. After sufficient convergence is achieved, a second scheme is applied
for fine tuning. The dynamic condition (D.11) remains unchanged, while the
kinematic condition becomes

Δrring,i|j+1 = −R1

U0
vn,idvn

∣∣∣∣
j

. (D.13)

with vn calculated at the position of the vortex core. This implies that the
axial coordinate of the vortex ring is adapted too, as the vortex core position
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Figure D.2. Deviation of the calculated (vx ; vr) with the analytical solutions (D.6) to (D.10),
expressed in %�, for N = 6909, δ = 0.0001. The deviation exceeds 2 %� for vr close to the
leading edge of the tube.

moves normal to the wake boundary surface calculated in the previous itera-
tion. The damping parameters for both conditions are controlled manually, with
dΓ = dvn = 0.0001 as highest damping for both conditions. The first conver-
gence scheme is very robust, while the second scheme requires manual tuning
of the damping parameters to convergence. Increasing the damping by lowering
d improves convergence at the cost of longer computation times. The iteration
is stopped when both boundary conditions are satisfied with an accuracy better
than 2 %�.

D.3. Verification, sensitivity and accuracy

In the first iteration of the convergence scheme, all vortex rings plus the far
wake vortex tube constitute a semi-infinite vortex tube of constant strength and
diameter starting a x = 0. Figure D.1 shows the streamlines for the tube flow with
γtube/U0 = −2/3. placed in a parallel flow U0. The vortex model is verified by
comparing the numerical results of this first iteration with the analytical solution
(D.6) to (D.10).

The accuracy is shown in figure D.2. Except within a distance of 0.02 from
the edge of the tube, the deviation is less than 2%�. At this leading edge the
radial velocity deviates in the order of percentages. The consequence of this
becomes clear by comparing the results of the two convergence schemes as shown
in figure D.3 for flow state CT = 16/9. The effect of vn being non-zero close to the
edge of the disc has a 1 %� impact on ΔH(s) and a negligible impact on Ψ(s),
as well as rrings(x). Apparently this does not affect the other flow properties
more than 2 %�. Furthermore, it appears that the numerical discretisation and
convergence scheme give an uncertainty of several % in vn(s) close to the leading
edge. The insensitivity for the other flow parameters has been checked for all



130 APPENDIX D. THE POTENTIAL FLOW MODEL

Figure D.3. Deviation of the calculated vn(s) and ΔH(s), for CT = 16/9, N = 6909,
δ = 0.0001. The black lines show the results for satisfied boundary conditions (D.11) and
(D.12), the red lines for satisfied (D.12) and (D.13). The differences in Ψ(s) and in the position
of the vortex rings (both not shown) are smaller than the difference in ΔH(s). The deviation
in the wake contraction for both cases is 0.035%

0 > CT ≥ −0.96 with N = 4656, δ = 0.001: the difference in using (D.12) or
(D.13) leads to differences in rrings(x), Ψ(s) and ΔH(s) of less than 3 %�, but the
normal velocity close to the leading edge deviates percentages of U0. For more
negative CT the difference in grows: 1% for CT = −0.995.When (D.13) is used,
vn is also less than 2 %� of U0 while the other conditions remain the same.

The numerical method has 2 independent model parameters: the number
of rings N and the vortex core radius δ/R1. A sensitivity analysis for both
parameters has resulted in table D.1. It is clear that the results are insensitive to
variations in both parameters. However, this is not the case for the properties of
the vortex sheet close to its leading edge. Table D.2 shows that for some of the
combination the vortex cores of the very first rings may overlap.
The overlap has an impact on the position of the rings and the distribution γ: the
shape and strength of the vortex sheet are not smooth enough. An example is
shown in van Kuik and Lignarolo (2016, figure 9) showing the distribution of γ as
calculated with N = 4656 and δ = 0.001. The anomalous value at s = 0 is caused
by the overlap of the first ring with the second one. For all calculations done with
N = 6909 and δ = 0.0001 there is no overlap yielding a smooth γ distributions,
as shown in figures 5.9, 6.7 and 7.4. All analyses in chapter 5, 6 and 7, showing

Table D.1. Sensitivity of R/R1 for CT = −8/9, in %� deviation from the momentum theory
value.

N ↓ δ → 0.0015 0.001 0.0005 0.0001

6909 0.98
4956 0.99 0.98
4656 0.75 0.71 0.10
4355 0.59
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Table D.2. Number of vortex rings of which the vortex core overlaps with the core of the
neighbouring ring, for CT = −8/9.

N ↓ δ → 0.0015 0.001 0.0005 0.0001
6909 0
4956 0 0
4656 14 2 0
4355 0

details of boundary conditions and γ, have been done with N = 6909, δ = 0.0001.
Finally, the computed values of the disc-averaged velocity at the disc have

been compared with the values of momentum theory. In the wind turbine regime
deviations are less than 2%� for CT < −0.96, increasing up to 1.5% for CT =
−0.998. In the propeller regime all results shown in figure 5.4 have the same
accuracy.

The conclusions of this section are:

• The vortex model is verified by comparison with an analytical solution of the
semi-infinite vortex tube, yielding deviations in local velocity vectors less than
2 %� for N = 6909, δ = 0.0001, except for the velocity component normal to
the vortex sheet within a distance 0.02Rtube from its leading edge.

• By comparison of solutions converged to a constant stream function Ψ, having
similar deviations in normal velocity, with solutions converged to constant Ψ
ánd vn ≤ 0.0002U0 it has been shown that calculated flow properties differ less
than 3 %�.

• By this uncertainty in vn close to the disc edge, accurate quantitative conclu-
sions with respect to the vortex sheet strength close to the disc edge are not
possible. Qualitative conclusions are possible as the accuracy is limited to a
few %. It has an effect of ≤ 3 %� on other flow parameters.

• The results are, with deviations of 2%�, insensitive to variations in N and
δ. The smoothness of the wake boundary vorticity distribution increases with
higher N .

• The overall accuracy is assessed at 3%�, except for flow details within a distance
of 0.02Rdisc from the disc edge, and for CT < −0.96.
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