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Preface to ” Assessing Atmospheric Pollution and Its
Impacts on the Human Health”

In recent decades, due to industrial expansion and urbanization, atmospheric pollution has
become one of the main threats to public health and natural ecosystems. The production of pollutants
from different sources can easily be evaluated; however, their dissipation is associated with the
mechanisms of diffusion and transport in various atmospheric conditions, with wind speed being
one of the main influencing factors. The accumulation of pollutants is a stochastic phenomenon,
depending on multiple factors such as atmospheric circulation, turbulence, wind direction and speed,
air temperature, humidity, etc., making the assessment and forecasting of this phenomenon difficult.
In conditions of atmospheric calm, the particles accumulate near the emission sources, increasing
the time that the population is exposed to toxic substances which induce respiratory diseases and,
sometimes, irreversible harm to human health. Therefore, assessing air quality is extremely important
for maintaining a clean and healthy environment. In this context, the articles included in this

collection addressed the following topics:
-Estimating the air quality using statistical and artificial intelligence methods;
-Modeling the extremes of different pollutants over various time series;

-Emphasizing the impact of atmospheric pollution on human health, especially the incidence of

pulmonary diseases in highly polluted zones;

-Analyzing the carcinogenic and non-carcinogenic risks of exposure to different pollutants for an

extended period.
The topic is of interest to scientists and the general public, addressing problems that we all face.

The editor would like to thank the authors for sharing the results of their research, and the

reviewers whose valuable suggestions led to significant improvements to the submitted articles.

Last but not least, we thank the editorial staff who helped to ensure a smooth editorial process.

Alina Barbulescu
Editor
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In recent decades, atmospheric pollution has become a major risk for public health
and ecosystems. In this era, when industrial development and urbanization are accelerated,
decreasing the contamination level from different sources became a must to ensure a
friendly and healthy climate for future generations.

The Special Issue “Assessing Atmospheric Pollution and Its Impact on the Human
Health” contains articles with the following topics: assessment of the PM10, PM2.5, nitrogen
oxides, ozone, and dust on the pollution life using different health indicators and statistical
methods, building artificial intelligence method for evaluating the pollution trend and the
admission of people in hospital due to pulmonary diseases. It was emphasized that there
is insufficient data, and the monitoring network is not uniformly distributed to provide
a correct insight into the atmospheric contamination level and its adverse effects on the
people. Moreover, the authorities should consider the studies” results and take urgent
measures to reduce or eliminate, when possible, the pollution sources.

Given that dust is an important source of pollution in the United Arab Emirates,
Nazzal et al. [1] investigated its impact on the health of inhabitants from the Sharjah and
Ajman Emirates based on data series collected from April to August 2020, continuing the
investigations on the pollution from different sources in the United Arab Emirates [2,3].
They found that the average daily dose (ADD), the hazard quotient (HQ), and the health
index (HI) have been used for this aim. The highest concentrations found in the study
samples were those of Zn, Ni, and Cu, with anthropogenic origin. The HQ and HI indi-
cated, respectively, an acceptable and negligible non-carcinogenic risk for people’s health.
Clustering the observation sites based on the original series and those of the health indices
found three clusters, one of them formed only by a single location, where the highest
concentrations of heavy metals were detected.

Cui et al. [4] investigated the impact of the grain dust on the workers’ health using
samples of different types of grain collected in six locations in China and developing a
probabilistic risk assessment model. Using this approach, the risk to the people’s health
was transposed into disability-adjusted life years (DALY). It was shown that for the people
working in the grain storage and transportation, the mean DALY was greater than 0.4 years,
with the values between 0.1 and 3.3 years for the former. The highest DALY corresponds to
maize (1.01 years, for in-warehousing), followed by those of rice (0.89 years) and wheat
(0.83 years) in the transportation phase.

The article of Maftei et al. [5] addressed the impact of the pollution (with PM10 and
nitrogen oxides) on the population’s health in the county of Brasov, Romania.

The research tried to correlate the air pollution level with the laboratory analysis
results of the patients confirmed with pulmonary malignant tumors. It was shown that
most patients suffer from squamous cell carcinoma (76%), the rest of them being diagnosed
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with pulmonary adenocarcinoma (24%). The disease rate was lower in the rural zones than
in the urban ones. In both cases, squamous cell carcinoma has the highest frequency. The
limits of this study were the low number of stations recording the atmospheric pollution,
their unequal distribution, and the limited database of the medical records.

In their research, Tadano et al. [6] proposed two artificial intelligence models—the
echo state networks and the extreme learning machines (ELM) for estimating the impact of
the PM10 on the hospital admissions due to respiratory diseases. Other parameters taken
into account were air temperature and humidity. The regularization parameter (RP) and
the Volterra filter have been used for increasing the model’s generalization capability and
exploring the nonlinear patterns of the networks” hidden layers. Results show that the
ELM better performed in most cases. The research is important for estimating the hospital
admission and pointed out the lack of data for other pollutants that could bias the results.

Qin et al. [7] provided the results of the analysis of polycyclic aromatic hydrocarbons
(PAHSs) in the environment and freshwater fish in the area of Lake Chaohu. First, they
identified the atmospheric pollution sources. The exposure to PAHs through water intake,
inhalation, and freshwater fish ingestion was evaluated by different techniques, such as the
assessment model, probabilistic risk assessment, and Monte Carlo simulation. They showed
that the primary source of atmospheric pollution is biomass combustion. The atmospheric
transport significantly contributes to the contaminants spreading. Significant differences
were found between the samples only for a gaseous BaP equivalent concentration. Among
the risk sources, the fish intake and the particles” inhalation occupied the first two places,
based on the lifetime average daily dose. The probabilistic cancer risk assessment indicated
a potential carcinogenic risk for the population in the neighborhood of Lake Chaohu.

Buch et al. [8] assessed the transport influence on the pollution due to carbon species
(elemental—EC and organic—OC) in a zone from the Littoral of the Gdansk Gulf in the
periods 13-22 July 2015 (holiday period) and 14-30 September 2015 (holidays and school
periods) for two hours in the morning and two in the afternoon. The highest OC (EC)
mean concentration in small aerosols was recorded during the holidays (the school period,
between 7.00-9. 00 a.m.). Still, the statistical tests rejected the hypothesis that there is a
significant difference between the OC concentrations recorded between 7.00-9.00 a.m. and
3.00-5.00 p.m. During the holidays (school period), the EC, sulphate, and nitrate (CO)
concentrations were the highest. It was found that the regional wind has an important role
in the pollutants’ transport.

Huang et al. [9] analyzed the particulate matter (PM) distribution and the trend of
heavy metals and water-soluble ions in PM2.5 and PM10 during the haze periods from
March 2016 to January 2017 in Chengdu, China, at different pollution levels. It resulted in
heavy metals being enriched in fine (PM2.5) particles compared to PM10, and the mobile
sources had significant contributions to the haze formation.

Johnston et al. [10] addressed indoor air pollution in the houses of brick workers
in the Kathmandu Valley, Nepal, taking into account the type of cooking device used.
Higher concentrations of black carbon (349 pg/m?) have been detected in the houses using
wood fire than where the liquefied petroleum gas cookstoves are used or in outdoor air
(5.36 ug/ m?). Indoor chlorine (potassium) in the first kind of house was 34 (4) times higher
than in the second type of residence. Ca, Al, Co, Fe, Ti, and Si concentrations exceeded the
allowable limits in all the studied locations. The research pointed out the necessity of the
authorities” intervention to improve the region’s indoor air quality.

Reliable scenarios or models for atmospheric pollutants dynamics are of high interest
for a correct estimation of the pollution impact on the environment and human health.
However, the outliers’ existence may significantly bias the models” quality and, implicitly,
the forecast based on them. In this idea, Barbulescu et al. [11] studied the existence of
outlying values in the daily nitrogen oxides and ozone series collected from 1 January to
8 June 2016 in Timisoara, Romania. Four methods have been employed: the interquartile
range (IQR), isolation forest, local outlier factor (LOF), and the generalized extreme stu-
dentized deviate (GESD). Three models (ARIMA, GRNN, and ARIMA-GRNN) have been
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built for the raw series and those without aberrant values. The best one was the hybrid
ARIMA-GRNN for the series without aberrants, which can be used for the forecast.

In the article [12], the author analyzed the 387 series of the aerosol optical depth (AOD)
collected for 178 months over the Arabian Gulf, continuing the research from [13-15] related
to the dust aerosols and storms in the United Arab Emirates. The Principal Component
Analysis (PCA) extracted the main data subspace of the temporally indexed and spatially
indexed time series (TITS and SITS, respectively). Over 90% of the variance of SITS is
explained by the first principal component (PC), and only 60.5% of the variance of TITS
by six PCs. Hierarchical clustering applied to SITS indicates that one group contains the
locations on the Shamal trajectory, whereas applied to TITS resulted in grouping based on
seasonality. The regional and temporal trend series (RTS and TTS, respectively) have been
detected using a two-step algorithm, which firstly determined the clusters with the highest
number of elements, followed by a mediation process, as presented in [16]. RTS and TTS
are trend-stationary, the former being also level-stationary, and fit the data series well.

More research should be done to develop new indices for providing a correct eval-
uation of the degree of cumulated pollution from different sources and its impact on
people’s health. At the same time, the decision factors must implement plans to reach a
cleaner environment.

Author Contributions: Conceptualization, A.B.; methodology, A.B. and C.S.D.; formal analysis, A.B.;
writing—N.P.-B. and A.B.; writing—review and editing, A.B. and C.S.D.; supervision, A.B.; project
administration, A.B. All authors have read and agreed to the published version of the manuscript.
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Abstract: The article investigates some of the available measurements (Terra MODIS satellite data) of
the aerosol optical depth (AOD) taken in the Arabian Gulf, a zone traditionally affected by intense
sand-related (or even sand-driven) meteorological events. The Principal Component Analysis (PCA)
reveals the main subspace of the data. Clustering of the series was performed after selecting the
optimal number of groups using 30 different methods, such as the silhouette, gap, Duda, Dunn,
Hartigan, Hubert, etc. The AOD regional and temporal tendency detection was completed utilizing
an original algorithm based on the dominant cluster found at the previous stage, resulting in the
regional time series (RTS) and temporal time series (TTS). It was shown that the spatially-indexed
time series (SITS) agglomerates along with the first PC. In contrast, six PCs are responsible for 60.5% of
the variance in the case of the temporally-indexed time series (TITS). Both RTS and TTS are stationary
in trend and fit the studied data series set well.

Keywords: AOD; classification; dendrogram; PCA

1. Introduction

Dust clouds and storms occur worldwide, especially in the Middle East, southwestern
United States, northern China, and the Saharan desert. The essential conditions trigger-
ing these phenomena are the existence of huge dust or sand sources, little vegetation,
strong surface winds, and an unstable atmosphere [1]. Dust particles primarily enter the
lower atmosphere through saltation bombardment, which depends on the meteorological
conditions near the surface, the soil texture, and particle size [2-5]. Dust is emitted as
hydrophobic particles, relatively ineffective as cloud condensation nuclei. However, during
their transport in the atmosphere, due to the interaction with gaseous and particulate
air pollutants, their hygroscopicity increases, fortunately enhancing the efficiency of dust
removal from the atmosphere through precipitation [6,7]. Haywood et al. [8] indicated that
the aerosols cause a strong radiative forcing of climate because of their efficient scattering
of solar radiation.

The most abundant aerosol in the atmosphere is dust, composed of oxides (silica, iron
oxides), quartz, feldspar, gypsum, and hematite [9]. Ginoux et al. [10] emphasized the
anthropogenic and natural dust sources.

Many studies [8,11-13] have already investigated and documented a significant vari-
ability of the airborne desert dust during the past decades in the Middle East, Africa, central
Asia, and South America, and identified Shamal (the north-westerly wind blowing over
Syria, Iraq, and the Arabian Gulf) as the significant natural trigger of dust storm activities
across the Arabian Peninsula. Shamal transports the dust lifted from Syria and Iraq to
the Arabian Gulf and Peninsula [14-18]. Still, Notaro et al. [16] identified increased dust
activity over eastern Saudi Arabia around the Ad Dahna Desert, with dust transported
from the Iraqi Desert and local sources. Yu et al. [18] concluded that a strong wind speed
determines higher dust activity along the coast of the Persian Gulf in north-central Saudi
Arabia, and one has to consider this influence when tracing the phenomenon along and
across United Arab Emirates territory.
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Different scientists analyzed the aerosol optical depth (AOD) distribution in south-
eastern Asia and the Middle East in correlation with the seasonal conditions [19-21] and
to determine the air quality modifications in China, Sahel, South Africa, and South Amer-
ica [22-25]. They showed that the atmospheric heating rates and the absorption character-
istics are linearly dependent, noticing a significant difference between the aerosols in the
Indian region and the zones with large deserts and high dunes (such as UAE) contributing
to the dust loadings in the atmosphere [26].

Other researchers provided the classification of the aerosol types taking into account
different characteristics—fine mode fraction and the aerosol index [27], AOD [4,28,29],
refraction index, and Angstrém exponent [30-32].

The long-term trend of AOD over the Arabian Peninsula, and eastern and southern
Asia for 2002-2009, estimated based on AERONET data, was increasing. The same tendency
was observed over most tropical oceans [33]. A long-term positive AOD trend over the
Arabian Peninsula occurred, with a higher seasonal tendency during spring and summer
(periods when the dust is transported) [26].

Multivariate statistical analysis became one of the most utilized tools for extracting the
common characteristics of big data sets issued from environmental sciences [34-38]. The
spatio-temporal analysis of AOD is mainly performed by Principal Component Analysis
(PCA, also named EOF—Empirical Orthogonal Functions), non-negative matrix factoriza-
tion (NMF), and combined Principal Component Analysis (CPCA). These tools helped
capture the aerosol regimes, the factors influencing the AOD’s concentrations, and the
trends [20-25].

Recent studies on dust-aerosol in the UAE evaluated the regional distribution of this
type of aerosol and the dust storms’ intensity [26,39-41]. Using AERONET data collected
from 2006 to 2015, Abuelgasim and Farahat [26] found an increasing trend of AOD in
summer and spring and a 4.32% mean annual variation of the aerosol loading. They
estimated a variation of 11.36% of the mean annual Angstrém exponent for the study
period. The highest concentration of aerosols was found in summer, while from November
to March, an increasing tendency was found during 2011-2016.

Other scientists [40,41] studied the frequency of the dust storms for nine years, using
hourly data recorded at eight airports in the UAE. The variation of the aerosol radius was
presented in [4], based on monthly series collected at 387 points for 15 years.

Despite the investigations performed to determine the aerosol’s characteristics and
the effect of meteorological conditions on their loadings and transport in the Arabian Gulf
region, many aspects of the aerosol’s properties in the UAE remain to be studied.

The AOD time series varies depending on the data structure, aerosol extinction, and
surface reflectance [22-24]. Still, here, we shall not analyze the connection between these
variables, but the spatial and temporal variation of the AOD series for 178 months. This
research continues the attempt to understand the aerosol characteristics in the UAE, aspects
that have not been treated in the studies [4,26,40,41].

The main contributions of this research are:

(1) Performing the PCA to extract the principal components that describe the AOD series’
characteristics in time and space;

(2) Group the series in clusters (in spatial and temporal dimensions);

(3) Build the ‘regional time series’ (RTS) and the ‘temporal time series’ (ITTS) of the AOD,
employing an original algorithm based on the clusters previously determined;

(4) Compare the RTS and TTS of AOD with those of the ‘regional time series” and ‘tempo-
ral time series” of the aerosol radius (AR) [4] to emphasize the common tendencies.

2. Methods and Data Series

The methods employed at the first stage of our investigations are PCA, also called
EOF and Clustering.

The first one was used to estimate the similarity in terms of linear dependence within
the data and eventually to qualify regional/global aspects. The second one was performed
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to evaluate dissimilarity, the natural tendency of grouping (if present) in data, and identify-
ing aspects and events localized in time and/or space.

PCA is a statistical technique that (linearly) transforms (and deflates) a large set
of (possibly correlated) variables into a smaller set of orthogonal uncorrelated variables
representing the most significant information of the initial variables set. Initially employed
in the study of meteorological series [42], its use became frequent in other fields such as
ozone series evaluation [43,44] and isolating aerosols’ sources [23] based on AOD retrieved
from satellite data.

The PCA method is shortly described in the following.

Let us consider the matrix X, whose columns are the series recorded at each point. If n
is the number of series (367, in this case), and m is the number of time units (178 months,
here), X is an m x n matrix. It was shown that X can be written as a product of two matrices,
Y (m x m) and Z (m x n), of orthogonal functions of position and time.

The equation X = YZ is equivalent to

m
Xik = Zyijzjk,i =1, m, k= 1,n, (1)
j=1

so, the vector of the values recorded at a certain point is a linear combination of the Y
columns (with different weights), under orthogonality conditions.
Formula (1) is called the PCA analysis.
For a symmetric matrix,
A=XXT=yzzTyT 2)

there is a decomposition such as
A=YAYT (3)

where A is the diagonal matrix formed by A’s eigenvalues. Therefore, from (1) and (3) it

results that
m

Zif = Zyﬁxjk,i =1,m, k=
j=1

1,n, (4)

because Z = YTX.

The j-th eigenvector has a contribution of A;/ Y"1 Ajto X, where A;, i =1, m are the
eigenvalues [25].

When a small dominant set of principal components exists, the technique detects the
common characteristics of the data samples and reveals the regional or temporal aspects.
The absence of dominant principal components results in the data series independence, so
the phenomenon is localized [45].

Modifications of PCA have been proposed, such as sPCA [46] (that proposes sparse
loadings), CPCA [47] (to investigate the pattern of a specific element), Common PCA (to
simultaneous reduce the dimensionality in different groups) [48], or Combined PCA (to
compare the modes in the AOD decomposition) [23,24,49]. PCA was chosen here because
we are interested in the common characteristics of the series.

To determine the number of principal components, the scree plot, the Kaiser criterion,
and the proportion of the variance explained by each component may be utilized [50-52].
Here we employed the combined scree plot and variance explained by each component.

Clustering is a method for identifying patterns and similarities within the data and
the natural grouping tendency of the similar objects within a data set of interest.

Different scientists introduced various tests for detecting the optimal number of
clusters. Although some are more commonly used (because they are well-known or easier
to compute), there is no reason to give more credit to one or another, mainly because
they rely on different mathematical and computational techniques. Therefore, the strategy
for establishing the optimal number of clusters was a multi-criteria decision obeying the
majority rule after performing 30 different tests, including silhouette [53], gap, Duda, Dunn,
Hartigan, Hubert, and so on [54]. For example, if 15 tests voted for two clusters, eight for
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three, five for four, and the rest for six, the chosen number is two. This approach assures
choosing the number of clusters with the highest probability among the possible number
of such groups. In the previous example, the probability associated with two clusters is
15/30 =1/2, compared to 4/15,1/6, and 1/15, associated with other choices.

Agglomerative Hierarchical Clustering has been performed using the R software.

The agglomerative coefficient was computed to determine the grouping quality. The
higher this coefficient is, the best the clustering is. The dendrogram showing the elements
in each cluster was also plotted.

The regional time series (RTS) (temporal time series (TTS)) was built using the spatially-
indexed time series (SITS) (temporally-indexed time series (TITS)) and the following algo-
rithm, which is a modified version of Method II [4] based on the resulting clusters.

Given k data series each containing n values, consecutively recorded at the same time,
denote by Y = (yji) G=1,...,n,i=1,..., k) the matrix whose column i is formed by the
elements of the i-th series (i = 1, ... , k). The steps of the algorithm for determining the
representative series are:

(I)  Choose the number of clusters, m, and perform the series’ clustering, based on a
selection algorithm. Here, the choice is made using 30 criteria presented in [54] and the
majority principle: m is the number resulting from the highest number of algorithms.

(I) Among the m clusters computed at step (I), choose the one containing the highest
number of series (N) and construct a new matrix, Y7, with the series in this cluster.

(II) Select the representative value in the j-th line of the matrix Y7 to be the average of the
values in line j.

(IV) Evaluate the error by using the Mean Standard and Mean Absolute Errors (MSE and
MAE) corresponding to all the observation sites.

(V) Plot the resulted series.

The novelty of the approach proposed here consists of the following.

1. While selection of the number of clusters in the initial algorithm was left to the user,
in this article, an efficient selection procedure is employed.

2. If, in the second step, two clusterings are providing the same maximum number of
elements in one of the sets, the chosen one is that which maximizes the distances
between the clusters and minimizes those inside the groups.

3. If, after applying the second criterion, there are two clusters with the same number of
elements, the computation is performed with each of them. The best result (that gives
the minimum mean average error—MAE, mean standard error—MSE, and mean
absolute percentage error (%)—MAPE) is reported.

The trend and level stationarity of RTS and TTS has been checked using the KPSS
test [55]. The null hypothesis, Hy, was the series stationarity in level (trend), and the
alternative one, Hj, was the series nonstationarity in level (trend).

Remember that a time series is stationary if the statistical properties of the process gen-
erating it remain unchanged over time. Therefore, the mean, variance, and autocorrelation
structure are constant over time.

One of the common causes of the violation of Hy is the existence of a trend in the
mean due to the presence of a unit root or the existence of a deterministic trend. In the first
case, the stochastic shocks have persistent effects. In contrast, in the second one, they have
only transitory effects after which the variable tends toward a deterministically evolving
(non-constant) mean (and the process is called a trend-stationary).

The KPSS test is based on the time series decomposition into a deterministic trend,
a random walk, and a stationary error. In the case of stationarity, the series has a fixed
element as intercept, or the series is stationary around a fixed level.

The test was performed at the level of significance of 0.05. If the p-value is less than
0.05, the null hypothesis is rejected.

Data used in this study are monthly AOD series retrieved by Terra MODIS (at a
wavelength of 412 nm) at 387 points from July 2002 to April 2017 in the Arabian Gulf
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Region (Figure 1a), between 24.95-26.25 latitudes and 51.55-55.75 longitudes. The series
retrieved at the point of coordinates 26.15 latitude and 51.55 longitude is presented in
Figure 1b and the series recorded in January 2003 is shown in Figure 1c.
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Figure 1. (a) Observation area (https://www.google.com/mymaps/, 2022); (b) the series retrieved
at the point of coordinates 26.15 latitude and 51.55 longitude (SITS); (c) series recorded in January
2003 (TITS).

The sites are ordered in increasing order in latitude, and subsequently, by decrease
latitude, from the left corner on the map of the studied region to the lower right corner.
Details on the study area may be found in [4,40,41]. The coordinates of the sampling points
are given in Table S1 in the Supplementary Materials. Data have been organized in a matrix,
X, whose columns contain the AOD at each point, and the lines contain the monthly values
at the observation points.

3. Results and Discussion
3.1. PCA and Clustering

Table 1 shows the computed eigenvalues greater than 1, the proportion of the variance
explained by each component, and the cumulative proportion of the variance explained
for SITS.
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Table 1. Eigen-analysis of the correlation matrix of SITS.

PC1 PC2 PC3 PC4 PC5 PCo6 PC7 PC8

Eigenvalues 350.98 10.99 4.09 3.79 2.55 1.33 1.17 1.12
Proportion of variance 0.902 0.028 0.011 0.010 0.007 0.003 0.003 0.003
Cumulative proportion 0.902 0.931 0.941 0.951 0.957 0.961 0.964 0.967

Although eight eigenvalues are greater than 1, the first component (PC1) explains
90.20% of the variance within this set. The second component (PC2) explains only 2.8%
of the variance within SITS, while the others have even smaller contributions. The first
two principal components (PCs) are enough to extract the essential information within the
time series set, which proves to be highly PCA compressible. Only 9.80% of the variance
within this data is outside the direction of the first dominant PC, and 6.90% is outside the
plane determined by PC1 and PC2. These small percentages reveal that the series similarity
(linear dependence) is high in this set because the data points agglomerate along with PC1.
Therefore, the sand aerosols over the Arabian Gulf have a regional nature, the AOD values
being relatively similar (linearly dependent) across the analyzed area.

The optimal number of clusters—two—was selected after running the NbClust pack-
age in R. Figure 2 displays the silhouette chart (one of the 30 methods run). The agglomera-
tive clustering has been performed for SITS setting the number of clusters equal to two. The
computed agglomerative coefficient was 0.7678, indicating a good partition of the series in
two sets. The highest this coefficient is, the better the clustering is.

Optimal number of clusters
0.6 | 5

0.4

Score

0.

N
1

0.0 1

1 2 3 4 5 8 7 8 9 10
Number of clusters

Figure 2. The silhouette chart. The dotted line indicates the optimum number of clusters (two).

The dendrogram displaying the groups of the observation points is presented in
Figure 3.
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Figure 3. The dendrogram for classification of SITS. The elements in different clusters are in different colors.

Analyzing the elements in the clusters related to the positions of the points on the
map (Figure 1a and Supplementary Table S1), results in that one cluster contains the points
situated on the eastern side of the region and (very few) near the Qatar shore, while the
second one contains the rest of the locations. So, one cluster contains the sites situated in
the direction where the Shamal blows—between the red borders in Figure 1.

Figure 4 shows the scree plot of the TITS (the lines of the data matrix). The computation
found 25 eigenvalues greater than one, with only six PCs explaining 60.5% of the variance.
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Figure 4. The scree plot for TITS.

The majority principle decided that the number of clusters to classify the series is also
two for the TITS. Figure 5 contains the elements in the clusters and the dendrograms for
the TITS. The agglomerative clustering provided an agglomerative coefficient of 0.92802,
which indicates a strong separation between the groups.

11
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Figure 5. (a) Clusters (the values on the axes represent the scores on PC2 and PC1) and (b) the dendro-
gram from the hierarchical clustering of TITS. The elements in different clusters are in different colors.

Comparing the clusters’ content, it resulted that one of them mainly contains the series
recorded in the summer months (March to August), while the other contains the rest. So,

Taking into account the results from the previous section, the RTS has been computed
by applying the algorithm (I)-(V) described in Section 2 to SITS (columns in the matrix
X). The AOD’s RTS (as a function of time) is presented in Figure 6a. One can remark on
the periodic behavior of this series, whose highest values of the AOD’s RTS are primarily
recorded in July, while the lowest is in November—January.
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Figure 6. (a). The AOD ‘s RTS; (b) AOD’s RTS monthly average.

Figure 6b shows that the AOD’s RTS monthly average value for July is about three
times higher than the corresponding average values for November—January. This result
is in concordance with those of Abuelgasim and Farahat [26] and Yoon et al. [56], which
indicated a significant increase of AOD over the Gulf Region, especially in summer, related
to the dust abundance [39-41,57,58].
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The trend and level stationarity hypotheses could not be rejected for the RTS (p-value > 0.1,
in both cases) when applying the KPSS test. This means that the RTS does not present a
variation in trend or level.

The TTS (Figure 7) was built from the TITS (the transposed matrix, YT) and the
same algorithm.
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Figure 7. The TTS of AOD obtained running the algorithm from Section 3 for TITS.

The aspect of TTS, with peaks and troughs is related not only by the monthly charac-
teristics of the AOD (higher dust quantities in summer, and lower in winter), but also to the
position of the sampling points (Figure 1a) in the direction NW-SE in which Shamal blows.

The non-stationarity in the level and trend stationarity are emphasized by the results
of the KPSS test, whose p-values are lower than 0.01 (for level-stationarity) and 0.12376 (for
trend-stationarity).

The goodness-of-fit indicators are tools for assessing the fit quality. The lower their
values are, the better the fit is. For a correct model quality assessment, using more than one
indicator is recommended. For example, MSE can be influenced by values that significantly
deviate from the average. Therefore, three goodness-of-fit indicators have been utilized
here—MAE, MSE, and MAPE—the last one being non-dimensional, so it is more reliable
for comparisons between the two models.

All the values of the goodness-of-fit indicators corresponding to the RTS and TTS are
all very low (Table 2). They indicate a better fit for RTS than for TTS when reported to the
average indicators. Indeed, the mean values of MAE (MSE and MAPE, respectively) are
0.1724/0.0326 = 5.29 (21.88 and 4.38 times higher, respectively) for TTS than for RTS. The
minimum MAE and MSE are also lower for RTS compared to TTS, but the min MAPE is
higher for RTS.

Table 2. Goodness of fit indicators of RTS and TTS.

MAE MSE MAPE (%)
Min Mean Max Min Mean Max Min Mean Max
RTS 0.0207 0.0326 0.0598 0.0008 0.0025 0.0081 4.7925 7.7334 14.1450
TTS 0.0142 0.1724 0.6671 0.0003 0.0547 0.4481 4.3162 33.8819 68.4155

The maximum values of MAE (max MSE and max MAPE, respectively) is 11.15 (55.32
and 4.84, respectively) times higher for RTS than for TTS, indicating a higher variability at
the temporal scale than at the spatial one.

This means that RTS better represents the individual series than TTS, so there is a
higher homogeneity of the SITS than the TITS. The result is in concordance with the findings
related to the seasonal variability of AOD [26].

13
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4. Conclusions

This study extended our previous research on the aerosol radius, using the AOD series
collected during the same period at the same sampling points in the Gulf Region. The
novelty of the research consists of a dual analysis in time and space and the detection of
RTS and TTS that characterizes the AOD behavior over the study zone.

The approach combined the PCA with a new algorithm, building the RTS and TTS
series based on the classification provided by the clustering.

It was found that a single principal component explains more than 90% of the variance
of SITS, indicating that the series are agglomerated along with PC1. The TITS are scattered
(the first six dominant principal components accounting for only 60.5% of the variance in
the sets). Still, both RTS and TTS fit data well and are trend stationary.

We intend to extend the research to sets of series with missing data, given that most of
the available records present gaps.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/atmos13060857/s1, Table S1: Data series and the coordinates of
the locations.
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Abstract: Nowadays, observing, recording, and modeling the dynamics of atmospheric pollu-
tants represent actual study areas given the effects of pollution on the population and ecosys-
tems. The existence of aberrant values may influence reports on air quality when they are based
on average values over a period. This may also influence the quality of models, which are fur-
ther used in forecasting. Therefore, correct data collection and analysis is necessary before model-
ing. This study aimed to detect aberrant values in a nitrogen oxide concentration series recorded
in the interval 1 January-8 June 2016 in Timisoara, Romania, and retrieved from the official re-
ports of the National Network for Monitoring the Air Quality, Romania. Four methods were uti-
lized, including the interquartile range (IQR), isolation forest, local outlier factor (LOF) methods,
and the generalized extreme studentized deviate (GESD) test. Autoregressive integrated mov-
ing average (ARIMA), Generalized Regression Neural Networks (GRNN), and hybrid ARIMA-
GRNN models were built for the series before and after the removal of aberrant values. The
results show that the first approach provided a good model (from a statistical viewpoint) for
the series after the anomalies removal. The best model was obtained by the hybrid ARIMA-
GRNN. For example, for the raw NO, series, the ARIMA model was not statistically validated,
whereas, for the series without outliers, the ARIMA(1,1,1) was validated. The GRNN model for
the raw series was able to learn the data well: R? = 76.135%, the correlation between the actual
and predicted values (rap) was 0.8778, the mean standard errors (MSE) = 0.177, the mean absolute
error MAE = 0.2839, and the mean absolute percentage error MAPE = 9.9786. Still, on the test set,
the results were worse: MSE = 1.5101, MAE = 0.8175, rap = 0.4482. For the series without outliers,
the model was able to learn the data in the training set better than for the raw series (R2 = 0.996),
whereas, on the test set, the results were not very good (R? = 0.473). The performances of the hybrid
ARIMA-GRNN on the initial series were not satisfactory on the test (the pattern of the computed
values was almost linear) but were very good on the series without outliers (the correlation between the
predicted values on the test set was very close to 1). The same was true for the models built for Oj,

Keywords: aberrant values; nitrogen oxides; ARIMA; GRNN; ARIMA-GRNN; isolation forest; LOF

1. Introduction

Nowadays, ambient air pollution levels and trends have become a topic of interest
worldwide because primary atmospheric pollutants (APPs) constitute a risk factor for the
population and ecosystems [1-4]. Therefore, monitoring air quality, especially in urban or
crowded areas, is essential for controlling pollution [5] and protecting human health.

Pollutants” dispersion into the atmosphere is a hazardous phenomenon, which is
difficult to assess and sometimes unpredictable. Their diffusion depends on meteorological
factors, such as the relative speed and wind direction, ambient temperature, atmospheric
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turbulence, and buoyant force [6,7]. The distinct mechanisms responsible for pollutant dis-
persion are molecular diffusion, turbulent diffusion, and transport due to wind. Generally,
wind speed influences pollutants’ distribution. High concentrations of pollutants reach the
atmospheric layer and remain there if the wind speed is low and uniform. Atmospheric calm
creates favorable conditions for the accumulation of pollutants in the source’s vicinity [8].

Nitrogen oxides (NOy) are gases containing various amounts of nitrogen and oxygen
with high reactivity. NOx represents a family of seven chemical compounds (N,O, NO,
N>O3, NoO3, NOy, NoOy, N2 Os) [9] Nitrogen monoxide and dioxide (NO and NO,) are the
main NOx found in the atmosphere, resulting from combustion processes (from electricity
generation, industrial activities, and engine exhaust). They contribute to the apparition
of acid rains and favor the accumulation of nitrates in the soil, leading to ecological dise-
quilibrium [10]. Nitrogen oxides contribute to the greenhouse effect and smog formation,
reducing the visibility in urban areas and the deterioration of water quality.

Nitrogen oxide (NO) is a colorless gas and a free radical. It is important that it is
monitored s it is a precursor of tropospheric ozone, nitric acid, and particulate nitrate.
Although NO does not directly affect acid deposition or the climate, nitric acid and ozone and
particulate nitrate do. Natural NO reduces ozone in the upper stratosphere. NO emissions
from jets that fly in the stratosphere also reduce stratospheric ozone. In urban zones, NO
mixing ratios reach 0.1 ppmv in the early morning but may decrease to zero by midmorning
due to the reaction with ozone. Outdoor levels of NO are not regulated in any country [11].

Nitrogen dioxide (NO,) is a brown gas with a strong odor. NO; is an intermediary
between NO emission and ozone (O3) formation. It is also a precursor to nitric acid, a
component of acid deposition. Natural NO,, such as natural NO, reduces Oj in the upper
stratosphere. The primary source of NO, is NO oxidation. Minor sources are fossil fuel
combustion and biomass burning. During combustion or burning, NO, emissions are about
5% to 15% of those of NO. In urban regions, NO, mixing ratios range from 0.1 to 0.25 ppmv.
Outdoors, NO; is more relevant during the early morning than during midday or afternoon
because sunlight breaks down most NO; past midmorning, which is usually the opposite
to ozone [12].

NO'’s toxicity is four times lower than that of NO,. Children are the most affected by
exposure to nitrogen dioxide. NO; is very toxic for the population and animals [10,13].
Exposure to low concentrations of NO; affects lung tissue, and high pollutant concentra-
tions may be fatal. The population exposed to low concentrations of nitrogen oxides may
experience respiratory issues for a long time [2,4].

Therefore, outdoor levels of NO, are now regulated in many countries, including
Romania [12,14,15]. Ozone is a relatively colorless gas at typical mixing ratios. Oz exhibits
an odor when its mixing ratio exceeds 0.02 ppmv. In urban smog, it is considered an
air pollutant because of its harmful effects on humans, animals, plants, and materials.
In the stratosphere, ozone’s absorption of UV radiation provides a protective shield for
terrestrial life. O3 is not emitted. Its only source in the air is chemical reaction. O3 is a
pollutant produced in the atmosphere, and therefore it is not necessarily related to urban
or industrial areas and may be seen in suburban or rural areas, in downwind zones from
where the precursors are emitted. In urban air, ozone mixing ratios range from less than
0.01 ppmv at night to 0.5 ppmv (during the afternoon, downwind from the most polluted
cities worldwide), with typical values of 0.15 ppmv during moderately polluted afternoons.
It has a typical daily cycle characteristic of the positions with respect to the topography
and the location where the precursors are emitted. Peak ozone mixing ratios are around
10 ppmv in the stratosphere [11].

In the last decade, special attention has been paid to mathematical modeling, the study
of the pollutants diffusion from the atmosphere, developing new control systems, and
reducing environmental pollution [16,17]. The diversity of actual models has imposed
extraordinary rigor on their understanding and expanded their types for correct application
depending on local or regional air pollution particularities. The transport and dispersion
of pollutants in the atmosphere are complex phenomena that are not easy to translate
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into mathematical calculation systems, so many algorithms are accepted by simplifying
hypotheses [18]. Under these conditions, the results of the estimates are more or less close
to reality. Each model has its limits. The volume, type of input data, and mathematical
complexity largely depend on the researchers’ abilities because the data quality, accuracy,
and discretization affect the integrity of the simulation results [19].

Modeling of the dissipation of NOy from different sources has been achieved using
different models, such as, for example, CALPUFF [20] (dispersion of traffic emissions
in urban zones). Fallah-Shorshani et al. [21] used two air quality models to simulate
local atmospheric dissipation of NOy and its transformation to NO; using the Gaussian
puff (CALPUFF) and street-canyon model (SIRANE). The SIRANE model is based on
transformations involving NO, NO,, and O3 (in the Leighton cycle). Shekarrizfard et al. [22]
reported CALMET-CALPUFF for the assessment of the effects of a regional transit policy
on air quality and population exposure. Soulhac et al. [23] utilized the SIRANE dispersion
model to assess the transfer of pollutants within and out of an urban canopy.

Stochastic models are statistical or semi-empirical techniques for estimating trends,
periodicity, and the interrelationship between air quality and atmospheric measurements,
and forecasting air pollution episodes. These models are instrumental in real-time forecast-
ing or relatively short periods, where available information from measurements is relevant
(immediate estimates) [24]. The most well-known model is the Box-Jenkins approach (for
example, ARIMA and SARIMA).

Gocheva-Ilieva et al. [17] examined the concentrations of NO, NO,, NOy, and ground-
level O3 in a town in Bulgaria for one year using hourly data. The obtained SARIMA
models demonstrated a very good fitting performance and short-term predictions for the
next 72 h.

Kumar and Jain [25] used ARIMA, after a suitable variance stabilizing transformation
of the concentration time series (O3, CO, NO, and NO»), to model data collected at a traffic
station in Delhi (India). Zhu [26] compared the ARIMA and exponential smoothing models
on 2014 concentrations of NO, and O3 in the Yanqging county, Beijing, China. Munir and
Maytfield [27] used auto-regressive integrated moving average with exogenous variables
(ARIMAX) to model the distributions and temporal variability of NO, concentrations in
Sheffield, UK, from August 2019 to September 2020. Using cross-validation ARIMAX,
the authors found a strong correlation between the predicted values and the measured
concentrations (the correlation coefficient was 0.84 and RMSE was 9.90). Hajmohammadi
and Heydecker [28] developed a vector autoregressive moving average model to assess
the air quality in London in 2017. The authors cross-validated the model using kriging
to achieve spatial interpolation of NO, NO,, and NOy, respectively. Moreover, seasonal
ARMA models of the air quality across London for 30 individual stations were validated.
This study established that the VARMA model is appropriate for evaluating interventions,
such as the Ultra-Low Emissions Zone.

Artificial neural networks (ANNs) have been widely used for modeling processes that
present high variability and nonlinearities, such as those related to air pollution. Gardner
and Dorling [29] employed a multilayer perceptron (MLP) artificial network to model NO
and NO, concentrations in London and showed that the variation in emissions could be
modeled using the time of day and day of the week as input variables.

Based on the literature findings, and\ given the superior performances of deterministic
methods, Rahimi [30] utilized ANN to develop a model that provided accurate short-term
(hourly) predictions of NOx and NO; series in Tabriz, Iran. Dragomir et al. [31] presented
an evaluation of the efficiency of artificial neural networks (ANNs) and the multiple linear
regression (MLR) model for NO, prediction in 3 scenarios (by randomly eliminating (1) 25%,
(2) 50%, or (3) 75% of the observed NO; data) in Braila city, Romania, from 2009-2013. The
analysis results demonstrated that the NO; values estimated using MLR and ANNs were
similar to the measured NO, concentrations (the corresponding coefficients were (1) 0.580,
0.604; (2) 0.589, 0.565; and (3) 0.474, 0.483). The best outcomes were achieved for the ANN
values in all scenarios.
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Multilayer perceptron is a type of neural network used in the studies of Baawain
and Al-Serihi [32], Jiang et al. [33], and Hrsut et al. [34] to model NO, NO,, NOx, O3 [32],
NO; [33], NOy, and O3 [34] in an industrial port, Shanghai, and a site in an urban residential
area in Zagreb, Croatia, respectively. Moustris et al. [35] provided a 3-day forecast for the
NO; and Og series in Athens using an MLP network. Agirre-Basurko et al. [36] compared
the performances of MLP and linear regression approaches on O3 and NO, series and
Kukkonen et al. [37] on NO, series.

Another approach that has provided good results in predicting NOy and NO, series is
based on support vector regression and was utilized by Wang et al. [38] and Osowski and
Garanty [39]. The last two authors also proposed a discrete wavelet decomposition for the
data series.

Different scientists have searched for the best model for series forecasting. For ex-
ample, Hajek and Olej [40] used SVR, TSFIS, and MLP for NO,, NOx, and O3 prediction.
Lin et al. [41] compared the ability of GRNN, SVR, MLP, and SARIMA to forecast NO,
and NOjy concentrations. Singh et al. [42] utilized linear regression, MLP, GRNN, and RBF
neural networks for NO; prediction in an urban area.

With the same idea, Liu et al. [43] presented a combined prediction model of the
NO; concentration in Tianjin, China. The authors reported the results obtained using the
discrete wavelet decomposition and neural network method. They concluded that when
utilizing a series of pollutant concentrations with different frequencies, it is possible to
describe the data characteristics better. A high-dimensional nonlinear learning algorithm
was produced when the prediction model was built using an LSTM neural network, but the
overall prediction accuracy was the highest. The best forecast of the NO, concentrations
was obtained using the DWT-LSTM neural network method. Wang et al. [44] presented a
hybrid approach consisting of the NOx emission prediction model based on CEEMDAN
and AM-LSTM.

In a study examining population exposure to traffic-related NOx air pollution,
Shekarrizfard et al. [45] showed that improving the estimation of pollutant exposure is
essential for estimating the effects of pollution.

Regardless of the chosen model type, it can only be used when the pollutant concen-
trations are known. Otherwise, an emissions inventory is helpful.

The National Inventory of Greenhouse Gas Emissions under the United Nations
Framework Convention on Climate Change presents the levels of emissions/sequestration
of greenhouse gases. They are structured according to the categories of activities and pollu-
tants. The emissions represent aggregate annual values of the contribution of a particular
type of source of a specific contaminant. The National Inventory of Air Pollutant Emissions
reported to the Convention on Long-Range Transboundary Air Pollution Secretariat rear-
ranges the data by national environmental principles. Finally, the conversion of data from
national emission inventories is performed based on the national classification of economic
activities, creating a relationship between environmental variables (emission level) and
economic variables (value-added, turnover, etc.) according to the National Institute of
Statistics methodology on account of air pollutant emissions (MAAPE-Air) [46].

In Romania, the National Air Quality Monitoring Network (NAQMN) [15] has
41 centers where data is collected from recording stations. After preliminary validation,
data is transmitted for certification to the Air Quality Assessment Center of the National
Agency for Environmental Protection. In Romania, Law no. 104/2011 [47] regulates the
rules that ensure ambient air quality. Based on the air quality assessment, the number, type,
and location of the fixed measurement points and assessed pollutants are determined. The
agglomerations are classified into three classes (A, B, or C) based on the results of the na-
tional air quality assessment using measurements at fixed locations taken at the measuring
stations of the Network of the National Air Quality Monitoring Authority, and the results
obtained from the mathematical modeling of the dispersion of pollutants emitted into the
air. The pollutants taken into account are sulfur dioxide, nitrogen dioxide, nitrogen oxides,
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particulate matter, lead, benzene, carbon monoxide, ozone, arsenic, cadmium, mercury,
nickel, and benzo [15].

The specific air quality index, in short, “specific index”, is a system used for cod-
ing the recorded concentrations for each of the monitored pollutants (SO,, NO,, O3,
PM2.5, and PM10) and is established for each of the automatic stations within the Na-
tional Air Quality Monitoring Network as being the highest of the specific indices cor-
responding to the monitored pollutants. The general index and specific indices are
represented by integers between 1 and 6, with each number corresponding to a color
(1—good—turquoise, 2—acceptable—green, 3—moderate—yellow, 4—bad—red, 5—very
bad—burgundy, 6—extremely bad—violet). The specific indices and the general index of
the station are updated hourly [48]. For example, Figure 1 shows a recent map of the air
quality in Romania.
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Figure 1. Map of the air quality in Romania (updated 22 March 8:20:00) (retrieved from
https:/ /www.calitateaer.ro/public/home-page/?__locale=ro (accessed on 10 March 2022).

The critical concentration levels established by Romanian law [47] for NOx /NO, is
as follows: 400 pg/m3—alert threshold; 200 pg/m? NO,—hourly limit value for human
health protection; 40 pg/m3 NO,—the annual limit value for the protection of human
health; and 30 ug/ m3 NOy—annual critical level for vegetation protection.

The results of studies have shown that the average number of days on which there is
good air quality in big cities in Romania (Bucharest [49], Timisoara [50-52], Cluj-Napoca [53],
Constanta, and the surrounding area [54,55], etc.) has decreased year by year.

Since NO, pollution in different European cities remains high (>40 ug/ m? is the
maximum accepted annual mean concentration) and given its harmful effects on population
health [14,46], continuous monitoring is required.

Understanding the existence of anomalies existence is becoming an important topic in
the investigation of air quality. Anomalies are values in a data series that are unusual or
dissimilar from the remaining data. They may be irregular items resulting from unusual
or unexpected events, indicating abnormal behavior [56,57]. The analysis of anomalies is
necessary for the detection of the source of their occurrence [57]. Hawkins et al. [58] stated
that the values of series collected in polluted areas can behave as anomalies (outliers).
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Despite the importance of the detection of outliers in atmospheric sciences, only a
few articles, especially in the last years, have investigated this aspect and proposed new
approaches for the better selection of such values [56-60].

In the above context, this study aimed to identify the anomalies in a nitrogen oxide
series in Timisoara, one of Romania’s most prosperous industrial cities. The motivations
for this study are as follows:

1. Only a few studies have been devoted to studying the existence of outliers in a
pollutant series, with none of them using data collected in Romania.

2. Only a few articles have used hybrid approaches to model pollutant series, with
most of them being based on atmospheric circulation models, not on the Box—Jenkins
artificial neural network approach.

3. Very few studies have attempted to improve the quality of models after the removal
of aberrant values from the time series.

Therefore, three models are proposed for a raw series including nitrogen oxides and
ozone, and the series after the removal of outliers. Their performances are compared to
determine the influence of the aberrant values on the models” quality.

2. Materials and Methods
2.1. Data

The geographical area of this study is Timis county, located in the southwest Romania
plain (Figure 2). The most important city in this county is Timisoara, situated at 45°44/
northern latitude and 21°13' eastern longitude. It is one of the most prosperous economic
and university cities. After 1990, transport, especially by cars, recorded an accelerated
increase (reaching 1 car for every 2.66 inhabitants in 2017).
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of Romania (http:/ /www.destination360.com/europe/romania/map (accessed on 20 March 2022)).

Therefore, the pollution produced by this sector has proportionally increased.

The climate is moderate continental, with winds blowing from west and north-west,
and an annual precipitation of 650 L/m?. The atmospheric circulation favors the accumula-
tion of pollutants emitted in industrial zones and car exhaust above the city.

Data (NO, NO,, and NOy and O3 concentrations) recorded at the monitoring station
TM2 (C. D. Loga Blvd.—45°45'16.88" N; 21°14'05.91” E, 92 m altitude) were downloaded
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daily from the NAQMN website [15] during the period 1 January-8 June 2016. They formed
complete sets (Figure 3) without gaps. It is noted that the highest values were recorded
for the NOy series during the period March-April 2016 and for NO in the second half of
May. The NO series exhibited the lowest variability. The existence of periods when the
NOy concentrations were much higher than the sum of the NO and NO; concentration
is also noted, given that apart from NO and NO,, NOy incorporates other nitrogen oxide
species that can accumulate in the atmosphere in periods of calm before participating in
chemical reactions.

180 +

160
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120
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[ws]
=)

Figure 3. The pollutants series: NO, NO,, NOy, and Os.

An example of the hourly air quality at the studied station during the period 1-21
March 2021 is presented in Figure 4a and the average annual concentration of NO; in
Timisoara during the period 2000-2019 is presented in Figure 4b.

2.2. Methodology
2.2.1. Statistical Analysis

The hourly data were processed to build the average data series, which was studied.
The statistical analysis consisted of normality, homoskedasticity, autocorrelation, and sta-
tionarity tests, using the Shapiro-Wilk and Fligner—Killeen test, Levene test, autocorrelation
function, and KPSS test, respectively. The Pettitt test was used to address the existence of a
change point (in mean) [3].

Anomaly (aberrant) detection is used in many domains, such as manufacturing error
detection, attack detection in cybersecurity, stroke recognition in EEG measurement, etc.

Anomalies are observations that deviate significantly from the expected behavior
and cannot be categorized as noise or measurement error, and thus cannot be easily
discarded [61]. In the case of anomalies, the unexpected event might be the study object.

Fox et al. [61] define two types of anomalies: type I, affecting a single instance; and
type II, where the anomalous behavior extends in time.

Anomaly detection can be studied in both the univariate and multivariate time do-
mains, with the latter possibly implying multiple dimensions that display anomalies
simultaneously or even waterfall effects. Here, we focused on the univariate case.

Most techniques used for anomaly detection in time series consider the time aspect, ei-
ther in the vicinity or globally, using the entire data series to mark the anomalies. Four such
methods were applied in this study [62]. One of the most popular, called the IQR method,
considers values outside the interval (Q1 — 1.5 IQR, Q3 + 1.5 IQR) as anomalies (Q1 is the
first quartile, Q3 is the third quartile, and IQR is the interquartile range). Sometimes, the
term 1.5 is replaced by 3.
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The second method employed in this study is isolation forest (IF) [63—65]. It relies on
the concept of isolating unusual instances, as opposed to determining the properties of
normal samples and then examining non-matching patterns. It achieves anomaly detection
by building isolation trees (ITs), where anomalies are often represented as existing closer to
the root of the IT, rather than higher at the leaves, where regular data points are found.

To build the trees, IF generates recursive partitioning of the dataset (Figure 5) by
randomly selecting a dimension in the dataset, followed by a recursive split of the specific
dimension anywhere between the minimum and maximum value of the remaining set.

17.Jan

Figure 4. (a) Hourly air quality at the studied station during the period 1-21 March 2021. (b) Annual
average concentration of NO,.
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Figure 5. Recursive partitioning of the dataset. (a) shows much fewer splits needed to isolate an
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A path length of a point x, PL(x), is computed as the number of edges x that traverse
an isolation tree from the root node until the traversal is terminated at an external node.

Computing the path length means to count the number of partitioning steps required
to isolate a data point. The lower the path length or tree height value, the higher the
probability of a specific instance being an anomaly.

The average path lengths for instances are then used to evaluate the probabilities of
data points showing anomalous behavior.

The application of IF for anomaly detection has two main steps:

1.  Building and training the isolation trees.
2. Assigning anomaly scores to data points based on PL by computing the tree height
length as binary search trees.

The anomaly score s of an instance x is defined as:
s(x, n) = 2~ E(L)/em), 1)

where E(L(x)) is the average of L(x) from a collection of isolation trees, and c(n) is the
average of L(n) given n instances.

3. Using the anomaly scores, the following decision is made:

(a) Ifinstances have ans value that is much smaller than 0.5, then they are considered
normal instances;

(b) If all the instances have s ~ 0.5, then the entire sample does not have any distinct
anomaly;

(c) Instances with an s value larger than 0.5 are marked as anomalies [63].

While IQR and IF detect global outliers, LOF mainly identifies local outliers [42].
The decision regarding whether an outlier is local is made based on an evaluation of the
associated probability, determined by the k-nearest neighbors (kNN) method [66].

To determine if a point p in a study set is an outlier, the following operations are
performed in LOF [67] for p: (a) computation of the k-distance; (b) computation of the kNN;
(c) calculation of the local reachability density; and (d) detection of the LOF score. Point p
is classified as an outlier by comparing the score with a given threshold.

The last method utilized to detect both types of anomalies—local and global—in the data
series is the generalized extreme studentized deviate test (GESD) [68]. Its stages are as follows:

*  Analyze the existence of periodicity in the data series;
e Divide the series into non-overlapping intervals I,;
e  For each interval:

O Determine the seasonal compound (if it exists);

O Compute the median;

O Extract the residual, as the difference between the values of the series, the median,
and the seasonal component;

O Run the ESD algorithm (with the median and mean absolute error in the compu-
tation of the test statistics) [69].

e Return the outliers obtained from the previous stage.

The advantage of this technique is that it can be used even if the timestamps are unknown.

The correlation between the four series and the series anomalies, respectively, is
addressed by computing the correlation coefficients. In the case of low correlations, models
were built only for the individual series.

2.2.2. Modeling

This work emphasizes how aberrant values (anomalies) influence the quality of models
built using raw series and after their removal. ARIMA, GRNN, and hybrid ARIMA-GRNN
models were built for the raw series and the series obtained after removing the aberrant values.
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A time process (X, t€Z) is stationary if it satisfies the following conditions:

o VteZ M(X?) < +oo;

e VteZ M(X;) < 40 and is invariant in time (M denotes the expectation);

e VtheZ Cov(Xt Xiip) = v(h) (ie., the covariance of X; and X;j, depends only on
the lag h).

Let us denote the d-the order difference of X; by AdXt, where B is the backshift operator.

A time process (X;; t€Z) is called an autoregressive integrated moving average process
ARIMA(pd,q) if:

®(B)A'X; = O(B)ey, )

where @ and @ are respectively polynomials of p and q orders with roots higher than 1,
respectively, and (g4, t€Z) is white noise [70].

Among two valid models, the best one is selected based on the Akaike criteria. The
lower the AIC value, the better the model is [70].

An ARIMA(p, q) process is a particular case of ARIMA, with d = 0.

Generally, a stationary process can be approximated by an ARMA(p, q) model.

The generalized regression neural network belongs to the group probabilistic neural
networks. It is composed of four layers (Figure 6) [71].

Input layer

Hidden Layer

Summation Layer
Output layer

Figure 6. The structure of a GRNN.

The first one—input—contains the series values X = (x1, ..., x,). The second
one—hidden—is composed of neurons that apply a kernel function to the distances be-
tween the training data and the prediction point. In this process, o values are employed
to compute the radius of influence. The best o is determined when the network is trained
to control the distributions of the kernel function. In this study, the Gaussian kernel was
utilized, and the gradient algorithm was employed to estimate the best o [71].

In this study, the interval 0.0001-10 was used to search for o values in.

The number of neurons in the hidden layer after training is the same as the number of
training samples involved in the modeling. The unnecessary neurons are removed based
on the error minimization criterion during an optimization process [71,72].

The summation layer is composed of two neurons (D- and S-) that sum up the values
collected from the previous layer. The only difference between them is that the D-summation
neuron computes a weighted sum of the values resulting from the hidden layer [72].

The last layer (output) provides the ratios between the corresponding values from the
D- and S- summation neurons.

To perform the modeling, the series was divided into a ratio training:test = 80:20, with
the first part used for training, and the second part for testing. The number of iterations
was fixed at 5000 (maximum) and 1000 (without improvement). The regressors were
considered as lagged variables, with lags between 1 and 6. The algorithm was run with
different regressors, and the best result was kept. The correlation between the actual and
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predicted values (rap), mean standard error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and R? were employed.

In the hybrid ARIMA-GRNN procedure, an ARIMA model was first built for the data
series, and then the residual was modeled using GRNN. The same setting that was used in
the GRNN algorithm for the data series was kept when running GRNN for the residuals in
the ARIMA model.

The ability to capture nonlinearities, the use of nonparametric regression, and learn-
ing without backpropagation is recommended regarding GRNN to solve classification,
regression, and forecast problems involving continuous variables [71,72]. These characteristics
improve ARIMA’s capabilities to model processes with phenomena with high linear dynamics.

Figure 7 shows a flowchart of the study.

Start

l

Input data series |

l

Perform statistical analysis

l

Determine the aberrant values

l

Remove the aberrant values

Build ARIMA, GRNN and ARIMA-GRNN
models

Compare the models

l

End

Figure 7. The flowchart of the study.

3. Results and Discussion
3.1. Results of the Statistical Analysis and the Anomaly Detection

The basic statistics of the average data series are presented in Table 1.

Table 1. Basic statistics of the pollutant series during the study period.

Statistics NOy NO NO, O3
min (ug/m3) 0.00 1.60 0.00 12.04
max (ug/m3) 179.34 150.12 67.86 91.28

mean (png/m?) 32.63 9.87 15.67 4272
stdev (ug/m?3) 24.81 16.27 10.53 18.71
cv 0.76 1.64 0.67 0.44
skew 3.00 5.28 1.78 0.33
kurt 10.82 37.00 4.64 —0.66

The NO and NOx series display a very high range while the NO, and O3 ranges are
more than twofold lower compared to those of the first two series. The lowest average
corresponds to NO. It is very small compared to the maximum, indicating that most
series values are closer to the minimum than to the maximum. NOx showed low average
values compared to the maximum for. All series had moderate standard deviations (stdev)
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and coefficient of variations, indicating a moderate dispersion of the data series around
the average values. The series are right-skewed (skew >0), which is confirmed by the
histograms shown in Figure 8. The kurtosis coefficient indicates leptokurtic distributions
for all but the O3 series (which is platykurtic).
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Figure 8. Histograms of the studied series: (a) NO, (b) NO,, (c) NOy, (d) O3.

The normality and randomness hypotheses were rejected at the significance level of
5%. The homoscedasticity hypothesis was rejected for the NOy series only (the p-value
computed in the Levene test is 0.022). Figure 9 shows the presence of at least first-order
autocorrelation for all the data series.
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Figure 9. Charts of the autocorrelation functions (ACFs) for the data series. The blue lines represent
the limits of the confidence intervals at a confidence level of 95%.
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The KPSS test rejected hypothesis of level-stationarity for NO; and O3, and trend-
stationarity for NOy and Os.

After applying the change point test, the hypothesis that there is no change point
could not be rejected for all the series. Two subseries were detected for each series. The
change point and the subseries averages are presented as follows, where mean 1 is the
average of the subseries containing the values before the change point, and mean 2 is the
average of the subseries formed by the values after the change point:

° For NO: the change point is the 98th value, mean 1 = 12.611, mean 2 = 5.659;
° For NO,: the change point is the 92nd value, mean 1 = 19.454, mean 2 = 10.544;
o For NOx: the change point is the 87th value, mean 1 = 40.426, mean 2 = 23.34S;
e For Oj3: the change point is the 55th value, mean 1 = 25.554, mean 2 = 51.182.

So, the series presents high variability. The higher the variation is, the more difficult it
is to find a good model.

The IQR method with a factor of 1.5 (and 3) detected the values situated outside the
following intervals as outliers:

e [-7.5305,20.65750] and [—18.101, 31.228] for NO;
e [—10.1676,39.0445] and [—28.622, 57.499] for NO,;
o [-3.825,57.975] and [—27, 81.15] for NOs;

e [-14.195,97.205] and [—55.97, 148.98] for Os.

This study was performed in the first case because the use of three reduces the domain
of the anomalies. Therefore, based on this criterion, values recorded on the following days
were outliers:

. 4,5, and 9 February; 23-29 March; and 21 May for NO;

° 11 and 25 February; 7-11 and 23, 28, and 29 March; and 27, 29, and 30 May for NO»;

° 1,9-13, 16, 17, and 19-22 March; and 7 May for NOy;

o 6,7,13, and 29 January; 5 February; 5 and 28 March; 1, 2, 6, 8, 12, 14, 15, 18, 21, and
22 April; and 7 June for Oj3.

The NO, NO;, and NOx series, with the anomalies determined by IF, are presented in
Figure 10. The aberrant values are mostly very high, especially for NO and NOx.

IF provided more anomalies in comparison to IQR, but most of the aberrant values
detected by the IQR method were also identified by IF. The aberrant values identified by IF
included the values recorded on the following days:

. 1-10, 17, 18, and 22 January; 2, 3, 11, 25, 28, and 29 February; 7-11 and 23, 28, and
29 March; 27 April; 19 and 27-30 May; and 1, 3, and 6-8 June for NO;

o 11 and 25 February; 23 March; 27, 29, and 30 May; and 1, 6, and 9 June for NO,;

o 1-5,9, 13, 17, 22, and 29 January; 4-6, and 29 February; 1, 9-13, and 16-22 March;
7 and 19 May; and 4-8 June for NOy;

° 1-7,9,13,17, 18, 28, and 29 January; 1, 5-7, 13, 15, and 23 February; 5, 6, 22, and 28 March;
1,2,6,15,18,21, 22, and 28 April; 4, 30, and 31 May; and 1-8 June for Os.

Given the common origin of nitrogen oxides and the chemical reactions that occur
when Oj3 is present, as explained in the introduction, the correlations between the concen-
trations of the studied pollutants were investigated. Figure 11 presents (a) the correlations
between the NO, NO,, NOy, and O3 series and (b) the correlations between the series of
anomalies detected by IF. While no significant correlations between the pollutant series
were detected (the correlation coefficients range from —0.18 to 0.22), the highest correlations
were identified between the O3 anomalies and NOy anomalies (NO, and NO anomalies,
respectively), with a value of 0.51 (0.43 and 0.33, respectively). Still, these values do not
show a strong correlation between the aberrant series.
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Figure 10. Series charts and the anomalies computed by the isolation forest for (a) NO, (b) NO,, and
(c) NOx series.
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Figure 11. (a) Series correlations; (b) Correlations of the anomalies detected by IF; (¢) NOy and O3

series and their anomalies.
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Figure 11c depicts the NOy and Oj series, and their anomalies.

Figure 12 displays the series with the highlighted anomalies determined by LOF.
Notice that the IF approach provided a higher number of anomalies than LOFE. This result is
due to the LOF algorithm only considering neighboring values rather than the entire series.
Five common anomalies are provided by IF and LOF for NO, NOy, and O3, and seven for
NO;. The correlation between the series anomalies is close to zero. Figure 13 shows the
anomalies detected by GESD. This algorithm did not find any anomalies in the Oj series,
3 for NO; (25 February, 29 March, and 29 May), and 11 for NOy (9-13 and 16-22 March).
The outliers detected by this algorithm and IQR for NO are the same. Since no significant
correlation between the data series was found, we did not search for a regression model,
linking different variables. The next section contains the results of modeling the data series
before and after the removal of the anomalies.
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Figure 12. Series charts and anomalies computed by the LOF for (a) NO, (b) NO,, (c) NOy, (d) Os.
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Figure 13. Series charts and the anomalies for (a) NO, (b) NO,, and (c) NOy, computed by GESD.

3.2. Models for the NO, Series

As presented in the previous section, the NO, series is not Gaussian. Since the
normality of the series was achieved through a Box-Cox transformation with the parameter
A = 0.130, the series was firstly normalized and then stationarized by taking the first-order
difference. Using the Akaike criterion and the capabilities of R software, the best ARIMA
model for the transformed series (denoted NO,BC) was the ARMA(1,1) type, with an
autoregressive coefficient AR1 = 0.4728, moving average coefficient MA1 = —0.9069, and
corresponding standard errors of the coefficients of 0.0973 and 0.0505. The values of the
goodness of fit indicators for the model are a mean error (ME) = 0.0380, RMSE = 0.6488,
MAE = 0.4543,—mean percentage error (MPE) = 0.268, and MAPE = 15.8283.

Figure 14a shows the NO,BC series and the estimated one, whereas Figure 14b—d
present the residual series, the residual autocorrelation function, and its histogram.
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Figure 14. ARIMA model for the NO,;BC series. (a) NO,BC series and the estimated one. (b) The
residual series in the ARIMA model. (c) The residual autocorrelation function. (d) The histogram of
the residual series.

Figure 14a shows good concordance between the recorded values (blue) and those
estimated by the model (red). Figure 14c reveals no residual autocorrelation. The histogram
(d) shows a mean value of the residuals of about zero and an almost symmetrical distribu-
tion of the residuals. The normality test of the residual series could not reject the normality
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hypothesis while the Levene test rejected the homoskedasticity one. Therefore, the residuals
do not form white noise; so, the model could not be validated from a statistical viewpoint.

Figure 15 presents the chart of the GRNN model for the normalized NO, BC series
after removing the exponential trend with the following equation:

(NO, BC); = 5.8286 — 2.1721 x exp(0.00296¢), 3)
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Figure 15. GRNN model for the NO,BC series.

The model could learn the data well since the model’s total variance on the training set
is 76.135%, the correlation between the actual and predicted values is 0.8778, MSE = 0.177,
MAE = 0.2839, and MAPE = 9.9786. Still, on the test set, the results are worse. For example,
MSE = 1.5101, MAE = 0.8175, and r,p = 0.4482.

Given that the ARIMA model could not be validated and the relative inability of GRNN
to apply what was learnt in the training phase in the test, we searched for a hybrid model
that could fit the data better and benefit from the ability of ARIMA to capture the linear
behavior and the ability of GRNN to catch the nonlinear one. The raw series was considered
to fit the ARIMA model, and then the residual series was subjected to GRNN modeling.

The best hybrid approach ARIMA-GRNN obtained for the NO, series is described as
follows (Figure 16):
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Figure 16. Hybrid ARIMA—GRNN model for the raw series.
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e An ARIMA(2,1,1), with:

O The autoregressive and moving average coefficients (and standard deviations)
AR1 =0.3584 (0.0834), AR2 = 0.1811 (0.0826), and MA1 = —0.9677 (0.0294);

O MSE = 81.4417, MAE = 5.6679, the first-order residual autocorrelation = 0.97973;

O AIC=116];

O MAPE could not be computed (there is a value equal to 0);

e The GRNN model for the residual, with a lagged 1 variable as the regressor, and:

O On the training set: R? = 99.635%, rap = 0.998178, MSE = 0.2562, MAE = 0.1112,
MAPE = 27.4644.

O On the test set: R? = 0.0635%, rap = 0.0578, MSE = 1222.97, MAE = 5.239,
MAPE = 84.36.

Therefore, the GRNN model learnt the data well but could not use what it learnt for
forecasting. Still, the new residuals are Gaussian.

Since the global anomalies were of interest, comparisons of the results provided by IQR,
GESD, and IF were made to identify the values that were removed before the modeling. In
the first stage, the common values provided by these methods were selected and removed
from the data series. IQR was applied again to the new series in the second stage. Finally,
the common values provided by IF remained after the first stage, and those from the second
stage were removed. This procedure was chosen considering most anomalies detected.

The ARIMA model for the series without aberrant values (called NO,New) was
an ARIMA(1,1,1) type, with the following autoregressive and moving average coeffi-
cients (with the corresponding standard errors in brackets): AR1 = 0.4671 (0.0955) and
MA1 = —0.9083 (0.0438), MSE = 15.95, MAE = 3.0694, MAPE = 30.76299, and AIC = 770.53.
The residual variance in the ARIMA(1,1,1) model is 15.8890. The residuals’ correlogram
and their histogram (Figure 17) indicate that this series is not correlated and is Gaussian
(confirmed by the Anderson-Darling test, where the p-value is 0.1269). The heteroskedastic-
ity hypothesis was also rejected. Therefore, from a statistical viewpoint, the ARIMA(1,1,1)
model is correct.
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Figure 17. (a) Residual correlogram and (b) histogram in the ARIMA(1,1,1) model for the series after
the removal of aberrant values.

The forecast for the next 48 moments based on the above model is shown in Figure 18
(the right-hand side), in blue, together with the confidence intervals at the confidence levels
of 95% and 90% (different nuances of grey). The shape of the forecast series is not similar to
that of the actual one. Its trend becomes almost linear after eight-time moments. Therefore,
the model cannot be utilized in a future forecast, even if it was statistically validated.

The GRNN model for NO;New is presented in Figure 19. The model learnt the data
in the training set well (R2 =0.996). On the test set, MSE = 25.5047, MAE = 3.1555, and
MAPE = 27.9311, but R? = 0.473 is not close to 1.

After comparing the GRNN performances on the initial series and that without aber-
rant values on the test set, the results of the last series are better. Still, the model should be
improved because the blue dots—representing the computed values on the test set (valida-
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tion in Figure 19) are not close enough to the recorded values, which were represented by
the black line.

The hybrid ARIMA-GRNN model was built using the above ARIMA(1,1,1), whose
residuals were modeled by GRNN (Figure 20).

The neural network learnt the data well. Indeed, on the left-hand side of Figure 20,
the actual values and the computed ones (called predicted) are practically superposed on
each other (the black and the green lines). It also performed well on the test set. On the
right-hand side of Figure 20, the recorded values (black) and computed values (blue) are
close. To confirm the model’s goodness, Figure 21 displays the actual vs. predicted values
in the residual modeling. The dots built by pairs of actual and predicted values of residuals
are displayed along the diagonal (representing the ideal case of perfect superposition
between the actual and computed values), indicating that the ARIMA-GRNN model
performs very well. Therefore, the best model for the series without aberrant values is the
ARIMA(1,1,1)-GRNN model.
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Figure 18. The forecast based on the ARIMA(1,1,1) model—the blue line—and the confidence
intervals at 95% and 90%—different nuances of grey.
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Figure 19. GRNN model for the NO, series after the removal of anomalies.
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Figure 20. GRNN of the residual in the ARIMA(1,1,1) model for the series after the removal of anomalies.
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Figure 21. Actual vs. predicted values in the GRNN model of the residual from the ARIMA(1,1,1).
after the removal of aberrant values.

Since similar results were obtained for the NO and NOy series, the authors did not
repeat the entire procedure.

3.3. Models for the O3 Series

The same approach was followed to build models for the Oj series. Given that high
O3 concentrations may negatively impact human health, a good forecast can provide
information for early warning. The first approach provided an ARIMA(0,1,2) model for
the raw data series. The series had to be stationarized before modeling (the degree of
differentiation being 1). The moving average coefficients (with the standard errors in the
brackets) are MA1 = —0.2971 (0.0789) and MA2 = —0.295(0.0884). The goodness of fit
indicators are MSE = 69.72703, MAE = —5.392056, and MAPE = 21.79388. The MSE value is
high due to the high variation in the errors. Despite their randomness, the residuals in the
ARIMA(0,1,2) did not form white noise because they are not Gaussian (the p-value in the
Anderson-Darling test is 0.0055 < 0.005) or homoskedastic. Figure 22 displays the residuals
in the ARIMA(0,1,2) model for O3, their histogram, and the correlogram. The residuals
chart in Figure 22 confirms the existence of high residual values. Since the model could not
be validated, its improvement was necessary.
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ARIMA(0,1,2) model for O3.

The neural-network approach provided a GRNN model (Figure 23) that learnt the
data well but did not perform well on the test set. For example, on the training set, the
correlation between the actual and predicted values is 0.8634 while on the test set, it is only
0.5282. On the test set, the computed values (represented by blue circles) do not have the
same pattern as the recorded data (the black line).
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Figure 23. The GRNN model for the Oj3 series.

The hybrid ARIMA-GRNN provided R? = 99.681%, correlation between actual and
computed values of 0.9984, MSE = 0.3965, MAE = 0.0606, and MAPE = 38.64744 on the
training set. Still, the hybrid model did not perform well on the test set, since R? = 5.898%,
and the correlation between the actual and computed values = 0.333, so it cannot be used
for prediction.

After removing the aberrant values from the O3 series, and performing the Mann-
Kendall test [73], the hypothesis that there is no monotonic trend was rejected. Using the
nonparametric method of Sen [74], it was found that the series presents an increasing trend,
with a slope of 0.310673. The KPSS test revealed nonstationarity in the level of this series. It
was found that the best model was ARIMA(0,1,0) with a drift of 0.310673 (the same as the
slope). The goodness of fit indicators showed very low residual values (RMSE = 0.00022,
MAE = 0.00233, MAPE = 0.000844), with no residual correlation. Given the model’s quality,
it is not necessary to improve it.
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From this model, it was found that the O3 series had an increasing trend over the
study period, which must be observed in the future, since the O3 concentration may reach
a level that is dangerous for the population.

4. Conclusions

The detection of aberrant values in time series has been a problem of interest for a long
time, given that their presence may influence the modeling results. Moreover, forecasting
based on derived models may be significantly biased by the existence of aberrant values.
Therefore, this study investigated the influence of the presence of anomalies on a series of
nitrogen oxide concentrations.

Given that some methodologies are used to search for different kinds of anomalies
(local or global), first, the results provided by LOF, IQR, IF, and GESD were compared.
Since the focus was placed on global aberrant values, their selection was made before using
the last three algorithms for modeling.

Three models were built for each NO, raw series and after the removal of anomalies:
—ARIMA, GRNN, and a hybrid GRNN-ARIMA.

In the case of the NO; series, the building of three models was necessary to improve
the initial model, even in the absence of anomalies. This was motivated by the following
reasons. An ARIMA model, for example, is not necessarily the best choice, given that
the residual must be white noise (a fact that is not always true). A GRNN model is not
appropriate because the R? value or the correlation between the actual and predicted values
is not very high on both the training and test sets. The selection of the regressors in the
artificial intelligence-based approaches is not obvious. Their selection and number are
essential for determining the best model. Even in the absence of outliers, improvement of
the model is necessary to obtain a good forecast in the next stage. From this point of view,
the best model is one that provides the best forecast.

It was shown that the removal of anomalies resulted in better models than when they
were present. The ARIMA model for the raw data series could not be statistically validated
whereas, for the series without anomalies, it was correct from a statistical viewpoint. The
hybrid approach was also better than the ARIMA and GRNN on both NO; series.

The hybrid approach provided the best model for the O3 raw series. After the removal
of aberrant values, the ARMA(0,1,0) with drift provided the best model for the series
evolution. Given that the model was statistically validated and the residual was extremely
low, it was unnecessary to search for another model. It was proved that the O3 series
presents a significant increasing trend (at a significance level of 5%). Given that high
ozone concentrations are harmful to the population’s health, keeping the ozone level under
observation is necessary.

As a future work in the same research direction, dynamical system approaches, such as
phase space reconstruction, will be introduced to analyze the dynamics of atmospheric pollutants.
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Abstract: Air pollution is becoming increasingly serious along with social and economic development
in the southwest of China. The distribution characteristics of particle matter (PM) were studied in
Chengdu from 2016 to 2017, and the changes of PM bearing water-soluble ions and heavy metals and
the distribution of secondary ions were analyzed during the haze episode. The results showed that at
different pollution levels, heavy metals were more likely to be enriched in fine particles and may be
used as a tracer of primary pollution sources. The water-soluble ions in PM; 5 were mainly Sulfate-
Nitrate-Ammonium (SNA) accounting for 43.02%, 24.23%, 23.50%, respectively. S0,42~,NOs;~, NH4*
in PMjg accounted for 34.56%, 27.43%, 19.18%, respectively. It was mainly 5042~ in PM at Clean
levels (PMy 5 = 0~75 pg/m?3, PMjg = 0~150 pg/m?), and mainly NH,* and NO; ~ at Light-Medium
levels (PM, 5 = 75~150 pg/m3, PMyg = 150~350 pg/m3). At Heavy levels (PM, 5 = 150~250 pg/m?3,
PM; = 350~420 ug/ md), it is mainly 5042~ in PM, 5, and mainly NH4" and NO3 ™~ in PMy. The
contribution of mobile sources to the formation of haze in the study area was significant. SNA had
significant contributions to the PM during the haze episode, and more attention should be paid to
them in order to improve air quality.

Keywords: particulate matter; heavy metals; Sulfate-Nitrate-Ammonium; pollution levels; mo-
bile sources

1. Introduction

PM; refers to particles with an aerodynamic equivalent diameter less than or equal to
10 um in ambient air, and PMj 5 refers to particles with an aerodynamic equivalent diameter
less than or equal to 2.5 um in ambient air. The composition of atmospheric particles is
complex, including heavy metals, water-soluble ions, carbonaceous components, and so
on from multiple sources [1,2]. In addition, with small particle sizes and large surface
area, atmospheric particulates have adverse effects on the atmospheric environment and
public health. In recent years, there have been many haze pollution incidents occurring in
a number of locations across China, which has caused more and more public concerns and
attention paid to air pollution [3-5].

The Sichuan Basin is in southwestern China. The topography of hills and basins,
coupled with the climate conditions of high humidity and low wind speed, leads to
atmospheric pollution easily in this area [6,7]. It is the fourth highest haze area following
the Beijing-Tianjin-Hebei area, Yangtze River Delta, and Pearl River Delta. Its pollution
characteristics are of high particle concentration and low visibility [8-10]. The special
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terrain and the humid climate of Chengdu are not conducive to the diffusion of particulate
matter and are prone to secondary pollutant (SNA) conversion and generation [6,10,11].

In recent years, although the implementation of pollution prevention and control
measures has improved the air environment in Chengdu, the region still has a problem
with air pollution [12]. The research topics in this region mainly include the analysis of
particulate pollution characteristics [13,14], the impact of meteorological conditions on
particulate pollution [15], the lag effect of particulate pollution on related diseases [16],
and source apportionment [17]. It is reported that the heavy metals in the atmospheric
particulate matter (PM) in Chengdu are mainly arsenic (As), lead (Pb), copper (Cu), nickel
(Ni), zinc (Zn), iron (Fe), and manganese (Mn) [18,19]. Among them, arsenic (As) mainly
comes from industrial smelters. Pb, Cu, Ni, and Zn mainly come from the exhaust of
motor vehicles and the wear of tires and brake pads whereas Fe and Mn are mainly from
dust generated during vehicle driving [20,21]. Sulfate-Nitrate-Ammonium (SNA) are
water-soluble ions that greatly contribute to PM concentration [22,23]. Air pollution in
Chengdu has obvious seasonal distribution characteristics, which are closely related to
the meteorological factors of the city [24]. It is reported that the mass concentration of
SNA is the highest in winter and the lowest in summer [25]. The high temperature in
summer and autumn is conducive to the conversion of sulfur dioxide (50,) to sulfate
(SO42~) while adverse to the stable existence of ammonium nitrate (NH4NO3) Although
the low temperature in winter inhibits the conversion of gaseous precursors, it is beneficial
to the stable existence of NH4NOj [26,27].

However, it is known from the previous studies that the concentration of particulate
matter increases with the increase of pollution, but the mechanism of particle concentration
and composition change is different under different pollution levels [28]. A recent study
showed that the rapid increase of PMj, 5 at light pollution level in Beijing was caused by
regional transportation, while the rise from heavy to severe was mainly caused by an
increase in the proportion of secondary inorganic components [29]. The air pollution in
cities in southern China has been easily overlooked. Up to now, there is no detailed report
on the various characteristics of atmospheric particulate matter at various pollution levels
in Chengdu, southwest China according to our investigation.

The purpose of this study is to find out how heavy metals and water-soluble ions in
PM in Chengdu, China during the haze periods are distributed and changed at different
pollution levels. Therefore, we investigated PM; 5 and PM;g in Chengdu in southwest
China. The changes in heavy metal elements and water-soluble ions corresponding to
the pollution level and their contribution to particulate matter are discussed. The effects
of SO42~, NO3~, and NHy4* on the particulate matter were emphatically explored. The
secondary production of sulfate and nitrate will be shown to be important in high pollution
level scenarios, and the same with the heavy metal analysis.

2. Materials and Methods
2.1. Study Site and Sample Collection

Chengdu is located in the western part of the Sichuan basin, surrounded by the west-
ern part of the Longquan Mountains and the eastern part of the Qionglai Mountains. The
sampling site was located in Shilidian, Chenghua District, Chengdu (104°08’ E, 30°40’ N),
the capital of Sichuan Province in the western part of the Sichuan Basin. Chengdu is densely
populated, about 1000 people/km? [30,31], with the annual temperature 15.2~16.6 °C, the
annual precipitation 873 mm~1265 mm, the annual sunshine 23-30%, the average annual
wind speed 1.3 m/s, and the average annual relative humidity 80% [32]. Shilidian is
surrounded by major cities in Sichuan, including Deyang and Mianyang (Figure 1).
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Figure 1. Sichuan region of China and sampling site in Chengdu.

From March 2016 to January 2017, PM; 5 and PM;y were collected at the Chengdu
University of Technology in the urban area of Chengdu with no chemical enterprises and
tall buildings. The sampling period was 24 h and we collected 72 PM, 5 samples and
72 PMjg samples at the same time, with a total of 144 samples. The sampling instrument
was a TH-150C medium flow atmospheric sampler (Wuhan Tianhong, Wuhan, China),
with a calibrated flow rate of 100 L/min. Two kinds of filter membranes made of quartz
and Teflon, respectively, (Whatman, Buckinghamshire, UK) were chosen. The Teflon
filters are used for the heavy metal analysis because Teflon filters have low heavy metal
background content, and the quartz filters are used for the water-soluble ion analysis.
After the samples were collected, the sampling membranes were placed in clearly marked
sample boxes immediately. At the same time, the meteorological data at the Shilidian
meteorological monitoring station were recorded, including temperature, air pressure, wind
speed, relative humidity, etc. Samples were collected under stable weather conditions, with
weak wind at speeds less than 1.5 m/s, thus the contribution from pollutants transported
long distances are likely small. The samples in this study mainly represent the local
atmospheric conditions in Chengdu.

2.2. Mass Concentration Analysis

Before sampling, the Teflon filter membrane (Whatman, ®90 mm, Buckinghamshire,
UK) is equilibrated for at least 24 h at a temperature of 20 + 5 °C and a relative humidity of
50 £ 5%. Quartz filter membranes (Whatman, $90 mm) were wrapped in aluminum foil,
baked in a muffle furnace (5X-8-13, Beijing) at 500 °C for 4 h to remove the background
organic matter, and then placed in the same environment as the Teflon filters for at least 24 h.
After the filter membrane, use a one-hundred thousandth balance (Sartorius, Gottingen,
Germany, CPA225D) was used to weigh each filter 3 times to ensure that the difference
between any two weighing values did not exceed 0.04 mg. After the filter membranes were
weighed, they were all wrapped in aluminum foil, and put in a sealed bag, and stored
at —4 °C until analyzed. A pretreated blank filter membrane was used as a background.
Before sample collection, the cutting head of the sampler filter membrane grid, sealing
gasket, and other places that may be in contact with the filter membrane were wiped
two to three times with high-grade pure absolute ethanol to prevent impurities from
entering the filter membrane during the sampling process. Refer to “Ambient Air PMy
and PM, 5 Measurement-Gravimetric Method” (HJ618-2011) for details on the method
used to calculate the mass concentrations of PM; 5 and PMyj.

2.3. Heavy Metals Analysis

The concentrations of heavy metals of the samples were then analyzed. Before the
experiment, all Teflon vials were thoroughly cleaned with 20% hot nitric acid solution
(70 °C) and deionized water to avoid contamination. Subsequently, 1/2 of a Teflon filter
was dissolved with 1 mL of nitric acid (HNO3) and 1 mL hydrofluoric acid (HF) in a
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closed-cap Teflon vial for 48 h at 180 °C. After that, the mixed solution was steamed to near
dry, and then re-dissolved twice with 1 mL HNOj (120 °C). After the last re-dissolution,
HNOj3 (1 mL), Rh solution (1 mL of 1000 ng/mL), and 5 mL deionized water were added
and kept in Teflon vials for 6 h (100 °C). At this point, the sample pre-treatment was
completed. The concentrations of the heavy metals were analyzed by inductively coupled
plasma-mass spectrometry (ICP-MS, Perkin Elmer Corp., Norwalk, USA). The reference
material GSS-4 was used to ensure the analytical accuracy with recovery between 94.3%
and 103.6%. In addition, for 10% of the samples analysis was repeated and reagent blanks
were also used to check the quality of the analysis. A total of eight metal elements were
measured, including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni),
lead (Pb), vanadium (V), and zinc (Zn). Their detection limits are: As (0.30 ng/ m3), Cd
(0.01 ng/m3), Cr (0.10 ng/m?), Cu (0.04 ng/m?3), Ni (0.04 ng/m3), Pb (0.03 ng/m?), V
(0.08 ng/m3), and Zn (0.10 ng/m3).

2.4. Water-Soluble Ions Determination

The main steps for the determination of water-soluble ions in the sample are as follows:
putting 1/4 of the quartz filter into a 50 mL PET bottle with 20 mL of ultra-pure water and
sonicated (25 °C, power 50%, Kunshan Ultrasound Instrument Co., Ltd., Kunshan, China,
KQ-700DB) for 0.5 h. The bottle was transferred to a water bath shaker (Changzhou Putian
Instrument Manufacturing Co., Ltd., Putian, China, SHA-CA) at room temperature and
kept shaking for 30 min. The extract was then filtered through a 0.22 pm filter membrane.
Anions of fluoride (F~), chloride (C17), nitrate (NO3 ™), sulfate (SO427), and cations of
sodium (Na*), ammonium (NHy"), potassium (K*), calcium (Ca?*), and magnesium (Mg?*)
were determined by ion chromatography (Metrohm 792). The anion column used was a
Metrosep A Supp 5—150/4.0; the cation column used in ion chromatography is Metrosep
C4-150. The flow rate was 0.7 mL/min. The sampling time for each run was 20 min.
The anion eluent was sodium carbonate/sodium bicarbonate, fully dissolve the two in
ultrapure water, and dilute them in a 100 mL volumetric flask, as a stock solution. The
stock solution diluted 100 times is used as the eluent for anion determination. The cation
eluent was 7.25 mM HNOj3 and 0.02 M methanesulfonic acid. The ultrapure water, reagent
solutions, and samples used in the test were filtered through a 0.45 um filter membrane.
Their detection limits are F~ (0.010 ug/m?3), C1~ (0.012 pg/m3), NO;~ (0.027 pg/m?),
SO,4%~ (0.030 ng/m3) and Na* (0.019 pg/m?), NH,* (0.020 pg/m?), K* (0.025 pug/m3), Ca2*
(0.037 ug/m3) and Mg?* (0.020 pg/m?3).

2.5. SOR and NOR Analysis

The concentrations of sulfate, nitrate, and ammonium are related to the concentration
of gaseous precursors: sulfur dioxide (SO;), nitrogen oxides (NOy), and ammonia (NH3),
and their conversion rates to particles generated in the atmosphere. Here SOR (sulfur
oxidation rate) and NOR (nitrogen oxidation rate) are used to describe the formation of
secondary aerosol species. The measured values of SO, and NO; come from the Chengdu
Shilidian permanent monitoring site. Based on Ma et al. [29], the calculation formulas of
SOR and NOR are:

SOR =nSO,4%~ /(nSO4>~ + nSO,)

NOR =nNO;3;™ /(nNO3~ + nNO5)

where n is the molar concentration of the species. When SOR > 0.1, it indicates that there
is a process of SO, oxidation to SO42~ in the particles. When NOR > 0.001, it is said that
there is a process of oxidation of NO, to NO3 ™ in the particulate matter. The higher value
of SOR or NOR, the higher the oxidation rate of the pollutant [33].
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3. Results and Discussion
3.1. PM Mass Concentration

Thirty samples, eight samples, twenty-one samples, and thirteen samples were ana-
lyzed in spring, summer, autumn, and winter, respectively. The concentrations of PM; 5
and PM;( showed obvious seasonal distribution characteristics. The changes of PM; 5 con-
centration with seasons (spring to winter) were: 98.62 pug/m3, 66.75 ng/m3, 84.02 pg/m?,
and 159.74 ug/ m3. PM;, concentration changes with seasons (spring to winter) were:
169.87 ug/ m3, 107.22 ug/ m3, 167.16 ng/ m3, and 260.30 ug/ m3. The concentrations of
PM, 5 and PMjy were the highest in winter and the lowest in summer. An inversion
easily forms in winter, which prevents particles from diffusing. While the movement of
atmospheric molecules and the atmospheric oxidation capacity is enhanced because of the
high temperature in summer, which is conducive to the diffusion of atmospheric particles.

According to the “Ambient Air Quality Index (AQI) Technical Regulations (Trial)” (Min-
istry of Environmental Protection of China, 2012), the PM concentration is divided into four lev-
els (Clean: PM, 5 = 0~75 pg/m3, PMyq = 0~150 pg/m?; Light-Medium: PM, 5 = 75~150 pg/m3,
PM;g = 150~350 pg/ m3; Heavy: PM; 5 = 150~250 pg/ m3, PM; = 350~420 ug/ m?; Severe:
PM,5 > 250 ug/m?3, PMjg > 420 pg/m?). The particulate matter concentration exceeding
the clean level (PMy5 = 0~75 pg/ m3, PM;g = 0~150 ng/ m?) is defined as a haze incident.
Haze incidents during the sampling period mainly occurred from March to May 2016 and
November 2016 to January 2017 (Figure 2), so PM in these periods was analyzed. Figure 3a
showed that there were 32 samples at the clean levels, 55 samples at the Light-Medium levels,
and 12 samples at the severe levels. It is worth noting that the pollution level based on PM; 5
did reach the Severe levels on 3 January 2017.

The concentrations of PM; 5 that increase with the change in pollution levels were
on average 48.80 ug/ m?>, 109.84 ug/ m3, and 186.21 ug/ m? for Clean, Light-medium,
and Heavy levels, respectively. The concentrations of PM; increase with the change in
pollution levels were 98.49 ug/m?, 226.53 pug/m3, and 383.21 pg/m? for Clean, Light-
medium, and Heavy levels, respectively (Figure 3b). From the perspective of the increase
in particle concentration, the growth rate of PMy is faster than the growth rate of PM; 5,
indicating that coarse particles (PMj, 5-10) have a certain contribution to the growth of PM;.
PM, 5/PMjg from Clean to Heavy pollution decreases first and then increases slightly,
indicating PM; 5 contributed the most to PMyg at Clean levels and the least to PM; at
Severe levels.

Figure 2. Time series of changes in PM mass concentration and related meteorological conditions.
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Figure 3. The number of samples that PMj, 5 and PM;( were at different pollution levels (a); the concentrations of PMj; 5 and
PM at different pollution levels (b).

There is a correlation between the concentration of PM and related climatic conditions
(Table 1). The concentration of PM is significantly negatively correlated with wind speed,
temperature, and ozone, and significantly positively correlated with relative humidity,
atmospheric pressure, CO, NO,, and SO;. The correlation for PM; 5 and PM;g with
temperature, CO, and NO; are similar. PM;5 has a stronger correlation with relative
humidity, atmospheric pressure, ozone, and SO,, while PM; has a stronger correlation
with wind speed. This shows that the influence of meteorological conditions on fine
particles is greater.

Table 1. Correlation coefficient of PM with meteorological parameters and gas-phase species.

coO NO; O3 SO,
Wi RH (% P (kP TC
s (m/s) (%) (kPa) (°O) (ug'm’3) (ug.m,g,) (ug.m,;’,) (ug.m,;;)
PM; 5 —0.75 0.98 0.93 —0.99 0.99 0.98 —0.99 0.96
PMip —0.98 0.87 0.77 —0.99 0.97 0.98 —-0.91 0.93

3.2. Heavy Metals Characteristics and the Potential Use

The content of heavy metals in PM at different pollution levels is shown in Figure 4.
The content of heavy metals varies greatly at different levels of pollution (average values
are shown in Tables S1 and S2). At each pollution level, the heavy metal content in PMj
was significantly higher than that of PM, 5. With the increase of pollution level, the total
amount of heavy metals in the particles gradually increased, but the degree of increase
gradually decreased. In PM; 5 and PMy, the order of heavy metal content at each pollution
level was Zn > Cu> Pb > Cr > As > Ni > V > Cd. It is reported that Zn, Cu, Cr, Pb mainly
come from exhaust emissions of motor vehicles or the wear of brake pads and tires [34-36],
and Pb, As, Ni come from coal and petroleum combustion [13,37]. Cd is related to industrial
processes [13,38], and V may come from mining or soil fertilizer use [39]. Lead, zinc, and
copper account for a relatively high proportion, which is related to automobile exhaust.
Urban traffic jams are becoming more and more serious, leading to frequent braking and
start-up of vehicles, which aggravates the emission of heavy metals in the exhaust gas.
Beijing is the city with the largest number of cars in China, and car exhaust has been
studied in Beijing as a factor [40,41]. Chengdu is the second-largest city in the country for
car ownership, so the contribution of car exhaust to Chengdu’s atmospheric particulate
matter is also significant [42].
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Figure 4. (a,b) are the content and percentage of heavy metals in PM; 5 at different pollution levels; (c,d) are the content and
percentage of heavy metals in PMyg at different pollution levels.

The relative percentage content of all heavy metals is almost constant at each pollution
level. The content of heavy metals (HM) per particle at different pollution levels is shown
in Figure S1 (Supplementary Information). It can be seen that the heavy metals per particle
changes with the increase of particle concentration. The heavy metals content per particle
in PMj, 5 is always higher than that for PM;.

At the Light-Medium level, the ratio of heavy metals in PM; 5 to heavy metals in PM;
is the largest, indicating that heavy metals are mainly concentrated in fine particles at this
pollution level. At the Heavy levels, the content of heavy metals in PM;y and PM; 5 is
the smallest, and the contribution of heavy metals in PM; 5 to that in PMj is the smallest,
indicating that heavy metals enriched in coarser particles may be discharged into the
atmosphere at this pollution level. At the severe level, the heavy metal content increased
sharply. For example, on 3rd January 2017, it was found that the wind speed was the lowest
during the study period (0.5 m/s). The wind speed on the previous day (2 January) was
relatively higher (0.9 m/s) and from the northwest. It is speculated that the heavy metal
content on January 3rd sharply increased due to the metal sources carried by the wind
from the northwest of Chengdu.

3.3. Ions in PM
3.3.1. Ions Characteristics at Different Pollution Levels

The ions in PM have significant differences at different pollution levels (Figure 5).
From Clean to the subsequent pollution levels, the ion content in the particles increased
gradually (see Tables S3 and S4 for the average values). The order of ion content in
PM, 5 was SO42~ > NO3;~ > NH,* > Cl~ >K* > Na* > Ca2* >F > Mg2+. Among them,
SO4%2~,NO;~, and NH,* accounted for 43.02%, 24.23% and 23.50% of the total ion content,
respectively. The order of ion content, in PMjy was SO42~ > NO3~ > NH,* > Ca?* > K* >
Cl~ > Na* > Mg?* > F~, while SO4?>~, NO3 ~, NH,* accounted for 34.56%, 27.43%, 19.18%
of the total ion content, respectively. The results showed that the secondary ions (SO4%~
NO;~, NH;*) were the main ions in Chengdu atmospheric particles.

4
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Figure 5. (a,b) are the content and percentage of water-soluble ions in PM; 5 at different pollution levels, respectively;
(c,d) are the content and percentage of water-soluble ions in PMy at different pollution levels.

However, unlike the heavy metal percentage distribution, the relative percentage of
each ion varies significantly at different pollution levels. In PMy, the percentage of Ca%*
was significantly higher than that of PM, 5, indicating that Ca®* is more likely to be enriched
in coarse particles. Coarse particles often are dust, and CaCOj is a major component
of dust, which is the same as previous studies in Chengdu [13,27]. From Clean to the
subsequent pollution levels, the relative percentages of NO3~, NH4* gradually increased,
but the relative percentages of Ca?*, K*, Na*, and SO,>~ gradually decreased, and the
relative percentages of Mg?*, CI~, and F~ were basically stable. This result demonstrated
atmospheric polluting processes in Chengdu were mainly caused by particles with ions
such as NO3 ~ and NH4* during the research period.

It is reported that with the control of SO, pollution in China, the sulfate content in PM
has been significantly reduced [43,44]. At the same time, NO3 ™~ and S0,2~ will interact,
and NOy will catalyze the conversion of SO, to SO42~ [45]. The oxidation of a large amount
of SO, will not only produce SO4%~ but also promote the formation of NO3~ on water
particles [46]. Therefore, SO,, as the precursor of sulfate, is oxidized, as NOx is converted
to NO3~, and the conversion of SO, should be slow and reduced.

Figure S2 (Supplementary Information) shows the content of ions per particle at the
different pollution levels. The content of ions in particles is obviously different at different
pollution levels. From Clean to Heavy or Severe, the content of ions in PM; 5 and PMj
decreased gradually. The ion content per particle in PM; 5 is always greater than that for
PM; at each pollution level, but the ratio of ion content per particle in PM; 5 to PMjg
decreases gradually from Clean to Heavy. The results indicate that ions may mainly enrich
fine particles, but the proportion of ions in coarser particles gradually increases as the
particle concentration increases.

3.3.2. Characteristics of Sulfate-Nitrate-Ammonium (SNA)

Figure 6 shows the changes of parameters related to SNA (SO4%2~,NO;~, NH,*) at
different pollution levels. From Clean to the subsequent pollution levels, SOR is always
greater than NOR, but the degree the two increases with the pollution levels are different.
NOR in PM, 5 increased from 0.11 (Clean) to 0.22 (Severe), and SOR increased from 0.43
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(Clean) to 0.61 (Severe). NOR in PM; increased from 0.16 (Clean) to 0.29 (Heavy), and the
SOR increased from 0.52 (Clean) to 0.60 (Heavy). Early studies have shown that, when
SOR is greater than 0.1, there is a photochemical reaction of SO, in the atmosphere [47].
This result indicates that SO, is more susceptible to secondary conversion than NO,. The

sulfate and nitrate in this study were largely formed through secondary reactions.

Clean Light-] Medlum Heavy
Pollution Level

Severe

Clean Light-] Medlum Heavy
Pollution Level

Severe

e
=

b 00 1.0
| N L S| L (bY* M rv..-0-von 106
12 250 —@—SOR ~@=NO,750,* 10.9
184 — o——— *) 105
w B %lose,
18232 ~ & =)
S o0 1044
%,168 ESE 5107 2
{80 | E @ I:-3-=)
{14 S 100t 2106 ~
178 A
12 501 102 Hos
PAEA RN A |
10 0 0.1 0.4
Clean Light-Medium Heavy Severe Clean nght -Medium Heavy Severe
Pollution Level Pollution Level
21 (d) 0.7
I dpM,,~A—RH—A-T * I 1pM,~@-NOR
t {83 4007 ~O- SOR ~@-NO, 150, 73 los 142
20 ~ Q /o
182 £ 300 J052 | 4
@ _E o110 o*
S| O & @ %
81E{10C = jo4s| &
2 PE 2200} -
o g 10.8 %
180 E ,0 B 0.3Z
18 100 02
79 I 17 o6

=, and PM,s; (c) RH, T, PM;o; (d) SOR, NOR,

~ and PMy at different pollution levels (RH: relative humidity; SOR/NOR: sulfur/nitrogen oxidation rate; T:

The formation of SNA is closely related to meteorological conditions (relative humidity
and temperature) [48-50]. When the relative humidity is low, the main reaction is a gas-
phase reaction, and when the relative humidity is high, the main reaction is a heterogeneous
reaction on particles [51,52]. According to Pandis and Seinfeld [53], the liquid-phase
oxidation of SO, may be an important way to generate SO42~, while NO3~ is mainly
generated by gas-phase oxidation of NOy. So, the effect of humidity on S0,4%~ is more
significant. With the increase in pollution levels, the relative humidity increased from
76% to 83%. As the air approached saturation, the particle concentration increased, and
the temperature decreased (PM;5: 21.7-11.8 °C; PMjg: 19.8-17.8 °C). It can be seen that
nitrate and sulfate in this study tended to form through heterogeneous reactions with
the change of pollution level. Sulfate and nitrate are important hygroscopic ions, which
can promote the hygroscopic growth of atmospheric particles and have a great impact
on visibility and temperature [3,54,55]. The NO3;™/ SO,42~ ratio has large differences at
different pollution levels, which gradually increase with the increase of pollution levels, and
the aerosol ions will be easier to absorb moisture [56]. NO3 ~ represents mobile source, and
SO,% represents fixed source. The NO3; ™/ SO,2~ ratio is often used to indicate whether
particulate matter is dominated by mobile source or fixed source. The NO3; ™/ SO42~ ratio
increased from 0.52 (Clean) to 0.95 (Severe) in PM, 5, and increased from 0.57 (Clean)
to 1.20 (Heavy) in PMjo. The results show that the contribution of pollution caused by
mobile sources to the increase of PM is gradually increasing. In the fine particles, it is a
mainly fixed pollution source at different pollution levels. While in the coarse particles, it
is a mainly fixed pollution source at Clean and Light-Medium levels, and mainly mobile
sources at the Heavy.

Figure 7 shows the correlation between SNA and PM at different pollution levels.
The relative contribution of SNA to the increase of PM; 5 and PM at each pollution level
is different. At Clean levels, the contribution of SO4%~ to the increase of PM; 5 is 11.5%,
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which is much larger than the contribution of other ions, and the relative contribution of
SNA to PMj is very small. At Light-Medium levels, the contributions of S0,42~, NH,*,
NO3~ to PM differ (PMy5: 7.18%, 10.9%, 9.93%; PMyg: 10.4%, 14.0%, 14.0%). Sulfates
contributed more to PM, 5 at the Clean levels because of the trend to form ammonium
sulfate during the formation of SNA in the inhomogeneous phase, which impeded the
formation of ammonium nitrate. This result is reflected in more contribution of nitrate
to PM at the Light-Medium levels, compared to the Clean levels. At Heavy levels, the
contributions of SO4%2~, NH;*, NO; ™~ to PM are significantly different (PMy 5: 24.0%, 3.76%,
11.7%; PMjg: 24.0%, 40.8%, 59.7%). This result shows sulfate is more likely to be enriched
in fine particles at each level. Nitrate and ammonium salts are easily concentrated in fine
particles at Clean and Light-medium pollution levels, while they are easily concentrated
in coarse particles at Heavy pollution levels (NO3~: 59.7%; NH;": 40.8%). The secondary
conversion of SO, is mainly liquid-phase reaction, which is closely related to relative
humidity. The relative humidity of the Heavy level is the largest (83%), so the contribution
of sulfate to particles is also the largest at this level. The secondary reaction of NO; is
a mainly gas-phase reaction. The atmospheric temperature is lower than other levels at
Heavy levels, which is not conducive to the secondary generation of NO,. However, it
has been reported that it is conducive to the stable existence of NH4;NOj. Therefore, the
contribution of NO3; ™~ to PM is relatively large at Heavy levels [57].
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Figure 7. Linear regression of 50,42~ with (a) PM; 5 and (b) PMyo, NH,* with (¢) PM; 5 and (d) PM;g, NO3~ with (e) PM; 5
and (f) PMj at different pollution levels (p < 0.05; C: Clean; L: Light-Medium; H: Heavy; SN means sample number).
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4. Conclusions

The present study analyzed the distribution and changes of heavy metals and water-
soluble ions in PMj 5 and PM;y during the haze periods from March 2016 to January
2017 in Chengdu, China at different pollution levels. It revealed the concentration of PM
was closely related to meteorological conditions and the effect on fine particles is more
significant. Heavy metals were more easily enriched in fine particles at different pollution
levels, and the relative percentage content was basically stable. However, the relative
percentage of water-soluble ions varied with the pollution level, and the relative percentage
of NO;~ and NH," increased gradually. The water-soluble ions in the particles during
the study were mainly SO42~, NO;~ and NH4* and mainly from secondary reactions.
Furthermore, the contribution of SNA to the increase of PM was variable at different
pollution levels. It was mainly SO4%~ in PM at Clean levels, and mainly NH;* and NO3 ™~
at Light-Medium levels. At Heavy levels, it is mainly SO4?~ in PM, 5, and mainly NH,*
and NO3;~ in PM;g. Mobile sources are contributing more to the occurrence of haze in
Chengdu, which should have more attention paid to it. The results of this research not
only enrich the air pollution research in Chengdu, China, but also provide a reference for
the urban air pollution research with the same background. The deficiency lies in the lack
amount of PM; samples under Heavy and Severe pollution levels. The next step will be to
study the source analysis of PM quantitatively.
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levels, Figure S2. Change in ions per particle at different pollution levels, Table S1: Average mass
concentrations of heavy metals in PMj; 5 at different pollution levels (ng/ m3), Table S2: Average
mass concentrations of heavy metals in PMy at different pollution levels (ng/m?3), Table S3: Average
mass concentration of ions in PM, 5 at different pollution levels (ug/ m?), Table S4: Average mass
concentration of ions in PMy at different pollution levels (ug/ m?).
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Abstract: Dust is a significant pollution source in the United Arab Emirates (UAE) that impacts
population health. Therefore, the present study aims to determine the concentration of heavy metals
(Cd, Pb, Cr, Cu, Ni, and Zn) in the air in the Sharjah and Ajman emirates” urban areas and assesses the
health risk. Three indicators were used for this purpose: the average daily dose (ADD), the hazard
quotient (HQ), and the health index (HI). Data were collected during the period April-August 2020.
Moreover, the observation sites were clustered based on the pollutants’ concentration, given that the
greater the heavy metal concentration is, the greater is the risk for the population health. The most
abundant heavy metal found in the atmosphere was Zn, with a mean concentration of 160.30 mg/kg,
the concentrations of other metals being in the following order: Ni > Cr > Cu > Pb > Cd. The mean
concentrations of Cd, Pb, and Cr were within the range of background values, while those of Cu, Ni,
and Zn were higher than the background values, indicating anthropogenic pollution. For adults, the
mean ADD values of heavy metals decreased from Zn to Cd (Zn > Ni > Cr > Cu > Pb > Cd). The HQ
(HI) suggested an acceptable (negligible) level of non-carcinogenic harmful health risk to residents’
health. The sites were grouped in three clusters, one of them containing a single location, where the
highest concentrations of heavy metals were found.

Keywords: heavy metals; pollution; concentration; indicators; health risk assessment

1. Introduction

Heavy metals are the most common and hazardous chemicals in the environment
due to their toxicity, persistence, and bioaccumulation [1,2]. Even at low concentrations,
heavy metals (lead (Pb), chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium
(Cd), cobalt (Co), zinc (Zn), and copper (Cu)) are known for their high toxicity [3]. These
pollutants originate from anthropogenic and natural processes [4].

Anthropogenic processes that lead to the release of heavy metals and other pollu-
tants include industrial, agricultural, mining, and metallurgical activities. Automobile
exhaust, smelting, insecticides, and fossil burning are activities that contribute significantly
to environmental pollution with heavy metals, e.g., lead, arsenic, copper, zinc, nickel,
vanadium, mercury, selenium, and tin [4]. On the other hand, sources of natural emissions
of these metals include sea-salt sprays, volcanic eruptions, forest fires, and wind-borne
soil particles.

Rock-weathering is another source of heavy metals released into the atmosphere [5].
Several studies demonstrated that high levels of heavy metals result from natural emissions
and vehicles’ exhaust in the traffic [6,7].
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A significant ecological and public health concern is associated with the environmental
contamination and heavy metals’ ultimate toxic effect [8-15]. Although many heavy metals
are essential micronutrients necessary for various biochemical and physiological processes
and functions [8], excessive exposure to these agents results in a wide range of adverse
health effects and diseases [16]. Each metal has a distinctive toxicological profile and
action mechanism. These toxicological effects depend on exposed individuals” age, gender,
genetics, and nutritional status. Limiting access to arsenic, cadmium, chromium, lead, and
mercury is a health priority given their systemic toxicity and carcinogenic effect on the
population [17].

The rapid economic and industrial development in the United Arab Emirates (UAE)
has markedly impacted the country’s air quality, where gases and dust are being emitted
into the air in exceedingly high concentrations, rendering air pollution a critical public
health problem [18-21]. Recent studies have demonstrated that road dust is a significant
source of air pollution with heavy metals [21-23] and is a leading factor affecting hu-
man health [21,24,25]. Indeed, in the UAE, results of ecological risk assessments showed
that Cd and Hg in road dust constitute a high public health risk [12,18]. The primary
sources of heavy metal in road dust are soil materials, vehicle exhaust emissions, at-
mospheric deposition, and industrial and commercial activities [26-28]. The vehicles’
emissions—including a complex mixture of metals from tires, brakes, parts wear and tear,
and suspended road dust—are perhaps the most important source of air pollution with
heavy metals [21,26,29-32] in urban areas. Long-term inhalation, ingestion, and dermal
contact of these factors are associated with a wide range of acute or chronic health adverse
effects [24,26] by their accumulation in the vital organs, such as the brain, liver, bones, and
kidneys [33,34].

Copper is a nutrient for humans, but exposure to high concentrations can produce
diseases, as Taylor et al. [35] presented in their reviews on the literature about the effects of
Cu on human health. Pb is regarded as a mutagen and probable carcinogen, producing
renal tumors and disturbing the reproductive and nervous systems [36]. Exposure to
increased concentration of Zn has toxic effects, rarely resulting in intoxication and inter-
ferring with Cu uptake [37]. The health effects produced by Ni can be cardiovascular
diseases, contact dermatitis, respiratory diseases (respiratory tract cancer, lung fibrosis,
and asthma) [38,39]. Inhalation and ingestion of contaminated food and water are the main
ways of introducing Ni to the organism [40]. Cadmium is a toxic metal for the population
and animals, deposited in the environment by agricultural and industrial pollution [41].
Its accumulation in the human body through inhalation and ingestion provokes different
types of cancer. The primary way chromium (especially in the form of Cr(IIl) and Cr(VI))
enters the organism is through inhalation [42], affecting the respiratory tract by producing
rhinitis, pharyngitis, bronchitis.

Therefore, the present study was performed to determine the levels of heavy metals in
the road dust from urban areas in the Sharjah and Ajman emirates (UAE) and to evaluate
these agents’ impact on public health. Clustering the observation sites (based on the studied
metals’ concentrations in the atmospheric dust and health indicators) was performed to
determine the most polluted zones and those with the highest risk for the population.

2. Materials and Methods
2.1. Study Area

Sharjah is the third emirate in the UAE, in terms of population number. Sharjah city,
the capital of this emirate, is situated at 25°21'27" N latitude and 55°23/27” E longitude.

Ajman is the fifth largest emirate in the UAE, and its capital, with the same name, is located
at 25°24’49” N latitude and 55°26'44" E longitude (Figure 1).
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Figure 1. Study area location and sampling map.

The articles [21,25] present an extensive analysis of the climate in the region. Still, we
summarize here some aspects related to the climate in the Sharjah and Ajman emirates. The
study area belongs to a hot desert with warm winters and scorching and humid summers.
Rainfall is generally light and erratic and occurs almost entirely from November to April.
About two-thirds of annual precipitations fall in February and March [43].

The chart from Figure 2 presents the average temperatures and precipitation evolution.
Figure 3 shows the cloudy, sunny, and precipitation days, precipitation amounts, maximum
temperatures, and wind speed recorded at the Sharjah International Airport. Two sampling
sites are situated nearby (29 and 30).

The wind rose for Sharjah International Airport (Figure 4) shows that most often
throughout the year the wind blows from west to east or east to west, with speeds between
12 and 19 km/h.

Ajman has a similar climate as Sharjah.

Land use/Land cover (LULC) is the placement of activities and physical structures
within a specific geographical area. It is a crucial metric for determining how human
activities interact with the natural world [44]. The local, regional, and global environments
are under tremendous stress due to changing land-use practices. The degradation of air
quality is one of the most important environmental effects of urbanization.
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Figure 4. Wind rose for Sharjah International Airport.

Environmental and social factors, such as land use, community design, transportation
networks, have been shown to have a significant impact on public health [45]. Many
variables could cause particulate pollution, such as dust from construction, domestic
garbage, and vehicle exhaust, but most pollution can be associated with land-use changes.
Understanding the response mechanisms of urban particle pollution is crucial for pollution
prevention and environmental protection [46].

To better understand the study area, we used recently released Landsat 8 satellite
images for LULC mapping and monitoring in the region (Figure 5).
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Figure 5. Landuse/Landcover (LULC) map of the study area.
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Results of the land-cover analysis (Figures 5 and 6) show that 66% of the study area
(187.61 km?) mostly includes urban area/human-made features, which includes industrial
sites, petrol pumps, hotels, tourist areas, residential and commercial buildings, airport, etc.

B Water bodies
Sandy area
B Dense Vegetation/Garden
[ Bareland
B Urban area/ Man-made features
[ Sparse vegetation

Figure 6. Pie chart showing the LULC percentage distribution of the studied region (from the
LANDSAT 8).

Other land uses do not directly emit air pollutants but attract vehicular sources such
as bus terminals, shopping centers, warehouses, etc.
The major categories of the land use and the associated surfaces in the study area are:

e  Sparse vegetation: date palms, Prosopis juliflora, etc. (18.07 km?);
Water bodies: water in the terrestrial area and nearby sea (25.35 km?);
Dense vegetation/Garden: human-made garden areas and concentrated vegetation
(17.77 km?);

e  Urban area/Human-made features: industrial areas, petrol pumps, hotels, tourist
areas, residential and commercial buildings, airports, etc. (187.61 km?);

e  Sandy area (3.37 km?)

e  Bareland (33.52 km?).

2.2. Instruments and Methods
2.2.1. Samples Collection

Dust samples were collected from thirty different Sharjah and Ajman emirates loca-
tions for five months (April-August 2020) using large dust traps placed at the height of 4 m
above the ground level. Collected samples (150 at each site) were safely packed and moved
to a desiccator before transporting to the laboratory. Samples were air-dried for 48 h to
avoid moisture in a well-protected area. Then, each sample was sieved using a mechanical
sieve shaker (Retsch, AS 200) with a 63um filter to remove any large particles. A six-stage
Anderson cascade impactor (Tecora, Italy) with an intake flow rate of 28.3 L/min was used
to segregate dust particles.

Dust with a diameter lower than 10 um was collected on the glass disks in the cascade
impactor. The size ranges were 10 pm, 9.0 um, 7.0 pm, 5.8 um, 4.7 um, and 3.3 pm. A
cellulose nitrate filter with 100 mm diameter and 3 um pore size was used as a backup filter.

2.2.2. Reagents, Standards, and Laboratory Ware

All experiments were performed using analytical reagent (AR) grade chemicals. The
reference standard, check standard, and reagents were purchased from Sigma Aldrich. A
1:1 acid mixture was prepared using conc. nitric acid (69% v/v) and hydrochloric acid
(87% v/v). Ultra-pure water with chemical resistivity of 18.2 M().cm was obtained from
a Merck Millipore (Massachusetts, USA) water purification system in the lab. For the
sample oxidation, 30% hydrogen peroxide was used. Class-A grade glassware was utilized
throughout the analysis. All glassware and plasticware were washed 5-6 times with
ultrapure water followed by 10% nitric acid to remove contaminations and then air-dried.
The Mars-6 system (CEM, North Carolina, USA) was employed to digest the samples.
ICP-OES analysis was performed using a Perkin Elmer (Ohio, USA) Avio 200 system.
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2.2.3. Samples Analysis

Sample digestion was performed by following USEPA 3050B [47] procedure. A total
of 0.2 g of each sample was accurately weighed and transferred to Teflon vessels for
microwave-assisted digestion. Afterwards, 10 mL of 1:1 HCl: HNO3; were added to the
digestion vessel, mixed the slurry well, and digested it using the microwave digestion
system at 95 °C for 5 min. The slurry was cooled and then added to 5 mL conc. HNOs. It
was then heated and refluxed at 95 °C for 5 min, cooled, followed by the careful addition
of 10% H,O; for oxidation. The solutions were carefully transferred to 100 mL volumetric
flasks, made up to mark with water, and filtered using Whatman 41 filters. The filtered
solutions were moved to the ICP-OES system and analyzed for heavy metals. Replicate
analyses were carried out on each sample.

Strict quality control and quality assurance procedures were followed to prepare
and analyze samples, laboratory blanks, check standards, and standard spiked samples.
Laboratory blanks were prepared using the same reagents used for the digestion without
adding dust samples. The laboratory blank values for each metal were much lower
than those of metals’ concentrations in the target samples. Method detection (MDL) was
calculated using the equation:

MDL = Mean +2 9 x SD 1)

where Mean is the average concentration and SD is the standard deviation of blanks [48].
The MDL values ranged between 0.02 pg/kg (Cd) and 25.2 ug/kg (K). The metals’ recovery
percentages (spiked and standard) were between 95% and 105%. The precision of repeated
analysis was determined (for every metal) by computing the coefficient of variation, which
was less than 3%.

2.3. Heath Risk Assessment

In this study, the impact of the pollution on the population exposed to dust met-
als has been assessed by computing the ADD (mg/kg/day) of pollutants via ingestion
(ADD;y,), dermal contact (ADDy;yy,), and inhalation (ADDj,,p,). The utilized formulas are
(2)—(4) [24,47].

ADD ¢ X Rjyg X CF X EF X ED 9
mg — BW % AT 7 ( )
c X SAx CFxSLx ABS x EF x ED
ADD = , 3
derm BW x AT ( )
¢ X Ry X EF X ED
ADDj,, = L , 4
mh ™ "PEF x BW x AT @)
where the notations” meanings are given in Table 1.
Table 1. Exposure factors for dose models (adult).
Factor Definition Unit Value Reference
c Concentration of the contaminant in dusts mg/kg - This study
Ring Ingestion rate of soil mg/day 100 [49]
AT Average time days 365 x ED
BW Average body weight kg 55.9
CF Conversion factor kg/mg 1x10°° Environmental site [50]
EF Exposure frequency days/year 35
ED Exposure duration year 24 [50]
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Table 1. Cont.

Factor Definition Unit Value Reference
SA Surface area of the skin that contacts the dust cm? 5000
Rinn Inhalation rate m?/day 20
SL Skin adherence factor for dust mg/ cm? 1 [50]
ABS Dermal absorption factor (chemical specific) - 0.001
PEF Particle emission factor m3/ kg 1.32 x 10°

The model used in this study to calculate people’s exposure to dust metals is based on
those developed by the Environmental Protection Agency of the United States [24].

The reference dose (RfD) estimates the maximum acceptable risk on a population
group (in this case, adults) through daily exposure during a lifetime. An unfavorable
health effect during a lifetime can be signaled using the threshold of RfD value. No adverse
health effect is concluded if the ADD value is lower than the reference dose. If the ADD
value is higher than the RfD, the exposure pathway will likely cause harmful human health
effects [24]. The reference dose (RfD) values of heavy metals for the ingestion, dermal
contact, and inhalation are presented in Table 2 [50].

Table 2. Values of RfD for the six studied heavy metals [50].

Metal Ingestion Dermal Inhalation
Cd 0.0010 0.00005 0.0030
Pb 0.0035 0.00053 0.0035
Cr 0.0050 0.00025 0.000029
Cu 0.0370 0.0011 0.0400
Ni 0.0200 0.0010 0.0210
Zn 0.300 0.0600 0.3200

After computing ADD, the hazard quotient (HQ), related to non-carcinogenic toxic
risk, was calculated by dividing the daily dose by a specific reference dose (RfD).

HQ = APP 5)

RfD
The last index determined in this study is the hazard index (HI), representing the
cumulative non-carcinogenic risk. It is estimated by summing up the hazard quotients for
ingestion (HQjy,), dermal (HQgery,), and inhalation(HQ;p):

HI = HQing + HQuderm + HQiun (6)

2.4. Sites Classification

The last objective of this study was to classify the sites based on the metals concentra-
tions in the samples and on the indexes computed in the previous section. To this aim, the
k-means algorithm was utilized after choosing the optimal number of clusters by the elbow
method [51,52]. A comparison of the clusters’ contents was finally provided to determine
the concordance between the pollution level and the health risk in the zones contained by
the groups.

3. Results and Discussion
3.1. Analysis of the Heavy Metals” Concentrations

The average concentrations in the samples at the observation sites are presented in
Table 3.
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Table 3. Average concentration values of the metals in the samples.

Site . . . Copper Zn Ni Cr Cd
no Location Latitude Longitude Pb (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)
1 Sheraton hoteltourist  p5epya3r  55°25/24" 6.06 34.84 89.80 14234 6149 0.02
2 Alnuaimiay tourist area 25°23/27" 55°26/53" 11.57 67.41 115.11 173.49 89.45 0.02
3 25°23/36" 55°28'56" 15.19 66.76 190.50 167.21 82.39 0.01
4 25°23/29" 55°29'04" 34.28 65.71 470.49 165.65 80.78 0.02
5 25°23'19" 55°28'39" 16.22 61.75 132.38 156.81 66.81 0.01
6 Ajman industrial areas 25°23/13" 55°29'07" 37.77 57.37 377.30 148.97 64.71 0.02
7 and petrol stations 25°22'28" 55°28'32" 32.31 53.58 150.32 146.17 63.54 0.02
8 25°22'27" 55°28'45" 44.84 47.67 185.83 136.30 61.97 0.02
9 25°22/'48" 55°29'41" 40.21 42.14 316.49 134.68 61.71 0.02
10 25°23/36" 55°29'21" 21.45 41.64 115.19 134.66 58.90 0.01
11 Ajman residential and 25°24/22" 55°28'52" 13.99 40.33 170.67 134.37 58.47 0.01
12 commercial area 25°23'57" 55°29'37" 14.92 40.24 133.33 129.59 55.35 0.01
13 Adnoc Ajman 25°23'51" 55°29'54" 9.49 39.92 83.48 115.79 49.99 0.01
14 Aiman commercial area 25°23/47" 55°25'49" 16.47 37.53 101.15 114.93 49.84 0.01
15 ) 25°24'09" 55°26'14" 11.06 35.41 106.18 108.56 49.67 0.01
16 Sharjah residential and 25°22'41" 55°23/59" 4.54 35.16 121.45 98.72 47.61 0.01
17 commercial areas 25°21'59" 55°23/39" 18.49 32.99 229.41 97.02 45.50 0.01
18 Sharjah-bus station 25°21'4" 55°22/53" 20.46 31.11 152.75 96.55 44.94 0.01
19 Sharjah commerial area 25°20'18" 55°23'34" 11.06 29.22 124.60 93.76 44.85 0.01
20 25°19'06" 55°24/39" 52.74 28.73 192.01 90.92 41.25 0.01
21 25°19'30” 55°24/31" 24.01 27.90 127.34 89.87 39.87 0.01
22 Sharjah industrial area 25°19'55" 55°24'15" 20.59 27.32 105.58 84.01 38.11 0.01
23 25°19'24" 55°24/16" 15.89 25.26 106.31 83.19 37.69 0.01
24 25°19'18" 55°24/35" 4.08 25.25 55.95 79.86 35.29 0.01
25 Shariah airport hichwa 25°21"17" 55°25'9" 16.15 24.53 126.11 79.42 34.81 0.01
26 Jal POt MERWAY  25020'39”  55°26/48" 7.05 20.69 66.94 78.66 34.19 0.01
27 Shariah Universit 25°18'0" 55°28'45" 18.11 20.44 106.82 70.03 34.11 0.02
28 ) y 25°17'47" 55°29'26 16.96 17.92 275.41 69.88 33.80 0.02
29 Shariah airport 25°19'2" 55°31'12" 22.29 16.43 151.21 62.22 30.02 0.02
30 g P 25°19'1" 55°31'5" 24.92 15.13 129.01 61.76 26.42 0.02
The most abundant metal measured was Zn, with a mean concentration of 160.304 mg/kg.
The average concentrations of the other studied metals were, in decreasing order,
Ni> Cr > Cu>Pb>Cd. The mean concentrations of Cd, Pb, and Cr were within the
range of background values. The mean concentrations of Cu, Ni, and Zn were higher than
the background values, indicating anthropogenic pollution.
Based on the experimental data, the maps reflecting the concentration of the metals
are presented in Figure 7.
The minimum, mean, and maximum levels of heavy metals (Cd, Pb, Cr, Cu, Nj,
and Zn) in the dust samples collected from the studied areas in Sharjah and Ajman are
presented in Table 4.
Table 4. Extreme values of the heavy metals concentrations in the 30 samples.
Metal Heavy Metals Concentrations in Samples (mg/kg) Background Values of the
Mean Min Max Std. Dev. World (mg/Kg)
Cd 0.013 0.005 0.018 0.003 0.35
Pb 20.105 4.075 52.737 12.000 35
Cr 50.783 26.416 89.445 16.100 70
Cu 37.011 15.125 67.411 15.200 30
Ni 111.513 61.762 173.486 35.600 50
Zn 160.304 55.953 470.493 92.100 90
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Figure 7. Maps showing the concentrations of (a) Cd, (b) Pb, (c) Cr, (d) Co, (e) Ni (f) Zn in the study area.
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The composition of dust collected from industrial areas presents much higher con-
centrations of Zn and Ni than other metals. The highest concentration of Zn was found
in samples 4, 6, and 9 (400.49, 377.30, and 316.49 mg/Kg, respectively), collected from the
Ajman industrial area. The high zinc concentrations result from the steel processing activi-
ties, tire abrasion, and the corrosion of metallic parts of cars. The highest concentrations of
Ni were contained by samples 7, 5, and 8 (173.49, 167.21, and 165.65 mg/Kg, respectively),
collected from the Ajman industrial area. Nickel could originate from natural sources, but
its presence in the air results from fuel combustion or metal plating activity.

The copper concentrations at sites 18, 28, 22, and 27 are the highest (67.41, 66.76, 65.71,
and 61.75 mg/Kg). Site 18 is a bus station, and the presence of a high concentration of
Cu can be attributed to traffic, tire abrasion, and the corrosion of metallic parts of cars.
Site 22 is located in the Sharjah industrial area. Thus, Cu’s presence can be attributed to
industrial activities. The other two sites (27 and 28) are located at the University of Sharjah,
where the heavy traffic can explain the high pollution.

The heavy metals concentrations in the collected dust samples from the study area
were compared with those in selected cities in the world and the world reference values
(Table 5). Based on the values of the pollutants” concentrations reported in different studies,
the study zone occupies the first place for Cr pollution, the second one (after Hawaii) for
Ni pollution, and the third for Zn pollution. These values indicate that the dust content is
an issue in the area of Sharjah and Ajman.

Since each city has its specific combination of elemental compositions and the observed
similarities may not reflect the actual natural and anthropogenic diversity among the
different urban settings, it is necessary to establish a standard procedure to analyze the
urban dust samples and draw conclusions based on the experiments [24,53].

Table 5. Heavy metals concentration in dust in different cities around the world, (mg/kg).

Location Ni Cu Zn Cd Pb Reference

Study area 89.44 173.48 67.91 470.49 0.018 52.73 This study
Beijing 69.33 25.97 72.13 219.20 0.64 202.82 [24]
Ottawa 43.30 15.20 65.84 112.50 0.37 39.05 [54]
Hawaii 273.0 177.0 167.0 434.0 - 106.0 [55]
Birmingham 41.1 466.9 534.0 1.62 48.0 [56]
Hong Kong 28.60 110.0 3840.0 - 120.0 [57]
Background values 50 30 90 0.35 35 [58]

The pollutants” concentrations recorded at different sites are not essentially influenced
by wind transportation.

This conclusion results from comparing the wind rose and the metals concentrations
in the samples collected at opposite sites, such as 25 and 28 or 27 and 30. We also remark
that sites 29 and 30 are close to each other, but the concentrations of Zn differ. The same
is valid for sites 25 and 26. This is due to the existence of small factories situated in the
neighborhood of 25 and 29.

3.2. Health Risk Assessment

First, the non-carcinogenic effect on health was assessed by calculating the average
daily doses (ADD) values, then the hazard quotient (HQ). The minimum, mean, and
maximum levels of ADD and total ADD for adults via ingestion, dermal, and inhalation
contact routes in the study area are listed in Table 6.
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Table 6. Average daily dose (ADD) and total ADD for heavy metals through different pathways.

Metal Cd Pb Cr Cu Ni Zn
Mean 1.84 x 108 275 x 107° 6.96 x 107° 5.07 x 107° 153 x 1074 220 x 1074
ADDjyg Min. 685x107% 558 x107°¢  362x107° 207 x107° 846 x 107 7.66 x 107°
Max. 247 x 1078 7.22 x 107° 123 x 1074 9.23 x 107> 2.38 x 1074 6.45 x 1074
Mean 447 x 1071 670 x 1078 1.69 x 1077 1.23 x 1077 3.72 x 1077 5.34 x 1077
ADD germ Min. 1.67 x 10711 136 x 1078 8.81 x 108 5.04 x 10~8 2.06 x 10~7 1.87 x 107
Max. 6.00x 10711 1.76 x 107 298 x 107 225 x 1077 5.78 x 1077 1.57 x 107°
Mean 278 x 10712 417 x 107? 1.05 x 1078 7.68 x 1077 2.31 x 108 3.33 x 1078
ADD;,, Min 1.04 x 10712 846 x 10710 548 x 10~° 3.14 x 10~° 1.28 x 1078 1.16 x 1078
Max. 374%x 10712 109 x 1078 1.86 x 1078 1.40 x 1078 3.60 x 108 9.77 x 108
Total Mean 1.84 x 10~8 2.76 x 107> 6.97 x 107° 508 x 107> 1.53 x 1074 2.20 x 1074
ACI)DHD Min. 6.87 x 1078 5.60 x 107° 3.63 x 107° 2.08 x 107> 8.48 x 10~° 7.68 x 107°
Max. 247 x 1078 7.24 x 1075 123 x 1074 9.26 x 107° 2.38 x 1074 6.46 x 1074
The highest ADD values are those for Ni and Zn, corresponding to absorption by
ingestion, while the lowest are those for Cd. The main pathway the pollutants enter
the organism is ingestion. Indeed, ADD;;, is about 103 times higher than ADDy,,,, and
10* times higher than ADD;,,,.
The ADD;ug, ADDgeyyn, and ADD)yy, are lower than the RfD for the studied heavy
metals, which preliminarily indicates no significant effect on the health.
The mean levels of total ADD (ADD total) (in mg/kg-day) are 1.84 x 10~ for Cd,
2.76 x 10~° for Pb, 6.97 x 1