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Preface to ”Assessing Atmospheric Pollution and Its

Impacts on the Human Health”

In recent decades, due to industrial expansion and urbanization, atmospheric pollution has

become one of the main threats to public health and natural ecosystems. The production of pollutants

from different sources can easily be evaluated; however, their dissipation is associated with the

mechanisms of diffusion and transport in various atmospheric conditions, with wind speed being

one of the main influencing factors. The accumulation of pollutants is a stochastic phenomenon,

depending on multiple factors such as atmospheric circulation, turbulence, wind direction and speed,

air temperature, humidity, etc., making the assessment and forecasting of this phenomenon difficult.

In conditions of atmospheric calm, the particles accumulate near the emission sources, increasing

the time that the population is exposed to toxic substances which induce respiratory diseases and,

sometimes, irreversible harm to human health. Therefore, assessing air quality is extremely important

for maintaining a clean and healthy environment. In this context, the articles included in this

collection addressed the following topics:

·Estimating the air quality using statistical and artificial intelligence methods;

·Modeling the extremes of different pollutants over various time series;

·Emphasizing the impact of atmospheric pollution on human health, especially the incidence of

pulmonary diseases in highly polluted zones;

·Analyzing the carcinogenic and non-carcinogenic risks of exposure to different pollutants for an

extended period.

The topic is of interest to scientists and the general public, addressing problems that we all face.

The editor would like to thank the authors for sharing the results of their research, and the

reviewers whose valuable suggestions led to significant improvements to the submitted articles.

Last but not least, we thank the editorial staff who helped to ensure a smooth editorial process.

Alina Barbulescu

Editor
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In recent decades, atmospheric pollution has become a major risk for public health
and ecosystems. In this era, when industrial development and urbanization are accelerated,
decreasing the contamination level from different sources became a must to ensure a
friendly and healthy climate for future generations.

The Special Issue “Assessing Atmospheric Pollution and Its Impact on the Human
Health” contains articles with the following topics: assessment of the PM10, PM2.5, nitrogen
oxides, ozone, and dust on the pollution life using different health indicators and statistical
methods, building artificial intelligence method for evaluating the pollution trend and the
admission of people in hospital due to pulmonary diseases. It was emphasized that there
is insufficient data, and the monitoring network is not uniformly distributed to provide
a correct insight into the atmospheric contamination level and its adverse effects on the
people. Moreover, the authorities should consider the studies’ results and take urgent
measures to reduce or eliminate, when possible, the pollution sources.

Given that dust is an important source of pollution in the United Arab Emirates,
Nazzal et al. [1] investigated its impact on the health of inhabitants from the Sharjah and
Ajman Emirates based on data series collected from April to August 2020, continuing the
investigations on the pollution from different sources in the United Arab Emirates [2,3].
They found that the average daily dose (ADD), the hazard quotient (HQ), and the health
index (HI) have been used for this aim. The highest concentrations found in the study
samples were those of Zn, Ni, and Cu, with anthropogenic origin. The HQ and HI indi-
cated, respectively, an acceptable and negligible non-carcinogenic risk for people’s health.
Clustering the observation sites based on the original series and those of the health indices
found three clusters, one of them formed only by a single location, where the highest
concentrations of heavy metals were detected.

Cui et al. [4] investigated the impact of the grain dust on the workers’ health using
samples of different types of grain collected in six locations in China and developing a
probabilistic risk assessment model. Using this approach, the risk to the people’s health
was transposed into disability-adjusted life years (DALY). It was shown that for the people
working in the grain storage and transportation, the mean DALY was greater than 0.4 years,
with the values between 0.1 and 3.3 years for the former. The highest DALY corresponds to
maize (1.01 years, for in-warehousing), followed by those of rice (0.89 years) and wheat
(0.83 years) in the transportation phase.

The article of Maftei et al. [5] addressed the impact of the pollution (with PM10 and
nitrogen oxides) on the population’s health in the county of Brasov, Romania.

The research tried to correlate the air pollution level with the laboratory analysis
results of the patients confirmed with pulmonary malignant tumors. It was shown that
most patients suffer from squamous cell carcinoma (76%), the rest of them being diagnosed
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with pulmonary adenocarcinoma (24%). The disease rate was lower in the rural zones than
in the urban ones. In both cases, squamous cell carcinoma has the highest frequency. The
limits of this study were the low number of stations recording the atmospheric pollution,
their unequal distribution, and the limited database of the medical records.

In their research, Tadano et al. [6] proposed two artificial intelligence models—the
echo state networks and the extreme learning machines (ELM) for estimating the impact of
the PM10 on the hospital admissions due to respiratory diseases. Other parameters taken
into account were air temperature and humidity. The regularization parameter (RP) and
the Volterra filter have been used for increasing the model’s generalization capability and
exploring the nonlinear patterns of the networks’ hidden layers. Results show that the
ELM better performed in most cases. The research is important for estimating the hospital
admission and pointed out the lack of data for other pollutants that could bias the results.

Qin et al. [7] provided the results of the analysis of polycyclic aromatic hydrocarbons
(PAHs) in the environment and freshwater fish in the area of Lake Chaohu. First, they
identified the atmospheric pollution sources. The exposure to PAHs through water intake,
inhalation, and freshwater fish ingestion was evaluated by different techniques, such as the
assessment model, probabilistic risk assessment, and Monte Carlo simulation. They showed
that the primary source of atmospheric pollution is biomass combustion. The atmospheric
transport significantly contributes to the contaminants spreading. Significant differences
were found between the samples only for a gaseous BaP equivalent concentration. Among
the risk sources, the fish intake and the particles’ inhalation occupied the first two places,
based on the lifetime average daily dose. The probabilistic cancer risk assessment indicated
a potential carcinogenic risk for the population in the neighborhood of Lake Chaohu.

Buch et al. [8] assessed the transport influence on the pollution due to carbon species
(elemental—EC and organic—OC) in a zone from the Littoral of the Gdansk Gulf in the
periods 13–22 July 2015 (holiday period) and 14–30 September 2015 (holidays and school
periods) for two hours in the morning and two in the afternoon. The highest OC (EC)
mean concentration in small aerosols was recorded during the holidays (the school period,
between 7.00–9. 00 a.m.). Still, the statistical tests rejected the hypothesis that there is a
significant difference between the OC concentrations recorded between 7.00–9.00 a.m. and
3.00–5.00 p.m. During the holidays (school period), the EC, sulphate, and nitrate (CO)
concentrations were the highest. It was found that the regional wind has an important role
in the pollutants’ transport.

Huang et al. [9] analyzed the particulate matter (PM) distribution and the trend of
heavy metals and water-soluble ions in PM2.5 and PM10 during the haze periods from
March 2016 to January 2017 in Chengdu, China, at different pollution levels. It resulted in
heavy metals being enriched in fine (PM2.5) particles compared to PM10, and the mobile
sources had significant contributions to the haze formation.

Johnston et al. [10] addressed indoor air pollution in the houses of brick workers
in the Kathmandu Valley, Nepal, taking into account the type of cooking device used.
Higher concentrations of black carbon (349 μg/m3) have been detected in the houses using
wood fire than where the liquefied petroleum gas cookstoves are used or in outdoor air
(5.36 μg/m3). Indoor chlorine (potassium) in the first kind of house was 34 (4) times higher
than in the second type of residence. Ca, Al, Co, Fe, Ti, and Si concentrations exceeded the
allowable limits in all the studied locations. The research pointed out the necessity of the
authorities’ intervention to improve the region’s indoor air quality.

Reliable scenarios or models for atmospheric pollutants dynamics are of high interest
for a correct estimation of the pollution impact on the environment and human health.
However, the outliers’ existence may significantly bias the models’ quality and, implicitly,
the forecast based on them. In this idea, Bărbulescu et al. [11] studied the existence of
outlying values in the daily nitrogen oxides and ozone series collected from 1 January to
8 June 2016 in Timisoara, Romania. Four methods have been employed: the interquartile
range (IQR), isolation forest, local outlier factor (LOF), and the generalized extreme stu-
dentized deviate (GESD). Three models (ARIMA, GRNN, and ARIMA-GRNN) have been
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built for the raw series and those without aberrant values. The best one was the hybrid
ARIMA-GRNN for the series without aberrants, which can be used for the forecast.

In the article [12], the author analyzed the 387 series of the aerosol optical depth (AOD)
collected for 178 months over the Arabian Gulf, continuing the research from [13–15] related
to the dust aerosols and storms in the United Arab Emirates. The Principal Component
Analysis (PCA) extracted the main data subspace of the temporally indexed and spatially
indexed time series (TITS and SITS, respectively). Over 90% of the variance of SITS is
explained by the first principal component (PC), and only 60.5% of the variance of TITS
by six PCs. Hierarchical clustering applied to SITS indicates that one group contains the
locations on the Shamal trajectory, whereas applied to TITS resulted in grouping based on
seasonality. The regional and temporal trend series (RTS and TTS, respectively) have been
detected using a two-step algorithm, which firstly determined the clusters with the highest
number of elements, followed by a mediation process, as presented in [16]. RTS and TTS
are trend-stationary, the former being also level-stationary, and fit the data series well.

More research should be done to develop new indices for providing a correct eval-
uation of the degree of cumulated pollution from different sources and its impact on
people’s health. At the same time, the decision factors must implement plans to reach a
cleaner environment.

Author Contributions: Conceptualization, A.B.; methodology, A.B. and C.S, .D.; formal analysis, A.B.;
writing—N.P.-B. and A.B.; writing—review and editing, A.B. and C.S, .D.; supervision, A.B.; project
administration, A.B. All authors have read and agreed to the published version of the manuscript.
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8. Buch, J.K.; Lewandowska, A.U.; Staniszewska, M.; Wiśniewska, K.A.; Bartkowski, K.V. The Influence of Transport on PAHs and
Other Carbonaceous Species’ (OC, EC) Concentration in Aerosols in the Coastal Zone of the Gulf of Gdansk (Gdynia). Atmosphere
2021, 12, 1005. [CrossRef]

9. Huang, Y.; Wang, L.; Cheng, X.; Wang, J.; Li, T.; He, M.; Shi, H.; Zhang, M.; Hughes, S.S.; Ni, S. Characteristics of particulate
matter at different pollution levels in Chengdu, southwest of China. Atmosphere 2021, 12, 990. [CrossRef]

10. Johnston, J.D.; Beard, J.D.; Montague, E.J.; Sanjel, S.; Lu, J.H.; McBride, H.; Weber, F.X.; Chartier, R.T. Chemical composition of
PM2.5 in wood fire and lpg cookstove homes of Nepali brick workers. Atmosphere 2021, 12, 911. [CrossRef]

11. Bărbulescu, A.; Dumitriu, C.S.; Ilie, I.; Barbes, , S.B. Influence of Anomalies on the Models for Nitrogen Oxides. Atmosphere 2022,
13, 558. [CrossRef]

12. Bărbulescu, A. On the spatio-temporal characteristics of aerosol optical depth in the Arabian Gulf zone. Atmosphere 2022,
13, 857. [CrossRef]

13. Bărbulescu, A.; Nazzal, Y. Statistical analysis of the dust storms in the United Arab Emirates. Atmos. Res. 2020, 231, 104669. [CrossRef]

3



Atmosphere 2022, 13, 938

14. Bărbulescu, A.; Nazzal, Y.; Howari, F. Statistical analysis and estimation of the regional trend of aerosol size over the Arabian
Gulf Region during 2002–2016. Sci. Rep. 2018, 8, 571. [CrossRef] [PubMed]

15. Nazzal, Y.; Bărbulescu, A.; Howari, F.M.; Yousef, A.; Al-Taani, A.A.; Al Aydaroos, F.; Naseem, M. New insight to dust storm from
historical records, UAE. Arab. J. Geosci. 2019, 12, 396. [CrossRef]

16. Bărbulescu, A.; Postolache, F.; Dumitriu, C.S, . Estimating the precipitation amount at regional scale using a new tool, Climate
Analyzer. Hydrology 2021, 8, 125. [CrossRef]

4
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On the Spatio-Temporal Characteristics of Aerosol Optical
Depth in the Arabian Gulf Zone

Alina Bărbulescu

Department of Civil Engineering, Transilvania University of Bras, ov, 5 Turnului Street, 900152 Bras, ov, Romania;
alina.barbulescu@unitbv.ro

Abstract: The article investigates some of the available measurements (Terra MODIS satellite data) of
the aerosol optical depth (AOD) taken in the Arabian Gulf, a zone traditionally affected by intense
sand-related (or even sand-driven) meteorological events. The Principal Component Analysis (PCA)
reveals the main subspace of the data. Clustering of the series was performed after selecting the
optimal number of groups using 30 different methods, such as the silhouette, gap, Duda, Dunn,
Hartigan, Hubert, etc. The AOD regional and temporal tendency detection was completed utilizing
an original algorithm based on the dominant cluster found at the previous stage, resulting in the
regional time series (RTS) and temporal time series (TTS). It was shown that the spatially-indexed
time series (SITS) agglomerates along with the first PC. In contrast, six PCs are responsible for 60.5% of
the variance in the case of the temporally-indexed time series (TITS). Both RTS and TTS are stationary
in trend and fit the studied data series set well.

Keywords: AOD; classification; dendrogram; PCA

1. Introduction

Dust clouds and storms occur worldwide, especially in the Middle East, southwestern
United States, northern China, and the Saharan desert. The essential conditions trigger-
ing these phenomena are the existence of huge dust or sand sources, little vegetation,
strong surface winds, and an unstable atmosphere [1]. Dust particles primarily enter the
lower atmosphere through saltation bombardment, which depends on the meteorological
conditions near the surface, the soil texture, and particle size [2–5]. Dust is emitted as
hydrophobic particles, relatively ineffective as cloud condensation nuclei. However, during
their transport in the atmosphere, due to the interaction with gaseous and particulate
air pollutants, their hygroscopicity increases, fortunately enhancing the efficiency of dust
removal from the atmosphere through precipitation [6,7]. Haywood et al. [8] indicated that
the aerosols cause a strong radiative forcing of climate because of their efficient scattering
of solar radiation.

The most abundant aerosol in the atmosphere is dust, composed of oxides (silica, iron
oxides), quartz, feldspar, gypsum, and hematite [9]. Ginoux et al. [10] emphasized the
anthropogenic and natural dust sources.

Many studies [8,11–13] have already investigated and documented a significant vari-
ability of the airborne desert dust during the past decades in the Middle East, Africa, central
Asia, and South America, and identified Shamal (the north-westerly wind blowing over
Syria, Iraq, and the Arabian Gulf) as the significant natural trigger of dust storm activities
across the Arabian Peninsula. Shamal transports the dust lifted from Syria and Iraq to
the Arabian Gulf and Peninsula [14–18]. Still, Notaro et al. [16] identified increased dust
activity over eastern Saudi Arabia around the Ad Dahna Desert, with dust transported
from the Iraqi Desert and local sources. Yu et al. [18] concluded that a strong wind speed
determines higher dust activity along the coast of the Persian Gulf in north-central Saudi
Arabia, and one has to consider this influence when tracing the phenomenon along and
across United Arab Emirates territory.

5
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Different scientists analyzed the aerosol optical depth (AOD) distribution in south-
eastern Asia and the Middle East in correlation with the seasonal conditions [19–21] and
to determine the air quality modifications in China, Sahel, South Africa, and South Amer-
ica [22–25]. They showed that the atmospheric heating rates and the absorption character-
istics are linearly dependent, noticing a significant difference between the aerosols in the
Indian region and the zones with large deserts and high dunes (such as UAE) contributing
to the dust loadings in the atmosphere [26].

Other researchers provided the classification of the aerosol types taking into account
different characteristics—fine mode fraction and the aerosol index [27], AOD [4,28,29],
refraction index, and Ångström exponent [30–32].

The long-term trend of AOD over the Arabian Peninsula, and eastern and southern
Asia for 2002–2009, estimated based on AERONET data, was increasing. The same tendency
was observed over most tropical oceans [33]. A long-term positive AOD trend over the
Arabian Peninsula occurred, with a higher seasonal tendency during spring and summer
(periods when the dust is transported) [26].

Multivariate statistical analysis became one of the most utilized tools for extracting the
common characteristics of big data sets issued from environmental sciences [34–38]. The
spatio-temporal analysis of AOD is mainly performed by Principal Component Analysis
(PCA, also named EOF—Empirical Orthogonal Functions), non-negative matrix factoriza-
tion (NMF), and combined Principal Component Analysis (CPCA). These tools helped
capture the aerosol regimes, the factors influencing the AOD’s concentrations, and the
trends [20–25].

Recent studies on dust-aerosol in the UAE evaluated the regional distribution of this
type of aerosol and the dust storms’ intensity [26,39–41]. Using AERONET data collected
from 2006 to 2015, Abuelgasim and Farahat [26] found an increasing trend of AOD in
summer and spring and a 4.32% mean annual variation of the aerosol loading. They
estimated a variation of 11.36% of the mean annual Ångström exponent for the study
period. The highest concentration of aerosols was found in summer, while from November
to March, an increasing tendency was found during 2011–2016.

Other scientists [40,41] studied the frequency of the dust storms for nine years, using
hourly data recorded at eight airports in the UAE. The variation of the aerosol radius was
presented in [4], based on monthly series collected at 387 points for 15 years.

Despite the investigations performed to determine the aerosol’s characteristics and
the effect of meteorological conditions on their loadings and transport in the Arabian Gulf
region, many aspects of the aerosol’s properties in the UAE remain to be studied.

The AOD time series varies depending on the data structure, aerosol extinction, and
surface reflectance [22–24]. Still, here, we shall not analyze the connection between these
variables, but the spatial and temporal variation of the AOD series for 178 months. This
research continues the attempt to understand the aerosol characteristics in the UAE, aspects
that have not been treated in the studies [4,26,40,41].

The main contributions of this research are:

(1) Performing the PCA to extract the principal components that describe the AOD series’
characteristics in time and space;

(2) Group the series in clusters (in spatial and temporal dimensions);
(3) Build the ‘regional time series’ (RTS) and the ‘temporal time series’ (TTS) of the AOD,

employing an original algorithm based on the clusters previously determined;
(4) Compare the RTS and TTS of AOD with those of the ‘regional time series’ and ‘tempo-

ral time series’ of the aerosol radius (AR) [4] to emphasize the common tendencies.

2. Methods and Data Series

The methods employed at the first stage of our investigations are PCA, also called
EOF, and Clustering.

The first one was used to estimate the similarity in terms of linear dependence within
the data and eventually to qualify regional/global aspects. The second one was performed
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to evaluate dissimilarity, the natural tendency of grouping (if present) in data, and identify-
ing aspects and events localized in time and/or space.

PCA is a statistical technique that (linearly) transforms (and deflates) a large set
of (possibly correlated) variables into a smaller set of orthogonal uncorrelated variables
representing the most significant information of the initial variables set. Initially employed
in the study of meteorological series [42], its use became frequent in other fields such as
ozone series evaluation [43,44] and isolating aerosols’ sources [23] based on AOD retrieved
from satellite data.

The PCA method is shortly described in the following.
Let us consider the matrix X, whose columns are the series recorded at each point. If n

is the number of series (367, in this case), and m is the number of time units (178 months,
here), X is an m × n matrix. It was shown that X can be written as a product of two matrices,
Y (m × m) and Z (m × n), of orthogonal functions of position and time.

The equation X = YZ is equivalent to

xik =
m

∑
j=1

yijzjk,i = 1, m, k = 1, n, (1)

so, the vector of the values recorded at a certain point is a linear combination of the Y
columns (with different weights), under orthogonality conditions.

Formula (1) is called the PCA analysis.
For a symmetric matrix,

A = XXT = YZZTYT (2)

there is a decomposition such as
A = YΛYT (3)

where Λ is the diagonal matrix formed by A’s eigenvalues. Therefore, from (1) and (3) it
results that

zik =
m

∑
j=1

yjixjk,i = 1, m, k = 1, n, (4)

because Z = YTX.
The j-th eigenvector has a contribution of λj/ ∑m

i=1 λi to X, where λi, i = 1, m are the
eigenvalues [25].

When a small dominant set of principal components exists, the technique detects the
common characteristics of the data samples and reveals the regional or temporal aspects.
The absence of dominant principal components results in the data series independence, so
the phenomenon is localized [45].

Modifications of PCA have been proposed, such as sPCA [46] (that proposes sparse
loadings), CPCA [47] (to investigate the pattern of a specific element), Common PCA (to
simultaneous reduce the dimensionality in different groups) [48], or Combined PCA (to
compare the modes in the AOD decomposition) [23,24,49]. PCA was chosen here because
we are interested in the common characteristics of the series.

To determine the number of principal components, the scree plot, the Kaiser criterion,
and the proportion of the variance explained by each component may be utilized [50–52].
Here we employed the combined scree plot and variance explained by each component.

Clustering is a method for identifying patterns and similarities within the data and
the natural grouping tendency of the similar objects within a data set of interest.

Different scientists introduced various tests for detecting the optimal number of
clusters. Although some are more commonly used (because they are well-known or easier
to compute), there is no reason to give more credit to one or another, mainly because
they rely on different mathematical and computational techniques. Therefore, the strategy
for establishing the optimal number of clusters was a multi-criteria decision obeying the
majority rule after performing 30 different tests, including silhouette [53], gap, Duda, Dunn,
Hartigan, Hubert, and so on [54]. For example, if 15 tests voted for two clusters, eight for
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three, five for four, and the rest for six, the chosen number is two. This approach assures
choosing the number of clusters with the highest probability among the possible number
of such groups. In the previous example, the probability associated with two clusters is
15/30 = 1/2, compared to 4/15, 1/6, and 1/15, associated with other choices.

Agglomerative Hierarchical Clustering has been performed using the R software.
The agglomerative coefficient was computed to determine the grouping quality. The

higher this coefficient is, the best the clustering is. The dendrogram showing the elements
in each cluster was also plotted.

The regional time series (RTS) (temporal time series (TTS)) was built using the spatially-
indexed time series (SITS) (temporally-indexed time series (TITS)) and the following algo-
rithm, which is a modified version of Method II [4] based on the resulting clusters.

Given k data series each containing n values, consecutively recorded at the same time,
denote by Y = (yji) (j = 1, . . . , n, i = 1, . . . , k) the matrix whose column i is formed by the
elements of the i-th series (i = 1, . . . , k). The steps of the algorithm for determining the
representative series are:

(I) Choose the number of clusters, m, and perform the series’ clustering, based on a
selection algorithm. Here, the choice is made using 30 criteria presented in [54] and the
majority principle: m is the number resulting from the highest number of algorithms.

(II) Among the m clusters computed at step (I), choose the one containing the highest
number of series (N) and construct a new matrix, Y1, with the series in this cluster.

(III) Select the representative value in the j-th line of the matrix Y1 to be the average of the
values in line j.

(IV) Evaluate the error by using the Mean Standard and Mean Absolute Errors (MSE and
MAE) corresponding to all the observation sites.

(V) Plot the resulted series.

The novelty of the approach proposed here consists of the following.

1. While selection of the number of clusters in the initial algorithm was left to the user,
in this article, an efficient selection procedure is employed.

2. If, in the second step, two clusterings are providing the same maximum number of
elements in one of the sets, the chosen one is that which maximizes the distances
between the clusters and minimizes those inside the groups.

3. If, after applying the second criterion, there are two clusters with the same number of
elements, the computation is performed with each of them. The best result (that gives
the minimum mean average error—MAE, mean standard error—MSE, and mean
absolute percentage error (%)—MAPE) is reported.

The trend and level stationarity of RTS and TTS has been checked using the KPSS
test [55]. The null hypothesis, H0, was the series stationarity in level (trend), and the
alternative one, H1, was the series nonstationarity in level (trend).

Remember that a time series is stationary if the statistical properties of the process gen-
erating it remain unchanged over time. Therefore, the mean, variance, and autocorrelation
structure are constant over time.

One of the common causes of the violation of H0 is the existence of a trend in the
mean due to the presence of a unit root or the existence of a deterministic trend. In the first
case, the stochastic shocks have persistent effects. In contrast, in the second one, they have
only transitory effects after which the variable tends toward a deterministically evolving
(non-constant) mean (and the process is called a trend-stationary).

The KPSS test is based on the time series decomposition into a deterministic trend,
a random walk, and a stationary error. In the case of stationarity, the series has a fixed
element as intercept, or the series is stationary around a fixed level.

The test was performed at the level of significance of 0.05. If the p-value is less than
0.05, the null hypothesis is rejected.

Data used in this study are monthly AOD series retrieved by Terra MODIS (at a
wavelength of 412 nm) at 387 points from July 2002 to April 2017 in the Arabian Gulf
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Region (Figure 1a), between 24.95–26.25 latitudes and 51.55–55.75 longitudes. The series
retrieved at the point of coordinates 26.15 latitude and 51.55 longitude is presented in
Figure 1b and the series recorded in January 2003 is shown in Figure 1c.

 

Figure 1. (a) Observation area (https://www.google.com/mymaps/, 2022); (b) the series retrieved
at the point of coordinates 26.15 latitude and 51.55 longitude (SITS); (c) series recorded in January
2003 (TITS).

The sites are ordered in increasing order in latitude, and subsequently, by decrease
latitude, from the left corner on the map of the studied region to the lower right corner.
Details on the study area may be found in [4,40,41]. The coordinates of the sampling points
are given in Table S1 in the Supplementary Materials. Data have been organized in a matrix,
X, whose columns contain the AOD at each point, and the lines contain the monthly values
at the observation points.

3. Results and Discussion

3.1. PCA and Clustering

Table 1 shows the computed eigenvalues greater than 1, the proportion of the variance
explained by each component, and the cumulative proportion of the variance explained
for SITS.
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Table 1. Eigen-analysis of the correlation matrix of SITS.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Eigenvalues 350.98 10.99 4.09 3.79 2.55 1.33 1.17 1.12
Proportion of variance 0.902 0.028 0.011 0.010 0.007 0.003 0.003 0.003
Cumulative proportion 0.902 0.931 0.941 0.951 0.957 0.961 0.964 0.967

Although eight eigenvalues are greater than 1, the first component (PC1) explains
90.20% of the variance within this set. The second component (PC2) explains only 2.8%
of the variance within SITS, while the others have even smaller contributions. The first
two principal components (PCs) are enough to extract the essential information within the
time series set, which proves to be highly PCA compressible. Only 9.80% of the variance
within this data is outside the direction of the first dominant PC, and 6.90% is outside the
plane determined by PC1 and PC2. These small percentages reveal that the series similarity
(linear dependence) is high in this set because the data points agglomerate along with PC1.
Therefore, the sand aerosols over the Arabian Gulf have a regional nature, the AOD values
being relatively similar (linearly dependent) across the analyzed area.

The optimal number of clusters—two—was selected after running the NbClust pack-
age in R. Figure 2 displays the silhouette chart (one of the 30 methods run). The agglomera-
tive clustering has been performed for SITS setting the number of clusters equal to two. The
computed agglomerative coefficient was 0.7678, indicating a good partition of the series in
two sets. The highest this coefficient is, the better the clustering is.

 
Figure 2. The silhouette chart. The dotted line indicates the optimum number of clusters (two).

The dendrogram displaying the groups of the observation points is presented in
Figure 3.
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Figure 3. The dendrogram for classification of SITS. The elements in different clusters are in different colors.

Analyzing the elements in the clusters related to the positions of the points on the
map (Figure 1a and Supplementary Table S1), results in that one cluster contains the points
situated on the eastern side of the region and (very few) near the Qatar shore, while the
second one contains the rest of the locations. So, one cluster contains the sites situated in
the direction where the Shamal blows—between the red borders in Figure 1.

Figure 4 shows the scree plot of the TITS (the lines of the data matrix). The computation
found 25 eigenvalues greater than one, with only six PCs explaining 60.5% of the variance.

Figure 4. The scree plot for TITS.

The majority principle decided that the number of clusters to classify the series is also
two for the TITS. Figure 5 contains the elements in the clusters and the dendrograms for
the TITS. The agglomerative clustering provided an agglomerative coefficient of 0.92802,
which indicates a strong separation between the groups.
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Figure 5. (a) Clusters (the values on the axes represent the scores on PC2 and PC1) and (b) the dendro-
gram from the hierarchical clustering of TITS. The elements in different clusters are in different colors.

Comparing the clusters’ content, it resulted that one of them mainly contains the series
recorded in the summer months (March to August), while the other contains the rest. So,
the classification is related to seasonality.

3.2. Estimating the RTS and TTS

Taking into account the results from the previous section, the RTS has been computed
by applying the algorithm (I)–(V) described in Section 2 to SITS (columns in the matrix
X). The AOD’s RTS (as a function of time) is presented in Figure 6a. One can remark on
the periodic behavior of this series, whose highest values of the AOD’s RTS are primarily
recorded in July, while the lowest is in November–January.

Figure 6. (a). The AOD ‘s RTS; (b) AOD’s RTS monthly average.

Figure 6b shows that the AOD’s RTS monthly average value for July is about three
times higher than the corresponding average values for November–January. This result
is in concordance with those of Abuelgasim and Farahat [26] and Yoon et al. [56], which
indicated a significant increase of AOD over the Gulf Region, especially in summer, related
to the dust abundance [39–41,57,58].
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The trend and level stationarity hypotheses could not be rejected for the RTS (p-value > 0.1,
in both cases) when applying the KPSS test. This means that the RTS does not present a
variation in trend or level.

The TTS (Figure 7) was built from the TITS (the transposed matrix, YT) and the
same algorithm.

 
Figure 7. The TTS of AOD obtained running the algorithm from Section 3 for TITS.

The aspect of TTS, with peaks and troughs is related not only by the monthly charac-
teristics of the AOD (higher dust quantities in summer, and lower in winter), but also to the
position of the sampling points (Figure 1a) in the direction NW-SE in which Shamal blows.

The non-stationarity in the level and trend stationarity are emphasized by the results
of the KPSS test, whose p-values are lower than 0.01 (for level-stationarity) and 0.12376 (for
trend-stationarity).

The goodness-of-fit indicators are tools for assessing the fit quality. The lower their
values are, the better the fit is. For a correct model quality assessment, using more than one
indicator is recommended. For example, MSE can be influenced by values that significantly
deviate from the average. Therefore, three goodness-of-fit indicators have been utilized
here—MAE, MSE, and MAPE—the last one being non-dimensional, so it is more reliable
for comparisons between the two models.

All the values of the goodness-of-fit indicators corresponding to the RTS and TTS are
all very low (Table 2). They indicate a better fit for RTS than for TTS when reported to the
average indicators. Indeed, the mean values of MAE (MSE and MAPE, respectively) are
0.1724/0.0326 = 5.29 (21.88 and 4.38 times higher, respectively) for TTS than for RTS. The
minimum MAE and MSE are also lower for RTS compared to TTS, but the min MAPE is
higher for RTS.

Table 2. Goodness of fit indicators of RTS and TTS.

MAE MSE MAPE (%)

Min Mean Max Min Mean Max Min Mean Max

RTS 0.0207 0.0326 0.0598 0.0008 0.0025 0.0081 4.7925 7.7334 14.1450
TTS 0.0142 0.1724 0.6671 0.0003 0.0547 0.4481 4.3162 33.8819 68.4155

The maximum values of MAE (max MSE and max MAPE, respectively) is 11.15 (55.32
and 4.84, respectively) times higher for RTS than for TTS, indicating a higher variability at
the temporal scale than at the spatial one.

This means that RTS better represents the individual series than TTS, so there is a
higher homogeneity of the SITS than the TITS. The result is in concordance with the findings
related to the seasonal variability of AOD [26].
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4. Conclusions

This study extended our previous research on the aerosol radius, using the AOD series
collected during the same period at the same sampling points in the Gulf Region. The
novelty of the research consists of a dual analysis in time and space and the detection of
RTS and TTS that characterizes the AOD behavior over the study zone.

The approach combined the PCA with a new algorithm, building the RTS and TTS
series based on the classification provided by the clustering.

It was found that a single principal component explains more than 90% of the variance
of SITS, indicating that the series are agglomerated along with PC1. The TITS are scattered
(the first six dominant principal components accounting for only 60.5% of the variance in
the sets). Still, both RTS and TTS fit data well and are trend stationary.

We intend to extend the research to sets of series with missing data, given that most of
the available records present gaps.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13060857/s1, Table S1: Data series and the coordinates of
the locations.
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Abstract: Nowadays, observing, recording, and modeling the dynamics of atmospheric pollu-
tants represent actual study areas given the effects of pollution on the population and ecosys-
tems. The existence of aberrant values may influence reports on air quality when they are based
on average values over a period. This may also influence the quality of models, which are fur-
ther used in forecasting. Therefore, correct data collection and analysis is necessary before model-
ing. This study aimed to detect aberrant values in a nitrogen oxide concentration series recorded
in the interval 1 January–8 June 2016 in Timisoara, Romania, and retrieved from the official re-
ports of the National Network for Monitoring the Air Quality, Romania. Four methods were uti-
lized, including the interquartile range (IQR), isolation forest, local outlier factor (LOF) methods,
and the generalized extreme studentized deviate (GESD) test. Autoregressive integrated mov-
ing average (ARIMA), Generalized Regression Neural Networks (GRNN), and hybrid ARIMA-
GRNN models were built for the series before and after the removal of aberrant values. The
results show that the first approach provided a good model (from a statistical viewpoint) for
the series after the anomalies removal. The best model was obtained by the hybrid ARIMA-
GRNN. For example, for the raw NO2 series, the ARIMA model was not statistically validated,
whereas, for the series without outliers, the ARIMA(1,1,1) was validated. The GRNN model for
the raw series was able to learn the data well: R2 = 76.135%, the correlation between the actual
and predicted values (rap) was 0.8778, the mean standard errors (MSE) = 0.177, the mean absolute
error MAE = 0.2839, and the mean absolute percentage error MAPE = 9.9786. Still, on the test set,
the results were worse: MSE = 1.5101, MAE = 0.8175, rap = 0.4482. For the series without outliers,
the model was able to learn the data in the training set better than for the raw series (R2 = 0.996),
whereas, on the test set, the results were not very good (R2 = 0.473). The performances of the hybrid
ARIMA–GRNN on the initial series were not satisfactory on the test (the pattern of the computed
values was almost linear) but were very good on the series without outliers (the correlation between the
predicted values on the test set was very close to 1). The same was true for the models built for O3.

Keywords: aberrant values; nitrogen oxides; ARIMA; GRNN; ARIMA–GRNN; isolation forest; LOF

1. Introduction

Nowadays, ambient air pollution levels and trends have become a topic of interest
worldwide because primary atmospheric pollutants (APPs) constitute a risk factor for the
population and ecosystems [1–4]. Therefore, monitoring air quality, especially in urban or
crowded areas, is essential for controlling pollution [5] and protecting human health.

Pollutants’ dispersion into the atmosphere is a hazardous phenomenon, which is
difficult to assess and sometimes unpredictable. Their diffusion depends on meteorological
factors, such as the relative speed and wind direction, ambient temperature, atmospheric
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turbulence, and buoyant force [6,7]. The distinct mechanisms responsible for pollutant dis-
persion are molecular diffusion, turbulent diffusion, and transport due to wind. Generally,
wind speed influences pollutants’ distribution. High concentrations of pollutants reach the
atmospheric layer and remain there if the wind speed is low and uniform. Atmospheric calm
creates favorable conditions for the accumulation of pollutants in the source’s vicinity [8].

Nitrogen oxides (NOx) are gases containing various amounts of nitrogen and oxygen
with high reactivity. NOx represents a family of seven chemical compounds (N2O, NO,
N2O2, N2O3, NO2, N2O4, N2O5) [9] Nitrogen monoxide and dioxide (NO and NO2) are the
main NOx found in the atmosphere, resulting from combustion processes (from electricity
generation, industrial activities, and engine exhaust). They contribute to the apparition
of acid rains and favor the accumulation of nitrates in the soil, leading to ecological dise-
quilibrium [10]. Nitrogen oxides contribute to the greenhouse effect and smog formation,
reducing the visibility in urban areas and the deterioration of water quality.

Nitrogen oxide (NO) is a colorless gas and a free radical. It is important that it is
monitored s it is a precursor of tropospheric ozone, nitric acid, and particulate nitrate.
Although NO does not directly affect acid deposition or the climate, nitric acid and ozone and
particulate nitrate do. Natural NO reduces ozone in the upper stratosphere. NO emissions
from jets that fly in the stratosphere also reduce stratospheric ozone. In urban zones, NO
mixing ratios reach 0.1 ppmv in the early morning but may decrease to zero by midmorning
due to the reaction with ozone. Outdoor levels of NO are not regulated in any country [11].

Nitrogen dioxide (NO2) is a brown gas with a strong odor. NO2 is an intermediary
between NO emission and ozone (O3) formation. It is also a precursor to nitric acid, a
component of acid deposition. Natural NO2, such as natural NO, reduces O3 in the upper
stratosphere. The primary source of NO2 is NO oxidation. Minor sources are fossil fuel
combustion and biomass burning. During combustion or burning, NO2 emissions are about
5% to 15% of those of NO. In urban regions, NO2 mixing ratios range from 0.1 to 0.25 ppmv.
Outdoors, NO2 is more relevant during the early morning than during midday or afternoon
because sunlight breaks down most NO2 past midmorning, which is usually the opposite
to ozone [12].

NO’s toxicity is four times lower than that of NO2. Children are the most affected by
exposure to nitrogen dioxide. NO2 is very toxic for the population and animals [10,13].
Exposure to low concentrations of NO2 affects lung tissue, and high pollutant concentra-
tions may be fatal. The population exposed to low concentrations of nitrogen oxides may
experience respiratory issues for a long time [2,4].

Therefore, outdoor levels of NO2 are now regulated in many countries, including
Romania [12,14,15]. Ozone is a relatively colorless gas at typical mixing ratios. O3 exhibits
an odor when its mixing ratio exceeds 0.02 ppmv. In urban smog, it is considered an
air pollutant because of its harmful effects on humans, animals, plants, and materials.
In the stratosphere, ozone’s absorption of UV radiation provides a protective shield for
terrestrial life. O3 is not emitted. Its only source in the air is chemical reaction. O3 is a
pollutant produced in the atmosphere, and therefore it is not necessarily related to urban
or industrial areas and may be seen in suburban or rural areas, in downwind zones from
where the precursors are emitted. In urban air, ozone mixing ratios range from less than
0.01 ppmv at night to 0.5 ppmv (during the afternoon, downwind from the most polluted
cities worldwide), with typical values of 0.15 ppmv during moderately polluted afternoons.
It has a typical daily cycle characteristic of the positions with respect to the topography
and the location where the precursors are emitted. Peak ozone mixing ratios are around
10 ppmv in the stratosphere [11].

In the last decade, special attention has been paid to mathematical modeling, the study
of the pollutants diffusion from the atmosphere, developing new control systems, and
reducing environmental pollution [16,17]. The diversity of actual models has imposed
extraordinary rigor on their understanding and expanded their types for correct application
depending on local or regional air pollution particularities. The transport and dispersion
of pollutants in the atmosphere are complex phenomena that are not easy to translate
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into mathematical calculation systems, so many algorithms are accepted by simplifying
hypotheses [18]. Under these conditions, the results of the estimates are more or less close
to reality. Each model has its limits. The volume, type of input data, and mathematical
complexity largely depend on the researchers’ abilities because the data quality, accuracy,
and discretization affect the integrity of the simulation results [19].

Modeling of the dissipation of NOx from different sources has been achieved using
different models, such as, for example, CALPUFF [20] (dispersion of traffic emissions
in urban zones). Fallah-Shorshani et al. [21] used two air quality models to simulate
local atmospheric dissipation of NOx and its transformation to NO2 using the Gaussian
puff (CALPUFF) and street-canyon model (SIRANE). The SIRANE model is based on
transformations involving NO, NO2, and O3 (in the Leighton cycle). Shekarrizfard et al. [22]
reported CALMET-CALPUFF for the assessment of the effects of a regional transit policy
on air quality and population exposure. Soulhac et al. [23] utilized the SIRANE dispersion
model to assess the transfer of pollutants within and out of an urban canopy.

Stochastic models are statistical or semi-empirical techniques for estimating trends,
periodicity, and the interrelationship between air quality and atmospheric measurements,
and forecasting air pollution episodes. These models are instrumental in real-time forecast-
ing or relatively short periods, where available information from measurements is relevant
(immediate estimates) [24]. The most well-known model is the Box–Jenkins approach (for
example, ARIMA and SARIMA).

Gocheva-Ilieva et al. [17] examined the concentrations of NO, NO2, NOx, and ground-
level O3 in a town in Bulgaria for one year using hourly data. The obtained SARIMA
models demonstrated a very good fitting performance and short-term predictions for the
next 72 h.

Kumar and Jain [25] used ARIMA, after a suitable variance stabilizing transformation
of the concentration time series (O3, CO, NO, and NO2), to model data collected at a traffic
station in Delhi (India). Zhu [26] compared the ARIMA and exponential smoothing models
on 2014 concentrations of NO2 and O3 in the Yanqing county, Beijing, China. Munir and
Mayfield [27] used auto-regressive integrated moving average with exogenous variables
(ARIMAX) to model the distributions and temporal variability of NO2 concentrations in
Sheffield, UK, from August 2019 to September 2020. Using cross-validation ARIMAX,
the authors found a strong correlation between the predicted values and the measured
concentrations (the correlation coefficient was 0.84 and RMSE was 9.90). Hajmohammadi
and Heydecker [28] developed a vector autoregressive moving average model to assess
the air quality in London in 2017. The authors cross-validated the model using kriging
to achieve spatial interpolation of NO, NO2, and NOx, respectively. Moreover, seasonal
ARMA models of the air quality across London for 30 individual stations were validated.
This study established that the VARMA model is appropriate for evaluating interventions,
such as the Ultra-Low Emissions Zone.

Artificial neural networks (ANNs) have been widely used for modeling processes that
present high variability and nonlinearities, such as those related to air pollution. Gardner
and Dorling [29] employed a multilayer perceptron (MLP) artificial network to model NO
and NO2 concentrations in London and showed that the variation in emissions could be
modeled using the time of day and day of the week as input variables.

Based on the literature findings, and\ given the superior performances of deterministic
methods, Rahimi [30] utilized ANN to develop a model that provided accurate short-term
(hourly) predictions of NOx and NO2 series in Tabriz, Iran. Dragomir et al. [31] presented
an evaluation of the efficiency of artificial neural networks (ANNs) and the multiple linear
regression (MLR) model for NO2 prediction in 3 scenarios (by randomly eliminating (1) 25%,
(2) 50%, or (3) 75% of the observed NO2 data) in Brăila city, Romania, from 2009–2013. The
analysis results demonstrated that the NO2 values estimated using MLR and ANNs were
similar to the measured NO2 concentrations (the corresponding coefficients were (1) 0.580,
0.604; (2) 0.589, 0.565; and (3) 0.474, 0.483). The best outcomes were achieved for the ANN
values in all scenarios.
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Multilayer perceptron is a type of neural network used in the studies of Baawain
and Al-Serihi [32], Jiang et al. [33], and Hrsut et al. [34] to model NO, NO2, NOX, O3 [32],
NO2 [33], NOx, and O3 [34] in an industrial port, Shanghai, and a site in an urban residential
area in Zagreb, Croatia, respectively. Moustris et al. [35] provided a 3-day forecast for the
NO2 and O3 series in Athens using an MLP network. Agirre-Basurko et al. [36] compared
the performances of MLP and linear regression approaches on O3 and NO2 series and
Kukkonen et al. [37] on NO2 series.

Another approach that has provided good results in predicting NOx and NO2 series is
based on support vector regression and was utilized by Wang et al. [38] and Osowski and
Garanty [39]. The last two authors also proposed a discrete wavelet decomposition for the
data series.

Different scientists have searched for the best model for series forecasting. For ex-
ample, Hajek and Olej [40] used SVR, TSFIS, and MLP for NO2, NOX, and O3 prediction.
Lin et al. [41] compared the ability of GRNN, SVR, MLP, and SARIMA to forecast NO2
and NOx concentrations. Singh et al. [42] utilized linear regression, MLP, GRNN, and RBF
neural networks for NO2 prediction in an urban area.

With the same idea, Liu et al. [43] presented a combined prediction model of the
NO2 concentration in Tianjin, China. The authors reported the results obtained using the
discrete wavelet decomposition and neural network method. They concluded that when
utilizing a series of pollutant concentrations with different frequencies, it is possible to
describe the data characteristics better. A high-dimensional nonlinear learning algorithm
was produced when the prediction model was built using an LSTM neural network, but the
overall prediction accuracy was the highest. The best forecast of the NO2 concentrations
was obtained using the DWT-LSTM neural network method. Wang et al. [44] presented a
hybrid approach consisting of the NOx emission prediction model based on CEEMDAN
and AM-LSTM.

In a study examining population exposure to traffic-related NOx air pollution,
Shekarrizfard et al. [45] showed that improving the estimation of pollutant exposure is
essential for estimating the effects of pollution.

Regardless of the chosen model type, it can only be used when the pollutant concen-
trations are known. Otherwise, an emissions inventory is helpful.

The National Inventory of Greenhouse Gas Emissions under the United Nations
Framework Convention on Climate Change presents the levels of emissions/sequestration
of greenhouse gases. They are structured according to the categories of activities and pollu-
tants. The emissions represent aggregate annual values of the contribution of a particular
type of source of a specific contaminant. The National Inventory of Air Pollutant Emissions
reported to the Convention on Long-Range Transboundary Air Pollution Secretariat rear-
ranges the data by national environmental principles. Finally, the conversion of data from
national emission inventories is performed based on the national classification of economic
activities, creating a relationship between environmental variables (emission level) and
economic variables (value-added, turnover, etc.) according to the National Institute of
Statistics methodology on account of air pollutant emissions (MAAPE-Air) [46].

In Romania, the National Air Quality Monitoring Network (NAQMN) [15] has
41 centers where data is collected from recording stations. After preliminary validation,
data is transmitted for certification to the Air Quality Assessment Center of the National
Agency for Environmental Protection. In Romania, Law no. 104/2011 [47] regulates the
rules that ensure ambient air quality. Based on the air quality assessment, the number, type,
and location of the fixed measurement points and assessed pollutants are determined. The
agglomerations are classified into three classes (A, B, or C) based on the results of the na-
tional air quality assessment using measurements at fixed locations taken at the measuring
stations of the Network of the National Air Quality Monitoring Authority, and the results
obtained from the mathematical modeling of the dispersion of pollutants emitted into the
air. The pollutants taken into account are sulfur dioxide, nitrogen dioxide, nitrogen oxides,
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particulate matter, lead, benzene, carbon monoxide, ozone, arsenic, cadmium, mercury,
nickel, and benzo [15].

The specific air quality index, in short, “specific index”, is a system used for cod-
ing the recorded concentrations for each of the monitored pollutants (SO2, NO2, O3,
PM2.5, and PM10) and is established for each of the automatic stations within the Na-
tional Air Quality Monitoring Network as being the highest of the specific indices cor-
responding to the monitored pollutants. The general index and specific indices are
represented by integers between 1 and 6, with each number corresponding to a color
(1—good—turquoise, 2—acceptable—green, 3—moderate—yellow, 4—bad—red, 5—very
bad—burgundy, 6—extremely bad—violet). The specific indices and the general index of
the station are updated hourly [48]. For example, Figure 1 shows a recent map of the air
quality in Romania.

 

Figure 1. Map of the air quality in Romania (updated 22 March 8:20:00) (retrieved from
https://www.calitateaer.ro/public/home-page/?__locale=ro (accessed on 10 March 2022).

The critical concentration levels established by Romanian law [47] for NOX/NO2 is
as follows: 400 μg/m3—alert threshold; 200 μg/m3 NO2—hourly limit value for human
health protection; 40 μg/m3 NO2—the annual limit value for the protection of human
health; and 30 μg/m3 NOx—annual critical level for vegetation protection.

The results of studies have shown that the average number of days on which there is
good air quality in big cities in Romania (Bucharest [49], Timisoara [50–52], Cluj-Napoca [53],
Constanta, and the surrounding area [54,55], etc.) has decreased year by year.

Since NO2 pollution in different European cities remains high (>40 μg/m3 is the
maximum accepted annual mean concentration) and given its harmful effects on population
health [14,46], continuous monitoring is required.

Understanding the existence of anomalies existence is becoming an important topic in
the investigation of air quality. Anomalies are values in a data series that are unusual or
dissimilar from the remaining data. They may be irregular items resulting from unusual
or unexpected events, indicating abnormal behavior [56,57]. The analysis of anomalies is
necessary for the detection of the source of their occurrence [57]. Hawkins et al. [58] stated
that the values of series collected in polluted areas can behave as anomalies (outliers).
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Despite the importance of the detection of outliers in atmospheric sciences, only a
few articles, especially in the last years, have investigated this aspect and proposed new
approaches for the better selection of such values [56–60].

In the above context, this study aimed to identify the anomalies in a nitrogen oxide
series in Timisoara, one of Romania’s most prosperous industrial cities. The motivations
for this study are as follows:

1. Only a few studies have been devoted to studying the existence of outliers in a
pollutant series, with none of them using data collected in Romania.

2. Only a few articles have used hybrid approaches to model pollutant series, with
most of them being based on atmospheric circulation models, not on the Box–Jenkins
artificial neural network approach.

3. Very few studies have attempted to improve the quality of models after the removal
of aberrant values from the time series.

Therefore, three models are proposed for a raw series including nitrogen oxides and
ozone, and the series after the removal of outliers. Their performances are compared to
determine the influence of the aberrant values on the models’ quality.

2. Materials and Methods

2.1. Data

The geographical area of this study is Timiş county, located in the southwest Romania
plain (Figure 2). The most important city in this county is Timis, oara, situated at 45◦44′
northern latitude and 21◦13′ eastern longitude. It is one of the most prosperous economic
and university cities. After 1990, transport, especially by cars, recorded an accelerated
increase (reaching 1 car for every 2.66 inhabitants in 2017).

 

Figure 2. (a) Timis, oara city (with the air monitoring stations, TM-1, TM-2, TM-4, and TM-5); (b) Map
of Romania (http://www.destination360.com/europe/romania/map (accessed on 20 March 2022)).

Therefore, the pollution produced by this sector has proportionally increased.
The climate is moderate continental, with winds blowing from west and north-west,

and an annual precipitation of 650 L/m2. The atmospheric circulation favors the accumula-
tion of pollutants emitted in industrial zones and car exhaust above the city.

Data (NO, NO2, and NOx and O3 concentrations) recorded at the monitoring station
TM2 (C. D. Loga Blvd.—45◦45′16.88′′ N; 21◦14′05.91′′ E, 92 m altitude) were downloaded
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daily from the NAQMN website [15] during the period 1 January–8 June 2016. They formed
complete sets (Figure 3) without gaps. It is noted that the highest values were recorded
for the NOx series during the period March-April 2016 and for NO in the second half of
May. The NO series exhibited the lowest variability. The existence of periods when the
NOx concentrations were much higher than the sum of the NO and NO2 concentration
is also noted, given that apart from NO and NO2, NOx incorporates other nitrogen oxide
species that can accumulate in the atmosphere in periods of calm before participating in
chemical reactions.

 
Figure 3. The pollutants series: NO, NO2, NOx, and O3.

An example of the hourly air quality at the studied station during the period 1–21
March 2021 is presented in Figure 4a and the average annual concentration of NO2 in
Timisoara during the period 2000–2019 is presented in Figure 4b.

2.2. Methodology
2.2.1. Statistical Analysis

The hourly data were processed to build the average data series, which was studied.
The statistical analysis consisted of normality, homoskedasticity, autocorrelation, and sta-
tionarity tests, using the Shapiro–Wilk and Fligner–Killeen test, Levene test, autocorrelation
function, and KPSS test, respectively. The Pettitt test was used to address the existence of a
change point (in mean) [3].

Anomaly (aberrant) detection is used in many domains, such as manufacturing error
detection, attack detection in cybersecurity, stroke recognition in EEG measurement, etc.

Anomalies are observations that deviate significantly from the expected behavior
and cannot be categorized as noise or measurement error, and thus cannot be easily
discarded [61]. In the case of anomalies, the unexpected event might be the study object.

Fox et al. [61] define two types of anomalies: type I, affecting a single instance; and
type II, where the anomalous behavior extends in time.

Anomaly detection can be studied in both the univariate and multivariate time do-
mains, with the latter possibly implying multiple dimensions that display anomalies
simultaneously or even waterfall effects. Here, we focused on the univariate case.

Most techniques used for anomaly detection in time series consider the time aspect, ei-
ther in the vicinity or globally, using the entire data series to mark the anomalies. Four such
methods were applied in this study [62]. One of the most popular, called the IQR method,
considers values outside the interval (Q1 − 1.5 IQR, Q3 + 1.5 IQR) as anomalies (Q1 is the
first quartile, Q3 is the third quartile, and IQR is the interquartile range). Sometimes, the
term 1.5 is replaced by 3.
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The second method employed in this study is isolation forest (IF) [63–65]. It relies on
the concept of isolating unusual instances, as opposed to determining the properties of
normal samples and then examining non-matching patterns. It achieves anomaly detection
by building isolation trees (ITs), where anomalies are often represented as existing closer to
the root of the IT, rather than higher at the leaves, where regular data points are found.

To build the trees, IF generates recursive partitioning of the dataset (Figure 5) by
randomly selecting a dimension in the dataset, followed by a recursive split of the specific
dimension anywhere between the minimum and maximum value of the remaining set.

 

 

Figure 4. (a) Hourly air quality at the studied station during the period 1–21 March 2021. (b) Annual
average concentration of NO2.

 

Figure 5. Recursive partitioning of the dataset. (a) shows much fewer splits needed to isolate an
anomalous data point (indicated by arrow) compared to (b) where the data point indicated by arrow
is normal.
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A path length of a point x, PL(x), is computed as the number of edges x that traverse
an isolation tree from the root node until the traversal is terminated at an external node.

Computing the path length means to count the number of partitioning steps required
to isolate a data point. The lower the path length or tree height value, the higher the
probability of a specific instance being an anomaly.

The average path lengths for instances are then used to evaluate the probabilities of
data points showing anomalous behavior.

The application of IF for anomaly detection has two main steps:

1. Building and training the isolation trees.
2. Assigning anomaly scores to data points based on PL by computing the tree height

length as binary search trees.

The anomaly score s of an instance x is defined as:

s(x, n) = 2−E(L(x))/c(n), (1)

where E(L(x)) is the average of L(x) from a collection of isolation trees, and c(n) is the
average of L(n) given n instances.

3. Using the anomaly scores, the following decision is made:

(a) If instances have an s value that is much smaller than 0.5, then they are considered
normal instances;

(b) If all the instances have s ≈ 0.5, then the entire sample does not have any distinct
anomaly;

(c) Instances with an s value larger than 0.5 are marked as anomalies [63].

While IQR and IF detect global outliers, LOF mainly identifies local outliers [42].
The decision regarding whether an outlier is local is made based on an evaluation of the
associated probability, determined by the k-nearest neighbors (kNN) method [66].

To determine if a point p in a study set is an outlier, the following operations are
performed in LOF [67] for p: (a) computation of the k-distance; (b) computation of the kNN;
(c) calculation of the local reachability density; and (d) detection of the LOF score. Point p
is classified as an outlier by comparing the score with a given threshold.

The last method utilized to detect both types of anomalies—local and global—in the data
series is the generalized extreme studentized deviate test (GESD) [68]. Its stages are as follows:

• Analyze the existence of periodicity in the data series;
• Divide the series into non-overlapping intervals Iw;
• For each interval:

� Determine the seasonal compound (if it exists);
� Compute the median;
� Extract the residual, as the difference between the values of the series, the median,

and the seasonal component;
� Run the ESD algorithm (with the median and mean absolute error in the compu-

tation of the test statistics) [69].

• Return the outliers obtained from the previous stage.

The advantage of this technique is that it can be used even if the timestamps are unknown.
The correlation between the four series and the series anomalies, respectively, is

addressed by computing the correlation coefficients. In the case of low correlations, models
were built only for the individual series.

2.2.2. Modeling

This work emphasizes how aberrant values (anomalies) influence the quality of models
built using raw series and after their removal. ARIMA, GRNN, and hybrid ARIMA-GRNN
models were built for the raw series and the series obtained after removing the aberrant values.
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A time process (Xt, t∈Z) is stationary if it satisfies the following conditions:

• ∀t ∈ Z, M
(
X2

t
)
< +∞;

• ∀t ∈ Z, M(Xt) < +∞ and is invariant in time (M denotes the expectation);
• ∀t, h ∈ Z, Cov(Xt, Xt+h) = γ(h) (i.e., the covariance of Xt and Xt+h depends only on

the lag h).

Let us denote the d-the order difference of Xt by ΔdXt, where B is the backshift operator.
A time process (Xt; t∈Z) is called an autoregressive integrated moving average process

ARIMA(p,d,q) if:
Φ(B)ΔdXt = Θ(B)εt, (2)

where Φ and Θ are respectively polynomials of p and q orders with roots higher than 1,
respectively, and (εt, t∈Z) is white noise [70].

Among two valid models, the best one is selected based on the Akaike criteria. The
lower the AIC value, the better the model is [70].

An ARIMA(p, q) process is a particular case of ARIMA, with d = 0.
Generally, a stationary process can be approximated by an ARMA(p, q) model.
The generalized regression neural network belongs to the group probabilistic neural

networks. It is composed of four layers (Figure 6) [71].

 
Figure 6. The structure of a GRNN.

The first one—input—contains the series values X = (x1, . . . , xn). The second
one—hidden—is composed of neurons that apply a kernel function to the distances be-
tween the training data and the prediction point. In this process, σ values are employed
to compute the radius of influence. The best σ is determined when the network is trained
to control the distributions of the kernel function. In this study, the Gaussian kernel was
utilized, and the gradient algorithm was employed to estimate the best σ [71].

In this study, the interval 0.0001–10 was used to search for σ values in.
The number of neurons in the hidden layer after training is the same as the number of

training samples involved in the modeling. The unnecessary neurons are removed based
on the error minimization criterion during an optimization process [71,72].

The summation layer is composed of two neurons (D- and S-) that sum up the values
collected from the previous layer. The only difference between them is that the D-summation
neuron computes a weighted sum of the values resulting from the hidden layer [72].

The last layer (output) provides the ratios between the corresponding values from the
D- and S- summation neurons.

To perform the modeling, the series was divided into a ratio training:test = 80:20, with
the first part used for training, and the second part for testing. The number of iterations
was fixed at 5000 (maximum) and 1000 (without improvement). The regressors were
considered as lagged variables, with lags between 1 and 6. The algorithm was run with
different regressors, and the best result was kept. The correlation between the actual and
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predicted values (rap), mean standard error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and R2 were employed.

In the hybrid ARIMA–GRNN procedure, an ARIMA model was first built for the data
series, and then the residual was modeled using GRNN. The same setting that was used in
the GRNN algorithm for the data series was kept when running GRNN for the residuals in
the ARIMA model.

The ability to capture nonlinearities, the use of nonparametric regression, and learn-
ing without backpropagation is recommended regarding GRNN to solve classification,
regression, and forecast problems involving continuous variables [71,72]. These characteristics
improve ARIMA’s capabilities to model processes with phenomena with high linear dynamics.

Figure 7 shows a flowchart of the study.

Figure 7. The flowchart of the study.

3. Results and Discussion

3.1. Results of the Statistical Analysis and the Anomaly Detection

The basic statistics of the average data series are presented in Table 1.

Table 1. Basic statistics of the pollutant series during the study period.

Statistics NOx NO NO2 O3

min (μg/m3) 0.00 1.60 0.00 12.04
max (μg/m3) 179.34 150.12 67.86 91.28

mean (μg/m3) 32.63 9.87 15.67 42.72
stdev (μg/m3) 24.81 16.27 10.53 18.71

cv 0.76 1.64 0.67 0.44
skew 3.00 5.28 1.78 0.33
kurt 10.82 37.00 4.64 −0.66

The NO and NOx series display a very high range while the NO2 and O3 ranges are
more than twofold lower compared to those of the first two series. The lowest average
corresponds to NO. It is very small compared to the maximum, indicating that most
series values are closer to the minimum than to the maximum. NOx showed low average
values compared to the maximum for. All series had moderate standard deviations (stdev)
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and coefficient of variations, indicating a moderate dispersion of the data series around
the average values. The series are right-skewed (skew >0), which is confirmed by the
histograms shown in Figure 8. The kurtosis coefficient indicates leptokurtic distributions
for all but the O3 series (which is platykurtic).

 
Figure 8. Histograms of the studied series: (a) NO, (b) NO2, (c) NOx, (d) O3.

The normality and randomness hypotheses were rejected at the significance level of
5%. The homoscedasticity hypothesis was rejected for the NOx series only (the p-value
computed in the Levene test is 0.022). Figure 9 shows the presence of at least first-order
autocorrelation for all the data series.

 

Figure 9. Charts of the autocorrelation functions (ACFs) for the data series. The blue lines represent
the limits of the confidence intervals at a confidence level of 95%.
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The KPSS test rejected hypothesis of level-stationarity for NO2 and O3, and trend-
stationarity for NOx and O3.

After applying the change point test, the hypothesis that there is no change point
could not be rejected for all the series. Two subseries were detected for each series. The
change point and the subseries averages are presented as follows, where mean 1 is the
average of the subseries containing the values before the change point, and mean 2 is the
average of the subseries formed by the values after the change point:

• For NO: the change point is the 98th value, mean 1 = 12.611, mean 2 = 5.659;
• For NO2: the change point is the 92nd value, mean 1 = 19.454, mean 2 = 10.544;
• For NOX: the change point is the 87th value, mean 1 = 40.426, mean 2 = 23.348;
• For O3: the change point is the 55th value, mean 1 = 25.554, mean 2 = 51.182.

So, the series presents high variability. The higher the variation is, the more difficult it
is to find a good model.

The IQR method with a factor of 1.5 (and 3) detected the values situated outside the
following intervals as outliers:

• [−7.5305, 20.65750] and [−18.101, 31.228] for NO;
• [−10.1676, 39.0445] and [−28.622, 57.499] for NO2;
• [−3.825, 57.975] and [−27, 81.15] for NO3;
• [−14.195, 97.205] and [−55.97, 148.98] for O3.

This study was performed in the first case because the use of three reduces the domain
of the anomalies. Therefore, based on this criterion, values recorded on the following days
were outliers:

• 4, 5, and 9 February; 23–29 March; and 21 May for NO;
• 11 and 25 February; 7–11 and 23, 28, and 29 March; and 27, 29, and 30 May for NO2;
• 1, 9–13, 16, 17, and 19–22 March; and 7 May for NOx;
• 6, 7, 13, and 29 January; 5 February; 5 and 28 March; 1, 2, 6, 8, 12, 14, 15, 18, 21, and

22 April; and 7 June for O3.

The NO, NO2, and NOx series, with the anomalies determined by IF, are presented in
Figure 10. The aberrant values are mostly very high, especially for NO and NOx.

IF provided more anomalies in comparison to IQR, but most of the aberrant values
detected by the IQR method were also identified by IF. The aberrant values identified by IF
included the values recorded on the following days:

• 1–10, 17, 18, and 22 January; 2, 3, 11, 25, 28, and 29 February; 7–11 and 23, 28, and
29 March; 27 April; 19 and 27–30 May; and 1, 3, and 6–8 June for NO;

• 11 and 25 February; 23 March; 27, 29, and 30 May; and 1, 6, and 9 June for NO2;
• 1–5, 9, 13, 17, 22, and 29 January; 4–6, and 29 February; 1, 9–13, and 16–22 March;

7 and 19 May; and 4–8 June for NOx;
• 1–7, 9, 13, 17, 18, 28, and 29 January; 1, 5–7, 13, 15, and 23 February; 5, 6, 22, and 28 March;

1, 2, 6, 15, 18, 21, 22, and 28 April; 4, 30, and 31 May; and 1–8 June for O3.

Given the common origin of nitrogen oxides and the chemical reactions that occur
when O3 is present, as explained in the introduction, the correlations between the concen-
trations of the studied pollutants were investigated. Figure 11 presents (a) the correlations
between the NO, NO2, NOx, and O3 series and (b) the correlations between the series of
anomalies detected by IF. While no significant correlations between the pollutant series
were detected (the correlation coefficients range from −0.18 to 0.22), the highest correlations
were identified between the O3 anomalies and NOx anomalies (NO2 and NO anomalies,
respectively), with a value of 0.51 (0.43 and 0.33, respectively). Still, these values do not
show a strong correlation between the aberrant series.
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Figure 10. Series charts and the anomalies computed by the isolation forest for (a) NO, (b) NO2, and
(c) NOx series.

 

Figure 11. (a) Series correlations; (b) Correlations of the anomalies detected by IF; (c) NOx and O3

series and their anomalies.
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Figure 11c depicts the NOx and O3 series, and their anomalies.
Figure 12 displays the series with the highlighted anomalies determined by LOF.

Notice that the IF approach provided a higher number of anomalies than LOF. This result is
due to the LOF algorithm only considering neighboring values rather than the entire series.
Five common anomalies are provided by IF and LOF for NO, NOx, and O3, and seven for
NO2. The correlation between the series anomalies is close to zero. Figure 13 shows the
anomalies detected by GESD. This algorithm did not find any anomalies in the O3 series,
3 for NO2 (25 February, 29 March, and 29 May), and 11 for NOx (9–13 and 16–22 March).
The outliers detected by this algorithm and IQR for NO are the same. Since no significant
correlation between the data series was found, we did not search for a regression model,
linking different variables. The next section contains the results of modeling the data series
before and after the removal of the anomalies.

Figure 12. Series charts and anomalies computed by the LOF for (a) NO, (b) NO2, (c) NOx, (d) O3.
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Figure 13. Series charts and the anomalies for (a) NO, (b) NO2, and (c) NOx, computed by GESD.

3.2. Models for the NO2 Series

As presented in the previous section, the NO2 series is not Gaussian. Since the
normality of the series was achieved through a Box–Cox transformation with the parameter
λ = 0.130, the series was firstly normalized and then stationarized by taking the first-order
difference. Using the Akaike criterion and the capabilities of R software, the best ARIMA
model for the transformed series (denoted NO2BC) was the ARMA(1,1) type, with an
autoregressive coefficient AR1 = 0.4728, moving average coefficient MA1 = −0.9069, and
corresponding standard errors of the coefficients of 0.0973 and 0.0505. The values of the
goodness of fit indicators for the model are a mean error (ME) = 0.0380, RMSE = 0.6488,
MAE = 0.4543,—mean percentage error (MPE) = 0.268, and MAPE = 15.8283.

Figure 14a shows the NO2BC series and the estimated one, whereas Figure 14b–d
present the residual series, the residual autocorrelation function, and its histogram.

Figure 14. ARIMA model for the NO2BC series. (a) NO2BC series and the estimated one. (b) The
residual series in the ARIMA model. (c) The residual autocorrelation function. (d) The histogram of
the residual series.

Figure 14a shows good concordance between the recorded values (blue) and those
estimated by the model (red). Figure 14c reveals no residual autocorrelation. The histogram
(d) shows a mean value of the residuals of about zero and an almost symmetrical distribu-
tion of the residuals. The normality test of the residual series could not reject the normality
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hypothesis while the Levene test rejected the homoskedasticity one. Therefore, the residuals
do not form white noise; so, the model could not be validated from a statistical viewpoint.

Figure 15 presents the chart of the GRNN model for the normalized NO2 BC series
after removing the exponential trend with the following equation:

(NO2 BC)t = 5.8286 − 2.1721 × exp(0.00296t), (3)

where (NO2 BC)t is the concentration of the value of the NO2 BC series at the moment t.

Figure 15. GRNN model for the NO2BC series.

The model could learn the data well since the model’s total variance on the training set
is 76.135%, the correlation between the actual and predicted values is 0.8778, MSE = 0.177,
MAE = 0.2839, and MAPE = 9.9786. Still, on the test set, the results are worse. For example,
MSE = 1.5101, MAE = 0.8175, and rap = 0.4482.

Given that the ARIMA model could not be validated and the relative inability of GRNN
to apply what was learnt in the training phase in the test, we searched for a hybrid model
that could fit the data better and benefit from the ability of ARIMA to capture the linear
behavior and the ability of GRNN to catch the nonlinear one. The raw series was considered
to fit the ARIMA model, and then the residual series was subjected to GRNN modeling.

The best hybrid approach ARIMA-GRNN obtained for the NO2 series is described as
follows (Figure 16):

Figure 16. Hybrid ARIMA—GRNN model for the raw series.
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• An ARIMA(2,1,1), with:

� The autoregressive and moving average coefficients (and standard deviations)
AR1 = 0.3584 (0.0834), AR2 = 0.1811 (0.0826), and MA1 = −0.9677 (0.0294);

� MSE = 81.4417, MAE = 5.6679, the first-order residual autocorrelation = 0.97973;
� AIC = 1161;
� MAPE could not be computed (there is a value equal to 0);

• The GRNN model for the residual, with a lagged 1 variable as the regressor, and:

� On the training set: R2 = 99.635%, rap = 0.998178, MSE = 0.2562, MAE = 0.1112,
MAPE = 27.4644.

� On the test set: R2 = 0.0635%, rap = 0.0578, MSE = 1222.97, MAE = 5.239,
MAPE = 84.36.

Therefore, the GRNN model learnt the data well but could not use what it learnt for
forecasting. Still, the new residuals are Gaussian.

Since the global anomalies were of interest, comparisons of the results provided by IQR,
GESD, and IF were made to identify the values that were removed before the modeling. In
the first stage, the common values provided by these methods were selected and removed
from the data series. IQR was applied again to the new series in the second stage. Finally,
the common values provided by IF remained after the first stage, and those from the second
stage were removed. This procedure was chosen considering most anomalies detected.

The ARIMA model for the series without aberrant values (called NO2New) was
an ARIMA(1,1,1) type, with the following autoregressive and moving average coeffi-
cients (with the corresponding standard errors in brackets): AR1 = 0.4671 (0.0955) and
MA1 = −0.9083 (0.0438), MSE = 15.95, MAE = 3.0694, MAPE = 30.76299, and AIC = 770.53.
The residual variance in the ARIMA(1,1,1) model is 15.8890. The residuals’ correlogram
and their histogram (Figure 17) indicate that this series is not correlated and is Gaussian
(confirmed by the Anderson–Darling test, where the p-value is 0.1269). The heteroskedastic-
ity hypothesis was also rejected. Therefore, from a statistical viewpoint, the ARIMA(1,1,1)
model is correct.

 

Figure 17. (a) Residual correlogram and (b) histogram in the ARIMA(1,1,1) model for the series after
the removal of aberrant values.

The forecast for the next 48 moments based on the above model is shown in Figure 18
(the right-hand side), in blue, together with the confidence intervals at the confidence levels
of 95% and 90% (different nuances of grey). The shape of the forecast series is not similar to
that of the actual one. Its trend becomes almost linear after eight-time moments. Therefore,
the model cannot be utilized in a future forecast, even if it was statistically validated.

The GRNN model for NO2New is presented in Figure 19. The model learnt the data
in the training set well (R2 = 0.996). On the test set, MSE = 25.5047, MAE = 3.1555, and
MAPE = 27.9311, but R2 = 0.473 is not close to 1.

After comparing the GRNN performances on the initial series and that without aber-
rant values on the test set, the results of the last series are better. Still, the model should be
improved because the blue dots—representing the computed values on the test set (valida-
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tion in Figure 19) are not close enough to the recorded values, which were represented by
the black line.

The hybrid ARIMA–GRNN model was built using the above ARIMA(1,1,1), whose
residuals were modeled by GRNN (Figure 20).

The neural network learnt the data well. Indeed, on the left-hand side of Figure 20,
the actual values and the computed ones (called predicted) are practically superposed on
each other (the black and the green lines). It also performed well on the test set. On the
right-hand side of Figure 20, the recorded values (black) and computed values (blue) are
close. To confirm the model’s goodness, Figure 21 displays the actual vs. predicted values
in the residual modeling. The dots built by pairs of actual and predicted values of residuals
are displayed along the diagonal (representing the ideal case of perfect superposition
between the actual and computed values), indicating that the ARIMA-GRNN model
performs very well. Therefore, the best model for the series without aberrant values is the
ARIMA(1,1,1)–GRNN model.

Figure 18. The forecast based on the ARIMA(1,1,1) model—the blue line—and the confidence
intervals at 95% and 90%—different nuances of grey.

Figure 19. GRNN model for the NO2 series after the removal of anomalies.
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Figure 20. GRNN of the residual in the ARIMA(1,1,1) model for the series after the removal of anomalies.

 
Figure 21. Actual vs. predicted values in the GRNN model of the residual from the ARIMA(1,1,1).
after the removal of aberrant values.

Since similar results were obtained for the NO and NOx series, the authors did not
repeat the entire procedure.

3.3. Models for the O3 Series

The same approach was followed to build models for the O3 series. Given that high
O3 concentrations may negatively impact human health, a good forecast can provide
information for early warning. The first approach provided an ARIMA(0,1,2) model for
the raw data series. The series had to be stationarized before modeling (the degree of
differentiation being 1). The moving average coefficients (with the standard errors in the
brackets) are MA1 = −0.2971 (0.0789) and MA2 = −0.295(0.0884). The goodness of fit
indicators are MSE = 69.72703, MAE = −5.392056, and MAPE = 21.79388. The MSE value is
high due to the high variation in the errors. Despite their randomness, the residuals in the
ARIMA(0,1,2) did not form white noise because they are not Gaussian (the p-value in the
Anderson–Darling test is 0.0055 < 0.005) or homoskedastic. Figure 22 displays the residuals
in the ARIMA(0,1,2) model for O3, their histogram, and the correlogram. The residuals
chart in Figure 22 confirms the existence of high residual values. Since the model could not
be validated, its improvement was necessary.
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Figure 22. (a) The residual, (b) the histogram, and (c) the correlogram of the residual in the
ARIMA(0,1,2) model for O3.

The neural-network approach provided a GRNN model (Figure 23) that learnt the
data well but did not perform well on the test set. For example, on the training set, the
correlation between the actual and predicted values is 0.8634 while on the test set, it is only
0.5282. On the test set, the computed values (represented by blue circles) do not have the
same pattern as the recorded data (the black line).

Figure 23. The GRNN model for the O3 series.

The hybrid ARIMA-GRNN provided R2 = 99.681%, correlation between actual and
computed values of 0.9984, MSE = 0.3965, MAE = 0.0606, and MAPE = 38.64744 on the
training set. Still, the hybrid model did not perform well on the test set, since R2 = 5.898%,
and the correlation between the actual and computed values = 0.333, so it cannot be used
for prediction.

After removing the aberrant values from the O3 series, and performing the Mann–
Kendall test [73], the hypothesis that there is no monotonic trend was rejected. Using the
nonparametric method of Sen [74], it was found that the series presents an increasing trend,
with a slope of 0.310673. The KPSS test revealed nonstationarity in the level of this series. It
was found that the best model was ARIMA(0,1,0) with a drift of 0.310673 (the same as the
slope). The goodness of fit indicators showed very low residual values (RMSE = 0.00022,
MAE = 0.00233, MAPE = 0.000844), with no residual correlation. Given the model’s quality,
it is not necessary to improve it.
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From this model, it was found that the O3 series had an increasing trend over the
study period, which must be observed in the future, since the O3 concentration may reach
a level that is dangerous for the population.

4. Conclusions

The detection of aberrant values in time series has been a problem of interest for a long
time, given that their presence may influence the modeling results. Moreover, forecasting
based on derived models may be significantly biased by the existence of aberrant values.
Therefore, this study investigated the influence of the presence of anomalies on a series of
nitrogen oxide concentrations.

Given that some methodologies are used to search for different kinds of anomalies
(local or global), first, the results provided by LOF, IQR, IF, and GESD were compared.
Since the focus was placed on global aberrant values, their selection was made before using
the last three algorithms for modeling.

Three models were built for each NO2 raw series and after the removal of anomalies:
–ARIMA, GRNN, and a hybrid GRNN-ARIMA.

In the case of the NO2 series, the building of three models was necessary to improve
the initial model, even in the absence of anomalies. This was motivated by the following
reasons. An ARIMA model, for example, is not necessarily the best choice, given that
the residual must be white noise (a fact that is not always true). A GRNN model is not
appropriate because the R2 value or the correlation between the actual and predicted values
is not very high on both the training and test sets. The selection of the regressors in the
artificial intelligence-based approaches is not obvious. Their selection and number are
essential for determining the best model. Even in the absence of outliers, improvement of
the model is necessary to obtain a good forecast in the next stage. From this point of view,
the best model is one that provides the best forecast.

It was shown that the removal of anomalies resulted in better models than when they
were present. The ARIMA model for the raw data series could not be statistically validated
whereas, for the series without anomalies, it was correct from a statistical viewpoint. The
hybrid approach was also better than the ARIMA and GRNN on both NO2 series.

The hybrid approach provided the best model for the O3 raw series. After the removal
of aberrant values, the ARMA(0,1,0) with drift provided the best model for the series
evolution. Given that the model was statistically validated and the residual was extremely
low, it was unnecessary to search for another model. It was proved that the O3 series
presents a significant increasing trend (at a significance level of 5%). Given that high
ozone concentrations are harmful to the population’s health, keeping the ozone level under
observation is necessary.

As a future work in the same research direction, dynamical system approaches, such as
phase space reconstruction, will be introduced to analyze the dynamics of atmospheric pollutants.
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Abstract: Air pollution is becoming increasingly serious along with social and economic development
in the southwest of China. The distribution characteristics of particle matter (PM) were studied in
Chengdu from 2016 to 2017, and the changes of PM bearing water-soluble ions and heavy metals and
the distribution of secondary ions were analyzed during the haze episode. The results showed that at
different pollution levels, heavy metals were more likely to be enriched in fine particles and may be
used as a tracer of primary pollution sources. The water-soluble ions in PM2.5 were mainly Sulfate-
Nitrate-Ammonium (SNA) accounting for 43.02%, 24.23%, 23.50%, respectively. SO4

2−, NO3
−, NH4

+

in PM10 accounted for 34.56%, 27.43%, 19.18%, respectively. It was mainly SO4
2− in PM at Clean

levels (PM2.5 = 0~75 μg/m3, PM10 = 0~150 μg/m3), and mainly NH4
+ and NO3

− at Light-Medium
levels (PM2.5 = 75~150 μg/m3, PM10 = 150~350 μg/m3). At Heavy levels (PM2.5 = 150~250 μg/m3,
PM10 = 350~420 μg/m3), it is mainly SO4

2− in PM2.5, and mainly NH4
+ and NO3

− in PM10. The
contribution of mobile sources to the formation of haze in the study area was significant. SNA had
significant contributions to the PM during the haze episode, and more attention should be paid to
them in order to improve air quality.

Keywords: particulate matter; heavy metals; Sulfate-Nitrate-Ammonium; pollution levels; mo-
bile sources

1. Introduction

PM10 refers to particles with an aerodynamic equivalent diameter less than or equal to
10 μm in ambient air, and PM2.5 refers to particles with an aerodynamic equivalent diameter
less than or equal to 2.5 μm in ambient air. The composition of atmospheric particles is
complex, including heavy metals, water-soluble ions, carbonaceous components, and so
on from multiple sources [1,2]. In addition, with small particle sizes and large surface
area, atmospheric particulates have adverse effects on the atmospheric environment and
public health. In recent years, there have been many haze pollution incidents occurring in
a number of locations across China, which has caused more and more public concerns and
attention paid to air pollution [3–5].

The Sichuan Basin is in southwestern China. The topography of hills and basins,
coupled with the climate conditions of high humidity and low wind speed, leads to
atmospheric pollution easily in this area [6,7]. It is the fourth highest haze area following
the Beijing-Tianjin-Hebei area, Yangtze River Delta, and Pearl River Delta. Its pollution
characteristics are of high particle concentration and low visibility [8–10]. The special
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terrain and the humid climate of Chengdu are not conducive to the diffusion of particulate
matter and are prone to secondary pollutant (SNA) conversion and generation [6,10,11].

In recent years, although the implementation of pollution prevention and control
measures has improved the air environment in Chengdu, the region still has a problem
with air pollution [12]. The research topics in this region mainly include the analysis of
particulate pollution characteristics [13,14], the impact of meteorological conditions on
particulate pollution [15], the lag effect of particulate pollution on related diseases [16],
and source apportionment [17]. It is reported that the heavy metals in the atmospheric
particulate matter (PM) in Chengdu are mainly arsenic (As), lead (Pb), copper (Cu), nickel
(Ni), zinc (Zn), iron (Fe), and manganese (Mn) [18,19]. Among them, arsenic (As) mainly
comes from industrial smelters. Pb, Cu, Ni, and Zn mainly come from the exhaust of
motor vehicles and the wear of tires and brake pads whereas Fe and Mn are mainly from
dust generated during vehicle driving [20,21]. Sulfate-Nitrate-Ammonium (SNA) are
water-soluble ions that greatly contribute to PM concentration [22,23]. Air pollution in
Chengdu has obvious seasonal distribution characteristics, which are closely related to
the meteorological factors of the city [24]. It is reported that the mass concentration of
SNA is the highest in winter and the lowest in summer [25]. The high temperature in
summer and autumn is conducive to the conversion of sulfur dioxide (SO2) to sulfate
(SO4

2−) while adverse to the stable existence of ammonium nitrate (NH4NO3). Although
the low temperature in winter inhibits the conversion of gaseous precursors, it is beneficial
to the stable existence of NH4NO3 [26,27].

However, it is known from the previous studies that the concentration of particulate
matter increases with the increase of pollution, but the mechanism of particle concentration
and composition change is different under different pollution levels [28]. A recent study
showed that the rapid increase of PM2.5 at light pollution level in Beijing was caused by
regional transportation, while the rise from heavy to severe was mainly caused by an
increase in the proportion of secondary inorganic components [29]. The air pollution in
cities in southern China has been easily overlooked. Up to now, there is no detailed report
on the various characteristics of atmospheric particulate matter at various pollution levels
in Chengdu, southwest China according to our investigation.

The purpose of this study is to find out how heavy metals and water-soluble ions in
PM in Chengdu, China during the haze periods are distributed and changed at different
pollution levels. Therefore, we investigated PM2.5 and PM10 in Chengdu in southwest
China. The changes in heavy metal elements and water-soluble ions corresponding to
the pollution level and their contribution to particulate matter are discussed. The effects
of SO4

2−, NO3
−, and NH4

+ on the particulate matter were emphatically explored. The
secondary production of sulfate and nitrate will be shown to be important in high pollution
level scenarios, and the same with the heavy metal analysis.

2. Materials and Methods

2.1. Study Site and Sample Collection

Chengdu is located in the western part of the Sichuan basin, surrounded by the west-
ern part of the Longquan Mountains and the eastern part of the Qionglai Mountains. The
sampling site was located in Shilidian, Chenghua District, Chengdu (104◦08′ E, 30◦40′ N),
the capital of Sichuan Province in the western part of the Sichuan Basin. Chengdu is densely
populated, about 1000 people/km2 [30,31], with the annual temperature 15.2~16.6 ◦C, the
annual precipitation 873 mm~1265 mm, the annual sunshine 23–30%, the average annual
wind speed 1.3 m/s, and the average annual relative humidity 80% [32]. Shilidian is
surrounded by major cities in Sichuan, including Deyang and Mianyang (Figure 1).
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Figure 1. Sichuan region of China and sampling site in Chengdu.

From March 2016 to January 2017, PM2.5 and PM10 were collected at the Chengdu
University of Technology in the urban area of Chengdu with no chemical enterprises and
tall buildings. The sampling period was 24 h and we collected 72 PM2.5 samples and
72 PM10 samples at the same time, with a total of 144 samples. The sampling instrument
was a TH-150C medium flow atmospheric sampler (Wuhan Tianhong, Wuhan, China),
with a calibrated flow rate of 100 L/min. Two kinds of filter membranes made of quartz
and Teflon, respectively, (Whatman, Buckinghamshire, UK) were chosen. The Teflon
filters are used for the heavy metal analysis because Teflon filters have low heavy metal
background content, and the quartz filters are used for the water-soluble ion analysis.
After the samples were collected, the sampling membranes were placed in clearly marked
sample boxes immediately. At the same time, the meteorological data at the Shilidian
meteorological monitoring station were recorded, including temperature, air pressure, wind
speed, relative humidity, etc. Samples were collected under stable weather conditions, with
weak wind at speeds less than 1.5 m/s, thus the contribution from pollutants transported
long distances are likely small. The samples in this study mainly represent the local
atmospheric conditions in Chengdu.

2.2. Mass Concentration Analysis

Before sampling, the Teflon filter membrane (Whatman, Φ90 mm, Buckinghamshire,
UK) is equilibrated for at least 24 h at a temperature of 20 ± 5 ◦C and a relative humidity of
50 ± 5%. Quartz filter membranes (Whatman, Φ90 mm) were wrapped in aluminum foil,
baked in a muffle furnace (SX-8-13, Beijing) at 500 ◦C for 4 h to remove the background
organic matter, and then placed in the same environment as the Teflon filters for at least 24 h.
After the filter membrane, use a one-hundred thousandth balance (Sartorius, Göttingen,
Germany, CPA225D) was used to weigh each filter 3 times to ensure that the difference
between any two weighing values did not exceed 0.04 mg. After the filter membranes were
weighed, they were all wrapped in aluminum foil, and put in a sealed bag, and stored
at −4 ◦C until analyzed. A pretreated blank filter membrane was used as a background.
Before sample collection, the cutting head of the sampler filter membrane grid, sealing
gasket, and other places that may be in contact with the filter membrane were wiped
two to three times with high-grade pure absolute ethanol to prevent impurities from
entering the filter membrane during the sampling process. Refer to “Ambient Air PM10
and PM2.5 Measurement-Gravimetric Method” (HJ618-2011) for details on the method
used to calculate the mass concentrations of PM2.5 and PM10.

2.3. Heavy Metals Analysis

The concentrations of heavy metals of the samples were then analyzed. Before the
experiment, all Teflon vials were thoroughly cleaned with 20% hot nitric acid solution
(70 ◦C) and deionized water to avoid contamination. Subsequently, 1/2 of a Teflon filter
was dissolved with 1 mL of nitric acid (HNO3) and 1 mL hydrofluoric acid (HF) in a
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closed-cap Teflon vial for 48 h at 180 ◦C. After that, the mixed solution was steamed to near
dry, and then re-dissolved twice with 1 mL HNO3 (120 ◦C). After the last re-dissolution,
HNO3 (1 mL), Rh solution (1 mL of 1000 ng/mL), and 5 mL deionized water were added
and kept in Teflon vials for 6 h (100 ◦C). At this point, the sample pre-treatment was
completed. The concentrations of the heavy metals were analyzed by inductively coupled
plasma-mass spectrometry (ICP-MS, Perkin Elmer Corp., Norwalk, USA). The reference
material GSS-4 was used to ensure the analytical accuracy with recovery between 94.3%
and 103.6%. In addition, for 10% of the samples analysis was repeated and reagent blanks
were also used to check the quality of the analysis. A total of eight metal elements were
measured, including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni),
lead (Pb), vanadium (V), and zinc (Zn). Their detection limits are: As (0.30 ng/m3), Cd
(0.01 ng/m3), Cr (0.10 ng/m3), Cu (0.04 ng/m3), Ni (0.04 ng/m3), Pb (0.03 ng/m3), V
(0.08 ng/m3), and Zn (0.10 ng/m3).

2.4. Water-Soluble Ions Determination

The main steps for the determination of water-soluble ions in the sample are as follows:
putting 1/4 of the quartz filter into a 50 mL PET bottle with 20 mL of ultra-pure water and
sonicated (25 ◦C, power 50%, Kunshan Ultrasound Instrument Co., Ltd., Kunshan, China,
KQ-700DB) for 0.5 h. The bottle was transferred to a water bath shaker (Changzhou Putian
Instrument Manufacturing Co., Ltd., Putian, China, SHA-CA) at room temperature and
kept shaking for 30 min. The extract was then filtered through a 0.22 μm filter membrane.
Anions of fluoride (F−), chloride (Cl−), nitrate (NO3

−), sulfate (SO4
2−), and cations of

sodium (Na+), ammonium (NH4
+), potassium (K+), calcium (Ca2+), and magnesium (Mg2+)

were determined by ion chromatography (Metrohm 792). The anion column used was a
Metrosep A Supp 5—150/4.0; the cation column used in ion chromatography is Metrosep
C4-150. The flow rate was 0.7 mL/min. The sampling time for each run was 20 min.
The anion eluent was sodium carbonate/sodium bicarbonate, fully dissolve the two in
ultrapure water, and dilute them in a 100 mL volumetric flask, as a stock solution. The
stock solution diluted 100 times is used as the eluent for anion determination. The cation
eluent was 7.25 mM HNO3 and 0.02 M methanesulfonic acid. The ultrapure water, reagent
solutions, and samples used in the test were filtered through a 0.45 μm filter membrane.
Their detection limits are F− (0.010 μg/m3), Cl− (0.012 μg/m3), NO3

− (0.027 μg/m3),
SO4

2− (0.030 μg/m3) and Na+ (0.019 μg/m3), NH4
+ (0.020 μg/m3), K+ (0.025 μg/m3), Ca2+

(0.037 μg/m3) and Mg2+ (0.020 μg/m3).

2.5. SOR and NOR Analysis

The concentrations of sulfate, nitrate, and ammonium are related to the concentration
of gaseous precursors: sulfur dioxide (SO2), nitrogen oxides (NOx), and ammonia (NH3),
and their conversion rates to particles generated in the atmosphere. Here SOR (sulfur
oxidation rate) and NOR (nitrogen oxidation rate) are used to describe the formation of
secondary aerosol species. The measured values of SO2 and NO2 come from the Chengdu
Shilidian permanent monitoring site. Based on Ma et al. [29], the calculation formulas of
SOR and NOR are:

SOR = nSO4
2−/(nSO4

2− + nSO2)

NOR = nNO3
−/(nNO3

− + nNO2)

where n is the molar concentration of the species. When SOR > 0.1, it indicates that there
is a process of SO2 oxidation to SO4

2− in the particles. When NOR > 0.001, it is said that
there is a process of oxidation of NO2 to NO3

− in the particulate matter. The higher value
of SOR or NOR, the higher the oxidation rate of the pollutant [33].
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3. Results and Discussion

3.1. PM Mass Concentration

Thirty samples, eight samples, twenty-one samples, and thirteen samples were ana-
lyzed in spring, summer, autumn, and winter, respectively. The concentrations of PM2.5
and PM10 showed obvious seasonal distribution characteristics. The changes of PM2.5 con-
centration with seasons (spring to winter) were: 98.62 μg/m3, 66.75 μg/m3, 84.02 μg/m3,
and 159.74 μg/m3. PM10 concentration changes with seasons (spring to winter) were:
169.87 μg/m3, 107.22 μg/m3, 167.16 μg/m3, and 260.30 μg/m3. The concentrations of
PM2.5 and PM10 were the highest in winter and the lowest in summer. An inversion
easily forms in winter, which prevents particles from diffusing. While the movement of
atmospheric molecules and the atmospheric oxidation capacity is enhanced because of the
high temperature in summer, which is conducive to the diffusion of atmospheric particles.

According to the “Ambient Air Quality Index (AQI) Technical Regulations (Trial)” (Min-
istry of Environmental Protection of China, 2012), the PM concentration is divided into four lev-
els (Clean: PM2.5 = 0~75μg/m3, PM10 = 0~150μg/m3; Light-Medium: PM2.5 = 75~150 μg/m3,
PM10 = 150~350 μg/m3; Heavy: PM2.5 = 150~250 μg/m3, PM10 = 350~420 μg/m3; Severe:
PM2.5 > 250 μg/m3, PM10 > 420 μg/m3). The particulate matter concentration exceeding
the clean level (PM2.5 = 0~75 μg/m3, PM10 = 0~150 μg/m3) is defined as a haze incident.
Haze incidents during the sampling period mainly occurred from March to May 2016 and
November 2016 to January 2017 (Figure 2), so PM in these periods was analyzed. Figure 3a
showed that there were 32 samples at the clean levels, 55 samples at the Light-Medium levels,
and 12 samples at the severe levels. It is worth noting that the pollution level based on PM2.5
did reach the Severe levels on 3 January 2017.

The concentrations of PM2.5 that increase with the change in pollution levels were
on average 48.80 μg/m3, 109.84 μg/m3, and 186.21 μg/m3 for Clean, Light-medium,
and Heavy levels, respectively. The concentrations of PM10 increase with the change in
pollution levels were 98.49 μg/m3, 226.53 μg/m3, and 383.21 μg/m3 for Clean, Light-
medium, and Heavy levels, respectively (Figure 3b). From the perspective of the increase
in particle concentration, the growth rate of PM10 is faster than the growth rate of PM2.5,
indicating that coarse particles (PM2.5–10) have a certain contribution to the growth of PM10.
PM2.5/PM10 from Clean to Heavy pollution decreases first and then increases slightly,
indicating PM2.5 contributed the most to PM10 at Clean levels and the least to PM10 at
Severe levels.

 

Figure 2. Time series of changes in PM mass concentration and related meteorological conditions.
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Figure 3. The number of samples that PM2.5 and PM10 were at different pollution levels (a); the concentrations of PM2.5 and
PM10 at different pollution levels (b).

There is a correlation between the concentration of PM and related climatic conditions
(Table 1). The concentration of PM is significantly negatively correlated with wind speed,
temperature, and ozone, and significantly positively correlated with relative humidity,
atmospheric pressure, CO, NO2, and SO2. The correlation for PM2.5 and PM10 with
temperature, CO, and NO2 are similar. PM2.5 has a stronger correlation with relative
humidity, atmospheric pressure, ozone, and SO2, while PM10 has a stronger correlation
with wind speed. This shows that the influence of meteorological conditions on fine
particles is greater.

Table 1. Correlation coefficient of PM with meteorological parameters and gas-phase species.

Ws (m/s) RH (%) P (kPa) T (°C)
CO

(μg·m−3)
NO2

(μg·m−3)
O3

(μg·m−3)
SO2

(μg·m−3)

PM2.5 −0.75 0.98 0.93 −0.99 0.99 0.98 −0.99 0.96
PM10 −0.98 0.87 0.77 −0.99 0.97 0.98 −0.91 0.93

3.2. Heavy Metals Characteristics and the Potential Use

The content of heavy metals in PM at different pollution levels is shown in Figure 4.
The content of heavy metals varies greatly at different levels of pollution (average values
are shown in Tables S1 and S2). At each pollution level, the heavy metal content in PM10
was significantly higher than that of PM2.5. With the increase of pollution level, the total
amount of heavy metals in the particles gradually increased, but the degree of increase
gradually decreased. In PM2.5 and PM10, the order of heavy metal content at each pollution
level was Zn > Cu> Pb > Cr > As > Ni > V > Cd. It is reported that Zn, Cu, Cr, Pb mainly
come from exhaust emissions of motor vehicles or the wear of brake pads and tires [34–36],
and Pb, As, Ni come from coal and petroleum combustion [13,37]. Cd is related to industrial
processes [13,38], and V may come from mining or soil fertilizer use [39]. Lead, zinc, and
copper account for a relatively high proportion, which is related to automobile exhaust.
Urban traffic jams are becoming more and more serious, leading to frequent braking and
start-up of vehicles, which aggravates the emission of heavy metals in the exhaust gas.
Beijing is the city with the largest number of cars in China, and car exhaust has been
studied in Beijing as a factor [40,41]. Chengdu is the second-largest city in the country for
car ownership, so the contribution of car exhaust to Chengdu’s atmospheric particulate
matter is also significant [42].
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Figure 4. (a,b) are the content and percentage of heavy metals in PM2.5 at different pollution levels; (c,d) are the content and
percentage of heavy metals in PM10 at different pollution levels.

The relative percentage content of all heavy metals is almost constant at each pollution
level. The content of heavy metals (HM) per particle at different pollution levels is shown
in Figure S1 (Supplementary Information). It can be seen that the heavy metals per particle
changes with the increase of particle concentration. The heavy metals content per particle
in PM2.5 is always higher than that for PM10.

At the Light-Medium level, the ratio of heavy metals in PM2.5 to heavy metals in PM10
is the largest, indicating that heavy metals are mainly concentrated in fine particles at this
pollution level. At the Heavy levels, the content of heavy metals in PM10 and PM2.5 is
the smallest, and the contribution of heavy metals in PM2.5 to that in PM10 is the smallest,
indicating that heavy metals enriched in coarser particles may be discharged into the
atmosphere at this pollution level. At the severe level, the heavy metal content increased
sharply. For example, on 3rd January 2017, it was found that the wind speed was the lowest
during the study period (0.5 m/s). The wind speed on the previous day (2 January) was
relatively higher (0.9 m/s) and from the northwest. It is speculated that the heavy metal
content on January 3rd sharply increased due to the metal sources carried by the wind
from the northwest of Chengdu.

3.3. Ions in PM
3.3.1. Ions Characteristics at Different Pollution Levels

The ions in PM have significant differences at different pollution levels (Figure 5).
From Clean to the subsequent pollution levels, the ion content in the particles increased
gradually (see Tables S3 and S4 for the average values). The order of ion content in
PM2.5 was SO4

2− > NO3
− > NH4

+ > Cl− > K+ > Na+ > Ca2+ > F− > Mg2+. Among them,
SO4

2−, NO3
−, and NH4

+ accounted for 43.02%, 24.23% and 23.50% of the total ion content,
respectively. The order of ion content, in PM10 was SO4

2− > NO3
− > NH4

+ > Ca2+ > K+ >
Cl− > Na+ > Mg2+ > F−, while SO4

2−, NO3
−, NH4

+ accounted for 34.56%, 27.43%, 19.18%
of the total ion content, respectively. The results showed that the secondary ions (SO4

2−,
NO3

−, NH4
+) were the main ions in Chengdu atmospheric particles.
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Figure 5. (a,b) are the content and percentage of water-soluble ions in PM2.5 at different pollution levels, respectively;
(c,d) are the content and percentage of water-soluble ions in PM10 at different pollution levels.

However, unlike the heavy metal percentage distribution, the relative percentage of
each ion varies significantly at different pollution levels. In PM10, the percentage of Ca2+

was significantly higher than that of PM2.5, indicating that Ca2+ is more likely to be enriched
in coarse particles. Coarse particles often are dust, and CaCO3 is a major component
of dust, which is the same as previous studies in Chengdu [13,27]. From Clean to the
subsequent pollution levels, the relative percentages of NO3

−, NH4
+ gradually increased,

but the relative percentages of Ca2+, K+, Na+, and SO4
2− gradually decreased, and the

relative percentages of Mg2+, Cl−, and F− were basically stable. This result demonstrated
atmospheric polluting processes in Chengdu were mainly caused by particles with ions
such as NO3

− and NH4
+ during the research period.

It is reported that with the control of SO2 pollution in China, the sulfate content in PM
has been significantly reduced [43,44]. At the same time, NO3

− and SO4
2− will interact,

and NOx will catalyze the conversion of SO2 to SO4
2− [45]. The oxidation of a large amount

of SO2 will not only produce SO4
2− but also promote the formation of NO3

− on water
particles [46]. Therefore, SO2, as the precursor of sulfate, is oxidized, as NOx is converted
to NO3

−, and the conversion of SO2 should be slow and reduced.
Figure S2 (Supplementary Information) shows the content of ions per particle at the

different pollution levels. The content of ions in particles is obviously different at different
pollution levels. From Clean to Heavy or Severe, the content of ions in PM2.5 and PM10
decreased gradually. The ion content per particle in PM2.5 is always greater than that for
PM10 at each pollution level, but the ratio of ion content per particle in PM2.5 to PM10
decreases gradually from Clean to Heavy. The results indicate that ions may mainly enrich
fine particles, but the proportion of ions in coarser particles gradually increases as the
particle concentration increases.

3.3.2. Characteristics of Sulfate-Nitrate-Ammonium (SNA)

Figure 6 shows the changes of parameters related to SNA (SO4
2−, NO3

−, NH4
+) at

different pollution levels. From Clean to the subsequent pollution levels, SOR is always
greater than NOR, but the degree the two increases with the pollution levels are different.
NOR in PM2.5 increased from 0.11 (Clean) to 0.22 (Severe), and SOR increased from 0.43
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(Clean) to 0.61 (Severe). NOR in PM10 increased from 0.16 (Clean) to 0.29 (Heavy), and the
SOR increased from 0.52 (Clean) to 0.60 (Heavy). Early studies have shown that, when
SOR is greater than 0.1, there is a photochemical reaction of SO2 in the atmosphere [47].
This result indicates that SO2 is more susceptible to secondary conversion than NO2. The
sulfate and nitrate in this study were largely formed through secondary reactions.

 

Figure 6. Changes of (a) RH, T, PM2.5; (b)SOR, NOR, NO3
−/SO4

2−, and PM2.5; (c) RH, T, PM10; (d) SOR, NOR,
NO3

−/SO4
2− and PM10 at different pollution levels (RH: relative humidity; SOR/NOR: sulfur/nitrogen oxidation rate; T:

temperature).

The formation of SNA is closely related to meteorological conditions (relative humidity
and temperature) [48–50]. When the relative humidity is low, the main reaction is a gas-
phase reaction, and when the relative humidity is high, the main reaction is a heterogeneous
reaction on particles [51,52]. According to Pandis and Seinfeld [53], the liquid-phase
oxidation of SO2 may be an important way to generate SO4

2−, while NO3
− is mainly

generated by gas-phase oxidation of NOx. So, the effect of humidity on SO4
2− is more

significant. With the increase in pollution levels, the relative humidity increased from
76% to 83%. As the air approached saturation, the particle concentration increased, and
the temperature decreased (PM2.5: 21.7–11.8 ◦C; PM10: 19.8–17.8 ◦C). It can be seen that
nitrate and sulfate in this study tended to form through heterogeneous reactions with
the change of pollution level. Sulfate and nitrate are important hygroscopic ions, which
can promote the hygroscopic growth of atmospheric particles and have a great impact
on visibility and temperature [3,54,55]. The NO3

−/SO4
2− ratio has large differences at

different pollution levels, which gradually increase with the increase of pollution levels, and
the aerosol ions will be easier to absorb moisture [56]. NO3

− represents mobile source, and
SO4

2− represents fixed source. The NO3
−/SO4

2− ratio is often used to indicate whether
particulate matter is dominated by mobile source or fixed source. The NO3

−/SO4
2− ratio

increased from 0.52 (Clean) to 0.95 (Severe) in PM2.5, and increased from 0.57 (Clean)
to 1.20 (Heavy) in PM10. The results show that the contribution of pollution caused by
mobile sources to the increase of PM is gradually increasing. In the fine particles, it is a
mainly fixed pollution source at different pollution levels. While in the coarse particles, it
is a mainly fixed pollution source at Clean and Light-Medium levels, and mainly mobile
sources at the Heavy.

Figure 7 shows the correlation between SNA and PM at different pollution levels.
The relative contribution of SNA to the increase of PM2.5 and PM10 at each pollution level
is different. At Clean levels, the contribution of SO4

2− to the increase of PM2.5 is 11.5%,
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which is much larger than the contribution of other ions, and the relative contribution of
SNA to PM10 is very small. At Light-Medium levels, the contributions of SO4

2−, NH4
+,

NO3
− to PM differ (PM2.5: 7.18%, 10.9%, 9.93%; PM10: 10.4%, 14.0%, 14.0%). Sulfates

contributed more to PM2.5 at the Clean levels because of the trend to form ammonium
sulfate during the formation of SNA in the inhomogeneous phase, which impeded the
formation of ammonium nitrate. This result is reflected in more contribution of nitrate
to PM at the Light-Medium levels, compared to the Clean levels. At Heavy levels, the
contributions of SO4

2−, NH4
+, NO3

− to PM are significantly different (PM2.5: 24.0%, 3.76%,
11.7%; PM10: 24.0%, 40.8%, 59.7%). This result shows sulfate is more likely to be enriched
in fine particles at each level. Nitrate and ammonium salts are easily concentrated in fine
particles at Clean and Light-medium pollution levels, while they are easily concentrated
in coarse particles at Heavy pollution levels (NO3

−: 59.7%; NH4
+: 40.8%). The secondary

conversion of SO2 is mainly liquid-phase reaction, which is closely related to relative
humidity. The relative humidity of the Heavy level is the largest (83%), so the contribution
of sulfate to particles is also the largest at this level. The secondary reaction of NO2 is
a mainly gas-phase reaction. The atmospheric temperature is lower than other levels at
Heavy levels, which is not conducive to the secondary generation of NO2. However, it
has been reported that it is conducive to the stable existence of NH4NO3. Therefore, the
contribution of NO3

− to PM is relatively large at Heavy levels [57].

 

Figure 7. Linear regression of SO4
2− with (a) PM2.5 and (b) PM10, NH4

+ with (c) PM2.5 and (d) PM10, NO3
− with (e) PM2.5

and (f) PM10 at different pollution levels (p < 0.05; C: Clean; L: Light-Medium; H: Heavy; SN means sample number).
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4. Conclusions

The present study analyzed the distribution and changes of heavy metals and water-
soluble ions in PM2.5 and PM10 during the haze periods from March 2016 to January
2017 in Chengdu, China at different pollution levels. It revealed the concentration of PM
was closely related to meteorological conditions and the effect on fine particles is more
significant. Heavy metals were more easily enriched in fine particles at different pollution
levels, and the relative percentage content was basically stable. However, the relative
percentage of water-soluble ions varied with the pollution level, and the relative percentage
of NO3

− and NH4
+ increased gradually. The water-soluble ions in the particles during

the study were mainly SO4
2−, NO3

− and NH4
+ and mainly from secondary reactions.

Furthermore, the contribution of SNA to the increase of PM was variable at different
pollution levels. It was mainly SO4

2− in PM at Clean levels, and mainly NH4
+ and NO3

−
at Light-Medium levels. At Heavy levels, it is mainly SO4

2− in PM2.5, and mainly NH4
+

and NO3
− in PM10. Mobile sources are contributing more to the occurrence of haze in

Chengdu, which should have more attention paid to it. The results of this research not
only enrich the air pollution research in Chengdu, China, but also provide a reference for
the urban air pollution research with the same background. The deficiency lies in the lack
amount of PM10 samples under Heavy and Severe pollution levels. The next step will be to
study the source analysis of PM quantitatively.
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10.3390/atmos12080990/s1, Figure S1: Changes of heavy metals per particle at different pollution
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concentrations of heavy metals in PM2.5 at different pollution levels (ng/m3), Table S2: Average
mass concentrations of heavy metals in PM10 at different pollution levels (ng/m3), Table S3: Average
mass concentration of ions in PM2.5 at different pollution levels (μg/m3), Table S4: Average mass
concentration of ions in PM10 at different pollution levels (μg/m3).
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Abstract: Dust is a significant pollution source in the United Arab Emirates (UAE) that impacts
population health. Therefore, the present study aims to determine the concentration of heavy metals
(Cd, Pb, Cr, Cu, Ni, and Zn) in the air in the Sharjah and Ajman emirates’ urban areas and assesses the
health risk. Three indicators were used for this purpose: the average daily dose (ADD), the hazard
quotient (HQ), and the health index (HI). Data were collected during the period April–August 2020.
Moreover, the observation sites were clustered based on the pollutants’ concentration, given that the
greater the heavy metal concentration is, the greater is the risk for the population health. The most
abundant heavy metal found in the atmosphere was Zn, with a mean concentration of 160.30 mg/kg,
the concentrations of other metals being in the following order: Ni > Cr > Cu > Pb > Cd. The mean
concentrations of Cd, Pb, and Cr were within the range of background values, while those of Cu, Ni,
and Zn were higher than the background values, indicating anthropogenic pollution. For adults, the
mean ADD values of heavy metals decreased from Zn to Cd (Zn > Ni > Cr > Cu > Pb > Cd). The HQ
(HI) suggested an acceptable (negligible) level of non-carcinogenic harmful health risk to residents’
health. The sites were grouped in three clusters, one of them containing a single location, where the
highest concentrations of heavy metals were found.

Keywords: heavy metals; pollution; concentration; indicators; health risk assessment

1. Introduction

Heavy metals are the most common and hazardous chemicals in the environment
due to their toxicity, persistence, and bioaccumulation [1,2]. Even at low concentrations,
heavy metals (lead (Pb), chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium
(Cd), cobalt (Co), zinc (Zn), and copper (Cu)) are known for their high toxicity [3]. These
pollutants originate from anthropogenic and natural processes [4].

Anthropogenic processes that lead to the release of heavy metals and other pollu-
tants include industrial, agricultural, mining, and metallurgical activities. Automobile
exhaust, smelting, insecticides, and fossil burning are activities that contribute significantly
to environmental pollution with heavy metals, e.g., lead, arsenic, copper, zinc, nickel,
vanadium, mercury, selenium, and tin [4]. On the other hand, sources of natural emissions
of these metals include sea-salt sprays, volcanic eruptions, forest fires, and wind-borne
soil particles.

Rock-weathering is another source of heavy metals released into the atmosphere [5].
Several studies demonstrated that high levels of heavy metals result from natural emissions
and vehicles’ exhaust in the traffic [6,7].
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A significant ecological and public health concern is associated with the environmental
contamination and heavy metals’ ultimate toxic effect [8–15]. Although many heavy metals
are essential micronutrients necessary for various biochemical and physiological processes
and functions [8], excessive exposure to these agents results in a wide range of adverse
health effects and diseases [16]. Each metal has a distinctive toxicological profile and
action mechanism. These toxicological effects depend on exposed individuals’ age, gender,
genetics, and nutritional status. Limiting access to arsenic, cadmium, chromium, lead, and
mercury is a health priority given their systemic toxicity and carcinogenic effect on the
population [17].

The rapid economic and industrial development in the United Arab Emirates (UAE)
has markedly impacted the country’s air quality, where gases and dust are being emitted
into the air in exceedingly high concentrations, rendering air pollution a critical public
health problem [18–21]. Recent studies have demonstrated that road dust is a significant
source of air pollution with heavy metals [21–23] and is a leading factor affecting hu-
man health [21,24,25]. Indeed, in the UAE, results of ecological risk assessments showed
that Cd and Hg in road dust constitute a high public health risk [12,18]. The primary
sources of heavy metal in road dust are soil materials, vehicle exhaust emissions, at-
mospheric deposition, and industrial and commercial activities [26–28]. The vehicles’
emissions—including a complex mixture of metals from tires, brakes, parts wear and tear,
and suspended road dust—are perhaps the most important source of air pollution with
heavy metals [21,26,29–32] in urban areas. Long-term inhalation, ingestion, and dermal
contact of these factors are associated with a wide range of acute or chronic health adverse
effects [24,26] by their accumulation in the vital organs, such as the brain, liver, bones, and
kidneys [33,34].

Copper is a nutrient for humans, but exposure to high concentrations can produce
diseases, as Taylor et al. [35] presented in their reviews on the literature about the effects of
Cu on human health. Pb is regarded as a mutagen and probable carcinogen, producing
renal tumors and disturbing the reproductive and nervous systems [36]. Exposure to
increased concentration of Zn has toxic effects, rarely resulting in intoxication and inter-
ferring with Cu uptake [37]. The health effects produced by Ni can be cardiovascular
diseases, contact dermatitis, respiratory diseases (respiratory tract cancer, lung fibrosis,
and asthma) [38,39]. Inhalation and ingestion of contaminated food and water are the main
ways of introducing Ni to the organism [40]. Cadmium is a toxic metal for the population
and animals, deposited in the environment by agricultural and industrial pollution [41].
Its accumulation in the human body through inhalation and ingestion provokes different
types of cancer. The primary way chromium (especially in the form of Cr(III) and Cr(VI))
enters the organism is through inhalation [42], affecting the respiratory tract by producing
rhinitis, pharyngitis, bronchitis.

Therefore, the present study was performed to determine the levels of heavy metals in
the road dust from urban areas in the Sharjah and Ajman emirates (UAE) and to evaluate
these agents’ impact on public health. Clustering the observation sites (based on the studied
metals’ concentrations in the atmospheric dust and health indicators) was performed to
determine the most polluted zones and those with the highest risk for the population.

2. Materials and Methods

2.1. Study Area

Sharjah is the third emirate in the UAE, in terms of population number. Sharjah city,
the capital of this emirate, is situated at 25◦21′27′′ N latitude and 55◦23′27′′ E longitude.
Ajman is the fifth largest emirate in the UAE, and its capital, with the same name, is located
at 25◦24′49′′ N latitude and 55◦26′44′′ E longitude (Figure 1).
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Figure 1. Study area location and sampling map.

The articles [21,25] present an extensive analysis of the climate in the region. Still, we
summarize here some aspects related to the climate in the Sharjah and Ajman emirates. The
study area belongs to a hot desert with warm winters and scorching and humid summers.
Rainfall is generally light and erratic and occurs almost entirely from November to April.
About two-thirds of annual precipitations fall in February and March [43].

The chart from Figure 2 presents the average temperatures and precipitation evolution.
Figure 3 shows the cloudy, sunny, and precipitation days, precipitation amounts, maximum
temperatures, and wind speed recorded at the Sharjah International Airport. Two sampling
sites are situated nearby (29 and 30).

The wind rose for Sharjah International Airport (Figure 4) shows that most often
throughout the year the wind blows from west to east or east to west, with speeds between
12 and 19 km/h.

Ajman has a similar climate as Sharjah.
Land use/Land cover (LULC) is the placement of activities and physical structures

within a specific geographical area. It is a crucial metric for determining how human
activities interact with the natural world [44]. The local, regional, and global environments
are under tremendous stress due to changing land-use practices. The degradation of air
quality is one of the most important environmental effects of urbanization.
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Figure 2. Average temperature and precipitation in Sharjah (International Airport).

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. (a) Cloudy, sunny, and precipitation days; (b) precipitation amounts; (c) maximum temperatures; (d) wind speed.
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Figure 4. Wind rose for Sharjah International Airport.

Environmental and social factors, such as land use, community design, transportation
networks, have been shown to have a significant impact on public health [45]. Many
variables could cause particulate pollution, such as dust from construction, domestic
garbage, and vehicle exhaust, but most pollution can be associated with land-use changes.
Understanding the response mechanisms of urban particle pollution is crucial for pollution
prevention and environmental protection [46].

To better understand the study area, we used recently released Landsat 8 satellite
images for LULC mapping and monitoring in the region (Figure 5).

 
Figure 5. Landuse/Landcover (LULC) map of the study area.
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Results of the land-cover analysis (Figures 5 and 6) show that 66% of the study area
(187.61 km2) mostly includes urban area/human-made features, which includes industrial
sites, petrol pumps, hotels, tourist areas, residential and commercial buildings, airport, etc.

Figure 6. Pie chart showing the LULC percentage distribution of the studied region (from the
LANDSAT 8).

Other land uses do not directly emit air pollutants but attract vehicular sources such
as bus terminals, shopping centers, warehouses, etc.

The major categories of the land use and the associated surfaces in the study area are:

• Sparse vegetation: date palms, Prosopis juliflora, etc. (18.07 km2);
• Water bodies: water in the terrestrial area and nearby sea (25.35 km2);
• Dense vegetation/Garden: human-made garden areas and concentrated vegetation

(17.77 km2);
• Urban area/Human-made features: industrial areas, petrol pumps, hotels, tourist

areas, residential and commercial buildings, airports, etc. (187.61 km2);
• Sandy area (3.37 km2)
• Bare land (33.52 km2).

2.2. Instruments and Methods
2.2.1. Samples Collection

Dust samples were collected from thirty different Sharjah and Ajman emirates loca-
tions for five months (April–August 2020) using large dust traps placed at the height of 4 m
above the ground level. Collected samples (150 at each site) were safely packed and moved
to a desiccator before transporting to the laboratory. Samples were air-dried for 48 h to
avoid moisture in a well-protected area. Then, each sample was sieved using a mechanical
sieve shaker (Retsch, AS 200) with a 63μm filter to remove any large particles. A six-stage
Anderson cascade impactor (Tecora, Italy) with an intake flow rate of 28.3 L/min was used
to segregate dust particles.

Dust with a diameter lower than 10 μm was collected on the glass disks in the cascade
impactor. The size ranges were 10 μm, 9.0 μm, 7.0 μm, 5.8 μm, 4.7 μm, and 3.3 μm. A
cellulose nitrate filter with 100 mm diameter and 3 μm pore size was used as a backup filter.

2.2.2. Reagents, Standards, and Laboratory Ware

All experiments were performed using analytical reagent (AR) grade chemicals. The
reference standard, check standard, and reagents were purchased from Sigma Aldrich. A
1:1 acid mixture was prepared using conc. nitric acid (69% v/v) and hydrochloric acid
(37% v/v). Ultra-pure water with chemical resistivity of 18.2 MΩ.cm was obtained from
a Merck Millipore (Massachusetts, USA) water purification system in the lab. For the
sample oxidation, 30% hydrogen peroxide was used. Class-A grade glassware was utilized
throughout the analysis. All glassware and plasticware were washed 5–6 times with
ultrapure water followed by 10% nitric acid to remove contaminations and then air-dried.
The Mars-6 system (CEM, North Carolina, USA) was employed to digest the samples.
ICP-OES analysis was performed using a Perkin Elmer (Ohio, USA) Avio 200 system.
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2.2.3. Samples Analysis

Sample digestion was performed by following USEPA 3050B [47] procedure. A total
of 0.2 g of each sample was accurately weighed and transferred to Teflon vessels for
microwave-assisted digestion. Afterwards, 10 mL of 1:1 HCl: HNO3 were added to the
digestion vessel, mixed the slurry well, and digested it using the microwave digestion
system at 95 ◦C for 5 min. The slurry was cooled and then added to 5 mL conc. HNO3. It
was then heated and refluxed at 95 ◦C for 5 min, cooled, followed by the careful addition
of 10% H2O2 for oxidation. The solutions were carefully transferred to 100 mL volumetric
flasks, made up to mark with water, and filtered using Whatman 41 filters. The filtered
solutions were moved to the ICP-OES system and analyzed for heavy metals. Replicate
analyses were carried out on each sample.

Strict quality control and quality assurance procedures were followed to prepare
and analyze samples, laboratory blanks, check standards, and standard spiked samples.
Laboratory blanks were prepared using the same reagents used for the digestion without
adding dust samples. The laboratory blank values for each metal were much lower
than those of metals’ concentrations in the target samples. Method detection (MDL) was
calculated using the equation:

MDL = Mean + 2 9 × SD (1)

where Mean is the average concentration and SD is the standard deviation of blanks [48].
The MDL values ranged between 0.02 μg/kg (Cd) and 25.2 μg/kg (K). The metals’ recovery
percentages (spiked and standard) were between 95% and 105%. The precision of repeated
analysis was determined (for every metal) by computing the coefficient of variation, which
was less than 3%.

2.3. Heath Risk Assessment

In this study, the impact of the pollution on the population exposed to dust met-
als has been assessed by computing the ADD (mg/kg/day) of pollutants via ingestion
(ADDing), dermal contact (ADDderm), and inhalation (ADDinh). The utilized formulas are
(2)–(4) [24,47].

ADDing =
c × Ring × CF × EF × ED

BW × AT
, (2)

ADDderm =
c × SA × CF × SL × ABS × EF × ED

BW × AT
, (3)

ADDinh =
c × Rinh × EF × ED

PEF × BW × AT
, (4)

where the notations’ meanings are given in Table 1.

Table 1. Exposure factors for dose models (adult).

Factor Definition Unit Value Reference

c Concentration of the contaminant in dusts mg/kg - This study

Ring Ingestion rate of soil mg/day 100
[49]

AT Average time days 365 × ED

BW Average body weight kg 55.9
Environmental site [50]CF Conversion factor kg/mg 1 × 10−6

EF Exposure frequency days/year 35

ED Exposure duration year 24 [50]

63



Atmosphere 2021, 12, 1442

Table 1. Cont.

Factor Definition Unit Value Reference

SA Surface area of the skin that contacts the dust cm2 5000

[50]
Rinh Inhalation rate m3/day 20
SL Skin adherence factor for dust mg/cm2 1

ABS Dermal absorption factor (chemical specific) - 0.001
PEF Particle emission factor m3/kg 1.32 × 109

The model used in this study to calculate people’s exposure to dust metals is based on
those developed by the Environmental Protection Agency of the United States [24].

The reference dose (RfD) estimates the maximum acceptable risk on a population
group (in this case, adults) through daily exposure during a lifetime. An unfavorable
health effect during a lifetime can be signaled using the threshold of RfD value. No adverse
health effect is concluded if the ADD value is lower than the reference dose. If the ADD
value is higher than the RfD, the exposure pathway will likely cause harmful human health
effects [24]. The reference dose (RfD) values of heavy metals for the ingestion, dermal
contact, and inhalation are presented in Table 2 [50].

Table 2. Values of RfD for the six studied heavy metals [50].

Metal Ingestion Dermal Inhalation

Cd 0.0010 0.00005 0.0030
Pb 0.0035 0.00053 0.0035
Cr 0.0050 0.00025 0.000029
Cu 0.0370 0.0011 0.0400
Ni 0.0200 0.0010 0.0210
Zn 0.300 0.0600 0.3200

After computing ADD, the hazard quotient (HQ), related to non-carcinogenic toxic
risk, was calculated by dividing the daily dose by a specific reference dose (RfD).

HQ =
ADD
R f D

(5)

The last index determined in this study is the hazard index (HI), representing the
cumulative non-carcinogenic risk. It is estimated by summing up the hazard quotients for
ingestion (HQing), dermal (HQderm), and inhalation(HQinh):

HI = HQing + HQderm + HQinh (6)

2.4. Sites Classification

The last objective of this study was to classify the sites based on the metals concentra-
tions in the samples and on the indexes computed in the previous section. To this aim, the
k-means algorithm was utilized after choosing the optimal number of clusters by the elbow
method [51,52]. A comparison of the clusters’ contents was finally provided to determine
the concordance between the pollution level and the health risk in the zones contained by
the groups.

3. Results and Discussion

3.1. Analysis of the Heavy Metals’ Concentrations

The average concentrations in the samples at the observation sites are presented in
Table 3.
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Table 3. Average concentration values of the metals in the samples.

Site
no

Location Latitude Longitude Pb (ppm)
Copper
(ppm)

Zn
(ppm)

Ni
(ppm)

Cr
(ppm)

Cd
(ppm)

1 Sheraton hotel tourist
area 25◦23′43′′ 55◦25′24′′ 6.06 34.84 89.80 142.34 61.49 0.02

2 Alnuaimiay tourist area 25◦23′27′′ 55◦26′53′′ 11.57 67.41 115.11 173.49 89.45 0.02

3

Ajman industrial areas
and petrol stations

25◦23′36′′ 55◦28′56′′ 15.19 66.76 190.50 167.21 82.39 0.01
4 25◦23′29′′ 55◦29′04′′ 34.28 65.71 470.49 165.65 80.78 0.02
5 25◦23′19′′ 55◦28′39′′ 16.22 61.75 132.38 156.81 66.81 0.01
6 25◦23′13′′ 55◦29′07′′ 37.77 57.37 377.30 148.97 64.71 0.02
7 25◦22′28′′ 55◦28′32′′ 32.31 53.58 150.32 146.17 63.54 0.02
8 25◦22′27′′ 55◦28′45′′ 44.84 47.67 185.83 136.30 61.97 0.02
9 25◦22′48′′ 55◦29′41′′ 40.21 42.14 316.49 134.68 61.71 0.02

10 25◦23′36′′ 55◦29′21′′ 21.45 41.64 115.19 134.66 58.90 0.01

11 Ajman residential and
commercial area

25◦24′22′′ 55◦28′52′′ 13.99 40.33 170.67 134.37 58.47 0.01
12 25◦23′57′′ 55◦29′37′′ 14.92 40.24 133.33 129.59 55.35 0.01

13 Adnoc Ajman 25◦23′51′′ 55◦29′54′′ 9.49 39.92 83.48 115.79 49.99 0.01

14 Ajman commercial area 25◦23′47′′ 55◦25′49′′ 16.47 37.53 101.15 114.93 49.84 0.01
15 25◦24′09′′ 55◦26′14′′ 11.06 35.41 106.18 108.56 49.67 0.01

16 Sharjah residential and
commercial areas

25◦22′41′′ 55◦23′59′′ 4.54 35.16 121.45 98.72 47.61 0.01
17 25◦21′59′′ 55◦23′39′′ 18.49 32.99 229.41 97.02 45.50 0.01

18 Sharjah-bus station 25◦21′4′′ 55◦22′53′′ 20.46 31.11 152.75 96.55 44.94 0.01

19 Sharjah commerial area 25◦20′18′′ 55◦23′34′′ 11.06 29.22 124.60 93.76 44.85 0.01

20

Sharjah industrial area

25◦19′06′′ 55◦24′39′′ 52.74 28.73 192.01 90.92 41.25 0.01
21 25◦19′30′′ 55◦24′31′′ 24.01 27.90 127.34 89.87 39.87 0.01
22 25◦19′55′′ 55◦24′15′′ 20.59 27.32 105.58 84.01 38.11 0.01
23 25◦19′24′′ 55◦24′16′′ 15.89 25.26 106.31 83.19 37.69 0.01
24 25◦19′18′′ 55◦24′35′′ 4.08 25.25 55.95 79.86 35.29 0.01

25 Sharjah airport highway 25◦21′17′′ 55◦25′9′′ 16.15 24.53 126.11 79.42 34.81 0.01
26 25◦20′39′′ 55◦26′48′′ 7.05 20.69 66.94 78.66 34.19 0.01

27 Sharjah University 25◦18′0′′ 55◦28′45′′ 18.11 20.44 106.82 70.03 34.11 0.02
28 25◦17′47′′ 55◦29′26′′ 16.96 17.92 275.41 69.88 33.80 0.02

29 Sharjah airport 25◦19′2′′ 55◦31′12′′ 22.29 16.43 151.21 62.22 30.02 0.02
30 25◦19′1′′ 55◦31′5′′ 24.92 15.13 129.01 61.76 26.42 0.02

The most abundant metal measured was Zn, with a mean concentration of 160.304 mg/kg.
The average concentrations of the other studied metals were, in decreasing order,
Ni > Cr > Cu > Pb > Cd. The mean concentrations of Cd, Pb, and Cr were within the
range of background values. The mean concentrations of Cu, Ni, and Zn were higher than
the background values, indicating anthropogenic pollution.

Based on the experimental data, the maps reflecting the concentration of the metals
are presented in Figure 7.

The minimum, mean, and maximum levels of heavy metals (Cd, Pb, Cr, Cu, Ni,
and Zn) in the dust samples collected from the studied areas in Sharjah and Ajman are
presented in Table 4.

Table 4. Extreme values of the heavy metals concentrations in the 30 samples.

Metal
Heavy Metals Concentrations in Samples (mg/kg) Background Values of the

World (mg/Kg)Mean Min Max Std. Dev.

Cd 0.013 0.005 0.018 0.003 0.35
Pb 20.105 4.075 52.737 12.000 35
Cr 50.783 26.416 89.445 16.100 70
Cu 37.011 15.125 67.411 15.200 30
Ni 111.513 61.762 173.486 35.600 50
Zn 160.304 55.953 470.493 92.100 90
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Figure 7. Maps showing the concentrations of (a) Cd, (b) Pb, (c) Cr, (d) Co, (e) Ni (f) Zn in the study area.
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The composition of dust collected from industrial areas presents much higher con-
centrations of Zn and Ni than other metals. The highest concentration of Zn was found
in samples 4, 6, and 9 (400.49, 377.30, and 316.49 mg/Kg, respectively), collected from the
Ajman industrial area. The high zinc concentrations result from the steel processing activi-
ties, tire abrasion, and the corrosion of metallic parts of cars. The highest concentrations of
Ni were contained by samples 7, 5, and 8 (173.49, 167.21, and 165.65 mg/Kg, respectively),
collected from the Ajman industrial area. Nickel could originate from natural sources, but
its presence in the air results from fuel combustion or metal plating activity.

The copper concentrations at sites 18, 28, 22, and 27 are the highest (67.41, 66.76, 65.71,
and 61.75 mg/Kg). Site 18 is a bus station, and the presence of a high concentration of
Cu can be attributed to traffic, tire abrasion, and the corrosion of metallic parts of cars.
Site 22 is located in the Sharjah industrial area. Thus, Cu’s presence can be attributed to
industrial activities. The other two sites (27 and 28) are located at the University of Sharjah,
where the heavy traffic can explain the high pollution.

The heavy metals concentrations in the collected dust samples from the study area
were compared with those in selected cities in the world and the world reference values
(Table 5). Based on the values of the pollutants’ concentrations reported in different studies,
the study zone occupies the first place for Cr pollution, the second one (after Hawaii) for
Ni pollution, and the third for Zn pollution. These values indicate that the dust content is
an issue in the area of Sharjah and Ajman.

Since each city has its specific combination of elemental compositions and the observed
similarities may not reflect the actual natural and anthropogenic diversity among the
different urban settings, it is necessary to establish a standard procedure to analyze the
urban dust samples and draw conclusions based on the experiments [24,53].

Table 5. Heavy metals concentration in dust in different cities around the world, (mg/kg).

Location Cr Ni Cu Zn Cd Pb Reference

Study area 89.44 173.48 67.91 470.49 0.018 52.73 This study
Beijing 69.33 25.97 72.13 219.20 0.64 202.82 [24]
Ottawa 43.30 15.20 65.84 112.50 0.37 39.05 [54]
Hawaii 273.0 177.0 167.0 434.0 - 106.0 [55]

Birmingham - 41.1 466.9 534.0 1.62 48.0 [56]
Hong Kong - 28.60 110.0 3840.0 - 120.0 [57]

Background values 70 50 30 90 0.35 35 [58]

The pollutants’ concentrations recorded at different sites are not essentially influenced
by wind transportation.

This conclusion results from comparing the wind rose and the metals concentrations
in the samples collected at opposite sites, such as 25 and 28 or 27 and 30. We also remark
that sites 29 and 30 are close to each other, but the concentrations of Zn differ. The same
is valid for sites 25 and 26. This is due to the existence of small factories situated in the
neighborhood of 25 and 29.

3.2. Health Risk Assessment

First, the non-carcinogenic effect on health was assessed by calculating the average
daily doses (ADD) values, then the hazard quotient (HQ). The minimum, mean, and
maximum levels of ADD and total ADD for adults via ingestion, dermal, and inhalation
contact routes in the study area are listed in Table 6.
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Table 6. Average daily dose (ADD) and total ADD for heavy metals through different pathways.

Metal Cd Pb Cr Cu Ni Zn

ADDing

Mean 1.84 × 10−8 2.75 × 10−5 6.96 × 10−5 5.07 × 10−5 1.53 × 10−4 2.20 × 10−4

Min. 6.85 × 10−9 5.58 × 10−6 3.62 × 10−5 2.07 × 10−5 8.46 × 10−5 7.66 × 10−5

Max. 2.47 × 10−8 7.22 × 10−5 1.23 × 10−4 9.23 × 10−5 2.38 × 10−4 6.45 × 10−4

ADDderm

Mean 4.47 × 10−11 6.70 × 10−8 1.69 × 10−7 1.23 × 10−7 3.72 × 10−7 5.34 × 10−7

Min. 1.67 × 10−11 1.36 × 10−8 8.81 × 10−8 5.04 × 10−8 2.06 × 10−7 1.87 × 10−7

Max. 6.00 × 10−11 1.76 × 10−7 2.98 × 10−7 2.25 × 10−7 5.78 × 10−7 1.57 × 10−6

ADDinh

Mean 2.78 × 10−12 4.17 × 10−9 1.05 × 10−8 7.68 × 10−9 2.31 × 10−8 3.33 × 10−8

Min 1.04 × 10−12 8.46 × 10−10 5.48 × 10−9 3.14 × 10−9 1.28 × 10−8 1.16 × 10−8

Max. 3.74 × 10−12 1.09 × 10−8 1.86 × 10−8 1.40 × 10−8 3.60 × 10−8 9.77 × 10−8

Total
ADD

Mean 1.84 × 10−8 2.76 × 10−5 6.97 × 10−5 5.08 × 10−5 1.53 × 10−4 2.20 × 10−4

Min. 6.87 × 10−8 5.60 × 10−6 3.63 × 10−5 2.08 × 10−5 8.48 × 10−5 7.68 × 10−5

Max. 2.47 × 10−8 7.24 × 10−5 1.23 × 10−4 9.26 × 10−5 2.38 × 10−4 6.46 × 10−4

The highest ADD values are those for Ni and Zn, corresponding to absorption by
ingestion, while the lowest are those for Cd. The main pathway the pollutants enter
the organism is ingestion. Indeed, ADDing is about 103 times higher than ADDderm and
104 times higher than ADDinh.

The ADDing, ADDderm, and ADDinh are lower than the RfD for the studied heavy
metals, which preliminarily indicates no significant effect on the health.

The mean levels of total ADD (ADD total) (in mg/kg-day) are 1.84 × 10−8 for Cd,
2.76 × 10−5 for Pb, 6.97 × 10−5 for Cr, 5.08 × 10−5 for Cu, 1.53 × 10−4 for Ni, and
2.20 × 10−4 for Zn. The mean values of total ADD for adults are ordered decreasingly as
follows: Zn > Ni> Cr >Cu > Pb > Cd.

The minimum, mean, and maximum levels of HQ and total HQ for adults through
ingestion, dermal, and inhalation contact pathways are presented in Table 7.

Table 7. HQ for heavy metals through different pathways and HI.

Metal Cd Pb Cr Cu Ni Zn

HQing

Mean 1.84 × 10−5 7.87 × 10−3 1.39 × 10−2 1.37 × 10−3 7.64 × 10−3 7.32 × 10−4

Min 6.85 × 10−6 1.60 × 10−3 7.24 × 10−3 5.60 × 10−4 4.23 × 10−3 2.55 × 10−4

Max 2.47 × 10−5 2.06 × 10−2 2.45 × 10−2 2.50 × 10−3 1.19 × 10−2 2.15 × 10−3

HQderm

Mean 8.94 × 10−7 1.28 × 10−4 6.77 × 10−4 1.13 × 10−4 3.72 × 10−4 8.91 × 10−6

Min 3.33 × 10−7 2.59 × 10−5 3.52 × 10−4 4.63 × 10−5 2.06 × 10−4 3.11 × 10−6

Max 1.20 × 10−6 3.35 × 10−4 1.19 × 10−3 2.06 × 10−4 5.78 × 10−4 2.61 × 10−5

HQinh

Mean 2.78 × 10−9 1.19 × 10−6 3.69 × 10−4 1.91 × 10−7 1.12 × 10−6 1.04 × 10−7

Min 1.04 × 10−9 2.40 × 10−7 1.92 × 10−4 7.81 × 10−8 6.22 × 10−7 3.63 × 10−8

Max 3.74 × 10−9 3.11 × 10−6 6.49 × 10−4 3.48 × 10−7 1.75 × 10−6 3.05 × 10−7

Total HQ
Mean 1.93 × 10−5 8.00 × 10−3 1.50 × 10−2 1.48 × 10−3 8.01 × 10−3 7.41 × 10−4

Min 7.18 × 10−6 1.62 × 10−3 7.78 × 10−3 6.06 × 10−4 4.44 × 10−3 2.59 × 10−4

Max 2.59 × 10−5 2.10 × 10−2 2.63 × 10−2 2.70 × 10−3 1.25 × 10−2 2.18 × 10−3

HQ ≤ 1 indicates no adverse health effects, while HQ > 1 indicates likely negative
health effects [59]. All the studied heavy metals had total HQs below 1 (Table 7). Ac-
cordingly, the health risk estimation of Cd, Pb, Cr, Cu, Ni, and Zn suggests a low level
of non-carcinogenic harmful health risk in all samples taken from the Ajman and Shar-
jah studied areas. The average hazard index HI is 3.32 × 10−2. It shows a negligible
non-carcinogenic risk to residents’ health.
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3.3. Site Clustering

Clustering has been performed for grouping the observation sites’ function of the
pollution impact on the population health, based on the health indexes.

The series containing the pollutants concentrations recorded at each site were normal-
ized, and the silhouette and elbow methods (Figure 8) were used to determine the optimal
number of clusters. Based on them, k was found to be 2 and 4.

Figure 8. The elbow method for the normalized pollutants dataset.

Running the k-means algorithm with k = 2, all the sites, but the first one, are contained
in the same cluster. Running the k-means algorithm with k = 4, the following sites have
been included in the clusters: (1) 1; (2) 2–4, 6, 8, 9, 11–13; (3) 14–31; (4) 5, 7, 10 (Figure 9).

Figure 9. Clusters determined by the k-means algorithm with k = 2 (in the left) and k = 4 (in the right),
based on the pollutants’ concentrations.

Using k = 2, it resulted that the sites with the highest concentrations of Zn (4, 6,
9), Ni (7, 8), and Cu (27, 28) are in the same cluster. Still, sites 5, 18, and 22 with high
concentrations of Ni and Zn are contained in the second cluster. Using k = 4, the sites with
the highest concentrations of Zn (4, 6, 9) and Ni (8) are in the first cluster.

Samples 27 and 28 (high concentration of Cu) are kept in another cluster, while the
samples with the lowest concentrations are in Cluster 3. Comparing the clustering based
on the sum of squares of the distances between the groups (SSD) over the total sum of
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distances (TSD), the best clustering is the second (SSD/TSD = 41.5% when k = 2, and
60.8% for k = 4).

All the indices previously computed were utilized for clustering the sites. The proce-
dure was performed using the k-means algorithm with k = 2 and k = 4 (determined by the
elbow method). Figure 10 shows the sites’ clustering (based on the health indexes).

Figure 10. Clusters determined by the k-means algorithm with k = 2 (in the left), and k = 4 (in the
right) based on the health risk indicators.

For k = 2, the sites with the highest concentrations with Ni (5, 7, 8), Zn (4, 6, 9), 27,
and 28 are in the same cluster, confirming an increased risk impact on health due to high
pollution with different elements in the air. For k = 4, the samples with the highest values
of the health indices are mainly situated in clusters 1 (sites 18, 22, 27, 28), 2 (5, 7), and 3 (4, 5,
8, 9). For k = 4, the samples with the largest values of the health indices are mainly situated
in clusters 1 (sites 18, 22, 27, 28), 2 (5, 7), and 3 (4, 5, 8, 9). The best clustering corresponds
to k = 4 because SSD/TSD is 29.2% for k = 2, compared to 54.9%, for k = 4.

Cluster 3 from Figure 10 and Cluster 1 from Figure 9 have the same members, so the
highest health risk is due to high concentrations of Zn and Ni. The sites 27–30 belong
to the same cluster in Figures 9 and 10, showing a similar effect of the same pollutants
on human health. Cluster 4 in Figure 10 contains the sites with the lowest impact on
population health.

4. Conclusions

This study investigated the existence of heavy metals in the samples of atmospheric
dust collected in the Sharjah and Ajman emirates, of the United Arab Emirates. It assessed
the impact of pollutants on human health. This type of study is very significant for the
residents of the UAE since the economic, industrial, and commercial development has
increased the volume of exhausted gases and dust in the environment, which is severely
impacting air pollution within the country.

The results show that the average concentration of heavy metals in the collected and
analyzed dust samples can be ordered in decreasing order as follows: Zn > Ni > Cr >
Cu > Pb > Cd. Compared with the recommended maximum allowable limits, Zn, Ni,
and Cr concentrations exceeded the admissible concentrations at some locations—mainly
situated in the industrial zones—indicating anthropogenic pollution. Still, at this stage
of the research, the contribution of desert sand to the heavy metals pollution cannot be
distinguished from that produced by anthropogenic sources.

Hazard quotient values for single and hazard index values for all studied metals are
lower than the safe level for adults, indicating a non-significant non-carcinogenic. The
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mean values of HI through ingestion, dermal contacts, and inhalation adsorption showed
a low non-carcinogenic risk to residents’ health.

The clustering of the sites based on raw data and computed indices indicated four
locations with the highest risks for human health (mainly due to the high concentrations of
Zn and Ni).

Since many health issues of the population have been linked to air pollution with
heavy metals, some measures have been proposed and are necessary to prevent such health
risks [60]. They include developing detection protocols, guidelines and practices, and legis-
lation to reduce emissions, particularly in areas with high levels of heavy metal pollution.

Since the Sharjah and Ajman cities are continuously developing, a monitoring program
should be implemented. Automatic stations that record the concentrations of the most
important pollutants should be placed in crowded areas and industrial zones. These
should provide real-time information to the population, through electronic devices placed
on visible displays. They also might be connected to a system that sends alerts to the
population when the admissible pollution limit is exceeded.

Furthermore, engineering solutions are critical to both minimize pollution and prevent
occupational exposure. An essential stage towards prevention is the early monitoring of
human exposure to environmental pollution for a prompt action to reduce emissions and,
by consequence, the adverse health effects. National collaborative efforts are needed to
shape effective strategies, policies, and practices to control and prevent heavy metal toxicity.
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Abstract: The aim of this study was to determine the influence of transport on the concentration of
carbon species in aerosols collected in the coastal zone of the Gulf of Gdansk in the period outside
the heating season. Elemental carbon (EC), organic carbon (OC), and the ΣPAHs5 concentrations
were measured in aerosols of two size: <3 μm (respirable aerosols) and >3 μm in diameter (inhalable
aerosols). Samples were collected between 13 July 2015 and 22 July 2015 (holiday period) and between
14 September 2015 and 30 September 2015 (school period). In both periods samples were taken only
during the morning (7:00–9:00 a.m.) and afternoon (3:00–5:00 p.m.) road traffic hours. The highest
mean values of the ΣPAHs5 and EC were recorded in small particles during the school period in the
morning road traffic peak hours. The mean concentration of OC was the highest in small aerosols
during the holiday period. However, there were no statistically significant differences between the
concentrations of organic carbon in the morning and afternoon peak hours. Strict sampling and
measurement procedures, together with the analysis of air mass backward trajectories and pollutant
markers, indicated that the role of land transport was the greatest when local to regional winds
prevailed, bringing pollution from nearby schools and the beltway.

Keywords: aerosols; PAHs; OC and EC; transport sources; urbanized coastal station

1. Introduction

Coastal cities tend to have cleaner air than inland cities. However, even in their atmo-
sphere the concentration of pollutants may increase, especially in the immediate vicinity
of their emission sources [1]. In urbanized coastal cities, transport plays an important
role in shaping poor air quality, in addition to the municipal and housing sector. The
first source appears most clearly during the heating season. In the warmer months of the
year, communication can take over the role of the dominant emitter of pollutants. The
term ‘communication’ is usually understood as road (heavy and passenger), rail, and
air transport. Land-based road pollution also enters the atmosphere as a result of the
abrasion of tires and brakes and re-suspension of road dust [2]. In this way, large particles
with a diameter of 2.5–10 μm are emitted, while fine aerosols (<2.5 μm) are present in
the atmosphere mainly as a result of fuel combustion. The quality of the atmosphere in
coastal cities is also negatively affected by sea transport (e.g., ferries, container ships, bulk
carriers, chemical tankers) and the proximity of ports (e.g., transshipment activities). In
coastal or port regions, emissions from ships can significantly increase the concentration
of NOx, SO2, PMx, and their components [3,4]. The largest increase in the concentration
of aerosols and their components is recorded along the traffic routes. This is manifested
mainly by a high concentration of elemental carbon (EC), which is the basic indicator
of air pollution from transport [5]. In the atmosphere of urbanized cities, as much as
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80% of EC in aerosols come from exhaust emissions, 14% from heating houses, 4% from
maritime transport, and only 2% from the energy industry and refinery activity [6]. In
addition to elemental carbon, the composition of aerosols emitted in the transport sector is
dominated by organic carbon, polycyclic aromatic hydrocarbons, and sulfur and nitrogen
compounds [7–9]. Organic aerosols from road traffic can be released directly from the
exhaust due to incomplete combustion of fuels and lubricating oil or can be formed in
the atmosphere by the oxidation of traffic generated VOCs such as aromatics [10]. Lang
et al., (2017) found a very high correlation coefficient (r2) between the annual average OC
concentration with vehicular OC emissions (r2 = 0.95) and VOC emissions (r2 = 0.9) to
the atmospheric OC level [11]. In turn Zhang (2006) found that the average content of
OC and EC in fine (2.5 μm) particles is 38% and 4% from gasoline cars and even higher
from diesel cars (58% and 16%, respectively) [12]. Studies conducted in China by Cai et al.
(2017) showed similar results for diesel vehicles in the case of OC (56.9%) in PM2.5 [13].
However, EC content in PM2.5 was 17.6% for heavy duty diesel, 17.7% for light duty diesel,
and 8% on average for gasoline. Of course, burning fossil fuels such as gasoline and diesel
releases carbon dioxide, a greenhouse gas, into the atmosphere [14]. Considering the health
aspects, carbon aerosols currently require the greatest attention. Since the 1990s, it has been
indicated that the presence of road pollutants in aerosols is associated with human expo-
sure. Vehicle emissions contribute to the formation of ground level ozone, which together
with other chemicals emitted by various means of transport, can trigger human health
problems such as aggravated asthma, reduced lung capacity, and increased susceptibility to
respiratory illnesses, including pneumonia and bronchitis [15]. The increase in air pollution
from transport emission contributes also to the increase in the incidence of cardiovascular
diseases and cancer. This, in turn, leads to a higher mortality, especially in urbanized
areas [16–19]. Diesel particulate matter is of particular concern because long-term exposure
is likely to cause lung cancer.

There is a direct relationship between the exposure to human health and life and the
particle size and chemical composition. Larger particles, 2.5 to 10 μm in diameter, are
retained in the upper respiratory tract, while the smallest (<2.5 μm) reach the lungs and
alveoli, and even the bloodstream [20–22]. Long-term exposure of the brain to the traffic
pollution slows down the maturation processes of this organ and causes changes in its
functioning. This is manifested by decreased brain activity when viewing and listening. In
turn, in the youngest children (up to 5 years of age) whose mothers experienced longer
exposure to traffic pollution during pregnancy, structural changes in the brain were found.
It has also been observed that in the left hemisphere of the brain there was a reduction in
the volume of white matter, which is responsible for supporting memory [15,23–27]. Long-
term exposure to polluted air also reduces the volume of brain tissue in the elderly [26,27].
Fetuses, new-born children, elder people, and people with chronic illnesses are especially
susceptible to the effects of air pollutants from transport sources.

Due to the constant development of transport routes, the motorization of the popula-
tion is increasing, along with the number of passenger cars. In the Gdynia region in 2005, it
amounted to nearly 101,000. Ten years later it was already 57% higher (178,146 units) [28].
This phenomenon results in increased traffic, which in turn leads to the increased emissions
of transport pollutants into the air. So far, it has been proven that the increase of these
components is directly correlated with the proximity of traffic routes [6]. People who
live, work, or attend school near major roads appear to have an increased incidence and
severity of health problems associated with air pollution exposure related to roadway
traffic. Children, the elderly, people with pre-existing cardiopulmonary disease, and people
of low socioeconomic status are among those at higher risk of health impacts resulting from
the air pollution near roadways [14]. Taking the above into account, the aim of this study
was to determine the influence of transport on the concentration of carbon compounds
(PAHs, OC, EC) in aerosols collected in the urbanized coastal zone of the southern Baltic
Sea (Gdynia station) outside the heating season, in the morning and afternoon hours of
the road traffic peak. In addition to the above, the aim of the research was to determine
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which period (school or vacation) and which meteorological conditions increase the role of
transport in shaping high concentrations of the analyzed carbon compounds, especially in
small aerosols (<3 μm in diameter), which are the most dangerous to human health.

2. Materials and Methods

2.1. Location of the Measuring Station

Aerosol samples were collected in Gdynia, at the Faculty of Oceanography and
Geography of the University of Gdansk (54◦30′ N, 18◦32′ E). The building is located in the
urbanized part of the city, about 600 m from the shoreline of the Baltic Sea (Gdansk Bay).
The research station is surrounded by many traffic routes (Figure 1). The largest of them is
the Tri-City ring road located to the south-west, 6000 m away from the IO UG. Moreover,
heavy traffic characterizes Władysław IV Street (500 m) and Silesia Street (635 m). At a
distance of 600 m from the station there is also a fast city rail. The closest is Pilsudski street
(15 m), where the measurements were carried out. The Port of Gdynia is located north-west
of the station, 3000 m away.

Figure 1. Location of the measuring station along with the surrounding traffic routes.

In the vicinity of the measuring station, there is increased traffic in the morning and
afternoon hours, which is mainly related to the presence of numerous schools to which
children are transported (Figure 2). The closest of them is located 128 m and the farthest
690 m away from the measuring station.
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Figure 2. Location of the measuring station along with the surrounding schools.

2.2. Aerosol Sampling

Aerosol samples were collected in the period between 13 July 2015 and 22 July 2015
(holiday period) and between 14 September 2015 and 30 September 2015 (school period). In
both cases, samples were taken outside of the heating period. It was aimed at eliminating
the source related to the communal-living sector, which plays a great role in shaping the
air quality in the research area. Measurements were carried out in two-hour cycles during
the morning and afternoon rush hours (7:00–9:00 a.m.; 3:00–5:00 p.m.).

Aerosols were collected using a Tisch Environmental, Inc. high-flow impactor (TEI)
(model: TE-235). It operates at a nominal flow of 1.132 m3·min−1 (40 scfm; 68 m3·h−1) at a
pressure of 760 mm Hg and a temperature of 25 ◦C. Aerosols were collected on TE-QMA
Micro Quartz filters, 14.3 cm × 13.7 cm in size (aerosols from 0.49 μm to 10 μm). The
smallest particles, below 0.49 μm, were collected on a Whatman 41 filter, which had a
size of 20.3 cm × 25.4 cm. Before use, all filters were preheated (580 ◦C, 6 h) and then
conditioned in a desiccator for 24 h (Rh: 45% ± 5% and 20 ◦C ± 5 ◦C). All filters were
weighed twice with an accuracy of 10−5 g on a vertical plate of a RADWAG microbalance
AS 110.R2, adjusted to the size of the filters. After sampling, the filters were re-conditioned
for 48 h in the desiccator and weighed twice again. All activities related to installing,
removing, and weighing the filters were carried out in a laminar air flow chamber. The
limit of quantification (LOQ) was set at 0.12 μg (20 replicates). The uncertainty of the
method was <3.0% (at a certainty level of 99%).

2.3. Analysis of Organic and Elemental Carbon and Polycyclic Aromatic Hydrocarbons

The analysis of organic (OC) and elemental (EC) carbon in aerosols was performed by
the thermo-optical method with the use of a thermo-optical analyzer (Sunset Laboratory
Dual-Optical Carbonaceous Analyzer; protocol EUSAAR 2). For the analysis, a filter
fragment with an area of 1.5 cm2 was used. In addition to automatic calibration, an external
standard (99.9% sugar solution) was analyzed every 10–15 samples [29,30]. The detection
limit of the method was set to 0.1 μg·m−3 for both OC and EC (n = 12). The analytical error
of the method was 4.5% at a confidence interval of 99% [22,29–32].

Concentrations of five PAHs (benzo(a)pyrene, benzo(a)anthracene, fluoranthene,
pyrene and chrysene) were determined by means of high-performance liquid chromatogra-
phy using a Dionex UltiMate 3000 analyzer with a fluorescence detector (benzo(a)pyrene
λex. = 296 nm, λem. = 408 nm; fluoranthene and pyrene λex. = 270 nm, λem. = 440 nm;
benzo(a)antracene and chrysene λex. = 275 nm, λem. = 380 nm). The isolation of PAHs
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was conducted by means of solvent extraction (acetonitrile: dichloromethane 3:1 v/v) in
an ultrasonic bath [33]. The concentration values for the standard curve ranged from 0.125
to 10 ng·cm−3. The limit of quantification was 0.01 ng·cm−3. The recovery determined
against the reference material (SRM-2585) was 83%, 78%, 91%, 91%, and 99% for BaP, FLA,
PYR, B(a)A, and CHR, respectively [32–34].

2.4. Anion Analysis

Prior to chromatographic analysis, a fragment of 10.8 cm2 was cut from quartz filters
with dimensions of 14.3 cm × 13.7 cm, while a fragment of 3.8 cm2 was cut from a filter
with dimensions of 20.3 cm × 25.4 cm. Next, the cut filters were placed in polyethylene
tubes and 12 cm3 of milli-Q water was added. The next step was to sonicate the samples
(20 min) in an ultrasonic bath (Sonic 6D, Sonic 10, Polsonic Palczyński, Warsaw, Poland)
in order to bring the ions into solution. The extract obtained in this way was filtered
through membrane filters with a pore diameter of 0.25 μm. The ions NO3

− and SO4
2−

were determined by ion chromatography 881 Compact IC pro (Metrohm AG, Herisau,
Switzerland) in accordance with Polish Standard PrPN-EN No 10304-1. For sulphates and
nitrates, the limit of detection was 0.1 μg·m−3 and 0.2 μg·m−3, respectively, and the error
of the method was 4.7% and 5.5%. In all cases, a confidence level of 99% was assumed [35].

2.5. Variation of Meteorological Parameters

Gdynia, where aerosol samples were collected, lies in the temperate climate zone,
which is constantly modified by the influence of the vicinity of the Baltic Sea. Such a
location determines the less severe winters and, at the same time, mild summers. The
average annual temperature for the summer period is 14 ◦C, and for the winter period it is
2.3 ◦C. Average precipitation totals are 590 mm (1971–2000) with maximum values in July
(13%). The dominant wind direction in Gdynia is westerly (1981–2010) [36].

During the research period, the highest average temperature value of 19.4 ◦C was
recorded during the afternoon traffic rush during the summer holidays in July (with a
maximum of 26.8 ◦C; 21 July; 3:00–5:00 p.m.) (Table 1).

The lowest temperature was also noted in the afternoon rush hour in September (school
period), and amounted to 16.8 ◦C (with a minimum of 11.5 ◦C, 30.09; 3:00–5:00 p.m.) (Table 1).
Relative air humidity ranged from 31% (17/7; 7:00–9:00 a.m.) to 83% (16/9; 3:00–5:00 p.m.).
Higher RH values were recorded during the school period than during the holiday period.
The mean wind speed values were slightly higher during the holiday season (3.2 m·s−1) than
during the school season (2.0 m·s−1). The maximum wind speed was recorded on 17 July
(vacation period) during the morning rush hour and it was 9.8 m·s−1. The lowest wind speed
was recorded on 16 September between 7:00 a.m. and 9:00 a.m. and it was equal to 0.1 m·s−1

(Table 1). The mean atmospheric pressure was higher during the school period. The highest
pressure was recorded on 29 September in the morning peak hours (1033 hPa), and the lowest
on 16 September in the afternoon (999 hPa).

During the summer holidays, in the morning rush hour the westerly wind direction
was dominant (80%), and in the afternoon south-westerly (46%) and southerly (34%) winds
dominated. During the school period, in the morning traffic hours, the south-west direction
had the highest share (84%), while in the afternoon traffic hours winds from the south-east
direction were predominant (46%) (Table 1).
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Table 1. Statistical characteristics of meteorological data during the research conducted in Gdynia in 2015.

Holiday Period
(13–21 July 2015)

School Period
(14–30 July 2015)

7:00–9:00 a.m.
Average

(Min–Max)

3:00–5:00 p.m.
Average

(Min–Max)

7:00–9:00 a.m.
Average

(Min–Max)

3:00–5:00 p.m.
Average

(Min–Max)

T [◦C] 18.9 ± 1.2
(15.3–21.3)

19. 4 ± 2.2
(16.8–26.8)

15.9 ± 2.4
(12.4–20.7)

16.8 ± 2.3
(11.5–20.0)

Rh [%] 54 ± 8
(31–72)

55 ± 7
(39–77)

64 ± 9
(44–78)

60 ± 8
(41–83)

Vw [m/s] 3.5 ± 0.8
(0.6–9.8)

2.8 ± 1.2
(0.2–8.5)

2.1 ± 0.9
(0.1–6.5)

1.9 ± 0.9
(0.3–6.4)

P [hPa] 1007 ± 4
(1001–1012)

1008 ± 3
(1003–1012)

1015 ± 13
(1002–1033)

1015 ± 14
(999–1033)

∑ precipitation
[mm] 8 35

Wind Direction 7:00–9:00 a.m.

3:00–5:00 p.m.

7:00–9:00 a.m.

3:00–5:00 p.m.

2.6. Atmospheric Air Pollution Indicators from Transport Sources Used in the Work

There are several indicators that allow us to estimate whether the chemical compo-
sition of aerosols in a given research area is determined by the emission from transport
sources. While EC has a primary origin, OC can be both primarily emitted but also formed
in the atmosphere through condensation to the aerosol phase of low vapor pressure com-
pounds emitted primary as pollutants or formed in the atmosphere. Thereby, a large
fraction of OC in the atmosphere has a secondary origin. Because of this, the OC/EC
ratio in aerosol fractions differs widely, both in space and seasonally, and it could be a
useful diagnostic ratio to investigate sources and processes happening in the atmosphere,
which could lead to the formation of secondary organic compounds [37–40]. The value of
the OC/EC ratio depends on the emission sources associated with different combustion
processes. Higher concentrations of OC and EC occur during the heating season [41]. They
are also increasing in areas of heavy traffic. In general, both OC and EC are characterized
by higher concentrations near traffic routes than in rural or industrial areas [42–45]. When

80



Atmosphere 2021, 12, 1005

the OC/EC value is between 2.6 and 6.0, the organic carbon comes from the combustion of
fossil fuels [43]. It is assumed that for biomass combustion, the coefficient exceeds 6 [46–48].
Pio et al., (2011) measured the OC and EC at both roadside and urban background sites in
Portugal and the UK and obtained the lowest OC/EC ratio ranging from 0.3 to 0.4 for the
road-generated aerosols. The results of Pio et al., (2011) are in agreement with the findings
of Yu et al., (2011) [49]. On the other hand, they are lower than measured by Hildemann
et al., (1991) [50] for particles emitted from gasoline (OC/EC = 2.2) and diesel vehicles (0.8).
The latter results may be the consequence of using other methods of estimating OC and EC
concentrations in the 1990s.

Polycyclic aromatic hydrocarbons (PAHs) have also been used as indicators of atmo-
spheric pollution from transport sources in various areas of the world. For example, Masclet
et al., (1986) [51] and Miguel et al., (1998) [52] found that the gasoline engine emissions
were enriched in benzo(ghi)perylene and coronene and diesel exhausts emitted mainly
chrysene, fluoranthene, and pyrene. In turn, Duan et al., (2016) [53] noted that fluoranthene,
naphthalene, phenanthrene, pyrene, fluorene, chrysene, and benzo(a)pyrene are dominant
PAHs emitted from coal-fired power plants. For a heavy oil and natural gas fueled-boiler,
naphthalene, phenanthrene, fluoranthene, pyrene, fluorene, and benzo(b)chrysene were
found to be the major PAHs. Sometimes relationships are found that allow us to determine
the origin of PAHs in aerosols. For example, a B(a)A/chrysene ratio above 1 suggests
that the source of the aerosols is fuel combustion. A similar source is indicated by a
B(a)A/(B(a)A + CHR) ratio above 0.2 and a fluoranthene/pyrene ratio above 1. The ratio
of fluoranthene/(pyrene + fluoranthene) within the range of 0.4–0.5 indicates combustion
liquid fuels, and when its value is higher than 0.5, it implies burning coal and biomass.
When the value of the above index falls below 0.4, the carbon source is oil combustion [7].

Another well-recognized marker is the aerosol nitrate to sulfate ratio. It is used to
distinguish the air pollution coming from mobile sources from those emitted by stationary
sources (point emitters, e.g., power plants, refineries). When nitrate ions dominate over
sulphate ions in aerosols, meaning that the NO3

−/SO4
2− ratio is above 1, this indicates

that transport is the main source of pollutants [54,55].
In addition to the chemical indicators listed above, the analysis of meteorological data

facilitates the identification of aerosol sources. For this purpose, wind roses are plotted to
determine potential local and regional sources of pollution (Table 1). In order to determine
the movement of air masses from distant sources, the HYSPLIT model developed by NOAA
can be used [56]. A detailed description of their trajectories has been presented in previous
publications [57,58].

2.7. Statistical Treatment of the Data

To verify the significance of the impact of the analyzed factors (e.g., distance from the
street, level of traffic), two tests were applied. The non-parametric U Mann–Whitney Test
was applied to examine differences between two sets of independent data and the Kruskal–
Wallis test was used for more than two groups of independent variables. Analogous
tests were applied to determine the influence of selected factors on the deposition of
organic carbon. For all dependencies presented in the publication, the levels of tests’
significance have been considered to be important only when the p value was less than
0.05. All the statistical analysis was performed using STATISTICA® Software (Dell Inc.,
software.dell.com, Tulusa, OK, USA, Version 13).

3. Results

The research conducted in Gdynia in 2015 was aimed at determining the extent to
which transport related to driving children to school contributes to air pollution with
carbon compounds. For this reason, measurements were carried out only in the non-
heating period, which was divided into two cycles. The first one covered summer holidays
(July 2015), when there is no traffic related to transporting children to school. September
(2015) was selected as the school period. In both measurement cycles, samples were
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taken during road traffic peak hours (7:00–9:00 a.m. and 3:00–5:00 p.m.). During the
measurements in September, the traffic volume in Gdynia ranged from 37,000 to 45,000
vehicles a day and was on average one third higher than during the summer holidays [59].
This could have resulted in slightly higher concentrations of PAHs (21.4 ng·m−3) and EC
(0.5 μg·m−3) in PM10 aerosols during the school period than during the holiday season
(20.3 ng·m−3 and 0.3 μg·m−3, for PAHs and EC, respectively). Among carbon compounds,
only the concentration of organic carbon in PM10 was higher in July than in September 2015
(6.1 μg·m−3 and 4.3 μg·m−3, respectively), which could be a consequence of the increased
vegetation of plants on land and in the sea at that time. However, the Mann–Whitney U
test did not confirm a statistically significant difference in the concentrations of all analyzed
carbon compounds (PAHs, OC and EC) between the school and holiday periods (test,
p > 0.05). In order to better interpret the sources of origin of the analyzed carbon compounds
in the discussed periods, the results were divided into two size classes: up to 3 μm in
diameter (respirable aerosols) and from 3 μm to 10 μm in diameter (inhalable aerosols)
(Table 2). Additionally, the study takes into account the ionic components of aerosols
(nitrates and sulphates) as a supplement to the information on air pollution from stationary
and mobile sources (NO3

−/SO4
2− factor) [54,55].

Table 2. Statistical characteristics of PAHs, OC, and EC concentrations and selected ionic aerosol components during the
morning and afternoon traffic peak during school and holiday periods.

Parameter
Aerosol Size

[μm]

Holiday Period
(13–21 July 2015)

School Period
(14–30 September 2015)

7:00–9:00 a.m.
Average

(Min–Max)

3:00–5:00 p.m.
Average

(Min–Max)

7:00–9:00 a.m.
Average

(Min–Max)

3:00–5:00 p.m.
Average

(Min–Max)

ΣPAH5 [ng·m−3]
<3 15.44 ± 9.15

(3.12–26.66)
13.68 ± 8.21
(3.54–25.61)

11.04 ± 4.99
(5.77–18.42)

7.96 ± 4.67
(4.28–17.81)

3–10 6.24 ± 6.88
(0.74–19.90)

5.46 ± 3.98
(0.52–10.55)

20.15 ± 22.9
(0.64–57.71)

4.95 ± 3.58
(0.38–8.90)

Benzo(a)anthracene
B(a)A [ng·m−3]

<3 0.04 ± 0.02
(0.02–0.06)

0.04 ± 0.06
(LD-0.14)

0.03 ± 0.02
(0.01–0.1)

0.02 ± 0.01
(0.01–0.02)

3–10 0.02 ± 0.03
(LD-0.06)

0.03 ± 0.02
(LD-0.06)

0.14 ± 0.07
(0.09–0.20)

0.02 ± 0.01
(0.01–0.03)

Benzo(a)pyrene
B(a)P [ng·m−3]

<3 0.04 ± 0.04
(0.01–0.11)

0.03 ± 0.02
(LD-0.07)

0.02 ± 0.01
(0.01–0.03)

0.02 ± 0.01
(0.02–0.03)

3–10 0.01 ± 0.01
(LD-0.03)

0.01 ± 0.01
(LD-0.02)

0.08 ± 0.00
(0.08–0.08)

0.07 ± 0.01
(0.06–0.10)

Chrysen
CHR [ng·m−3]

<3 0.12 ± 0.06
(0.07–0.23)

0.10 ± 0.05
(0.05–0.20)

0.09 ± 0.03
(0.06–0.14)

0.04 ± 0.02
(0.01–0.07)

3–10 0.04 ± 0.04
(0.01–0.11)

0.08 ± 0.06
(0.03–0.20)

0.11 ± 0.11
(0.02–0.39)

0.04 ± 0.02
(0.02–0.07)

Fluoranthene
FLU [ng·m−3]

<3 15.17 ± 9.06
(2.96–26.27)

13.41 ± 8.05
(3.45–25.03)

10.87 ± 4.94
(5.56–18.12)

4.87 ± 3.53
(0.34–8.75)

3–10 6.13 ± 6.75
(0.71–19.52)

5.29 ± 4.00
(0.19–10.37)

19.89 ± 22.13
(0.61–57.03)

7.83 ± 4.62
(4.19–17.59)

Pyrene
PYR [ng·m−3]

<3 0.08 ± 0.03
(0.05–0.13)

0.11 ± 0.08
(0.03–0.24)

0.05 ± 0.02
(0.04–0.09)

0.02 ± 0.01
(0.01–0.04)

3–10 0.05 ± 0.06
(0.01–0.17)

0.06 ± 0.05
(0.01–0.16)

0.07 ± 0.06
(0.01–0.17)

0.02 ± 0.01
(0.01–0.04)

Nitrates
NO3

− [μg·m−3]

<3 0.7 ± 0.5
(LD-1.5)

0.5 ± 0.5
(0.1–1.4)

2.0 ± 2.1
(0.5–5.8)

2.5 ± 0.7
(1.8–3.3)

3–10 0.2 ± 0.1
(LD-0.2)

0.1 ± 0.2
(LD-0.2)

1.0 ± 0.4
(LD-1.4)

1.1 ± 1.2
(0.1–3.1)
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Table 2. Cont.

Parameter
Aerosol Size

[μm]

Holiday Period
(13–21 July 2015)

School Period
(14–30 September 2015)

7:00–9:00 a.m.
Average

(Min–Max)

3:00–5:00 p.m.
Average

(Min–Max)

7:00–9:00 a.m.
Average

(Min–Max)

3:00–5:00 p.m.
Average

(Min–Max)

Sulphates
SO4

2− [μg·m−3]

<3 0.6 ± 0.3
(0.3–1.1)

0.6 ± 0.4
(0.2–1.2)

2.5 ± 2.0
(0.7–5.4)

2.2 ± 1.0
(1.0–4.0)

3–10 0.1 ± 0.0
(LD-0.1)

0.1 ± 0.1
(LD-0.2)

1.4 ± 1.1
(LD-3.2)

2.1 ± 3.3
(LD-9.3)

OC [μg·m−3]
<3 4.6 ± 0.7

(3.6–5.6)
4.3 ± 1.3
(2.8–6.0)

3.3 ± 0.8
(1.8–3.9)

2.7 ± 0.6
(1.8–3.4)

3–10 1.7 ± 0.5
(1.2–2.6)

1.6 ± 0.3
(1.1–2.1)

1.2 ± 0.2
(0.9–1.6)

1.3 ± 0.5
(0.8–2.0)

EC [μg·m−3]
<3 0.5 ± 0.2

(LD-0.7)
0.3 ± 0.1
(LD-0.5)

0.6 ± 0.2
(LD-0.9)

0.4 ± 0.4
(LD-1.0)

3–10 0.2 ± 0.0
(LD-0.2)

0.2 ± 0.2
(LD-0.7)

0.4 ± 0.3
(LD-0.7)

0.3 ± 0.1
(LD-0.4)

The concentration of total PAHs was always higher in particles smaller than 3 μm in
diameter. Only in the morning road traffic peak, during the school period, was there a
reverse tendency that the mean the concentration of ∑PAH5 was higher in particles with
a diameter of 3 to 10 μm. It was also the only case where the concentration of ∑PAH5
was higher during the school period than during the holiday period. At the same time,
regardless of the particle size and duration of measurements (school and holiday period),
the concentration of ∑PAH5 was always higher in the morning than in the afternoon
(Table 2). Among the analyzed PAHs, the highest concentration values in both fractions,
both during school and holiday periods, as well as during the morning and afternoon
road traffic peak, were exhibited by fluoranthene (Table 2). The concentrations of other
PAHs were at a similar level. The lowest values were found for B(a)A (from <LD of
the analytical method to 0.2 ng·m−3). Apart from benzo(a)pyrene, which belongs to
the five-ring hydrocarbons, the remaining analyzed PAHs are classified as tetracyclic
(pyrene, chrysene, fluoranthene, benzo(a)anthracene). Two-and three-ring PAHs have a
low molecular weight (LMW), four-ring PAHs have an average molecular weight (MMW),
while five- and six-ring PAHs have a high molecular weight (HMW). The physical and
chemical properties of PAHs change with the molecular weight and chemical structure.
Low molecular weight compounds, which were not analyzed in this study, have a higher
vapor pressure and are present in the environment in gaseous form. In addition, they are
less hydrophobic than medium and high molecular weight hydrocarbons and therefore
dissolve more easily in water. PAHs of medium and high molecular weights are more
difficult to degrade, and thus more persistent in the natural environment. PAHs with
four or more aromatic rings are hydrophobic and typically non-polar compounds. This
determines their behavior in the natural environment. In general, PAHs with a higher
molecular weight exhibit sorption properties on smaller aerosols [60], which could explain
why the concentration of PAHs was higher in particles smaller than 3 μm in diameter. The
high concentrations of PAHs in large aerosols obtained in the morning hours during the
school period could have resulted from the prevailing weather conditions. The process of
PAHs sorption on aerosols is more intensive under higher air humidity. In the discussed
period of time, the average air humidity was 64 ± 9% and was higher than in other research
periods (Table 1). At that time, the atmospheric pressure was also characterized by the
highest range of values (from 1002 to 1033 hPa). The increase in atmospheric pressure
reduces the speed of air circulation and prevents the transfer of PAHs from aerosol to
gaseous form [61]. For this reason, during the morning hours of school period, when the
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air humidity and atmospheric pressure were higher, higher concentrations of the analyzed
PAHs in aerosols >3 μm of diameter could be recorded. In the afternoon hours of the school
period, the pressure periodically dropped below 1000 hPa, and the humidity was several %
lower than in the morning hours (Table 1).

The mean concentration of organic (OC) and elemental (EC) carbon was always higher
in aerosols below 3 μm in diameter. In a similar manner to the concentration of ∑PAH5,
the concentration of these compounds was also higher in the morning hours than in the
afternoon traffic peak hours. However, while the concentration of EC was higher or at
a similar level during the school period, higher values of OC were observed during the
summer holidays. Organic carbon during the holiday season accounted for as much as 94%
in the total carbon fraction in particles smaller than 3 μm and 92% in particles larger than
3 μm in diameter. Its share decreased during the school period, when the EC concentration
increased. At that time, OC constituted 88% of the TC mass in particles <3 μm in diameter,
and 84% of TC in particles >3 μm in diameter.

The average concentration of nitrates and sulphates, as well as the EC concentration,
was higher during the school period than during the holiday period (Table 2). Regardless
of the season and the time of day, it was always greater in aerosols <3 μm in diameter.

4. Discussion

4.1. The Origin of Carbon Compounds during the Holiday Season

Measurements carried out in Gdynia during the holiday season did not show sta-
tistically significant differences in concentrations depending on the time of sampling in
the case of ∑PAH5, both forms of carbon (OC and EC), or basic ionic components (NO3

−,
SO4

2−) (Figure 3).
The median concentrations of all compounds were very similar in the morning and

afternoon hours. This may be due to the fact that during the holidays in the area of the
Tri-City agglomeration, the traffic volume is largely determined by tourism. Therefore,
it is not at its highest during peak traffic hours. Rather, it falls in the late morning hours,
when tourists head for the beach and the early afternoon hours, when tourists come down
for lunch. Additionally, some residents are on vacation during the summer months. Of
course, driving children to school is also eliminated. However, the obtained value of the
PAHs origin index described by the relationship PIR/B(a)P was high and amounted to
6.9. This indicates that the dominant source of these compounds in aerosols over Gdynia
during the summer holidays was combustion in diesel engines [62,63]. The same source
was found both for small particles in the morning hours (6.1) and in the afternoon (5.7)
and for large particles during both road traffic peak hours (6.2 and 11.4, respectively in
the morning and afternoon). The high concentration of fluoranthene in relation to pyrene
(mean value Flu/Pyr = 159) also indicated the communicative source of PAHs during
the holidays. This source played a more significant role in the morning (Flu/Pyr = 337)
than in the afternoon (Flu/Pyr = 138). The more than two times higher concentration of
fluoranthene in small aerosols as compared to large particles also proves the impact of
combustion in diesel engines. This trend was recorded both in the morning and in the
afternoon (Table 2). The same source of aerosols during the holiday season was indicated
by the value of the NO3

−/SO4
2− ratio. Again, its greater importance was established

in the morning (7:00–9:00 a.m.) when the mean value of the ratio was 1.3 (1.2 and 1.4,
respectively, in particles <3 μm and >3 μm in diameter). In the afternoon (3:00–5:00 p.m.)
the NO3

−/SO4
2− ratio was slightly lower and averaged 1.1 (1.0 and 1.2, respectively, in

particles <3 μm and >3 μm in diameter) [54,55].
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(a) (b) 

 
(c) 

Figure 3. Statistical characteristics of the concentration of (a) PAH5, (b) nitrate and sulphate ions, (c) and OC and EC in the
morning and afternoon rush hours in the atmosphere over Gdynia during the holiday season of 2015.

Another indicator, the OC/EC ratio, was at the level of 14.0 during the holiday period
(with an average of 11.4 in the entire measurement period), which proves the significant role
of vegetation in forming the high concentrations of organic carbon at that time [62]. This
compound could be present in aerosols as a consequence of naturally occurring processes,
i.e., emission of plant spores, pollen, vegetation debris, microorganisms, and organic matter
from the soil surface and the nearby sea [32,57,64–68]. The value of the coefficient was
always higher in the smaller aerosols, both in the morning and afternoon hours (12.3 and
23.4, respectively) than in the aerosols with a diameter of 3 to 10 μm (8.2 and 7.1 in the
morning and afternoon, respectively). It was also found that in aerosols <3 μm in diameter,
the source of OC and EC origin during the summer holidays was always common, as
indicated by the Pearson correlation coefficient between the concentrations of OC and EC
(r = 0.8 and r = 0.95, respectively in the morning hours and afternoon). In particles >3
μm in diameter during the holiday season, no common source of OC and EC origin was
established during any of the road traffic peak hours (Pearson correlation r < 0.5). This
could be due to the fact that as much as 67% of the EC concentrations measured in these
particles in the morning hours and 43% of the concentrations in the afternoon hours were
below the limit of quantification of the method (Table 2). This suggests a different source
of organic carbon, apart from the transport sector, is large aerosols, despite lower OC/EC
values compared to small particles. Organic carbon, apart from plant vegetation, could
be present at that time in large aerosols as a consequence of biomass combustion during
food processing. The research was conducted in the summer, when both residents and
tourists often grill [69–71]. It could also be a component of secondary aerosols resulting
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from the physical or chemical adsorption of gases on particles, which led to an increase in
its concentration [72,73].

The influence of transport was noticeable during the summer holidays in small par-
ticles, especially in the morning hours, when the wind dominated from the Tri-City ring
road. Its force was then up to 10 m·s−1 (Table 1, Figure 1). During this time, the OC/EC
ratio in particles <3 μm in diameter was almost two times lower than in the afternoon (23.4
and 12.3, respectively), as a consequence of the increase in EC concentration [6]. The ring
road connects all the cities of the Tri-City (Gdansk, Sopot, Gdynia) and at the same time a
route leading to the Hel Peninsula, which is one of the places most visited by tourists on the
Polish Baltic coast during the holidays. Its significance for the increase in EC concentration
in aerosols has already been reported in this area of research [34,58,61,74].

In the afternoon hours, the average wind speed was 2.8 m·s−1 and was lower than in
the morning hours (Table 1). The highest value of OC/EC recorded at that time in particles
smaller than 3 μm (23.4) was the result of two times lower EC concentrations compared
to the morning hours. However, since the source of OC and EC origin was common at
that time (Pearson’s correlation r = 0.95), the influence of transport on the concentration
of both compounds cannot be ruled out. At that time, the road leading through Gdynia,
located 600 m south-west of the measuring station, can be indicated as a potential carbon
compound source from the transport sector (Figure 1). On the other hand, the high values
of OC concentrations in small particles present in the atmosphere over Gdynia during the
afternoon hours are probably a consequence the presence of secondary organic carbon in
them or/and of biomass combustion during food processing [69–71].

4.2. The Origin of Carbon Compounds during the School Period

During the school period (September 2015), the difference in the concentrations ob-
tained in the morning and afternoon traffic rush hours was more pronounced than in the
holiday season (Figure 4). This relationship was confirmed by the U Mann–Whitney test
for PAHs (p = 0.05) and for elemental carbon (p = 0.04). Statistical significance was not
confirmed for nitrates, sulphates, or organic carbon (p > 0.05).

Higher median concentrations of ∑PAH5 and EC, as well as OC, were recorded in the
morning from 7:00 a.m. to 9:00 a.m. (Table 2), when children are transported to school and
adults are going to work. Then, the traffic intensity in the study area increases, which could
have generated an increase in air pollution from transport sources [6,75]. In the morning,
when class starts at 8:00 a.m. or 9:00 a.m., dozens of cars dropping off children and running
their engines are observed in front of schools. In the afternoon, high levels of traffic are
spread over time. This is due to the different times that the classes end for particular
groups of students and the additional activities they perform (extracurricular activities).
For this reason, a large proportion of children return home on foot, without the need for a
car. These factors determined the differences in the concentrations of traffic pollution in
aerosols measured during the school period in the atmosphere over Gdynia in the morning
and afternoon hours. In the morning, the value of the PIR/B(a)P ratio pointed to the
transport source of PAHs related to combustion in diesel engines, which was almost twice
as high as in the afternoon (4.0 and 2.2, respectively) [60,63]. The value of this coefficient
was several times higher in small aerosol particles (4.4 and 3.4, respectively in the morning
and afternoon traffic rush hours) than in large particles (1.4 and 0.8, respectively in the
morning and afternoon traffic rush hours). It was found that the value of the coefficient
was not affected by the concentration of B(a)P, which during the school period did not
show statistically significant differences depending on the time of day (U Mann–Whitney
test, p = 0.2). Both in the morning and afternoon hours, the concentration of this compound
was also at a similar level in large and small particles (Table 2). Pyrene was the PAH that
differentiated the PIR/B(a)P ratio during the school period. Its median differed statistically
significantly depending on the time of day, both in small and large particles (Table 2), which
was confirmed by the U Mann–Whitney test (p = 0.03). In the case of small aerosols, the
concentration of pyrene in the morning traffic rush hours was twice as high, and in the case
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of large aerosols it was even three times higher than in the afternoon hours (Table 2). Such
high concentrations of pyrene indicated that in the morning there was an additional source
of PAHs in aerosols, apart from transport sector, probably related to the combustion of
fuels for heating purposes [60,63,76]. Taking into account the beginning of autumn and the
cooling that prevailed in Poland at that time, it is possible that users of detached houses in
the mornings heated them more intensively using solid fuels for this purpose. This would
also explain the high concentrations of fluoranthene, which is a congener of PAHs, which,
in addition to transport emissions, also result from the combustion of coal and wood [60,77].
In the morning hours, the median concentration of this compound was 25.62 ng·dm−3, and
it was almost two times higher than in the afternoon (13.71 ng·dm−3). In addition, high
concentrations of fluoranthene in the morning were also recorded in large particles, which
may confirm their non-transport source of origin (Table 2). A similar dependence was
shown in large aerosols of benzo(a)anthracene, whose median concentration in the morning
traffic rush hours was 0.14 ng·dm−3 and was seven times higher than that obtained in the
afternoon (0.02 ng·dm−3).

  
(a) (b) 

 
(c) 

Figure 4. Statistical characteristics of the concentration of: (a) PAHs, (b) nitrate and sulphate ions, (c) and OC and EC in the
morning and afternoon rush hours in the atmosphere over Gdynia during the school period in 2015.

During the school period, the greater impact of road transport in the morning was
also confirmed by the NO3

−/SO4
2− ratio, which on average amounted to 1.2 during this

time. In the afternoon, the value of the coefficient decreased to 0.9, suggesting that some of
the pollutants in the atmosphere above Gdynia could come from emissions from stationary
sources [54,55]. The OC/EC value during the school period was set at 6.8 and was lower
in the morning than in the afternoon (5.8 and 9.1, respectively). This indicates a greater
importance of transport in the emission of elemental carbon to the atmosphere during the
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hours of transporting children to school [64,78,79]. Similar results were obtained by Querol
et al., (2013) [64] conducting research in the years 1999–2011 at 78 research stations located
throughout Spain. The researchers considered areas with varying degrees of urbanization,
agricultural areas, and background stations away from large cities. The lowest value of
the OC/EC ratio was obtained by Querol et al., (2013) [64], similarly to this study, in the
morning. It always corresponded to a marked increase in the volume of traffic.

4.3. Selected Episodes with the Highest Influence of Land and Maritime Transport

Both during the holiday and school periods, there were several interesting cases
in which the concentration of the analyzed compounds was determined by meteoro-
logical conditions and the time of day. The first episode took place on 16 July 2015.
Then, air masses were transported over the station from the north-west (from the North
Sea), but the wind direction changed significantly with the time of day (Figure 5). The
value of the NO3

−/SO4
2− ratio in PM10 was then the highest in the entire holiday sea-

son, and amounted to 1.9 on average. The concentration of ∑PAH5 was also very high
(29.17 ng·dm−3). The average wind speed equal to 2.4 m·s−1 indicated a local to regional
source of aerosols [58,80].

   

(a) (b) (c) 

Figure 5. Dominant wind direction in the morning (a) and the afternoon (b) and the dominant air masses (c) on 16 July 2015
in Gdynia.

As the discussed situation occurred during the holiday season, and the air temperature
that day reached 20 ◦C, the increase in the concentration of pollutants in the air over Gdynia
could have been caused by increased tourist traffic towards the beaches of Tri-City. In the
morning hours (7:00–9:00 a.m.), when the wind direction from the ring road dominated
(Figure 5a) and the wind speed was up to 7 m·s−1, the value of the NO3

−/SO4
2− coefficient

in PM10 aerosols measured in Gdynia increased to 2.2. This indicated the transport
source of the pollution origin at that time [5,55]. This was confirmed by the low value
of the OC/EC ratio compared to the average for the entire holiday period (11.5 and
19.6, respectively) [64]. Additionally, on the morning of 16 July the maximum ∑PAH5
concentration was recorded (37.7 ng·dm−3), which also proves the significant influence of
transport [75]. In the afternoon, the winds were blowing from east to south-east from the
streets around the station. The wind speed was already low (1.4 m·s−1), which led to less
dispersion of pollutants. For this reason, the concentration of ∑PAH5 remained at a high
level (20.7 ng·dm−3). Additionally, the value of the NO3

−/SO4
2− coefficient was similar to

that in the morning (1.9).
The next episode took place on 20 July 2015, when the wind was coming from the

north-west (Figure 6). On that day, the concentration of nitrates was very low, with an
average of 0.7 μg·dm−3, while the concentration of sulfates was high and amounted to
1.1 μg·dm−3 (mean 0.67 μg·dm−3). Consequently, the NO3

−/SO4
2− ratio had a very small

value of 0.1. Taking into account the proximity of the port and the incoming wind from its
region, the probable sources of pollution in the atmosphere above the research station were

88



Atmosphere 2021, 12, 1005

day shipping and port activity [81]. The value of the OC/EC ratio was high (18.4) and did
not indicate a large share of elemental carbon in aerosols at that time. However, the high
concentration of ∑PAH5 (15.8 ng·dm−3) and the obtained value of the PIR/B(a)P ratio at
the level of 16.1 may suggest the presence of carbon compounds emitted to the atmosphere
from combustion in diesel engines. As on that day the wind speed reached 8.5 m·s−1, the
pollutants were well dispersed. On the next measuring day, the concentrations had halved.

  

(a) (b) 

Figure 6. Dominant wind direction (a) and dominant air masses (b) on 20 July 2015 in Gdynia.

Another situation was recorded on 16 September 2015, when the NO3
−/SO4

2− ratio
reached its maximum value during the entire measurement period, equal to 2.7. The likely
cause of the increase in nitrate concentration was the film festival taking place in Gdynia
and the related increased traffic volume. On that day, the wind direction from the east
(in the morning) and from the south-east (afternoon hours) was recorded (Figure 7). The
wind speed was low (on average 1.4 m·s−1), which led to the accumulation of pollutants
close to the emission source and their poor dispersion [5,80]. The obtained value of the
PIR/B(a)P ratio, amounting to an average of 2.2, indicated the role of petrol-powered cars
in the formation of high concentrations of ∑PAH5 (20.75 ng·dm−3).

 

(a) (b) (c) 

Figure 7. Dominant wind direction in the morning (a) and the afternoon (b) and dominant air masses (c) on 16 September
2015 in Gdynia.

The role of transport on that day was clear, both in the morning and in the afternoon
rush hours. From 7:00 a.m. to 9:00 a.m. the NO3

−/SO4
2− ratio was equal to 2.3, and

from 3:00 to 5:00 p.m. it adopted the highest value over the entire measurement period,
amounting to 2.9. It was found that the source of air pollution, determined using the
PIR/B(a)P ratio, was related to the emissions from combustion in gasoline engines, both
in the morning and in the afternoon (1.7 and 2.5, respectively). In the morning, when the
average wind speed was very low and averaged 0.7 m·s−1, the concentration of ∑PAH5
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reached 31.5 ng·dm−3. In the afternoon, when the wind speed doubled (1.7 m·s−1 on
average), the concentration of ∑PAH5 decreased to 10.0 ng·dm−3. In the morning, in the
vicinity of the research station, there could be a greater accumulation of local pollutants. In
turn, in the afternoon, pollutants could be transported from the important roads located on
the southeast and east of the measuring station [80,82]. Many of them are access roads to
nearby schools (Figure 2).

5. Conclusions

PM10 measurements conducted in the coastal zone of the Baltic Sea in 2015 indicated
higher concentrations of nitrate, sulphate, and elemental carbon in the school period, while
the concentration of organic carbon in aerosols was higher during the holidays. In the case
of PAHs concentration, the difference between the school and vacation periods was not
clear. While the concentrations of fluoranthene, chrysene, and pyrene were higher during
the holidays, the concentration of B(a)P and B(a)A were higher in the school period.

The analysis of aerosol pollution markers suggested that during the holidays, the
quality of the surrounding air was mainly determined by the combustion of diesel oil in
transport related to tourism, passenger ships, and port activity. These sources apparently
appeared in the morning hours (7:00–9:00 a.m.). During the school period, the main source
of pollutants was gasoline combustion. At the beginning of autumn, due to the drop in air
temperature, the role of the heating sector also cannot be ignored.

The highest mean values of the ΣPAHs5 and EC were recorded in small particles
(<3 μm in diameter) during the school period, which were found in the morning road
traffic peak hours. The mean concentration of OC was also the highest in small aerosols
during the holiday period. However, there were no statistically significant differences
between the concentrations of organic carbon concentration in the morning and afternoon
peak hours. Strict sampling and measurement procedure, together with analysis of air
mass backward trajectories and pollutant markers, indicated that the role of land transport
was the greatest when local to regional winds prevailed, bringing pollution from nearby
schools and the beltway.

Author Contributions: Conceptualization, A.U.L.; data curation, J.K.B., K.A.W., and K.V.B.; formal
analysis, J.K.B., K.A.W., and K.V.B.; funding acquisition, A.U.L. and M.S.; investigation, J.K.B. and
K.V.B.; methodology, M.S. and A.U.L.; project administration, A.U.L.; resources, A.U.L., M.S., and
K.V.B.; supervision, A.U.L.; validation, A.U.L. and M.S.; visualization, J.K.B. and K.A.W.; writing—
original draft, J.K.B., A.U.L., and M.S.; writing—review and editing, A.U.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prévôt,
A.S.H.; et al. Source Apportionment of Particulate Matter in Europe: A Review of Methods and Results. J. Aerosol Sci. 2008, 39,
827–849. [CrossRef]

2. Jandacka, D.; Durcanska, D.; Bujdos, M. The Contribution of Road Traffic to Particulate Matter and Metals in Air Pollution in the
Vicinity of an Urban Road. Transp. Res. Part D Transp. Environ. 2017, 50, 397–408. [CrossRef]

3. Donateo, A.; Gregoris, E.; Gambaro, A.; Merico, E.; Giua, R.; Nocioni, A.; Contini, D. Contribution of Harbour Activities and Ship
Traffic to PM2.5, Particle Number Concentrations and PAHs in a Port City of the Mediterranean Sea (Italy). Environ. Sci. Pollut.
Res. 2014, 21, 9415–9429. [CrossRef]

4. Merico, E.; Gambaro, A.; Argiriou, A.; Alebic-Juretic, A.; Barbaro, E.; Cesari, D.; Chasapidis, L.; Dimopoulos, S.; Dinoi, A.;
Donateo, A.; et al. Atmospheric Impact of Ship Traffic in Four Adriatic-Ionian Port-Cities: Comparison and Harmonization of
Different Approaches. Transp. Res. Part D Transp. Environ. 2017, 50, 431–445. [CrossRef]

90



Atmosphere 2021, 12, 1005

5. Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W.; Clayton, R.; Proffitt, D. Tailpipe, Resuspended Road Dust, and Brake-Wear Emission
Factors from on-Road Vehicles. Atmos. Environ. 2003, 37, 5283–5293. [CrossRef]

6. Keuken, M.P.; Zandveld, P.; Jonkers, S.; Moerman, M.; Jedynska, A.D.; Verbeek, R.; Visschedijk, A.; Elshout, S.; Panteliadis, P.;
Velders, G.J.M. Modelling Elemental Carbon at Regional, Urban and Traffic Locations in The Netherlands. Atmos. Environ. 2013,
73, 73–80. [CrossRef]

7. Arnott, W.P.; Zielinska, B.; Rogers, C.F.; Sagebiel, J.; Park, K.; Chow, J.; Moosmüller, H.; Watson, J.G.; Kelly, K.; Wagner, D.; et al.
Evaluation of 1047-Nm Photoacoustic Instruments and Photoelectric Aerosol Sensors in Source-Sampling of Black Carbon Aerosol
and Particle-Bound PAHs from Gasoline and Diesel Powered Vehicles. Environ. Sci. Technol. 2005, 39, 5398–5406. [CrossRef]
[PubMed]

8. Geller, M.D.; Sardar, S.B.; Phuleria, H.; Fine, P.M.; Sioutas, C. Measurements of Particle Number and Mass Concentrations and
Size Distributions in a Tunnel Environment. Environ. Sci. Technol. 2005, 39, 8653–8663. [CrossRef] [PubMed]
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Abstract: Air pollution is considered one of the most significant risk factors for human health. To
ensure air quality and prevent and reduce the harmful impact on human health, it is necessary to
identify and measure the main air pollutants (sulfur and nitrogen oxides, PM10 and PM2.5 particles,
lead, benzene, carbon monoxide, etc.), their maximum values, as well as the impact they have on
mortality/morbidity rates caused by respiratory diseases. This paper aims to assess the influence of air
pollution on respiratory diseases based on an analysis of principal pollutants and mortality/morbidity
data sets. In this respect, four types of data are used: pollution sources inventory, air quality data sets,
mortality/morbidity data at the local and national level, and clinical data of patients diagnosed with
different forms of lung malignancies. The results showed an increased number of deaths caused by
respiratory diseases for the studied period, correlated with the decreased air quality due to industrial
and commercial activities, households, transportation, and energy production.

Keywords: air quality index; polluting agents; respiratory diseases; monitoring stations

1. Introduction

Air pollution represents the principal risk to human health. In 2021, European Com-
mission adopted the EU Action Plan called “Towards a zero pollution for air, water, and
soil”. The main objective is to improve the air quality and reduce the premature mortality
caused by air pollution by 55% [1].

Several studies have demonstrated the adverse effects of air pollution on the envi-
ronment and human health, especially on respiratory diseases. In 2018, Dumitru et al. [2]
published a retrospective study on the influence of air pollution over the respiratory in-
fections in Romania, covering a period of ten years. Similar studies were developed in
different countries and for different periods of time: Rodríguez-Villamizar et al. [3] studied
the influence of air pollution on respiratory and circulatory morbidity in Colombia, Nhung
et al. [4] in Hanoi, the capital city of Vietnam, while Al-Taani et al. [5] and Nazzal et al. [6,7]
focused their research in Sharjah and Ajman Emirates (UAE). Dastoorpoor et al. [8] studied
the short-term effects of air pollution in Iran while Stafoggia et al. [9] conducted similar
research for the Southern Europe. Carlsten et al. [10] recommended several strategies
to minimize personal exposure to ambient air pollution, while Barbulescu et al. [11,12]
used statistical methods for modeling and assessing the influence of different pollutants.
According to Eurostat [13], 339,000 deaths were caused by respiratory diseases in EU-27,
an equivalent of 75 death per 100,000 habitants (SDR–Standardized Death Rate). EEA (Eu-
ropean Environment Agency) reported in 2020 that air pollution caused 400,000 premature
deaths in Europe [14]. In a recent study, Schraufnagel et al. [15,16] demonstrated that air
pollution can affect the respiratory tract and every organ in the body.

To secure the air quality, and prevent and reduce harmful impact on human health,
the Directive 2008/50/EC [17] sets some measures: (i) quality standards under which
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the quality evaluation is based on threshold values of different pollutants such as sulfur
dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter (PM10 and PM2.5),
lead, benzene and carbon monoxide; (ii) establishment of air quality management and
evaluation area are mandatory for all member states and (iii) improving health.

Even if Romania has registered progress in reducing the emissions of pollutants during
the 1990–2016 period, the air quality represents a significant concern and the authority
shall endeavor to achieve the new limits proposed in the new Directive 2016/2284/UE [18].
Statistics from Eurostat [13] shows that Romania had an SDR greater than the EU-27 average
in 2017 for all diseases associated with respiratory function (Table 1). At the same time,
from the analysis concerning the average length of hospital stays for in-patients treated
for respiratory disease, results show that in Romania, the average hospital stay in 2018
is 6.7 days, less than the EU-27 average (7.0). Asthma patients spent a highest number
of days in hospital (7.9 days), more than the EU average. EEA estimated for 2018 that
29,200 premature deaths in Romania are due to particulate matter and NO2 concentrations,
representing 6.5% of EU-27 countries [19]. According to with European Public Health
Alliance report [20], Romania has the highest cost per capita caused by air pollution (1810
euros/capita).

Table 1. Standardized death rates—respiratory disease (2017).

Influenza Pneumonia Chronic Lower
Respiratory

Diseases

Asthma and
Status

Asthmaticus

Other Lower
Respiratory

Diseases

Other Diseases of
the Respiratory

System

EU −27 1 1.0 24.3 34.2 1.2 33.0 22.0
Romania 0.1 42.5 39.2 1.4 37.8 11.7

1 source Eurostat [13].

Currently, the most quality air index used in Europe is CAQI (Common Air Quality
Index), calculated on a three-time level (hourly, daily and annual) developed under the
project CITEAIR [21]. The pollutants used in CAQI evaluation are CO (Carbone monoxide),
NO2 (Nitrogen Dioxide), O3 (Ozone), SO2 (Sulfur dioxide), PM2.5 (Fine Particle Matter),
and PM10 (Particle Matter). This index does not have the flexibility to aggregate all the pol-
lutants [14]; the air quality is given by the worst value of the contaminants included in the
determination. Stieb [22] introduced a new index, AQHI (Air Quality Health Index), based
on the “sum of excess mortality risk associated with individual pollutants.” Olstrup [23]
calculated this index for Stockholm during 2015–2017 and concluded that it could be an
efficient tool to estimate air quality based on the combined effect of multiple pollutants.
Still, the meta coefficient is available only for a local AQHI evaluation. In a recent review,
the authors [20] investigated 19 methods for AQHI evaluation and concluded that most
of them could not include in the estimation a new pollutant whether it’s designed for a
specific number of contaminants or the aggregation function has not the possibility to
aggregate a new pollutant.

In this context, this paper aims to assess the influence of air pollution on respiratory
diseases based on an analysis of principal pollutants and mortality/morbidity data sets.
The main primary histopathological forms of lung malignancies are analyzed, including
their association with environmental factors and the primary pollutants [1,2].

2. Materials and Methods

2.1. Study Data

Brasov County is situated in the center part of Romania (Figure 1) at 45◦38′ north
latitude and 25◦35′ east longitude. The elevation increases from north to south (Figure 1).
The region is located at the junction of three large natural units: the Eastern Carpathians
and the Southern Carpathians, some places exceeding 2000 m, and Transilvania Plateau.
The average altitude is 625 m. The climate is temperate with 8.8 ◦C multiannual average
temperature, and annual precipitation is around 654 mm.
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Figure 1. Location of Brasov County and air quality measurement stations: (a) map of Europe
and the border of Romania; (b) map of Romania and the border of Brasov County; (c) relief, roads
and railways traffic map of Brasov County and the location of monitoring stations; (d) Brasov
metropolitan area.

The land use distribution is 52% agricultural and 48% non-agricultural, from which
38% are represented by forests.

From an administrative point of view, Brasov County is a part of the Center Develop-
ment Region and has 58 localities with a population of 627,597 (according to 2011 census).
The public road network of Brasov County has a length of 1659 km. It should be mentioned
that Brasov is crossed by the European Corridor 4 and the European road E 60 (Figure 1).
Brasov County has a railway network with a total length of 353 km, of which 184 km is elec-
trified. Currently, an airport is under construction. In Brasov County, the machine-building
industry, the metal processing industry, the pharmaceutical, food, and wood processing
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industry, and the field of construction, transport, and services have developed. Bras, ov has
a long tradition in tourism, being the most popular ski and winter sports destination in
Romania and the resorts in the Prahova Valley.

2.2. Data and Methodology Used

Four types of data are used in this study: pollution sources inventory, air quality
data sets, data about mortality/morbidity at the Brasov County level, and clinical data of
patients diagnosed histopathologically in Sacele Brasov Municipal Hospital.

Air quality data sets are obtained from the National/Local network of quality Air
Monitoring (RLMCA Brasov). The air quality is monitored in five automatic stations in
urban, suburban, and industrial areas (Figure 1 and Table 2). The sixth station is a reference
station for air quality assessment situated in the mountain area (EMI-Fundata station). The
period investigated is 2016–2020, and daily time series data are used. Notice that the Air
Quality Monitoring National System was establish in 2011 by Law no 104, which transpose
in national legislation Directive 2008/50/CE and 2004/107/CE provisions.

Table 2. Monitoring stations in Brasov.

Station Indicative Location Type Elevation [m]

BV1 Calea Bucureşti Blvd. traffic 593
BV2 Castanilor street urban 593
BV3 Garii Blvd. traffic 593
BV4 Sânpetru village suburban 560
BV5 Vlahuta street industrial 593
EMI Fundata village regional 1360

SDR and morbidity annually data are obtained from National Institute of Public
Health. The clinical data were obtained from Sacele Brasov Municipal Hospital, Pathol-
ogy Department.

The methodology used in this paper refers to:

1. Understanding pollution sources; to achieve this analysis, we investigated the pol-
lution inventory recorded by the Environment Pollution Agency of Brasov (APM)
during 2016–2020. The objective of this activity is to identify the principal economic
activity responsible for pollution in Brasov County and the prevalent pollutants that
contribute to air quality reduction.

2. Analysis of mortality/morbidity data; the objective of this analysis is to identify the
mortality/morbidity caused by respiratory disease and its evolution.

3. Analysis of the current status of principal air quality data and air quality index
assessment. The analysis consists of (i) descriptive statistics to establish the frequency
of occurrence for each pollutant and station; (ii) air index calculation based on daily,
monthly, and annual data sets. For each daily value and pollutant is assigned a
scale from “1”, excellent, to “6” severe with respect to the calculation grid [24]. The
aggregated air quality index is calculated using the worst value of all pollutants used
for each station.

4. Analysis of clinical data of patients diagnosed with primary lung malignancies; the
patient’s ages, sex, and domicile were quantified to identify a correlation between
pollutants and histological forms of cancer. The diagnosed tissue specimens came
from the thoracic Surgery Clinic of the Brasov Military Hospital’s surgery rooms
and the Pneumoftiziology Clinic of the Respiratory Diseases Hospital Brasov. Thus,
tumorectomies, lung specimens (lobes, segments), endobronchial biopsies, pleural flu-
ids, aspirates, and bronchial lavages were diagnosed. The histopathological specimens
were subjected to pathological processing techniques (fixation in 10% buffered for-
malin, dehydration, and paraffin impregnation by automatic processing, sectioning,
staining of sections by hematoxylin-eosin stain. The examined liquids were cen-
trifuged, the sediment being examined both directly and in Papanicolaou and Giemsa
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staining, and by inclusion in paraffin, in the form of a cytoblock prepared with neutral
proteins. For histological confirmation of the microscopic diagnosis, immunohisto-
chemistry was performed, using the panel of mom and polyclonal antibodies specific
to primary lung malignancies (TTF1 clone SP141, Napsin A clone MRQ-60, anti-p40
clone BC28, Anti-Pan Keratin clone AE1/AE3/PCK26). Immunohistochemistry was
performed automatically using Benchmark Ventana Gx equipment. The microscopic
study was performed using a Zeiss Primo Star microscope and capturing images
from the paper was performed using an AxioCam 105 color microscopy camera. The
Pathology Department owns the medical equipment. To establish the post-surgical
treatment, some specimens, depending on the tumor stage, were investigated by
molecular biology techniques to develop the prognostic factors.

3. Results

3.1. Analysis of Pollution Sources

The analysis of pollution sources was based on the emission of pollutants inventory
recorded by APM (Environment Pollution Agency) of Brasov during the 2016-2020 period
and it is presented in Table 3. Figure 2 shows the distribution of PM2.5 and PM10, NOx, and
SOx on activities type. As example, 61% of PM2.5 and 48% of PM10 emitting, respectively,
are produced by households (1.A.4.b.i), followed by asphalting works (2.A.6), transport
activity (1.A.3.b.i, 1.A.3.b.ii, 1.A.3.b.ii, 1.A.3.b.iv and 1.A.3.c) and cement production (2.A.1).
The codes in brackets comply with NFR (Nomenclature for Reporting) code [25]. It can be
concluded that the main sectors contributing to the emission of air pollutants in Brasov
are: commercial, institutional, and households, transport (road and rail), industrial pro-
cesses, and energy production and distribution (Table 3). Metal production (iron and steel
production) is under 1%.

Table 3. Industrial sectors contributing to emission of air pollutants in Brasov.

NFR Source Categories NOx PM2.5 PM10 SOx

commercial and households 9% 61.2% 48.2% 23.8%
transport (road and rail) 54.8% 11.8% 10.6% -
energy production 9% 0.3% 0.3% 0.2%
manufacturing industries and construction 26.7% 14.2% 11.1% 75.8%
agriculture 0.5% 0.2% 0.2% 0.2%
mineral products - 12.3% 29.6% -

3.2. Analysis of SDR and Morbidity Data Sets

This analysis is carried out based on data sets of the National Institute of Statistics [26]
and the National Institute of Public Health (INSP) during the 1990–2020 period. According
to INSP, the main causes of death in Romania, in descending order, are the disease of the
circulatory systems, malignant tumors, respiratory system, and digestive system diseases.
Of these, the deaths caused by the respiratory disease are investigated, the leading cause of
death from the respiratory illness being primary lung malignancy.

The population of Brasov County is 627,597and the average age of the population is
37.4 years (36.7 for men and 39 for women), continuing to increase (Figure 3).
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a) b) 

c) d) 

Figure 2. Distribution of principal pollutant emitting. (a) NOx; (b) PM2.5; (c) PM10; (d) SOx; in
respect with NFR code. Legend: 1.A.1.a-Public electricity and heat production; 1.A.2.a Combust-
ing in manufacturing industry -iron and steel; 1.A.2.b-Combusting in manufacturing industry-
nonferrous metal; 1.A.2.c Combusting in manufacturing industry-chemical; 1.A.2.d-Combusting
in manufacturing industry-; 1.A.2.e Combusting in manufacturing industry -food, drink and to-
bacco; 1.A.2.f.i-Combusting in manufacturing industry-nonferrous mineral 1.A.2.f.ii-Combusting
in manufacturing industry –mobile equipment and machinery; 1.A.2.g.viii-Stationary combustion
in manufacturing industry and construction; 1.A.3.b.i-Road transport, passenger cars; 1.A.3.b.ii-
Road transport, light duty vehicles; 1.A.3.b.iii-Road transport Heavy duty vehicles; 1.A.3.b.iv-Road
transport, mopeds and motorcycles; 1.A.3.c-Railways; 1.A.4.a.i-Comercial hold; 1.A.4.b.i-Household
residential; 1.A.4.c.i-Agriculture/Forestry/Fishing; 2.C.1-Iron and steel production; 2.A.1-Cement
production; 2.A.2-Lime production; 2.A.6-Road paving with asphalt.
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Figure 3. Evolution of average age for the investigated period.

Several deaths in Brasov County are presented in Figure 4. As can be noted, the
number of deaths varies from a minimum of 5541 to a maximum of 6526, the average
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being 5973 people (Figure 4a) and representing 9% of the population, on average. However,
more important is that starting with 2013, the number of deaths exceeded the multiannual
average (5973 people). Similar behavior can be noticed in the evolution of the number of
deaths caused by respiratory disease (Figure 4b). During the 1990–2008 period, the values
vary near the average; after 2008, the values decreased, and starting with 2014, an increase
can be observed, reaching a value of 481 in 2019. Moreover, the number of deaths caused
by respiratory disease represents 4.8% of the total number of deaths in Brasov County.
The 2020 data were discarded from this analysis because they are temporarily affected by
COVID-19 (Figure 4a,b in red).
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Figure 4. The evolution of the number of deaths and SDR in Brasov County (a) Number of total
deaths; (b) Number of deaths caused by respiratory diseases; (c) SDR caused by respiratory diseases.

The standardized Death Rate (SDR) caused by respiratory diseases during the in-
vestigated period is presented in Figure 4c. During the 1990–2008 period, a decrease in
SDR can be observed at the national level (blue line—Figure 4c). More than that, in the
period between 2000 and 2016, the SDR is under the multiannual average (69.14 deaths at
100,000 habitants). Starting with 2018–2019, this index is increasing. On the contrary, the
evolution of the same parameter for Brasov Country (red line—Figure 4c) is different, and
the period investigated could be divided into three sections (i) 1990–2006—there are no
significant variations from the multiannual SDR average (45.5); (ii) 2007–2014 when the
values of SDR are 0.6 to 1.2 times under the multiannual average and (iii) 2015–2019 when
the values are increasing, reaching the national value in 2018 (75.73).

The most common diseases in neoplasm mortality is malignant neoplasm of bronchus
and lungs [27]. In Brasov County, SDR caused by tumors is increasing; starting with 2005,
the SDR value is over the multiannual average. Unfortunately, there is no information
concerning the number of deaths caused by malignant neoplasm of the bronchus and lungs.
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There are few data concerning the morbidity at Brasov County-level caused by res-
piratory disease. INSP communicates several healthy profile statuses starting with 2014
generally based on official statistics. Starting with 2017, three kinds of morbidity index
are calculated: incidence rate (number of new cases at 100,000 habitants), prevalence rate
(number of cases of a disease existing in a population), and hospitalized morbidity. The
data are presented below (Table 4).

Table 4. Morbidity for Brasov County per 100,000 habitants according to INSP data.

Year Incidence Prevalence Hospitalized

Malign tumors from
which neoplasm of the
bronchus and lungs

2017 330.3/30.3 * 2474/86.6 * 798.6/37.0 *
2018 253.6/25.9 * 2453.8/319.2 * 763.9/28.8 *
2019 110.7/11.6 * 1928.6/259.2 * 745.6/42.0 *

Chronic obstructive
pulmonary disease
(COPD)

2017 189.6 1940.8 331.7
2018 125.8 1940.6 310.9
2019 157.2 2254.7 221.2

Asthma
2017
2018
2019

139.9
150.1
184.7

25.2
23.9
24.1

* the “/” symbols mean “from which” (e.g., 330.3/30.3 = 330.3 total malign tumors from which 30.3 are neoplasm
of bronchus and lungs.

Due to this lack of data, we could not draw any conclusions. The morbidity rate for
malign tumors, including neoplasm of the bronchus and lungs, is decreasing (except for the
value for hospitalized morbidity in 2019). The prevalence for COPD morbidity is increasing,
while the hospitalized morbidity is decreasing. Asthma incidence is rising.

3.3. The Current Status of Principal Air Quality Data

As previously stated, the air quality index is monitored at six stations from which one
is situated at above 1000 m altitude, and it is a regional station.

Table 5 presents some statistical information on the daily values monitored. Generally,
the values registered vary in significant limits. The standard daily limits for NOx and PM2.5
(50 mg/m3) exceed 67% of cases during the investigated period, while the SO2 values
are under the standard daily limit (125 mg/m3). The values of PM10 exceed the level of
50 mg/m3 in 14% of cases (on average). It is known that the number of daily averages
above the standard limit for PM10 must not exceed 35 days in a year [23]. This analysis has
highlighted that, on average, this limit is exceeded for BV2 and BV3 stations (43 and 72 days,
respectively). For BV4, which is situated in a suburban area, the value is not exceeded.

The values measured at the EMI station do not exceed the standard limit, but the
number of observations is under 500 values (less than 100 observations per year). For this
reason, we decided to continue the analysis without this station. PM2.5 values are measured
only on the BV2 station.

Based on the daily average, for the investigated period (2016–2020), the NOx index of
frequency of occurrence is presented in the following table (Table 6).

For the BV4 station situated in a residential area, the criterion is excellent, with a 94%
frequency of occurrence. For BV3 located in a heavy traffic area, the index is 11% frequency
of occurrence for excellent criterion (Table 6). Similarly, the frequency of occurrence is
calculated for each pollutant and station. Similar behavior was observed.

The aggregated air quality index (AQI) is calculated (Figure 5). The overall index is
between “fine” (2) and “moderate” (3) for each station investigated and each year, with
several exceptions (BV5 in 2016) due to lack of data for PM10 and BV4 situated in suburban
area. For BV4, the index is between “excellence” and “fine.”
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Table 5. Statistical analysis of daily principal pollutants investigated.

Pollutant Station Observation
Obs. without
Missing Data

Minimum Maximum Mean
Std.

Deviation

No of Days
Over

Limit/Year

NOx

BV1 1827 1710 8.12 565.52 73.58 61.09 237
BV2 1827 1547 9.62 628.90 69.96 63.63 187
BV3 1827 1692 7.97 681.83 94.57 63.57 300
BV4 1827 1682 2.14 142.60 17.24 13.89 19
BV5 1827 1235 12.21 641.04 78.78 64.72 121

EMI 1827 466 2.39 26.60 7.44 2.24 0

SO2

BV1 1827 1076 0.47 17.02 5.73 2.07 0.00
BV2 1827 1588 0.46 24.39 6.07 1.83 0.00
BV3 1827 1227 1.40 21.56 6.87 2.66 0.00
BV4 1827 1682 2.14 142.60 17.24 13.89 0.00
BV5 1827 1483 0.00 19.85 5.61 2.04 0.00

EMI 1827 485 0.09 18.11 5.47 2.67 0.00

PM10

BV1 1827 1636 2.74 179.23 27.96 18.82 27
BV2 1827 1305 2.36 255.93 28.84 22.27 44
BV3 1827 1697 2.91 216.48 31.93 21.13 73
BV4 1827 1223 1.09 200.95 23.82 21.00 14
BV5 1827 659 0.43 272.09 25.24 27.24 15

EMI 1827 397 0.73 66.86 9.23 8.37 0

PM2.5 BV2 1827 1560 1.09 198.31 19.22 17.17 10

Table 6. NOx index frequency of occurrence.

Rating Index Value for NOx BV1 BV2 BV3 BV4 BV5

excellent 0–40 31% 39% 11% 94% 24%
fine 40–90 41% 33% 41% 5% 45%
moderate 90–120 12% 13% 26% 0% 14%
poor 120–230 12% 11% 17% 0% 12%
very
poor 230–340 1% 2% 4% 0% 3%

severe 340–1000 3% 1% 1% 0% 1%
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Figure 5. Aggregated Air Quality Index for each station.
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There are also “severe” (6) and “very poor” (5) levels registered generally in the winter
period or/and late autumn.

The variation of multiannual monthly average for each pollutant shows a certain
behavior (Figure 6). In the winter and autumn months (October—February) the pollutant’s
values are greater than in spring and summer period, much more pronounced for the NOx
variation than for PM. Only SO2 di not have any variation.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0 2 4 6 8 10 12

NO
x /

 S
O 2

/ P
M

2.
5 

/ P
M

10
(

g/
m

3 )

Months
NOx PM10 PM2.5 SO2

Figure 6. Variation of the multiannual monthly average per pollutant.

Figure 7 presents the aggregated index calculated for each station based on multian-
nual monthly values of each pollutant. Indeed, between November and February, the air
quality index value is high. The value 4 represents poor quality. For BV4 (suburban station),
the value of the index is 2, meaning a “fine” quality, without May, June, and July when the
air quality index is 1.
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Figure 7. Variation of the multiannual monthly average per station.

3.4. Analysis of Clinical Data of Patients Diagnosed with Primary Histological Forms of
Lung Malignancies

All cases of microscopically diagnosed primary lung tumors from 2018–2021 were
studied retrospectively. The study represented the establishment of a database that contains
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minimal patient identification forms (age, sex, and domicile) and the microscopic form of
malignant tumors diagnosed in the hospital Pathology Department.

Table 7 shows the distribution of cases according to age, sex, domicile, and histological
forms of primary lung malignancy. 104 primary lung malignancies were examined, and
malignant histological forms were pulmonary adenocarcinoma and squamous cell carcinoma.

Table 7. The distribution of cases.

Year of Study Cases Sex Ratio Cases Histological Forms Cases

2018 25 Men 70 Pulmonary
Adenocarcinoma (ADK) 25

2019 47 Women 34 Squamous
cell carcinoma (SCC) 79

2020 9
2021 23
Ages Cases Domicile and histological forms Cases

54–60 18 Urban/ADK 20
61–70 54 Domicile Cases Urban/SCC 55
71–80 29 Urban 75 Rural/ADK 5
81–82 3 Rural 29 Rural/SCC 24

Figure 8 shows the microscopic aspects of the usual hematoxylin-eosin staining of
pulmonary adenocarcinoma (ADK) and squamous cell carcinoma (SCC).

 

Figure 8. (A) Pulmonary adenocarcinoma moderate defined, bronchial origin (HE × 100); (B) Cribri-
form pulmonary adenocarcinoma (HE × 100); (C) Poor differentiated pulmonary adenocarcinoma
(HE × 400); (D) Keratinized squamous cell carcinoma (HE × 200); (E) Not differentiated squamous
cell carcinoma (HE × 100); (F) Atypical mitoses in squamous cell carcinoma (HE × 400).
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4. Discussion

The analysis of clinical and histological data analysis showed that the most common
form of lung cancer in patients included in the study is squamous cell carcinoma (76%)
compared with pulmonary adenocarcinoma (24%). It should be noted that no primary
neuroendocrine forms or small cell carcinomas were identified in the study. In addition, the
incidence of the disease was much higher in urban areas than in rural areas. Probably the
pollutants and environment have given this point of view major importance in the context
of the influence of the environment on the development of cancers in general, and lung
cancers in particular. Among the cases diagnosed in rural areas, the highest frequency was
squamous cell carcinoma as well as in the cases from urban areas.

Regarding the distribution by sex ratio, the most common cases were in men (67%),
while in women, the frequency was half (33%), according to medical literature. By analyzing
the incidence by age groups, out of 104 diagnosed cases, the most common were in the age
category 61–70 years (52%), the other categories being less affected.

The incidence of primary malignant lung tumors during the four years of the study
shows that in 2019, 45% of cases were diagnosed. The patient’s addressability to the doctor
was also influenced by the SARS-CoV2 pandemic context, which explains the much lower
number of cases in 2020 and the explosion recorded in 2021, approximately close to that of
2018 (over 20% of all tumors studied).

A report by John Hopkins University [28] shows that cigarettes cause 91% of squamous
cell carcinoma, but the exposure to other toxic pollutants or radon are important risk
factors. A study led in Korea shows that PM10 and NO2 increase the number of lung cancer
incidence [29]. It is worth mentioning that Brasov operated a thermal power plant till
2015, which is the most important pollutant activity in the area. In this context, even if
we have not a specific tool to distinguish between the effects of NOx pollution and other
pollutants on lung diseases, considering the results obtained especially for NOx pollutant,
we conclude that the increases of lung cancer number in the latest period could be affected
by the air pollution.

Our study’s principal limitation consists in the number of pollution stations and their
spatial distribution (Figure 1), which does not offer the possibility of realizing a spatial
distribution of results or applying a Multicriteria Evaluation (MCE) method integrated
with GIS. In this context, maybe modeling air quality based on wind, rainfall, or other
climacteric parameters will be possible to continue this work. The second impediment is
the lack of clinical data before 2018. This is because Sacele municipal hospital was closed in
2011 by a government decision. After its opening in 2017, the new Pathology Department
started developing a research database related to malignant tumors.

The study represents an association of laboratory medical findings made on the group
of patients who addressed the pulmonology services with malignant tumor suspicion that
was confirmed histopathologically, with the level of air pollution in the metropolitan area of
Brasov. The association found that the level of PM10 air pollutant detected in the respirated
air in the metropolitan area is associated with the presence of squamous lung malignancies
in patients, compared to other histological forms of bronchopulmonary cancer. The idea
of developing the study started from the initially superficial analysis on the type of cases
examined medically in the pathological anatomy service, due to the increased frequency
of malignant lung tumor pathology in Brasov County compared to other counties in
Romania. Thus, the analysis of the environmental factors in the territory was deepened and
it was revealed that the polluting particles from the breathed air influence the malignant
transformation of the respiratory epithelium by squamous metaplasia at bronchial level.
The analysis and purpose of our study is to trigger an alarm signal that in the region, the
risk of developing pulmonary squamous cell carcinoma is associated with the presence and
levels of PM10 and NO2 pollutants.
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Abstract: A large amount of mixed dust exists in grain, which can easily stimulate the respiratory
system and cause diseases. This study explored contamination levels and health effects of this grain
dust. A total of 616 dust samples from different stages and types of grain were collected in China—in
Hefei (Anhui), Shenzhen (Guangdong), Chengdu (Sichuan), Changchun (Jilin), and Shunyi (Beijing)—
and analyzed using the filter membrane method and a laser particle size analyzer. A probabilistic
risk assessment model was developed to explore the health effects of grain dust on workers in the
grain storage industry based on the United States Environmental Protection Agency risk assessment
model and the Monte Carlo simulation method. Sensitivity analysis methods were used to analyze
the various exposure parameters and influencing factors that affect the health risk assessment results.
This assessment model was applied to translate health risks into disability-adjusted life years (DALY).
The results revealed that the concentration of dust ranged from 25 to 70 mg/m3, which followed
normal distribution and the proportion of dust with a particle size of less than 10 μm exceeded
10%. Workers in the transporting stage were exposed to the largest health risk, which followed a
lognormal distribution. The average health risks for workers in the entering and exiting zones were
slightly below 2.5 × 10−5. The sensitivity analysis indicated that average time, exposure duration,
inhalation rate, and dust concentration made great contributions to dust health risk. Workers in
the grain storage and transportation stage had the health damage, and the average DALY exceeded
0.4 years.

Keywords: grain dust; health risk assessment; Monte Carlo simulation; disability adjusted life year

1. Introduction

Grain is an important foundation of national security. The scale of grain storage
and the function of facilities determine the national grain circulation capacity. There are
many occupational hazards that can affect the health of workers in the process of grain
storage. Grain contains a large amount of mixed dust, including grain husks, bacteria, pests,
microorganisms, and mixed fine sand [1]. Grain dust is a companion in the whole life cycle
of modern grain, from purchase to storage, transportation, and processing. It is produced
due to friction, collision, extrusion, crushing, etc. [2]. The particle size distribution of
dust is approximately normal, ranging in size from 0 to 9.6 × 105 nm, with a true density
within the range of 1.1–1.8 g/m3 [3]. During the storage process, grain is constantly
tumbling, and the dust particles are continuously separated under the influence of air
flow. The instantaneous contact mass concentration can reach up to 1000 mg/m3, and the
time-weighted average allowable concentration is about 40 mg/m3. Workers are often
exposed to inhalable dust of >10 mg/m3, and higher exposures can be found at the grain
in-warehousing and out-warehousing stages [4].
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Dust can cause serious environmental pollution, grain quality decline, mechanical
equipment wear, and, more importantly, it also threatens the health of grain warehouse
operators. Studies have shown that long-term exposure to high-concentration grain storage
dust can easily irritate the respiratory system [5]. When accumulated after inhalation,
it can cause allergic reactions [6] and cereal fever syndrome [7]. In severe cases, it may
cause respiratory diseases such as pneumoconiosis, hardening of the respiratory organs,
and recurrent nocturnal asthma [8]. Dust can also enter the blood with human cells, which can
cause further cardiovascular and cerebrovascular diseases [9]. Due to its potential hazards,
monitoring grain dust, studying its distribution rules, and quantifying the health damage
are important steps in effectively recognizing and measuring the health hazards of dust.

Researchers have recently begun to pay more attention to the physical and chemical
properties [10], sources [11], explosive characteristics [12–14], prevention measures [15],
and mycotoxin content [16,17] of grain dust. When conducting occupational hazard
analysis, the toxicological characteristics [18], the mechanism of action on the respiratory
tract [19], and the clinical manifestations of diseases [20] related to grain dust have mostly
been analyzed from a medical perspective, and there is a lack of quantitative evaluation of
its health damage.

Dust health damage assessment has been carried out with reference to coal mines,
construction, atmospheric environment, and other fields using deterministic analysis
methods. For example, Behrooz et al. assessed the carcinogenic and non-carcinogenic
health risks for three exposure pathways in airborne dust samples (TSP and PM2.5) in
Zabol, Iran during the summer dust period [21]; Guney et al. characterized contaminated
soils (n = 6) and mine tailings samples (n = 3) for As, Cu, Fe, Mn, Ni, Pb, and Zn content
and assessed elemental lung bioaccessibility in fine fraction [22]; Donghua et al. proposed
an occupational health hazard risk assessment matrix method to rank the hazards of
various risk factors in mining and mineral processing [23]; Lim et al. investigated the
contamination levels and dispersion patterns of heavy metals and assessed the risk of
health effects on the residence in the vicinity of the abandoned Songcheon Au-Ag mine,
Korea [24]; Kan et al. calculated the health damage of air particulate pollution based on
the epidemiological exposure–response function [25]; Zhang M. et al. assessed particulate
pollution risk and quantified the public health damage caused by air emissions in Beijing in
the period 2000–2004 [26]; Liu E. et al. labeled the indicative metals relating to non-exhaust
traffic emissions and assessed anthropogenic sources of metals in TR dusts, combining their
spatial pollution patterns, principal component analysis, and Pb isotopic compositions [27];
Zhang Y. et al. analyzed eight heavy metals (Cr, Ni, Cu, Cd, Pb, Zn, Mn, and Co) in the
PM2.5, collected during four different seasons in Taiyuan, a typical coal-burning city in
northern China [28]; Chen X. et al. established a health risk assessment system based on
on-site measurements and assessed the health risks for a tunnel machine employee [29];
Zheng et al. investigated the heavy metal contamination in the street dust due to metal
smelting in the industrial district of Huludao city and elucidated the spatial distribution
of Hg, Pb, Cd, Zn, and Cu in the street dust [30]; Tahir et al. described the estimation of
particulate matter (cotton dust) with different sizes in small-scale weaving industry (power
looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health
problems of workers associated with these pollutants [31]; Zazouli et al. investigated
the mineralogy, micro-morphology, chemical characteristics, and oxidation toxicity of
respirable dusts generated in underground coal mines and assessed the health risk by
EPA’s health risk model [32]; and Li X et al. introduced the disability-adjusted life year
(DALY) model for damage to human health caused by construction dust, to evaluate
the environmental impact during the construction process [33]. Scholars have studied
the health risks of dust from the perspective of components of heavy metals and the
construction of a risk assessment model, which have laid the foundation for the risk
assessment of grain dust. However, there are few studies evaluating the health damage
caused by grain dust, despite the importance of grain storage and transport in the process
of ensuring grain security. This study is particularly timely, as the circulation of grain in
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the market is accelerating, so a large amount of grain dust will be generated in specific
areas. Inhalation is considered to be the main route of human exposure to grain dust [34].
The present research is of great significance for understanding the health status of grain
warehouse personnel, as there is a need to evaluate the hazard to human health posed by
the grain dust present in granaries.

Current research on quantitative occupational health risk assessment in other indus-
tries has yielded instructive conclusions and methods [35–37]. In fact, risk assessment
methods include deterministic analysis methods and uncertainty analysis methods. The ac-
curacy of the conclusions drawn from the deterministic method cannot be guaranteed, as
the method calculates the health risk through the most probable and maximum value of hu-
man exposure parameters and pollutant content [38], resulting in large or small results [39].
However, the problem of uncertainty is inherent in health risk assessment and runs through
the whole process [40,41]. The operation area, time, and season of the grain warehouse
make the dust concentration uncertain. The uncertainty of human exposure parameters,
temperature and humidity changes, and meteorological conditions in the relatively open
working environment of the grain warehouse also causes uncertainty in the evaluation
results. Hence, this study used the uncertainty analysis method (i.e., the Monte Carlo
method) to evaluate the health damage caused by grain dust in warehouses.

To address the uncertainty in grain dust health hazard assessment, a total of 616 sam-
ples were collected in China in Hefei (Anhui), Shenzhen (Guangdong), Chengdu (Sichuan),
Changchun (Jilin), and Shunyi (Beijing). Additionally, a risk assessment model for the
health damage caused by grain dust through inhalation was proposed, considering the
dust concentration and the uncertainty of the exposure parameters, and grouping them
according to different operation processes and grain varieties (i.e., maize, rice, and wheat)
based on the current health risk evaluation system of the United States Environmental
Protection Agency (USEPA). The Monte Carlo simulation and Crystal Ball 11.1 software
were used to quantify the health damage and to analyze the impact of various parameters
on health risks. The results provide guidance for occupational health risk management in
the grain storage industry. To our knowledge, this is one of the first studies to analyze and
evaluate the hazards of grain dust to human health through inhalation by the uncertainty
analysis method.

2. Materials and Methods

2.1. Dust Sampling and Analytical Method

Five grain storage warehouses in China—in Hefei (Anhui), Shenzhen (Guangdong),
Chengdu (Sichuan), Changchun (Jilin), and Shunyi (Beijing)—were selected as samples
due to their representative and relatively standardized management, large storage capacity,
complete variety of grain, and high-quality personnel (see Figure 1 for location informa-
tion). As national reserves, the low-temperature storage method was used in these five
grain storage warehouses with the same management mode. Additionally, the warehouse
types were tall, square warehouses. The equipment used for grain storage and transporta-
tion were similar, including belt conveyor, grain raking machine, etc. These five grain
warehouses are the example for evaluating the hazards of dust during grain storage, as well
as the occupational health risks caused by that dust.

Three months of regular site monitoring was carried out from March 2021 to May 2021
due to the increased in-warehousing, out-warehousing, and transporting at the grain
storage warehouses in spring, which is convenient for sampling. The sampling plan was
designed according to China National Standards GBZ 159-2004 and GBZT 192.1-2007,
and the concentration of grain dust was calculated using the filter membrane incremental
method. A combination of fixed-point and individual sampling was used at three operating
stages for three different grains—maize, wheat, and rice—including in-warehousing, out-
warehousing, and transporting. The dust concentration of each warehouse was maintained
within a certain range during our sampling process, and there was no systematic reduction
in individual warehouses. The sampling height was set to 1.5 m (the breathing height of the
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workers), and the sampling time was set to 60 min. The gas flow rate was set to 2 L/min.
A total of 616 samples were obtained. The detailed information is shown in Table 1.

Figure 1. Location of sampling points.

Table 1. Sample information.

Grain Stage Sample Size

Maize
Out-warehousing 57
In-warehousing 62

Transporting 79

Rice
Out-warehousing 73
In-warehousing 81

Transporting 67

Wheat
Out-warehousing 83
In-warehousing 61

Transporting 53

The monitoring tool was a dust sampler (AKFC-92 A) made in Changshu, China.
The AKFC-92A determines dust concentration, the size of the sampler inlet was 19.63 cm2,
and has the advantages of pulsating airflow, negative pressure, large load capacity, automatic
timing sampling, and being explosion proof. The main instrument is shown in Figure 2.
The operation procedure was as follows. First, the filter membrane was numbered and
weighed to record its quality before sampling. Second, the sampler was fixed horizontally
on a tripod platform and placed at the sampling point close to the operator. Third, a trap
with the filter membrane was installed on the sampling head, and a certain volume of dusty
air was extracted to keep the dust in the filter membrane. Fourth, the filter membrane was
removed in a clean area, the dust-receiving surface was folded twice, and then the samples
were accurately weighed in the laboratory with an electronic balance (the test accuracy
can reach 0.01 mg/m3) after drying and removing static electricity. Finally, the total dust
concentration per unit was calculated from the weight gain of the filter membrane.

Figure 2. Dust concentration measuring instrument.
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2.2. Health Risk Assessment Model

The dust samples used for evaluation in this study came from the warehouses of a
large grain storage company to assess the health risks for workers. The inhalation risk
assessment model in the Risk Assessment Guidance for Superfund: Human Health Evaluation
Manual, Part F, Vol. 1, issued in 2009 by the USEPA [42], was selected to evaluate the
occupational health risks of the grain storage dust. The key to the model is that the human-
absorbed dose is quantified by exposure parameters. Determining the route of exposure
is thus a prerequisite for risk assessment. The main exposure pathways for dust that can
affect the health of workers are inhalation, which refers to breathing in air containing dust;
ingestion, which refers to consumption of food, water, or soil containing dust; and dermal
contact, which refers to physical contact of the skin with water or soil containing dust.
As an air pollutant, dust mainly enters the human body via inhalation [43], so this study
focused on the respiration-based health risks to workers.

An occupational health damage model was constructed with reference to the USEPA
modeling principles on health risk and damage quantification. This model included the
range determination, dust concentration analysis, health risk characterization, and health
damage analysis. The dust generated in rice, wheat, and maize during in-warehousing,
out-warehousing, and transporting were the evaluation objects; the collected grain dust
data were simulated to select the best distribution; the probability of dust to harm the
human health was calculated according to the dose–response relationship; and the dust
concentration was transformed into a health risk [44], which was in turn transformed into
a life loss caused by disease, expressed in DALY [45]. The dust damage model is shown in
Figure 3.

Figure 3. Dust damage model.

2.2.1. Dust Exposure Dose

The dust exposure dose refers to the assessment of individual exposure parameters,
which is calculated by monitoring the concentration of dust, exposure duration, and
exposure method. However, China has not yet established a complete human exposure
parameter database, therefore, due to this lack, the exposure parameter method proposed
by the USEPA was used to convert the monitored grain dust concentration into the average
daily exposure dose (ADD) of the grain warehouse workers. The calculation formula is as
follows [46]:

ADD =
C × IR × ED × EF × ET

BW × AT
, (1)

where ADD is the average daily exposure dose of grain storage workers (mg/kg·d−1);
C is the dust concentration on site (obtained by sampling, mg/m3); IR is the inhalation
rate of workers (obtained by on-site interview and testing, m3/h); ED is the exposure
duration (obtained by on-site interview, a); EF is the exposure frequency (obtained by
on-site interview, d/a); ET is the exposure time (obtained by on-site interview, h/d);
BW corresponds to the average worker (adult) weight (kg); and AT is the average time
(AT = ED × 365 days for health risk, d).
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2.2.2. Quantizing the Health Risk of Dust

Due to the “threshold” effect, the hazard index R represents the hazard of grain storage
dust to the human body. The formula is as follows:

R =
ADD
R f D

× 10−6 (2)

where RfD is a reference dose of dust and R is the health risk of dust. The reference doses for
different compounds in the workplace air differ, and the exposure parameter manual issued
by the USEPA has been divided. The reference dose standards for different types of dust
are different. The RfD of silica, cement, wood, and gypsum dust have been calculated as
0.40, 1.20, 1.60, and 3.20, respectively, and a health risk assessment has been completed [47].
However, grain dust contains organic and inorganic substances such as protein, starch,
cellulose, and ash, and elements such as Si, Ca, K, Ti, and Cr. The composition is complex,
and the RfD of grain storage dust is not given. In the present study, dibutyl phthalate (DBP)
was selected as a reference for calculation. With reference to the linear relationship between
grain dust concentration and DBP in GBZ 2.1 Occupational Exposure Limits for Hazardous
Agents in the Workplace [48], considering that the standard value of exposure dose and the
standard value of environmental concentration have a certain proportional relationship,
and the calculation method of Li X.D. [35], it is believed that the linear relationship between
DBP and the exposure dose of grain dust is still satisfied, so the RfD value of grain dust
was calculated to be 1.6 mg/(kg·d).

2.2.3. Dust Health Damage

The DALY model was jointly proposed by Murray and the World Health Organization
to quantify the extent of human health damage [49]; it is composed of years of life lost
(YLL) and years lived with disability (YLD) [50,51]. The parameters of the DALY are
clear, and have been applied to construction, automobile casting, and other industries [52].
Its feasibility and operability have been verified. As dust mainly causes death, chronic
obstructive pulmonary disease, cardiovascular disease, cerebrovascular disease, and acute
respiratory infections, for this study the damage caused by dust was divided into these
five types according to a certain proportion, and the normalized conversion DALY was
used to characterize the damage. The formula is as follows:

DALY = n × R × P × ∑i Qi × Wi × Li (3)

where Qi is the disease risk factor for disease category I; Wi is the effect factor of disease
i and takes values between 0 and 1; Li is the damage factor for disease i (years); P is the
number of people affected by specific diseases; and n is the amount of human exposure,
namely, the days of operation (days).

The risk and effect factors for the five types of health damage were obtained by
referring to the literature [35,37]. The value of the damage factor depends on the evaluated
objects. For the five grain warehouses sampled, most of the operators were men from all
over China. The life value used in the calculation was derived from the China Statistical
Yearbook [53]. The values are shown in Table 2.

2.3. Exposure Parameter Determination

Exposure parameters are important in health risk assessments, including exposure
time, exposure frequency, average time, and exposure duration. Factors such as workers’
labor intensity and region have an impact on the assessment results and can interfere
with exposure parameters. On-site interviews were conducted with workers in the grain
warehouses in five different cities. Additionally, inhalation rate testing was carried out.
A total of 45 workers were selected in the in-warehousing operational stage, 49 in the
out-warehousing operational stage, and 52 in the transporting operational stage. Their pa-
rameter characteristics were obtained, including personal information such as age, gender,
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height, and weight, as well as work information, such as daily working and rest hours.
Crystal Ball 11.1 was used to analyze the survey data in combination with the relevant
literature [54–56]. Crystal Ball is a Monte Carlo simulation software launched by Oracle,
which can be used for predictive modeling, prediction, simulation, and optimization, ran-
dom simulation and uncertain risk analysis. It provides a realistic and easy-to-understand
uncertainty modeling method, which can achieve the goal and improve the understanding
of impact risk by analyzing data and making correct tactical decisions [57]. The results
showed that inhalation rate, exposure duration, exposure frequency, exposure time, and av-
erage time formed a triangle distribution; body weight followed a normal distribution [58].
The distribution characteristics for the exposure parameters of grain warehouse workers
are shown in Table 3.

Table 2. Health damage parameter values.

Disease Endpoints Q W L/a

Death 0.13 1.00 42.2
Chronic obstructive pulmonary disease 0.16 0.15 10

Cardiovascular disease 0.16 0.24 37.2
Cerebrovascular disease 0.20 0.20 37.2

Acute respiratory infections 0.35 0.08 0.04

Table 3. Chinese residents (adults) exposure parameter characteristic.

Exposure
Parameters

Abbreviation Unit Distribution
Probable

Value
Min Max SD

Inhalation rate IR m3/h Triangular 1.8 0.9 2.75
Body weight BW kg Normal 56.8 42.1 71.6 5.8

Exposure duration ED a Triangular 15 5 25
Exposure frequency EF d/a Triangular 104.31 98.62 110.54

Exposure time ET h/d Triangular 5.9 4 6.5
Average time AT d Triangular 5475 1825 9125

3. Results and Discussion

3.1. Dust Concentration and Dispersity

After dust sampling, the agglomeration phenomenon in the transportation process was
eliminated by ultrasonic treatment, and then the original sample was screened. The particle
size distribution of the different grain dust samples was obtained by a laser particle size
analyzer. The calculated sample dust concentration data were input into Crystal Ball 11.1
software for fitting, and the results are shown in Table 4.

Table 4. Distribution characteristics of grain dust concentration.

Grain
Dust Concentration

Workplace Distribution Mean (mg/m3) SD

Maize
Out-warehousing Normal 41.86 14.31
In-warehousing Normal 35.92 13.12

Transporting Normal 67.25 11.57

Rice
Out-warehousing Normal 32.54 15.32
In-warehousing Normal 30.91 12.69

Transporting Normal 59.68 10.67

Wheat
Out-warehousing Normal 35.29 13.29
In-warehousing Normal 26.43 12.67

Transporting Normal 55.61 11.12

The dust concentration was at a relatively high level near the conveyor, between
100 and 500 mg/m3, during the continuous monitoring of the dust concentration. The prin-
ciple of sampling was to be as close as possible to the working area of the operator, and the
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position of the sensor was a certain distance from the conveyor, so the concentration of the
dust reached 25–70 mg/m3, which seriously exceeded the standard. Long-term work in
such an environment would certainly cause great harm to health. The concentration of
maize at each stage was also generally greater than that of rice and wheat, which may be
related to the true density.

The three kinds of grain dust have a wide particle size distribution, ranging from
0.6 μm to 950 μm. The deposition sites of the different size particles in respiratory system
are also different. Smaller particles can be deposited more deeply and cause greater harm
to the human body. It is generally believed that particles with a diameter of less than 2.5 μm
have the most impact on human health as they can enter the trachea, bronchus, and alveoli.
The proportion of grain dust particles smaller than 2.5 μm exceeded 2%, which could
seriously threaten the workers’ respiratory system.

3.2. Dust Health Damage Analysis
3.2.1. Health Risks

During risk assessment, uncertainty arose from human parameters and dust con-
centration. These factors could affect the real reflection of the calculation results to the
actual risk values to different degrees, resulting in uncertainty [59,60]. The Monte Carlo
simulation effectively solves the problem of uncertainty in risk assessment. Combined
with the above formulas, the Crystal Ball 11.1 software was used to simulate and calculate
the dust health risk for three kinds of grain and three operation states using the Monte
Carlo method. The number of random simulation iterations was set as 10,000, and the
confidence level was determined as 95% [61]. The risk results were processed and mapped
with OriginPro 9.0. The acceptable risk value recommended by USEPA is 1 × 10−6 [47].
If the risk value for pollutants is less than 1 × 10−6, it is considered acceptable; if it is greater
than 1 × 10−4, the risk is unacceptable. The results for the dust health risk at different
stages for each grain were obtained by this running simulation, as shown in Table 5 and
Figures 4 and 5.

Figure 4. Distribution of health risk values in different storage stages for each grain. Remarks:
CO refers to the out-warehousing stage of maize; CI refers to the in-warehousing stage of maize;
CT refers to the transporting stage of maize; RO refers to the out-warehousing stage of rice; RI refers
to the in-warehousing stage of maize; RT refers to the transporting stage of maize; WO refers to the
out-warehousing stage of maize; WI refers to the in-warehousing stage of maize; and WT refers to
the transporting stage of maize. The rest of the paper is the same.
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Table 5. Statistical values of health risk in different stages of each grain.

Grain Stage
Health Risk Value Quantiles

Mean SD 5% 20% 50% 90% 100%

Maize
Out-warehousing 1.42 × 10−6 9.14 × 10−7 3.74 × 10−7 7.09 × 10−7 1.21 × 10−6 2.56 × 10−6 9.63 × 10−6

In-warehousing 1.24 × 10−6 8.27 × 10−7 3.25 × 10−7 6.06 × 10−7 1.56 × 10−6 2.27 × 10−6 8.28 × 10−6

Transporting 2.34 × 10−6 1.32 × 10−6 8.38 × 10−7 1.30 × 10−6 2.05 × 10−6 3.98 × 10−6 1.24 × 10−5

Rice
Out-warehousing 1.12 × 10−6 8.04 × 10−7 1.80 × 10−7 4.82 × 10−7 9.51 × 10−7 2.14 × 10−6 9.55 × 10−6

In-warehousing 1.05 × 10−6 7.20 × 10−7 2.33 × 10−7 4.94 × 10−7 8.91 × 10−7 1.96 × 10−6 6.89 × 10−6

Transporting 2.07 × 10−6 1.16 × 10−6 7.41 × 10−7 1.15 × 10−6 1.82 × 10−6 3.54 × 10−6 1.12 × 10−5

Wheat
Out-warehousing 1.21 × 10−6 8.13 × 10−7 2.92 × 10−7 5.74 × 10−7 1.02 × 10−6 2.24 × 10−6 1.08 × 10−5

In-warehousing 9.03 × 10−6 6.83 × 10−7 1.25 × 10−7 3.84 × 10−7 7.59 × 10−7 1.74 × 10−6 8.09 × 10−6

Transporting 1.90 × 10−6 1.06× 10−6 6.89 × 10−7 1.07 × 10−6 1.67 × 10−6 3.23 × 10−6 1.04 × 10−5

 

Figure 5. Health risks at different storage stages for each grain. Remarks: O-W refers to the out-
warehousing stage; I-W refers to the in-warehousing stage; and TS refers to the transporting stage.

Considering grain type, the health risk of maize in each stage of storage was the largest and
followed a lognormal distribution. The out-warehousing stage was 1.42 × 10−6 ± 9.14 × 10−7,
the in-warehousing stage was 1.24 × 10−6 ± 8.27 × 10−7, and the transporting stage was
2.34 × 10−6 ± 1.32 × 10−6. The maximum values were 9.63× 10−6, 8.28× 10−6, and 1.25 × 10−6

for the out-warehousing stage, in-warehousing stage, and transporting stage, respectively, and the
average values at each stage were, respectively, 1.42, 1.24, and 2.34 times the acceptable val-
ues. The probability of exceeding 10−6 was 63%, 53%, and 90%, respectively, but none ex-
ceeded the upper limit of the acceptable risk value of ×10−4. The health risk of maize in
each storage stage was quite large, especially in the transporting stage, and this indicates the
need to take urgent and effective dust reduction measures. The health risk of rice in each stor-
age stage is the second highest and followed a lognormal distribution. The out-warehousing
stage was 1.12 × 10−6 ± 8.04 × 10−7, the in-warehousing stage was 1.05 × 10−6 ± 7.20 × 10−7,
and the transporting stage was 2.07 × 10−6 ± 1.16 × 10−6. The median values were 9.51 × 10−7,
8.91 × 10−7, and 1.82 × 10−6, respectively. For workers in the storage and transportation of rice,
the probability of exceeding value 10−6 is 47%, 43%, and 86% in the process of out-warehousing, in-
warehousing, and transporting, respectively. Although these values are not more than 1 × 10−4,
it is still very harmful. The health risks of wheat in each storage stage were relatively small,
with 1.21 × 10−6 ± 8.13 × 10−7 at the out-warehousing stage, 9.03 × 10−7 ± 6.83 × 10−7 at
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the in-warehousing stage, and 1.90 × 10−6 at the transporting stage. The average value of the
out-warehousing stage was slightly higher than that of rice, which may be due to the smaller
standard deviation in the concentration distribution. In long-term wheat storage and transporta-
tion operation, the possibility of exceeding the value 10−6 was greater than 35%; hence, it also
deserves attention.

Based on the storage and transporting stages, the risk of the transporting stage for
the three grains is greater than out-warehousing, which is in turn greater than the in-
warehousing stage. The health risk value for the maize transporting stage was 1.67 times
that of out-warehousing and 1.88 times that of in-warehousing. The maximum, mean,
and minimum values were greater than those in the out-warehousing and in-warehousing
stage, indicating that workers in the transporting stage are more likely to be more seriously
affected by dust. The risk value in the out-warehousing stage was 1.15 times that of in-
warehousing, which should also be controlled. The risk value produced by rice transporting
was 85% higher than out-warehousing and 97% higher than in-warehousing. The risk value
in out-warehousing was seven percentage points higher than in-warehousing. Although
the maximum risk value for wheat transporting was slightly less than out-warehousing,
the overall risk value was still greater than in the out-warehousing and in-warehousing
stages. The main reasons for the high risk in the transfer stage include the use of protective
measures (e.g., underground conveyance channels, airtight covers, and dust collectors)
and a smaller scale of grain exposure to air during out-warehousing and in-warehousing;
the grain also passes through multiple pieces of operation equipment during the trans-
porting stage, and grain dust particles are constantly produced through overturning, flow,
impact, and machinery, with particles precipitated under induction, traction, and shear
airflow. The risk value in the out-warehousing stage is greater than in-warehousing, mainly
as the fumigation and preservation of the grain after entering the warehouse creates pest
residues, residual drugs, and powder after pests eat the grain.

3.2.2. Sensitivity Analysis

When the exposure parameters are uncertain, the health risk value may be misleading
during decision-making. The sensitivity of each parameter was therefore further analyzed
to compare the impact of each parameter on health risk. If the sensitivity analysis is positive,
this means that the parameter is positively correlated with risk; if the sensitivity analysis is
negative, it means that there is a negative correlation. The correlation is determined by the
absolute sensitivity value.

The sensitivity of each exposure parameter for the different grains at different stages
is shown in Figure 6. Among the exposure parameters that affect human health, C had
the greatest positive impact on maize, rice, and wheat in the out-warehousing and in-
warehousing stages, with sensitivities of 57%, 61%, 69%, respectively, in the out-warehousing
stage, and 64%, 62%, and 71%, respectively, in the in-warehousing stage; this was followed
by ED, with a sensitivity of 46%, 42%, 37%, respectively, in the out-warehousing stage,
and 41%, 44%, and 38%, respectively, in the in-warehousing stage. The last was IR, with a
sensitivity of about 30%. In the grain transporting stage, the most positive impact is ED,
with sensitivities of 55%, 53%, and 52%, respectively, for maize, rice, and wheat. The
sensitivity of C and IR differed from ED by about 15 percentage points. ET and EF had
relatively small effects on the risk of health damage at each stage, at less than 20% and 5%,
respectively. AT and BW had negative sensitivity and were negatively correlated with risk
results. The absolute value of the sensitivity of AT for each stage was all greater than 37%,
while the absolute value of the sensitivity of BW was less than 19%.

In general, C, ED, IR, and AT are highly sensitive to the health risks of grain storage
and transportation, and have a greater impact; BW, ET, and EF are less sensitive, and have
only a slight impact on the evaluation results. However, as the same parameters have
different effects on different stages of grain production, different measures should be
taken to reduce the health risk to workers. At the stages of grain out-warehousing and in-
warehousing, dust control should be strengthened to reduce health risks, and the average
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exposure time to high concentration dust should be reduced. At the grain transporting
stage, personnel access to high-concentration dust areas should be strictly monitored and
limited, and dust reduction and removal measures should be taken to reduce the average
exposure time.

 
Figure 6. Sensitivity analysis at different stages for each grain.

3.2.3. Health Damages

The health damages and the DALY caused by dust were calculated, as shown in
Table 6, and the overall trend was obtained through simulation, as shown in Figures 7–9.
Dust caused the greatest damage to health in the maize in-warehousing stage, with an
average DALY of 1.1 years. The transporting stage of rice and wheat followed, which were
0.89 and 0.83 years, respectively. The other stages were smaller, all within 1.6 years. At the
same time, there were no significant differences in the DALY between different grains and
stages. Uncertainty analysis of the DALY showed that the DALY of maize out-warehousing,
in-warehousing, and transporting were concentrated in the range of 0.14–1.11, 0.15–0.86,
and 0.39–1.57 years, respectively; for rice, they were concentrated in the range of 0.10–0.88,
0.09–0.80, and 0.33–1.43 years, respectively; and for wheat, they were concentrated in range
of 0.15–1.01, 0.05–0.69, and 0.28–1.38 years for each stage, respectively.

Table 6. Statistical values of the DALY in different stages of each grain.

Grain Stage
DALY/a Quantiles

Min Max Mean 5% 20% 50% 90% 100%

Maize
Out-warehousing 0.01 2.76 0.63 0.20 0.35 0.57 1.07 2.76
In-warehousing 0.12 3.28 1.01 0.43 0.64 0.94 1.58 3.28

Transporting 0.01 2.31 0.54 0.15 0.29 0.49 0.93 2.31

Rice
Out-warehousing 0.01 2.28 0.48 0.09 0.23 0.43 0.89 2.28
In-warehousing 0.01 2.20 0.46 0.11 0.24 0.42 0.82 2.20

Transporting 0.14 3.05 0.89 0.38 0.57 0.84 1.40 3.05

Wheat
Out-warehousing 0.01 2.38 0.53 0.15 0.29 0.48 0.94 2.38
In-warehousing 0.01 2.64 0.40 0.07 0.19 0.36 0.73 2.64

Transporting 0.11 2.83 0.83 0.35 0.53 0.77 1.31 2.83

According to the data, the DALY caused by dust in the coal mine production process
is more than 2 years [62]; for construction engineering, it is more than 3.4 years [37];
and for automobile casting it is more than 3.89 years [52]. By comparison, the health
damage caused by grain dust is not as serious as that cased by these three industries.
The main reason for this is that the grain storage and transportation process has a certain
periodicity, fewer workers, and only a short exposure time. Additionally, the dust of
other industries contains a large amount of heavy metal contamination and polycyclic
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aromatic hydrocarbons, which make the risk value and DALY greater [63]. It should be
noted, however, that its dust concentration is comparable to those of the other industries.
To reduce the health risk, the generation and diffusion of dust should thus be controlled as
much as possible.

Figure 7. Maize simulation results of the DALY.

Figure 8. Rice simulation results of the DALY.
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Figure 9. Wheat simulation results of the DALY.

3.2.4. Uncertainty Analysis

The dust concentration level in the grain storage and transportation process is af-
fected by the year, season, region, process, and equipment due to the different equipment,
technology, and processes involved in different stages of grain storage and transportation;
the sampling time for dust in this health risk assessment was from March to May, so the
parameters for dust concentration have certain limitations. However, in this study, a uni-
fied calculation of the employee exposure parameters at different stages was carried out,
which also creates uncertainty. Exposure parameters such as EF, ED, and ET also refer to
the Chinese population exposure parameter manual obtained from the 2011–2012 survey;
the use of these data after 10 years may also lead to uncertainties. The RfD in the Chinese
population exposure parameter manual differs from that provided by USEPA.

3.3. Implication and Limitations

The findings of the research presented in this paper have important significance.
Previous studies have shown that a large amount of mixed dust is generated during the
storage and transportation of grain, and this dust is seriously harmful to human beings.
This risk to human health was, however, rarely evaluated further. This study has made
a significant contribution to quantifying the health damage caused by grain dust. Based
on the analysis of parameter uncertainty, the method of probabilistic risk assessment was
used to ensure the comprehensiveness, objectivity, and accuracy of the evaluation result.
The Monte Carlo method in the Crystal Ball software was used to deal with uncertainty
in the process of risk assessment. The maximum, minimum, standard deviation, quantile,
and other numerical risk characteristics were obtained to reflect the harm level of dust from
multiple angles. The effects of AT, ED, ET, EF, BW, and C were explored by the sensitivity
analysis of the evaluation results, which can effectively help managers choose reasonable
prevention and control measures to reduce harm.

The evaluation method used in this study still has some limitations. As mentioned
earlier, dust sampling is not universal. The uncertainty caused by the exposure parameter
cannot be eliminated. The dermal contact [64,65] and ingestion pathways [66,67] also had
an impact on human health. Only the inhalation pathway was considered, which may
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cause the health risk value presented here to be smaller than the actual risk. In addition,
although the researchers tried to select the same grain warehouse for experiment and analy-
sis during the sampling process, system differences were possible between the 616 samples,
which will lead to errors in the results.

4. Conclusions

The dust concentration, levels, and sources, as well as the resulting health damage cre-
ated during transportation and storage at Chinese grain storage companies were thoroughly
investigated in this study. First, 616 dust samples from different stages (out-warehousing,
in-warehousing, and transporting) and types of grain (maize, wheat, and rice) in five
cities were collected and analyzed using the filter membrane method and a laser particle
size analyzer. A risk assessment model for grain dust inhalation was established based
on the current USEPA health risk assessment system. The health damage of grain dust
was quantified by Monte Carlo simulation and Crystal Ball 11.1 software. The DALY was
chosen as the final indicator to quantify the health damage. The results showed that the
concentration of grain dust ranged from 25 to 70 mg/m3, and the distribution was normal.
The proportion of dust with a particle size less than 10 μm exceeded 10%, which could seri-
ously threaten workers’ respiratory system. Based on grain type, the dust risk in each stage
followed a lognormal distribution, and the health risk of maize at each stage was the largest,
at 1.42 × 10−6 ± 9.14 × 1 0−7 during out-warehousing, 1.24 × 10−6 ± 8.27 × 1 0−7 during
in-warehousing, and 2.34 × 10−6 ± 1.32 × 10−6 during transport. By stage, the health
risk of grain dust can be ranked as follows: the transporting stage > the out-warehousing
stage > the in-warehousing stage. The sensitivity analysis indicated that average time
(AT), exposure duration (ED), inhalation rate (IR), and dust concentration (C) made the
greatest contribution to dust health risk, while AT and body weight exhibited a negative
sensitivity. The DALY caused by dust during grain storage was between 0.1 and 3.3 years.
The DALY of maize was the largest during the in-warehousing stage, with an average value
of 1.01 years, while the DALY of rice and wheat were the largest during the transporting
stage, with an average value of 0.89 and 0.83 years, respectively.

The results of this study provide a new perspective for grain storage dust damage
assessment. The dust concentration, particle size, and distribution characteristics of three
kinds of grain at three storage stages were described, and preventive measures were
proposed. The maximum, minimum, standard deviation, and quantile of risk were obtained
by the probability risk assessment method to guarantee the comprehensiveness of the
results. Furthermore, the DALY can directly reflect the damage of dust to human beings.
To resolve the uncertainty of the results caused by various factors and the limitations of the
evaluation method, future studies could increase the data sampling and investigation of
exposure parameters, and assess the risk for the dermal contact and ingestion pathways to
ensure the results are more accurate.
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Abstract: The residual levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) in environ-
ment media and freshwater fish were collected and measured from Lake Chaohu by using Gas
chromatography-mass spectrometry. Potential atmospheric sources were identified by molecular
diagnostic ratios and the positive matrix factorization (PMF) method. PAH exposure doses through
inhalation, intake of water and freshwater fish ingestion were estimated by the assessment model rec-
ommended by US EPA. The carcinogenic risks of PAH exposure were evaluated by probabilistic risk
assessment and Monte Carlo simulation. The following results were obtained: (1) The PAH16 levels
in gaseous, particulate phase, water and fish muscles were 59.4 ng·m−3, 14.2 ng·m−3, 170 ng·L−1

and 114 ng·g−1, respectively. No significant urban-rural difference was found between two sampling
sites except gaseous BaPeq. The relationship between gaseous PAHs and PAH in water was detected
by the application of Spearman correlation analysis. (2) Three potential sources were identified by
the PMF model. The sources from biomass combustions, coal combustion and vehicle emission
accounted for 43.6%, 30.6% and 25.8% of the total PAHs, respectively. (3) Fish intake has the highest
lifetime average daily dose (LADD) of 3.01 × 10−6 mg·kg−1·d−1, followed by the particle inhalation
with LADD of 2.94 × 10−6 mg·kg−1·d−1. (4) As a result of probabilistic cancer risk assessment, the
median ILCRs were 3.1 × 10−5 to 3.3 × 10−5 in urban and rural residents, which were lower than
the suggested serious level but higher than the acceptable level. In summary, the result suggests
that potential carcinogenic risk exists among residents around Lake Chaohu. Fish ingestion and
inhalation are two major PAH exposure pathways.

Keywords: PAHs; multi-media exposure; health risk; probabilistic risk assessment; Lake Chaohu

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are globally concerned pollutants because
of their widespread occurrence, strong persistence and long-range transportation poten-
tial [1]. Furthermore, they possess potential toxicity, mutagenicity and carcinogenicity [2–4].
Studies have shown that human cancer causes of skin, lungs and bladder have always been
associated with PAHs [5–8], and 16 PAHs are included on the priority pollutants list of the
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US EPA. PAHs have a wide variety of sources, including coal combustion, vehicle emission,
coking industry and biomass burning [9–11]. After being emitted into the environment,
PAHs may redistribute in environmental media and result in people being exposed to
these pollutants through multiple pathways, including breathing in polluted air and par-
ticles, drinking water, dietary intake and dermal contact with contaminated soil [12,13].
Multi-media distribution and multi-pathway exposure render the assessment of PAH
exposure complicated. Therefore, accurately evaluating the contribution of each exposure
pathway, characterizing the carcinogenic risk and identifying the sensitive parameters in
the exposure process are crucial to the management of PAH emission.

Water bodies act either as a sink [14] or as a source [15] for PAHs in the environment.
The atmospheric PAHs can enter water system through wet deposition, dry deposition
and gas exchange across the air–water interface [16–18]. Meanwhile, PAHs in water may
accumulate in aquatic organisms by direct uptake from water through gills or skin or by the
ingestion of suspended particles and contaminated food [19]. Residents living near the lake
can be exposed to PAHs by inhaling polluted air and ingesting water and aquatic products.

Lake Chaohu is located in the Anhui Province, which belongs to one of the most
developed areas in China, Yangtze River Delta Economic Zone. During the last decades,
the PAHs’ emission in China, especially in the above-mentioned areas, increased greatly due
to the increasing energy demand associated with rapid population growth and economic
development and to the low efficiency of energy utilization [20]. Chaohu is famous for
its fresh water fish. It is also the drinking water source of large cities such as Hefei and
Maanshan. PAH pollution in water system of Chaohu may increase the risk of residents’
exposure through fish ingestion and drinking water. Therefore, in recent years, PAH
exposure in Lake Chaohu has become a topic of concern. Some studies have been conducted
on the PAH residual levels in environment media, source apportionment or environment
behaviors [21–25]. Despite the progress in these directions, studies on three issues remain
scarce. First, comparison among exposure contribution from different pathways are seldom
reported. Second, carcinogenic risk due to total exposure remains unclear. Third, the
factors influencing risk assessment are seldom studied. Hence, further studies on PAHs
should be performed in order to obtain a comprehensive understanding of the risk profile
of PAHs exposure among Chaohu residents.

In this research, EPA priority control PAHs were selected as target chemicals due
to their extensive residence in the environment and their threat to public health. The
contents of 16 l PAHs in air, particles, lake water and aquatic organisms were measured;
physiological and behavior parameters influencing PAH exposure were collected; potential
sources were identified; and cancer risks were calculated by US EPA model. The aims of
this study were to elucidate the characteristics of multi-media PAH exposure of residents
and to provide information for PAH management near Lake Chaohu.

2. Materials and Methods

2.1. Sample Collection and Pretreatment

Two sampling sites were selected near Chaohu City and Zhongmiao Town as urban
and rural sites (Figure 1). Atmosphere samples were collected once a month from May
2010 to April 2011 by high-volume samplers. Polyurethane foam (PUF) disk and glass
fiber filter (GFF) were used to collect gaseous phase and particulate phase PAHs, respec-
tively. Water was collected from two sampling sites selected near the atmospheric sites.
After shaking and mixing, a one liter aliquot of each collected water sample was filtered
through a 0.45 μm glass fiber filter using a filtration device consisting of a peristaltic pump
(80EL005, Millipore Co., Billerica, MA, USA). Edible aquatic organisms, including spotted
steed (Hemibarbus maculatus, HM), carp (Cyprinus carpio, CC), snail (Cipangopaludina
chinensis Gray, CCG), topmouth culter (Culter eryropterus, CE), bluntnose black bream
(Megalobrama amblycephala, MA), Chinese white prawn (Leander modestus Heller, LMH),
whitebait (Hemisalanx prognathus Regan, HPR) and bighead carp (Aristichthys nobilis,
AN), were randomly collected in the lake.
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Figure 1. The location of Lake Chaohu and sampling sites: (a) People’s Republic of China, (b) Anhui Province and
(c) Lake Chaohu.

In the laboratory, PUF and GFF samples were added with surrogate standards of
2-fluoro-1, 10-biphenyl and p-terphenyl-d14 (J&K Scientific, Beijing, China, 2.0 mg mL 1)
before measurement. The PUF was Soxhlet extracted with 150 mL 1:1 mixture of n-hexane
and acetone for 8 h. GFF was extracted by 25 mL hexane/acetone mixture (1:1) using a mi-
crowave accelerated reaction system (CEM Corporation, Matthews, NC, USA). Microwave
power was set at 1200 W, and the temperature program was set to the following: ramp
up to 100 ◦C in 10 min and held at 100 ◦C for another 10 min. Both PUF and GFF extracts
were concentrated to 1 mL by rotary evaporation at a temperature below 38 ◦C and then
transferred to a silica/alumina chromatography for cleanup. The elution solution was col-
lected, concentrated, conversed to hexane solution and then added with internal standards
(Nap-d8, Ace-d10, Ant-d10, Chr-d12 and Perylene-d12, J&K Scientific Ltd., Beijing, China).

The water samples were extracted by using a solid phase extraction (SPE) system
(Supelco, Bellefonte, PA, USA). C18 cartridges (500 mg, 6 mL, Supelco, Bellefonte, PA, USA)
were prewashed with dichloromethane (DCM) and conditioned with methanol and de-
ionized water. A 1 L water sample was added with surrogate standards, passed through the
SPE system and was extracted. The cartridges were eluted with 10 mL of dichloromethane.
The volume of the extracts was reduced by a vacuum rotary evaporator in a water bath and
was adjusted to a volume of 1 mL with hexane. Internal standards were added for analysis.

The fish samples were pretreated on the same day after being delivered back to the
temporary laboratory. The muscles on both sides of the dorsal and chest were mixed.
After obtaining the wet weight, the samples were freeze dried (FDU-830, Tokyo Rikakikai
Co., Tokyo, Japan) and grounded into a granular powder with a ball mill (MM400, Retsch
GmbH, Haan, Germany). Two gram powder samples were weighed into an extraction
tube, and the surrogate standards were added to the samples to indicate recovery. After
microwave extraction, the extracts were pressure filtered and concentrated to approximately
1 mL and cleansed by GPC instrument (GPC800+, Lab Tech Ltd., Hongkong, China) with
a Bio Beads SX-3 column (300 mm × 20 mm, Bio-Rad Laboratories, Inc., Hercules, CA,
USA). Subsequently the concentrate was loaded in a silica gel SPE cartridge (6 mL, 500 mg,
Supelco Co., Bellefonte, PA, USA). The cartridge was eluted by hexane and mixed solution
of dichloromethane and hexane. The extracts were concentrated to 1 mL, transferred to
vials, added with internal standards and sealed for analysis. The details of experiment
have been reported in previous research [19,26].

2.2. Instrument Analysis

The samples were analyzed by using Agilent 6890 gas chromatography and a 5976C mass
spectrometer detector with a HP-5MS fused silica capillary column (30 m × 0.25 mm × 0.25 μm).
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Helium was used as the carrier gas at a flow of 1 mL/min. The samples (1 μL) were injected
by the autosampler under a splitless mode at a temperature of 220 ◦C. The column temper-
ature program was as follows: 50 ◦C for 2 min, 10 ◦C/min to 150 ◦C, 3 ◦C/min for 240 ◦C,
240 ◦C for 5 min, 10 ◦C/min for 300 ◦C and 300 ◦C for 5 min. The ion source temperature of
the mass spectrometer was 200 ◦C, the temperature of the transfer line was 250 ◦C and the
temperature of the quadrupole was 150 ◦C. The compounds were quantified in the selected
ion mode, and the calibration curve was quantified with the internal standard. There were
three parallel samples in each species. The method blanks and procedure blanks were
prepared following the same procedure.

The quantification was performed by the internal standard method. All of the solvents
used were HPLC-grade pure (J&K Chemical, Beijing, China). All of the glassware was
cleaned by using an ultrasonic cleaner (KQ-500B, Kun Shan Ultrasonic Instruments Co.,
Ltd., Kunshan, China) and heated to 400 ◦C for 6 h. In the sampling process, three parallel
samples were been collected from each sample site. The laboratory blanks and sample
blanks were analyzed with the true samples. A total of 16 priority control PAHs were
measured. The PAH individuals, abbreviations as well as method recoveries in different
environment media and aquatic organisms are shown in Table 1.

Table 1. Recoveries and toxicity equivalency factors (TEFs) of 16 PAHs.

Abbreviation PAHs Gaseous (%) Particulate (%) Water (%) Aquatic Organisms (%) TEF

Nap Naphthalene 46 47 81 115 0.001
Acy Acenaphthene; 51 48 87 101 0.001
Ace Acenaphthylene 67 50 81 117 0.001
Flo Fluorene 75 57 103 105 0.001
Phe Phenanthrene 83 69 108 107 0.001
Ant Anthracene 77 71 93 101 0.01
Fla Fluoranthene 98 87 89 113 0.001
Pyr Pyrene 124 88 89 122 0.001
BaA Benzo[a]anthracene 99 97 63 102 0.1
Chr Chrysene 92 102 62 119 0.01
BbF Benzo[b]fluoranthene 121 103 43 105 0.1
BkF Benzo[k]fluorant hene 90 111 44 102 0.1
BaP Benzo[a]pyrene; 108 103 60 87 1
IcdP Dibenz[a,h]anthracene 102 119 31 89 0.1

DahA Indeno [1,2,3-cd]pyrene 127 118 24 93 1
BghiP Benzo[ghi]perylene 65 115 24 110 0.01

2.3. Positive Matrix Factorization (PMF)

In this study, positive matrix factorization method was applied in order to quanti-
tatively identify the major sources. PMF is a useful factorization methodology that can
determine source profile and contribution [27,28]. The PMF model can be expressed
as follows:

X = GF + E (1)

where X is the concentration matrix, consisting of n samples and m concentrations of the
compounds (n × m); G is the factor contribution matrix; F is the factor profile matrix;
and E (n × m) is the residual matrix. The elements of residual matrix are denoted as
the following:

eij = xij −
p

∑
k=1

gik fki (2)

where xij, fki and gik are the corresponding elements of X, F and G, respectively. Non-
negativity constraints are imposed on the contribution and profile matrices, and PMF
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simultaneously weights individual data points based on uncertainty. Q(E) is an object
function and a criterion for the model, defined as the following:

Q(E) =
n

∑
i=1

m

∑
j=1

(
eij/sij

)2 (3)

where sij is the uncertainty of the jth compound in the ith sample.

2.4. Multi-Pathway Exposure and Risk Assessment

The BaP equivalent concentration (BaPeq) and toxicity equivalency factors (TEFs) were
used to express the effects of exposure to mixtures of PAHs on health [29]. BaPeq is directly
derived from the mass concentrations of different PAHs using TEFs. Therefore, they can be
directly compared and contrasted [30]. In order to evaluate the total exposure to dietary
PAHs, BaPeq based on BaP toxicity was determined using the following equation:

BaPeq = ∑ Ci × TEF (4)

where Ci is the concentration of the PAH species in food, and TEFi is the toxic equivalence
factor of the PAH’s congener i. (Table 1).

In accordance with the Exposure Factors Handbook [31], the lifetime average daily dose
(LADD) of PAH exposure through inhalation (air and particle), aquatic product ingestion,
and water intake was calculated as follows:

LADD =
C × IR × EF × ED

BW × AT
(5)

where C is the concentration of PAHs in the environment media, and IR is the intake rate
of PAHs through inhalation (IRinh, m3·day−1), water intake rate (IRwater, mL·day−1) and
aquatic product intake rate (IRinh, g·day−1). EF is the exposure frequency (day·year−1); ED
is the exposure duration (year); and BW is body weight (kg). AT is the average lifespan
for carcinogens.

High uncertainty exists in risk assessment. Sample measurement errors were in-
evitable. There are also uncertainties in the parameters and estimates. In probabilistic risk
assessment, exposure parameters are considered as random variables. In order to quantify
experiment uncertainty and its impact on the estimation of expected risk, a 10,000 times
Monte Carlo (MC) technique was used. The Crystal Ball software was employed to imple-
ment MC simulation.

3. Results and Discussions

3.1. PAH Residual Levels in Environment Media

The levels of PAHs in the environmental media from Lake Chaohu are presented
in Table 2. Sixteen priority PAHs were all detected during both the gaseous phase and
particulate phase. In comparison, the detection rates of PAHs with higher than four rings
in the water phase were very low due to their poor hydrophilic. The total concentrations
of 16 priority PAHs (PAH16) in gaseous and particulate phases were 59.4 ± 51.4 ng·m−3

and 14.2 ± 23.5 ng·m−3, respectively. The average gaseous PAH16 concentrations in urban
and rural sites were 3.59 times and 4.95 times higher than in particles. The atmospheric
PAH16 residual level in this study was lower than the values reported in Guangzhou
(337 ng·m−3) [32] and in Tianjin (752 ng·m−3) [33], but it was greater than the highest level
reported in mountain Taishan (9.07 ng·m−3) [34]. Compared with data reported abroad,
the PAH16 level was higher than data reported in Chesapeake Bay (5.31~71.6 ng·m−3) [35],
Athens (4.8~76 ng·m−3) [36] and in southwest Europe (0.32 ng·m−3) [37]. PAH16 in the
muscle of fish from Chaohu Lake (also including snail and shrimp) was also comparable
with data reported from other freshwater fish in Hebei (4.76–144 ng/g) [20] and less
than data reported in Shanxi (160 ng/g) [38]. Generally speaking, the PAH16 contents
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in environment media and fish indicated a low PAH pollution level in Lake Chaohu. In
order to compare the toxicity of difference environment media, the concentrations were
converted to BaPeq concentrations. Although the gaseous phase had much higher PAH16
content, the BaPeq was much higher in particles. The particulate BaPeq in urban and rural
were 11.2 and 5.51 times higher than those in the gaseous phase. The difference between
PAH16 and BaPeq can be attributed to PAH composition in gas and particles.

Table 2. Residual levels of PAH16 and BaPeq in environmental media.

Categories Media Unit
Urban Rural

Kruskal-Wallis Test
Min Max GM Min Max GM ± SD

PAH16

Gas ng·m−3 22.1 186 49.5 ± 46.0 10.9 183 72.3 ± 54.3 p = 0.157
Particle ng·m−3 3.41 82.5 13.8 ± 25.6 2.74 69.3 14.6 ± 22.4 p = 0.773
Water ng·L−1 57 409 171 ± 119 59.6 779 169 ± 188 p = 0.544
Fish ng·g−1 18.5 1029 114 ± 315 18.5 1029 114 ± 315

BaPeq

Gas ng·m−3 0.04 0.38 0.14 ± 0.10 0.06 1.05 0.31 ± 0.26 p = 0.010
Particle ng·m−3 0.38 10.1 1.57 ± 2.99 0.31 9.00 1.71 ± 2.74 p = 0.840
Water ng·L−1 0.17 1.57 0.46 ± 0.42 0.26 1.36 0.54 ± 0.36 p = 0.862
Fish ng·g−1 0.29 20.2 1.75 ± 6.24 0.29 20.2 1.75 ± 6.24

PAH16: Tthe sum of 16 PAH components; GM: geometric mean; SD: standard deviation.

Spatial difference between urban and rural sites were compared by using the Kruskal–
Wallis test. No significant difference was found between two sampling sites except gaseous
BaPeq. A p < 0.05 significant difference was detected between urban and rural gaseous
BaPeq concentrations. The results showed that the concentrations in most environment
media were similar in urban and rural area. There may be two reasons accounting for
the small spatial difference. First, both Chaohu City and Zhongmiao Town had small
populations. No obvious different lifestyle was found between people in urban and rural
areas. In particular, there is no obvious heating season in the area around Chaohu. Thus,
local emission sources in urban and rural area were not obvious. Second, the city and the
town were far away from the local thermal power plant and other industrial pollution
sources, resulting in low local pollution levels.

The PAH compositions in environment media were illustrated in Figure 2. It can be
observed that the water phase was dominated by the low molecular PAHs. PAHs with less
than three rings accounted for 95.0% and 93.3% of total PAHs in water. The same ratios
in gaseous phase were 87.1% and 82.9% in urban and rural samples. In the particulate
phase, however, the PAHs with more than or equal to four rings contributed to 80.2% and
81.6% of the total PAHs. The high proportion of high molecular weight PAHs results in the
increase in toxicity due to the high TEF of high molecular weight PAHs.

Spearman’s correlation analysis was used to detect the relationship between content of
PAHs in gaseous, particulate phase, water and in aquatic animals. As a result, a significant
positive correlation was found between gaseous phase and water phase (Figure 3a). It
is reported that wet deposition, dry deposition and gas exchange across the air–water
interface are the three major ways that PAHs can enter the water system. The result
suggested that gas exchange across the air–water interface is probably an important way
for atmospheric PAHs to affect the aquatic system [39]. In contrast, the relationship between
particulate and dissolved PAHs was not significant (p = 0.116). This can be partly explained
by the solubility of different composition in particles and gas phase. The solubility of high
molecular weight PAHs was lower than the solubility of those with low molecular weight.
On the other hand, high molecular weight PAHs dominated the particle component. Thus,
concentration levels of PAHs in particles had a weak correlation with their concentration
levels in water. Significant positive correlation was also found between PAH in water and
in fish tissues, which indicates the effect of environmental concentration on organisms.
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Figure 2. PAHs composition in different environment media.

 
Figure 3. Spearman correlation between PAH levels in environment media (a) water and gaseous phase (b) and fish tissues
and gaseous phase (c) water and fish tissues.

3.2. Source Apportionment
3.2.1. Molecular Diagnostic Ratios

PAHs can be formed by multiple anthropogenic activities such as combustion of fossil
fuels, or they can be formed naturally in the environment by oil seeps and plant debris
and forest and prairie fires. Some methods have been established in order to identify PAH
sources: for example, molecular diagnostic ratios (MDRs), the principal component analysis
(PCA) method [37,40], the chemical material balance (CMB) model [41], the positive matrix
factorization (PMF) method and stable carbon isotopic ratios analysis [42]. In this study,
MDRs and PMF were used to identify the major sources and to obtain a reliable conclusion.

The MDR theory [17,43] is based on the hypothesis that some PAH ratios remain
constant between the source and the receptor. The MDR method has been widely used
in the identification of preliminary sources [44]. Based on the monitoring data, four
normally used ratios were employed in this research. Common ratios used include
Ant/(Ant + Phe) (mass 178), Fla/(Fla + Pyr) (mass 202), BaA/(BaA +Chr) (mass 228) and
IcdP/(IcdP + BghiP) (mass 276).
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The ratios of mass 178 increased from January and reached the peak in October
(Figure 4). Generally, the ratios varied near the value of 0.1. The lowest value was obtained
during the winter, and the highest value was achieved in the summer. For mass 178, a
ratio < 0.10 usually is taken as an indication of petroleum, whereas a ratio > 0.10 indicates
a dominance of combustion. From November to January, petroleum was the dominant
source, and emission from combustion became the greatest contributor during the rest
of the year. For mass 202, a ratio of 0.50 is usually defined as the petroleum/combustion
transition, and point ratios between 0.40 and 0.50 are more characteristic of liquid fossil
fuel (vehicle and crude oil) combustion, whereas ratios > 0.50 are characteristic of grass,
wood or coal combustion. The ratios in our study indicated a strong influence of biomass
and coal combustion before November, which was consistent with the result of mass 178.
For mass 228, BaA/(BaA +Chr), ratios < 0.20 indicate petroleum sources, ratios from 0.20
to 0.35 indicate either petroleum or combustion and those > 0.35 imply combustion. The
ratios from May to October were higher than 0.5, which indicated grass, wood or coal
combustion. From November to April, the ratios were between 0.40 and 0.50, which was
the characteristic of liquid fossil fuel combustion. For IcdP/(IcdP + BghiP), ratios < 0.20
likely indicates petroleum, those between 0.20 and 0.50 imply liquid fossil fuel combustion
and ratios > 0.50 imply grass, wood and coal combustion. The ratios of mass 228 in our
research indicated a mixture of petroleum or combustion. Combustion was the potential
source from July to December. The ratios in our research suggested a potential combustion
source [45].

The MDRs indicated that PAHs in Lake Chaohu were mainly from combustion and
vehicle emission. We can also found that differences existed when we were using different
PAH ratios. The use of PAH MDRs has been criticized in the past due to low accuracy.
Overlap areas were reported between commonly applied ratios associated with different
types of PAH emissions [44,46]. According to a study of MDRs based on the inventory
and monitoring data over 20 years, it was found that the use of MDRs does not respond to
known differences in atmospheric emission sources unless the source is strong [47]. due to
the limitations of MDRs, a PMF model was also applied to detect the potential sources.

 

Figure 4. Seasonal and spatial variation of four ratios in atmospheric samples from Lake Chaohu.
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3.2.2. PMF Results

When the number of factors for PMF is three, good simulation has been achieved for
most PAHs. Therefore, three components were extracted, and the source profiles of three
factors are illustrated in Figure 5. It was found that factor one is predominately weighted
by low molecular weight PAHs. Factor two is heavily weighted by the middle molecular
weight PAHs, and factor three has a higher contribution in the PAHs with more than four
rings. The first factor is predominately weighted by Acy, which has been proved to be
a tracer of combustion of straws. In addition, factor one has high load on Fla, Pyr and
Chr, which are the combustion products of firewood. Therefore, factor one appears to be
biomass combustion. Factor two is predominately weighted by Phe and BbF. According
to the literature, Flo, Phe and Ant are predominantly considered as coal combustion
profiles. The high BbkF and Chr loads are also a typical sign of Chinese domestic coal
emissions [2,17,48,49]. Factor two is supposed to be coal combustion emission. For factor
three, BghiP has been identified as tracers of auto emissions, and IcdP is considered as
a marker of diesel emission. It can be concluded that factor three represents emission
from vehicle.

The percentages of the sources from the factors were estimated by PMF. These results
showed that the sources from biomass combustions, coal combustion and vehicle emission
accounted for 43.6%, 30.6% and 25.8% of the total PAHs, respectively. Compared with
the result of MDRs, a similar conclusion was obtained by PMF and MRDs. It can also
be observed that coal combustion plays an important part in local PAH emission. Our
conclusion is different from some research studies conducted in China. Most domestic
studies show that coal is the main source of pollution in China, which is related to the
fact that coal is the main energy material in China. China is the largest coal producer
and consumer in the world [50]. According to the National Bureau of Statistics, the coal
production of China in 2018 was 3.5 billion tons, nearly half of the world’s production.
Thus, the high coal consumption produces high PAH contribution to the atmosphere. In
this study, the atmospheric samples were collected from Mushan island and Chaohu City.
The former is a rural area far away from the city, while the latter is a small city with a small
population and is a suburb surrounded by rural areas. Compared with coal combustion,
firewood combustion is a more important method supplying energy in the research area.
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Figure 5. Factors of PMF analysis in Chaohu dustfall.

3.3. Exposure through Different Pathways
3.3.1. Derivation of Exposure Parameters

Three physiological and exposure behavior parameters including bodyweight, water
intake rate and inhalation rate were collected from Exposure Factors Handbook of Chinese
Population [51]. The distribution modes of parameters were fitted by regression models.
Specifically, first, we considered a normal distribution for BW and log-normal distributions
for the water intake rate and inhalation rate because the normal and log-normal distribution
models are the most widely applied in studies on the exposure parameters [52,53]. Second,
the 5th, 25th, 50th, 75th and 95th percentiles were collected from the Exposure Factors
Handbook. The distribution of the parameters was fitted using the Gaussian function. The fit
curves and parameters are shown in Figure 6 and Table 3, respectively. It can be observed
that relatively good regression results were obtained for all three parameters. In addition,
the intake rates of fish consumption in urban and rural were considered as constants.
According to a survey conducted between 2010 and 2013, the average daily intakes of
freshwater products per capita were 19.0 g/day and 11.1 g/day for the urban and rural
populations, respectively [54].
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Figure 6. Fitting of (a) bodyweight, (b) water intake rate and (c) inhalation rate of urban and rural population in
Anhui Province.

Table 3. Exposure parameters of adults for Monte Carlo simulation.

Media Unit Distribution Mode Urban Rural References

Water ng·L Log-Normal LN(−0.77, 0.68) LN(−0.62, 0.56) Measured
Gas ng·m−3 Log-Normal LN(−1.96, 0.67) LN(−1.18, 0.71) Measured

Particle ng·m−3 Log-Normal LN(0.45, 1.10) LN(0.54, 1.11) Measured
Fish ng·g−3 Log-Normal LN(0.56, 1.48) LN(0.56, 1.48) Measured
BW Kg Normal N(63.90, 13.86) LN(60.86, 13.64) [53]

IR(water) mL·d−3 Log-Normal LN(7.81, 0.91) LN(7.80, 0.70) [53]
IR(inh) m3·d−1 Log-Normal LN(2.78,0.19) LN(2.74, 0.21) [53]
IR(fish) g·d−3 Constant 19.0 11.1 [54]

3.3.2. Estimation of Exposure Doses

The lifetime average daily doses (LADD) of BaPeq exposure through inhalation (air and
particle), aquatic product ingestion and water intake were calculated by 10,000 iterations
of Monte Carlo simulation. The results were illustrated in Figure 7. BaPeq exposure
through fish ingestion had the greatest contribution, with the average value of 3.01 × 10−6

(mg·kg−1·d−1). The LADD of residents in urban and rural were 2.97 × 10−6 (mg·kg−1·d−1)
and 3.07 × 10−6 (mg·kg−1·d−1), respectively. Although the fish intake rate in urban
residents was 1.71 times higher than that in rural, no obvious difference was observed
between two population groups. Exposure through particle inhalation has a comparable
contribution of 2.54 × 10−6 (mg·kg−1·d−1), which is one and two order of magnitude
higher than exposure through gas inhalation and water ingestion, respectively. Our results
are consistent with previous research. It has been reported that, for most non-occupationally
exposed individuals, diet is the main route of exposure [55,56]. Inhalation of gaseous and
particulate also had an ignorable contribution relative to the total BaPeq exposure.
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Figure 7. BaPeq exposure through different pathways: (a) gaseous phase; (b) particulate phase; (c) water intake; and
(d) fish intake.

3.4. Carcinogenic Risk Assessment

The probabilistic cancer risk for urban and rural residents were obtained based on the
results of Monte Carlo simulation and presented in Figure 8a,b. The median total PAHs
ILCR was 3.1 × 10−5 to 3.3 × 10−5 in urban and rural residents, which showed a slightly
higher carcinogenic risk for rural residents than that for urban residents. The difference
can be attributed to the variation of exposure behaviors. A one in a million chance of
additional human cancer over a 70-year lifetime (ILCR = 10−6) is considered acceptable or
inconsequential, and one in ten thousand or greater (ILCR = 10−4) is considered serious
(US EPA). Most of the surrogate samples generated by Monte Carlo distributed between
the range of 10−6 and 10−4, which indicates potential ILCR risk. Due to the different end
points, the carcinogenic slopes of inhalation and ingestion are quite different. Therefore,
fish ingestion had much higher contribution than particle inhalation. Inhalation (including
gas and particles) accounted for 26.5% and 29.1% of the total risk in urban and rural
areas, respectively.

Parameter sensitivity was quantitatively assessed by the Spearman’s rank correlation
coefficient of parameter and risk. The result was shown in Figure 8c,d. As the dominant
exposure pathway, fish consumption had the highest risk contribution. PAH concentration
in fish had the highest influence on the results of risk assessment. As the most important
protection factor, the bodyweight was the second most sensitive parameter. PAH concen-
tration associated with particles was the third most sensitive parameter in this research. It
can also be observed that the sensitivity of exposure behavior parameters were relative low
compared with media concentrations. This can be attributed to the small difference of these
parameters among adults. As the most important behavior parameter, fish consumption
rate was not treated as variables in the study due to the limited data support. However,
the uncertainty of intake rate of fish should not be ignored due to the high contribution
of fish intake on the total risk, which requires further research and more data support
in the future.
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Figure 8. Distributions of incremental lifetime cancer risk (a,b) and parameter sensitivity for urban and rural populations
(c,d) derived using the Monte Carlo simulation.

4. Conclusions

PAHs in major environment samples were collected in Lake Chao for the entire
year. Exposures through four pathways were estimated. ILCRs were characterized. The
results found that the gaseous concentration had influence on the PAHs in the water
according to the Spearman correlation analysis and may further affect the PAH content in
fish tissues. Atmospheric transport is the source of the entire water system. The results of
sources apportionment on atmospheric samples indicated the high contribution of biomass
combustion. Probabilistic risk assessment suggested that inhalation and fish ingestion are
two major pathways of PAH exposure, which are also the key processes in PAHs’ risk
control for people near Lake Chaohu.
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Abstract: The particulate matter PM10 concentrations have been impacting hospital admissions due
to respiratory diseases. The air pollution studies seek to understand how this pollutant affects the
health system. Since prediction involves several variables, any disparity causes a disturbance in the
overall system, increasing the difficulty of the models’ development. Due to the complex nonlinear
behavior of the problem and their influencing factors, Artificial Neural Networks are attractive
approaches for solving estimations problems. This paper explores two neural network architectures
denoted unorganized machines: the echo state networks and the extreme learning machines. Beyond
the standard forms, models variations are also proposed: the regularization parameter (RP) to
increase the generalization capability, and the Volterra filter to explore nonlinear patterns of the
hidden layers. To evaluate the proposed models’ performance for the hospital admissions estimation
by respiratory diseases, three cities of São Paulo state, Brazil: Cubatão, Campinas and São Paulo, are
investigated. Numerical results show the standard models’ superior performance for most scenarios.
Nevertheless, considering divergent intensity in hospital admissions, the RP models present the best
results in terms of data dispersion. Finally, an overall analysis highlights the models’ efficiency to
assist the hospital admissions management during high air pollution episodes.

Keywords: PM10; health risks; extreme learning machine; echo state network; neural networks

1. Introduction

World Health Organization (WHO) estimates that 91% of the world’s population
lives in places where air pollution levels exceed the advised limits. This exposure has as
a consequence 4.2 million deaths per year due to stroke, heart disease, lung cancer and
chronic respiratory illness [1].

In the last decades, the air pollution consequences in the environment and health have
been the subject of deep researches [2–4], including the relation between air pollution and
human health [5–8] and, specifically, the study of particulate matter (PM) impacts on the
respiratory diseases [9–11]. The public health system is currently the main concern for the
global governance majority, receiving huge money investments and boosting researches in
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operational areas. Therefore, several works have been applied to develop mathematical
models to improve predicting the diseases caused by PM air concentration.

Generalized Linear Models (GLM) [10–14] and Generalized Additive Models
(GAM) [15,16] are statistical regression models usually used to assess air pollution con-
sequences on human health. However, a minimum of data is required to assure that
regression models will be able to capture the relationship between the inputs (predictors)
and the output (response variable) [17]. For developing countries, as lack of data is a
reality, solving the problem using regression models is challenging [18]. For this reason,
other models and methods have been applied; since the problem can be seen as a nonlinear
mapping task, the Artificial Neural Networks (ANN) approach is the most attractive ap-
proach for solving estimation problems. The ANN have been used to solve air pollution
mapping tasks [19–22], and they have become increasingly popular over the past decade
for predicting the air pollutant’s impact on human health [10,17,18,23–25]. Araujo et al. [17]
and Kassomenos et al. [24] have shown that the ANN had better performance than linear
approaches like the GLM when dealing with nonlinear mapping problems. In this context,
Tadano et al. [26] proposed to use two models, known as Unorganized Machines (UM): the
echo state networks (ESN) and the extreme learning machines (ELM), to predict hospital
admissions. Based on this work, this paper presents a full extension of these models, adding
several neural networks variations applied to an enlarged and updated set of instances.

ELM and ESN are ANN architectures used to deal with static nonlinear mapping
problems, and are reliable when applied to multiclass classification and, mainly, time series
forecasting [27–31]. Thus, the main contribution of this research is an epistemological
study that predicts the impact of PM10 (particulate matter with an aerodynamic diameter
less than 10 μm) daily mean concentrations on hospital admissions due to respiratory
diseases using versions of the UM: the addition of regularization parameter applied to
increase the generalization capability of the models [32] and the use of the Volterra filter to
capture nonlinear patterns of the neural information [33]. To evaluate the performance of
the proposed methods, three cities from São Paulo State, Brazil (Campinas, Cubatão and
São Paulo city) were considered.

Based on the overall analysis produced, we expect to understand how air pollution
affects the health system, especially during global sanitary crises scenarios, avoiding
hospital collapse.

This work is organized as follows: Section 2 presents the ELM and ESN standard
models, the regularization parameter and nonlinear output layer strategies; Section 3
describes the addressed databases; Section 4 shows the computational results and critical
analysis regarding the models’ performances; Section 5 presents the main conclusions and
future works.

2. Unorganized Machines

Unorganized machines are a designation used as a general term to classify the modern
neural network paradigms that unify two kinds of ANN: the echo state networks (ESNs)
and the extreme learning machines (ELMs) [27].

In this work, these two architectures are employed to predict the hospital admissions
due to respiratory diseases caused by air pollution. Moreover, other models based on the
variations and extensions of these models are used [33,34].

2.1. Extreme Learning Machines

The extreme learning machine (ELM) is a feedforward neural network composed of a
single hidden layer, similar to the structure of multilayer perceptron (MLP) [28]. Figure 1
illustrates the architecture.
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Figure 1. Extreme Learning Machine.

According to Figure 1, the vector un represents all input information: PM10 concen-
tration; relative humidity; ambient temperature; the different weekdays; and holidays.
This vector un is associated with the matrix Wh through weights of the hidden layer that
can be randomly determined. The unique output layer (readout) Wout is composed of
parameters of a linear combiner that are calculated using the Moore-Penrose generalized
inverse operator which shall be defined below. Finally, similar to a single-hidden layer
multilayer perceptron (MLP), the ELM is also a single hidden layer feedforward neural
network, being yn the output information that indicates the number of hospital admissions.

The activation of the artificial neurons within the hidden layer are given by Equation (1):

xh
n = f h

n (W
hun + b), (1)

being un = [un, un−1, . . . , un−K−1]
T the vector that contains the K input signals, Wh ∈

R
N×K the linear input coefficients, b the vector that represents the biases of the hidden

units and f h(.) = ( f h
1 (.)), f h

2 (.), . . . , f h
N(.) the activation functions of the hidden neurons.

Then, Equation (2) presents the network outputs calculation:

yn = Woutxh
n, (2)

where Wout is the output matrix.
The output layer (readout) adjustment is the main advantage of ELM models. This

strategy is applied only once, considering the error signal [35,36]. Moreover, in dissonance
with the traditional feedforward neural networks, when the intermediate activation func-
tions are continuously differentiable, these models can choose the weights of the hidden
layer randomly [36–38]. Huang et al. demonstrate that ELMs are universal approxima-
tors [39].

These structures are composed of a simple training process, mainly requiring the
calculation of the parameters of a linear combiner using the Moore-Penrose generalized
inverse operator, as in Equation (3) [36,37,40,41]:

Wout = (XT
h Xh)

−1XT
h d, (3)
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where Xh ∈ R
Ts×N is the matrix composed of the intermediate layer outputs and Ts is the

training sample numbers, (XT
h Xh)

−1XT
h is the pseudoinverse of Xh and d ∈ RTs×1 is the

vector composed of desired outputs.

2.2. Echo State Networks

Echo state networks (ESN) are recurrent neural models known by an effortless training
process: the dynamical reservoir (intermediate layer) is fixed, i.e., there is no iterative
adjustment. In this sense, the synaptic weights of the reservoir do not use the error function
derivatives. Thus, only the output layer is effectively adapted [42]. The adaptation process
applies a linear regression scheme similar to the ELM training process, considering that
a linear combiner is often applied to the output layer. The neural network structure of
ESN can be seen as a general case of ELM because the reservoir presents recurrent loops.
Figure 2 illustrates the structure.

Figure 2. Echo state networks.

Figure 2 shows that the network structure is slightly similar to the ELM model pre-
sented in Figure 1, except by the additional input layer (Win), defined as a linear matrix,
and feedback loops in the intermediate layer (hidden layer).

Equation (4) expresses the activation of the internal neurons. This activation represents
the network states which are influenced by the previous state and the present input:

xn+1 = f (Winun+1Wxn), (4)

where f (.) = ( f1(.), f2(.), . . . , fN(.)) gives the activation functions of all neurons within
the reservoir, Win ∈ R

N×K is the input weight matrix and W ∈ R
N×N is the recurrent

weight matrix.
The linear combinations of the reservoir signals produce the ESN outputs by (5):

yn+1 = Woutxn+1, (5)

where Wout ∈ R
O×N is the output weight matrix, and O the number of outputs. The pa-

rameters of the Wout are determined by Moore-Penrose generalized inverse described in
Section 2.1.
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Fundamentally, the network model, besides a stable behavior, should present an
internal memory that preserves the input signals history formed in the dynamical reser-
voir [29,35,43]. Both features are contemplated by echo state property (ESP) [29,35,43].

Jaeger et al. suggest in [29] to simplify the weight matrix W, denoting wij as 0, 0.4
and −0.4 values with probabilities 0.95, 0.025 and 0.025, respectively. On the other hand,
Ozturk et al. (2006) suggest a new design for the dynamical reservoir [44] that considers
eigenvalues uniformly spreading in the weight matrix. Both approaches are applied in
this work.

Having described the unorganized machines in the standard forms, the following
subsections describe the variations and extensions which design structures of new models
also applied to the proposed problem.

2.3. Regularization Parameter

Primarily proposed by Huang et al. (2011), the regularization strategy aims to improve
the model’s generalization capability, inducing the solutions obtained by a parameter
applied to the Mean Square Error (MSE) cost function. The parameter C is chosen from a
validation set of samples, assuming C = 2λ, with λ discretized in the interval [−25, 26] [32].
The strategy is performed during the interactive process, where all parameters are tested,
and only one is selected according to the best MSE validation, via Expression (6):

Wout =

(
I

C
+ XT

h Xh

)−1
XT

h d, (6)

being C the regularization parameter and I the identity matrix.
Trying to improve generalization capability given by the parameter C, Kulaif et al.

(2013) developed a local search, denoted golden search, to determine better values for the
parameter C. The strategy is grounded in two main concepts: significant modifications are
obtained in the final solutions if any small parameter variations occur; the function given
by each small interval associated with the parameter C and the validation error shall be
supposedly quasi-convex [45]. This strategy is also applied in this work.

2.4. Nonlinear Output Layer

Boccato et al. (2011) proposed a variation of nonlinear output layer in ESNs, the Volterra
filtering structure [46]. The main concern is to prove the linear dependence between the
dynamical echo states, preserving the training process simplicity for the networks. The out-
put signals can be computed through linear combinations of polynomial terms, as in
Equation (7) [27]:

yi,n = h0 +
M

∑
p=1

h1
pxp,n +

M

∑
p=1

M

∑
q=1

h2
p,qxp,nxq,n +

M

∑
p=1

M

∑
q=1

M

∑
r=1

h3
p,q,rxp,nxr,n + . . . , (7)

where xi,n is the output of the i− th neuron of the reservoir (or the i− th echo state) at n− th
time instant, hm the linear combiner coefficient with m = 1, . . . , M, and M the polynomial
expansion order.

Similar to Equation (3), the training process simplicity is preserved due to the linear
dependence of the outputs regarding the filter parameters. In terms of least squares,
Equation (7) guarantee the closed-form solution, allowing the Moore-Penrose inverse
operation [47].

However, according to Boccato et al. (2011), the application of a Volterra filter might
have as consequence the uncontrollable growth of free parameters and inputs numbers.
To prevent these problems, a compression technique known as Principal Component
Analysis (PCA) must be applied. Interestingly, the use of PCA is also suitable to avoid the
redundancy between echo states [29,48]. In recent years, Chen et al. extended this idea to
the ELMs, considering the same premises of the former work [48,49].

147



Atmosphere 2021, 12, 1345

All parameters associated with the proposed models: the number of neurons, Volterra
Filter orders, the weight values, and the number of simulations, shall be described in
Section 4.

3. Case Studies

To evaluate the approach, three cities of São Paulo state, Brazil, with different char-
acteristics, were considered: São Paulo, Campinas and Cubatão. The data set of daily
PM10 concentration [μg/m3], relative humidity [%], and ambient temperature [◦C], were
obtained on the Environmental Sanitation Technology Company website [50].

The Brazilian National Health System provides data about the daily hospital admis-
sions due to respiratory diseases (RD). The data set considered in this study, available
in [51], comprises the International Classification of Diseases 10 (ICD-10)-J00 to J99. In this
work, the database was organized as a daily format and separated by the ICD-10 diagnosis.

According to the Brazilian Institute of Geography and Statistics (IBGE) [52], São Paulo
City, the largest city in Brazil, has almost 12 million people (data of 2010) in 1500 km2,
which is 7398.26 inhabitants per km2. The average climate is tropical, about 28 ◦C in
summer and 12 ◦C in winter [50]. This study considers the period from January 2014
until December 2016. The total number of hospital admissions for respiratory diseases
during the studied period, for São Paulo city, was 159,683 occurrences. With regards to the
PM10 concentration, only four out of twelve air quality monitoring stations had PM10 data.
In addition, only one station presented less than 100 days of lack of data. To deal with this
problem, data from another similar station were used to replace them.

Campinas City is the third most populous city of São Paulo State, with a population
of approximately 1,1 million people (data of 2010) spread in 795.7 km2, a demographic
density of 1359.6 inh/km2 [52]. The climate is tropical with dry winter and rainy summer
with an average of 37 ◦C during summertime. For this city, the data set considered data
from January 2017 to December 2019, comprising 15,464 hospital admissions for respiratory
diseases. In this case, two of three air quality monitoring stations presented PM10 data,
however, one had no data for 2019. So, the only station with less missing data (145 days
lack) was used.

Cubatão has an estimated 118,720 inhabitants with 142.8 km2 and 831 inh/km2 [52].
In the past, it was one of the most global polluted cities because of its large industrial park
and for being surrounded by mountains, which makes the air dispersion hard. In the 1980s,
the United Nations considered Cubatão the most polluted city in the world. After that,
a government, industries and community effort controlled 98% of the air pollutants level in
the city [53]. The current experiments considered the data from January 2017 to December
2019, a total of 802 hospital occurrences. For this city, all three air quality monitoring
stations had PM10 available data. However, only the station with more available data was
used, with 158 missing days.

A tendency to decrease hospital admissions on the weekends and holidays is a usual
situation. For this reason, the day of the week and holidays were considered as two
categorical variables [54]. Thus, in addition to the PM10 daily mean concentrations, ambient
temperature (T) and relative humidity (RH), the day of the week identifications (1 for
Sunday to 7 for Saturday), and a binary flag (h) to recognize if the day is a holiday,
were used.

Another important feature is the lag effect of air pollution on human health [10,17,26,55].
A common practice is to consider the effect up to seven days after exposure to air pollution,
where lag 0 is the effect on the same day of the exposure, and lag 7 is the effect after seven
days of the exposure [54].

Table 1 presents the descriptive statistics for the target (respiratory diseases-RD) and
the inputs: PM10 concentration, temperature and relative humidity, for each city. All these
variables are differed by average, standard deviation and minimum and maximum values.
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Table 1. Descriptive statistics for the variables.

City Variable Average S. Deviation Min. Max.

São Paulo

RD 144.0 54.7 9.0 409.0
PM10 [μg/m3] 28.6 14.0 5.0 97.0
Temperature [◦C] 20.7 3.6 9.9 28.9
Humidity [%] 48.6 16.1 15.0 93.0

Campinas

RD 16.0 6.0 3.0 37.0
PM10 [μg/m3] 21.5 11.3 3.0 84.0
Temperature [◦C] 28.5 3.9 16.6 37.0
Humidity [%] 42.4 14.4 14.0 90.0

Cubatão

RD 1.0 1.0 0.0 8.0
PM10 [μg/m3] 37.6 17.9 11.0 148.0
Temperature [◦C] 27.1 4.3 16.0 40.3
Humidity [%] 63.5 16.8 19.0 97.0

Note that the cities have different patterns for the target. São Paulo hospitalizations
have a wide dispersion, with 9 to 409 daily hospital admissions. Campinas ranges from 3
to 37, while Cubatão, the smallest studied city, has a maximum of eight hospitalizations.
It is necessary to highlight that the databases comprise only data from the public health
system, not considering data from health insurance and private units.

The maximum daily PM10 concentration for Cubatão (148 μg/m3) draws attention,
because it is almost thrice the WHO 24-hours average limit of 50 μg/m3 (Table 1) [56].
Despite that, the hospital admissions are very low (daily maximum of occurrences) since
a significant part of the workers of Cubatão live in São Paulo, which is around 63 km far.
The hospital admissions might also depend on the air pollutants dispersion pattern and the
local population. São Paulo and Campinas maximum daily PM10 concentrations are lower
than Cubatão, but they are also above the WHO limit of 50 μg/m3 (São Paulo-maximum
daily of 97 μg/m3; Campinas-maximum daily of 84 μg/m3) [56].

Since the data set described is large with high variability, it may contain multicollinear-
ity or near-linear dependence among the variables. Multicollinearity occurs when two
or more inputs (independent variables) are highly correlated affecting the estimate pre-
cision. [57]. To evaluate the data set, the Variance Inflation Factor (VIF) shall be used to
diagnose the multicollinearity. VIF is calculated by an inflation of the regression coef-
ficient for a independent variable, assessing its correlation to the dependent variables,
and modeling the future relation between them. Then, the VIF for each jth factor can be
calculated as:

VIFj =
1

1 − R2
j

, (8)

where R2
j is the multiple determination coefficient obtained from regressing each indepen-

dent variable on the others. If VIF exceeds 5, it is an indicator of multicollinearity [57].
In this work, R Studio (R version 4.1.0 (2021-05-18)—“Camp Pontanezen” Copy-

right (C) 2021 The R Foundation for Statistical Computing Platform: x8664 − w64 −
mingw32/x64(64 − bit)) was used to calculate VIF. The results are presented in Table 2,
showing no multicollinearity between the inputs of each case study.

Table 2. VIF test results for multicollinearity.

VIF Cubatão Campinas São Paulo

PM10 1.1581 1.5779 1.6365
Relative Humidity 1.9392 2.2771 1.8703

Temperature 1.8825 1.5877 1.2105
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In the next section, the proposed models are applied to the presented data, producing
a fulfilled analysis of the numerical results obtained.

4. Results and Critical Analysis

The following items describe all models developed to obtain the numerical results in
order to evaluate the approach’s effectiveness:

• Standard single models: Three versions are developed considering the Standard
Models presented in Sections 2.1 and 2.2. The Extreme Learning Machine (ELM),
the Echo State Network from Jaeger et al. [29] (ESN J.) and the Echo State Network
from Ozturk et al. [44] (ESN O.);

• Regularization Parameter: All standard models are extended, producing three other
models through regularization parameter concepts presented in Section 2.3. The ELM
with Regularization Parameter (ELM–RP), the ESN J. with Regularization Parameter
(ESN J.–RP) and the ESN O. with Regularization Parameter (ESN O.–RP);

• Nonlinear Output Layers: Similarly, three more models are proposed considering the
concepts in Section 2.4. The Nonlinear Output Layers strategy is applied to the three
single forms creating the ELM with Volterra Filtering Structure (ELM Volt), the ESN J.
with Volterra Filtering Structure (ESN J. Volt), and the ESN O. with Volterra Filtering
Structure (ESN O. Volt).

The experimental procedure follows the steps summarized in Figure 3:

Figure 3. Neural networks appliance steps.

The process begins by collecting the data in the mentioned repositories. Before the
insertion of the samples in the neural networks, a normalization procedure is performed
due to the limits of the activation function saturation [58]. After the training samples are
inserted in the model in order to adjust their free parameters, observing the decrease of
the output error. During this process, cross-validation is performed to increase the system
generalization capability.

When the training ends, the test samples are inserted in the ANN after the input
normalization. The neural response is stored, the normalization is reversed and, finally,
the model output is available, which allows the calculation of the models’ error. In this
work, all models codes were developed in the MATLAB language.

In the training step, the parameters were defined as follows:

• The number of artificial neurons in the hidden layer (or dynamic reservoir) of each
model was determined considering a grid search ranging from 3 to 450 neurons;

• The weights were randomly generated in the interval [−1;+1];
• The hyperbolic tangent was addressed as the activation function of the hidden layers;
• The samples were normalized in the interval [−1;+1] before the neural processing;
• The models with RP strategy considered the holdout cross-validation;
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• The reservoir designed by Ozturk et al. considered a spectral radius of 0.95 [44];
• The first and the third orders (Equation (7)) of the Volterra filter and the first three

principal components of the PCA were considered [48]. These values were defined
after empirical tests;

• Before the calculation of the errors, the original domain data was re-scaled.

This work addressed three error metrics to evaluate the solutions quality: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE), given by (9)–(11), respectively:

RMSE =

√√√√ 1
N

N

∑
n=1

(dn − yn)2, (9)

MAE =
1
N

N

∑
n=1

|dn − yn|, (10)

MAPE =
1
N

N

∑
n=1

∣∣∣∣dn − yn

dn

∣∣∣∣× 100, (11)

where dn is the actual value, yn is the neural model response and N is the total number
of samples.

Tables 3–5 present the computational performances achieved by the nine proposed
models for each lag, considering each city. The results present the number of neurons (NN)
used in the best performance and the error metrics: RMSE, MAE and MAPE. However,
as it can be seen in Table 3 for Cubatão, the error metrics MAPE was not considered due to
the expressive number of “zeros” for the actual value (dn). In the tables, the best results
obtained for each error metric and the best model are highlighted in purple. Furthermore,
the models highlighted in italic bold with stars are the models which obtained statistically
similar results to the best one. This statistical test is described below.

A specific result analysis shows that ELM(RP) had the best results for the all calcu-
lated metrics for Cubatão in lag 2. Besides, ELM obtained the best results for Campinas,
considering the error metrics RMSE and MAPE in lag 3, but for MAE, ELM(RP) achieved
the best results in lag 0. For São Paulo, ELM obtained the smallest error values for different
lags: RMSE in lag 2 and MAE in lag 1. Finally, ELM(RP) presented the smallest error metric
MAPE in lag3.

Note that the best results obtained by the models sometimes were not replicated for
all error metrics. This behavior was evident for São Paulo and Campinas, since the best lag
and the best model were not always the same. Similar behavior can be observed in [17,59].

The pairwise Wilcoxon test was applied to evaluate if the results are statistically
different considering the RMSE with 30 independent simulations [60]. In Tables 3 and 4,
the models highlighted in bold with star tag achieved a p-value higher than 0.05, which
means that there is no statistical difference between their results and the best one. For this
reason, these models can be considered similar, in terms of performance, to the models
that obtained the best results. For Campinas, the standard ELM and all ESNs presented
equivalent performances, despite the numerical values being contrasts. For Cubatão, ELM
and ELM(RP) results were also similar. At long last, for São Paulo the test did not show
any statistical similarity among the models.

Figures 4–6 show the boxplot graphic regarding the RMSE values for each city and
the lag associated with the best result.
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Table 3. Results for Cubatão (Number of neurons-NN, RMSE and MAE for each model and lag).

LAG 0 LAG 1

Model NN RMSE MAE NN RMSE MAE

ELM 250 1.5630 1.1857 300 1.4760 1.1357
ELM(RP) 350 1.5330 1.1643 320 1.4808 1.1357
ELM Volt 350 2.4202 2.0429 450 2.0942 1.7714

ESN J. 320 1.6058 1.2643 450 1.5789 1.1929
ESN J.(RP) 450 1.5879 1.2357 450 1.6345 1.2571
ESN J.Volt 70 2.3815 1.9571 35 1.8323 1.4571

ESN O. 30 1.6257 1.2143 35 1.4904 1.1429
ESN O.(RP) 200 1.6797 1.3357 450 1.7587 1.3929
ESN O.Volt 10 2.7877 2.2286 380 2.7255 2.2429

LAG 2 LAG 3

Model NN RMSE MAE NN RMSE MAE

ELM* 420 1.4417 1.1000 350 1.4663 1.1500
ELM(RP) 320 1.4343 1.0714 380 1.4467 1.1286
ELM Volt 420 2.0107 1.6929 100 1.9928 1.6571

ESN J. 300 1.4344 1.1000 380 1.4417 1.1214
ESN J.(RP) 450 1.5142 1.1786 420 1.4541 1.1000
ESN J.Volt 30 2.1827 1.7071 35 2.3664 1.9143

ESN O. 350 1.4760 1.1214 35 1.4880 1.1286
ESN O.(RP) 420 1.6058 1.2357 170 1.5330 1.2071
ESN O.Volt 300 2.4900 2.0429 350 2.6227 2.2143

LAG 4 LAG 5

Model NN RMSE MAE NN RMSE MAE

ELM 250 1.5071 1.1714 420 1.5353 1.1571
ELM(RP) 250 1.5024 1.1786 400 1.5306 1.1643
ELM Volt 280 2.3890 1.9929 380 2.5114 2.1500

ESN J. 420 1.5142 1.1929 350 1.5561 1.1714
ESN J.(RP) 450 1.5189 1.1643 350 1.5561 1.2214
ESN J.Volt 70 2.2960 1.8714 35 2.5746 2.1500

ESN O. 380 1.6013 1.2786 70 1.5766 1.1571
ESN O.(RP) 380 1.5561 1.2071 250 1.6191 1.2500
ESN O.Volt 50 2.3770 2.0500 30 2.4275 1.9643

LAG 6 LAG 7

Model NN RMSE MAE NN RMSE MAE

ELM 250 1.4516 1.1500 350 1.5811 1.2286
ELM(RP) 320 1.5515 1.1929 200 1.5376 1.2000
ELM Volt 450 2.4640 2.1429 450 2.4928 2.1643

ESN J. 170 1.6903 1.3429 450 1.5306 1.2214
ESN J.(RP) 420 1.5584 1.2429 420 1.5834 1.2571
ESN J.Volt 40 2.3634 2.0429 70 2.2409 1.8786

ESN O. 40 1.5142 1.1714 35 1.5811 1.2429
ESN O.(RP) 250 1.6410 1.3357 200 1.5969 1.3071
ESN O.Volt 300 2.8322 2.2143 50 2.6390 2.1071
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Table 4. Results for Campinas (Number of neurons-NN, RMSE, MAE and MAPE for each model
and lag).

LAG 0 LAG 1

Model NN RMSE MAE
MAPE

%
NN RMSE MAE

MAPE
%

ELM 25 6.9017 5.6479 40.2496 3 5.5462 4.4507 36.9895
ELM(RP) 3 5.1094 3.9648 32.7044 25 7.0751 5.7324 40.8537
ELM Volt 25 7.0206 5.2676 37.2186 10 5.3910 4.1338 34.4946
ESN J. 35 6.9394 5.6620 40.0763 50 6.6619 5.4085 41.5375

ESN J.(RP) 3 6.4306 5.0563 50.5484 3 6.4731 5.0845 51.6402
ESN J.Volt 380 6.3540 4.8803 46.8265 3 5.2393 3.9577 33.7701
ESN O. 15 5.8713 4.6127 39.4574 30 6.4878 5.2465 40.5271
ESN O.(RP) 3 6.2473 4.9014 49.1485 7 6.6327 5.2324 52.7208
ESN O.Volt 3 5.6438 4.3873 33.9491 3 5.8743 4.6127 34.6702

LAG 2 LAG 3

Model NN RMSE MAE
MAPE

%
NN RMSE MAE

MAPE
%

ELM 15 6.4464 5.1972 38.4853 3 5.0644 4.0282 31.9037
ELM(RP) 3 5.4721 4.3662 33.0808 25 6.6072 5.1761 39.8549
ELM Volt 25 5.9517 4.4507 38.5412 170 6.2020 4.6268 41.3376
ESN J.* 30 6.4114 5.0915 41.0724 70 6.1260 4.7113 38.2705
ESN J.(RP)* 3 6.2258 4.7887 48.3773 10 6.2196 4.9296 49.2648
ESN J.Volt* 3 5.7684 4.4859 35.2526 30 5.7101 4.2817 38.4659
ESN O.* 25 6.2557 4.9085 39.6942 100 6.2905 4.8310 37.4986
ESN O.(RP)* 10 6.0630 4.6761 46.9116 5 6.3207 4.9577 49.5265
ESN O.Volt* 7 5.7648 4.3592 40.2773 450 6.1633 4.8732 42.5624

LAG 4 LAG 5

Model NN RMSE MAE
MAPE

%
NN RMSE MAE

MAPE
%

ELM 3 5.7403 4.4648 32.2381 3 5.2928 4.0845 33.6603
ELM(RP) 20 6.6003 5.0986 37.0427 3 5.3200 4.1056 34.3353
ELM Volt 25 5.7885 4.4085 34.7377 30 5.9511 4.7394 37.2746
ESN J. 70 6.2054 4.7746 36.7789 35 6.1070 4.7042 36.9522

ESN J.(RP) 30 6.3184 4.9859 48.8737 3 6.1254 4.7183 46.9130
ESN J.Volt 35 5.2682 4.1056 33.8667 3 5.8934 4.6479 35.1359
ESN O. 120 6.2776 4.8310 36.6999 200 6.3745 4.9859 38.5786
ESN O.(RP) 7 5.9935 4.6831 46.2167 10 6.2377 4.8239 47.9457
ESN O.Volt 3 5.9570 4.3028 36.7693 3 5.4521 4.3732 34.0759

LAG 6 LAG 7

Model NN RMSE MAE
MAPE

%
NN RMSE MAE

MAPE
%

ELM 3 5.3068 4.1972 36.8548 35 7.2452 5.6761 42.0235
ELM(RP) 3 5.2474 4.0704 36.8444 35 7.2384 5.6761 42.0908
ELM Volt 25 5.3253 4.2465 35.6237 70 5.1273 4.0930 38.2203
ESN J. 30 6.2360 4.9930 39.2345 50 6.6961 5.1620 41.5200

ESN J.(RP) 5 5.9741 4.6901 44.9676 3 5.8928 4.6549 45.2283
ESN J.Volt 3 5.7873 4.4930 35.0669 3 6.0082 4.8169 34.6062
ESN O. 35 6.3987 5.0563 39.7110 50 6.4579 4.8732 39.7276
ESN O.(RP) 5 5.9487 4.5000 44.5221 5 5.9871 4.6620 45.6153
ESN O.Volt 3 5.6519 4.4014 35.8808 3 5.6687 4.2746 37.4182
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Table 5. Results for São Paulo (Number of neurons-NN, RMSE, MAE and MAPE for each model
and lag).

LAG 0 LAG 1

Model NN RMSE MAE
MAPE

%
NN RMSE MAE

MAPE
%

ELM 25 61.1156 51.141 43.4189 3 39.7697 30.7821 36.1940
ELM(RP) 15 55.2425 46.4231 41.1963 20 59.1541 48.3205 40.3268
ELM Volt 10 60.8374 48.2179 48.3650 20 72.4500 58.7179 57.4171
ESN J. 420 62.4953 51.3910 42.4775 100 62.1230 50.4167 42.4388

ESN J.(RP) 450 67.7300 55.0449 70.2352 450 67.6519 55.0769 69.8433
ESN J.Volt 400 66.9744 54.0705 64.0419 3 51.2727 40.5833 43.2995
ESN O. 50 58.7160 48.3141 39.7660 50 58.1013 45.9679 40.5099
ESN O.(RP) 380 69.2728 56.6154 71.5779 350 68.8875 55.8526 71.2675
ESN O.Volt 3 57.8689 46.5064 45.7923 3 59.6593 45.7628 50.0376

LAG 2 LAG 3

Model NN RMSE MAE
MAPE

%
NN RMSE MAE

MAPE
%

ELM 3 39.3745 31.2628 36.9582 25 59.9251 48.2308 45.2785
ELM(RP) 20 60.6640 48.2115 41.4840 3 43.9040 35.1026 35.9396
ELM Volt 25 83.6339 69.4423 68.6818 20 71.2603 55.4679 57.0193
ESN J. 70 60.7151 49.1154 42.8314 100 64.7131 52.4423 48.2804

ESN J.(RP) 450 65.7486 53.6795 68.8934 400 65.3756 53.0064 69.0983
ESN J.Volt 3 59.2428 43.6090 46.8035 3 58.6061 44.1795 43.8522
ESN O. 35 58.6986 47.4103 40.7649 15 50.4066 39.3910 41.1334
ESN O.(RP) 420 68.1032 55.3974 70.3439 400 67.3167 54.4936 70.1148
ESN O.Volt 3 55.5113 43.2628 45.1094 5 58.2715 45.4872 46.8127

LAG 4 LAG 5

Model NN RMSE MAE
MAPE

%
NN RMSE MAE

MAPE
%

ELM 15 53.6898 41.4167 43.9006 3 46.4592 37.1474 39.0748
ELM(RP) 3 45.6739 35.9231 42.4408 3 43.6788 33.3077 38.8188
ELM Volt 7 64.8803 49.4487 56.4511 7 49.8634 39.3974 47.2036
ESN J. 450 64.3933 51.3782 47.0148 100 63.9561 51.8141 47.3902

ESN J.(RP) 450 65.9862 52.4808 69.1144 380 66.2419 52.6603 68.9928
ESN J.Volt 380 72.9358 59.3526 64.7092 7 68.9339 55.0513 56.2654
ESN O. 15 55.3579 45.3654 44.0190 25 58.9842 45.2051 44.8766
ESN O.(RP) 380 69.3555 55.5513 72.2436 380 68.0724 54.3590 70.6102
ESN O.Volt 3 50.5135 40.5833 40.8100 3 53.3191 41.0000 48.6203

LAG 6 LAG 7

Model NN RMSE MAE
MAPE

%
NN RMSE MAE

MAPE
%

ELM 20 54.3250 43.9744 43.4307 25 55.3315 43.9744 39.5735
ELM(RP) 3 47.3653 36.9551 39.9839 3 44.0574 35.1923 37.5251
ELM Volt 20 64.5582 46.3654 49.4889 10 75.8567 63.5641 63.1259
ESN J. 150 59.9074 49.0641 45.4045 70 58.9236 47.3141 40.8857

ESN J.(RP) 380 66.0817 52.5705 68.6722 380 65.4964 52.9615 68.4640
ESN J.Volt 3 60.9871 45.6859 47.4705 3 62.1758 47.5641 45.0664
ESN O. 20 54.1340 43.2756 43.7886 35 51.7540 42.4103 39.8727
ESN O.(RP) 420 68.5719 54.7949 70.9594 320 67.4013 54.7564 70.0246
ESN O.Volt 3 57.0886 43.9487 46.1440 3 53.9567 43.3974 44.4320
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Figure 4. Boxplot graphic regarding the RMSE values for Cubatão-Lag 2.

Considering Cubatão, observe that the smallest dispersion was obtained by ELM (RP)
model, which also presented the smallest average value, corroborating the observation from
Table 3. The inclusion of the Volterra filter increases the dispersion and the average values
for all standard models, representing a significant degree of deterioration in performance.

Figure 5. Boxplot graphic regarding the RMSE values for Campinas-Lag 3.

In Campinas’ case, only the ELM performances will be considered in this specific
analysis since all ESN obtained similar results according to the Wilcoxon test. However,
Figure 5 illustrates all models to avoid any curiosity. The RP inclusion decreases the
dispersion, while the Volterra filter showed an opposite behavior. Despite that, the best
performance in terms of best results regarding 30 simulations was favorable to the use of
Volterra filter instead of the RP (note the bottom value in the boxplot). Since the generation
of the neurons’ weights were random, the algorithms must run at least 30 times, and this
fact directly implied a long tail for the boxplots, as can be seen in the Volterra models.
Moreover, the best result obtained by ELM does not mean the best performance in terms
of dispersion.

155



Atmosphere 2021, 12, 1345

Figure 6. Boxplot graphic regarding the RMSE values for São Paulo-Lag 2.

For São Paulo, the general behavior of the standard models was similar to Campinas.
The standard ELM achieved better general errors, even when considered the median value.
The inclusion of the RP reduced the dispersion, but it decreased the probability of obtaining
better results for the error metrics. On the other hand, the Volterra filter showed a worse
performance in terms of dispersion. However, despite the ELM best results for error metric,
the model presented a bad dispersion, including an outlier.

Table 6 presents a ranking of best error metric results considering all neural models in
ascending order of development. Note that the draws regarding the winners mean that
there was no statistical difference between the models. The last column represents the final
ranking considering the three cities’ results.

Table 6. Ranking of the models’ performance.

Cubatão (lag 2) Campinas(lag 3) São Paulo (lag 2)

Model RMSE MAE RMSE MAE MAPE % RMSE MAE MAPE % Mean Rank

ELM 1 1 1 1 1 1 1 1 1 1st
ELM(RP) 1 1 9 9 8 5 5 3 5.1 8th
ELM Volt 7 7 8 8 9 9 9 7 8.0 9th
ESN J. 3 3 1 1 1 6 6 4 3.12 3rd
ESN J.(RP) 6 6 1 1 1 7 7 8 4.6 6th
ESN J.Volt 8 8 1 1 1 4 3 6 4.0 5th
ESN O. 4 4 1 1 1 3 4 2 2.5 2nd
ESN O.(RP) 5 5 1 1 1 8 8 9 4.8 7th
ESN O.Volt 9 9 1 1 1 2 2 5 3.8 4th

The standard ELM was the best estimator in all cases as regards the error metric
results, but for Cubatão, the results obtained by ELM(RP) were the same. The second
and third positions show ESN O. and ESN J. models, respectively. However, despite the
main contribution of RP is to increase the models’ generalization capability, its use reduced
the dispersion of the results, i.e., the models’ predictability increased, except for Cubatão.
Moreover, the ELM(RP) ranking position was deteriorated by the Campinas results, since
all ESNs presented the same statistical performance. Dismissing these aspects, the model
could be the second best.

Although the inclusion of the Volterra filter did not improve the performances, the idea
of its application was to capture nonlinear patterns among the signals from the hidden
layer. Despite the literature presents good performances for this method in correlated
tasks [33], its use is not recommended in this case. Similarly, the inclusion of the reservoir
designed by Jaeger or Ozturk et al. is not adequate to the problem.
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Regarding the number of neurons in the hidden layers (dynamic reservoir), one can
see miscellaneous neurons, with a high degree of variation. For Cubatão, the pattern
noted was the models used hundreds of neurons in most cases. Interestingly, ESN J. and
ESN O. often addressed up to 70 neurons. Moreover, it can be seen in Campinas’ case,
that the RP models used up to 35 neurons in all cases. Considering São Paulo, the ELM
versions tended to use less than 25 neurons, similar to ESN J. Volt, ESN O. and ESN O. Volt.
The others models addressed hundreds of neurons. This is a strong indication that a sweep
in the neuron amount is needed because a clear pattern regarding this parameter was not
found. Even considering the results of the models that presented a p-value large than 0.05,
the number of neurons was variable.

In summary, the unorganized machines are particular cases of classic neural models,
which the hidden weights are not adjusted. On one hand, the user may lose part of the
approximation capability due to this characteristic; on the other hand, there are gains in
terms of training effort and stability for the output values during the training, avoiding
discrepancies. An important aspect is that these methodologies can be outperformed,
depending on the problem. Regarding the use of RP or Volterra filter, the literature indicates
that these strategies may increase the mapping capability of the neural models. However,
this work showed that in specific cases these approaches did not present efficiency.

Figures 7–9 present the best evolution of the output response in comparison to the
actual values.

Figure 7. The number of hospital admissions by day of the test set for ELM lag 2-Cubatão (observed
versus estimated values).

Figure 7 shows that the prediction task seems to be more difficult when the output
has a small range and many “zero” observations. In this case, as the overestimation was
small, given that the observed values are zero, it did not interfere in hospital management.
Otherwise, in Figure 8, since there were no “zero” observations, the ELM estimations could
be considered a suitable performance, except in abrupt cases.

Finally, in Figure 9, ELM reached the smallest RMSE, but comparing with the observed
data, it was more difficult to predict the abrupt decrease of hospital admissions occurred
around day 70. On the other hand, the ELM(RP) could follow this tendency, but it over
and underestimated the number of hospital admissions in many cases. These behaviors
are directly related to the number of neurons used by each model since a reduction in this
number limited the model approximation capability.

Regarding the best error metric to be used, RMSE seems to be a good strategy, since
the error metric was reduced during the neural models training (adjustment) [17,18,61].
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Figure 8. The number of hospital admissions by day of the test set for ELM lag 3-Campinas (observed
versus estimated values).

Figure 9. The number of hospital admissions by day of the test set for ELM lag 2-São Paulo (observed
versus estimated values).

Table 7 presents a summary of some notable studies showing the association between
air pollutants concentration, morbidity (Hospital Admissions or Hospital Emergency) and
mortality. This brief description relates the authors, geographic area, considered inputs and
predicted variables, the applied methods, metrics, time base, and the best MAPE and RMSE
observed for each study. Although these studies present suitable estimations and relevant
contributions, they proposed different models, and applied to diverse worldwide places,
using specific inputs to predict health effects. For this reason, a comparative analysis of
these studies’ performances is unfair, as Katri and Tamil [62] previously observed. However,
some important aspects can be highlighted.

Two studies [62,63] did not use MAPE or RMSE as error metrics. Khatri and Tamil [62]
aimed to compare the performance for peak and non-peak class prediction. The authors
used percentage difference in this study and applied MLP, without any consideration about
other methods’ performance. Shakerkhatibi et al. [64] used other metrics (Delong Method)
to compare the predictions using MLP and Conditional Logistic Regression.
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Considering the variety of applied methods (Table 7), and emphasizing the use of
MLP, the performance comparison between ANN and regression models has proved the
ANN superior performance. Inspired by these all aspects, the paper’s authors believe that
this present work, which explores the ELM and ESN models with variations from the RP
and the Volterra filter to estimate hospital admissions due to respiratory diseases caused by
air pollutants concentration, is a relevant contribution. However, given the harmful effects
of PM on human health, and comparing the considered input variables used in the other
studies, this work has some limitations, such as the use of only one air pollutant (PM10)
and the lack of comparison with a statistical regression modeling.

5. Conclusions

This work predicted the hospital admissions due to respiratory diseases caused by the
particulate matter PM10 concentrations using the extreme learning machines (ELM) and
the echo state networks (ESN) in the standard forms and applying the variations from the
regularization parameter (RP) and the Volterra filter. The estimates considered daily PM10
concentration, relative humidity, ambient temperature as inputs and predicted the daily
hospital admissions for respiratory diseases.

Numerical results indicated the superior performance of the standard models, pointing
to ELM as the best predictor for most scenarios. However, regarding Campinas city and
the RMSE error metric, a statistical test demonstrated that ESN models were statistically
similar when compared to the best one. Besides, a graphic analysis showed that the models
with the inclusion of RP strategy presented a reduced dispersion, considering the abrupt
variations in hospital admissions, while the Volterra filter showed an opposite behavior,
indicating that its application was not suitable for this specific problem. Finally, completing
the critical analysis, a ranking of performances classified the models regarding the error
metrics for each city. This ranking rewarded the models with statistical similarity rather
than models with good dispersion, highlighting the standard models in the first positions.

The application of Unorganized Machines to three different cities was essential to
evaluate their good performance in predicting air pollution impacts on human health.
An additional graphic analysis of the output response in comparison to the actual values,
for the best models, evidenced the good performance of the neural networks to estimate the
hospital admissions. This contribution may help governmental bodies and policymakers
on the management of hospital planning, mainly during air pollution unfavorable climate
periods. Moreover, the good performance of the models confirms the link between all
input variables and the output values, verifying that the particulate matter, temperature
and relative humidity are fundamental to obtain a good estimation.

A limitation of this study is the lack of large data sets that could bring more uniform
performances between the studied cities. As a consequence of the lack of monitoring data,
other pollutants variations such as PM2.5 cannot be studied.

Considering the continental dimension of Brazil and the characteristics of the different
region’s climates, it would be paramount to study all regions (states), a hard task due to
the lack of monitoring all over the country. Further works shall consider hybrid modeling
or ensembles, the use of deseasonalization techniques, and the appliance of other artificial
neural networks. Since the ELM is admittedly susceptible to the neurons number changes
in the hidden layer and the ESN model is considered robust in this regard, a comparison
study should be conducted pointing to the training time required between these models.
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Abstract: Household air pollution is a major cause of morbidity and mortality worldwide, largely due
to particles ≤ 2.5 μm (PM2.5). The toxicity of PM2.5, however, depends on its physical properties and
chemical composition. In this cross-sectional study, we compared the chemical composition of PM2.5

in brick workers’ homes (n = 16) based on use of wood cooking fire or liquefied petroleum gas (LPG)
cookstoves. We collected samples using RTI International particulate matter (PM) exposure monitors
(MicroPEMs). We analyzed filters for 33 elements using energy-dispersive X-ray fluorescence and, for
black (BC) and brown carbon (BrC), integrating sphere optical transmittance. Wood fire homes had
significantly higher concentrations of BC (349 μg/m3) than LPG homes (6.27 μg/m3, p < 0.0001) or
outdoor air (5.36 μg/m3, p = 0.002). Indoor chlorine in wood fire homes averaged 5.86 μg/m3, which
was approximately 34 times the average level in LPG homes (0.17 μg/m3, p = 0.0006). Similarly,
potassium in wood fire homes (4.17 μg/m3) was approximately four times the level in LPG homes
(0.98 μg/m3, p = 0.001). In all locations, we found aluminum, calcium, copper, iron, silicon, and
titanium in concentrations exceeding those shown to cause respiratory effects in other studies. Our
findings suggest the need for multi-faceted interventions to improve air quality for brick workers
in Nepal.

Keywords: household air pollution; fine particulate matter; international environmental health;
cookstove; respiratory disease; brick worker

1. Introduction

Household air pollution from the indoor burning of solid fuels, such as wood, crop
residues, dung, or coal, is associated with 3.8 million deaths annually worldwide [1,2].
Exposure to household air pollution is associated with low birth weight, asthma, chronic
obstructive pulmonary disease (COPD), respiratory infections, impaired immune function,
coronary heart disease (CHD), stroke, cataracts, and cancers, including lung cancer [3–6].
Among household air pollutants generated from solid fuels, particulate matter (PM) less
than or equal to 2.5 microns (μm) in aerodynamic diameter (PM2.5), also called fine par-
ticulate matter, may be the single largest contributor to this excess disease burden [7,8].
However, the toxicity of PM2.5 appears to be partially dependent on its chemical composi-
tion, which varies widely based on local emission sources [9–16].

In the Kathmandu Valley, Nepal, there are over 30,000 seasonal brick workers [17].
Most brick workers in Nepal live on-site at the brick kiln [18]. The most common type of
housing for these workers is brick huts with tin roofs, often with poor ventilation to the
outdoors [19]. Within this population of workers, the two primary methods of cooking
are with indoor open wood fires or with liquefied petroleum gas (LPG) cookstoves [18,19].
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Previous studies by our group found that Nepali brick workers, in addition to having
hazardous work-related respiratory exposures [20], experience significant PM2.5 exposures
during non-working hours [18,19]. Indoor PM2.5 concentrations in brick workers’ homes
with wood fire and LPG cookstoves were 541.14 and 79.32 μg/m3, respectively, and
these elevated levels coincided with meal and sleep times [19]. Brick workers suffer a
disproportionate burden of respiratory symptoms compared to other workers in the same
community [21], and we propose that these symptoms may be partially explained by
elevated PM2.5 levels in brick workers’ homes, particularly among those cooking indoors
with open wood fires.

PM2.5 generated during wood combustion is composed primarily of elemental (EC)
and organic carbon (OC), nitrate and sulfate species, metals, and other elements [22].
However, wood smoke composition depends on the species of wood being burned and the
burn temperature [22–24]. Low burn temperatures (300–500 ◦C), such as during the start-up
phase of an open wood fire, generally produce larger particles composed of numerous
OC species and low levels of trace elements and metals, while higher burn temperatures
(>800 ◦C), such as during the burn phase of an open wood fire, produce smaller particles
composed of higher EC/OC ratios, and higher levels of trace elements and metals [8,23].

The biological mechanisms behind many of the diseases associated with wood smoke
inhalation are not well understood, but studies suggest some metals, metalloids, and
nonmetal elements may play key roles in air pollution-related diseases [9]. For example,
studies of PM2.5 constituents in ambient air pollution reported that the elements aluminum
(Al), calcium (Ca), chlorine (Cl), iron (Fe), nickel (Ni), titanium (Ti), vanadium (V), and
zinc (Zn), as well as black carbon (BC), are associated with increased hospitalizations and
mortality, particularly among people ≥65 years of age [10,11]. The metals copper (Cu),
Fe, potassium (K), and Zn, and the metalloid silicon (Si), are associated with respiratory
hospital admissions in children, with the most serious effects seen in those ≤5 years of
age [12]. The metals Al, Ni, Zn, V, and Ti, and the metalloid Si, are associated with low
birth weight [13,14]. Several of these elements are present in wood smoke, in varying
concentrations, depending on the species of wood and the burn temperature [22,24–26].
BC is associated with increased morbidity and mortality, primarily from heart and lung
diseases [15]. Brown carbon (BrC), another constituent of PM2.5 found in areas where the
use of solid biomass fuels is high [27], may also influence human health because it can
attach to toxic chemicals, such as benzopyrene, and heavy metals [28].

Understanding the chemical composition of PM2.5 among specific populations may
help elucidate relationships between exposure and disease. Our previous study measured
the chemical composition of PM2.5 in brick workers’ homes during daytime hours when
most home occupants were working, and thus did not capture pollutants generated during
non-working hour activities such as cooking [18]. The purpose of this study, therefore,
was to measure the chemical composition of PM2.5 over a full day in order to characterize
non-working hour exposures.

2. Materials and Methods

2.1. Study Design

We collected PM2.5 samples using both filter-based and real-time nephelometer meth-
ods. Our previous study reported the PM2.5 total mass and nephelometer trend analy-
ses [19]. For this study, we analyzed the 25 mm 3.0 μm PTFE filters (Zefon International,
Ocala, FL, USA) for 35 chemical constituents. The methods for home selection, measures
of housing characteristics, and air filter handling and sampling strategy, described briefly
here, are described in full in our previously published paper [19]. We used a cross-sectional
study design to measure PM2.5 constituents in brick workers’ homes (n = 17) from a single
brick kiln in Bhaktapur, Nepal. We recruited homes by convenience sampling, and we
classified them as either wood cooking fire or LPG cookstove homes. The typical con-
struction of the homes sampled in this study was detailed previously [19]. We collected
samples from 30 April to 3 May 2019 for approximately 21 h (median: 21.21; interquartile
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range: 2.21) in each home. We administered an extant questionnaire [18], by means of an
interpreter, to measure housing factors, including number of people in the home, number
of children in the home, primary fuel used for cooking, presence of smokers in the home,
and the number of smokers in the home. We also measured the living area of the home and
calculated the occupant density as the number of occupants divided by the home area in
m2. Prior to data collection, Brigham Young University’s (BYU) Institutional Review Board
(IRB) determined that this study did not meet the definition of human subject research, per
45 CFR 46 [29], based on the fact the unit of study was the home rather than the individual.

2.2. Indoor and Outdoor PM2.5 Measurements

We collected PM2.5 samples using MicroPEM V.3.2A personal exposure monitors (RTI
International, Research Triangle Park, NC, USA), which we placed indoors, on a tripod,
approximately 1.2 m from the floor. Simultaneous daily outdoor samples were collected
on-site at the brick kiln in a centralized location. Detailed methods describing MicroPEM
preparation, placement, and filter handling were described previously [19].

2.3. Elemental Analysis

RTI International performed the analysis of the 25 mm filters for 33 elements following
the IO3.3 compendium method [30], which was modified for use with the Thermo (Thermo
Fisher Scientific, Waltham, MA, USA) ARL energy-dispersive X-ray fluorescence instrument
equipped with a silicon drift detector. This instrument configuration was used because it
could produce enough spectral counts to fully quantify each element, while collimating the
beam. The instrument was calibrated with thin-film standards (Micromatter Technologies
Inc., Surrey, BC, Canada) that approximated PM deposition on a filter and the unknown
samples were analyzed under identical excitation conditions. The samples were analyzed
under vacuum with five different energy conditions to achieve maximum sensitivity, while
avoiding overlapping spectra. A camera system within the instrument chamber was used
to ensure the beam was focused on the exposed area of the filter to accurately quantify the
elements of concern. A multi-element thin film standard was analyzed with each tray of
samples to ensure there was acceptable instrument performance across the mass range and
to assess instrument drift.

2.4. Carbon Analysis

Following gravimetric analysis, all sample filters were shipped to RTI International
for optical analysis using RTI International’s integrating sphere optical transmittance
technique [31]. The optical transmittance through the filter and the deposited PM sample
were measured at seven wavelengths, ranging from near-infrared (940 nm) to blue (430 nm).
All the sample filter transmittance data were adjusted using the mean transmittance of
10 blank filters from the same manufacturer’s lot. An empirically-derived algorithm used
the measured wavelength-dependent transmittance values to quantify the BC and lightly
absorbing BrC contributions to the total PM collected on the sample filter. This technique,
and similar optical methods, have been used in numerous PM exposure studies as a low-
cost and non-destructive means of obtaining basic PM compositional data from sample
filters [32–36].

2.5. Statistical Analyses

All statistical analyses were conducted using SAS version 9.4 (SAS Institute, Inc., Cary,
NC, USA). Although we collected 20 total PM2.5 samples, the filter of one sample tore and
could not be analyzed for PM2.5 chemical components. Thus, we excluded that sample
from all statistical analyses. We used α = 0.05 as the significance level for all analyses.

We calculated the frequencies and percentages for categorical characteristics of homes
at the brick kiln and arithmetic means, standard deviations, minimums, first quartiles,
medians, third quartiles, and maximums for the continuous characteristics of the homes at
the brick kiln. For PM2.5 chemical components, we calculated the frequency and percentage
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of samples that had concentrations below the lower detection limits (LDL), at or between
the LDLs and upper detection limits (UDL), and above the UDLs. We also calculated the
geometric means (GM), 95% confidence intervals (CI), minimums, and maximums for
concentrations of PM2.5 chemical components. We used GMs because the distributions
of the concentrations of almost all PM2.5 chemical components were right-skewed. For
individual PM2.5 chemical components that had all concentrations at or between the LDLs
and UDLs, we used separate intercept-only linear regression models, with the natural
logarithm of concentrations of individual PM2.5 chemical components as the dependent
variables, and then exponentiated intercept coefficients to calculate GMs and 95% CIs.
For individual PM2.5 chemical components with some concentrations below the LDLs or
above the UDLs, we used separate intercept-only Tobit regression models, with the natural
logarithm of concentrations of individual PM2.5 chemical components as the dependent
variables, and then exponentiated intercept coefficients to calculate GMs and 95% CIs.

We used decision rules that were similar to those of Beard at al. [37], who based their
decision rules on information from Lubin et al. [38], to determine the appropriate types
of regression models to use for the analyses of individual PM2.5 chemical components
with varying proportions of concentrations at or between the LDLs and UDLs. For the
individual PM2.5 chemical components that had all concentrations at or between the
LDLs and UDLs, we estimated the p-values and unadjusted associations between the
individual characteristics of homes at the brick kiln and the concentrations of individual
PM2.5 chemical components, using separate simple linear regression models, with the
natural logarithm of the concentrations of individual PM2.5 chemical components as the
dependent variables. For the individual PM2.5 chemical components that had >30–99%
of concentrations at or between the LDLs and UDLs, we estimated the p-values and
unadjusted associations between the individual characteristics of homes at the brick kiln
and the concentrations of individual PM2.5 chemical components, using separate simple
Tobit regression models, with the natural logarithm of the concentrations of individual
PM2.5 chemical components as the dependent variables. For individual PM2.5 chemical
components that had >0–30% of concentrations at or between the LDLs and UDLs, we
estimated the p-values and unadjusted associations between individual characteristics of
homes at the brick kiln and the concentrations of individual PM2.5 chemical components,
using separate simple exact unconditional logistic regression models, with dichotomous
indicator variables (i.e., one if the concentration was ≥LDL and zero if the concentration
was <LDL) as dependent variables. For each of the three types of regression models, we
exponentiated slope coefficients to calculate GMs, geometric mean ratios (GMR), or exact
odds ratios (OR) and 95% CIs.

We considered several versions (e.g., linear; linear and quadratic; linear, quadratic, and
cubic; natural logarithm; and categorical) of continuous characteristics of homes at the brick
kilns and used the versions that had the lowest values of the Akaike Information Criterion
(AIC) [39,40]. Where appropriate, we conducted pairwise comparisons of the GMs of
concentrations of PM2.5 chemical components for each category of home area and fuel
type and location and used the Tukey (linear regression models) or Tukey-Kramer (Tobit
regression models) method to adjust the p-values for multiple comparisons. We estimated
multivariable linear or Tobit regression models when more than one characteristic of
homes at the brick kilns were statistically significantly associated with concentrations of a
particular PM2.5 chemical component. For sensitivity analyses, we repeated analyses using
home volume instead of home area.

3. Results

3.1. Characteristics of Homes of Brick Workers

For the 16 homes that we collected PM2.5 samples from (i.e., excluding the one home
for which the filter tore), the home area was 5.41–9.50 m2 for 38%, >9.50–10.67 m2 for 31%,
and >10.67–31.40 m2 for 31% (Table 1). The mean number of people in the home was 3.31
and the mean occupant density was 33.54 people per 100 m2. Sixty-three percent of homes
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had 0–1 children and 38% had 2–3 children. Fifty percent of homes had smokers and the
median number of smokers in the home was 0.5. Sixty-nine percent of homes used LPG for
fuel and 31% used wood.

Table 1. Characteristics of homes a at a brick kiln in Bhaktapur, Nepal (May 2019).

Characteristic Homes, n (%) Mean SD Min Q1 Median Q3 Max

Total 16 (100)
Home area b, m2

5.41–9.50 6 (38)
>9.50–10.67 5 (31)

>10.67–31.40 5 (31)
Number of people in home 3.31 1.54 1.00 2.00 3.00 4.00 7.00
Occupant density, number

of people/100 m2 33.54 17.00 9.55 22.47 30.11 38.55 73.96

Number of children in home
0–1 10 (63)
2–3 6 (38)

Smokers in home
No 8 (50)
Yes 8 (50)

Number of smokers in home 0.75 1.06 0.00 0.00 0.50 1.00 4.00
Fuel type

LPG 11 (69)
Wood 5 (31)

Abbreviations: LPG, liquefied petroleum gas; Max, maximum; Min, minimum; Q1, first quartile; Q3, third quartile;
and SD, standard deviation. a The filter of one sample tore and could not be analyzed, and, thus, was excluded
from analyses. b Categories based on tertiles.

3.2. Summary Statistics for PM2.5 Chemical Component Concentrations

Six PM2.5 chemical components had all concentrations below the LDLs (Table 2).
For the other 29 PM2.5 chemical components, GMs of the concentrations ranged from
0.000042 μg/m3 for PM2.5 cerium to 16.09 μg/m3 for PM2.5 BC, with a median GM of
0.016 μg/m3 for PM2.5 barium (Ba).

Table 2. Summary statistics for the mean of samples inside or outside homes a at a brick kiln in Bhaktapur, Nepal (May 2019).

Between LDL and UDL

PM2.5 Chemical
Component,

μg/m3

LDL
Mass
(μg)

LDL
Concentration

Range

Missing,
n

Below
LDL, n (%)

n (%) GM b 95% CI b Min c Max c Above
UDL

Al 0.012 0.018, 0.052 2 (11) 17 (89) 0.30 0.14, 0.66 0.031 2.19 0 (0)
Sb 0.24 0.34, 1.01 19 (100) 0 (0) NA NA NA NA 0 (0)
As 0.0024 0.0034, 0.010 17 (89) 2 (11) 0.0031 0.0025, 0.0039 0.0039 0.0039 0 (0)
Ba 0.0047 0.0068, 0.020 7 (37) 12 (63) 0.016 0.0083, 0.032 0.010 0.10 0 (0)
BC 0.50 0.73, 2.15 1 (5) 14 (74) 16.09 5.82, 44.52 1.84 107.36 4 (21) d

Br 0.0021 0.0030, 0.0089 0 (0) 19 (100) 0.022 e 0.016, 0.030 e 0.0078 0.061 0 (0)
BrC 0.50 0.73, 2.15 4 0 (0) 15 (100) 10.56 e 7.89, 14.13 e 2.34 17.88 0 (0)
Cd 0.082 0.12, 0.35 19 (100) 0 (0) NA NA NA NA 0 (0)
Cs 0.0024 0.0034, 0.010 6 (32) 13 (68) 0.0077 0.0050, 0.012 0.0048 0.024 0 (0)
Ca 0.0022 0.0033, 0.0096 0 (0) 19 (100) 0.18 e 0.075, 0.42 e 0.0060 1.33 0 (0)
Ce 0.0024 0.0034, 0.010 18 (95) 1 (5) 0.000042 0.0000000052,

0.35 0.015 0.015 0 (0)
Cl 0.0019 0.0028, 0.0082 0 (0) 19 (100) 0.38 e 0.14, 1.07 e 0.023 17.13 0 (0)
Cr 0.0013 0.0019, 0.0055 10 (53) 9 (47) 0.0020 0.0013, 0.0032 0.0019 0.0086 0 (0)
Co 0.00096 0.0014, 0.0041 15 (79) 4 (21) 0.00093 0.00047, 0.0019 0.0015 0.0032 0 (0)
Cu 0.0016 0.0023, 0.0067 6 (32) 13 (68) 0.0043 0.0025, 0.0076 0.0025 0.048 0 (0)
In 0.12 0.18, 0.52 19 (100) 0 (0) NA NA NA NA 0 (0)
Fe 0.0016 0.0024, 0.0071 0 (0) 19 (100) 0.26 e 0.12, 0.57 e 0.022 1.69 0 (0)
Pb 0.0049 0.0071, 0.021 6 (32) 13 (68) 0.014 0.0088, 0.021 0.0099 0.11 0 (0)
Mg 0.0050 0.0072, 0.021 5 (26) 14 (74) 0.032 0.016, 0.065 0.011 0.20 0 (0)
Mn 0.0018 0.0025, 0.0075 6 (32) 13 (68) 0.0083 0.0040, 0.017 0.0034 0.054 0 (0)
Mo 0.012 0.017, 0.051 19 (100) 0 (0) NA NA NA NA 0 (0)
Ni 0.0010 0.0015, 0.0043 10 (53) 9 (47) 0.0017 0.0013, 0.0023 0.0020 0.0038 0 (0)
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Table 2. Cont.

Between LDL and UDL

PM2.5 Chemical
Component,

μg/m3

LDL
Mass
(μg)

LDL
Concentration

Range

Missing,
n

Below
LDL, n (%)

n (%) GM b 95% CI b Min c Max c Above
UDL

P 0.0024 0.0036, 0.011 5 (26) 14 (74) 0.011 0.0061, 0.021 0.0045 0.064 0 (0)
K 0.0019 0.0028, 0.0083 0 (0) 19 (100) 1.44 e 0.94, 2.18 e 0.38 5.86 0 (0)
Rb 0.0023 0.0034, 0.010 9 (47) 10 (53) 0.0043 0.0022, 0.0081 0.0043 0.028 0 (0)
Se 0.0022 0.0033, 0.0097 12 (63) 7 (37) 0.0033 0.0026, 0.0041 0.0039 0.0070 0 (0)
Si 0.0064 0.0093, 0.027 0 (0) 19 (100) 1.08 e 0.58, 2.00 e 0.14 5.15 0 (0)

Ag 0.055 0.079, 0.24 19 (100) 0 (0) NA NA NA NA 0 (0)
Na 0.010 0.015, 0.045 2 (11) 17 (89) 0.13 0.088, 0.19 0.034 0.37 0 (0)
Sr 0.0030 0.0043, 0.013 17 (89) 2 (11) 0.0015 0.00025, 0.0088 0.0075 0.0092 0 (0)
S 0.0026 0.0038, 0.011 0 (0) 19 (100) 2.77 e 2.20, 3.48 e 0.99 4.79 0 (0)

Sn 0.18 0.26, 0.76 19 (100) 0 (0) NA NA NA NA 0 (0)
Ti 0.00085 0.0012, 0.0036 2 (11) 17 (89) 0.021 0.0088, 0.050 0.0018 0.19 0 (0)
V 0.0011 0.0015, 0.0046 9 (47) 10 (53) 0.0021 0.0012, 0.0039 0.0020 0.013 0 (0)

Zn 0.0015 0.0022, 0.0066 0 (0) 19 (100) 0.059 e 0.039, 0.089 e 0.019 0.39 0 (0)

Abbreviations: Al, aluminum; Sb, antimony; As, arsenic; Ba, barium; BC, black carbon; Br, bromine; BrC, brown carbon; Cd, cadmium;
Cs, cesium; Ca, calcium; Ce, cerium; Cl, chlorine; Cr, chromium; Co, cobalt; CI, confidence interval; Cu, copper; GM, geometric mean; In,
indium; Fe, iron; Pb, lead; LDL, lower detection limit; Mg, magnesium; Mn, manganese; Max, maximum; Min, minimum; Mo, molybdenum;
Ni, nickel; NA, not applicable; PM2.5, particulate matter with an aerodynamic diameter less than 2.5 μm; P, phosphorus; K, potassium;
Rb, rubidium; Se, selenium; Si, silicon; Ag, silver; Na, sodium; Sr, strontium; S, sulfur; Sn, tin; Ti, titanium; UDL, upper detection limit; V,
vanadium; and Zn, zinc. a The filter of one inside sample tore and could not be analyzed, and so that home was excluded from analyses. Of
the remaining 19 samples, 16 were from inside and three were from outside the homes. b Estimated via simple (i.e., unadjusted), intercept
only Tobit regression models of the natural logarithm transformed values. c Calculated from samples that had values at or between the
LDL and UDL. d The UDL mass was 80 μg and the UDL concentration range was 116.08 to 344.21 μg/m3. e Estimated via simple (i.e.,
unadjusted), intercept only linear regression models of the natural logarithm transformed values.

3.3. Associations between Characteristics of Homes of Brick Workers and PM2.5 Chemical
Component Concentrations

Home area was significantly associated with concentrations of PM2.5 Cl (p = 0.03)
and PM2.5 Cu (p = 0.005; Supplementary Materials, Table S1). For PM2.5 Cl, pairwise
comparisons indicated significant differences between 5.41–9.50 m2 (GM = 2.95 μg/m3)
and >10.67–31.40 m2 (GM = 0.14 μg/m3; p = 0.04), but not between 5.41–9.50 m2 and
>9.50–10.67 m2 (GM = 0.25 μg/m3; p = 0.10) or >9.50–10.67 m2 and >10.67–31.40 m2

(p = 0.85). For PM2.5 Cu, pairwise comparisons indicated significant differences between
5.41–9.50 m2 (GM = 0.013 μg/m3) and >9.50–10.67 m2 (GM = 0.0024 μg/m3; p = 0.01), and
between 5.41–9.50 m2 and >10.67–31.40 m2 (GM = 0.0035 μg/m3; p = 0.03), but not between
>9.50–10.67 m2 and >10.67–31.40 m2 (p = 0.82). The number of people in the home, occupant
density, and the number of children in the home were not significantly associated with con-
centrations of any PM2.5 chemical component (Supplementary Materials, Tables S1 and S2).
The presence of smokers in the home was significantly associated with concentrations of
22 of 29 (76%) PM2.5 chemical components, and the GMs of concentrations were higher
in homes with smokers than in homes without smokers for all 22 significant associations
(Table 3). Similarly, the number of smokers in the home was significantly associated with
concentrations of 20 (69%) PM2.5 chemical components and the GMRs were greater than
one for all 20 significant associations (i.e., the GMs of the concentrations of those 20 PM2.5
chemical components increased as the number of smokers in the home increased). Fuel type
and location was significantly associated with concentrations of 22 (76%) PM2.5 chemical
components (Table 4). Pairwise comparisons indicated significant differences between
LPG, indoor, and wood, indoor, for 21 (95%) of the significant associations, and the GMs of
concentrations were higher for wood, indoor, than for LPG, indoor, for all 21 significant
differences. Pairwise comparisons indicated significant differences between LPG, indoor,
and outdoor for one (5%) of the significant associations (i.e., PM2.5 BrC) and the GM of
concentrations was higher for LPG, indoor, than for outdoor. Pairwise comparisons in-
dicated a significant difference between wood, indoor, and outdoor for six (27%) of the
significant associations, and the GMs of concentrations were higher for wood, indoor, than
for outdoor for all six significant differences.
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Table 3. Associations between the mean of samples inside homes a and smokers in the home and the number of smokers in
the home at a brick kiln in Bhaktapur, Nepal (May 2019).

Smokers in Home Number of Smokers in Home

No Yes

PM2.5 Chemical
Component, μg/m3 GM b 95% CI b GM b 95% CI b p-Value b GMR b,c 95% CI b,c p-Value b

Al 0.10 0.043, 0.23 0.88 0.38, 2.04 0.0003 2.50 1.33, 4.71 0.005
As 1.00 Reference 2.66 d,e 0.30, ∞ d,e NA 4.21 d 0.80, 235.33 d NA
Ba 0.0064 0.0026, 0.016 0.037 0.018, 0.076 0.003 2.19 1.31, 3.67 0.003
BC 4.81 1.65, 13.98 80.22 24.43, 263.43 0.0006 5.67 1.55, 20.75 0.009
Br 0.015 f 0.010, 0.021 f 0.038 f 0.027, 0.054 f 0.001 f 1.41 f 1.05, 1.90 f 0.03 f

BrC 11.32 f 8.99, 14.25 f 14.92 f 10.78, 20.66 f 0.15 f 1.25 f 0.93, 1.66 f 0.12 f

Cs 0.0045 0.0025, 0.0080 0.012 0.0068, 0.019 0.02 1.59 1.12, 2.26 0.009
Ca 0.060 f 0.021, 0.17 f 0.53 f 0.19, 1.49 f 0.006 f 2.59 f 1.22, 5.50 f 0.02 f

Ce 1.00 Reference 1.00 d,e 0.053, ∞ d,e NA 1.21 d 0.034, 6.51 d NA
Cl 0.083 f 0.035, 0.20 f 3.26 f 1.38, 7.75 f <0.0001 f 3.86 f 1.58, 9.42 f 0.006 f

Cr 0.00097 0.00045, 0.0021 0.0032 0.0022, 0.0048 0.005 1.53 1.06, 2.21 0.02
Co 1.00 Reference 2.66 d,e 0.30, ∞ d,e NA 4.21 d 0.80, 235.33 d NA
Cu 0.0022 0.0013, 0.0038 0.012 0.0076, 0.019 <0.0001 1.66 1.01, 2.73 0.05
Fe 0.086 f 0.034, 0.21 f 0.72 f 0.29, 1.79 f 0.003 f 2.49 f 1.26, 4.94 f 0.01 f

Pb 0.0069 0.0035, 0.013 0.026 0.015, 0.045 0.002 1.49 0.93, 2.38 0.10
Mg 0.014 0.0059, 0.034 0.067 0.029, 0.15 0.01 1.90 1.03, 3.50 0.04
Mn 0.0031 0.0013, 0.0074 0.021 0.0097, 0.045 0.001 2.35 1.34, 4.13 0.003
Ni 0.0011 0.00069, 0.0018 0.0023 0.0017, 0.0031 0.01 1.28 1.01, 1.61 0.04
P 0.0042 0.0022, 0.0081 0.029 0.016, 0.052 <0.0001 2.21 1.36, 3.58 0.001
K 0.91 f 0.52, 1.60 f 2.62 f 1.49, 4.61 f 0.01 f 1.62 f 1.08, 2.42 f 0.02 f

Rb 0.0017 0.00060, 0.0051 0.0095 0.0045, 0.020 0.008 2.02 1.14, 3.57 0.02
Se 0.0023 0.0014, 0.0040 0.0037 0.0027, 0.0051 0.11 1.07 0.83, 1.39 0.59
Si 0.48 f 0.23, 0.96 f 2.32 f 1.15, 4.71 f 0.004 f 1.98 f 1.17, 3.35 f 0.01 f

Na 0.14 0.078, 0.27 0.096 0.051, 0.18 0.36 1.01 0.66, 1.55 0.96
Sr 1.00 Reference 1.00 d,e 0.053, ∞ d,e NA 2.28 d,e 0.93, ∞ d,e NA
S 2.21 f 1.69, 2.88 f 3.64 f 2.79, 4.76 f 0.01 f 1.25 f 1.04, 1.52 f 0.02 f

Ti 0.0063 0.0024, 0.016 0.066 0.026, 0.17 0.0005 2.76 1.38, 5.52 0.004
V 0.00077 0.00029, 0.0020 0.0048 0.0028, 0.0083 0.001 2.06 1.32, 3.20 0.002

Zn 0.035 f 0.021, 0.061 f 0.10 f 0.060, 0.18 f 0.01 f 1.46 f 0.95, 2.23 f 0.08 f

Abbreviations: Al, aluminum; As, arsenic; Ba, barium; BC, black carbon; Br, bromine; BrC, brown carbon; Cs, cesium; Ca, calcium;
Ce, cerium; Cl, chlorine; Cr, chromium; Co, cobalt; CI, confidence interval; Cu, copper; GM, geometric mean; GMR, geometric mean ratio;
Fe, iron; Pb, lead; Mg, magnesium; Mn, manganese; Ni, nickel; NA, not applicable; PM2.5, particulate matter with an aerodynamic diameter
less than 2.5 μm; P, phosphorus; K, potassium; Rb, rubidium; Se, selenium; Si, silicon; Na, sodium; Sr, strontium; S, sulfur; Ti, titanium;
V, vanadium; and Zn, zinc. a The filter of one sample tore and could not be analyzed, so that home was excluded from analyses. b Estimated
via simple (i.e., unadjusted) Tobit regression models of the natural logarithm transformed values. c Exponentiated regression coefficient and
95% CI (i.e., GM PM2.5 chemical component concentration ratio for a specified change in the independent variable or exp(β) − 1 = percent
change in GM PM2.5 chemical component concentration for a specified change in the independent variable). d Exact odds ratio and 95% CI;
estimated via simple (i.e., unadjusted) exact unconditional logistic regression models. e Median unbiased estimate. f Estimated via simple
(i.e., unadjusted) linear regression models of the natural logarithm transformed values.
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Table 4. Associations between the mean of samples inside or outside homes a and fuel type and location at a brick kiln in
Bhaktapur, Nepal (May 2019).

Fuel Type and Location

LPG, Indoor Wood, Indoor Outdoor

LPG,
Indoor vs.

Wood,
Indoor

LPG,
Indoor vs.
Outdoor

Wood,
Indoor vs.
Outdoor

PM2.5
Chemical

Component,

μg/m3

GM b 95% CI b GM b 95% CI b GM b 95% CI b p-Value b p-Value b,c p-Value b,c p-Value b,c

Al 0.14 0.062, 0.33 1.48 0.44, 4.98 0.37 0.074, 1.85 0.007 0.005 0.56 0.37
As 1.00 Reference 6.36 d,e 0.70, ∞d,e f f NA NA NA NA

Ba 0.0088 0.0047, 0.016 0.062 0.028, 0.14 0.031 0.011,
0.089 0.0005 0.0004 0.11 0.56

BC 6.27 2.73, 14.41 349.04 64.46,
1,889.91 5.36 1.02, 28.21 0.0001 <0.0001 0.98 0.002

Br 0.018 g 0.013, 0.025 g 0.043 g 0.026, 0.072 g 0.013 g 0.0069,
0.025 g 0.01 g 0.02 g 0.67 g 0.02 g

BrC 12.03 g 9.09, 15.91 g 17.52 g 6.93, 44.32 g 5.54 g 3.24, 9.47 g 0.03 g 0.68 g 0.04 g 0.09 g

Cs 0.0052 0.0033,
0.0081 0.015 0.0085,

0.028 0.012 0.0055,
0.028 0.009 0.01 0.15 0.91

Ca 0.081 g 0.032, 0.21 g 1.01 g 0.25, 4.11 g 0.17 g 0.028, 1.06 g 0.02 g 0.02 g 0.72 g 0.26 g

Ce 1.00 Reference 2.20 d,e 0.12, ∞ d,e f f NA NA NA NA
Cl 0.17 g 0.072, 0.42 g 5.86 g 1.59, 21.52 g 0.071 g 0.013, 0.38 g 0.0003 g 0.0006 g 0.59 g 0.001 g

Cr 0.0013 0.00071,
0.0023 0.0039 0.0023,

0.0066 0.0034 0.0016,
0.0071 0.01 0.01 0.09 0.95

Co 1.00 Reference 6.36 d,e 0.70, ∞ d,e 12.47 d,e 1.31, ∞ d,e NA NA NA NA

Cu 0.0032 0.0019,
0.0054 0.015 0.0075,

0.030 0.0020 0.00064,
0.0064 0.0006 0.001 0.74 0.009

Fe 0.12 g 0.051, 0.28 g 1.25 g 0.35. 4.44 g 0.33 g 0.064, 1.69 g 0.02 g 0.01 g 0.48 g 0.38 g

Pb 0.0095 0.0061, 0.015 0.036 0.020, 0.064 0.014 0.0061,
0.031 0.002 0.001 0.70 0.15

Mg 0.017 0.0083, 0.036 0.11 0.040, 0.30 0.054 0.014, 0.21 0.01 0.009 0.30 0.68
Mn 0.0042 0.0022,

0.0077 0.040 0.017, 0.090 0.015 0.0048,
0.044 <0.0001 <0.0001 0.12 0.33

Ni 0.0015 0.0011,
0.0021 0.0021 0.0014,

0.0033 0.0028 0.0016,
0.0047 0.11 NA NA NA

P 0.0061 0.0036, 0.010 0.045 0.022, 0.092 0.017 0.0065,
0.045 <0.0001 <0.0001 0.15 0.25

K 0.98 g 0.67, 1.45 g 4.17 g 2.34, 7.43 g 0.98 g 0.46, 2.06 g 0.001 g 0.001 g >0.99 g 0.01 g

Rb 0.0027 0.0016,
0.0046 0.018 0.011, 0.031 0.0048 0.0022,

0.010 <0.0001 <0.0001 0.46 0.01

Se 0.0031 0.0023,
0.0042 0.0032 0.0022,

0.0048 0.0039 0.0025,
0.0062 0.71 NA NA NA

Si 0.60 g 0.30, 1.20 g 3.58 g 1.28, 9.97 g 1.23 g 0.33, 4.62 g 0.03 g 0.02 g 0.58 g 0.39 g

Na 0.13 0.079, 0.21 0.097 0.046, 0.20 0.21 0.083, 0.54 0.44 NA NA NA
Sr 1.00 Reference 2.20 d,e 0.12, ∞ d,e 3.67 d,e 0.19, ∞ d,e NA NA NA NA
S 2.35 g 1.80, 3.06 g 4.29 g 2.90, 6.35 g 2.45 g 1.47, 4.06 g 0.04 g 0.04 g 0.99 g 0.18 g

Ti 0.0088 0.0037, 0.021 0.13 0.036, 0.46 0.028 0.0052,
0.15 0.003 0.002 0.46 0.34

V 0.0013 0.00079,
0.0022 0.0075 0.0043,

0.013 0.0035 0.0017,
0.0075 <0.0001 <0.0001 0.08 0.25

Zn 0.039 g 0.026, 0.060 g 0.15 g 0.084, 0.28 g 0.053 g 0.024, 0.12 g 0.004 g 0.003 g 0.75 g 0.09 g

Abbreviations: Al, aluminum; As, arsenic; Ba, barium; BC, black carbon; Br, bromine; BrC, brown carbon; Cs, cesium; Ca, calcium;
Ce, cerium; Cl, chlorine; Cr, chromium; Co, cobalt; CI, confidence interval; Cu, copper; GM, geometric mean; Fe, iron; Pb, lead; LPG,
liquefied petroleum gas; Mg, magnesium; Mn, manganese; Ni, nickel; NA, not applicable; PM2.5, particulate matter with an aerodynamic
diameter less than 2.5 μm; P, phosphorus; K, potassium; Rb, rubidium; Se, selenium; Si, silicon; Na, sodium; Sr, strontium; S, sulfur;
Ti, titanium; V, vanadium; and Zn, zinc. a The filter of one inside sample tore and could not be analyzed, so that home was excluded
from analyses. Of the remaining 19 samples, 16 were from inside and three were from outside the homes. b Estimated via simple (i.e.,
unadjusted) Tobit regression models of the natural logarithm transformed values. c Used the Tukey-Kramer (for Tobit regression models)
or Tukey (for linear regression models) methods to adjust for multiple comparisons. d Exact odds ratio and 95% CI; estimated via simple
(i.e., unadjusted) exact unconditional logistic regression models. e Median unbiased estimate. f Degenerate; unable to estimate. g Estimated
via simple (i.e., unadjusted) linear regression models of the natural logarithm transformed values.

3.4. Adjusted Associations between Characteristics of Homes of Brick Workers and PM2.5 Chemical
Component Concentrations

Smokers in the home was most consistently significantly associated with PM2.5 Cl
and PM2.5 Cu when some combination of home area, smokers in the home or number
of smokers in the home, and fuel type were included as independent variables in the
multivariable linear regression models (Supplementary Materials, Table S3). Smokers in
the home was significantly associated with concentrations of six (24%) PM2.5 chemical
components, and fuel type was significantly associated with concentrations of nine (36%)
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PM2.5 chemical components when smokers in the home and fuel type were included as
independent variables in the multivariable linear or Tobit regression models (Table 5). The
number of smokers in the home was not significantly associated with concentrations of any
PM2.5 chemical component, but fuel type was significantly associated with concentrations
of 14 (56%) PM2.5 chemical components when the number of smokers in the home and fuel
type were included as independent variables in the multivariable linear or Tobit regression
models (Table 6).

Table 5. Associations between the mean of samples inside homes a and smokers in home and fuel
type, mutually adjusted for each other at a brick kiln in Bhaktapur, Nepal (May 2019).

Smokers in Home Fuel Type

PM2.5 Chemical Component p-Value b p-Value b

Al 0.08 0.09
Ba 0.23 0.03
BC 0.22 0.002
Br 0.04 c 0.30 c

BrC 0.30 c 0.55 c

Cs 0.39 0.12
Ca 0.20 c 0.08 c

Cl 0.002 c 0.06 c

Cr 0.10 0.20
Cu 0.003 0.22
Fe 0.14 c 0.09 c

Pb 0.13 0.10
Mg 0.39 0.09
Mn 0.22 0.008
Ni 0.02 0.62
P 0.02 0.02
K 0.50 c 0.02 c

Rb 0.68 0.002
Se 0.05 0.24
Si 0.16 c 0.09 c

Na 0.50 0.99
S 0.32 c 0.09 c

Ti 0.12 0.04
V 0.07 0.004

Zn 0.37 c 0.03 c

Abbreviations: Al, aluminum; Ba, barium; BC, black carbon; Br, bromine; BrC, brown carbon; Cs, cesium;
Ca, calcium; Cl, chlorine; Cr, chromium; Cu, copper; Fe, iron; Pb, lead; Mg, magnesium; Mn, manganese;
Ni, nickel; PM2.5, particulate matter with an aerodynamic diameter less than 2.5 μm; P, phosphorus; K, potassium;
Rb, rubidium; Se, selenium; Si, silicon; Na, sodium; S, sulfur; Ti, titanium; V, vanadium; and Zn, zinc. a The
filter of one sample tore and could not be analyzed, so that home was excluded from analyses. b Estimated via
multivariable Tobit regression models of the natural logarithm transformed values adjusted for smokers in the
home and fuel type. c Estimated via multivariable linear regression models of the natural logarithm transformed
values adjusted for smokers in the home and fuel type.

Table 6. Associations between the mean of samples inside homes a and the number of smokers in the
home and fuel type, mutually adjusted for each other at a brick kiln in Bhaktapur, Nepal (May 2019).

Number of Smokers in Home Fuel Type

PM2.5 Chemical Component p-Value b p-Value b

Al 0.35 0.04
Ba 0.30 0.02
BC 0.72 0.002
Br 0.48 c 0.11 c

BrC 0.30 c 0.99 c
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Table 6. Cont.

Number of Smokers in Home Fuel Type

PM2.5 Chemical Component p-Value b p-Value b

Cs 0.30 0.14
Ca 0.46 c 0.06 c

Cl 0.32 c 0.02 c

Cr 0.50 0.07
Cu 0.98 0.01
Fe 0.39 c 0.06 c

Pb 0.65 0.004
Mg 0.77 0.04
Mn 0.39 0.005
Ni 0.09 0.82
P 0.27 0.006
K 0.75 c 0.01 c

Rb 0.92 0.0007
Se 0.57 0.82
Si 0.43 c 0.06 c

Na 0.51 0.37
S 0.51 c 0.07 c

Ti 0.39 0.02
V 0.20 0.002

Zn 0.70 c 0.008 c

Abbreviations: Al, aluminum; Ba, barium; BC, black carbon; Br, bromine; BrC, brown carbon; Cs, cesium;
Ca, calcium; Cl, chlorine; Cr, chromium; Cu, copper; Fe, iron; Pb, lead; Mg, magnesium; Mn, manganese;
Ni, nickel; PM2.5, particulate matter with an aerodynamic diameter less than 2.5 μm; P, phosphorus; K, potassium;
Rb, rubidium; Se, selenium; Si, silicon; Na, sodium; S, sulfur; Ti, titanium; V, vanadium; and Zn, zinc. a The
filter of one sample tore and could not be analyzed, so that home was excluded from analyses. b Estimated
via multivariable Tobit regression models of the natural logarithm transformed values adjusted for the number
of smokers in the home and fuel type. c Estimated via multivariable linear regression models of the natural
logarithm transformed values adjusted for the number of smokers in the home and fuel type.

3.5. Sensitivity Analyses

The results were almost identical when we repeated analyses using home volume
instead of home area (not shown), with the one exception being that home volume was
not significantly associated with concentrations of PM2.5 Cl (8.52–16.00 m3: GM = 1.23;
95% CI: 0.26, 5.94 μg/m3; and >16.00–53.44 m3: GM = 0.22; 95% CI: 0.046, 1.06 μg/m3;
p = 0.12). In other words, home volume was significantly associated with concentrations of
PM2.5 Cu (8.52–16.00 m3: GM = 0.0086; 95% CI: 0.0043, 0.017 μg/m3; and >16.00–53.44 m3:
GM = 0.0030; 95% CI: 0.0014, 0.0063 μg/m3; p = 0.04), but not with concentrations of any
other PM2.5 chemical component (not shown).

4. Discussion

This research was conducted as a follow-up to a previous study we conducted in
2018 [18]. In our previous study, we collected PM2.5 samples in on-site brick workers’
homes in Bhaktapur, Nepal, but the sampling time was limited to approximately seven
hours during the middle of the day when most workers were not at home. Thus, we were
not able to measure PM2.5 generated during cooking and other household activities during
non-working hours. The longer sampling time (approximately 21 h in each home) used in
the current study allowed us to characterize PM2.5 constituents across both working and
non-working hours. Using the seven-hour samples in our previous study, we found no
difference in the chemical composition of indoor vs. outdoor air, except for Cl, which was
higher indoors. Our previous study also found that the primary fuel used for cooking was
significantly associated with only two PM2.5 chemical components, Cl and K, which were
both higher in wood fuel homes. In contrast, in this study we found significant differences
for 22 chemical components based on cooking fuel type and location (LPG, indoor vs.
wood, indoor vs. outdoor). Pairwise comparisons indicated fuel type was the primary
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source of these significant differences. We attributed these differences in results among
studies to non-working hour activities in the home that were not captured in our previous
study, but were captured in our current study.

The major elemental aerosol-phase tracers of wood smoke are Cl and K, both of which
are commonly found in PM2.5 generated from wood combustion [41]. Like our previous
study, we found significantly higher levels of both elements in homes where wood fires
were used for cooking. For wood fire homes, the indoor Cl level averaged 5.86 μg/m3,
which was approximately 34 times the average level in LPG homes (0.17 μg/m3). Similarly,
K levels in wood fire homes (4.17 μg/m3) were approximately four times the levels in LPG
homes (0.98 μg/m3). Furthermore, our results showed significant differences in Cl and K
levels between wood fire homes and outdoor air, but not between LPG homes and outdoor
air, suggesting the high levels of Cl and K in our study originated from cooking indoors
over wood fires. Our findings are consistent with previous studies conducted in homes in
West Africa and India. In higher-income homes in Accra, Ghana, where residents tend to
cook indoors with LPG cookstoves, Zhou et al. reported average indoor Cl and K levels of
0.34 and 1.08 μg/m3, respectively [42]. By comparison, average Cl and K levels in enclosed
cookhouses using firewood in The Gambia were 7.90 and 10.75 μg/m3, respectively [42]. In
unventilated, low-income homes in India where solid biomass fuels were used for cooking,
annual Cl and K levels averaged 5.8 and 7.6 μg/m3, respectively [43].

Among the 35 analytes, BC accounted for the highest concentration in wood fire
homes (349.04 μg/m3), where levels were 56 and 65 times the levels in LPG homes and
outdoor air, respectively. BC is released into the air as a result of incomplete combustion
of fuels, and prolonged or extreme exposure is associated with increased morbidity and
mortality, primarily from cardiac and respiratory illnesses [15]. When BC acts as a carrier for
polycyclic aromatic hydrocarbons, it is linked to adverse health effects, including cancer and
severe immune, reproductive, and pulmonary damage [15,44]. Several additional elemental
species identified in our study were previously shown to be associated with burning wood.
For example, we found concentrations of Al, Ca, magnesium (Mg), phosphorus (P), and
Si were significantly higher in homes with wood cooking fires than in homes with LPG
cookstoves. All of these elements were shown in previous studies to be associated with
high temperature burning of wood or wood pellets in stoves [23,45].

Respiratory illnesses are common among brick workers in Nepal [21], and occupa-
tional exposures likely play an important role in this finding [20]. However, previous
studies of urban ambient PM2.5 constituents found that several metals and other elements
were associated with respiratory disease in adults and children [10,12] at much lower
concentrations than those found in our study. For example, Bell et al. found associations
between respiratory hospital admissions in adults ≥65 years of age and PM2.5 constituents
Al, Ca, Cl, BC, Ni, Si, Ti, and V [10]. In our study, all of these constituents, with the
exception of Ni and V, were found in higher concentrations than those reported by Bell et al.
in all sampled locations (wood indoor, LPG indoor, and outdoor air), and V concentrations
in our study were higher in wood fire homes. Ostro et al. found associations between
respiratory hospital admissions in children and concentrations of Cu, Fe, K, Si, and Zn
in ambient air [12]. Again, we found each of these constituents in our samples, and in
most cases at higher concentrations than those reported by Ostro et al. Differences in
concentrations were most pronounced in wood fire homes, where element concentrations
ranged from 1.9–35 times the ambient concentrations reported by Ostro et al. We propose
that repeated exposure to the high concentrations of metals and other elements in both
indoor and outdoor air may contribute significantly to the respiratory symptoms seen
among brick workers in Nepal.

One of the most noticeable differences between this study and our previous one was
the number of chemical components that had significantly higher concentrations in homes
with smokers. Depending on the tobacco source, cigarette smoke contains varying levels
of several metals that are associated with deleterious health effects, including Al, arsenic
(As), Ba, beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), Cu, Fe, lead (Pb),
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manganese (Mn), mercury (Hg), Ni, selenium (Se), Si, V, and Zn [46,47]. Our current
study found these metals in higher concentrations in homes with smokers compared to
homes with non-smokers, with the exception of Cd, which had all sample concentrations
below the LDL, and Be and Hg, which we did not test for. Toxicologically, these metals
are associated with allergic sensitization and inflammation, COPD, cancer, asthma, im-
mune system suppression [47], vascular endothelium damage, and the development of
atherosclerosis [46].

In our previous study, we discussed concerns about small, overcrowded housing
among brick workers in Nepal, and specifically regarding the potential for indoor pollution
to concentrate in smaller, poorly ventilated homes [18]. The finding that home area was
significantly associated with PM2.5 Cl and Cu appears to support this concern. In the
cases of both Cl and Cu, smaller homes (i.e., 5.41–9.50 m2) had the highest concentrations
(Supplementary Materials, Table S1). Although not statistically significant, smaller homes
also had the highest GM concentrations for 22 other chemical components. Smaller home
area appears to contribute to a build-up in air pollution concentrations. The small sample
size and reduced statistical power in this study may have contributed to our inability to
detect significant associations between home area and concentrations of PM2.5 constituents
for elements other than Cl and Cu.

We used multivariable linear or Tobit regression models that included two or three
characteristics of homes at the brick kilns (i.e., smoking, fuel type, and home area) as
independent variables to determine whether significant associations between these char-
acteristics and concentrations of PM2.5 chemical components, found using simple (unad-
justed) regression models, remained statistically significant when we adjusted for the other
characteristic(s). As stated previously, Cu, Ni, and Se were previously found in cigarette
smoke [46,47] and all three PM2.5 chemical components were significantly associated with
smokers in the home in our study when we adjusted for fuel type. In addition, Cu was
significantly associated with smokers in the home when we adjusted for home area and
fuel type. Al, BC, Cl, Mg, P, and K were previously found in wood smoke [15,23,41,45]
and all six PM2.5 chemical components were significantly associated with fuel type in
our study when we adjusted for smokers in the home and/or number of smokers in the
home. However, Cl was not significantly associated with fuel type when we adjusted for
home area and smokers in the home or number of smokers in the home. Cl was instead
significantly associated with smokers in the home when we adjusted for home area and
fuel type. Ba, Pb, Mn, V, and Zn were previously found in cigarette smoke [46,47], but none
of these PM2.5 chemical components were significantly associated with smokers in the
home or number of smokers in the home in our study when we adjusted for fuel type. All
five PM2.5 chemical components were instead significantly associated with fuel type when
we adjusted for smokers in the home and/or number of smokers in the home. The reasons
for these discrepancies between our results and those of previous studies are unknown,
but our small sample size and the fact that all five homes that used wood for fuel also had
smokers in the home may have contributed.

Although we did not have a sufficient sample size to conduct principal component
analysis in this study, we can make some conjecture about possible pollution sources. Of the
29 analytes that had at least one sample concentration above the LDL, only one (BrC) was
significantly different between LPG homes and outdoor air. This finding may be explained
by stir-fry cooking within the home [48], or possibly by activities such as burning candles or
smoking indoors during non-working hours. Non-significant differences in the remaining
28 analytes may be largely explained by infiltration of ambient air pollution through
gaps in brick workers’ homes, as discussed previously [18,19]. There are currently over
100 operating brick kilns in the Kathmandu Valley, most of which are coal fired [17,49,50].
Several analytes from our samples are known to originate from coal burning, such as Al, As,
Ba, Ca, Fe, K, Mg, Mn, P, Se, Si, and Ti, depending on the source of the coal [51]. In addition,
the kiln from which our samples were collected is located near the Araniko Highway, a
major roadway through Bhaktapur. Vehicle exhaust is a source of several metals that we
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found in ambient air, as well as in participant homes, including Cr, Cu, Fe, Ni, Pb, and
Zn [52–54]. Tire fading and brake wear may be responsible for Zn and Cd, and Cu and Zn,
respectively [52,55], although Cd concentrations were below the LDL for all samples in
our study.

One limitation in understanding the contribution of wood burning to elemental
composition in our study is that we did not measure burn temperature, which greatly
affects the chemical composition of particles [24]. In future studies, we may also consider
using the EC/OC ratio or measuring methyl chloride levels as more definitive markers
of wood smoke in our study homes, as well as looking more closely at the bioavailability
of PM-bound metals to understand the toxicological properties of PM2.5 in brick workers’
homes. We were unable to obtain measurements for BrC for four samples because the
amount of BC on the filters surpassed the UDL, which rendered the optical transmittance
method unfeasible. This study was also limited because samples were obtained from
homes at a single brick kiln and we had a relatively small sample size. A larger sample
size would have allowed for the use of principal component analysis or related methods,
such as positive matrix factorization, which was used in other studies [42], to determine
the sources of pollution. Other limitations of this study (e.g., unmeasured confounding by
temporal factors, lack of health data, etc.) were discussed previously [19].

5. Conclusions

Based on the findings of this and other studies [18,19], we suggest a multi-faceted
approach is needed to protect brick workers in the Kathmandu Valley from the adverse
health effects associated with poor air quality. The atmospheric pressure, wind direction
and velocity, humidity, and the bowl-shaped topography of Kathmandu Valley add to
the air pollution problems [56]. As air pollution remains a major issue, it is of paramount
importance to educate the general population regarding the detrimental effects of air
pollution and preventative measures to inhibit extreme outcomes [57]. The government of
Nepal has to take primary responsibility to address the consequences of this problem by
developing policies and action plans to reduce ambient air pollution and, ultimately, its
consequences [57]. As the primary source of indoor air pollution in Nepal is the burning
of solid fuels for cooking, improved stoves, smoke hoods, vented or chimney stoves, and
clean fuel replacements would reduce the disease burden due to indoor air pollution
exposure [58]. Considering 50% of homes in this study had at least one smoker, and that
smoking is a significant predictor of respiratory illness among brick workers in Nepal [21],
future interventions to improve indoor air quality in brick workers’ homes should also
include smoking cessation programs [59,60].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos12070911/s1, Table S1: Associations between the mean of samples inside homes and
home area and number of people in home at a brick kiln in Bhaktapur, Nepal, May 2019, Table
S2: Associations between the mean of samples inside homes and occupant density and number of
children in home at a brick kiln in Bhaktapur, Nepal, May 2019, and Table S3: Associations between
the mean of samples inside homes and home area, smokers in home, number of smokers in home,
and fuel type mutually adjusted for each other at a brick kiln in Bhaktapur, Nepal, May 2019.
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