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Editorial

Editorial: Selected Topics in Gravity, Field Theory and
Quantum Mechanics

Michael L. Walker 1 and Steven Duplij 2,*

1 Kirby Institute, University of New South Wales, Kensington, NSW 3010, Australia
2 Center for Information Technology (WWU IT), Universität Münster, Röntgenstrasse 7-13,

D-48149 Münster, Germany
* Correspondence: douplii@uni-muenster.de

“Selected topics in Gravity, Field Theory and Quantum Mechanics” is for physicists
wanting a fresh perspective into quantum gravity. Its content therefore does not include
refinements of established approaches but rather brings new methods and approaches to
various aspects of the problem. Our expectation that this will lead to further insight is
supported by some papers having been cited already [1–5].

The first four contributions bring new, or at least unconventional, mathematical tools
to describe the Hamiltonian dynamics of either conformable manifolds or non-trivial
background curvature, with consequences for second quantization, spacetime dynamics
and the constants of motion. The opening article by the editors [6] uses the Clairaut-
based generalisation of the Hamiltonian formalism to study the effects of a non-trivial
ground state in a gauged Lorentz symmetry theory on second quantisation. The Clairaut
formalism alters the Poisson bracket to rigorously incorporate degrees of freedom which
are not dynamic in the usual sense. In a similar vein, Hounnkonnou et al. consider a
Poisson algebra whose bracket is based on a conformable differential and construct, among
other things, Hamiltonian vector fields and other related objects on conformable Poisson-
Schwarzchild and FLRW manifolds [7]. The paper by Znojil [1] addresses the issues of
using the Wheeler-de Witt equation to describe the quantum evolution of the cosmos near
the big bang singularity. The problem of solutions being “void of a physical meaning” is
addressed by replacing the (non-Hermitian) Schroedinger picture with the corresponding
Dirac interaction picture. A highly detailed review of quantum current algebra symmetry
representations in integrable Hamiltonian systems from both a geometric and analytical
perspective is provided by Prykarpatski [8].

The next three papers focus on quantum mechanics. Krivoruchenko [9] presents a
logical construction of the linear vector nature of the quantum state, and by extension
linear superposition, from the basic principles of quantum statics, number theoretic basis
of physics and quantum covariance. The following paper [2] generalises Huygens-Fresnel
superposition to massive particles and non-linear field theories using Kirchhoff’s integral
theorem. Zooming in from quantum mechanics to quantum gravity [3] shows that the
non-Abelian component of the dynamic algebra is essential to general covariance. We have
also included detailed analyses of the polyadic and ternary algebraic properties of quantum
mechanics. One of the editors (S. Duplij) generalised the algebra of the direct product [4] in
quantum mechanics with implications for the particle content of any elementary particle
model. Also exploring the generalised algebraic properties of quantum mechanics, Bruce [5]
reviews the construction of semiheaps and their operators on a Hilbert space and explores
how symmetries in a quantum induce homomorphisms between semiheaps and ternary
algebras. The final paper [10] is a review covering topics which intersect with the other
papers in this collection.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Gauge Gravity Vacuum in Constraintless Clairaut-Type
Formalism

Michael L. Walker 1 and Steven Duplij 2,*

1 Kirby Institute, University of New South Wales, Kensington, NSW 2033, Australia; m.walker@aip.org.au
2 Center for Information Technology (WWU IT), Universität Münster, Röntgenstrasse 7-13,

D-48149 Münster, Germany
* Correspondence: douplii@uni-muenster.de

Abstract: The gauged Lorentz theory with torsion has been argued to have an effective theory whose
non-trivial background is responsible for background gravitational curvature if torsion is treated
as a quantum-mechanical variable against a background of constant curvature. We use the CDG
decomposition to argue that such a background can be found without including torsion. Adapting
our previously published Clairaut-based treatment of QCD, we go on to study the implications for
second quantisation.

Keywords: gravity; Clairaut equation; Cho–Duan–Ge decomposition; constraintless formalism

1. Introduction

The dual superconductor model of QCD confinement requires the vacuum to contain
a condensate of (chromo) magnetic monopoles. This led several authors to consider
embedded, usually Abelian, subgroups within gauge groups. The early focus was on
the U(1) subgroup of SU(2), with analyses by Savvidy [1], Nielsen and Olesen [2] and
t’Hooft [3] considering the maximal Abelian gauge in which the Abelian subgroup is
assumed to lie along the internal e3 axis. While they did find a magnetic condensate to
be a lower energy state than the perturbative vacuum, their analyses blatantly violated
gauge covariance and offered no evidence that the chromomagnetic background was due
to monopoles. There was also considerable controversy regarding the stability of such a
vacuum. These issues were resolved by the Cho–Duan–Ge (CDG) decomposition [4,5],
which introduces an internal vector to covariantly allow a subgroup embedding within
a theory’s gauge group to vary throughout spacetime. Analyses based on this approach
confirmed this magnetic background [1,3] and careful consideration of renormalisation
and causality [6–9] finally resolved such a condensate to be stable through several
independent arguments.

It is common for analyses of QCD based on the CDG decomposition to assume
the monopole condensate comprising the vacuum to provide a slow-moving vacuum
background to the quantum degrees of freedom (DOFs) [6]. This was the basis of a novel
approach to Einstein–Cartan gravity, in which contorsion (or torsion) is the quantised
dynamic degree of freedom confined by a slow-moving classical background gravitational
curvature et al. [10–12]. Their work was based on the Lorentz gauge field theory initially
put forward by Utiyam, Kibble and Sciama [13–15] for which it has long been known
that the non-compact nature of the Lorentz group led to the theory not being positive
semi-definite. They dealt with this by performing their initial analyses in Euclidean space,
transforming the Lorentz gauge group to SO(4) � SU(2)× SU(2), until later work found
the theory to be well defined with propagators for its canonical DOFs [16].

The theory considered in this paper is also a Lorentz gauge theory quadratic in
curvature except that we set contorsion to be zero. Instead of including contorsion,
we consider the Abelian decomposition of the Lorentz gauge field, whose details and

Universe 2022, 8, 176. https://doi.org/10.3390/universe8030176 https://www.mdpi.com/journal/universe3
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consequences would be obscured by the complexities of handling contorsion properly.
Because we also deal with the non-compact nature of the Lorentz group by working
with SU(2) × SU(2) in Euclidean space [16], we can draw on a considerable body of
literature concerning the Abelian decomposition of SU(2) Yang–Mills theory and find that
an interesting structure emerges without the introduction of contorsion. Additionally, like
Pak et al. [16], we take our DOFs to be those of the Lorentz gauge fields instead of the
metric and/or vierbein. To avoid third-order derivatives from entering the equations of
motion (EOMs), our theory does not include localised translation symmetry (for which
vierbein are required), despite it being accepted that spacetime respects the full Poincaré
symmetry group. We restrict ourselves to the subgroup in this work to avoid complications
and so that we can find conventional propagators for the gauge bosons with a Lagrangian
quadratic in gravitational curvature. We remain mindful, however, that this is a reduced
symmetry group of gravitational dynamics rendering our model to be either low-energy
effective or perhaps even just a toy.

One of the more confusing mathematical subtleties of the CDG decomposition was the
number of canonical degrees of freedom. Shabanov argued that an additional gauge-fixing
condition is needed to remove a supposed “two extra degrees” [17] introduced by the internal
unit vector field to covariantly describe the embedded subgroup(s). Bae, Cho and Kimm later
clarified that this internal vector did not introduce two degrees of freedom requiring to be
fixed but non-canonical DOFs without EOMs [18], while the proposed constraint was merely
a consistency condition. The interested reader is referred to [6,19–21] for further details (see,
also [22,23]). Cho et al. [24] approached the issue with Dirac quantisation using second-order
restraints. In an earlier paper [25], however, the authors present a new approach to rigorously
elucidate the dynamic DOFs from the topological. It is based on the Clairaut-type formulation,
proposed by one of the authors (SD) [26,27], in a constraintless generalisation of the standard
Hamiltonian formalism to include Hessians with zero determinant. It provides a rigorous
treatment of the non-physical DOFs in the derivation of EOMs and the quantum commutation
relations. In this paper, we apply our Clairaut approach to the gauged Lorentz group [28,29]
theory with a Lagrangian quadratic in curvature.

A review of the CDG decomposition is given in Section 2, beginning with an
introduction in the context of QCD before illustrating its application to SU(2)× SU(2).
In Section 3, we illustrate the reduction of our theory to two copies of two-colour QCD
and use one-loop results from the latter to inform us about the former. Section 4 gives a
brief overview of the Clairaut–Hamiltonian formalism and uses it to study the quantisation
of this theory, sorting canonical dynamic DOFs from DOFs describing the embedding of
important subgroups and finding deviations from canonical second quantisation even for
dynamic fields. We consider the one-loop effective dynamics in Section 5, discussing the
effective particle spectrum in Section 5.1 and the possible emergence of the Einstein–Hilbert
(EH) term in Section 5.2. Our final discussion is in Section 6.

2. A Review of the Covariant Abelian Decomposition of Lorentz Gauge Theory

2.1. The CDG Decomposition in SU(2) QCD
2.1.1. Formalism

Abelian dominance has played a major role in our understanding of the QCD vacuum,
facilitating the demonstration of a monopole condensate. That a magnetic condensate
suitable for colour confinement can have lower energy than the perturbative vacuum has
been known since the 1970s [1–3], but in early work the internal direction supporting the
magnetic background could not be specified in a covariant manner and nor was there
support for the magnetic condensate being due to monopoles. The apparent existence
of destabilising tachyon modes was also an issue for some time [2,8,30]. These issues
were rectified by the introduction of the CDG decomposition, which specifies the internal
direction of the Abelian subgroup in a gauge covariant manner, allowing the internal
direction to vary arbitrarily throughout spacetime.

4
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The application of the CDG decomposition in N-colour (SU(N)) QCD is as follows:
The Lie group SU(N) has N2 − 1 generators λ(a) (a = 1, . . . N2 − 1), of which N − 1 are
Abelian generators Λ(i) (i = 1, . . . N − 1).

The gauge transformed Abelian directions (Cartan generators) are denoted as

n̂i(x) = U(x)†Λ(i)U(x). (1)

Gluon fluctuations in the n̂i directions are described by c(i)μ , where μ is the Minkowski
index. There is a covariant derivative which leaves the n̂i invariant,

D̂μn̂i(x) ≡ (∂μ + g�Vμ(x)×)n̂i(x) = 0, (2)

where �Vμ(x) is of the form

�Vμ(x) = c(i)μ (x)n̂i(x) + �Cμ(x), �Cμ(x) = g−1∂μn̂i(x)× n̂i(x). (3)

The vector notation refers to the internal space, and summation is implied over
i = 1, . . . N − 1. For later convenience, we define

F(i)
μν (x) = ∂μc(i)ν (x)− ∂νc(i)μ (x), (4)

�Hμν(x) = ∂μ�Cν(x)− ∂ν�Cμ(x) + g�Cμ(x)× �Cν(x) =∂μn̂i(x)× ∂νn̂i(x), (5)

H(i)
μν (x) = �Hμν(x) · n̂i(x), (6)

�F(i)
μν (x) = F(i)

μν (x)n̂i(x) + �Hμν(x). (7)

The second last term in Equation (5) follows from the definition in Equation (3). Its
being a cross-product is significant as it prevents μ, ν from having the same value. The
Lagrangian contains the square of this value, namely

H(i)
μν (x)Hμν

(i)(x) =
(
∂μn̂i(x)× ∂νn̂i(x)

)
· (∂μn̂i(x)× ∂νn̂i(x)), (8)

The form of Equation (3) might suggest the possibility of third or higher time
derivatives in a quadratic Lagrangian, but we have now seen that the specific form of
the Cho connection does not allow this.

The dynamical components of the gluon field in the off-diagonal directions of the
internal space vectors are denoted by �Xμ(x), so if �Aμ(x) is the gluon field then

�Aμ(x) = �Vμ(x) + �Xμ(x) = c(i)μ (x)n̂i(x) + �Cμ(x) + �Xμ(x), (9)

where
�Xμ(x)⊥n̂i(x), ∀ 1 ≤ i < N , �Dμ = ∂μ + g�Aμ(x). (10)

The Lagrangian density is still

Lgauge(x) = −1
4
�Rμν(x) · �Rμν(x), (11)

where the field strength tensor of QCD expressed in terms of the CDG decomposition is

�Rμν(x) = �Fμν(x) + (D̂μ�Xν(x)− D̂ν�Xμ(x)) + g�Xμ(x)× �Xν(x). (12)

5
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Gauge transformations are effected with a gauge parameter �α(x). Under a gauge
transformation δ with SU(2) parameter�α(x)

δV̂(x) = D̂μ�α(x)

δcμ(x) = (∂μ�α(x) · n̂(x)),

δn̂(x) = n̂(x)×�α(x),

δ�Cμ(x) = (∂μ�α(x))⊥n̂ + g�Cμ(x)×�α(x),

δ�Xμ(x) = g �Xμ(x)×�α(x). (13)

The form of the transform for �Xμ is the same as that for a coloured source, so that
these components are sometimes described as “valence”. This gauge transformation tell
us two interesting things. The first is that the Abelian component cμ combined with the
Cho connection �Cμ is enough to represent the full Lorentz symmetry even without the
valence components �Xμ Cho et al. [28,29] described as the "restricted" theory. The second is
that the valence components transform like a source transforms. There is a corresponding
situation in N = 2 Yang–Mills theory where the valence gluons are interpreted as colour
sources. The importance of this observation is that we shall later discuss the possibility of
mass generation for the valence gluons and this form for the gauge transformation leaves
such mass terms covariant. We note however that a bare mass for �Xμ cannot be inserted
artificially without spoiling renormalisability.

2.1.2. The Degrees of Freedom in the CDG Decomposition

Henceforth, we restrict ourselves to the SU(2) theory, for which there is only one n̂,
and neglect the (i) indices.

The unit vector n̂ posseses two DOFs and so its inclusion in the gluon field together
with the Abelian component cμ and the valence gluons �Xμ raises questions about the DOF
of the decomposed gluon, with one paper [17] advocating the gauge condition

D̂μ�Xμ(x) = 0, (14)

to remove two apparent extra degrees of freedom. The matter was sorted by Bae et al. [18],
who demonstrated that the DOFs of n̂ were not canonical but topological, indicating the
embedding of the Abelian subgroup in the gauge group. The canonical DOFs are carried
by the components cμ, �Xμ and Equation (14) is a consistency condition expected of valence
gluons. Kondo et al. [31] considered a stronger condition guaranteed not to be unaffected
by Gribov copys.

The topological nature of n̂ has significance beyond making the canonical DOFs add
up correctly. As is well known, monopole configurations in gauge theories are topological
configurations corresponding to the embedding of an Abelian subgroup. The other
important consequence is that n̂ does not have a canonical EOM from the Euler–Lagrange
equation.

We took an alternative approach to this issue by applying a new method for finding
the effects of degenerate variables called the Clairaut formalism. We further assumed that,
as a unit vector, its dynamics were best described by angular variables.

2.2. CDG Decomposition of SU(2)× SU(2) in Euclidean Space

As is well known [10,13–16], the non-compact nature of the Lorentz group causes
Lorentz gauge theories to be non-positive semi-definite. In fact, our attempts to apply the
CDG decomposition to the Lorentz gauge field strength tensor in Minkowski space led to
negative kinetic energy terms for some of the gauge fields (not shown). As demonstrated
by Pak et al. [10,16], this can be avoided by Wick rotating the theory to Euclidean space
and then either considering effective theories or finding a way to rotate back later without
spoiling the quantum theory.

6
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This procedure also rotates the internal Lorentz group to SO(4) which is locally
isomorphic to SU(2)R × SU(2)L, corresponding to the right- and left-handed groups
generated by

± êl ≡
1√
2
(Jl ± iKl), (15)

where Jl , Kl are the rotation and boost operators, respectively, and ± êl is used to represent
the corresponding direction in the internal space of the corresponding group. The two
SU(2) subgroups in our gauge theory, though separate, are not independent but are built
from the same rotation and boost operators, albeit in combinations of opposite chirality. It
follows that their respective Abelian directions must correspond, but represent operators
of different chirality. We denote them n̂R, n̂L, respectively, using these suffices for other
field objects also when appropriate, including Rêl , Lêl , and apply previously published
analyses [1,3,6–8] to each symmetry group.

We apply the CDG decomposition to SU(2)R × SU(2)L gauge group. Their Abelian
components we denote Rcμ and Lcμ, respectively, and the valence components we denote
as R�Xμ and L�Xμ, respectively. For each chirality χ ∈ {R, L}, we have the Cho connection

χCμ(x) = g−1∂μ χn̂(x)× χn̂(x), (16)

and monopole field strength

χ�Hμν ≡ ∂μχ�Cν(x)− ∂νχ�Cμ(x) + g χ�Cμ(x)× χ�Cν(x) = ∂μ n̂χ(x)× ∂ν n̂χ(x)

≡ χ Hμν(x) n̂χ(x). (17)

Similarly defining field strengths χ�F(x), χ�Rμν(x), we see from the direct product
structure of the group that the Lagrangian is simply

LE
gauge(x) =

1
4 ∑

χ ∈{R,L}
χ�Rμν(x) · χ�Rμν(x). (18)

3. The Vacuum of SU(2)R × SU(2)L

Since the component SU(2) symmetry groups have generators mutually orthogonal in
the internal space, their contributions to the ground state may be calculated independently
and summed. Furthermore, their identical fundamental dynamics imply that χ Hμν is
independent of χ when we are not considering an internal vector and may be replaced
with Hμν, which we do henceforth.

It is sufficient to calculate to one loop to find a non-zero monopole condensate in the
effective action of SU(2) Yang–Mills theory. The authors of [6–8] have shown this by a
variety of methods. Useful material on this theory at one-loop order can also be found in
references [32–34].

Calculating the relevant one-loop Feynman diagrams in Feynman gauge with
dimensional regularisation [7,8], we have

ΔSe f f = −11g2

96 ∑
χ=R,L

∫
d4 p χ�Fμν(p) χ�Fμν(−p)

(
2
ε
− γ− ln

( p2

μ2

))
. (19)

An imaginary part is generated by the ln p2

μ2 term only when the momentum p is
timelike, leading to the well-known result [7,8,35] that it is the electric backgrounds are
unstable but magnetic ones are not. Using this information, we then have the effective
potential

V =
H2

g2

[
1 +

11g2

24

(
ln

√
H2

μ2 − c
)]

(20)

7
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It should be remembered that this close parallel with the corresponding N = 2
calculation does not hold beyond one loop because then there are diagrams including fields
from both SU(2) subgroups.

Defining the running coupling ḡ by [7,8]

∂2V
∂H2

∣∣∣√
H2=μ̄2

=
1
ḡ2 , (21)

leads to a non-trivial local minimum at

〈H〉 = μ̄2 exp
(
− 24π2

11ḡ2 + 1
)

. (22)

The specific value of H2 is less important than knowing it has a strictly positive value
lying in two orthogonal directions in the SU(2)R × SU(2)L internal space.

4. Application of Clairaut Formalism to the Rotation-Boost Decomposition of the
Gravitational Connection

4.1. A Review of the Hamiltonian-Clairaut Formalism

Here, we review the main ideas and formulae of the Clairaut-type formalism
for singular theories [26,36,37]. Let us consider a singular Lagrangian L

(
qA, vA) =

Ldeg(qA, vA), A = 1, . . . n, which is a function of 2n variables (n generalised coordinates qA

and n velocities vA = q̇A = dqA/dt) on the configuration space TM, where M is a smooth
manifold, for which the Hessian’s determinant is zero. Therefore, the rank of the Hessian

matrix WAB =
∂2L(qA ,vA)

∂vB∂vC is r < n, and we suppose that r is constant. We can rearrange
the indices of WAB in such a way that a non-singular minor of rank r appears in the upper
left corner. Then, we represent the index A as follows: if A = 1, . . . , r, we replace A with
i (the “regular” or “canonical” index), and, if A = r + 1, . . . , n we replace A with α (the
“degenerate” or “non-canonical” index). Obviously, det Wij �= 0, and rank Wij = r. Thus
any set of variables labelled by a single index splits as a disjoint union of two subsets. We
call those subsets regular (having Latin indices) and degenerate (having Greek indices).
Canonical DOFs are obviously described by the former of these subsets while other DOFs
can be placed in the second if their contribution to the Wronskian vanishes. As was shown
in [26,36], the “physical” Hamiltonian can be presented in the form

Hphys

(
qA, pi

)
=

r

∑
i=1

piVi
(

qA, pi, vα
)
+

n

∑
α=r+1

Bα

(
qA, pi

)
vα − L

(
qA, Vi

(
qA, pi, vα

)
, vα

)
, (23)

where the functions

Bα

(
qA, pi

) de f
=

∂L
(
qA, vA)
∂vα

∣∣∣∣∣
vi=Vi(qA ,pi ,vα)

(24)

are independent of the unresolved velocities vα since rank WAB = r. Additionally, the r.h.s.
of (23) does not depend on the degenerate velocities vα

∂Hphys

∂vα
= 0, (25)

which justifies the term “physical”. The Hamilton–Clairaut system which describes any
singular Lagrangian classical system (satisfying the second-order Lagrange equations) has
the form

8
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dqi

dt
=
{

qi, Hphys

}
phys

−
n

∑
β=r+1

{
qi, Bβ

}
phys

dqβ

dt
, i = 1, . . . r (26)

dpi
dt

=
{

pi, Hphys

}
phys

−
n

∑
β=r+1

{
pi, Bβ

}
phys

dqβ

dt
, i = 1, . . . r (27)

n

∑
β=r+1

[
∂Bβ

∂qα
− ∂Bα

∂qβ
+

{
Bα, Bβ

}
phys

]
dqβ

dt

=
∂Hphys

∂qα
+

{
Bα, Hphys

}
phys

, α = r + 1, . . . , n (28)

where the “physical” Poisson bracket (in regular variables qi, pi) is

{X, Y}phys =
n−r

∑
i=1

(
∂X
∂qi

∂Y
∂pi

− ∂Y
∂qi

∂X
∂pi

)
. (29)

Whether the variables Bα

(
qA, pi

)
have a non-trivial effect on the time evolution and

commutation relations is equivalent to whether or not the so-called “qα-field strength”

Fαβ =
∂Bβ

∂qα
− ∂Bα

∂qβ
+

{
Bα, Bβ

}
phys (30)

is non-zero. The reader is referred to [26,27,36] for more details.

4.2. The Contribution of the Clairaut Formalism
4.2.1. qα Curvature

Substituting in this notation, the angles φ, θ are seen, in parallel with our previously
published analysis [25], to be degenerate DOFs with unresolved velocities. Indeed, their
contribution to both Lagrangian and Hamiltonian vanishes when their derivatives vanish.

We use the CDG decomposition in which the embedding of a dominant direction U(1)
is denoted by n̂χ which, from the discussion in Section 2.2, is expressed by,

n̂χ(x) ≡ cos θ(x) sin φ(x) χ ê1 + sin θ(x) sin φ(x) χ ê2 + cos φ(x) χ ê3. (31)

We note that the angles are φ, θ are independent of χ for the reasons discussed after
Equation (15) and need not be labelled. The following will prove useful:

sin φ(x) χn̂θ(x) ≡
∫

dy4 dn̂(x)
dθ(y)

= sin φ(x) (− sin θ(x) χ ê1 + cos θ(x) χ ê2),

χn̂φ(x) ≡
∫

dy4 dn̂χ(x)
dφ(y)

= cos θ(x) cos φ(x) χ ê1

+ sin θ(x) cos φ(x) χ ê2 − sin φ(x) χ ê3. (32)

For later convenience, we note that

χn̂φφ(x) = −χn̂(x), χn̂θθ(x) = − sin φ χn̂(x)− cos φ(x) χn̂φ(x) ,

χn̂θφ(x) = 0, χn̂φθ(x) = cos φ(x) χn̂θ(x), (33)

and that the vectors χn̂ = χn̂φ × χn̂θ form an orthonormal basis of the internal space.
Substituting the above into the Cho connection in Equation (3) gives

9
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g χ�Cμ(x) = (cos θ(x) cos φ(x) sin φ(x)∂μθ(x) + sin θ(x)∂φ(x)) χ ê1

+ (sin θ(x) cos φ(x) sin φ(x)∂μθ(x)− cos θ(x)∂φ(x)) χ ê2 − sin2 φ(x)∂μθ(x) χ ê3

= sin φ(x) ∂μθ(x) χn̂φ(x)− ∂μφ(x) χn̂θ(x) (34)

from which, it follows that

g2
χ�Cμ(x)× χ�Cν(x) = sin φ(x)(∂μφ(x)∂νθ(x)− ∂νφ(x)∂μθ(x))n̂χ(x), (35)

where we again see that higher-order time derivatives are thwarted.
Since their Lagrangian terms do not fit the form of a canonical DOFs we consider

them instead to be degenerate, having no canonical DOFs of their own but manifesting
through their alteration of the EOMs of the dynamic variables. Finding these alterations
first requires the Clairaut-related quantities

Bφ(x) =
∫

dy3 δL
x∂0φ(x)

= ∑
χ=R,L

∫
dy3

∫
dy0 δ(x0 − y0)

(
sin φ(y)y∂μθ(y)n̂χ(y)

+ χn̂θ(y)× χ�Xμ(y)
)
· χ�R0μ(y) δ3(�x−�y)

= ∑
χ=R,L

(
sin φ(x) ∂μθ(x)n̂χ(x) + χn̂θ(x)× χ�Xμ(x)

)
· χ�R0μ(x), (36)

Bθ(x) =
∫

dy3 δL
x∂0θ(x)

= − ∑
χ=R,L

∫
dy3

∫
dy0δ(x0 − y0) sin φ(y)

(
y
∂μφ(y) n̂χ(y)

+ sin φ(y) χn̂φ(y)× χ�Xμ(y)
)
· χ�R0μ(y) δ3(�x−�y)

= − ∑
χ=R,L

sin φ(x)
(

∂μφ(x) n̂χ(x) + χn̂φ(x)× χ�Xμ(x)
)
· χ�R0μ(x). (37)

δBφ(x)
δθ(y)

= ∑
χ=R,L

(
sin φ(x) χn̂θθ(x)× χ�Xμ · χ�R0μ(x)− χTφ(x)

)
δ4(x− y), (38)

δBθ(x)
δφ(y)

=− ∑
χ=R,L

(
cos φ(x)

(
∂μφ(x) n̂χ(x) + χn̂φ(x)× χ�Xμ(x)

)
·
(

χ�R0μ(x) + χ�H0μ(x)
)

+ χTθ(x)
)

δ4(x− y), (39)

where

χTφ(x) = ∂k

[
sin φ(x) n̂χ · χ�R0k(x)−

(
sin φ(x)∂kθ(x) + χn̂θ(x)× χ�Xk · n̂χ

)
∂0φ(x)

]
, (40)

χTθ(x) =− ∂k

[
sin φ(x)

(
n̂χ · χ�R0k(x) +

(
∂kφ(x) + χn̂φ(x)× χ�Xk · n̂χ

)
∂0θ(x)

)]
, (41)

are the surface terms arising from derivatives δ(∂θ)
δθ , δ(∂φ)

δφ and the latin index k is used to
indicate that only spacial indices are summed over.

10
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This yields the qα-curvature

Fθφ(x) =
∫

dy4
( δBθ(x)

δφ(y)
− δBφ(x)

δθ(y)

)
δ4(x− y) + {Bφ(x), Bθ(x)}phys

=− ∑
χ=R,L

cos φ(x)
(

∂μφ(x) n̂χ(x) + χn̂φ(x)× χ�Xμ(x)
)
·
(

χ�R0μ(x) + χ�H0μ(x)
)

− ∑
χ=R,L

sin φ(x) χn̂θθ(x)× χ�Xμ(x) · χ�Rμ0(x) + ∑
χ=R,L

(
χTφ(x)− χTθ(x)

)
. (42)

where we have used that the bracket {Bφ, Bθ}phys vanishes because Bφ and Bθ share the
same dependence on the dynamic DOFs and their derivatives.

In earlier work on the Clairaut formalism [26,36], this was called the qα-field strength,
but we call it qα-curvature in quantum field theory applications to avoid confusion.

This non-zero F θφ is necessary, and usually sufficient, to indicate a non-dynamic
contribution to the conventional Euler–Lagrange EOMs. More significant is a corresponding
alteration of the quantum commutators, with repurcussions for canonical quantisation and
the particle number.

4.2.2. Corrections to the Equations of Motion

Generalising Equations (7.1,7.3,7.5) in [26] (see also the discussion around
Equation (23)

∂0q(x) = {q(x), Hphys}new =
δHphys

δp(x)
−

∫
dy4 ∑

α=φ,θ

δBα(y)
δp(x)

∂0α(y), (43)

the derivative of the Abelian component, complete with corrections from the monopole
background is

∂0 χcσ(x) =
δHphys

δ χΠσ(x)
−

∫
dy4 ∑

α=φ,θ

δBα(y)
δ χΠσ(x)

∂0α(y). (44)

The effect of the second term is to remove the monopole contribution to
δHphys
δ χΠσ . To

see this, consider that, by construction, the monopole contribution to the Lagrangian and
Hamiltonian is dependent on the time derivatives of θ, φ, so the monopole component of
δHphys
δ χΠσ is

δ

δ χΠσ(x)
Hphys|θ̇φ̇ =

δ

δ χΠσ(x)

( δHphys

δ∂0θ(x)
∂0θ(x) +

δHphys

δ∂0φ(x)
∂0φ(x)

)
=

δ

δ χΠσ(x)

( δLphys

δ∂0θ(x)
∂0θ(x) +

δLphys

δ∂0φ(x)
∂0φ(x)

)
=

δ

δ χΠσ(x)

(
Bθ(x)∂0θ(x) + Bφ(x)∂0φ(x)

)
, (45)

which is a consistency condition for Equation (44). This confirms the necessity of treating
the monopole as a non-dynamic field.

We now observe that
δBθ(x)

δ χcσ(y)
=

δBφ(x)
δ χcσ(y)

= 0, (46)

from which it follows that the EOMs of χcσ receives no correction. However, its {, }phys
contribution, corresponding to the terms in the conventional EOM for the Abelian
component, already contains a contribution from the monopole field strength.

11
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Repeating the above steps for the valence gluons χ�Xμ, assuming σ �= 0 and combining

D̂0 χ�Πσ(x) =
δH

δ χ�Xσ(x)
−

∫
dy4 ∑

α=φ,θ

δBα(y)
δ χ�Xσ(x)

∂0α(y). (47)

with

δBφ(y)

δ χ�Xσ(x)
=−

((
sin φ(y)y∂σθ(y)n̂χ(y) + χn̂θ(y)× χ�Xσ(y)

)
× χ�X0(y)

− χn̂φ(y)n̂χ · χ�R0σ(y)
)

δ4(x− y), (48)

δBθ(y)
δ χ�Xσ(x)

=
((

∂σφ(y)n̂(y) + sin φ(y) n̂φ(y)× χ�Xσ(y)
)
× χ�X0(y)

− sin φ(y) χn̂θ(y)n̂χ(y) · χ�R0σ(y)
)

δ4(x− y), (49)

gives

D̂0 χ�Πσ(x) =
δH

δ χ�Xσ(x)
− 1

2

((
sin φ(x)(∂σφ(x)∂0θ(x)− ∂σθ(x)∂0φ(x)

)
n̂χ(x)

+
(

sin φ(x) χn̂φ(x)∂0θ(x)− χn̂θ(x)∂0φ(x)
)
× χ�Xσ(x)

)
× χ�X0(x)

=
δH

δ χ�Xσ(x)
− 1

2
g2

(
χ�Cσ(x)× χ�C0(x) + χ�C0(x)× χ�Xσ(x)

)
× χ�X0(x). (50)

This is the converse situation of the Abelian gluon, where their derivatives χ�Xσ is
uncorrected while their EOM receives a correction which cancels the monopole’s electric
contribution to {D̂0 χ�Xσ, Hphys}phys. This is required by the conservation of topological
current, but a further implication is that the monopole background, even if assumed to
be present, does not contribute to the EOMs of motion and therefore makes no impact at
the classical level. Note that this is strictly limited to the monopole field and the effects
of backgrounds due to the dynamic fields are not affected. Monopole field contributions
are not cancelled from quantum corrections however, although calculating loop effects is
beyond the scope of this paper.

4.2.3. Corrections to the Commutation Relations

Corrections to the classical Poisson bracket correspond to corrections to the equal-time
commutators in the quantum regime. We shall see corrections for commutators with fields
of different SU(2)χ representations even though there were no such crossover terms in the
effective potential calculation.

Denoting conventional commutators as [, ]phys and the corrected ones as [, ]new, for
μ, ν �= 0, we have

[χcμ(x), χ̃cν(z)]new = [ χcμ(x), χ̃cν(z)]phys

−
∫

dy4
( δBθ(y)

δ χΠμ(x)
F−1

θφ (z)
δBφ(y)

δ χΠν(z)
− δBφ(y)

δ χ̃Πμ(x)
F−1

φθ (z)
δBθ(y)

δ χΠν(z)

)
δ4(x− z)

= [ χcμ(x), χ̃cν(z)]phys

− sin φ(x) sin φ(z)(∂μφ(x)∂νθ(z)− ∂νφ(z)∂μθ(x))F−1
θφ (z)δ4(x− z). (51)

The second term on the final line, after integration over d4z, clearly becomes

Hμν(x) sin φ(x)F−1
θφ (x), (52)

12
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indicating the role of the monopole condensate in the correction. By contrast, the
commutation relations

[ χcμ(x), χ̃Πν(z)]new = [ χcμ(x), χ̃Πν(z)]phys,

[ χΠμ(x), χ̃Πν(z)]new = [ χΠμ(x), χ̃Πν(z)]phys, (53)

are unchanged. Nonetheless, the deviation from the canonical commutation shown in
Equation (51) is inconsistent with the particle creation/annihilation operator formalism of
conventional second quantisation, so that particle number is no longer well defined for the
χcμ fields.

Repeating for the valence part,

[ χΠa
μ(x), χ̃Πb

ν(z)]new (54)

=[ χΠa
μ(x), χ̃Πb

ν(z)]phys −
∫

dy4
( δBθ(y)

δ χXa
μ(x)

δBφ(y)
δ χ̃Xb

ν(z)
− δBφ(y)

δXa
μ(x)

δBθ(y)
δ χ̃Xb

ν(z)

)
F−1

θφ (z)

=[ χΠa
μ(x), χ̃Pib

ν(z)]phys +
(

sin φ(z)na
φ(x)nb

θ(z) χ�R0μ(x) · n̂χ(x) χ̃�R0ν(z) · n̂χ̃(z)

− sin φ(x)na
θ(x)nb

φ(z) χ�R0μ(z) · n̂χ(z) χ̃�R0ν(x) · n̂χ̃(x)
)
×F−1

θφ (z) δ4(x− z), (55)

where the second term on the final line, integrates over d4z to become

(na
φ(x)nb

θ(x)− na
θ(x)nb

φ(x)) sin φ(x) χ�R0μ(x) · n̂χ(x) χ̃�R0ν(x) · n̂χ̃(x)F−1
θφ (x), (56)

while other relevant commutators are unchanged

[ χXa
μ(x), χ̃Πb

ν(z)]new = [ χXa
μ(x), χ̃Πb

ν(z)]phys,

[ χXa
μ(x), χ̃Xb

ν(z)]new = [ χXa
μ(x), χ̃Xb

ν(z)]phys. (57)

5. Effective Action

5.1. Particle Number and the Monopole Background

It is textbook knowledge that gravitational curvature spoils canonical quantisation,
but our approach gives a detailed mechanism. It also provides some narrowly defined
circumstances under which it may be salvaged. For monopole background χ�Hμν the form
of Equation (51) indicates that they would arise for χcσ polarised along either of the μ, ν
directions. The only way to avoid this is if χcσ is polarised in the direction of the monopole
field strength, requiring that the Abelian component of the connection propagate at a right
angle to the monopole field strength. However, the form of the monopole field strength
requires that a non-vanishing field must have a varying orientation in space, since it is
proportional to the derivatives of the angles φ, θ. So even if the Abelian gauge component
is propagating at a right angle to the monopole field strength with its polarisation in the
direction of the field strength, in general this could not be assumed to continue as the
orientation of the monopole field strength varied. However, if the variation were gradual
over space in comparison to the wavelength of χcμ, then it might continue to propagate
while adjusting to the required orientations in a manner analogous to photon polarisation
being rotated by successive, closely oriented, polarising filters. On the other hand, if the
wavelength of χcμ is significant compared to the length scale of the field variation, then
such a mechanism could not act and the particle’s energy would be either absorbed or
deflected by the condensate, effectively suppressing the longer wavelengths and providing
a measure of the background curvature.

One important observation is that the background field is (Lorentz) magnetic, so
that at any point in spacetime a reference frame exists where the monopole field and its
associated potential lie entirely along the spatial directions.
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The particle inconsistent contribution from Equation (54) only occurs in the presence
of a background electric component of the monopole field strength, vanishing when the
polarisation of χ�Xμ is orthogonal to the electric component of the background field. This
restricts the polarisation for a transversally polarised field whose direction of propagation
is not in the direction of this electric component, but not otherwise. Of course, the electric
component of the background monopole field can always be removed by a suitable Lorentz
transformation, but this still leaves the particle interpretation frame-dependent.

Some authors have argued that the valence gluons in two-colour QCD gain an effective
mass term [20,21] via their quartic interaction with the non-trivial monopole condensate.
A similar mechanism could apply to the valence components of this theory. Consider the
following quartic term from Equations (11) and (12),

g2

4
(χ�Cμ(x)×χ �Xν(x)) · (χ�Cμ(x)× χ�Xν(x))

=
g2

4
(χ�Cμ(x) · χ�Cμ(x) χ�Xν(x) · χ�Xν(x)− χ�Cμ(x) · χ�Xμ(x) χ�Xμ(x) · χ�Cμ(x)). (58)

Remembering that the Lorentz monopole fields χ�Cμ have non-zero condensates yields
the terms

g2

4
〈χ�Cμ(x) · χ�Cμ(x)〉 χ�Xν(x) · χ�Xν(x), (59)

so that the monopole condensate is seen to generate a mass term for the valence component.
Such a mass term is covariant under the gauge transformation because, as shown in
the discussion of Equation (13), the valence components transform as sources although
explicitly adding a mass term for these fields would spoil renormalisability. In this case the
valence components could also be longitudinally polarised. With longitudinal polarisation
the only restriction is that the direction of propagation be orthogonal to the background
electric component of the monopole field strength. The valence component might therefore
enjoy a limited particle interpretation under a range of circumstances.

We observe that the two monopole field strengths R�Hμν, L�Hμν sum to give a net field
strength lying purely along the rotation directions in the internal space. Exactly how this
affects the observed dynamics of the theory, or even if it does, is unclear. We were unable
to find a linear combination of the gauge fields to separate rotation and boost generators
which was equivalent to the original theory. If there is an effect, then a reasonable scenario
is that the coupling to linear momentum would dominate that to rotational momentum at
large distances, as determined by the length scale of the condensate.

5.2. The Hilbert–Einstein Term

Kim and Pak [10] considered the effects of a torsion condensate. They found the
resulting background field strength, if constant, spontaneously generated an EH term if
the curvature tensor is expanded around it (see the discussion of Equation (45) in their
paper [10]). EH terms have been shown to stabilise theories with higher-order derivatives
by rendering the propagator poles gauge invariant [38,39] and Kim and Pak suggest that
this may stabilise their theory also. Since our background is attributable to an Abelian
background field, we expect the effective theory to have an Abelianised EH term, similar to
that derived by Cho et al. [28,29] when applying the CDG decomposition to the Levi-Civita
tensor. Such details must await further work, but we are encouraged to believe that the
theory may be Wick rotated back to Lorentz space for a positive semi-definite effective
theory. Not only do all quantum fields have kinetic terms with the correct sign, but the
Lagrangian’s lowest-order derivative terms come from an emergent term sometimes added
to rectify the non-semi-positive definiteness.

6. Discussion

We have applied the CDG decomposition to a Lorentz gauge theory and confirmed that
it has a monopole condensate at one loop. Using the Clairaut formalism, we have found how
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the monopole background modifies the canonical EOMs for the physical DOFs. Lorentz
gauge theory has the problem of being non-positive semi-definite, which can be handled
by adding a EH term. We did not add such a term but instead postponed the problem by
Wick rotating the theory into Euclidean space, where the Lorentz gauge group becomes
locally isomorphic to SU(2)R × SU(2)L. We found the spontaneous generation of a vacuum
condensate which others have argued [10,16] leads to an effective Hilbert–Einstein term.

The CDG decomposition introduces an internal unit vector to indicate the local internal
direction of the Abelian subgroup of the gauged symmetry group. However, the unit vector
used to specify this subgroup does not form a canonical EOM and is degenerate. If we
expand it in terms of its angular dependence, since its information content is purely
directional, then those angles are also degenerate and we do not derive canonical EOMs for
them. They do however add additional terms with important consequences for the theory’s
physics. They may not be ignored therefore, but require appropriate theoretical tools to
analyse them. The authors addressed these issues in a previous analysis of QCD. The
purpose of this paper was to do so for a theory relevant to gravity. The main advantages of
working in a gauged Lorentz theory for us is that the gauge fields have quadratic kinetic
terms well suited to our Clairaut-based approach in addition to the opportunity to apply
analyses and even results from SU(2) Yang–Mills theories.

We have not considered the effects of matter fields in the fundamental representation.
We do note in passing that differences in this part of the spectrum must lead to variations in
the magnitude for the monopole condensate, so the differences in their matter spectra
suggest that this theory has significantly different infrared behaviour from that of
SU(2) QCD.

We also observe that the net monopole condensate lies in a direction of a rotation
generator. We have not been able to derive corresponding canonical DOFs to reflect this, so
the physical significance of this observation, if any, remains obscure.

We have left the inclusion of translation symmetry to subsequent work. A full
gravitational theory must of course include the full Poincaré symmetry group, but we
submit that our Lorentz-only theory makes a sufficiently good approximation to indicate
some relevant phenomenology.
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Abstract: In the broader methodical framework of the quantization of gravity, the crypto-Hermitian
(or non-Hermitian) version of Dirac’s interaction picture is considered. The formalism is briefly
outlined and shown to be well suited for an innovative treatment of certain cosmological models. In
particular, it is demonstrated that the Wheeler–DeWitt equation could be a promising candidate for
the description of the evolution of the quantized Universe near its initial Big Bang singularity.

Keywords: quantum gravity and the problem of the Big Bang; hidden Hermitian formulations of
quantum mechanics; stationary Wheeler–DeWitt system; physical Hilbert space metric; non-stationary
Wheeler–DeWitt system

1. Introduction

The concept of the wave function ψ of the Universe (introduced, 55 years ago, as
a solution of the Einstein–Schrödinger alias Wheeler–DeWitt (WDW) equation [1,2]) is
contradictory. On the positive side, this concept played a key role during the development
of the canonical quantization of gravity [3]. These efforts climaxed in the recent compar-
atively satisfactory and constructive formulation of the so-called loop quantum gravity
(LQG, [4–6]). At the same time, Mostafazadeh pointed out, in his review of the recent
progress in quantum theory [7], that the solutions ψ themselves remain “void of a physical
meaning”, without “finding an appropriate inner product on the space of solutions of the
WDW equation” (see p. 1291 in review [7]). In loc. cit., Mostafazadeh also emphasized that
“the lack of a satisfactory solution to this problem has been one of the major obstacles in
transforming canonical quantum gravity and quantum cosmology into genuine physical
theories”. Precisely, this obstacle is to be addressed and discussed in what follows.

In the cited review, we can further read that “in . . . quantum cosmology . . . the relevant
field equations . . . are second order differential equations in a time variable . . . [which] have
the . . . general form

d2

dt2 ψ(t) + D(t)ψ(t) = 0 (1)

where t denotes a dimensionless time variable, ψ : R → L is a function taking values
in some separable Hilbert space L , and D : L → L is a positive-definite operator that
may depend on t”. Treating the latter variable as “a fictitious evolution parameter in
quantum cosmology” (see p. 1292 in [7]), the same author later adds that “the cases in
which D is t-dependent (that arises in quantum cosmological models) require a more
careful examination”. In this sense, we are prepared to discuss some of the open questions
and subtleties of the theory.

In loc. cit., Mostafazadeh redirected interested readers to his earlier study [8]. In a
series of our subsequent unpublished comments on this topic [9] (which were later finalized
and summarized in papers [10,11]), we showed that an appropriate means of “dealing
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with these cases” is, simultaneously , less complicated and more complicated than it seems—
less complicated in the sense that some of the technical obstacles have later been found
surmountable, and more complicated because it appeared necessary to amend the overall
quantum-theoretical framework and to replace the non-Hermitian Schrödinger picture
(NSP) interpretation of the evolution of ψ (as presented, basically, in [7] or [8]) by the
more involved formalism called the interaction picture (IP) (or Dirac’s representation; see a
comprehensive review of its non-Hermitian form (NIP) in [12]).

In what follows, we intend to outline the implementation of the NIP approach in
the WDW case. The key purpose of our paper is to provide an explicit explanation of
the connection between several challenging and open physical questions (a typical one
concerns the quantum Big Bang problem, as formulated in Section 2) and the most recent
progress in the hidden unitary version of quantum mechanics (the basic features of this
theoretical innovation are reviewed). Our main message (viz, the detailed description of
the theory and of its application to the WDW equation) will finally be outlined in Section 3
(devoted to a specific schematic toy model of the quantum geometry of the Universe), in
Section 4 (on the fully fledged NIP formalism), and in Section 5 (in which the mechanism
of transition to the Big Bang singularity will be given its ultimate model-independent
construction recipe form). Our results will be discussed in Section 6 and summarized in
Section 7.

2. Challenge: Quantum Big Bang Problem

At present, it is widely believed that up to the “youngest age” of the Universe (i.e., for
times t > t1 with t1 ≈ 1032 s), the evolution (i.e., slow expansion) of the Universe is more
or less safely controlled by the classical theoretical cosmology. In contrast, in the interval of
times (t0, t1) (where t0 = 0 denotes the hypothetical time of the Big Bang), we still lack a
fully consistent and rigorous quantum theory behind the early history of the Universe [3].

2.1. Could the Degeneracy Survive Quantization? Yes, It Could

In our present study, we felt strongly motivated by the deep relevance of the under-
standing of the evolution of the Universe near its Big Bang origin, i.e., in a genuine quantum
dynamical regime. In this regime, the theoretically most ambitious LQG formalism still
seems to lead to at least some contradictory results. In one of the LQG predictions [13], for
example, the Big Bang singularity (compatible with the classical Einstein theory of gravity)
has been found to be smeared out by the quantization. In the series of papers [14–19] or in
Section 8 in [5]), for example, it is claimed that the Big Bang singularity of classical theory
must necessarily be replaced by a regularized “Big Bounce” mechanism. In contrast, more
recently, Wang with Stankiewicz [20] came forward with the opposite conclusion, claiming
that, within the scale-invariant LQG framework, “the quantized Big Bang is not replaced by
a Big Bounce”.

At first sight, the latter claim appears suspicious. In Rovelli’s words, the quantization-
related “absence of singularities” is in fact “what one would expect from a quantum theory
of gravity” (see p. 297 in [5]). An elementary support of such an intuitive expectation can
be provided by the following schematic observable

Λ(t) =

⎡⎢⎢⎢⎢⎢⎣
0 −1 + i t 0 0

−1− i t 0 −1 + i t 0

0 −1− i t 0 −1 + i t

0 0 −1− i t 0

⎤⎥⎥⎥⎥⎥⎦ (2)

and by the inspection of its spectrum (see Figure 1). As long as the matrix is Hermitian, its
spectrum must be real. Moreover, in the generic case (i.e., unless we impose a symmetry
upon the matrix), the spectrum must remain non-degenerate. This is the reason that the
levels avoid the crossing (which would simulate the regularized Big Bounce). In our

18



Universe 2022, 7, 385

example, the proof of the phenomenon is elementary: up to a small vicinity of the “Big
Bang time” t(BB) = 0, the matrix as well as its spectrum are dominated by their asymptotic
components, which are strictly linear in t. One might even suspect that the eigenvalues
could cross due to an accidental symmetry emerging at t = 0, but such a symmetry is
manifestly broken by the t-independent component of the model.

λ

t

(t)

–10

0

10

–5 0 5

Figure 1. Eigenvalues of matrix (2) (avoided-crossing phenomenon).

We intend to show that, against all expectations, the latter argument is not foolproof.
Admitting that it need not necessarily lead to the wrong conclusions, we will only show that
Wang’s and Stankiewicz’s alternative scenario [20] may equally well be supported by an
equally elementary toy model. The essence of such a claim is that the Hermiticity property
(cf. relation Λ = Λ† satisfied by our toy model matrix (2), with the superscript † marking
the matrix transposition plus complex conjugation) depends on a mathematically motivated
a priori specification of the inner product in our physical Hilbert space of states [21].

A deeper abstract foundation of our “constructive scepticism” concerning the gener-
icity of the Big Bounce may be found in the literature on quantum mechanics using
non-Hermitian operators [7,22–24]. In this sense, the common requirement of the self-
adjointness of the operators of observables Λ(t) can be weakened and replaced by the
condition of their Hermitizability alias quasi-Hermiticity [22]. In many non-Hermitian
models, indeed, the Hermiticity may be restored by the mere ad hoc amendment of the
inner product [25].

In our present paper, we will narrow the scope of the discussion to the Big Bang
and to the WDW equations. Simultaneously, we will broaden the theoretical framework,
emphasizing that, in the genuine Big Bang spatial-degeneracy context, it is necessary to
replace the most common NSP mathematics with its perceivably more complicated NIP
amendment. In a preparatory step, let us now return to the toy model (2) and let us
Wick-rotate the time t → −it and shift the origin, t → t− 1. The resulting new matrix

Q(t) =

⎡⎢⎢⎢⎢⎢⎣
0 −2 + t 0 0

−t 0 −2 + t 0

0 −t 0 −2 + t

0 0 −t 0

⎤⎥⎥⎥⎥⎥⎦ (3)

is simply a hidden Hermitian (i.e., via an amendment of the inner product, Hermitizable)
candidate for a toy model observable representing, in the context of quantum cosmology,
say, a potentially measurable discrete spatial grid [26–30].

In essence, the latter example indicates that the Big-Bang-type singularities need not
necessarily be smeared out by the quantization. Indeed, at the not too large values of the
positive time parameter t > 0, the spectrum of our manifestly non-Hermitian model (3)
may be shown to be real and non-degenerate. This is illustrated in Figure 2. At t = 0, the
spectrum becomes degenerate and the matrix itself ceases to be diagonalizable.
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λ

t

(t)
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0
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Figure 2. The reality of the spectrum of non-Hermitian matrix (3) at not too large t ≥ 0.

The latter simulation of the Big Bang singularity is called the exceptional point (EP) in
mathematics [31,32]. In the complementary context of physics, the spatial-grid interpreta-
tion of the time-dependent eigenvalues λn(t) as sampled in Figure 2 enables us to speak
about the “inflation period” of the history of the related hypothetical and highly schematic
(i.e., four-point) quantized Universe immediately after its birth. Naturally, the correspond-
ing internally consistent quantum theory must be reformulated accordingly [22].

2.2. Stationary Theory (Non-Hermitian Schrödinger Picture, NSP)

In the pedagogically oriented and compact review of the history of quantum mechan-
ics [33], the authors emphasized that there exists no universal version of quantum theory
and that “no formulation produces a royal road to quantum mechanics”. This explains the
incessant emergence of new versions of the theory, including its recent “non-selfadjoint-
operator” formulations [23].

Incidentally, the “non-selfadjoint-operator” characteristics of these theories could be
misleading. As we have already indicated, the mathematical concept of non-selfadjointness
(or, in the shorthand terminology used by physicists, of non-Hermiticity) is ambiguous,
covering, in various branches of physics, both the generators of the unitary evolution [22]
and of the non-unitary evolution [34]. It is necessary to emphasize that only the former
(i.e., unitarity-compatible) meaning of the word "non-Hermiticity" will be considered and
taken into account in what follows.

The disambiguation in fact deserves an early mention because the difference is often
less clear in applications. Moreover, the formulation of the hphysical background of the
problems happens to suffer from ambiguities. The details will be discussed later (see, first
of all, the introduction to the problem, as given in Appendix A). Now, let us only repeat that
the questions that we intend to discuss have their origin in the field of quantum gravity [3].
In this broad context, our attention will be paid, first of all, to the possible role played by
the WDW equation and to the questions of physics near the Big Bang (BB) singularity.

2.3. Stationary Wheeler–DeWitt Equation

In the stationary case, the WDW problem becomes formally equivalent to the Klein–
Gordon (KG) problem known in the relativistic quantum mechanics [8]. In their simplest
versions, both of these problems may be characterized, in suitable units, by the linear
differential equation. Thus, in the KG case (where the suitable units are h̄ = c = 1 and
where one omits, for the sake of simplicity, the electromagnetic field), we have, for example,(

∂2

∂t2 + D(KG)

)
ψ(KG)(�x, t) = 0 , D(KG) = −�+ m2 . (4)

The kinetic energy is represented here by the elementary Laplacian �, and the dy-
namics can be maximally reduced to the mere scalar mass term, which may be made
position-dependent, m2 = m2(�x).
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In the simplest non-stationary WDW model, the analogue of the mass term would be
a time-dependent function (cf., e.g., Section 3.5 of review [7] for further references). The
KG–WDW analogy enables us to use the same mathematical tools. The relevant literature
is fairly extensive but, for our present purposes, it is sufficient to cite the paper by Feshbach
and Villars ([35], cf. also Ref. [36]) in which the change of variables

ψ(WDW)(�x, t) → 〈�x|ψ(FV)(t)〉 =
(

i∂tψ
(WDW)(�x, t)

ψ(WDW)(�x, t)

)
(5)

was shown to lead to a replacement of the hyperbolic partial differential Equation (4) by
the Schrödinger-like parabolic equation for the two-component wave function (5),

i
∂

∂t
|ψ(FV)(t)〉 = G(FV)(t) |ψ(FV)(t)〉 . (6)

This equation can be interpreted as controlling the unitary evolution of the system via
the generator alias FV Hamiltonian

G(FV)(t) =
(

0 D(t)
I 0

)
. (7)

Such an operator is, in the FV Hilbert space

H(FV) = L2(R3)
⊕

L2(R3)

manifestly non-Hermitian, G(FV) �= G†
(FV). Pauli with Weisskopf [37] noticed that the same

operator can in fact be treated as selfadjoint with respect to another, indefinite inner product,

〈ψ1|ψ2〉 → (ψ1, ψ2)(Krein) = 〈ψ1|P(FV)|ψ2〉 . (8)

i.e., that it is selfadjoint in another, ad hoc Krein space. In the modern terminology, one
would say that this operator is non-Hermitian but PT -symmetric [38].

Decisive progress achieved under the stationarity assumption G(FV) �= G(FV)(t) (or,
more precisely, after its generalized form, called the quasi-stationarity assumption) is due
to Mostafazadeh. In his papers [8,39], he imagined that the FV pseudometric P could be
replaced by the positive definite metric Θ(stationary), converting the Krein-space physics (in
which, during evolution, the usual norm is not conserved) into the fully standard and
norm-conserving Hilbert-space physics. In essence, only a straightforward change in the
inner product was needed,

(ψ1, ψ2)(Krein) → (ψ1, ψ2)(Mosta f azadeh) = 〈ψ1|Θ(stationary) |ψ2〉 . (9)

This opened the way towards a consistent picture of unitary physics in which the
stationary Hamiltonian G(FV) = H(FV) controls the NSP quantum evolution, which is, with
respect to the amended inner product (9), unitary.

After either the KG or the WDW interpretation of Equation (4) in the stationary case,
the Hilbert-space metrics in (9) can be given a formal block-diagonal-operator structure

Θ(stationary) =

(
1/
√

D 0
0

√
D

)
. (10)

This leads to the first quantization of both of these systems.

3. Fine-Tuned Nature of the Quantum Big Bang

The conventional mental operation called “quantization of the classical theory” does
really very naturally lead to the conclusion that the singularity is “smeared out” near t ≈ 0
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due to “quantum effects” [40,41] (see also the four-by-four Hermitian matrix (2)). In our text,
we pointed out that the support of such a regularization hypothesis is only unavoidable in
the conventional “textbook” quantum mechanics. In a more general, hiddenly Hermitian
theory, such an assumption is artificial and unfounded (cf. Appendix A or toy model
(3)). Once one overcomes the mental barrier, one reveals that the inner product may start
playing the central descriptive role.

3.1. The N-Grid-Point Toy Model of Kinematics

In the literature, the manifestly non-Hermitian but Hermitizable Wheeler–DeWitt
equation has only been considered in the stationary (or, better, quasi-stationary) mathe-
matical NSP regime (cf. [7] or Section 2.2 above). In Section 4, we will turn attention to the
conceptual necessity of keeping the WDW-related Hilbert space time-dependent. In the
overall context of the canonical quantization of gravity, we have to be prepared to address,
therefore, a number of purely technical questions and tasks.

In the first one, the point-like Big Bang must be made compatible with a consequent
theoretical unitary evolution scenario. Thus, we have to complement the abstract ar-
gumentation of Section 2 with a detailed description of a suitable concrete toy model.
In the model, the measurable values of the spatial grid points (say, the necessarily real
and time-dependent values qj(t) with j = 1, 2, . . . N) will have to be assumed obtainable,
in principle at least, as eigenvalues of a suitable non-Hermitian geometry-representing
“effective kinematical input” operator (say, Q(N)(t)).

Secondly, we have to keep in mind that, in a way indicated by our four-by-four
matrix (3), we may assume that the general N by N matrix Q(N)(t) will still be real and
tridiagonal. Indeed, in a way explained in [42], the reality and tridiagonality is an important
merit of any candidate for an observable because it enables one to construct the metric
algebraically, in a recurrent manner. In this sense, we may recall the existing results in linear
algebra [43] and choose the one-parametric family of our N by N toy model “effective
kinematics” as follows:

Q(N)(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i (N − 1)z −
√

N − 1 0 0 . . . 0

−
√

N − 1 −i (N − 3)z −
√

2(N − 2) 0
. . .

...

0 −
√

2(N − 2) −i (N − 5)z
. . . . . . 0

0 0 −
√

3(N − 3)
. . . −

√
2(N − 2) 0

...
. . . . . . . . . i (N − 3)z −

√
N − 1

0 . . . 0 0 −
√

N − 1 i (N − 1)z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

The non-triviality of this matrix and the arbitrariness of its dimension N in combination
with its non-numerical tractability [44] will enable us to show how the requirement of
the existence of the quantum Big Bang singularity becomes supported by a consistent
reconstruction of the related physical time-dependent Hilbert-space metric. As long as
z = z(t) can be any suitable function of time, we may restrict our considerations to the
interval of z ∈ (−1, 1) in the interior of which the grid-point-coordinate spectrum of
Q(N)(z) remains non-degenerate, real, and discrete, and at the boundaries of which one can
visualize the realization of the Big Bang. Thus, after the simplest choice of z(t) = −1+ t, we
obtain an immediate N−level analogue of the graphical evolution pattern of Equation (2),
where we had N = 4.

One of the main constraints imposed upon our toy model “geometry operator” (11)
is its compatibility with the unitarity of the quantum evolution, i.e., with the existence
of the Hilbert-space metric. Naturally, the process of the evolution of the corresponding
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schematic Universe will have to start at the Big Bang single-point-degeneracy singularity,
which is such that

lim
t→0+

qn(z(t)) = q1(z(0)) , n = 1, 2, . . . , N (12)

On the technical level, one can really speak about a challenge because even the purely
formal construction of a highly schematic “Big-Banging” model of the quantum Universe
must remain compatible with the basic theoretical requirement of compatibility between
the kinematical input information (12) and the dynamical input information as represented
by the WDW Hamiltonian operator. The details will be discussed below. For the time
being, let us only assume that with the kinematical spatial-grid input (12) adapted to any
phenomenological requirements, the dynamics of the WDW-related Universe will remain
reflected by a suitable non-stationary form of the operator D in its form entering the non-
stationary analogue of the stationary (or, if you wish, adiabatic) form (10) of the WDW
Hilbert-space metric.

3.2. The Fine-Tuned Nature of the Hilbert-Space Metric Θ(z)

One of our most important WDW-related model-building tasks can be seen in the
generalization of the qualitative and consistent picture of the quantum Big Bang singularity
as mediated by its N = 4 grid-point realization via Equation (3) above (cf. also Figure 2).
In such a project, we encounter the two main technical obstacles. The first one lies in the
necessity of the guarantee of the existence of the metric Θ at all times t > 0 (i.e., in our
model, at all of the sufficiently small positive times) up to the very Big Bang birth-of-the-
Universe EP limit t → 0+. In our toy model, due to its exact solvability [43], such a guarantee
will have an exact, non-numerical form.

The means of circumventing the second technical obstacle (viz., the necessity of a
guarantee that the Hilbert-space metric remains, at all of the relevant times, non-singular
and positive definite) is equally difficult to find. In our model, we shall see that, for the
model in question, this goal can be achieved by non-numerical means as well.

The respective solutions of both of the above-mentioned problems are closely interre-
lated. Their essence can be identified with the necessity of the coexistence of the singularity
in the grid with the singularity-free nature of the metric Θ(z). The most universal approach
to this problem has been promoted by Scholtz et al. [22], who proposed to use the complete
information about the set of the observables Λ1(z), Λ2(z), . . . . Such an “extreme” model-
building strategy yielded a unique physical metric Θ(N)(z). In principle, its applicability is
strongly N-dependent of course. Thus, our methodical considerations will only concern
the systems with the smallest dimensions.

3.2.1. The Eligible Hilbert-Space Metrics at N = 2

At N = 2, the grid-point operator (11) reads

Q(2)(z) =

[ −iz −1

−1 iz

]
, z ∈ (0, 1) . (13)

with the four real parameters a, c, d and χ ∈ (0, 2π), with, for the sake of definiteness,
positive z ∈ (0, 1), and with the general ansatz

Θ(ansatz)(a, c, d, χ) =

[
a c e−iχ

c eiχ d

]
(14)

For the Hilbert-space metric, the condition of quasi-Hermiticitiy degenerates to the two
elementary relations,

d = a = z−1 c sin χ .
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and without any loss of generality, we may set c = z and evaluate the eigenvalues of matrix
of Equation (14),

λ± = sin χ± z .

Thus, this matrix may be declared acceptable as a metric if and only if it is positive
definite, i.e., if and only if

sin χ > z . (15)

This relation clearly indicates that near the EP limit z → 1, the range of variability
of the admissible parameter χ (numbering the admissible Hilbert-space metrics) becomes
extremely narrow. Moreover, whenever the dynamics-controlling parameter z moves closer
to the EP singularity, the interval quickly shrinks so that our choice of the metric must be,
in the Big Bang vicinity, very precisely “fine-tuned”.

Equation (15) becomes further simplified when we reparametrize the strength of the
non-Hermiticity z = sin β in terms of the new variable β ∈ (0, π/2) . Now, the Hermitian
limit corresponds to β = 0 while the singular EP (or, if you wish, Big Bang or Big Crunch)
extreme is reached at β = π/2. Ultimately, formula

Θ(β, χ) =

[
sin χ e−iχ sin β

eiχ sin β sin χ

]
, χ ∈ (β, π − β) (16)

defines, up to an inessential overall factor, all of the eligible correct metric operators at
N = 2.

3.2.2. N = 3 and the Requirement of Positivity

Once we move to the next geometry operator (11) with N = 3, the general ansatz for
the metric may be reduced to a six-parametric Hermitian matrix

Θ =

⎡⎢⎢⎣
a beiφ ceiχ

be−iφ f beiφ

ce−iχ be−iφ a

⎤⎥⎥⎦ . (17)

This reveals that the construction of the metric remains a purely routine linear-
algebraic problem. At the same time, the weakness of the construction is found to lie
in the less easy determination of the domain of parameters for which the metric operator Θ
remains positive definite. Although the domain of positivity of the metric is still implicitly
defined by the N = 3 secular determinant and by the relation

λ3 +(− f − 2 a)λ2 +
(
−2 b2 − c2 + a2 + 2 f a

)
λ+ c2 f − f a2 + 2 ab2− 2 b2c cos(2 φ− χ) = 0

the N = 3 analogue of the N = 2 Equation (16) would be complicated for an explicit
display. The task still remains non-numerical because the secular polynomial remains
linear in the parameters b2, f , and/or cos(2 φ− χ). This still allows the determination of
the range of the admissible parameters to be straightforward. A typical example of such a
determination is provided by Figure 3.
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Figure 3. Eigenvalues of our singularity-free metric (17) as functions of one of the parameters at
N = 3.

In this illustrative picture, we see that the eigenvalues of the metric remain real
and non-degenerate in a large interval of one of the dynamical N = 3 parameters β. In
a small vicinity of the singular EP/BB limit β → π/2, we may deduce that the rank of the
metric becomes approximately equal to one. The picture even shows the confluence of the
eigenvalues of the metric in the trivial-metric Hermitian-system limit Θ → I, i.e., very far
from the EP/BB dynamical regime.

Naturally, the technical difficulties will grow with the dimension. At the larger N, the
construction has to be given an alternative, purely graphical form. This strategy has been
used in paper [45], where it has been shown that the use of the graphical method remains
feasible even for the higher-order secular polynomials (cf. Figures 16 and 17 in loc. cit.).
Nonetheless, one has to expect that at the truly large matrix dimensions, the construction
becomes purely numerical.

3.3. Candidates for the Other Observables

For any given non-Hermitian grid-point operator Q(N)(z) with the real and nonde-
generate spectrum {qn(z)}, one can construct the arbitrarily normalized eigenvectors,

Q(N)(z) |n(z)〉 = qn(z) |n(z)〉 , n = 1, 2, . . . , N . (18)

For the same spectrum, the arbitrarily normalized double-bra-marked left eigenvectors
may be also defined as the standard right eigenvectors of a Hermitian conjugate operator,[

Q(N)(z)
]†
|n(z)〉〉 = qn(z) |n(z)〉〉 , n = 1, 2, . . . , N . (19)

It is easy to deduce that 〈〈m|n〉 = 0 for m �= n. In the generic case, the overlaps 〈〈m|m〉
will be real and non-vanishing. Whenever N is finite, the resulting biorthogonal basis can
be used in a generalized spectral representation of the operator

Q(N)(z) =
N−1

∑
n=0

|n(z)〉 qn(z)
〈〈n(z)|n(z)〉 〈〈n(z)| . (20)

We may conclude that the general (though not necessarily invertible or positive
definite) N-parametric Hilbert-space metric can be then defined by formula

Θ(N) =
N−1

∑
n=0

|n〉〉 κn 〈〈n| . (21)

The parameters κn must be all real. The acceptability of the matrix in the role of the
physical Hilbert-space metric (i.e., the necessary invertibility and positivity properties) is
then guaranteed if and only if 0 < κn < ∞ at all n [46]. In such a setting, one can easily use
an analogous generalized spectral representation to define also any other operator of an
acceptable quantum observable.
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4. Mathematics: Non-Hermitian Interaction Picture (NIP)

Naturally, the (quasi-) stationarity restriction becomes, in the WDW case, hardly
acceptable, especially if one tries to deal with the quantum dynamics near a singularity
such as the Big Bang. In such a case, a much deeper modification of the formalism of the
non-Hermitian quantum theory is needed.

After one decides to relax the assumptions of stationarity, an increase in the complexity
of the system of equations is partially compensated by the clarification of several conceptual
problems. In this sense, our main methodical recommendation is that, in analogy with
the Hermitian interaction picture of textbooks, one still keeps in mind the necessity of the
description of the dynamics in terms of both the operators and wave functions. In other
words, it is necessary to avoid several existing and widespread misunderstandings that
can be found in the current literature. Paradoxically, the root of these misunderstandings
may be seen in an insufficiently careful use of the terminology (see, e.g., the explanatory
“Rosetta-stone-like” Table 1 in [12]). Indeed, once we replace a stationary NSP model
by its non-stationary IP and/or NIP alternative and extension, the concept of quantum
Hamiltonian ceases to be unique and adequate.

4.1. Non-Stationary Quantum Systems

In the non-stationary quantum theory, the use of the time-dependent metric is known
to lead to the loss of the unitarity of the evolution or to the loss of the observability of the
NSP Hamiltonian [7]. In fact [9], the puzzle is artificial and purely terminological. The
problem disappears when one employs the non-Hermitian version of Dirac’s interaction
picture (NIP, [12]).

4.1.1. Evolution Law for the NIP Ket Vectors

In the non-stationary non-Hermitian cases, there is no need for the observability of the
generator of the evolution of the ket vectors [47–50]. Easily, the stationary version of the
Dyson map (A3) can be replaced by its time-dependent generalization

|ψ(t)� = Ω(t) |ψ(t)〉 ∈ H(T) , |ψ(t)〉 ∈ H(F) . (22)

In H(F), similarly, Schrödinger Equation (A4) acquires the form

i
∂

∂t
|ψ(t)〉 = G(t) |ψ(t)〉 (23)

in which the generator is only one of the two unobservable components of the observable
instantaneous-energy operator

H(t) = G(t) + Σ(t) . (24)

Only the sum will be called Hamiltonian in what follows. The other component of the
Hamiltonian can be defined directly in terms of the Dyson map,

Σ(t) = iΩ−1(t) Ω̇(t) , Ω̇(t) =
d
dt

Ω(t) (25)

(see [10–12] for details).
In the unitary evolution case, the observable version of the non-Hermitian but Hermi-

tizable Hamiltonian (24) is connected with its selfadjoint partner by formula

H(t) = Ω(−1)(t) h(NSP)(t)Ω(t) . (26)

In H(F), operator (26) has the property of quasi-Hermiticity,

H†(t)Θ(t) = Θ(t) H(t) , Θ(t) = Ω†(t)Ω(t) . (27)
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In an internally consistent theory of a unitary (or hidden unitary) quantum system, the
Hamiltonian still has to have the real and discrete spectrum representing the instantaneous
(but still observable) bound-state energies.

It is unfortunate that, in the literature, only too many people assign the name of
a Hamiltonian also to both of the other operators G(t) and Σ(t), neither of which represents
an observable quantity [9,11,49]. We prefer calling operator G(t) a “generator” (which
does not represent an observable, while still controlling and generating the evolution of
the IP/NIP wave functions). In parallel, we would also propose calling operator Σ(t), say,
a “Coriolis force”.

4.1.2. Evolution Law for the NIP Bra Vectors

Equation (22) has a dual-space alternative

|ψ(t)� =
[
Ω†(t)

]−1
|ψΘ(t)〉 ∈ H(T) , |ψΘ(t)〉 ≡ Θ(t) |ψ(t)〉 ∈ H(F) . (28)

This enables us to treat the new states |ψΘ(t)〉 ≡ Θ(t) |ψ(t)〉 as solutions of another
Schrödinger equation in H(F) [10,11],

i
∂

∂t
|ψΘ(t)〉 = G†(t) |ψΘ(t)〉 . (29)

The process of the solution of the two Schrödinger equations is maximally economical.
The key merit of this recipe (see also more commentaries in [12]) is that it circumvents the
necessity of the technically much more complicated direct construction of the metric as
used, e.g., in papers [49,51–54].

The present version of the process must be initiated by the specification of the re-
spective states |ψ(t)〉 and |ψΘ(t)〉 at t = ti = 0. Thus, Equations (23) and (29) have to be
complemented by the specification of the initial values represented by the kets |ψ(ti)〉 and
|ψΘ(ti)〉. Naturally, such values must obey constraints (22) and (28) at t = ti = 0. This,
in turn, is closely connected with the experiment and with the preparation of the system
in question.

4.2. Non-Hermitian Operators in Interaction Picture

It is well known that even in the conventional Hermitian version of IP, the Coriolis-
force operators obey the Heisenberg-type equations. These equations control the evolution
of every relevant operator of an observable.

In the non-Hermitian NIP formalism, the role of Σ(t) is analogous. In both of the IP
and NIP cases, the ultimate goal of the theory lies in the derivation of the predictions of
the results of measurements. In our present version of the recipe, this merely requires the
evaluation of the overlaps

〈ψΘ(t f ) |Q(t f ) |ψ(t f )〉 . (30)

Due to the identity

i
∂

∂t
Θ(t) = Θ(t)Σ(t)− Σ†(T)Θ(t) (31)

or due to its alternative version (cf. Equation (27)),

i
∂

∂t
Θ(t) = G†(t)Θ(t)−Θ(t) G(t) (32)

the NIP formalism is internally consistent, indeed. At the same time, one has to keep in
mind that the operators of the IP or NIP observables are manifestly time-dependent and
that their time dependence is not arbitrary.
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4.2.1. Evolution Law for the Density Matrices

In the non-Hermitian but unitary pure-state quantum systems of our present interest,
the state is defined by a pair of the ket vectors, i.e., by the projectors

πψ,Θ(t) = |ψ(t)〉 1
〈ψΘ(t) |ψ(t)〉

〈ψΘ(t)| . (33)

Alternatively, one can speak about the non-Hermitian density matrix

�̂(t) = ∑
k
|ψ(k)(t)〉 pk

〈ψ(k)
Θ (t) |ψ(k)(t)〉

〈ψ(k)
Θ (t)| , ∑

k
pk = 1 . (34)

Due to Equations (23) and (29), this operator has to obey the specific evolution equation

i ∂t �̂(t) = G(t) �̂(t)− �̂(t) G(t) (35)

which opens the way towards the formulation of quantum statistics in the non-Hermitian
Liouvillean picture [12].

4.2.2. The Evolution of Observables

The requirement
Q†(t)Θ(t) = Θ(t) Q(t) (36)

guarantees the observability status of any operator Q(t). This relation is equivalent, due to
Equation (A7), to the NSP Hermiticity of q(t) in H(T) since

Q(t) = Ω(−1)(t) q(NSP)(t)Ω(t) (37)

The Heisenberg-type evolution equation follows:

i
∂

∂t
Q(t) = Q(t)Σ(t)− Σ(t) Q(t) + K(t) , K(t) = Ω(−1)(t) i q̇(NSP)(t)Ω(t) . (38)

It is recommendable to assume that the partial derivatives q̇(NSP)(t) vanish so that the
related operator K(t) would be vanishing as well, making the process of the solution of
Equation (38) more user-friendly.

Given the generator G(t), the choice of the Coriolis force Σ(t) is far from arbitrary.
First of all, it is constrained by the experiment-related initial state vectors. Secondly, it
must be compatible with its relation (24) to the initial instant energy H(NIP)(ti) and to its
evolution law

i
∂

∂t
H(NIP)(t) = H(NIP)(t)Σ(NIP)(t)− Σ(NIP)(t) H(NIP)(t) + K(NIP)(t) (39)

or, equivalently,

i
∂

∂t
H(NIP)(t) = G(NIP)(t) H(NIP)(t)− H(NIP)(t) G(NIP)(t) + K(NIP)(t) . (40)

Next, one will also frequently decide to accept the important simplification obtained
for the vanishing NSP-time-derivative operators

K(NIP)(t) = Ω(−1)(t) i ḣ(NSP)(t)Ω(t) .

As long as Σ(NIP)(t) = H(NIP)(t)− G(NIP)(t), there remains no freedom left. In par-
ticular, as long as we have the definition

i
∂

∂t
Ω(NIP)(t)〉 = Ω(NIP)(t)Σ(NIP)(t) , (41)
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the only ambiguity of Ω(NIP)(t) is contained in its initial-value specification.

5. The Construction of Non-Stationary WDW Universe Admitting Big Bang

In our present study of the applicability of the NIP approach to the various models in
cosmology, we felt particularly interested in a guarantee of the Big Bang degeneracy prop-
erty

lim
t→0−

qj(t) = 0 , j = 0, 1, . . . (42)

which, in the formal context of quantum mechanics, prescribes and restricts the behavior of
certain time-dependent eigenvalues qj(t) of a suitable operator characterizing the spatial
geometry (or at least the size) of the Universe, sampled, say, by Q(t) of Equation (37), or of
Equation (3), with the spectrum as sampled in Figure 2. For this purpose, let us now return
to some less general, simplified WDW models.

5.1. The Evolution of the WDW Ket Vectors

Even in the non-stationary cases, many KG and WDW models remain formally equivalent.
For this reason, let us now return to Equation (4), replaced by its non-stationary generalization(

∂2

∂t2 + D(t)
)

ψ(WDW)(�x, t) = 0 , D(t) = −�+ m2(�x, t) . (43)

Using the same amendment of the wave functions as before,

〈�x|ψ(NIP)(t)〉 =
(

i∂tψ
(WDW)(�x, t)

ψ(WDW)(�x, t)

)
(44)

we are able to replace Equation (43) by an analogue of Equation (23), i.e., by the correct NIP
Schrödinger equation

i
∂

∂t
|ψ(NIP)(t)〉 =

(
0 D(t)
I 0

)
|ψ(NIP)(t)〉 . (45)

Here, the spectrum of the WDW generator G(NIP)(t) need not be real of course (see,
for example, an elementary illustrative example as given in [11]).

5.2. The Evolution of the WDW Bra Vectors

It is obvious that the time dependence of the metric Θ(t) may be highly sensitive to its
initial value at t = ti [49,51,52,55]. Unfortunately, the direct analysis of this dependence
via the solution of Equation (32) is complicated. For this reason, we recommended, in [12],
to follow the guidance of papers [47,55] and to circumvent the solution of the auxiliary
operator evolution Equation (32) (which was characterized, in [49], as the “time-dependent
quasi-Hermiticity relation”) and to solve the second Schrödinger equation (for the mere
bra vectors) instead.

This leads to the implementation of the NIP recipe with the evolution of

|ψ(NIP)
Θ 〉 = Θ(t) |ψ(NIP)〉 (46)

controlled by Schrödinger Equation (29),

i
∂

∂t
|ψ(NIP)

Θ (t)〉 =
(

0 I
D∗(t) 0

)
|ψ(NIP)

Θ (t)〉 . (47)

Here, it is necessary to emphasize that once we identified the NIP generator G(t)
with the WDW generator in Equations (45) and (47), we made, in effect, a certain highly
nontrivial decision. It has two aspects. In the phenomenological context, such a decision
implies that the WDW generator does not represent an observable. We believe that there are
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many reasons for such a preference, especially in the context of the possible quantization of
gravity, because, in such a context, the WDW eigenstates are usually treated as a means of
specification of the Hilbert space, rather than as the observable states that would be directly
connected with the energy [5].

5.3. Reconstruction of the Metric Θ(t) from the Generator G(t)

In the NIP framework, it is sufficient to admit that only the sum (24) of the generator
G(t) and of the Coriolis force Σ(t) (of a purely kinematical origin) can be interpreted as the
observable Hamiltonian. In such a non-stationary NIP scenario, several open questions
emerge and have to be resolved, of course.

5.3.1. Big Bang Rendered Possible by the Time Dependence of the Metric

Let us now accept the model-building strategy in which one is given the kinematical
input operator G(t). Then, the general non-Hermitian interaction picture can be declared
exceptional because only this picture is in fact a candidate for a realization of the quan-
tum Big-Bang-like phase transitions via a unitary evolution process [43,56,57]. Naturally,
the details of such a realization remain nontrivial even when we restrict our attention to
the Wheeler–DeWitt form of the most elementary differential-operator generators G(t)
and to the Big-Bang-like quantum phase transitions. Nevertheless, what we achieve is
that we avoid and eliminate the danger of the Big-Bounce smearing after quantization.
In Hermitian theory, this smearing is unavoidable, caused by an effective level repulsion,
as sampled in Figure 1 above. In the quasi-Hermitian NIP context, the Big-Bang-related
exceptional-point degeneracy is rendered possible via the “fine-tuning” of the metric: a few
non-numerical, exactly solvable simulations of such a fine-tuning may be found described,
e.g., in [56].

A complementary word of warning has been formulated in our brief methodical
note [47]. We revealed there that in the Heisenberg picture (HP), the Big Bang degeneracy
cannot be realized at all. Indeed, the underlying constant choice of vanishing G(HP)(t) = 0
has been shown to imply the stationarity of the HP metric, Θ(HP) �= Θ(HP)(t) (recall
Equation (32) for the quick proof). The HP form of Equation (24) implies that we have
Σ(HP)(t) = H(HP)(t) so that only the solution of the Heisenberg Equations (38) is needed.
The only advantage of using the HP simplification is that both of the underlying Schrödinger
equations remain trivial. Nevertheless, as long as the realization of the Big Bang degeneracy
necessarily requires that the Hilbert-space metric Θ(t) has to vary with time, the use of the
NIP formalism with nontrivial G(NIP)(t) is unavoidable.

Unfortunately, no help has been reached in an extended Heisenberg picture (EHP, [55]).
In a slightly amended formalism, we proposed the use of a constant-operator choice of
a non-vanishing generator G(EHP)(t) = G(EHP)(0) �= 0. We found that the EHP formalism
can already describe the evolution equivalent to the one generated by the manifestly time-
dependent selfadjoint quantum Hamiltonians h(t) (cf. Abstract of Ref. [55] or a rediscovery
of this possibility in [54]). Nonetheless, the description of the phase transitions (such as the
Big Bang) remains beyond the capacity of the amended EHP approach. The fully fledged
NIP is needed.

5.3.2. The Detailed WDW NIP Recipe

In [12], we outlined some of the details of the constructive treatment of the quantum
phase transitions. We pointed out that our “dynamical input” knowledge of the non-
observable Hamiltonian G(t) enables us to solve the pair of our Schrödinger Equations (23)
and (29) at any initial conditions. In this sense, every initial N-plet

|ψ1(0)〉 , |ψ2(0)〉 , . . . , |ψN(0)〉 (48)

and
|ψ1,Θ(0)〉 , |ψ2,Θ(0)〉 , . . . , |ψN,Θ(0)〉 (49)
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chosen at t = 0 can be used to construct the time-dependent N-plets of the kets

|ψ1(t)〉 , |ψ2(t)〉 , . . . , |ψN(t)〉

and
|ψ1,Θ(t)〉 , |ψ2,Θ(t)〉 , . . . , |ψN,Θ(t)〉 .

Under an elementary working hypothesis of a finite-, N-dimensional Hilbert space,
the additional initial bi-orthonormality assumption

〈ψm,Θ(0) |ψn(0)〉 = δm,n , m, n = 1, 2, . . . , N (50)

and the completeness
N

∑
n=1

|ψn(0)〉〈ψn,Θ(0)| = I (51)

become immediately extended to all times t > 0,

N

∑
n=1

|ψn(t)〉〈ψn,Θ(t)| = I , 〈ψ1,Θ(t) |ψn(t)〉 = δm,n , m, n = 1, 2, . . . , N . (52)

Moreover, the time-dependent metric operator Θ(t) acquires the standard representa-
tion in H(F),

Θ(t) =
N

∑
n=1

|ψn,Θ(t)〉 〈ψn,Θ(t)| . (53)

This means that the choice of a suitable generator G(t) and of the two suitable initial
vector sets (48) and (49) with properties (50) and (51) does not leave too much space for the
further requirements concerning the dynamics.

Fortunately, we come to the conclusion that the space left by the NIP formalism is
still sufficient for our present purposes. Indeed, in our construction, we started from the
assumption of the knowledge of a preselected WDW form of the generator G(t). Such
specific “kinematical-like” input information is still not in conflict with the Big Bang
dynamics. Indeed, such a version of the general NIP formalism still admits the use of the
formal spectral representation of the observables. In this sense, there exist the two most
important operators of our present interest. The first one is the “dynamical”, observable-
energy-representing operator H(t) called Hamiltonian. In its spectral representation of
the form

H(t) =
N

∑
n=1

|ψn(t)〉En(t)〈ψn,Θ(t)| (54)

the choice of the energy eigenvalues En(t) remains unrestricted.
In the climax of the story, an entirely analogous expansion should be finally introduced

in order to define the complementary, “kinematical”, background-representing operator of
a suitable “geometry” or “spatial-grid” operator (37). In its analogous spectral representation

Q(t) =
N

∑
n=1

|ψn(t)〉qn(t)〈ψn,Θ(t)| (55)

we are free to require the validity of the Big Bang constraint (42) imposed upon all of its
spatial-background-representing eigenvalues qn(t).

6. Discussion

The non-Hermitian innovation of the NSP framework opened, in [8], the way to-
wards a deeper understanding of the KG- and WDW-like quantum systems in stationary
approximation. Later, the birth of the more sophisticated non-Hermitian version of Dirac’s
interaction picture [10] seemed to be, initially, merely an artificial mathematical exercise.
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Nobody seemed to be willing to admit that the NIP formalism might find application in
quantum gravity. The main reason was that in the most advanced version of quantum
gravity (i.e., in the canonical LQG approach), virtually all the results seemed to indicate that
the classical Big Bang singularity has to be replaced by its quantized Big Bounce alternative.

Even among mathematicians, it has been firmly believed that the quantization must
necessarily smear out the singularities of the classical Einstein’s general relativity [3]. In this
sense, before any return to the quantum Big Bang hypothesis, it was necessary to wait for a
renewal of its support in the realistic LQG context [20]. Naturally, the problem is technically
complicated. In this sense, the present methodical support of the latter hypothesis is also
merely schematic and incomplete. In its framework, we had to leave many important
phenomenological requirements aside. Let us now mention some of them in the form of
brief comments.

6.1. The Background Independence Requirement

In Isham’s foreword preceding Thiemann’s comprehensive 2007 monograph on canon-
ical quantum gravity [3], the Hamiltonian constraint Ĥψ = 0 alias “the famous Wheeler–
DeWitt equation” is characterized as “arguably one of the most elegant equations in
theoretical physics, and certainly one of the most mathematically ill-defined”. In the intro-
ductory part of the book itself, one reads, indeed, that the sufficiently rigorous specification
of a suitable Hilbert space in which the Wheeler–DeWitt operator Ĥ would be defined
represents one of the most important unresolved theoretical challenges.

The latter Hilbert-space problem may be found thoroughly discussed in Section 9.2
of Mostafazadeh’s 2010 study [7]. Even the authors of the LQG study admit that such
an approach does not yet provide a fully consistent description of the physical reality.
Nonetheless, their approach addresses, successfully, the necessary background indepen-
dence of the theory [5]. In some sense, such a requirement should be incorporated into any
theory that pretends to be “fundamental” rather than merely “effective”.

From the perspective of our present approach based on the drastically simplified
WDW equation, the constructions that would be background-independent were found
feasible. In some sense, such a requirement can be perceived as lying in the very center
of the NIP approach, in which, admittedly, one starts from the knowledge of the explicit
WDW form of the operator G(t), but in which the theory admits the introduction of
an “observable background”. Although our present spectral representation definition
(55) of such an independent kinematical background may appear rather abstract, a more
specific example may be sought, say, in [58], where a nontrivial coordinate/background
has constructively been obtained in an elementary dynamical model.

In our considerations, the role of a geometric background has been played by the
“dynamical input” operator Q(t) sampled by a matrix in Equation (3), with the spectrum
qn(t) simulating the “observable” spatial grid points and guaranteeing the existence of
the Big Bang singularity at t = 0 (cf. Equation (42) or Figure 2). In discussion, one only
has to emphasize the mathematical subtlety of the correspondence between the hidden
Hermiticity of Q(t) and the fine-tuned nature of the corresponding Hilbert-space metric
Θ(t), which guarantees the unitarity of the system (i.e., of the evolution of the Universe
from the very beginning of its observability and existence).

In the latter considerations, the truly drastic simplifications of the picture seem still
absolutely necessary at present, skipping, typically, the Lorentz-covariance requirements
and working with the models in which the time is a parameter and in which, for methodical
reasons, the “Universe” is one-dimensional and discretized via a finite mesh of the time-
dependent grid points qj(t), j = 1, 2, . . . , N. In such a “Universe”, only the degeneracy
qj(t)→ 0 in the classical physics Big Bang limit t → 0− is asked for.

6.2. Problems with Terminology

The conventional belief that the avoided crossings of the eigenvalues are generic is
equivalent to the (usually, only tacit) assumption of the time independence of the physical
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inner-product metric Θ. In the opposite direction, once we replace the conventional
selfadjoint grid matrix q(t) with its isospectral but merely hidden Hermitian partner Q(t),
we discover the existence of a new freedom in the formalism as carried by the Dyson map
Ω(t). As a consequence, the existence of the singular Big Bang grid-point limit (42) is
rendered possible.

In the language of mathematics, the innovation lies in the enhancement of the flexibility
of the dynamical laws. One arrives at the less usual, non-Hermitian NIP formulation of
quantum mechanics. In its framework, the unitary and closed quantum systems may be
defined via structures using more than one inner product, i.e., strictly speaking, more than
one Hilbert space.

One of the most welcome consequences is an enhancement of the flexibility, while,
on the other hand, one may find terminological misunderstandings. In the phenomeno-
logically oriented literature, several similar terms denote more or less the same theory.
Thus, in different papers, one encounters, e.g., a reference to the quasi-Hermitian quan-
tum theory [22,59], to the pseudo-Hermitian quantum theory [7], to the non-Hermitian
but PT -symmetric quantum theory (usually also with P = parity and with T = time
reversal [38]), to the three-Hilbert-space quantum theory [11], or to the crypto-Hermitian
quantum theory [60], etc.

6.3. The Danger of an Over-Determination of the Dynamical Input

All of the latter approaches lead to a perceivable gain in flexibility of the realistic
models of various quantum systems. This is to be countered merely by the necessity of
keeping trace of the more sophisticated forms of Hermitian conjugations. One can conclude
that the subject is still relevant. On a model-independent level of discussion, it is worth
adding that the consistency of the dynamical input need not in fact be easily guaranteed.
In review [22], for example, the authors stressed that in the over-determined cases, the
necessary Hilbert-space metric (and, hence, the theory itself) need not exist at all. In [61],
such a non-existence has been shown to occur even in some fairly popular realistic models.
An abstract analysis of such an unpleasant possibility was presented in [62]. Only recently,
more encouraging results were obtained in [25], offering a certain systematic guide to the
construction of the mutually compatible non-Hermitian observables.

Once we restrict attention to the applicability of the NIP approach in cosmology,
encouragement may be sought in the progress and simplifications of the canonical quanti-
zation [3,5]. The latter two reviews of the state of the art differ by the language, with the
former one being more mathematically oriented. Nonetheless, both of these monographs
share the traditional philosophy interpreting the quantum theory as a result of a modi-
fication of its classical predecessor. In our final remark, we would like to point out that
one could also try to weaken our dependence on the classical-physics-based intuition by
treating, as primary, the tentative quantum hypotheses in a way defended, e.g., by Brody
and Hughston [63].

7. Summary

The core of our present message is that the consistency of the quantum-mechanical
interpretation of the non-stationary WDW systems requires that the Schrödinger equation
ceases to be perceived as offering a complete picture of the evolution. In this sense, it is
necessary to add a parallel and fully fledged description of the evolution of the operators
of observables using the Heisenberg-like evolution equations. In the natural physical
quantum-gravity context, the unitarity of the WDW-controlled evolution can be then
guaranteed. The apparently non-unitary evolution of the left and right wave functions
(controlled by the respective two Schrödinger-type equations) is precisely compensated by
the apparent non-unitarity of the evolution of the operators representing the observables
(controlled, in parallel, by non-Hermitian Heisenberg-type equations).

Having accepted such a philosophy, our present paper can be read as a more or
less purely methodical return to the question of whether, in the framework of quantum
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cosmology, the birth of our Universe should be perceived as a point-like Big Bang or as
a smeared Big Bounce. In essence, we have presented here a few arguments supporting
our persuasion that, in the purely theoretical NIP framework, such a question remains, at
present, open.
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Appendix A. Two Hilbert Spaces in Quantum Mechanics

In the conventional quantum mechanics of textbooks [21], the predictions of the
results of experiments have their mathematical background, in NSP , in the evaluation of
matrix elements

≺ψ(NSP)(t f ) |q(NSP)(t f ) |ψ(NSP)(t f )� . (A1)

The symbol q(NSP) denotes here a selfadjoint operator of the observable in question;
usually, this operator is time-independent, q(NSP) �= q(NSP)(t). All information about the
evolution of the system in time is carried, in the pure state regime, by a ket vector element
|ψ(NSP)(t)� of a Hilbert space of states H(textbook). This state is assumed prepared at
tinitial = 0 and measured at t = t f inal = t f . Prediction (A1) is probabilistic and contains
only the NSP wave-ket solutions |ψ(NSP)(t)� of Schrödinger equation

i
∂

∂t
|ψ(t)� = h(NSP) |ψ(t)� , |ψ(t)� ∈ H(textbook) . (A2)

Due to the Stone theorem, the evolution is unitary if and only if the Hamiltonian is
selfadjoint in H(textbook), h(NSP) = h†

(NSP) [64].
One of many efficient simplifications of the practical solution of Equation (A2) is due to

Dyson [65]. He revealed that, in many cases, one has to work with a technically unfriendly
Hamiltonian, which can be perceivably simplified via a suitable isospectral preconditioning
h(NSP) → H(NSP) = Ω−1 h(NSP) Ω. This is formally equivalent to the transformation of the
ket vector wave functions,

|ψ(textbook)
n � = Ω |ψ(auxiliary)

n 〉 , n = 0, 1, . . . . (A3)

Operator Ω has to be n-independent and stationary (Ω �= Ω(t)). Dyson also rec-
ommended to make the choice of Ω non-unitary (Ω†Ω = Θ �= I). In analogy with the
so-called coupled-cluster method based on a similar idea [66], one may also treat the sim-
pler partner of the Hilbert space H(textbook) as formally different, denoted by a different
dedicated symbol, say, H( f riendlier).

Schrödinger Equation (A2) becomes replaced, in the majority of applications of
the Dyson-recommended and Ω-mediated change of space H(textbook) → H( f riendlier), by
a friendlier equation

i
∂

∂t
|ψ(Dyson)(t)〉 = H(Dyson) |ψ(Dyson)(t)〉 , |ψ(Dyson)(t)〉 ∈ H( f riendlier) . (A4)

The transformed Hamiltonian is de-Hermitized since H = Ω−1 hΩ �= H† inH( f riendlier).
In the early review [22] of the procedure, a change in the philosophy has been proposed,
resulting in a reformulation of the textbook NSP approach called, in the spirit of the
mathematician’s terminology [59], quasi-Hermitian quantum mechanics. In this framework,
the model-building process has to start directly from Equation (A4) and from a guarantee
of the user-friendliness of the preconditioned Hamiltonian H. Whenever necessary, one
may, after all, re-Hermitize the model, say, via a reconstruction of Ω [7].

The non-unitarity of the map Ω implies, for the manifestly auxiliary Hilbert space
H( f riendlier), the loss of its physical-space status. Fortunately, it appeared sufficient to amend
the inner product and to convert H( f riendlier) into a fully acceptable and physical Hilbert
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space H(standard). By construction, the latter space has to be unitary equivalent to H(textbook),
with the most straightforward method being the reconstruction of the so-called metric
Θ = Ω† Ω. The mathematical details can be found in reviews [22] and [7]. The essence of
the trick is that the correct space H(standard) can be represented via the mere amendment of
the bra vectors in H( f riendlier),

〈ψ| → 〈ψ|Θ ≡ 〈ψΘ| for H( f riendlier) → H(standard) . (A5)

In the terminology of functional analysis, the definition of the dual alias bra vector
space of the linear functionals is merely amended and transferred back, from H(standard) to
H( f riendlier), via formula V′ → V′Θ . In other words, one simply converts the conventional,
unphysical bra-ket inner product 〈ψ|χ〉 into its physical alternative,

〈ψ|χ〉 → 〈ψ|Θ|χ〉 ≡ 〈ψΘ|χ〉 . (A6)

In light of this relation, it is possible to perform all calculations inH( f riendlier). Nonethe-
less, in practice, the redundancy of the introduction of the manifestly unphysical Hilbert
space H( f riendlier) must be well motivated. The expense must be more than compensated
by the simplification of the evaluation of the experimental predictions. Moreover, the loss
of the direct connection with H(textbook) has to be taken into account because, in this space,
we usually define the operators of observables using the principle of correspondence [21].

One can often pull at least some of the necessary operators from H(textbook) up to the
auxiliary Hilbert space H( f riendlier) (see, e.g., [58]), e.g., whenever one knows the Dyson
map, one can define the necessary operators in H( f riendlier) using formula

Q(Dyson) = Ω(−1)
(Dyson) q(NSP) Ω(Dyson) �= Q†

(Dyson) . (A7)

The experiment-predicting NSP equation (A1) then acquires the upgraded form,

≺ψ(NSP)(t f ) |q(NSP)(t f ) |ψ(NSP)(t f )� = 〈ψ(Dyson)
Θ (t f ) |Q(Dyson)(t f ) |ψ(Dyson)(t f )〉 (A8)

in which one can use, at worst, merely some reasonably precise approximate form of the
physical Hilbert-space metric Θ = Ω† Ω in Equation (A5) (cf. [22,67]).
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62. Krejčiřík, D.; Lotoreichik, V.; Znojil, M. The minimally anisotropic metric operator in quasi-hermitian quantum mechanics. Proc.

Roy. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180264. [CrossRef] [PubMed]
63. Brody, D.C.; Hughston, L.P. Geometric quantum mechanics. J. Geom. Phys. 2001, 38, 19–53. [CrossRef]
64. Stone, M.H. On one-parameter unitary groups in Hilbert Space. Ann. Math. 1932, 33, 643–648. [CrossRef]
65. Dyson, F.J. General Theory of Spin-Wave Interactions. Phys. Rev. 1956, 102, 1217. [CrossRef]
66. Bishop, R.F.; Znojil, M. The coupled-cluster approach to quantum many-body problem in a three-Hilbert-space reinterpretation.

Acta Polytech. 2014, 54, 85–92. [CrossRef]
67. Znojil, M. The cryptohermitian smeared-coordinate representation of wave functions. Phys. Lett. A 2011, 375, 3176–3183.

[CrossRef]

37





Citation: Prykarpatski, A.K.

Quantum Current Algebra in Action:

Linearization, Integrability of

Classical and Factorization of

Quantum Nonlinear Dynamical

Systems. Universe 2022, 8, 288.

https://doi.org/10.3390/

universe8050288

Academic Editors: Steven Duplij and

Michael L. Walker

Received: 2 March 2022

Accepted: 5 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Review

Quantum Current Algebra in Action: Linearization,
Integrability of Classical and Factorization of Quantum
Nonlinear Dynamical Systems

Anatolij K. Prykarpatski

Department of Computer Science and Telecomunication, Cracow University of Technology,
31-155 Cracow, Poland; pryk.anat@cybergal.com

Abstract: This review is devoted to the universal algebraic and geometric properties of the non-
relativistic quantum current algebra symmetry and to their representations subject to applications in
describing geometrical and analytical properties of quantum and classical integrable Hamiltonian
systems of theoretical and mathematical physics. The Fock space, the non-relativistic quantum
current algebra symmetry and its cyclic representations on separable Hilbert spaces are reviewed
and described in detail. The unitary current algebra family of operators and generating functional
equations are described. A generating functional method to constructing irreducible current algebra
representations is reviewed, and the ergodicity of the corresponding representation Hilbert space
measure is mentioned. The algebraic properties of the so called coherent states are also reviewed,
generated by cyclic representations of the Heisenberg algebra on Hilbert spaces. Unbelievable and
impressive applications of coherent states to the theory of nonlinear dynamical systems on Hilbert
spaces are described, along with their linearization and integrability. Moreover, we present a further
development of these results within the modern Lie-algebraic approach to nonlinear dynamical
systems on Poissonian functional manifolds, which proved to be both unexpected and important
for the classification of integrable Hamiltonian flows on Hilbert spaces. The quantum current Lie
algebra symmetry properties and their functional representations, interpreted as a universal algebraic
structure of symmetries of completely integrable nonlinear dynamical systems of theoretical and
mathematical physics on functional manifolds, are analyzed in detail. Based on the current algebra
symmetry structure and their functional representations, an effective integrability criterion is formu-
lated for a wide class of completely integrable Hamiltonian systems on functional manifolds. The
related algebraic structure of the Poissonian operators and an effective algorithm of their analytical
construction are described. The current algebra representations in separable Hilbert spaces and
the factorized structure of quantum integrable many-particle Hamiltonian systems are reviewed.
The related current algebra-based Hamiltonian reconstruction of the many-particle oscillatory and
Calogero–Moser–Sutherland quantum models are reviewed and discussed in detail. The related
quasi-classical quantum current algebra density representations and the collective variable approach
in equilibrium statistical physics are reviewed. In addition, the classical Wigner type current algebra
representation and its application to non-equilibrium classical statistical mechanics are described,
and the construction of the Lie–Poisson structure on the phase space of the infinite hierarchy of
distribution functions is presented. The related Boltzmann–Bogolubov type kinetic equation for the
generating functional of many-particle distribution functions is constructed, and the invariant reduc-
tion scheme, compatible with imposed correlation functions constraints, is suggested and analyzed
in detail. We also review current algebra functional representations and their geometric structure
subject to the analytical description of quasi-stationary hydrodynamic flows and their magneto-
hydrodynamic generalizations. A unified geometric description of the ideal idiabatic liquid dynamics
is presented, and its Hamiltonian structure is analyzed. A special chapter of the review is devoted
to recent results on the description of modified current Lie algebra symmetries on torus and their
Lie-algebraic structures, related to integrable so-called heavenly type spatially many-dimensional
dynamical systems on functional manifolds.
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1. Introduction

It is an old classical result that the nonrelativistic quantum current algebra real-
izes [1–3] a representation of the Lie algebra G, related to the semidirect product
G := Diff(Rm)� F(Rm;R) of the topological diffeomorphism group Diff(Rm) of the real
space Rm and the space F(Rm;R) of smooth Schwartz type functions on it. As it was later
shown by G. Goldin, with collaborators [4–7], in fact, all nonrelativistic quantum many-
particle Hamiltonian systems allow the equivalent representation by means of the current
algebra operators and their realization on some specially constructed generalized Hilbert
spaces with cyclic vector structure, strongly depending on the groundstate vectors of the
corresponding Hamiltonian operators. The detailed analysis of this representation [8–10]
made it possible to reveal a deep connection of the specially factorized operator structure
of Hamiltonian operators and the quantum complete integrability of the corresponding
Heisenberg type operator dynamical systems. Moreover, studying vector field representa-
tions of the quantum current algebra, related to the semidirect product Diff(S1)� F(S1;R)
of the topological diffeomorphism group Diff(S1) of the circle S1 and the space F(S2;R)
of the smooth periodic functions on it, their isomorphism was stated [11–13] with all com-
pletely known and up to date Lax type integrable classical dynamical systems on spatially
one-dimensional functional manifolds. Closely related algebraic aspects of representation
theory of the canonical creation–annihilation operators, both on the Fock space and on
related cyclic Hilbert spaces, gave rise to the construction of the effective linearizing scheme
of any smooth dynamical system on functional Hilbert space. As the main analytical trick
of these schemes is based on the coherent vector representation of the canonical creation–
annihilation operators on the Fock space, we describe their unbelievable and impressive
applications to the theory of nonlinear dynamical systems on Hilbert spaces, their lin-
earization and integrability, previously initiated in [14,15] and continued in [16]. We briefly
review the coherent vector representations of the Bargmann–Segal space Hk of complex
holomorphic functions on Ck, and describe a general approach to constructing coherent
states and their applications both to the linearization of nonlinear dynamical systems on
Hilbert spaces, and to describing their complete integrability. The latter is developed
using the modern Lie-algebraic approach [11,17–19] to nonlinear dynamical systems on
Poissonian functional manifolds, and proved to be both unexpected and important for the
classification of integrable Hamiltonian flows on Hilbert spaces.

Other very important applications of the current algebra representations are related
both to statistical physics, classical and quantum, and to hydrodynamics. The quantum cur-
rent algebra quasi-classical representations made it possible to analytically describe [20–22]
the so-called collective variable approach in equilibrium statistical physics and calculate
the main thermodynamical quantities at finite temperatures. The related quantum current
algebra quasi-classical Wigner type representations proved to be effective in describing
the kinetic theory [23,24] of many-particle systems and calculating both the corresponding
evolution equations for the infinite hierarchy of many-particle distribution functions, and
developing a new approach to their dynamically compatible splitting, based on the well
known Dirac type reduction of Poissonian systems on functional submanifolds.

A very rich geometric structure of liquid flow in a domain Ω ⊂ R3 and its properties
can be deeply described by means of the corresponding diffeomorphism group Diff(Ω)
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and its semi-direct products with different functional spaces on the domain Ω ⊂ R3. It
is well known that the same physical system is often described using different sets of
variables, related with their different physical interpretation. It was observed [25–33]
that the corresponding mathematical structures used for describing the analytical prop-
erties of hydrodynamical systems are canonically related to each other. Simultaneously,
mathematical properties, against a background of their analytical description, make it
possible to study additional important parameters [34–50] of different hydrodynamic and
magnetohydrodynamic systems. Amongst these, we will mention integral invariants, de-
scribing such internal fluid motion peculiarities as vortices, topological singularities [51]
and other different instability states, strongly depending [52,53] on imposed isentropic
fluid motion constraints. Being interested in their general properties and mathematical
structures which are responsible for their existence and behavior, we present [54] a detailed
differential geometrical approach to thermodynamically investigating quasi-stationary
isentropic fluid motions, paying more attention to the analytical argumentation of tricks
and techniques used during the presentation. Amongst the systems analyzed here, we men-
tion the Hamiltonian analysis and adiabatic magneto-hydrodynamic superfluid motion,
as well constructing a modified current Lie algebra and describing magneto-hydrodynamic
invariants and their geometry. In particular, we studied a modified current Lie algebra sym-
metry on torus, its Lie-algebraic structure and related integrable heavenly type dynamical
systems, describing the quasi-conformal metrics of Riemannian spaces in general relativity.

2. The Fock Space, Non-Relativistic Quantum Current Algebra and Its Cyclic
Representations

2.1. The Fock Space Representation

Let a Hilbert space ΦF possess the standard canonical Fock space structure [5,11,55–60],
that is

ΦF = ⊕n∈Z+
Φ⊗n

(s) , (1)

where subspaces Φ⊗n
(s) , n ∈ Z+, are the symmetrized tensor products of the Hilbert space

H � L(s)
2 (Rm;Ck). If a vector ϕ := (ϕ0, ϕ1, ..., ϕn, ...) ∈ ΦF, its norm

‖ϕ‖Φ :=

(
∑

n∈Z+

‖ϕn‖2
n

)1/2

, (2)

where ϕn ∈ Φ⊗n
(s) � L(s)

2 ((Rm)⊗n;C) and ‖ ... ‖n is the corresponding norm in Φ⊗n
(s) for all

n ∈ Z+. Note here that concerning the rigging structure (18), there holds the corresponding
rigging for the Hilbert spaces Φ⊗n

(s) , n ∈ Z+, that is

Dn
(s) ⊂ Φ⊗n

(s),+ ⊂ Φ⊗n
(s) ⊂ Φ⊗n

(s),− (3)

with some suitably chosen dense and separable topological spaces of symmetric functions
Dn

(s), n ∈ Z+. Concerning expansion (1), we obtain by means of projective and inductive
limits [55,57,61,62] the quasi-nucleus rigging of the Fock space Φ in the form (18).

Consider now any basis vector |(α)n) ∈ Φ⊗n
(s) , n ∈ N, which can be

written [56,57,63–65] in the following canonical Dirac ket-form:

|(α)n) := |α1, α2, ..., αn), (4)

where, by definition,

|α1, α2, ..., αn) :=
1√
n!

∑
σ∈Sn

|ασ(1))⊗ |ασ(2))...|ασ(n)) (5)
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and vectors |αj) ∈ H+, Φ⊗1
(s) � H, j, k ∈ N, are bi-orthogonal to each other, that is (αk|αj)H =

δk,j for any k, j ∈ N. The corresponding scalar product of base vectors as (5) is given
as follows:

((β)n|(α)n) := (βn, βn−1, ..., β2, β1|α1, α2, ..., αn−1, αn)

= ∑σ∈Sn(β1|ασ(1))H ...(βn|ασ(n))H := per{(βi|αj)H}i,j=1,n,
(6)

where “per” denotes the permanence of the matrix and (·|·) is the corresponding scalar
product in the Hilbert space H. Based now on the representation (4), one can define an
operator a+(α) : Φ⊗n

(s) −→ Φ⊗(n+1)
(s) for any |α) ∈ H− as follows:

a+(α)|α1, α2, ..., αn) := |α, α1, α2, ..., αn), (7)

which is called the “creation” operator in the Fock space ΦF. The adjoint operator a(β) :=
(a+(β))∗ : Φ⊗(n+1)

(s) −→ Φ⊗n
(s) with respect to the Fock space ΦF (1) for any |β) ∈ H−, called

the “annihilation” operator, acts as follows:

a(β)|α1, α2, ..., αn+1) := ∑
σ∈Sn

(β|αj)|α1, α2, ..., αj−1, α̂j, αj+1, ..., αn+1), (8)

where the hat “·̂ ′′ over a vector denotes that it should be omitted from the sequence.
It is easy to check that the commutator relationship

[a(α), a+(β)] = (α|β)H (9)

holds for any vectors |α) ∈ H and |β) ∈ H. Expression (9), owing to the rigging structure
(18), can be naturally extended to the general case, when vectors |α) and |β) ∈ H−, conserv-

ing its form. In particular, taking |α) := |α(y)) =
{

1√
2π

ei〈y|x〉
}k
∈ H− := L2,−(Rm;Ck) for

any y ∈ Em, one easily gets from (9) that

[ai(x), a+j (y)] = δijδ(x− y) (10)

for any i, j = 1, k, where we put, by definition, 〈·|·〉 the usual scalar product in the
m-dimensional Euclidean space Em := (Rm; 〈·|·〉), a+j (y) := a+j (y(x)) and aj(y) :=

aj(y(x)), j = 1, k, for all x, y ∈ Rm and denoted by δ(·) the classical Dirac delta-function.
The construction above makes it possible to observe easily that there exists the unique

vacuum vector |0) ∈ Φ⊗1
(s) , such that for any x ∈ Rm

aj(x)|0) = 0 (11)

for all j ∈ 1, k, and the set of vectors(
k

∏
j=1

nj

∏
i=1

(
a+j

)
(x(i)j )

)
|0) ∈ Φ⊗n

(s) (12)

is total in Φ⊗n
(s) , that is, their linear integral hull over the functional spaces Φ⊗n

(s) is dense in

the Hilbert space Φ⊗n
(s) for every n = ∑k

j=1 nj ∈ N. This means that for any vector ϕ ∈ ΦF,
the following canonical representation
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ϕ =
⊕
∑

n=∑k
j=1 nj∈Z+

∫
(Rm)n

ϕ
(n)
n1n2...ns(x(1)1 , x(2)1 , ..., x(n1)

1 ; x(1)2 , x(2)2 , ..., x(n2)
2 ; ... (13)

;x(1)k , x(2)k , ..., x(nm)
k )

k

∏
j=1

1√
nj!

nj

∏
s=1

a+j (x(s)j )|0)

holds with the Fourier type coefficients ϕ
(n)
n1n2...ns ∈ Φ⊗n

(s) for all n = ∑k
j=1 nj ∈ Z+. The

latter is naturally endowed with the Gelfand type quasi-nucleus rigging, dual to

H+ ⊂ H ⊂ H−, (14)

making it possible to construct a quasi-nucleous rigging of the dual Fock space ΦF :=
⊕n∈Z+

Φ⊗n
(s) . Thereby, the chain (14) generates the dual Fock space quasi-nucleolus rigging

D ⊂ ΦF,+ ⊂ ΦF ⊂ ΦF,− ⊂ D′ (15)

with respect to the Fock space ΦF, easily following from (1) and (14).
Construct now the following self-adjoint operator ρ(x) : ΦF → ΦF as

ρ(x) := 〈a+(x)|a(x)〉, (16)

called the density operator at a point x ∈ Rm, satisfying the commutation properties:

[ρ(x), ρ(y)] = 0,

[ρ(x), a(y)] = −a(y)δ(x− y),

[ρ(x), a+(y)] = a+(y)δ(x− y)

(17)

for any x, y ∈ Rm.
Assume now that Φ is a separable Hilbert space, F is a topological real linear space

and A := {A(f) : f ∈ F} is a family of commuting self-adjoint operators in Φ (i.e., these
operators commute in the sense of their resolutions of the identity) with dense in Φ domain
DomA(f) := DA(f) ⊂ Φ, f ∈ F. Consider the corresponding Gelfand rigging [57,61,66] of
the Hilbert space Φ, i.e., a chain

D ⊂ Φ+ ⊂ Φ ⊂ Φ− ⊂ D′ (18)

in which Φ+ is a Hilbert space, topologically (densely and continuously) and quasi-nucleus
(the inclusion operator i : Φ+ −→ Φ is of the Hilbert–Schmidt type) embedded into Φ, the
space Φ− is the dual to Φ+ as the completion of functionals on Φ+ with respect to the norm
||f||− := sup

||u||+=1
|(f|u)Φ|, u ∈ Φ, a linear dense in Φ+ topological space D ⊆ Φ+ is such

that D ⊂ DA(f) ⊂ Φ and the mapping A(f) : D → Φ+ is continuous for any f ∈ F. Then,
the following structural theorem [4,5,16,57,61,62,67–69] about the cyclic representations of
the family A := {A(f) : f ∈ F} of commuting self-adjoint operators in the separable Hilbert
space Φ holds.

Theorem 1. Assume that the family of operators A satisfies the following conditions:
(a) for A(f), f ∈ F, the closure of the operator A(f) in Φ coincides with A(f) for any f ∈ F,

that is A(f) = A(f) on domain DA(f) in Φ;
(b) the Range A(f) ⊂ Φ for any f ∈ F;
(c) for every ϕ ∈ D the mapping F � f −→ A(f)|ϕ) ∈ Φ+ is linear and continuous;
(d) there exists a strong cyclic vector |Ω) ∈ ⋂

f∈F DA(f), such that the set of all vectors |Ω)
and ∏n

j=1 A(fj)|Ω), n ∈ Z+, is total in Φ+ (i.e., their linear hull is dense in Φ+).
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Then there exists a probability measure μ on (F′, Cσ(F′)), where F′ is the dual of F and Cσ(F′)
is the σ-algebra generated by cylinder sets in F′ such that, for μ−almost every η ∈ F′ there is
a generalized common eigenvector ω(η) ∈ Φ− of the family A, corresponding to the common
eigenvalue η ∈ F′, that is for any ϕ ∈ D ⊂ Φ+ and A(f) ∈ A

(ω(η)|A(f)ϕ)Φ−×Φ+ = η(f)(ω(η)|ϕ)Φ−×Φ+ (19)

with η(f) ∈ R, denoting here the result of the pairing between F and F′.
The mapping

D � |ϕ) −→ (ω(η)|ϕ)Φ−×Φ+ := ϕ(η) ∈ C (20)

for any η ∈ F′ can be continuously extended to a unitary surjective operator Fη : Φ+ −→
L(μ)

2 (F′;C), where
Fη |ϕ) := η(ϕ) (21)

for any η ∈ F′ is a generalized Fourier transform, corresponding to the family A. Moreover,
the image of the operator A(f), f ∈ F′, under the Fη- mapping is the operator of multiplication by
the function F′ � η → η(f) ∈ R.

Now, if to construct the following self-adjoint family R :={
ρ(f) :=

∫
Rm ρ(x)f(x)dx : f ∈ F

}
of linear operators in the Hilbert space Φμ, where

F := S(Rm;R) is the Schwartz functional space dense in H, one can derive, making use of
Theorem 1, that there exists the generalized Fourier transform (21), such that

Φμ = L(μ)
2 (F′;C) �

∫ ⊕

F′
Φ(η)dμ(η) (22)

for some Hilbert space sets Φ(η), η ∈ F′, and a suitable measure μ on F′, with respect to
which the corresponding joint eigenvector ω(η) ∈ Φ− for any η ∈ F′ generates the Fourier
transformed family {η(f) ∈ R : f ∈ F}. Moreover, if dim Φη = 1 for all η ∈ F′, the
Fourier transformed eigenvector ω(η) := Ω(η) = 1 for all η ∈ F′.

Now we will consider the family of self-adjoint operators ρ(f) : Φμ → Φμ, f ∈ F, as
generating a unitary family U := {U(f) : f ∈ F}, where the operator

U(f) := exp[iρ(f)] (23)

is unitary, satisfying the abelian commutation condition

U(f1)U(f2) = U(f1 + f2) (24)

for any f1, f2 ∈ F. Since, in general, the unitary family U is defined in the Hilbert space Φμ,
not coinciding, in general with the canonical Fock type space, the important problem of
describing its cyclic unitary representation spaces arises, within which the factorization
jointly with relationships (17) hold for any f ∈ F. This problem can be treated using
mathematical tools devised both within the representation theory of C∗-algebras [4,5,57,63]
and the Gelfand–Vilenkin [66] approach. Below we will describe the main features of the
Gelfand–Vilenkin formalism, being much more suitable for the task, providing a reasonably
unified framework of constructing the corresponding representations. The next definitions
will be used in our construction.

Definition 1. Let F be a locally convex topological vector space, F0 ⊂ F be a finite dimensional
subspace of F. Let F0 ⊆ F′ be defined by

F0 :=
{

σ ∈ F′ : σ|F0 = 0
}

, (25)

and called the annihilator of F0.
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The quotient space F′0 := F′/F0 may be, evidently, identified with F′0 ⊂ F′, the adjoint
space of F0.

Definition 2. Let Q ⊆ F′0; then the subset

X(Q)
F0 :=

{
σ ∈ F′ : σ + F0 ⊂ Q

}
(26)

is called the cylinder set with the base Q and the generating subspace F0.

Definition 3. Let n = dim F0 = dim F′0 = dim F′0. One says that a cylinder set X(Q) has Borel
base, if Q is a Borel set, when regarded as a subset of Rm.

The family of cylinder sets with Borel base forms an algebra of sets, which is a key
stone for defining measurable sets in and the corresponding measures on F′.

Definition 4. The measurable sets in F′ are the elements of the σ-algebra generated by the cylinder
sets with Borel base.

Definition 5. A cylindrical measure in F′ is a non-negative σ-pre-additive function μ defined on
the algebra of cylinder sets with a Borel base and satisfying the conditions 0 ≤ μ(X) ≤ 1 for any X,
μ(F′) = 1 and μ

(
�j∈N Xj

)
= ∑j∈N μ(Xj), if all sets Xj ⊂ F′, j ∈ N, have a common generating

subspace F0 ⊂ F.

Definition 6. A cylindrical measure μ satisfies the commutativity condition if, and only if, for any
bounded continuous function, α : Rn −→ R of n ∈ N real variables the function

α[f1, f2, ..., fn] :=
∫

F′
α(η(f1), η(f2), ..., η(fn))dμ(η) (27)

is sequentially continuous in fj ∈ F, j = 1, m.

Remark 1. It is known [4,57,66] that in countably normalized spaces, the properties of sequential
and ordinary continuity are equivalent.

Definition 7. A cylindrical measure μ is countably additive if, and only if, for any cylinder set
X = �j∈N Xj, which is the union of countably many mutually disjoints cylinder sets Xj ⊂ F′, j ∈
N, μ(X) = ∑j∈N μ(Xj).

The next two standard propositions [4,57,66,70,71], characterizing extensions of the
measure μ on X = �j∈N Xj, hold.

Proposition 1. A countably additive cylindrical measure μ can be extended to a countably additive
measure on the σ-algebra, generated by the cylinder sets with a Borel base. Such a measure will also
be called a cylindrical measure.

Proposition 2. Let F be a nuclear space. Then, any cylindrical measure μ on F′, satisfying the
continuity condition, is countably additive.

2.2. Non-Relativistic Quantum Current Algebra and Its Cyclic Representations

Based on the Fock space ΦF, defined by (18) and generated by the creation–annihilation
operators (7) and (8), the current operator J(x) : ΦF → Φm

F , x ∈ Rm, can be easily
constructed as follows:

J(x) =
1
2i
[a+(x) ∇xa(x)−∇xa+(x) a(x)], (28)
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satisfying jointly with the density operator ρ(x) : ΦF → ΦF, x ∈ Rm, defined by (16), the
following quantum current Lie algebra symmetry [4–7,59,68,72] relationships:

[J(g1), J(g2)] = i J([g1,g2]), [ρ(f1), ρ(f2)] = 0, (29)

[J(g1), ρ(f1)] = iρ(〈g1|∇f1〉 ),

holding for all f1, f1 ∈ F and g1, g2 ∈ Fm, where we put, by definition,

[g1,g2] := 〈g1|∇〉 g2 − 〈g2|∇〉 g1, (30)

being the usual commutator of vector fields 〈g1|∇〉 and 〈g2|∇〉 on the configuration space
Rm. It is easy to observe that the current algebra (29) is the Lie algebra G, corresponding
to the Banach group G := Diff (Rm)� F, the semidirect product of the Banach group of
diffeomorphisms Diff (Rm) of the m-dimensional space Rm and the Abelian group F. As
the Lie algebra Γ(Rm) of smooth vector fields on Rm with the Lie bracket (17) is isomorphic
to the Lie algebra Diff(Rm) of the Banach diffeomorphism group Diff (Rm), it is natural to
construct the corresponding unitary operators

V(ϕ
g
t ) := exp[i J(g)], (31)

on the Representation Hilbert space Φμ, where for any g ∈ Fm, there holds dϕ
g
t /dt =

g(ϕ
g
t ), ϕ

g
t (x)|t=0 = x ∈ Rm, where ϕ

g
t ∈ Diff(Rm), t ∈ R. The constructed above exponen-

tial currents (23) and (31) constitute together a unitary operator group on the Hilbert space
Φ, endowed with the following composition law

U(f1)U(f2) = U(f1 + f2), V(ϕ1)V(ϕ2) = V(ϕ2 ◦ ϕ1), (32)

V(ϕ)U(f) = U(f ◦ ϕ)V(ϕ)

for all f1, f2, f ∈ F and ϕ, ϕ2, ϕ ∈ Diff(Rm). The operator group (32) is, evidently, isomorphic
to the semidirect product group G, which is endowed, respectively, with the natural
composition law

(ϕ1, f1) ◦ (ϕ2, f2) = (ϕ2 ◦ ϕ1, f1 + f2 ◦ ϕ1) (33)

for all f1, f2 ∈ F and ϕ1, ϕ2 ∈ Diff(Rm). Concerning a more adequate mathematical descrip-
tion of the Banach diffeomorphism group Diff(Rm), it is useful to consider the subgroup
Diff0(Rm) of smooth diffeomorphisms of Rm with compact supports, which is a topologi-
cal space with the topology given by a counted family of the metrics ||ϕ1 − ϕ2||n :=
max|k|=0,n supx∈Rm(1 + |x|2)n|ϕ(k)

1 (x) − ϕ
(k)
2 | for all n ∈ Z+ and ϕ1, ϕ2 ∈ Diff0(Rm).

So, the diffeomorphism group Diff(Rm) can be defined as the completion of the space
Diff0(Rm) with respect to the topology introduced above. This way, the constructed group
Diff(Rm) is topological, locally linear connected and metrizable with a countable topology
basis at each of its points. In particular, the group Diff(Rm) contains diffeomorphisms
with noncompact supports, yet in the limit |x| → ∞, x ∈ Rm, they can be approximated
by the identity mapping in Diff(Rm). The latter makes it possible to state that for any
g ∈ Fm the element ϕ

g
t ∈ Diff(Rm) for all t ∈ R generates the uniform continuous mapping

Fm � g → ϕ
g
t ∈ Diff(Rm).

Proceeding now to the Banach group of currents G = Diff (Rm)� F, we have that
the separable Hilbert space Φμ for every irreducible cyclic representation will be unitary
equivalent to the Hilbert space (45), which in many physical applications reduces in the
case dim Φ(η) = 1 for all η ∈ F′ to the following form:

Φμ � L(μ)
2 (F′;C), (34)

being the space of square integrable functions with respect to the measure μ on F′.
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Assume now that an element ω ∈ Φμ is taken arbitrarily and consider the action of
the Banach group of currents G on it:

U(f)ω(η) = exp[i(η(f)]ω(η), (35)

V(ϕ)ω(η) = χϕ(η)ω(ϕ∗η)

[
dμ(ϕ∗(η))

dμ(η)

]1/2

,

where, by definition, ϕ∗η(f) := η(f ◦ ϕ) for all f ∈ F, dμ(ϕ∗η)
dμ(η)

is the corresponding Radon–
Nikodym derivative [19,73] of the measure μ ◦ ϕ∗ with respect to the measure μ on F′ and
χϕ(η) is a complex-valued character of the unit norm, satisfying the relationship

χϕ2(η)χϕ1(ϕ∗2η) = χϕ1◦ϕ2(η) (36)

for all ϕj ∈ Diff(Rm), j = 1, 2, η ∈ F′. For the Radon–Nikodym derivative above to exist,
the measure μ on F′ should be quasi-invariant with respect to the diffeomorphism group
Diff(Tn), that is, for any measurable set Q ⊂ F′ the condition μ(Q) = 0 if, and only if,
μ(ϕ∗Q) for arbitrary ϕ ∈ Diff(Rm).

In physics applications, the representation (35) is uniquely determined by the measure
μ on F′, which in the general case has a very complicated [20,72] structure, and its analytic
construction is nontrivial. One of the fairly effective approaches to this problem is the
quantum method of Bogolubov generating functionals developed in [2,6,7,20,74]. Another
approach, which is of considerable interest for the theory of dynamical systems, is based
on algebraic methods of constructing self-adjoint functional-operator representations of the
original current Lie algebra (29). In particular, the representation (35), corresponding to a
quantum-mechanical system of N ∈ N identical bose-particles localized at points xj ∈ Rm,
has a measure μ with supports [20,72] on Dirac delta-functions η := ηN ∈ F′ of the form:

ηN(x) = ∑
j∈1,N

δ(x− xj) (37)

at any x ∈ Rm with a measure μ of the form:

dμ(ηN) = Ω∗
NΩN ∏

j=1,N

dxjδ(η − ηN(x)), (38)

where ΩN ∈ ΦN � L(s)
2 ((Rm)⊗N ;C) is the corresponding symmetric ground-state wave

function of the related quantum Hamiltonian system, satisfying the conditions (49) and
(49), reduced on the invariant subspace ΦN . Moreover, the following general expressions
hold: Ω(η) = 1 and for any ω ∈ L(μ)

2 (F′;C)

ρ(x)ω(ηN) = ∑
j∈1,N

δ(x− xj)ω(ηN), (39)

J(x)ω(ηN) =
1
2i ∑

j∈1,N

[
δ(x− xj) ◦ ∂/∂xj + ∂/∂xj ◦ δ(x− xj)

]
ω(ηN),

where, by definition, ω(ηN) ∈ ΦN � L(s)
2 ((Rm)⊗N ;C). As a simple consequence of the

actions (39), one derives that
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U( f )ω(ηN) = exp[i ∑
j∈1,N

f (xj)]ω(ηN), (40)

V(ϕ)ω(ηN) = ω(ϕ∗ηN)

[∣∣∣∣det
(

∂ϕ(x)
∂x

)∣∣∣∣]1/2

,

where we put, for brevity, that the character χϕ(ηN) = 1 for all ϕ ∈ Diff(Rm).

2.3. The Generating Functional Equation, Cyclic Current Algebra Representation and Hamiltonian
Operator Groundstate

Concerning the Fourier transform of a cylindrical measure μ in F′, we will use the
following natural definitions.

Definition 8. Let μ be a cylindrical measure in F′. The Fourier transform of μ is the nonlinear
functional

L(f) :=
∫

F′
exp[iη(f)]dμ(η), (41)

coinciding with the characteristic functional of the measure μ.

Definition 9. The nonlinear functional L : F −→ C on F, defined by (41), is called positive
definite, if, and only if, for all fj ∈ F and λj ∈ C, j = 1, n, the condition

n

∑
j,k=1

λ̄jL(fk − fj)λk ≥ 0 (42)

holds for any n ∈ N.

The following important proposition, owing to Gelfand and Vilenkin [4,66], Araki [75]
and Goldin [1,4], holds.

Proposition 3. The functional L : F −→ C on F, defined by (41), is the Fourier transform of a
cylindrical measure on F′ if, and only if, it is positive definite, sequentially continuous and satisfying
the condition L(0) = 1. Suppose now that we have a continuous unitary representation of the
unitary family U in a suitable Hilbert space Φμ with a cyclic vector |Ω) ∈ Φμ. Then we can put

L(f) := (Ω|U(f)|Ω) (43)

for any f ∈ F := S(Rn;R), being the Schwartz space on Rm, and observe that functional (43) is
continuous on F owing to the continuity of the representation. Therefore, this functional is the
generalized Fourier transform of a cylindrical measure μ on F′:

(Ω|U(f)|Ω) =
∫
S′

exp[iη(f)]dμ(η). (44)

From the spectral point of view, based on Theorem 1, there is an isomorphism between the Hilbert
spaces Φμ and L(μ)

2 (F;C), defined by |Ω) −→ Ω(η) = 1 and U(f)|Ω) −→ exp[iη(f)] and next
extended by linearity upon the whole Hilbert space Φ. In the non-cyclic case, there exists a finite
or countably infinite family of measures {μk : k ∈ Z+} on F′, with Φμ� ⊕k∈Z+

L(μk)
2 (F′;C) and

the unitary operator U(f) :Φμ−→Φμ for any f ∈ F corresponds in all L(μk)
2 (F′;C), k ∈ Z+, to a

multiplication operator on the exponent function exp[iη(f)]. This means that there exists a single
cylindrical measure μ on F′ and a μ− measurable field of Hilbert spaces Φ(η) on F′, such that

Φμ �
∫ ⊕

F′
Φ(η)dμ(η), (45)
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with U(f) : Φμ−→Φμ, corresponding [66] to the operator of multiplication by exp[iη(f)] for any
f ∈ F and η ∈ F′. Thereby, having constructed the nonlinear functional (41) in an exact analytical
form, one can retrieve the representation of the unitary family U on the corresponding Hilbert space
Φμ, as follows: Φμ = ⊕n∈Z+

Φn, where

Φn = ∏
j=1,n

ρ(xj)|Ω), (46)

for all n ∈ N.

The cyclic vector |Ω) ∈ Φμ can be, in particular, obtained as the ground state vector
of some unbounded self-adjoint positive definite Hamiltonian operator H : Φμ−→ Φμ,
commuting with the self-adjoint non-negative particle number operator

N :=
∫
Rm

dxρ(x), (47)

that is [H, N] = 0. Moreover, the conditions

H|Ω) = 0 (48)

and
inf

ϕ∈DH
(ϕ|H|ϕ) = (Ω|H|Ω) = 0 (49)

hold for the operator H : Φμ→ Φμ, where DH denotes its domain of definition, dense in
Φμ. To find the functional (43), which is called the generating Bogolubov type functional
for moment distribution functions

fn(x1, x2, ..., xn) := (Ω| : ρ(x1)ρ(x2)...ρ(xn) : |Ω), (50)

where xj ∈ Rm, j = 1, n, and the normal ordering operation: · : is defined [4,6,7,55,56,68] as

: ρ(x1)ρ(x2)...ρ(xn) : =
n

∏
j=1

(
ρ(xj)−

j−1

∑
k=1

δ(xj − xk)

)
, (51)

it is convenient first to choose the Hamilton operator H : ΦF → ΦF in the following
secondly quantized [4,5,56] representation

H : =
1
2

∫
Rm

〈
∇xa+(x)|∇xa(x)

〉
dx + V(ρ), (52)

on the related Fock space ΦF , where the sign “∇′′
x means the usual gradient operation with

respect to x ∈ Rm in the Euclidean space Em � (Rm; 〈·|·〉). If the energy spectrum density
of the Hamiltonian operator (52) on the cyclic representation Hilbert space Φμ is bounded
from below, in works done by Goldin G.A., Grodnik J., Menikov R. Powers R.T. and Sharp
D. [4,5,76] it was stated that this Hamiltonian, modulo the ground state energy eigen-
value, can be algebraically represented on a suitably constructed current algebra symmetry
representation Hilbert space Φμ, as the positive definite gauge type factorized operator

H =
1
2

∫
Rm

〈
(K+(x)−A(x; ρ))|ρ−1(x)(K(x)−A(x; ρ))

〉
dx, (53)

satisfying conditions (48) and (49), where A(x; ρ) : Φμ → Φm
μ , x ∈ Rn, is some specially

constructed [68,77] linear self-adjoint operator, satisfying the condition

K(x)|Ω) = A(x; ρ)|Ω) (54)
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with the ground state |Ω) ∈ Φμ, corresponding to chosen potential operators V(ρ) : Φμ→
Φμ. The singular structure of the operator (53) was previously analyzed in detail in [2]
where, in part, its well-posedness was showed.

The “potential” operator V(ρ) : Φμ→ Φμ is, in general, a polynomial (or analytical)
functional of the density operator ρ(x) : Φμ−→ Φμ for any x ∈ Rm, and the operator K(x) :
Φμ→ Φm

μ is defined as
K(x) := ∇xρ(x)/2 + i J(x), (55)

where the self-adjoint “current” operator J(x) : Φμ→ Φm
μ can be naturally defined (but

non-uniquely) from the continuity equality

∂ρ/∂t = i[H, ρ(x)] = −〈∇|J(x)〉, (56)

holding for all x ∈ Rm. Such an operator J(x) : Φμ→ Φm
μ , x ∈ Rm, can exist owing to the

commutation condition [H, N] = 0, giving rise to the continuity relationship (56), if, addi-
tionally, to take into account that supports supp ρ of the density operator ρ(x) : Φμ→ Φμ,
x ∈ Rm, can be chosen arbitrarily, owing to the independence of (56) on the potential opera-
tor V(ρ) : Φμ→ Φμ, but its strict dependence on the corresponding representation (45).

Remark 2. The self-adjointness of the operator A(g; ρ) : Φμ→ Φμ, g ∈ F, can be stated following
schemes from works [5,68,72] under the additional existence of such a linear anti-unitary mapping
T : Φμ → Φμ that the following invariance conditions hold:

Tρ(x)T−1 = ρ(x), T J(x) T−1 = −J(x), T|Ω) = |Ω) (57)

for any x ∈ Rm. Thereby, owing to conditions (57), the following equalities

K(x)|Ω) = A(x; ρ)|Ω) (58)

hold for any x ∈ Rm, giving rise to the self-adjointness of the operator A(g; ρ) :Φμ−→ Φμ, g ∈ Fm.

It is easy to observe that the time-reversal condition (57) imposes the real value
relationship for the real valued ground state ΩN = ΩN ∈ ΦN � L(s)

2 (Rm×N ;C) of the
canonically represented N-particle Hamiltonian HN : ΦN → ΦN for arbitrary N ∈ N.
Moreover, taking into account the relationship (58), one can easily observe that on the
invariant subspace ΦN ⊂ ΦF, the operator K(x) : ΦN −→ ΦN is representable as

KN(x) = ∑
j=1,N

δ(x− xj)
∂

∂xj
, (59)

entailing the following expression for the related operator AN(x; ρ) : ΦN → ΦN on the
subspace ΦN ⊂ Φ :

AN(x; ρ) = ∑
j=1,N

δ(x− xj)∇xj ln |ΩN(x1, x2, ..., xN)|. (60)

The latter makes it possible to derive its secondly quantized [56,57,78,79] expression as

A(x; ρ) =
∫
Rm×N

dx2dx3...dxN : ρ(x)ρ(x2)ρ(x3)...ρ(xN) : ∇x ln |ΩN(x, x2, ..., xN)|, (61)

which holds for any x ∈ Rm and arbitrary N ∈ Z+. Being interested in the infinite particle
case when N → ∞, the expression (61) can be naturally decomposed [77,79] as

A(x; ρ) := ρ(x)∇ δ
δρ(x)W(ρ) =

= ∑n∈Z+
1
n!

∫
Rm×n dy1dy2...dyn : ρ(x)ρ(y1)ρ(y)ρ(y3)...ρ(yn) : ∇xWn+1(x; y1, y2, ..., yn),

(62)
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where the corresponding real-valued coefficients Wn ∈ H(1)
2 (Rm×n;R) should be such

functions that the series (62) were convergent in a suitably chosen representation Fock
space ΦF, for which the resulting ground state limN→∞ ΩN � |Ω) ∈ ΦF is necessarily
cyclic and normalized.

Based now on the construction above, one easily deduces from expression (55) that the
generating Bogolubov type functional (43) obeys for all x ∈ Rm the following functional-
differential equation:

[∇x − i∇xf]
1
2i

δL(f)
δf(x)

= A
(

x;
1
i

δ

δf

)
L(f), (63)

whose solutions should satisfy [3,74] the Fourier transform representation (44), and which
were, in part, studied in [74]. In particular, a wide class of special so-called Poisso-
nian white noise type solutions to the functional-differential Equation (63) was obtained
in [5,61,62,68,71,80] by means of functional-operator methods in the following generalized
form:

L(f) = exp
{

2
∫
Rm

W
(

1
i

δ

δf

)
dx

}
exp

(
ρ̄
∫
Rm
{exp[if(x)]− 1}dx

)
, (64)

where ρ̄ = (Ω|ρ|Ω) ∈ R+ is a suitable Poisson process parameter and the operator
A(x; ρ) : Φμ → Φm

μ , x ∈ Rm, resulting from the expression (62) for some scalar operator
W(ρ) : Φμ → Φμ.

Remark 3. It is worth remarking here that solutions to Equation (63) realize the suitable physically
motivated representations of the abelian Banach subgroup F of the Banach group G = Diff(Rm)� F,
mentioned above. In the general case of this Banach group G one can also construct [5,6,16,81]
a generalized Bogolubov type functional equation, whose solutions give rise to suitable physically
motivated representations of the corresponding current Lie algebra G.

Recalling now the Hamiltonian operator representation (53), one can readily deduce
that the following weak representation Hilbert space Φμ weak relationship(〈

A|ρ−1A
〉
−

〈
K∗|ρ−1A

〉
−

〈
A|ρ−1K

〉)
/2− V(ρ) = ε0, (65)

where ε0 ∈ R is the corresponding ground state energy density value. Thus, the main
analytical problem is now reduced to constructing the expansion (62) corresponding to
a suitable cyclic representation Hilbert space Φμ of the quantum current algebra (29),
compatible with the Hamiltonian operator structure (52).

Remark 4. Here we mention that the operator K(x) : Φμ → Φm
μ , x ∈ Rm, defined by (55), relates

to that from the work [4,5,76] via scaling K(x)→ K(x)/2, x ∈ Rm.

2.4. The Hamiltonian Operator Reconstruction and the Cyclic Current Algebra Representation

We will assume that we are given a Banach current group G = Diff(Rm)� F cyclic
representation in a Hilbert space Φμ with respect to F with a cyclic vector |Ω) ∈ Φ+ ⊂ Φμ.
Based on the well known Araki reconstruction theorem [5,75] for the canonical Weyl
commutation relations, we can first readily obtain from (56) that

[H,U(f)] = J(∇f)U(f)− 1/2ρ(〈∇f1|∇f2〉)U(f), (66)

where U(f) = exp[iρ(f)], f ∈ F, is an element of the unitary family U . The expression (66)
makes it possible to calculate the bilinear form

(U(f1)Ω|H|U(f2)Ω) = (U(f1)Ω|J(∇f1)|U(f2)Ω)−
−1/2(U(f1)Ω|ρ(〈∇f1|∇f2〉)|U(f2)Ω)

(67)
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for any f1, f2 ∈ F. Taking into account the symmetry properties (57), we finally deduce from
(67) that for arbitrary functions f1, f2 ∈ F

(U(f1)Ω|H|U(f2)|Ω) = 1/2(U(f1)Ω|ρ(〈∇f1|∇f2〉)|U(f2)Ω). (68)

The standard reasonings make it possible to state that the bilinear symmetric form (68)
determines on Φμ a self-adjoint non-negative definite Hamiltonian operator H : Φμ → Φμ,
densely defined on the domain DH := span

f ∈F
{ exp[iρ(f)]|Ω) ∈ Φμ}. Really, for any set of

functions fj ∈ F, j = 1, n, the following inequalities

∑
j,k=1,n

s̄jsk
〈
∇fj|∇fk

〉
≥ 0, ∑

j,k=1,n

s̄jsk(U(fj)Ω|ρ(x)|U(fk)Ω) ≥ 0 (69)

hold for any complex numbers sj ∈ C, j = 1, n, and arbitrary n ∈ N. Since, for any
non-negative definite complex matrices A, B ∈ End Rn, the matrix C := {AjkBjk : j, k =

1, n} ∈ End Cn proves to be non-negative definite [75,82] too, one ensures that the bilinear
form (69) is also non-negative definite. Then, as follows from the classical Friedrichs’
theorem [69,83–85], there exists a self-adjoint densely defined and non-negative definite
operator H : Φμ → Φμ.

2.5. Current Algebra Representations, Generating Functional Method and Ergodicity of the Hilbert
Space Representation Measure

In view of the importance of the current algebra representations of the Banach group
G = Diff (Rm)� F for physics applications, we consider their construction by means of
the generating functional method [6,7,20,86]. From the very beginning, let us introduce a
governing definition in connection with this method.

Definition 10. A generating functional on a group G is a complex-valued function E on G with the
following conditions: (1) E(1) = 1, 1 ∈ G; (2) E(a1 exp(tA)a2) is a continuous function
of the parameter t ∈ R for all A ∈ G and a1, a2 ∈ G; (3) the matrix

∣∣∣∣∣∣E(a−1
k aj)

∣∣∣∣∣∣, k, j = 1, N, is
positive definite for any N ∈ N;

The following theorem [75] holds.

Theorem 2. The function E is a generating functional on G if, and only if, there exists a continuous
unitary representation π : G → Aut(Φμ) on a separable Hilbert space (Φμ; (·|·)) with a cyclic
vector Ω ∈ Φμ, such that

E(a) = (Ω|π(a)Ω) (70)

holds for all a ∈ G.

The vector Ω ∈ Φμ is said to be cyclic with respect to the representation π : G →
Aut(Φμ), if the set {π(a)Ω : a ∈ G} is complete in Φμ, i.e., is dense in Φμ, if taken
together with its linear combinations over C. The significance of this theorem is that
one can implicitly construct unitary representations of the Banach current group G =
Diff(Rm)� F and, thus, the current Lie algebra G by means of an appropriately defined
generating functional on G. This is important, since frequently the latter problem is much
simpler than the initial problem.

We now consider the representation π : G → Aut(Φμ), restricted to the Abelian
subgroup F in the group G = Diff (Rm)� F and its corresponding generating functional
L(f), f ∈ F, in the form

L( f ) := (Ω| exp[iρ(f)]Ω) =
∫

F′
dμ(η) exp[iη( f )], (71)
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where the cyclic vector Ω ∈ Φμ is normalized to unity: (Ω|Ω) = 1. In many physically
interesting cases [6,7,20,86] the expression (71) can be replaced by means of the following
equivalent trace-representation:

L(f) = Tr(P exp[iρ(f)]), (72)

where P : Φμ → Φμ is the corresponding so called statistical operator, depending on the
Hamiltonian operator H : Φμ → Φμ. The constructed above generating functional (71)
should possess the following necessary properties: (1) L(f) = L(−f) for all f ∈ F; (2)
L(0) = 1; (3) |L(f)| ≤ 1 for all f ∈ F; (4) L(f) is a positive definite functional on F : the
inequality ∑j,k=1,N c̄kL(fk − fj)cj ≥ 0 holds for all cj ∈ C, j = 1, N, and arbitrary N ∈ N.
As one can show, a generating functional L : F → C, satisfying the properties (1)–(4)
always defines [66] a measure μ on F′, defining the searched for unitary representation
π : G → Aut(Φμ) of the Abelian subgroup F of the current Banach group G = Diff(Rm)� F
. If the measure μ is in addition quasi-invariant and the factors χϕ(η) in (35) are known
for all ϕ ∈ Diff(Rm), η ∈ F′, the corresponding representation of the current Lie algebra G
is completely determined. Yet, if being interested only by irreducible representations of
the current Banach algebra G, it is well known [66] that the corresponding measure μ on
F′ is ergodic for the diffeomorphism subgroup Diff(Rm), that is for any measurable and
invariant subset Q ⊂ F′ either μ(Q) = 0, or μ(F′\Q) = 0. Moreover, an arbitrary invariant
set is in the general case a nondenumerable union of a family of mutually non-intersecting
orbits. Assuming that the orbits containing an invariant subset Q ⊂ F′ are measurable,
we obtain that there exist only two possibilities for ergodicity of the cylindrical measure
μ on F′ : either it is concentrated on one orbit, or each orbit has zero measure, and these
two possibilities really occur in applications. For instance, the case when the measure
is concentrated on functionals of the form (37) leads to irreducibility of the generating
functional representation on the Hilbert space L2(RmN ;C) for any finite N ∈ N.

2.6. The Creation–Annihilation Heisenberg Algebra, Its Coherent State Representations and
Linearization of Nonlinear Dynamical Systems on Hilbert Spaces

It is well known [87,88] that the representation theory of the quantum current al-
gebra in a separable Hilbert space Φμ is very close to the cyclic Hilbert space repre-
sentations of the canonical creation–annihilation operator Heisenberg algebra H family
{a+(f), a(f) : ΦF → ΦF : f ∈ F}, defined on the Fock space ΦF. The coherent states, being
venerable objects in physics, were invented by Schrëdinger [89], as far back as in 1926,
in the context of the quantum harmonic oscillator, they seemed to have lapsed into oblivion
for some obscure reasons. About thirty-five years later, they were rediscovered, almost
simultaneously, by Glauber [90], Klauder [91,92] and Sudarshan [93], in the context of a
quantum optical description of coherent light beams emitted by lasers. Since then, coher-
ent states have pervaded nearly all branches of quantum physics—including, of course,
quantum optics in the study of lasers, nuclear, atomic and solid state physics, quantum
electrodynamics, quantization and dequantization problems and path integrals, to mention
just a few. For original references, the reader is referred to the review [88] and reprint vol-
ume of Klauder and Skagerstam [94]. In many of these applications, the question naturally
poses itself as to whether it might not be possible to find other families of states, sharing
some properties of the original or canonical coherent states, emanating from the quantum
oscillator and which could possibly be useful to yet other areas of physics.

Already, in 1926, Schrëdinger had tried unsuccessfully to construct coherent states
appropriate to the hydrogen atom problem. This was motivated by the quasi-classical
character of the canonical coherent states which made them very desirable for studying
the quantization of classical dynamical systems, a point which we discuss in some detail
below. The key to the generalization of the notion of a coherent state was the observation
by Perelomov [95] and independently by Gilmore [96,97], that the construction of the
oscillator coherent states could be reformulated as a problem in group representation
theory: the canonical coherent states could be obtained by acting on the oscillator ground
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state with the operators of a unitary representation of the group generated by the creation
and annihilation operators, namely the Weyl–Heisenberg group.

The link between the Schrëdinger and the Perelomov approaches is the uniqueness
theorem [98,99] of von Neumann for the quantum mechanics of a system with finitely many
degrees of freedom. In addition, a unitary representation T : G → U(G) of a compact
symmetry group G in a separable Hilbert space Φ, used for building up the system of
canonical coherent states, has the property of square integrability with respect to the left
(or right) invariant Haar measure on G. Furthermore, the physical states, associated with
the coherent states, are not indexed by elements of G itself, but by points in the coset space
G/Gc, where Gc is the Cartan subgroup of G and is isomorphic to the torus.

Since its introduction in 1972, the concept of coherent states was widely
exploited [14–16,87,100,101] in many fields of mathematical physics, whose leading idea
consisting of considering the translates of a fixed cyclic vector under a group action is as
old as the celebrated Gel’fand-Raikov theorem [66] on locally bicompact groups. Their
common properties, namely that the related homogeneous space has a complex homoge-
neous structure, and the corresponding representation Hilbert space can be identified in
the coherent state basis with a space of holomorphic functions on the homogeneous space.
As it was stated in [87], a homogeneous complex structure is actually present quite gen-
erally, and on the basis of the homogeneous complex structure, the related homogeneous
manifolds are just the classical phase spaces on which the group acts through canonical
transformations. From this point of view, coherent states can be interpreted just as probabil-
ity wave packets over the classical phase space, that is a well-known result for the harmonic
oscillator coherent states. The converse problem, i.e., the construction of irreducible unitary
representations of the group, starting from its phase space realization, was considered
in [102] and found a definite mathematical setting.

To look at the coherent vector representation problem within the Fock type space,
its main idea becomes very transparent and motivative owing to the classical Bargmann–
Segal [103] construction. Namely, there is considered the Hilbert space

Hk := { f ∈ H(Ck) :
∫
Cn
| f (z)|2dμ(z) (73)

of holomorphic functions H(Ck), k ∈ N, with the scalar product ( f |g) :=
∫
Ck f (z)g(z)dμ(z)

for arbitrary f , g ∈ Hk with respect to the measure dμ(z) = π−k exp(−〈z|z〉) dz̄∧dz
(2i)k for

z ∈ Ck. It is easy to observe that the Hilbert space Hk is the direct sum of the symmetric
polynomial subspaces H(s)

k , s ∈ Z+:

Hk = ⊕∞
s=0H

(s)
k , (74)

where, by definition,

H(s)
k := { ∑

s=n1+n2+...nk

cn1n2...nk zn1
1 zn2

2 ...znk
k : cn1n2...nk , zj ∈ C, j = 1, k}. (75)

Moreover, it is easy to check that the polynomials

en1n2...nk (z) = ∏
j=1,k

z
nj
j√
nj!

(76)

form a complete and orthogonal base in Hk, that is (en1n2...nk |em1m2...mk ) = ∏
j=1,k

δnjmj . The

next important observation, made by V. Bargmann, was the point boundedness of any
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function f ∈ Hk : | f (z)| ≤ || f || exp(〈z|z〉/2), z ∈ Cn. Really, for any f ∈ Hk there holds
the expansion

f (z) = ∑
s∈Z+

∑
s=n1+n2+...nk

(en1n2...nk | f ) ∏
j=1,k

z
nj
j√
nj!

, (77)

from which one easily ensues, owing to the closedness property and Schwartz inequality
on l2(C), that

| f (z)| ≤
(

∑s∈Z+ ∑s=n1+n2+...nk
|(en1n2...nk | f )|2

)1/2
×

×

⎛⎝∑s∈Z+ ∑s=n1+n2+...nk ∏
j=1,k

|zj |
2nj

nj !

⎞⎠1/2

== || f || exp(〈z|z〉/2)
. (78)

The latter makes it possible to define for any u ∈ Cn the following dual to (78) bounded
functional

û( f ) := f (u), ||û|| ≤ exp(〈u|u〉/2) (79)

on Hk, whose Riesz representation

û( f ) = (hu| f ) (80)

defines the unique element hu ∈ Hk, or equivalently

f (u) =
∫
Ck

hu(ξ) f (ξ) exp(−〈ξ|ξ〉)dξ̄ ∧ dξ

(2i)k . (81)

Taking into account the orthogonality of the base vectors (76) in Hk, it is easy to calculate
that the vector hu(ξ) = exp(〈u|z〉) ∈ Hk, whose norm ||hu|| = exp(〈u|u〉/2) for any
u ∈ Cn and which is called the “coherent vector”. It is worth remarking here that the
function representation (81) is well known in the operator theory [104,105] and is called the
“reproducing kernel” representation with the kernel hu ∈ Hk, u ∈ Ck.

The Hilbert space Hk, as the direct sum (74) of symmetrical polynomial subspaces,
possesses the Fock space structure, allowing the introduction of the creation operators
a+j : H(s)

k → H(s+1)
k for any j = 1, k and all s ∈ Z+ as multiplication operators: for any

f ∈ H(s)
k a+j f (z) := zj f (z) for any j = 1, k and all s ∈ Z+. The corresponding adjoint

expressions
(

a+j
)∗

:= aj : H(s)
k → H(s−1)

k act as aj f (z) = ∂/∂zj f (z) on arbitrary f ∈ H(s)
k

for any j = 1, k and all s ∈ Z+, where, by definition, H(0)
k � C. Now one can easily check

that the coherent vector hu = exp(〈u|·〉) ∈ Hk for any u ∈ Ck is a common eigenvector of
the annihilation operators aj : Hk → Hk, j = 1, k:

ajhu(z) = ujhu(z) (82)

with the eigenvalues uj ∈ C, j = 1, k. It is important also to mention here that the creation–
annihilation operators defined above satisfy the canonical commutation relationships:

[aj, an] = 0 = [a+j , a+n ], [aj, a+n ] = δj,n (83)

for all j, n = 1, k.
The coherent vector representation scheme described above can be respectively gen-

eralized to arbitrary symmetric Fock space Φ that will be effectively used in the sections
proceeding below. Returning back to the algebraic properties of coherent states, we proceed
to describing their unbelievable and impressive applications to theory of nonlinear dynam-
ical systems on Hilbert spaces, their linearization and integrability, previously initiated
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in [14,15] and continued in [16]. We briefly reviewed the cyclic Hilbert space representa-
tions of the quantum Heisenberg algebra and presented a general approach to constructing
the coherent states and their applications both to the linearization of nonlinear dynamical
systems on Hilbert spaces, and to describing their complete integrability. The latter is devel-
oped using the modern Lie-algebraic approach [11,17–19] to nonlinear dynamical systems
on Poissonian functional manifolds, and proved to be both unexpected and important for
the classification of integrable Hamiltonian flows on Hilbert spaces.

Jointly with the cyclic Hilbert space representations of the Heisenberg algebra H, we
briefly reviewed the closely related cyclic Hilbert space density representations [4,6,87,88]
of the canonical quantum current algebra G on the circle S1, whose vector field represen-
tations on smooth spatially one-dimensional functional manifolds coincide exactly with
the related symmetry algebra of completely integrable nonlinear Hamiltonian systems on
these manifolds. Based on the current algebra symmetry structure and their functional
representations, an effective integrability criterion is formulated for a wide class of com-
pletely integrable Hamiltonian systems on smooth spatially one-dimensional functional
manifolds. The algebraic structure of the Poissonian operators and an effective algorithm
of their analytical construction are also described.

2.7. The Canonical Heisenberg Algebra and Its Cyclic Hilbert Space Representations

Let (Φ; (·|·)) be a separable Hilbert space, F be a topological real linear space and
A := {A(f) : f ∈ F} a family of commuting self-adjoint operators in Φ (i.e., these operators
commute in the sense of their resolutions of the identity) with dense in Φ domain Dom
A(f) := DA(f), f ∈ F. Consider the Gelfand rigging [57,61,66] of the Hilbert space Φ, i.e.,
a chain

D ⊂ Φ+ ⊂ Φ ⊂ Φ− ⊂ D′ (84)

in which Φ+ is a Hilbert space, topologically (densely and continuously) and quasi-nucleus
(the inclusion operator i : Φ+ −→ Φ is of the Hilbert-Schmidt type) embedded into Φ, the
space Φ− is the dual to Φ+ as the completion of functionals on Φ+ with respect to the norm
||f||− := sup

||u||+=1
|(f|u)Φ|, u ∈ Φ, a linear dense in Φ+ topological spaceD ⊆ Φ+ is such that

D ⊂ DA(f) ⊂ Φ and the mapping A(f) : D→ Φ+ is continuous for any f ∈ F. Then, owing
to the structural theorem (1) there exists a cyclic representation of the canonical creation–
annihilation Heisenberg operator algebra H family {a+(f), a(f) : Φμ → Φμ : f ∈ F}
on the separable Hilbert space Φμ, whose generalized Fourier transform is given by
the expression

Φμ = L(μ)
2 (F′;C) �

∫ ⊕

F′
Φ(η)dμ(η) (85)

for some Hilbert space sets Φη , η ∈ F′, and a suitable measure μ on F′, with respect to
which the corresponding joint eigenvector ω(η) ∈ Φ− for any η ∈ F′ generates the Fourier
transformed family {η(f) ∈ R : f ∈ F}. Moreover, if dim Φη = 1 for all η ∈ F′, the
Fourier transformed eigenvector ω(η) := Ω(η) = 1 for all η ∈ F′.

Next, we will consider the family of self-adjoint operators{
P(f), Q(g) : Φη → Φη : f, g ∈ F

}
, as generating a unitary Heisenberg group

H := {exp(iP(f)), V(g) = exp(iQ(g) : (86)

P :=
(
a+ + a

)
/2, Q := i

(
a− a+

)
/2, f, g ∈ F,

}
satisfying the commutation conditions

U(f)V(g) = exp(−i( f |g))V(g)U(f), (87)

U(f )U(g) = U(f + g ), V(f )V(g) = V(f + g ),

for any f, g ∈ F. Since, in general, the unitary Heisenberg group H is defined on a repre-
sentation Hilbert space Φμ, not coinciding, in general, with the canonical Fock type space
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ΦF, the important problem of describing its cyclic unitary representation spaces arises,
within which the factorization (86) jointly with relationships (87) should hold. Below,
we will briefly describe only the main features of the Gelfand–Vilenkin formalism, being
much more suitable for the task, providing a reasonably unified framework of constructing
the corresponding cyclic representations of the family A := {Q(f) : f ∈ F} of commuting
self-adjoint operators in a separable Hilbert space Φ.

Proceeding now to the Heisenberg group H, the separable Hilbert space Φμ for its
every irreducible representation will be unitary equivalent to the Hilbert space (45), which
in many physical applications reduces in the case dim Φ(η) = 1 for all η ∈ F′ to the
following form:

Φμ � L(μ)
2 (F′;C), (88)

being the space of square integrable functions with respect to the measure μ on F′.
Assume now that an element ω ∈ Φμ is taken arbitrarily and consider [75] the action

of the Heisenberg group H on it:

U(f)ω(η) = exp[i(η(f)]ω(η), (89)

V(g)ω(η) = χg(η)ω(η + g)
[

dμ(η + g)
dμ(η)

]1/2

,

where, by definition, for any f ∈ F the expression dμ(η+g)
dμ(η)

at η ∈ F′ means the corre-
sponding Radon–Nikodym derivative [19,73] of the measure μ(◦+ g) with respect to the
measure μ on F′ and χg(η) is a complex-valued character of the unit norm, satisfying
the relationship

χf (η)χg(η + f) = χf+g(η) (90)

for all f, g ∈ F ⊂ H and arbitrary η ∈ F′. For the Radon–Nikodym derivative above to exist,
the measure μ on F′ should be quasi-invariant with respect to the shift group elements
{F′ � η → η + g ∈ F′}, that is, for any measurable set Q ⊂ F′ the condition μ(Q) = 0 if,
and only if, μ(Q + g) for arbitrary g ∈ F ⊂ F′.

Definition 11. A vector |u) ∈ Φμ is called a coherent vector state in the representation Hilbert
space Φμ with respect to an element u ∈ H � L2(Rm;Rk), if it satisfies the eigenfunction condition

aj(x)|u) = uj(x)|u) (91)

for each j = 1, k and all x ∈ Rm.

It is easy to check that for any u ∈ H the coherent ket-vector |u) ∈ Φμ exists: really,
the following vector expression

|u) := exp[(u|a+)H ]|Ω) (92)

where Ω ∈ Φ+ ⊂ Φμ is a cyclic vector for the creation–annihilation operator algebra family
{a+(f), a(f) : Φμ → Φμ : f ∈ F} and satisfies the defining condition (91), where the operator
a+(u) : Φμ → Φμ, u ∈ H, action ensues from the determining condition (19): for any ϕ ∈
Φμ there exists a unique vector ω(ηa) ∈ Φμ for which

(ω(ηa)|(a+(u)ϕ)μ = ηa(u) (ω(ηa)|ϕ)μ (93)

for all u ∈ H. Moreover, as the Hilbert space H ⊂ F′, the eigenvalue ηa(u) ∈ R is bounded
jointly with the Hilbert space Φμ norm

‖u‖ := (u|u)1/2 = exp(
1
2
‖u‖2

H) < ∞, (94)
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since u ∈ H and its Hilbert space norm ‖u‖H is a priori bounded.
Consider now any function u ∈ H and observe that the Hilbert spaces embedding

mapping
ξ : H � u −→ |u) ∈ Φμ, (95)

defined by means of the coherent vector expression (92), realizes a smooth isomorphism
between the Hilbert spaces H and the image ξ(H) ⊂ Φμ. The inverse mapping ξ−1 : ξ(H)
⊂ Φμ −→ H is given by the following exact expression:

(u|η)H = (Ω|a(η)|u)/(Ω|u), (96)

holding for any η ∈ H. Owing to condition (94), one finds from (96) and the classical Riesz
type theorem [85,106] that the corresponding function u ∈ H.

Let now define on the Hilbert space H a nonlinear in general dynamical system (which
can, in general, be non-autonomous) in partial derivatives

du/dt = K[u], (97)

where t ∈ R+ is the corresponding evolution parameter, [u] := (x; u, ux, uxx, ..., ) ∈
J(k)(Rm;Rs) belongs to the jet-space J(k)(Rm,Rn) of the order k ∈ Z+, and, in general,
a nonlinear mapping K : H −→ H is Frechet smooth. Assume also that the corresponding
Cauchy problem

u|t=+0 = u0 (98)

for the nonlinear dynamical system (97) is solvable in the Hilbert space H for any
u0 ∈ H on an interval [0, T) ⊂ R1

+ for some T > 0. Thus, there is determined a smooth
evolution mapping

Tt : H � u0 −→ u(t|u0) ∈ H, (99)

for all t ∈ [0, T). Now, it is natural to consider the following commuting diagram:

H
ξ−→ Φμ

Tt ↓ ↓ Tt

H
ξ−→ Φμ,

(100)

where the mapping Tt : Φμ −→ Φμ, t ∈ [0, T), is defined from the conjugation relationship
on the image ξ(H) ⊂ Φμ of the mapping (95):

ξ ◦ Tt = Tt. ◦ ξ (101)

Now take coherent vector |u0) ∈ Φμ, corresponding to the Cauchy data u0 ∈ H, and
construct the vector

|u) := Tt · |u0) ∈ Φμ (102)

for all t ∈ [0, T). Since the vector (102) is, by construction, coherent, that is

aj(x)|u) := uj(x, t|u0)|u) (103)

for each j = 1, k, t ∈ [0, T) and almost all x ∈ Rm, owing to the smoothness of the mapping
ξ : H −→ Φμ with respect to the corresponding norms in the Hilbert spaces H and Φμ,
we derive that the coherent vector (102) is differentiable with respect to the evolution
parameter t ∈ [0, T). Thus, one can easily find [14,15] that

d
dt
|u) = K(a+, a)|u), (104)

where
|u)|t=+0 = |u0) (105)
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and an operator mapping K(a+, a) : Φμ −→ Φμ is defined by means of the exact analytical
expression

K(a+, a) := (a+|K[a])H . (106)

As a result of the consideration above we obtain the following theorem.

Theorem 3. Any smooth nonlinear dynamical system (97) in Hilbert space H is representable
by means of the Hilbert spaces embedding isomorphism ξ : H −→ Φμ via the completely linear
form (104).

We now make some comments concerning the solution to the linear Equation (104)
under the Cauchy condition (105) in the case of the Fock representation space ΦF. Since
any vector |ω) ∈ ΦF allows the series representation

|ω) =
⊕

n=∑k
j=1 nj∈Z+

∫
(Rm)n ω

(n)
n1n2...ns(x(1)1 , x(2)1 , ..., x(n1)

1 ;

x(1)2 , x(2)2 , ..., x(n2)
2 ; ...; x(1)k , x(2)k , ..., x(nm)

k )∏k
j=1

(
1√
nj !

∏
nj
k=1 dx(j)

k a+j (x(k)j )

)
|Ω),

(107)

where for any n = ∑k
j=1 nj ∈ N functions

ω
(n)
n1n2...nk ∈

k⊗
j=1

L(s)
2 ((Rm)nj ;C) � L(s)

2 (Rmn1 ×Rmn2 × ...Rmnk ;C), (108)

its Fock space norm is easily calculated as

‖ω‖2 = ∑
n=∑k

j=1 nj∈N
‖ω

(n)
n1n2...nk‖2

2. (109)

For the case of the coherent vector |u) ∈ ΦF its norm is easily obtained as ||u|| =
exp(‖u‖2

H/2), coinciding with the result (94). Moreover, substituting (107) into Equa-
tion (104), reduces (104) to an infinite recurrent set of linear evolution equations in partial
derivatives on coefficient functions (108). The latter can often be solved [14] step by step
analytically in exact form, thereby, making it possible to obtain, owing to representation
(96), the exact solution u ∈ H to the Cauchy problem (98) for our nonlinear dynamical
system in partial derivatives (97).

Concerning possible applications of nonlinear dynamical systems like (95) in math-
ematical physics, it is very important to construct their so called conservation laws or
smooth invariant functionals γ : H −→ R on the Hilbert space H. Making use of the
quantum mathematics technique described above, one can suggest an effective algorithm
for constructing these conservation laws in exact form.

Indeed, consider a vector |γ) ∈ Φμ, satisfying the linear equation:

∂

∂t
|γ) + K∗(a+, a)|γ) = 0. (110)

Then, the following proposition [14,15] holds.

Proposition 4. The functional
γ := (u|γ) (111)

is a conservation law for dynamical system (95), that is

dγ/dt|K = 0 (112)

along all orbits of the evolution mapping (99).
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It is interesting to reanalyze the dynamical system (104) from the Lie-algebraic point of
view [11,19] and represent it as a coadjoint canonical Hamiltonian flow on the correspond-
ing adjoint space to the Hilbert space Φμ, considered as a Lie algebra over the field C. To do
this, it is necessary to define the related Lie commutator on the Hilbert space Φμ : for any
vectors |Kα) := Kα(a+, a)∗|ω) ∈ Φμ and |Kβ) := Kβ(a+, a)∗|ω) ∈ Φμ, where Kα(a+, a)∗

and Kβ(a+, a)∗ ∈ End Φμ are smooth mappings and a central vector |ω) ∈ Φμ is chosen to
be fixed, their commutator, defined as

[|Kβ), |Kα)] := [Kβ(a+, a)∗, Kα(a+, a)∗|ω), (113)

allows the construction of the related co-adjoint action Φ∗
μ � (l| → ad∗|Kα)

(u| ∈ Φ∗
μ of a

vector |Kα) ∈ Φμ on a fixed element (l| ∈ Φ∗
μ, where for any vector |η) ∈ Φμ there holds

the following identity:
(ad∗|Kα)

(l|η) = −(l|[Kα), η]). (114)

The latter makes it possible to define on the adjoint space Φ∗
μ the classical Lie–Poisson

bracket for any smooth functionals α := (l|α) and β := (l|β) ∈ D(Φ∗
μ):

{α, β} := (l|[grad α(l), grad β(l)]ϑ|ω) = (l| grad α(l)ϑ(a+) grad β(l)|ω), (115)

where, by definition, ϑ(a+) : Φμ → Φμ is some skew-symmetric Poisson operator, the
element (l| := (l(u)| ∈ Φ∗

μ for any u ∈ H is interpreted as the corresponding momentum

mapping H � u l→ (l(u)| : = (u| ∈ Φ∗
μ for the Poissonian action of the Lie algebra Φμ on

the Hilbert space H:

Φμ × H � (grad γ(u)× u)→ Kγ|u) ∈ Φμ (116)

with Kγ := (a+| Kγ[a])H ∈ End Φμ, Kγ[a]∗ = −ϑ(a+) grad γ(l) : Φμ → Φμ for arbitrary
γ ∈ D(Φ∗

μ). The related action

(grad γ(u)× u) = Kγ[u] (117)

is a Hamiltonian vector field on H, generated by the corresponding Hamiltonian vector
field Kγ : H → H on the Hilbert space H commonly with the invariant Hamiltonian
function γ = (u|γ) ∈ D(H). Simultaneously, the flow (117) for any γ ∈ D(Φ∗

μ) naturally
generates the linear flow on the adjoint space Φ∗

μ � Φμ in the form +

ad∗ϑ(a+)|γ)(u| = (u|K∗
γ. (118)

Moreover, one easily checks that the commutator of vector fields Kα|u) and Kβ|u) ∈ Φμ

equals
[Kα|u), Kβ|u)] := [Kα, Kβ]|u) (119)

for any smooth conservation laws α = (u|α) and β = (u|β) ∈ D(H) of the dynamical
system (104), easily following from the evident conditions K∗|α) = 0 and K∗ |μ) = 0.
Consider now the following representations of the gradient vectors grad α(u) = |α(a+)|ω)
and grad β(u) = |β(a+)|ω) for some fixed central element |ω) ∈ Φμ. Then, the Poisson
bracket (115) for any α, β ∈ D(H) is representable as

{α, β} = −(u|[K∗
α|ω), K∗

β|ω)]ϑ) = (u|[Kα, Kβ]
∗|ω) = (120)

= (u|K∗
{α,β}|ω) = −(u|ϑ grad{α, β}),

being completely compatible with the Poissonian action of the Lie algebra Φμ on the Hilbert
space H. The obtained result can be summarized as the following theorem.
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Theorem 4. If the momentum mapping H � u l→ (l(u)| : = (u| ∈ Φ∗
μ, related with the

nonlinear dynamical system ((97) on the Hilbert space H, is Poissonian, then all its symmetries
(117), generated by smooth invariants γ ∈ D(Φ∗

μ), are represented as linear Hamiltonian flows
(118) on the adjoint Hilbert space Φ∗

μ � Φμ with respect to the canonical Lie–Poisson bracket (120).

The theorem above plays a decisive role in constructing within the suitably modified
Adler–Kostant–Souriau [11,19] scheme integrable Hamiltonian flows on the adjoint space
Φ∗

μ, equivalent to nonlinear integrable Hamiltonian systems on the functional Hilbert
space H.

2.8. Conclusions

Within the scope of this Section we have described the main mathematical preliminar-
ies and properties of the quantum mathematics techniques suitable for analytical studying
of the important linearization problem for a wide class of nonlinear dynamical systems
in partial derivatives in Hilbert spaces. This problem was analyzed in much detail using
the Gelfand–Vilenkin representation theory [66] of infinite dimensional groups and the
Goldin–Menikoff–Sharp theory [4,5,74] of generating Bogolubov type functionals, clas-
sifying these representations. The related problem of constructing cyclic Hilbert space
representations and retrieving their creation–annihilation generating structure still needs
a deeper investigation within the approach devised. Here we mention only that some
aspects of this problem within the so-called Poissonian White noise analysis which was
analyzed in a series of works [55,70,107,108], based on some generalizations of the Delsarte
type characters technique. The above-stated theorem about the Hamiltonian structure of
symmetries of a nonlinear dynamical system on a Hilbert space and their linearization
on a suitably constructed Hilbert space presents, from a practical point of view, a strong
interest, if the related results, obtained in [14,15,109,110] and devoted to the application of
the Hilbert spaces embedding method to finding conservation laws and the so called recur-
sion operators for the well [17,111] known Korteweg–de Vries type nonlinear dynamical
systems, are taken into account. Moreover, a development of these results within the mod-
ern Lie-algebraic approach, based on the Adler–Kostant–Symes construction and applied
to nonlinear dynamical systems on Poissonian functional manifolds, proves to be both
unexpected and important for the classification of integrable Hamiltonian flows on Hilbert
spaces, and inspires a hope for new investigations of coherent states and their applications.

3. Quantum Current Lie Algebra as a Universal Algebraic Structure of Symmetries of
Completely Integrable Nonlinear Dynamical Systems

3.1. Quantum Lie Algebra of Currents and Its Vector Field Representations

We consider the non-relativistic quantum Lie algebra G of currents [4,12,112,113] on
the torus Tn, realized by means of the density ρ(f) and current J(g) operators on the
separable Hilbert subspace Φμ:

[ρ(f1), ρ(f2)] = 0, [ρ(f), J(g)] = J(〈g|∇f)), (121)

[J(g1), J(g2)] = i J([g2, g1]),

where ρ(f) =
∫
Tn f(x)ρ(x)dx, J(g) =

∫
Tn g(x)J(x)dx for f, fj ∈ F � C∞(Tn;R), g, gj ∈

Fn, j = 1, 2. Their representation on the Fock space ΦF is given, respectively, by the
following operator expressions: ρ(x) = a+(x)a(x) and J(x) = 1

2i [a
+(x)∇a(x) −

∇a+(x)a(x)], where a+(x) is the creation and a(x) is the annihilation operators of bose-
particle states at point x ∈ Tn, satisfying the canonical commutation relationships:

[a(x), a(y)] = 0, [a+(x), a+(y)],

[a(x), a+(y)] = δ(x− y)
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for all x, y ∈ Tn. The current Lie algebra (121) is the infinite-dimensional Lie algebra of
the semi-direct product G := Diff(Tn) � F of the Banach Lie group of currents G :=
Diff(Tn) and the abelian functional group F, where Diff(Tn) is the topological group of
diffeomorphisms [2,20] of the torus Tn. If, to introduce [2,20,22,112,114,115] a family of
unitary operators U(f) and V(ϕ

g
t ) : Φμ → Φμ, acting on a Hilbert space Φμ and defined by

the formulas
U(f) = exp[iρ(f)], V(ϕ

g
t ) = exp[itJ(g)], (122)

where dϕ
g
t /dt :=g(ϕ

g
t ), t ∈ R, ϕ

g
t ∈ Di f f (Tn) and ϕ

g
t |t=0 = x ∈ Tn, then the following

relations

U(f1)U(f2) = U(f1 + f2), V(ϕ)U(f) = U(f ◦ ϕ)V(ϕ), (123)

V(ϕ1)V(ϕ2) = V(ϕ2 ◦ ϕ1)

hold for all f, fj ∈ F and ϕ, ϕj ∈ Di f f (Tn), j = 1, 2. As was argued in [2], the various
unitary representations of the current group G describe different physical systems and
their states, and the study of the set of cyclic unitarily irreducible representations of the
Banach Lie group relationships (123) is an extremely important and topical problem in the
quantum theory of dynamical systems.

For every irreducible cyclic representation of the unitary current group G on the
separable Hilbert space Φμ there exists a unitarily equivalent Hilbert space

Φμ �
∫ ⊕

F′
dμ(η)Φ(η), (124)

where μ is the measure on the space F′ of continuous real linear functionals on F and Φ(η)

are complex linear finite-dimensional spaces labeled by the index η ∈ F′. In the case when
dim Φ(η) = 1, Φμ � L(μ)

2 (F′;C), the space of complex-valued functions on F′, integrable
with respect to the measure μ on F′. Moreover, if an element ω ∈ Φμ, then for the action of
the current group G on this element we have the following representations:

U(f)ω(η) = exp[i(η(f)]ω(η), (125)

V(ϕ)ω(η) = χϕ(η)ω(ϕ∗η)

(
dμ(ϕ∗η)

dμ(η)

)1/2

where, by definition, ϕ∗η(f) := η(f ◦ ϕ) for all f ∈ F, dμ(ϕ∗η)
dμ(η)

is the corresponding Radon–
Nikodym derivative of the measure μ ◦ ϕ∗ with respect to the measure μ on F′ and χϕ(η)
is a complex-valued character of the unit norm, satisfying the relationship

χϕ2(η)χϕ1(ϕ∗2η) = χϕ1◦ϕ2(η) (126)

for all ϕj ∈ Di f f (Tn), j = 1, 2, η ∈ F′. For the Radon–Nikodym derivative above to exist,
the measure μ on F′ should be quasi-invariant with respect to the diffeomorphism group
Di f f (Tn), that is for any measurable set Q ⊂ F′ the condition μ(Q) = 0 if, and only if,
μ(ϕ∗Q) for arbitrary ϕ ∈ Di f f (Tn).

In physics applications, the representation (125) is uniquely determined by the measure
μ on F′, which in the general case has a very complicated [20,72,114] structure, and its
analytic construction is nontrivial. One of the fairly effective approaches to this problem is
the quantum method of Bogolubov generating functionals developed in [5–7,20]. Another
approach, which is of considerable interest for the theory of dynamical systems, is based
on algebraic methods of constructing self-adjoint functional-operator representations of the
original current Lie algebra (121). We proceed to its description in the case of the current
group G = Di f f (S1)� F, where F � C∞(S1;R) on the circle S1, taking into account results
in [12,22,116–118].
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We now introduce the following basis operators of the Lie current Lie algebra (121)
for n = 1:

ρj :=
∫
S1

exp(ijx + iεx)ρ(x)dx, Jk :=
∫
S1

exp(ikx)J(x)dx, (127)

where j, k ∈ Z and ε ∈ R is a parameter. Then from (121) and (127), we find that

[ρj, ρk] = 0, [Jk, ρj] = (j + ε)ρj+k, [Jk, Jj] = (j− k)Jk+j (128)

for all j, k ∈ Z, that is the set G := { ρj, Jk : Φμ → Φμ : j, k ∈ Z} of operators (128) on
the representation Hilbert space Φμ, is equivalent to the semidirect product G{J}� G{ρ}
of the Lie subalgebra G{J} := { Jk : Φμ → Φμ : k ∈ Z} and the Abelian subalgebra
G{ρ} := {ρj : Φμ → Φμ : j ∈ Z} and isomorphic to the current Lie algebra (121) for n = 1.
It is also worth mentioning [119] that in the case of functional-operator representations, the
Lie algebra (128) admits the following central extension by means of the Schwinger cocycle:

[ρj, ρk] = ζρj,−k, [Jk, ρj] = (j + ε)ρj+k, [Jk, Jj] = (j− k)Jk+j + νk(k2 − 1)δj,−k, (129)

where j, k ∈ Z and ζ, ν ∈ R are the Schwinger parameters. The current Lie algebra (129) is
called the generalized Virasoro current algebra [44] and has many applications in modern
theoretical physics.

It is easy to show that the current Lie algebra (128) for ε = 0 admits the standard rep-
resentation in the ring of operators C[λ, λ−1][∂/∂λ], λ ∈ CN , regarded as a Lie subalgebra
of the Lie algebra of rational vector fields on CN , N ∈ N. Namely, if we set

ρj = ∑
n=1,N

λ
j
n, Jk = ∑

n=1,N

λk+1
n ∂/∂λn, (130)

for j, k ∈ Z, then the current Lie algebra relations (128) are satisfied identically. In this
case. if we make the restriction |λn| = 1, λn = exp(iθn), θn ∈ [0, 2π], n = 1, N, then for the
current algebra operators ρ(x) and J(x), x ∈ S1, we obtain the expressions

ρ(x) = ∑
n=1,N

δ(x− θn), J(x) =
1
2i ∑

n=1,N

[δ(x− θn)∂/∂θn + ∂/∂θnδ(x− θn)]. (131)

It is readily seen that the operators (131) are N-particle representations of the current
Lie algebra (121) on the circle S1, and that the support of the measure μ on F′ in the
representation (124) is concentrated on functionals η = ∑n=1,N δ(x− θn) and the Hilbert

space L(μ)
2 (F′;C) � L(s)

2 (TN ;C), the space symmetric square integrable functions on the
torus TN . In the general case, the current generalized Lie algebra (129) possesses numerous
functional-operator representations by means of vector fields on special infinite dimensional
manifolds. As will be shown below, these vector fields are defined on these manifold’s
so-called completely integrable infinite-dimensional Hamiltonian systems, many of which
have applications in theoretical and mathematical physics.

On the infinite-dimensional smooth functional manifold M ⊂ C∞(Tn;Rm), n, m ∈ N
are finite, we consider a homogeneous autonomous nonlinear dynamical system

ut = K[u], (132)

where K : M → T(M) is a Frechet-smooth vector field on M, [u] ∈ J(Tn;Rm) denotes a
point of a finite order [59,120] at the jet-manifold J(Tn;Rm) and t ∈ R is the evolution
parameter. We assume that the vector field (132) is Hamiltonian, i.e., there exists a skew-
symmetric Poissonian [18,59,120,121] operator ϑ : T∗(M)→ T(M) such that condition

LKϑ = 0 ∼ ϑt − ϑK′,∗ − K′ϑ = 0 (133)
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where LK denotes the Lie derivative [11,26,59,120,122,123] along the vector field K : M →
T(M), “prime” denotes the usual Frechet derivative of a mapping and “*” denotes the
adjoint mapping subject to the standard bilinear convolution form (·|·) on the product
T∗(M)× T(M) of the tangent and cotangent spaces over the functional manifold M. If the
condition (133) holds, there exists such a smooth Hamiltonian functional Hϑ ∈ D(M) ⊂
C∞(M;R) that

K[u] = −ϑ grad Hϑ[u] (134)

Assume now that the dynamical system (132) possesses one further algebraically inde-
pendent solution η : T∗(M) → T(M) to the Equation (133), that is LKη = 0, which
is Poissonian.

Definition 12. A dynamical system (132) possessing a (ϑ, η)-pair of Poissonian operators is
said [11,13,18,59] to be bi-Hamiltonian, if for any λ ∈ R the pencil (ϑλ + η) : T∗(M)→ T(M)
is also Poissonian. The Poissonian (ϑ, η)-pair is called the Magri type compatible.

Definition 13. If the Poisson operator ϑ : T∗(M) → T(M) is invertible, the operator Λ :=
ϑ−1η : T∗(M)→ T∗(M) is said to be gradient-recursive and satisfies the Noether–Lax equation

LKΛ = 0 ∼ Λt − [Λ, K
′,∗
] = 0. (135)

Similarly, the operator Φ := ηϑ−1 : T(M)→ T(M) is said to be symmetry-recursive and satisfies
the Noether–Lax equation

LKΦ = 0 ∼ Φt − [K
′
, Λ] = 0. (136)

The inverse operator ϑ−1 : T(M)→ T∗(M) is said to be symplectic, and the operator ϑ : T∗(M)→
T(M) itself is often called cosymplectic.

Yet, if the inverse operator ϑ−1 : T(M) → T∗(M) does not exist, the notions of
gradient-recursive and symmetry-recursive operators remain the same: LKΛ = 0 and
LKΦ = 0, respectively.

Definition 14. The operator Φ : T(M)→ T(M) is said to be hereditary-recursive if the bilinear
operator

[Φ′, Φ] : T(M)× T(M)→ T(M) (137)

is symmetric.

It is easy to check that the operator Φ = ηϑ−1 : T(M) → T(M) is hereditary-
recursive [11,59,121] if the Poissonian pair (ϑ, η)-pair is compatible. The Poissonian (ϑ, η)-
pair is compatible if, and only if, the operator ηϑ−1η : T∗(M) → T(M) is Poissonian too.
Moreover, the operators ϑ(ϑ−1η)n : T∗(M)→ T(M) for all n ∈ Z+ are Poissonian also.

Definition 15. A vector field α : M → T(M) is called a homogeneous symmetry of the dynamical
system (132) if LKα = 0 ∼ [K, α] = 0. Respectively, a vector field τ : M → T(M) is called an
inhomogeneous symmetry of the dynamical system (132), ∂τ/∂t + [K, τ] = 0.

It is easy to observe that subsets of homogeneous and inhomogeneous symmetries,
respectively, are Lie subalgebras of the symmetry space Γ(M). Suppose now that for a
consistent bi-Hamiltonian dynamical system (132) there exist two nontrivial homogeneous
symmetry α0 ∈ Γ(M) and homogeneous symmetry τ0 ∈ Γ(M), such that

Lτ0 α0 = εα0, Lα0 ϑ = 0 = Lα0 η, Lτ0 ϑ = (ξ − 1/2)ϑ, (138)

Lτ0 α0 = εα0, Lτ0 η = (ξ + 1/2)η, Lτ0 Φ = Φ,
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where ε, ξ ∈ R are certain numerical parameters. Having assumed that the symmetry-
recursive operator Φ : T(M)→ T(M) is invertible, one can construct the following subsets
Q{α} ⊂ Γ(M) and Q{τ} ⊂ Γ(M), where

Q{α} := {αj : Φjα0 : j ∈ Z}, Q{τ} := {τj : Φjτ0 : j ∈ Z}. (139)

The following proposition holds.

Proposition 5. The semi-direct product Q := Q{τ}� Q{α} is a Lie subalgebra of symmetries of
the dynamical system (132) isomorphic to the current Lie algebra (128).

Proof. The proof is a direct consequence of the relations (138) and (139).

ut = uxxx + uux := K[u], (140)

As a simplest example we consider the classical nonlinear Korteweg–de Vries dy-
namical system on the functional manifold M ⊂ C∞(S1;R), possessing two compatible
Poissonian operators

ϑ = ∂, η = ∂3 + (u∂ + ∂u)/3, (141)

where ∂ := ∂/∂x, x ∈ R. Its symmetry-recursive operator equals to the expression

Φ = ηϑ−1 = ∂2 + (u + ∂u∂−1)/3, (142)

where ∂−1(·) := 1/2
[∫ x

0 dx(·)−
∫ 2π

x dx(·)
]

is the operator of inverse differentiation,

∂ · ∂−1 = I. Then, taking into account the homogeneous symmetry, α0 = ux and inhomoge-
neous τ−1 = 3/2(1 + tux) generate, respectively, two subalgebras Q{α} := {Φjα0 : j ∈ Z}
and Q{τ} := {Φj+1τ−1 : j ∈ Z}, whose semidirect product Q = Q{τ}� Q{α} is isomor-
phic to the current Lie algebra G (128).

3.2. Completely Integrable Hamiltonian Systems and the Current Algebra Symmetry
Integrability Criterion

In analyzing the dynamical system (132) above, we assumed for it the existence of the
consistent (ϑ, η)-pair of Poissonian operators, with respect to which it is bi-Hamiltonian.
However, if the dynamical system (132) is not bi-Hamiltonian but only Hamiltonian and
integrable, then obviously the Noether–Lax Equation (133) has only one solution, which
is determined up to multiplication by a constant. On the other hand, if the dynamical
system (132) is invariant with respect to the universal Banach Lie group symmetry G =
Diff(Tn)� F, then for the corresponding Lie algebra of symmetries Q = Q{τ}� Q{α},
which is isomorphic to the current Lie algebra G, the next conditions should hold:

Lαϑ = 0, Lτϑ = 0 (143)

for all α ∈ Q{α} and τ ∈ Q{τ}. In addition, one easily ensues from (128) the following
commutation relationships:

(j + ε)αj+1 = [τ1, αj], (j + ε)αj−1 = [τ−1, αj], (j + ε)αj = [τ0, αj], (144)

(j− 1)τj+1 = [τ1, τj], jτj = [τ0, τj], (j + 1)τj−1 = [τ−1, τj].

Algebraic relationships (144) give rise to the following Lie-algebraic relationships

Lαj ϑ = 0 = Lαj η, , Lτj Λ = Λj+1, Lαj Λ = 0 = Lαj Φ, Lτj Φ = Φj+1, (145)

Lτj ϑ = (ξ − j− 1/2)ϑΛj, Lτj η = (ξ − j + 1/2)ηΛj,
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and show that on the basis of the sl(2) Lie subalgebra {τ−1, τ0, τ1} jointly with the set
of initial homogeneous symmetries {α−1, α1} for ε = 0 or {α0} for ε /∈ Z, as well as the
inhomogeneous symmetries {τ−2, τ2}, one can construct recursively an entire infinite-
hierarchy of symmetries Q{τ}� Q{α}, which is isomorphic to the current Lie algebra G
(128) by virtue of the construction. In addition, in accordance with the Noether relations
(143) there exist two infinite hierarchies of conservation laws to the dynamical system
(132), namely, the homogeneous functionals γj ∈ D(M), j ∈ Z, and the inhomogeneous
ζ j ∈ D(M), j ∈ Z, satisfying the conditions

τj = −ϑ grad ζ j, αj = −ϑ grad γj, {γj, γk} = 0, (146)

(j + ε)γj+k = (grad γj|τk) = {γj, τk},

∂τk + {H, ζk} = 0, {H, γj} = 0, {ζ j, ζk} = (j− k)ζ j+k

for any j, k ∈ Z, where, by definition, K[u] = −ϑ grad H, and {·, , ·} := (grad(·)|ϑ grad(·))
denotes the Poisson bracket on the space of functionalsD(M) on the functional manifold M.

Direct calculations show that the results described above are valid for all the currently
known completely integrable nonlinear dynamical systems, including the nonlinear equa-
tions of Schrëdinger type [21,59,114,124,125], the Benney—Kaup and Ito equations [114],
the Davey—Stewartson and Yajima—Mel’nikov equations [13], and others, defined on
infinite-dimensional manifolds, whose symmetry groups are isomorphic to the universal
Banach current group Di f f (S1)� F on the circle S1. With regard to “two- dimensionalized”
integrable dynamical systems of the Kadomtsev–Petviashvily type, it can be asserted that
they are closely related [11,13,112,117] to special operator-valued nonlinear integrable dy-
namical systems, generated by suitably defined iso-spectral Lax type problems [111,126]
and which are bi-Hamiltonian with respect to the Poissonian operators on these operator-
valued manifolds.

The analysis made above of the correspondence between the universal Lie algebra
of currents (128) and the functional Lie algebras of symmetries of integrable infinite-
dimensional dynamical systems makes it possible to formulate the following working
algorithm as an effective criterion of testing integrability of an arbitrary homogeneous
nonlinear dynamical system (132) on the infinite-dimensional manifold M.

Algorithm: If for the dynamical system ut = K[u] on the functional manifold M there exists
the nontrivial sl(2) Lie subalgebra {τ−1, τ0, τ1} together with a subset of “initial” inhomogeneous
symmetries {τ−2, τ2} and homogeneous {α−1, α1 : ε = 0} symmetries, satisfying the conditions

[τ0, τ2] = 2τ2, [τ0, τ−2] = −2τ−2, [τ1, τ−2] = −3τ−1, (147)

[α−1, α1] = 0, [τ−1, τ2] = 3τ1, [τ0, τ0] = εα0,

then this dynamical system on M possesses an infinite-dimensional Lie algebra of symmetries
Q = Q{τ} � Q{α}, isomorphic to the current Lie algebra G (128) of the Banach group
Diff(S1)� F on the circle S1, and if there exists a nontrivial solution of the Noether–Lax equation
LKϑ = 0, then our dynamical system is an infinite-dimensional completely integrable Hamiltonian
flow on the functional manifold M. If at the same time the relations (145) are satisfied, then
the dynamical system ut = K[u] on M is bi-Hamiltonian and possesses an hereditary-recursive
operator Λ = ϑ−1η, where η(ξ − 3/2) = Lτ1 ϑ, and, by virtue of the gradient-holonomic
algorithm [11,13,59,116], a standard Lax type representation.

If the conditions (143) are not satisfied, the dynamical system does not possess bi- Hamiltonian
structure, but there is an additional infinite-dimensional inhomogeneous hierarchy of conservation
laws satisfying the conditions (146).

3.3. Integrable Systems, Their Symmetry Analysis and Structure of the Poissonian Operators

Suppose we are given the homogeneous nonlinear dynamical system (132) on the
functional manifold M and pose a question of the existence for this dynamical system of a
bi-Hamiltonian structure on M and effective methods of determining it in explicit form.
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In accordance with the gradient-holonomic algorithm [11,13,59,116] for investigating the
integrability of nonlinear dynamical systems, we can successively establish in explicit form
the presence for our system (132) of an infinite functionally independent and naturally
ordered by means of the parameter λ ∈ R hierarchy γj ∈ D(M), j ∈ Z+, of conser-
vation laws. In addition, by virtue of the homogeneity of the dynamical system (132), it
always possesses a priori two commuting to each other homogeneous symmetries, which
are defined on M by the vector fields d/dx and d/dt. We can also consider the equivalent
realization of these vector fields d/dx and d/dt on M as Hamiltonian systems [11,17,18,123]
on the infinite-dimensional manifold of jets J(S1;Rm) � M with respect to a symplectic
structure ω(2) ∈ Ω1(J(S1;Rm). We denote by α(1) ∈ Ω1(J(S1;Rm) a Liouville type 1-form,
for which dα(1) = ω(2) and take into account that, by definition, there holds the conditions
id/dxω(2)[u] = −dγ[u] and Ld/dx ω(2)[u] = 0, where γ[u] ∈ Ω0(J(S1;Rm) denotes the
density of the corresponding conservation law γ ∈ D(M) at point u ∈ M. Based now on
the Cartan representation [127] of the Lie derivative Ld/dx = id/dxd + did/dx, one easily
obtains the following general relationship: γ[u] = α(1)[u](d/dx) = (ψ[u]|ux)mod(d/dx)
for some element ψ ∈ T∗(M) at any point u ∈ M, which should simultaneously satisfy
the compatibility condition d Ld/dtψ = 0 subject to the vector field d/dt on M. The latter
gives rise to the analytical expression that is useful in applications, ϑ−1 = ψ′[u]− ψ′,∗[u],
for the corresponding cosymplectic operator on the manifold M, whose inverse mapping
ϑ : T∗(M)→ T(M) is our searched for Poissonian operator for the dynamical system (132).

3.3.1. Two-Dimensional Korteweg–de Vries Type Hydrodynamic System

We consider an example of a nonlinear bi-Hamiltonian Korteweg–de Vries type hy-
drodynamic system on “two-dimensionalized” smooth functional manifold M � J(T2;R)
for which the Noether–Lax property (143), mentioned above, is not satisfied. This sys-
tem [12,21] has the form

ut = uxxy + 2ux∂−1
x uy + 4uuy := K[u] (148)

and possesses two algebraically-independent Poissonian operators

ϑ = ∂x, η = ∂3
x + 2(u∂x + ∂xu) (149)

Moreover, it is readily shown that for the dynamical system, (148) allows the rep-
resentation K[u] = Φuy, where Φ := ηϑ−1 = ∂2

x + 2(u + ∂xu∂−1
x ) is the corresponding

symmetry-recursive operator on M. One can check by direct calculations that the set
{τ

(x)
−1 = 1/4(1 + tux), τ

(y)
−1 = 1/4(1 + tuy)} consists of inhomogeneous symmetries of

the dynamical system (148) and the set {α
(x)
0 = ux, α

(y)
0 = ux} consists of homogeneous

symmetries. From them, one constructs the following hierarchies of symmetries:

Q{α(x)} := {α
(x)
j = Φjα

(x)
0 : j ∈ Z}, Q{α(y)} := {α

(y)
j = Φjα

(y)
0 : j ∈ Z}, (150)

Q{τ(x)} := {τ
(x)
j = Φj+1τ

(x)
−1 : j ∈ Z}, Q{τ(y)} := {τ

(y)
j = Φj+1τ

(y)
−1 : j ∈ Z}

The resulting Lie subalgebras Q(x) := Q{τ(x)}� Q{α(x)} and Q(y) := Q{τ(y)}� Q{α(y)}
have the following commutation relationships:

[τ
(x)
j , α

(y)
k ] = kα

(y)
j+k, [τ

(y)
j , α

(x)
k ] = (k + 1/2)α(x)

j+k, (151)

[τ
(x)
j , τ

(y)
k ] = kτ

(y)
j+k − jτ(x)

j+k, [α
(x)
j , α

(y)
k ] = 0
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for j, k ∈ Z, and the Lie subalgebras Q(x) and Q(y) are isomorphic to the current Lie algebra
G (128) on the circle S1. Taking into account this fact and expressions (151), we readily state
that the following sets Q{τ(+)} and Q{τ(−)} of symmetries

Q{τ(+)} := {τ
(+)
j = 1/2(τ(x)

j + τ
(y)
j ) : j ∈ Z}, (152)

Q{τ(−)} := {τ
(−)
j = 1/2(τ(x)

j − τ
(y)
j ) : j ∈ Z}

satisfy for all j, k ∈ Z the commutation relationships

[τ
(−)
j , τ

(+)
j ] = 0, [τ(+)

j , τ
(+)
k ] = (k− j)τ(+)

j+k , [τ(+)
j , α

(x)
k ] = (k + 1/2)α(x)

j+k, (153)

[τ
(−)
j , α

(x)
k ] = 0, [τ(−)

j , α
(y)
k ] = 0, [τ(+)

j , α
(y)
k ] = kα

(y)
j+k, [τ(+)

j , τ
(−)
k ] = kτ

(−)
j+k .

The latter make it possible to deduce the direct sum of Lie algebras of commuting to each
of the other Abelian symmetries

Q{α, τ(−)} := Q{τ(−)} ⊕Q{α(x)} ⊕Q{α(x)}, (154)

which jointly with the symmetry Lie subalgebra Q{τ(+)} constitutes the Lie algebra Q
constructed above of symmetries to the nonlinear dynamical system (148) as the semidirect
product

Q = Q{τ(+)}� Q{α, τ(−)}, (155)

being fully isomorphic to the current Lie algebra G (128). The latter states the invariance
of the nonlinear dynamical system (148) with respect to the current symmetry group
G = Diff(S1)� F of the circle S1.

3.3.2. Nonlinear Schrëdinger Type Dynamical System

On a smooth functional manifold M ⊂ C2(R;C2) a nonlinear Schrëdinger type dy-
namical system, which was first considered in [128], looks as

ψt = iψxx + (ψ2ψ̄)x,
ψ̄t = −iψ̄xx + (ψ̄2ψ)x,

}
:= K[ψ, ψ̄] (156)

and is a bi-Hamiltonian flow with respect to the following two compatible Poisson struc-
tures:

ϑ =

(
0 ∂x
∂x 0

)
, η =

( −ψ∂−1
x ψ −i + ψ∂−1

x ψ̄

i + ψ̄∂−1
x ψ −ψ̄∂−1

x ψ̄

)
. (157)

It is easy to check that the following flows on M

τ0 = tK + (xψx + ψ/2, xψ̄x + ψ̄/2)ᵀ, (158)

τ1 = tα3 + xK + (ψ2ψ̄ + i3/2ψx, ψ̄2ψ− i3/2ψ/2)ᵀ,

are nonuniform symmetries of the dynamical system (156), that is

∂τj/∂t + [K, τj] = 0 (159)

for j = 1, 2, where α3 := Φ2(ψx, ψ̄x)ᵀ and Φ := ηϑ−1 : T(M)→ T(M) is the corresponding
symmetry-recursive operator. Moreover, the following algebraic relationships hold:

LKτ0 = −ϑ, LKτ1 = −2η, (160)
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where, as before, LK denotes the Lie derivative with respect to the vector field K : M →
T(M). Put now, by definition, α0 := (−iψ, iψ̄)ᵀ, and αj := Φjα0, τj := Φjτ for j ∈ Z. Then
the following proposition holds.

Proposition 6. The nonlinear Schrëdinger type dynamical system (156) is a completely integrable
bi-Hamiltonian system on the functional manifold M, possessing two independent symmetry Lie
subalgebras Q{τ} := {τj : j ∈ Z} and Q{α} := {αj : j ∈ Z}. Moreover, their semidirect product
Q{α, τ} := Q{τ}� Q{α} is isomorphic to the quantum Lie algebra G of currents (128) of the
Banach group G = Diff(S1)� F on the circle S1.

3.3.3. The Benjamin–Ono Nonlinear Dynamical System

This dynamical system is defined on a functional manifold M ⊂ C2(R;R) as

ut = Huxx + 2uux, (161)

where u ∈ M and H : T(M)→ T(M) is the classical Hilbert transform

(Hα)(x) :=
1
π

∫ ∞

−∞
dy

α(y)
y− x

(162)

for any α ∈ T(M). The Hilbert transform (162) satisfies the following algebraic properties:
H2 = −1,H∗ = −H subject to the standard bilinear convolution form on the product
T∗(M)× T(M). It is easy to check that the dynamical system (161) is Hamiltonian [129]
with respect to the Poisson operator

ϑ = ∂/∂x, (163)

that is ut = −ϑ grad H, where the Hamiltonian function H =
∫ ∞
−∞ dx(u3/3 + uHux).

Simple calculations make it possible to state [113] that the following functional expressions

τ−1 = 1 + tux, τ0 = xux + u + tK, (164)

τ1 = tα2 + xK + u2 − 3/2Hux,

α2 = [2u3 + 3H(uux) + 3uHux − 2uxx]x

are symmetries of the Benjamin–Ono nonlinear dynamical system (161). Moreover, since
there hold algebraic relationships Lτj ϑ = 0 for j = −1, 1, we can state that this dynamical
system is not bi-Hamiltonian on the functional manifold M, as owing to the relationships
(145) we should have Lτ−1 ϑ = (ξ + 1/2)ϑΛ−1 = 0, Lτ0 ϑ = (ξ − 1/2)ϑ = 0 and Lτ1 ϑ =
(ξ − 3/2)ϑΛ = 0, whose common solution is ξ = 1/2 and η = 0. The latter means
that the Benjamin–Ono nonlinear dynamical system (161) is not bi-Hamiltonian on the
functional manifold M, albeit it proves to be bi-Hamiltonian [129] on an extended spatially
two-dimensional operator manifold M̂, being equivalent to a respectively defined Hilbert–
Schmidt operator algebra, whose theory was previously developed in [11,20,21,130,131]
and applied to other nonlinear dynamical systems such as Devey–Stewartson, Kadomtsev–
Petviashvily, etc.

3.4. Conclusions

In this Section, we analyzed the algebraic structure of symmetries of nonlinear in-
tegrable infinite-dimensional integrable Hamiltonian dynamical systems. It was stated
that the Banach group of currents Di f f (S1)� C∞(S1;R) on the circle S1 is a universal
symmetry group of all completely integrable bi-Hamiltonian systems. Applications of this
phenomenon to the problem of constructing effective criteria of integrability of nonlinear
dynamical systems of theoretical and mathematical physics are presented.
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4. The Current Algebra Representations and the Factorized Structure of Quantum
Integrable Many-Particle Hamiltonian Systems

4.1. The Current Algebra Representation and the Hamiltonian Reconstruction of the
Calogero–Moser–Sutherland Quantum Model

The periodic Calogero–Moser–Sutherland quantum bosonic model on the finite inter-
val [0, l] � R/{[0, l]Z} is governed by the N-particle Hamiltonian

HN := − ∑
j=1,N

∂2

∂x2
j
+ ∑

j �=k=1,N

π2β(β− 1)
l2 sin2[π

l (xj − xk)]
(165)

on the symmetric Hilbert space L(s)
2 ([0, l]N ;C), where N ∈ Z+ and β ∈ R is an interaction

parameter. As it was stated in very interesting and highly speculative works [132,133],
there exists linear differential operators

Dj :=
∂

∂xj
− πβ

l ∑
k=1,N,k �=j

ctg[
π

l
(xj − xk)] (166)

for j = 1, N, such that the Hamiltonian (165) is factorized as the bounded from below
symmetric operator

HN = ∑
j=1,N

D+
j Dj + En, (167)

where

EN =
1
3

(
πβ

l

)2
N(N2 − 1) (168)

is the ground state energy of of the Hamiltonian operator (165), that there exists such a
vector |ΩN) ∈ L(s)

2 ([0, l]N ;C), satisfying for any N ∈ Z+ the eigenfunction condition

HN |ΩN) = EN |ΩN) (169)

and equals

|ΩN) = ∏
j<k=1,N

(
sin[

π

l
(xj − xk)]

)β
, (170)

coinciding with the corresponding Bethe anzatz representation [134,135] for the groundstate
of the quantum Calogero–Moser-Sutherland model (165).

Being additionally interested in proving the quantum integrability of the
Calogero–Moser–Sutherland model (165), we will proceed to its second quantized
representation [9,10,13,56,57,60,68,135,136] and studying it by means of the density op-
erator representation approach to the current algebra, described above in Section 2 and
devised previously in [1,4–7,76,77].

The secondly quantized form of the Calogero–Moser–Sutherland Hamiltonian opera-
tor (165) looks as

H =
∫ l

0
dxψ+

x (x)ψx(x) +
(π

l

)2
β(β− 1)

∫ l

0
dx

∫ l

0
dy

ψ+(x)ψ+(y)ψ(y)ψ(x)
sin2[π

l (x− y)]
, (171)

acting on the corresponding Fock space ΦF := ⊕n∈Z+
Φ(s)

n , Φ(s)
n � L(s)

2 ([0, l]n;C), n ∈ Z+.
To proceed to the current algebra representation of the Hamiltonian operator (171), it would
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useful to recall the factorized representation (167) and construct preliminarily the following
singular Dunkl type [132,133,137,138] symmetrized differential operator

DN(x) := ∑j=1,N δ(x− xj)
∂

∂xj
−

−πβ
2l ∑j �=k=1,N

(
δ(x− xj)ctg[π

l (xj − xk)] + δ(x− xk)ctg[π
l (xk − xj)]

) (172)

on the Hilbert space L(s)
2 ([0, l]N ;C), N ∈ Z+, parametrized by a running point x ∈

R/{[0, l]Z}. The corresponding secondly quantized representation of the operator (172)
looks as

D(x) = ψ+(x)ψx(x)− πβ

l

∫ l

0
dy ctg[

π

l
(x− y)] : ψ+(x)ψ+(y)ψ(y)ψ(x) : (173)

for any x ∈ R/[0, l]Z, or on the density operator ρ : ΦF → ΦF representation form, as

D(x) = ∇xρ(x)/2 + i J(x)−

−πβ
2l

∫ l
0 dy

[
ctg[π

l (x− y)] : ρ(x)ρ(y) : − ctg[π
l (y− x)] : ρ(y)ρ(x) :

]
,

(174)

which is equivalently representable in a suitable current algebra symmetry representation
Hilbert space Φ, as

D(x) = K(x)−

−πβ
2l

∫ l
0 dy

[
ctg[π

l (x− y)] : ρ(x)ρ(y) : − ctg[π
l (y− x)] : ρ(y)ρ(x) :

]
.

(175)

Now, based on the operator (174), one can formulate [10] the following proposition.

Proposition 7. The secondly quantized Calogero–Moser–Sutherland Hamiltonian operator (171)
in a suitable current algebra symmetry representation Hilbert space Φ is weakly equivalent to the
factorized Hamiltonian operator

Ĥ =
∫ l

0
dxD+(x)ρ(x)−1D(x) (176)

modulo the ground state energy operator E : Φ → Φ, where

E =
1
3

(
πβ

l

)2
: N3 : +

(
πβ

l

)2
: N2 :, (177)

where, as before,

N :=
∫ l

0
ρ(x)dx (178)

is the particle number operator, and satisfies the determining conditions

(H− E)|Ω) = 0, D(x)|Ω) = 0 (179)

on the suitably renormalized groundstate vector |Ω) ∈ Φ for all x ∈ R/[0, l]Z. Moreover, for any
integer N ∈ Z+ the corresponding projected vector |ΩN) := |Ω)|ΦN exactly coincides with the
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related Bethe groundstate vector for the N-particle Calogero–Moser–Sutherland model (165) and
satisfies the following eigenfunction relationships:

N|ΩN) = N|ΩN), E|ΩN) =

(
1
3

(
πβ

l

)2
: N3 : +

(
πβ

l

)2
: N2 :

)
|ΩN) = (180)

=

[
1
3

(
πβ

l

)2
(N3 − 3N2 + 2N) +

(
πβ

l

)2
N(N − 1)

]
|ΩN) =

=

[
1
3

(
πβ

l

)2
(N3 − 3N2 + 2N + 3N2 − 3N)

]
|ΩN) =

=

[
1
3

(
πβ

l

)2
N(N2 − 1)

]
|ΩN) := EN |ΩN),

exactly ensuing the result (168).

Remark 5. When deriving the expression (180), we have used the identities

ρ(x)ρ(y) = : ρ(x)ρ(y) : +ρ(y)δ(x− y),

ρ(x)ρ(y)ρ(z) = : ρ(x)ρ(y)ρ(z) : + : ρ(x)ρ(y) : δ(y− z)+

+ : ρ(y)ρ(z) : δ(z− x)+ : ρ(z)ρ(x) : δ(x− y)+ : ρ(x)δ(y− z)δ(z− x),

(181)

which hold [5,55,56,77] for the density operator ρ : Φ → Φ at any points x, y, z ∈ R/{[0, l]Z}.

Observe now that the operator (173) can be rewritten down in Φ as

D(x) = K(x)−A(x), (182)

where, by definition,

K(x) := ∇xρ(x)/2 + i J(x), A(x) :=
πβ

l

∫ l

0
dy ctg[

π

l
(x− y)] : ρ(x)ρ(y) : (183)

for all x ∈ R/{[0, l]Z}. Recalling now the second condition of (179), one can rewrite it
equivalently as

K(x)|Ω) = A(x)|Ω) (184)

on the renormalized ground state vector |Ω) ∈ Φ for all x ∈ R/{[0, l]Z}. On the other hand,
owing to the expression (176), we obtain the searched for current algebra representation

Ĥ =
∫ l

0
dx(K+(x)−A(x))ρ(x)−1(K(x)−A(x)) (185)

of the Calogero–Moser–Sutherland Hamiltonian operator (165) on the suitably renormal-
ized Hilbert space Φ, as it was already demonstrated in the work [76,77], using the condition
(184) in the form (61).

4.2. The Current Algebra Representation and Integrability of the Calogero–Moser–Sutherland
Quantum Model

We now briefly discuss the quantum integrability of the Calogero–Moser–Sutherland
model (165). Owing to the factorized representation (185), one can easily observe [8–10]
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that for any integer p ∈ Z+, the suitably symmetrized Hamiltonian operator densities
h(x) := D+(x)ρ(x)−1D(x) : Φ → Φ, x ∈ R/{[0, l]Z}, commute to each other and with the
particle number operator N : Φ → Φ, that is

[h(x), h(y)] = 0, [h(x), N] = 0 (186)

for any x, y ∈ R/[0, l]Z. As a result of the commutation property (186), one easily obtains
that for any integer p ∈ Z+ the symmetric operators

Ĥ(p) :=
∫ l

0
dxh(x)p (187)

also commute to each other
[Ĥ(p), Ĥ(q)] = 0 (188)

for all integers p, q ∈ Z+, and in particular, commute to the Calogero–Moser–Sutherland
Hamiltonian operator (176):

[Ĥ(p), Ĥ] = 0. (189)

Concerning the related N-particle differential expressions for the operators (187), it is
enough to calculate their projections on the N-particle Fock subspace Φ(s)

N ⊂ ΦF, N ∈ N.

Namely, let an arbitrary vector |ϕN) ∈ Φ(s)
N be representable as

|ϕN) :=
∫
[0,l]N

ϕN(x1, x2, ..., xN) ∏
j=1,N

dxjψ
+(xj)|0) (190)

for some coefficient function ϕN ∈ L(s)
2 ([0, l]N ;C). Then, by definition,

Ĥ(p)|ϕN) := |ϕ(p)
N ), (191)

where
|ϕ(p)

N ) =
∫
[0,l]N

(H(p)
N ϕN)(x1, x2, ..., xN) ∏

j=1,N

dxjψ
+(xj)|0) (192)

for a given p ∈ Z+ any N ∈ Z+. In particular, for p = 2, when Ĥ(2) + E = H : ΦF → ΦF,
one easily retrieves the shifted Calogero–Moser–Sutherland Hamiltonian operator (165):

H(2)
N = − ∑

j=1,N

∂2

∂x2
j
+ ∑

j �=k=1,N

π2β(β− 1)
l2 sin2[π

l (xj − xk)]
−

(
πβ

l

)2 N(N2 − 1)
3

. (193)

Respectively for higher integers p > 2 the resulting N-particle differential operator ex-
pressions H(p)

N : L(s)
2 ([0, l]N ;C)→ L(s)

2 ([0, l]N ;C), N ∈ Z+, can be obtained the described
above way by means of simple yet cumbersome calculations, and which will prove to be
completely equivalent to those calculated previously in good work [132].

Remark 6. In the thermodynamical limit, when limN→∞,l→∞ N/πl := ρ̄ > 0, the structural
operator D(x) : Φ → Φ, x ∈ R/{[0, l]Z}, reduces to

D̄(x) := lim
N/l→ρ̄

D(x) = ∇xρ(x)/2 + i J(x)− β
∫
R

dy
: ρ(y)ρ(x) :

x− y
, (194)

and, respectively, the operator (165) reduces to

H̄N = − ∑
j=1,N

∂2

∂x2
j
+ β(β− 1) ∑

j �=k=1,N

1
(xj − xk)2 (195)
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on the Hilbert space L(s)
2 (RN ;C) for any N ∈ Z+, whose density operator representation in a

suitable Hilbert space Φ, respectively, equals

H̄ =
∫
R

dx
(

D̄+(x)ρ(x)−1D̄(x) + ε0

)
, (196)

where ε0 := limN/l→ρ̄
EN

l = ρ̄3/3 denotes the average energy density of the reduced Calogero–
Moser–Sutherland Hamiltonian operator (195) as N → ∞, exactly coinciding with the before
obtained results in [77,133].

5. The Dual Current Algebra Density Representation and the Factorized Structure of
Quantum Integrable Many-Particle Hamiltonian Systems

5.1. The Current Algebra Density Representation

We are now interested in constructing a special density functional representation of
the local current algebra (29) on the corresponding representation Hilbert space Φμ �
⊕ρ with the cyclic vector |Ω) = 1 ∈ Φρ. To do this, let us first consider the creation ψ+(x)
and annihilation operators ψ(x), x ∈ Rm, defined via (56) on the canonical Fock space ΦF,
which can be formally represented as

ψ+(x) =
√

ρ(x) exp[−iϑ(x)], ψ(x) = exp[iϑ(x)]
√

ρ(x), (197)

where ρ(x) : ΦF → ΦF is our density operator and ϑ(x) : ΦF → ΦF,x ∈ Rm, is some
self-adjoint operator. What is important is the operators ρ(x) and ϑ(x) : ΦF→ ΦF realize
the canonical [55,56,60,63,85] commutation relationships

[ρ(x), ρ(y)] = 0 = [ϑ(x), ϑ(y)], (198)

[ρ(y), ϑ(x)] = iδ(x− y)

for any x, y ∈ Rm. Concerning the current operator J(x) : ΦF → Φm
F ,x ∈ Rm, one can easily

obtain its equivalent expression

J(x) = ρ(x)∇ϑ(x). (199)

Based on the canonical relationships (198) one can easily obtain, following [72,85,139], that

ϑ(x) =
1
i

δ

δρ(x)
+ iσ[ρ(x)], (200)

where σ[ρ(x)] : Φρ → Φρ acts on the corresponding Hilbert representation space Φρ and
is some function of the density operator ρ(x) : Φρ → Φρ,x ∈ Rm. Then, respectively,
the current operator (199) is representable in Φρ as

J(x) = −iρ(x)∇ δ

δρ(x)
+ ρ(x)∇σ[ρ(x)]. (201)

The functional-operator expression (201) proves to make sense [5,72,75,139] as operators
on the Hilbert space Φρ of functional valued complex-functions on the manifold M,
coordinated by the density functional parameter ρ : Φρ → Φρ and endowed with the scalar
product (a|b)Φρ

:=
∫
M a(ρ)b(ρ)dμ(ρ) subject to some measure μ on M. To calculate this

measure μ on M, we will present an explicit isomorphism between this Hilbert space Φρ

and the corresponding Fock space Φ of spinless bosonic particles in Rm. First, we determine
the support supp μ ⊂M of the measure μ, having assumed that the manifold

M = ∪n∈Z+
Mn, (202)
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where Mn := {a(ρ) : ρ(x) := ∑n
j=1 δ(x − cj) : a ∈ C∞(F′; End Φρ)}, where cj ∈ Rm, j =

1, n, n ∈ N, are arbitrary vector parameters. The restriction dμn of the measure μ on the
submanifold Mn can be presented [4,5,57,68,71] as

dμn = γn(c1, c2, ..., cn) ∏
j=1,n

dcj, (203)

where functions γn : Rm×n → R+, n ∈ N, should be determined from the condition (201).
In accordance with the manifold structure (202), we can decompose the Hilbert space Φρ as

Φρ = ⊕n∈NΦn, (204)

where the space Φn depends on the mapping σ : M→End(Φρ) and consists of functionals
that are bounded on Mn, in particular, for any a(ρ) ∈ M the restrictions a(ρ)|Φn , n ∈ N,
consist of functions of vectors (c1, c2, ..., cn) ∈ Rm×n, n ∈ N, respectively. The scalar product
in Φn, n ∈ N, is suitably defined by means of the expressions (203). Now we can construct
the isomorphism between the Hilbert spaces Φn, n ∈ N, and the corresponding components
Φn, n ∈ N, of the corresponding Fock space Φ, representing spinless bosonic particles in
Rm. In the Hilbert space Φn := Φ(σ)

n , n ∈ N, one can easily calculate the eigenfunctions
ϕ
(σ)
p1, p2,...,pn(ρ) ∈ Φ(σ)

n of the free Hamiltonian

H(σ)
0 :=

1
2

∫
Rm

dx〈K+(x)|ρ−1(x)K(x)〉 (205)

with structural

K(x) :=
1
2
∇ρ(x) + i J(σ)(x), K+(x) :=

1
2
∇ρ(x)− i J(σ)(x) (206)

and the momentum
P(σ) :=

∫
Rm

dxJ(σ)(x) (207)

operators:

H(σ)
0 ϕ

(σ)
p1, p2,...,pn(ρ) = ( ∑

j=1,n

Ej)ϕ
(σ)
p1, p2,...,pn(ρ), (208)

P(σ)ϕ
(σ)
p1, p2,...,pn(ρ) = ( ∑

j=1,n

pj)ϕ
(σ)
p1, p2,...,pn(ρ),

where pj ∈ Rm , j = 1, n, are momentums of bose-particles in Rm, the operator H(σ)
0 : Φρ→

Φρ is given by the expressions (55), (201) and (205) and the operator P(σ) : Φρ→ Φρ is
given by the expressions (201) and (206), respectively, within which the current operator
J(σ)(x) : Φρ→ Φρ is realized under the condition ∇σ[ρ(x)] := σρ(x)−1∇ρ(x) as

J(σ)(x) = −iρ(x)∇ δ

δρ(x)
+ iσ∇ρ(x) (209)

where σ ∈ R is a fixed real-valued parameter. In this case, the eigenfunctions
ϕ
(σ)
p1, p2,...,pn(ρ) ∈ Φ(σ)

n , n ∈ N, can be expressed [72,139] as

ϕ
(σ)
p1, p2,...,pn(ρ) =

1
n!

ϕ̄
(σ)
0 (ρ)

⎛⎝ ∏
j=1,n

Bpj(ρ) · 1

⎞⎠, (210)
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where

ϕ̄
(σ)
0 (ρ) := exp

[
(σ− 1/2)

∫
Rm

dxρ(x) ln ρ(x)
]

, (211)

Bpj(ρ) :=
∫
Rm

dx exp(i〈p|x〉 )ρ(x) exp(− δ

δρ(x)
).

The corresponding n-particle Fock subspaces Φ(σ)
n , n ∈ N, can be naturally represented by

means of the vectors

|ϕ(σ)
n ) :=

1√
n!

∫
Rm×n ∏

j=1,n

dpj ϕ
(σ)
n (p1, p2, ..., pn)a+(p1)a+(p2)...a+(pn)|0) (212)

with functions ϕ
(σ)
n ∈ L(s)

2 (Rm×n;C), n ∈ N, where

a+(p) :=
1

(2π)m/2

∫
Rm

dx exp(i〈x|p〉)a+(x) (213)

denotes the momentum creation operator for any p ∈ Rm.
Moreover, any functional ϕ

(σ)
n (ρ) ∈ Φ(σ)

n , n ∈ N, can be uniquely represented as

ϕ
(σ)
n (ρ) :=

∫
Rm×n ∏

j=1,n

dpj ϕ̃
(σ)
n (p1, p2, ..., pn)ϕ

(σ)
p1, p2,...,pn(ρ) (214)

for ϕ̃
(σ)
n ∈ L(s)

2 (Rm×n;C), since the following condition⎛⎝Bpn+1(ρ) ∏
j=1,n

Bpj(ρ) · 1

⎞⎠∣∣∣∣∣∣
ρ=a+(x)a(x)

|ϕ(σ)
n ) = 0 (215)

holds identically for all pj ∈ Rm, j = 1, n + 1, and arbitrary state |ϕ(σ)
n ) ∈ ΦF, n ∈ N.

Remark 7. The condition (215) jointly with the constraint
∫
Rm ρ(x)dx = n in Φ(σ)

n , n ∈ N,
should be, in general, naturally satisfied for any current algebra representation space Φρ, if and
only if ρ(x) = ∑j=1,n δ(x− cj) ∈ Mn for arbitrary n ∈ N.

As a result of the construction above, we can state that the Hilbert spaces Φ(σ)
n , n ∈ N,

embed, respectively, isomorphically into the related Fock subspaces Φ(σ)
n ,n ∈ N. As a

consequence, we derive that the Hilbert space Φρ allows an isomorphic embedding into
the related Fock space ΦF.

Consider now, following [5,72,139], the action of the current operator (209) on the
basic vectors ϕ

(σ)
n (ρ) ∈ Φ(σ)

n , n ∈ N:

J(σ)(x)ϕ
(σ)
n (ρ) = ϕ̄

(σ)
0 (ρ)[−iρ(x)∇ δ

δρ(x)
+ iσ∇ρ(x)]ϕ(σ)

n (ρ), (216)

from which one ensues easily at σ = 1/2 its n-particle representation on the functional
manifold Mn:

J(1/2)(x)ϕ
(1/2)
n (ρ)

∣∣∣
ρ(y)=∑j=1,n δ(y−cj)

=

= ∑j=1,n
1
2 [−iδ(x− cj)∇cj + i∇cj ◦ δ(x− cj)] f̃ (1/2)

n (c1, c2, ..., cn),

(217)
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where we took into account that ϕ̄
(1/2)
0 (ρ) = 1 for all densities ρ : Φ → Φ and have put,

by definition, the Fourier transform

f̃ (1/2)
n (c1, c2, ..., cn) :=

∫
Rm×n ∏

j=1,n

dpj f (1/2)
n (p1, p2, ..., pn) exp(i ∑

j=1,n

〈pj|cj〉) (218)

for any fixed particle position vectors cj ∈ Rn, j = 1, n, and for arbitrary n ∈ N. The
expression (217), in particular, means that the current operator J(1/2)(x) : Φρ → Φρ is

symmetric with respect to the measure dμ
(1/2)
n := βn ∏

j=1,n
dcj on each functional submani-

fold Mn for all n ∈ N, where the constants βn ∈ R+, n ∈ N, can be determined from the
normalization condition ||ϕ(1/2)

n (ρ)||
Φ(1/2)

n
= (ϕ

(1/2)
n |ϕ(1/2)

n )1/2
Φ(1/2)

n
, n ∈ N. The latter gives

rise [1,4,57,68,71,72,139] to the following symbolic measure expression

dμ
(1/2)
n := ∏

x∈Rm
δ

⎛⎝ρ(x)− ∑
j=1,n

δ(x− cj)

⎞⎠ ∏
j=1,n

dcj

(2π)m (219)

for all cj ∈ Rn, j = 1, n, and arbitrary n ∈ N.

Remark 8. As was aptly observed in [72], the choice σ = 1/2 makes it possible to realize the
current algebra representation on the space M of analytic functions, which will be a priori assumed
for further, that is the corresponding measure can be symbolically expressed as

dμn := ∏
x∈Rm

δ

⎛⎝ρ(x)− ∑
j=1,n

δ(x− cj)

⎞⎠ ∏
j=1,n

dcj

(2π)m (220)

on the subspace Mn for any n ∈ N.

5.2. The Current Algebra Representation and Hamiltonian Reconstruction: A Many-Dimensional
Quantum Oscillator Model

As a classical application of the construction above, one can consider a density current
algebra representation of the quantum Hamiltonian operator

H(ω) =
1
2

∫
Rm
〈K(x)+|ρ(x)−1K(x)〉dx +

1
2

∫
Rm
〈ωx|ωx〉ρ(x)dx (221)

on the corresponding representation Hilbert space Φρ of the generalized quantum N-
particle oscillatory Hamiltonian

H(ω)
N =

1
2 ∑

j=1,N

(
〈∇xj |∇xj〉+ 〈ωxj|ωxj〉

)
(222)

for N ∈ Z+ bose-particles in the m-dimensional space Rm under the external oscillatory
potential, parametrized by the positive definite frequency matrix ω ∈ End Rm.

Having shifted the representation Hilbert space Φρ by the functional ϕ̄
(1/2)
0 (ρ) :=

exp[− 1
2

∫
Rm〈x|ωx〉ρ(x)dx] ∈ Φρ, the corresponding current operator (209) becomes

J(ω)(x) = −iρ(x)∇ δ

δρ(x)
+

i
2
∇ρ(x)− iωxρ(x), (223)

simultaneously entailing the related K-operator changing

K(x) = ρ(x)∇ δ

δρ(x)
→ K(ω)(x) = ρ(x)∇ δ

δρ(x)
+ ωxρ(x) (224)
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for any x ∈ Rm. The latter gives rise, respectively, to the following equivalent current
algebra functional representation of the oscillatory Hamiltonian (221):

H(ω) =
1
2

∫
Rm
〈K(ω)(x)+|ρ(x)−1K(ω)(x)〉dx +

1
2

trω
∫
Rm

ρ(x)dx (225)

for any positive defined matrix ω ∈ End Rm. The shifted current operator (223) makes it
possible to construct the suitably deformed free particle measure

dμ
(ω)
1 (ρ) := exp

(
−

∫
Rm

dxρ(x)〈x|ωx〉
)

dμ
(1/2)
1 (ρ) (226)

on the one-particle functional manifold M1, for which the following expression

(Ω|H(ω)|U(f)|Ω) =
∫
M

exp[iρ(f)]dμ
(ω)
1 (ρ) (227)

holds for any test function f ∈ F. The latter, jointly with the related ground state condition
|Ω) = 1 ∈ Φρ, makes it possible to easily calculate the scalar product elements

(U(f1)Ω|H(ω)|U(f2)|Ω) =
∫
Rm

exp[if1(c) + if2(c)] exp(−〈c|ωc〉) dc
(2π)m (228)

for any test functions f1, f2 ∈ F. The expression (228) makes it possible to successfully
calculate the matrix elements (ρ(fp1)Ω|H(ω)|ρ(fp2)|Ω) of the Hamiltonian H(ω) : Φρ → Φρ

on the corresponding eigenvectors ρ(fp)|Ω) ∈ Φρ for arbitrary p = p1, p2 ∈ N and,
therefore, to find its spectrum.

Consider now the operator (55), taking into account the analytical current representa-
tion (216) at σ = 1/2:

K(x)ϕ
(1/2)
n (ρ) = [ρ(x)∇ δ

δρ(x) − 1/2∇ρ(x)]ϕ(1/2)
n (ρ)+

+1/2∇ρ(x)ϕ
(1/2)
n (ρ) = ρ(x)∇ δ

δρ(x) ϕ
(1/2)
n (ρ)

(229)

for any n ∈ N. Having substituted instead of ϕ
(1/2)
n (ρ) ∈ Φ(n)

ρ , n ∈ N, the ground state
eigenfunction Ω(ρ) = 1 ∈ Φρ, we can easily retrieve the before derived expression (61).
Moreover, based on the representation (224) and the definition (54), one can calculate that

K(ω)(x)ϕ̄
(1/2)
0 (ρ) =

[
ρ(x)∇ δ

δρ(x)
+ ωxρ(x)

]
ϕ̄
(1/2)
0 (ρ) = 0 = (230)

= A(ω)(x; ρ)ϕ̄(1/2)(ρ),

where ϕ̄
(1/2)
0 (ρ) = exp[− 1

2

∫
Rm〈x|ωx〉ρ(x)dx] ∈ Φ(1/2)

ρ � Φρ. The latter means, in particu-
lar, that the corresponding multiplication operator A(ω)(x; ρ) = 0, or, respectively,

K(x)ϕ̄
(1/2)
0 (ρ) := A(x; ρ)ϕ̄

(1/2)
0 (ρ) = −ωxρ(x)ϕ̄

(1/2)
0 (ρ), (231)

where ϕ̄
(1/2)
0 (ρ) := |Ω(ρ)) ∈ Φρ is the corresponding ground state vector in Φρ for

the oscillatory Hamiltonian operator (222). Making use of the operator (226), based on
expression (64), one can present a special solution to the functional Equation (63) in the form

L(f) = exp
(
−

∫
Rm

dx〈ωx|x〉 1
2i

δ

δf(x)

)
exp

(
ρ̄
∫
Rm
{exp[if(x)]− 1}dx

)
, (232)

confirming similar statements from [5,6,77].
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5.3. Conclusions

In this Section, we have reviewed the development and applications of an effective
algebraic scheme of constructing density operator and density functional representations
for the local quantum current algebra and its application to quantum Hamiltonian and
symmetry operators reconstruction. We analyzed the corresponding factorization structure
for quantum Hamiltonian operators, spatially governing many- and one-dimensional
integrable dynamical systems. The quantum generalized oscillatory and Calogero–Moser–
Sutherland models of spin-less bose-particles were analyzed in detail. The central vector of
the density operator current algebra representation proved to be the ground vector state of
the corresponding completely integrable factorized quantum Hamiltonian system in the
classical Bethe anzatz form. The latter makes it possible to quantum classify completely
integrable Hamiltonian systems a priori, allowing the factorized form and those whose
groundstate is of the Bethe anzatz from. These and related aspects of the factorized
and completely integrable quantum Hamiltonians systems are planned to be studied in
other places.

6. The Quantum Current Algebra Quasi-Classical Representations and the Collective
Variable Approach in Equilibrium Statistical Physics

Introductory Notes

We consider a large system of N ∈ N (one-atomic and spinless) bose-particles with a
fixed density ρ̄ := N/Λ in a volume Λ ⊂ R3, which is specified by a quantum-mechanical
Hamiltonian operator Ĥ : L(sym)

2 (R3N ;C)→ L(sym)
2 (R3N ;C) of the form:

Ĥ := − h̄2

2m

N

∑
j=1

∇2
j +

N

∑
j<k

V(xj − xk), (233)

where ∇j := ∂/∂xj, j = 1, N, h̄—the Planck constant, m ∈ R+—a particle mass and
V(x − y) := V(|x − y|), x, y ∈ Λ,—a two-particle potential energy, allowing a partition
V = V(l) + V(s), where V(s)—a short range potential of the Lennard–Johns type and
V(l)—a long range potential of the Coulomb type. Making use of the second quantization
representation [13,22,56,59,63,140,141], the Hamiltonian (233) as Λ → R3 and N → ∞ can
be written as a sum H = H0 + V, where

H0 := − h̄2

2m

∫
R3

d3xψ+∇2
xψ, (234)

V :=
1
2

∫
R3

d3x
∫
R3

d3yV(x− y)ψ+(x)ψ+(y)ψ(y)ψ(x),

and the operator H : ΦF → ΦF acts on the corresponding Fock space ΦF and ψ+(x), ψ(y):
ΦF → ΦF are the creation and annihilation operators at points x ∈ R3 and y ∈ R3. Assume
now that our particle system is in a thermodynamically equilibrium state at an “inverse”
temperature R+ � β → ∞. Assume also that this equilibrium state is compatible with the
respectively constructed quantum current algebra G representation in a separable Hilbert
space Φμ [4,6,56,68,141], whose generating cyclic vector Ω ∈ Φμ realizes the ground state
of the Hamiltonian operator H : Φμ → Φμ. Then, the corresponding n-particles distribution
functions can be written down [56,86,142] as

fn(x1, x2, ..., xn) := (Ω| : ρ(x1)ρ(x1)...ρ(xn) : Ω), (235)

where n ∈ N, ρ(x) : Φμ → Φμ, x ∈ R3—the density operator acting on the Hilbert space
Φμ and : · :—the related Wick normal ordering, naturally ensued from that defined over
the creation and annihilation operators, and Ω ∈ Φμ is the ground state of the Hamiltonian
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(234) at the temperature β → ∞, normed by the stability condition (Ω|Ω) = 1. Having
introduced the corresponding Bogolubov generating functional

L(f) := (Ω| exp[iρ(f)]Ω) (236)

for any “test” Schwartz function f ∈ F � S( R3;R), where ρ(f) :=
∫
R3 d3xf(x)ρ(x), then

for the n-particle distribution functions (235) one can get the expression

fn(x1, x2, ..., xn) =:
1
i

δ

δf(x1)

1
i

δ

δf(x2)
...

1
i

δ

δf(xn)
: L(f)|f=0. (237)

Here xj ∈ R3, j = 1, n, n ∈ N, and the symbol “: 1
i

δ
δf(x1)

1
i

δ
δf(x2)

... 1
i

δ
δf(xn)

:” imitates the
normal ordering symbol “: :” action on operator expressions ρ(x1)ρ(x1)...ρ(xn), that is

:
1
i

δ

δf(x1)
:=

1
i

δ

δf(x1)
, (238)

:
1
i

δ

δf(x1)

1
i

δ

δf(x2)
:=

1
i

δ

δf(x1)
[
1
i

δ

δf(x2)
− δ(x1 − x2)],

and so on. Consider now the expression (236) at some β ∈ R+, making use of the statistical
operator P : Φμ → Φμ and the “shifted” ’Hamiltonian H(λ) := H−λ

∫
R3 d3xρ(x) with λ ∈ R

being a suitable “chemical” potential:

L(f) := Tr(P exp[iρ(f)]), P :=
exp(−βH(μ))

Tr exp(−βH(μ))
, (239)

where “Tr” means the operator trace-operation on the Hilbert space Φμ. Keeping in mind
within the task of studying distribution functions (235) in the classical statistical mechan-
ics case, we need to calculate the trace in (239) as h̄ → 0. The latter gives rise to the
following expressions:

L(f) = Z(f)/Z(0), Z(f) := exp[−βV(δ)]L0(f), (240)

L0(f) = exp(ς
∫
R3

d3x{exp[if(x)]− 1}),

where ς := exp(βλ)(2πh̄2βm)−3/2 is the system “activity” [56,142], and

V(δ) :=
1
2

∫
R3

d3x
∫
R3

d3yV(x− y) :
1
i

δ

δf(x)
1
i

δ

δf(y)
: . (241)

Based on expressions (240) and (241) we can formulate the following proposition.

Proposition 8. The functional (236) satisfies [20,56,86] the following functional Bogolubov
type equation:

[∇x − i∇xf(x)]
1
i

δL(f)
δf(x)

(242)

= −β
∫
R3

d3y∇xV(x− y) :
1
i

δ

δf(x)
1
i

δ

δf(y)
: L(f),

with the expression (240) being its exact functional-analytic solution.

Below, we will proceed to constructing effective analytic tools allowing the exact
functional-analytic solutions to the Bogolubov functional Equation (242) to be found,
describing equilibrium many-particle dynamical systems, as well as generalizing the
obtained results for the case of non-equilibrium dynamical many particle systems.
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7. The Bogolubov-Zubarev “Collective” Variables Transform

Taking into account the two-particle potential energy partition V = V(s) + V(l), ow-
ing to the representation (240) one can easily write down the following expression for
generating functional Z(f), f ∈ F:

Z(f) = exp[−βV(s)(δ)]L(l)(f), L(l)(f) := exp[−βV(l)(δ)]L0(f), (243)

where we put

V(l)(δ) :=
1
2

∫
R3

d3x
∫
R3

d3yV(l)(x− y) :
1
i

δ

δf(x)
1
i

δ

δf(y)
: , (244)

V(s)(δ) :=
1
2

∫
R3

d3x
∫
R3

d3yV(s)(x− y) :
1
i

δ

δf(x)
1
i

δ

δf(y)
: .

Needing to calculate the functional L(l)(f), f ∈ F, corresponding to the long range part
V(l) of the full potential energy V : Φμ → Φμ, we will apply the analogue of Bogolubov–
Zubarev [143,144] “collective” variables transform within the grand canonical ensemble,
suggested before in [20,68,145,146]. Namely, denote by L(l)

(n)(f), n ∈ N,—a partial solution
to the functional Equation (242), possessing exactly n ∈ N particles. Then, owing to the
results of [86], for L(l)

(n)(f), n ∈ N, there holds the following exact expression:

L(l)
(n)(f) =

∫
R3

d3x1

∫
R3

d3x2...
∫
R3

d3xn

n

∏
j=1

exp[if(xj)] exp(−βV(l)
n ), (245)

where V(l)
n —the long term part potential energy of an n−particle group of the system.

Then we get that

L(l)(f) := ∑
n∈Z+

zn

n!
L(l)
(n)(f)Q

−1
0, Q0 := ( ∑

n∈Z+

zn

n!
L(l)
(n)(0))

−1. (246)

The sum in (246) can be calculated exactly, taking into account the expression

L(l)
(n)(f) =

∫
D(ω){z

∫
R3

d3x exp[if(x)]g(x; ω)}n J(ω), (247)

where D(ω) := ∏
k∈R3

i
2 (dω∗

k ∧ dωk), ω∗
k := ω−k ∈ C, k ∈ R3,

g(x; ω) := exp
[
−2πi(

∫
R3

d3kωk exp(ikx) +
β

2

∫
R3

d3kν(k)
]

,

J(ω) := exp
[
−

∫
R3

d3k
2π2

βν(k)
ωkω−k +

∫
R3

d3k ln
π

βν(k)

]
(248)

and ν(k) := (2π)−3
∫
R3 d3xV(l)(x) exp(−ikx), k ∈ R3. Now, from (246)–(248) one easily

finds that

L(l)(f) =
∫
D(ω) exp(z̄

∫
R3

d3x{exp[if(x)]− 1}g(x; ω))J(l)(ω)Q−1, (249)
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where ς̄ := ς exp( β
2

∫
R3 d3kν(k)) = ς exp[ β

2 V(l)(0)] and the function J(l)(ω), ω ∈ R3, allows
the following series expansion:

J(l)(ω) := J(ω) exp
[∫

R3
d3xg(x; ω)

]
= J(ω) exp

[
− (2π)2

2!
(2π)3

∫
R3

d3kωkω−k (250)

+ ∑
n �=2

(−2πi)n

n!
(2π)3

∫
R3

d3k1

∫
R3

d3k2...
∫
R3

d3kn

n

∏
j=1

ωkj
δ

(
N

∑
J=1

kj

)]
.

The expression (249) can now be represented [22,115,117,118] in the following cluster
Ursell form:

L(l)(f) = exp

(
∞

∑
n=1

z̄n

n!

∫
R3

d3x1

∫
R3

d3x2...
∫
R3

d3xn

n

∏
j=1
{exp[if(x)]− 1}gn(x1, x2, ..., xn)

)
. (251)

Here for any n ∈ Z+

gn(x1, x2, ..., xn) := ∑
σ[n]

(−1)m+1(m− 1)!
m

∏
j=1

Rσ[j](xk ∈ σ[j]),

Rn(x1, x2, ..., xn) := ∑
σ[n]

m

∏
j=1

gσ[j](xk ∈ σ[j]), (252)

where gn(x1, x2, ..., xn), n ∈ N, are called the n−particle Ursell cluster functions,
Rn(x1, x2, ..., xn), n ∈ N, are suitable “correlation” functions [20,56,68] and σ[n] denotes
a partition of the set {1, 2, ..., n} into non-intersecting subsets {σ[j] : j = 1, m}, that is
σ[j] ∩ σ[k] = ∅ for j �= k = 1, m, and σ[n] = ∪m

j=1σ[j]. Having separated from the function

J(l)(ω), ω ∈ C3, the natural “Gaussian” part J(l)0 (ω), ω ∈ C3, one can write down that

g1(x1) = G(ξ
(1)
k )/G(0), g2(x1, x2) = G(ξ

(2)
k )/G(0)− g1(x1)g1(x2), ..., (253)

where ξ
(n)
k := −2πi ∑n

s=1 exp(ikxs), k ∈ R3, n ∈ N,

G(ξ
(n)
k ) := exp[M(ξ

(n)
k )]

∫
D(ω)g(l)(ξ(n)k ; ω)J0(ω),

M(ξ
(n)
k ) := ∑

m �=2

(−2πi)m

m!
(2π)3

∫
R3

d3k1

∫
R3

d3k2...
∫
R3

d3kmδ

(
m

∑
s=1

ks

)
m

∏
s=1

δ

δξ
(n)
ks

,

g(l)(ξ(n)k ; ω) :=
n

∏
j=1

g(xj; ω). (254)

Since the integrals
∫
D(ω)g(l)(ξ(n)k ; ω)J(l)(ω), n ∈ N, one can calculate exactly, the formu-

lae (251) and (253) are sources of the so called ”virial” variables for Ursell–Mayer ”cluster”
correlation functions gn(x1, x2, ..., xn), n ∈ N, having important applications. In particular,
from the function J(l)(ω), ω ∈ C3, one gets right away that the cluster expansion for the
functions gn(x1, x2, ...xn), n ∈ N, are fulfilled by means of the ”screened” potential function
V̄(l)(x− y), x, y ∈ R3, where

V̄(l)(x− y) :=
∫
R3

d3k
ν(k) exp[ik(x− y)]

1 + ν(k)βz̄(2π)3 . (255)

In particular, from (237) and (251) one easily finds that
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f1(x1) = z
∫
D(ω)g(x; ω)J(l)(ω)

[∫
D(ω)J(l)(ω)

]−1
=

= ρ̄ � z̄ exp
[

β

2

∫
d3k

βν2(k)(2π)3z̄
1 + ν(k)βz̄(2π)3

]
,

f2(x1, x2) = z2
∫
D(ω)g(x1; ω)g(x2; ω)J(l)(ω)

[∫
D(ω)J(l)(ω)

]−1
�

� ρ̄2 exp[−βV̄(l)(x2 − x1)]

{
1 + ρ̄

∫
R3

d3x3[exp
(
−βV̄(l)(x1 − x3)

)
− 1

+ βV̄(l)(x1 − x3)][exp
(
−βV̄(l)(x2 − x3)

)
− 1 + βV̄(l)(x2 − x3]

+ ρ̄
∫
R3

d3x3[−βV̄(l)(x1 − x3)][exp(−βV̄(l)(x2 − x3))− 1 + βV̄(l)(x2 − x3)]

+ρ̄
∫
R3

d3x3[−βV̄(l)(x2 − x3)][exp(−βV̄(l)(x1 − x3))− 1 + βV(l)(x1 − x3)]+

}
... (256)

and so on. The result, presented above, can be obtained by means of slightly formal
calculations, based on generalized functions and operator theories [22,115,118,147]. Really,
as h̄ → 0 one has that

L(l)(f) = exp[−βV(l)(δ)]L0(f)Q−1 = (257)

= tr
{

exp(−βH(μ)
0 ) exp

[
− β

2

∫
R3

d3kν(k) : ρkρ−k :
]

exp[iρ(f)]
}

= tr
{

exp(−βH(μ)
0 ) exp

[
β

2

∫
R3

d3kν(k)
∫
R3

d3xρ(x)
]

×
∫
D(ω) exp

[
−

∫
R3

d3k
2π2

βν(k)
ωkω−k −

∫
R3

d3k2πiωkρk

]
exp[iρ(f)]

}
Q−1

=
∫
D(ω)J(ω)tr

{
exp(−βH(μ)

0 ) exp
[

i
(

ρ, f− 2π
∫
R3

d3kωk exp(ikx)− iβ
2

∫
R3

d3kν(k)
)]}

Q−1

=
∫
D(ω)J(ω)L0(f− 2π

∫
R3

d3kωk exp(ikx)− iβ
2

∫
R3

d3kν(k))Q−1

=
∫
D(ω)J(l)(ω) exp

(∫
R3

d3k{exp[if(x)]− 1}g(x; ω)

)
,

where H(μ)
0 := H0 − λ

∫
R3 d3xρ(x), ρk :=

∫
R3 d3xρ(x) exp(ikx), k ∈ R3. The expression

(257) coincides exactly with that of (251), thereby proving the validity of our expressions
(240) and (243) for the N.N. Bogolubov type generating functional L(f), f ∈ F, satisfying
the functional Equation (242) of Proposition (8).

8. The Functional-Analytic Solution and Its Ursell–Mayer Type Diagram Expansion

Having considered (243) and (249) as starting expressions with just known func-
tions gn(x1, x2, ...xn), n ∈ N, for the functional L(f), f ∈ F, one can obtain the
following expansion:
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L(f) = Z(f)/Z(0), Z(f) = exp[−βV(s)(δ)]L(l)(f)

= exp[−βV(s)(δ)] exp

[
∞

∑
n=1

zn

n!

∫
R3

d3x1

∫
R3

d3x2...
∫
R3

d3xn

×
n

∏
j=1
{exp[if(xj)]− 1}gn(x1, x2, ..., xn)

]
(258)

= exp

[
∞

∑
N=1

1
N!

W(G(c)
N )

]
,

where functionals W(G(c)
N ), N ∈ N, are calculated via the following rule. Denote by G(c)

N ,
N ∈ N, such a connected graph that: it consists of exactly N generalized vertices of
[γ(nj)] type, j = 1, N, and ∑N

j=1 nj ordinary vertices of [α] type. Moreover, each vertex
[y(n)] is necessarily connected with n vertices of type [α] by means of dashed lines each
to other, and [α] vertices can be connected arbitrarily by means of uniform lines. If now,
to attribute to each generalized [γ(n)]−vertex—the factor gn(x1, x2, ...xn), to each simple
[α]−vertex—the factor ς

∫
R3 d3x exp[if(x)], and to the line connecting them—the factor

{exp[−βV(s)(xl1 − xl2)]− 1}, then the obtained resulting expression will be exactly equal

to the functional W(G(c)
N ). The final summing up over all such connected graphs gives rise

to the expression (257), where the factor 1/N! counts the symmetry order of the graph G(c)
N

under the generalized vertices permutations. It is evident that, by representing the factor
exp[if(x)], entering the vertex [α], as {exp[if(x)]− 1}+ 1, the expression (257) can easily be
resumed into Ursell–Mayer type expressions but already with other suitable gn—functions,
replacing the former ones, giving rise to expansions similar to (256), based already on the
“screened” potential (255).

Thereby, we can formulate, taking into account the results of [20,68], the next proposi-
tion, characterizing the Bogolubov type generating functional L(f), f ∈ F, satisfying the
functional Equation (242).

Proposition 9. Let the Bogolubov type generating functional L(f), f ∈ S( R3;R), represented
analytically as a series (258) of graph-generated functionals, satisfy the following conditions:

(i) continuity with respect to the natural topology on F, |L(f)| ≤ 1, f ∈ F;
(ii) positivity: ∑n

j,k=1 cjc∗kL(fj − fk) ≥ 0 for any fj ∈ F and all cj ∈ C, j = 1, n, n ∈ N;
iii) symmetry and normalization conditions: L∗(f) = L(−f) for all f ∈ F and L(0) = 1;
(iv) translational-invariance: L(f) = L(fa), where fa(x) := f(x − a), x, a ∈ R3, for any

f ∈ S( R3;R);
(v) cluster condition or, equivalently, the Bogolubov correlation decay: limλ→∞[L(f+ gλa)−

L(fa)L(gλa)] = 0, a ∈ R3, for any f, g ∈ F;
(vi) density condition: 1

i
δL(f)
δf(x) |f=0 = ρ̄ ∈ R+.

Then the functional (258) solves the Bogolubov type functional equation (242), allowing the
positive measure dμ̄, whose Fourier representation on the adjoint tempered generalized functions
space F′ is exactly

L(f) =
∫

F′
dμ̄(ξ) exp[iξ(f), (259)

where convolution ξ(f) :=
∫
R3 d3xξ(x)f(x) for ξ ∈ F′ and f ∈ F.

The obtained result makes it possible to find the many-particle distribution functions
(237) and apply them to constructing different thermodynamic functions important [56,65]
for applications.

Below, following the Bogolubov method [86], we obtain, based on the expression
(245), the important Kirkwood–Saltzbourg–Simansic functional equation for the Bogolubov
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generating functional L(f), f ∈ F. Namely, making use of the expression (245) we can write
down the following relationship:

1
i

δL(N+1)(f)
δf(x)

= exp[if(x)]
(N + 1)ZN

ZN+1
L(N)(f(·) + iβV(· − x)) (260)

for any x ∈ R3, where ZN :=
∫
R3N dx1dx2...dxN exp(−βVN), N ∈ N.

Since, by definition, limN→∞ L(N)(f) = L(f), f ∈ F, limN→∞
(N+1)ZN

ZN+1
:= ς ∈ R+, from

(260) one gets right away that

exp[−if(x)]
1
i

δL(f)
δf(x)

= ςL(f(·) + iβV(· − x)), (261)

which is called the Kirkwood–Saltzburg–Symanzik functional equation, being very impor-
tant for proving the Proposition (9) by means of the classical Leray–Schauder fixed point
theorem [56,141,148] in some suitably defined Banach space. In particular, at f = 0 from
(261) one finds the following important relationship:

ρ̄ = ςL(iβV(· − x)) (262)

for any x ∈ R3.

Conclusions

In the article, we have showed that the N.N. Bogolubov generating functional method
is a very effective tool for studying distribution functions of both equilibrium and non
equilibrium states of classical many-particle dynamical systems. In some cases, the N.N.
Bogolubov generating functionals can be represented by means of infinite Ursell–Mayer
diagram expansions, whose convergence holds under some additional constraints on a
statistical system. We also have shown that the Bogolubov idea [56] to use the Wigner
density operator transformation to study the non equilibrium distribution functions proved
to be very effective, having proposed a new analytic form of non-stationary solutions to
the classical N.N. Bogolubov evolution functional equation.

9. The Wigner Type Current Algebra Representation and Its Application to
Non-Equilibrium Classical Statistical Mechanics

9.1. Many-Particle Distribution Functions Space and Its Poissonian Structure

In the case of non-stationary (non-equilibrium) states of the many-particle dynam-
ical systems, the Bogolubov’s generating functional (236) does not possess all needed
information. To specify this case, we introduce the generating representation functional:

L(f, g) = (Ω| exp[iρ(f)] exp[i J(g)]Ω) = Tr(P exp[iρ(f)] exp[i J(g)]), (263)

where Ω ∈ Φμ is a cyclic vector of the representation of the current group G, satisfying the
following additional conditions:

Tρ(f)T−1 = ρ(f), TΩ = Ω∗, TJ(g)T−1 = −J(g), THT−1 = H,

with the mapping T : R � t → −t ∈ R being the operator of time inversion, and
f ∈ J (R3;R), g ∈ J (R3;R3) taken arbitrary. In the N-particle representation of the
current Lie algebra G (29) for any finite N ∈ N the functional L( f , g) (263) allows the
following [5–7] standard finite-particle form:

L(f, g) =
∫
R3

dx1...
∫
R3

dxNΩ∗(x1, ..., xN)
N

∏
j=1

exp[if(xj)]× (264)

× exp[iξ(xj, g)]Ω(x1, ..., xN),
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where ξ(x, g) = 1
2i [g(x)∇x +∇xg(x)], x ∈ R3, and Ω ∈ L2(R3N ;C) is a cyclic state.

The operator exp[iξ(x, g)] acts on any function ωN ∈ L2(R3N ;C) by the rule:

exp[iξ(x, g)]ωN(x1, ..., xN) = (φ∗ωN)(x1, ..., xN)

(
det

∣∣∣∣∣∣∣∣∂φ(x)
∂x

∣∣∣∣∣∣∣∣)1/2

where φ ∈ Di f f (R3) is a diffeomorphism of R3, corresponding to the vector field g ∈
J (R3;R3), that is φ(x) = φ

g
t , where d

dt φ
g
t = g(φg

t (x)), x ∈ R3. For N → ∞ the expression
(264) becomes

L(f, g) = ∑
n∈Z+

1
n!

∫
R3

dx1...
∫
R3

dxn

∫
R3

dy1...
∫
R3

dyn

n

∏
j=1

[
δ(xj − yj)× (265)

×
{

exp[if(xj)] exp[iξ(xj, g)]− 1
}

fn(y1, ..., yn; x1, ..., xn)
]

where for all n ∈ N Bogolubov’s quantum distribution functions [56] are

fn(y1, ..., yn; x1, ..., xn) = (Ω|ψ+(yn)...ψ+(y1)ψ(x1)...ψ(xn)Ω) (266)

and satisfy the compatibility conditions

fn(x1, ..., xn) := fn(x1, ..., xn; x1, ..., xn), (267)

where xj = R3, j = 1, n, n ∈ N.
To proceed with the further study of the classical distribution functions of the many-

particle dynamical system, when the inverse temperature β → 0, and the Planck constant
�→ 0. Let us introduce [21,22,149,150] the following quantized selfadjoint Wigner operator
w(x, p) : ΦW → ΦW , (x, p) ∈ T∗(R3)

w(x, p) =
1

(2π)n

∫
R3

dα exp(i〈α|p〉)ψ+

(
x +

�α

2

)
ψ

(
x− �α

2

)
, (268)

where, by definition, ΦW := limβ→∞ Φμ is the corresponding Hilbert space for the con-
structed Wigner type current algebra representation with the generating cyclic vector
Ω ∈ ΦW . Performing transformation (268) in the expression (263), we can find that

L(f, g)→ L(f̃) = ∑
n∈Z+

1
n!

∫
R3×R3

dx1dp1...×

×
∫

R3×R3
dxndpn

n
∏
j=1
{exp(if̃(xj, pj))− 1} fn(x1, p1; ...; xn, pn),

(269)

for some functions f̃ ∈ J (R3 ×R3;R3). From the expression (269) it also follows that

L(f) = (Ω| exp[iw(f)]Ω) = Tr(P exp[iw(f)]) (270)

where w(f) =
∫

T∗(R3)

dxdpw(x, p)f(x, p), f̃ ∈ J (R3 ×R3;R3), P : ΦW → ΦW is the Gibbs

statistical operator and Tr: End(ΦW)→ C is the corresponding trace-operator, defined on
the space B(ΦW) of the nuclear operators on the corresponding Hilbert space representation
ΦW . The corresponding quantum current Lie algebra G suitably transforms [55,56] into the
Abelian Lie algebra GW of the operator functionals {w(f) ∈ G : f ∈ J (R3 ×R;R)}.

Consider now a quantum dynamical system of many identical particles with the
average nonvanishing density ρ̄ = lim

Λ↗R3
(N/A) ∈ R1

+\{0} as N → ∞ and Λ ↗ R3 in the
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Van Hove’s sense [150,151]. Then, according to [1,4,59], the Hamiltonian operator (234) in
the Wigner representation (268) looks as

H =
∫

T∗(R3)

dz
p2

2m
w(z) +

∫
T∗(R3)

dz
∫

T∗(R3)

dz′V(x− y′) : w(z)w(z′) :, (271)

where z = (x, p) ∈ T∗(R3), z′ = (y, q) ∈ T∗(R3) and dz = dxdp, dz′ = dydq are the
standard phase space measures in T∗(R3) and the ordering : : operation is naturally
inherited from (238). According to the Heisenberg’s principle [56], the evolution equation
with respect to temporal variable t ∈ R+ for an arbitrary observable operator quantity
A : ΦW → ΦW in the Wigner type representation space ΦW is

dA/dt =
i
h̄
[H, A], (272)

where [·, ·] is a usual operator commutator, naturally ensued from that on the Hilbert space
Φμ. Following [20,56,152–154], one can state, that for �→ 0 in the weak sense the following
theorem is true.

Theorem 5. Let us denote M as an algebra of the self-adjoint operators with A(G) in the Wigner
representation. Then, the operator bracket [·, ·]0 = lim

�→0
[·, ·] on the algebra M in the weak sense is

equivalent to

[
aj, an

]
0 =

min{j,n}
∑
k=1

∫
T∗(R3)

dz1...
∫

T∗(R3)

dzk : w(z1)...w(zk)× (273)

×
{

δkaj

δw(z1)...δw(zk)
,

δkan

δw(z1)...δw(zk)

}(k)

; ,

where {·, ·}(k) is a standard canonical Poisson bracket on the phase space of k ∈ N particles.

The statement (273) could be proved by means of the next general Bohr–Dirac corre-
spondence principle in the quasi-classical approach:

lim
�→0

i
�
[a, b] = {a, b}(N), (274)

where N ∈ N is a maximal number of the particle in the system and a, b ∈ A(G) are

operators in N-particle Hilbert space representation ΦN = L2(R3N ;C), F =
N
∑

j=1
δ(x− xj).

Here, it is worth making the following corollary.
Corollary. Algebra of the operators of the observable quantities A(G) for �→ 0 allows

“hierarchical” representation

A(G) = ∑
j∈Z+

Aj(G)⇒M = ⊕
j=Z+

Aj(G) (275)

along with Lie bracket [[·, ·]], which is inducted by the bracket [·, ·]0 (273):

[[a, b]] = ⊕
l∈Z+

∑
j,k∈Z+

[
aj, bk

](l)
0 , (276)
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where a, b ∈ M in the Wigner representation and the following expansions hold

a = ∑
j∈Z+

aj, b = ∑
j∈Z+

bj,
[
aj, bk

]
0 = ∑

l∈Z+

[
aj, bk

](l)
0 . (277)

Consider now the following linear mapping α : M→ A(G), where

α( ⊕
j∈Z+

aj) = ∑
j=Z+

aj ∈ A(G), (278)

and the Lie bracket [[·, ·]] is defined in M, and the corresponding Lie bracket [·, ·]α (273) in
A(G). Let us consider the dual to (278) mapping α∗ : A(G)∗ → M∗, where

M∗ = ⊕
l∈Z+

M∗
j , M = ⊕

l∈Z+

Mj, (279)

M∗ = ∑
j∈Z+

{
P ∈ Aj(G)∗ : F(a) = Tr(Pa), a ∈ A(G)

}
.

Here P : Φμ → Φμ is statistic operator of the initial dynamical system (271), which satisfy
the Heisenberg–Liouville equation

dP/dt =
i
h̄
[P, H] (280)

for all t ∈ R+. The expression (280), according to (274), transforms into the quasi-classical
Liouville equation in the Wigner representation.

It is easy to check that for element F ∈ A(M)∗ the expression

α∗F = ( f1, ..., f j, ...) = F ∈ M∗ (281)

defines the representation on the space M∗ of the distribution functions

f j(z1, ..., zj) = Tr(P : w(z1)...w(zj) :), (282)

where zj ∈ T∗(R3), j ∈ Z+, and for any a ∈ M

a(F ) = ∑
j∈Z+

∫
T∗(R3)

dz1...
∫

T∗(R3)

dzj fj(z1, ..., zj)aj(z1, ..., zj). (283)

Let b(F), c(F) ∈ D(A(G)∗) be linear functionals on A(G)∗, then on D(A(G)∗ ) the
standard [59] Lie-Poisson bracket {·, ·}0 is defined via the rule

{b(F), c(F)}0 = F([b, c]0), (284)

where b, c ∈ A(G) are such that F(b) = b(F), F(c) = c(F), F ∈ A∗(G). In the same way,
the dual Lie–Poisson bracket {{·, ·}} is defined on the set of functionals D∗(M) over the
adjoint space M (279)

{{b(F ), c(F )}} = F([[b, c]]), (285)

where F(b) = b(F ), F(c) = c(F ), F ∈ M∗.

Definition 16. It is said that mapping of the Lie algebras α : M → A(G) is canonical (or
Poissonian [59]), if for all b(F ) and c(F ) the following equality holds

α∗{b(F ), c(F )}0 = {{α∗b(F ), α∗c(F )}}, (286)

where F = α∗F ∈ M∗.
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From reasonings presented above we can formulated the following proposition.

Proposition 10. Let A and M be two arbitrary Lie algebras and α : M→ A be a linear mapping.
Then dual mapping α∗ : D(A(G)∗ ) → D(M∗) is canonical if α : M → A is Lie algebras
homomorphism.

As a consequence of the statement above, one derives the next theorem.

Theorem 6. Dual mapping α∗ : D(A(G)∗ ) → D(M∗), which was built by means of the
hierarchical Lie algebra of the operators M, is canonical.

Let us consider the generating functional L(f), f ∈ J (T∗(R3);R), defined by expres-
sion (270) in Wigner representation, and apply the developed above algebraic technique to
the calculation of the following quantity:

d
dt
L(f) = lim

h̄→0

i
�

Tr(P[H, : exp[iw(eif − 1)]) :]) (287)

for the evolution with respect to the temporal parameter t ∈ R. From (270) one can easily
obtain that

d
dt
L(f)(F ) = Tr(P[H, : exp(iw(eif − 1)) :]) = α∗{H(F ),L(f)(F )}0 , (288)

where for all F ∈ A(G)∗ the Hamiltonian functional H(F ) ∈ D(A(G)∗ ) is given as

H(F ) = Tr(PH) =
∫

T∗(R3)

dzT(p) f1(z)+ (289)

+
1
2

∫
T∗(R3)

dz1

∫
T∗(R3)

dz2V(x1 − x2) f2(z1, z2).

Based on (288) and Theorem 6, we immediately obtain the Hamiltonian evolution equation

d
dt
L(f)(F ) = {{L(f)(F ),H(F )}}, (290)

where t ∈ R, L(f)(F ) = α∗L(f)(F), H(F ) = α∗H(F) and F ∈ M∗ is arbitrary. Thus,
the following theorem is stated.

Theorem 7. The generating Wigner type representation functional L(f)(F ) (270) on the phase
space D(M) satisfies the Hamiltonian dynamical system (290) with respect to the Lie–Poisson
bracket (285) and Hamiltonian function (289), taken as a smooth functional on M∗.

Using Equation (290) and formulae (273), (276), we finally get the following non-
equilibrium functional Bogolubov’s equation [143]

d
dt
L(f) =

∫
T∗(R3)

dz{1
i

δL(f)
δf(z)

, T(p)}(1)+ (291)

+
1
2

∫
T∗(R3)

dz1

∫
T∗(R3)

dz2{:
1
i

δ

δf(z1)

1
i

δ

δf(z2)
:, V(x1 − x2)}(2)L(f),
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where for any n ∈ N

:
1
i

δ

δf(z1)
...

1
i

δ

δf(zn)
:=

n

∏
j=1

[
1
i

δ

δf(zj)
−

j

∑
k=1

δ(zj − zk)

]
(292)

and, by definition, {·, ·}(j) denotes the standard canonical Poisson bracket on the phase
space T∗(R3)j for all j ∈ Z+.

Taking into account that for functional L(f), f ∈ J (T∗(R3);R), there exists the unlim-
ited expansion (269):

L(f) = ∑
n∈Z

1
n!

∫
T∗(R3)

dz1...
∫

T∗(R3)

dzn

n

∏
i=1
{exp[if(zj)− 1]} fn(z1, ..., zn), (293)

from (291), we obtain the kinetic equations for the hierarchy of the Bogolubov distribution
functions [143]:

∂

∂t
fn(z1, ..., zn) = { fn(z1, ..., zn), Hn(z1, ..., zn)}(n)+ (294)

+
∫

T∗(R3)

dz1...
∫

T∗(R3)

dzn+1{ fn(z1, ..., zn+1), Hn(z1, ..., zn+1),
n

∑
j=1

V(xj − xn+1)}(n+1),

where zj ∈ R3, j = 1, ..., n, are the coefficients of the n-particle cluster in R3, Hn(z1, ..., zn)
denotes its corresponding energy:

Hn(z1, ..., zn) =
n

∑
j=1

p2
j

2m
+

1
2

n

∑
j �=k=1

V(xj − xk) (295)

Thus, the problem of the construction of the kinetic theory by Bogolubov is reduced to
finding the special solutions of the unlimited hierarchy of the Equations (294), where the
selection criterion is based on Bogolubov’s fundamental weakening correlation principle:

lim
‖〈n〉−〈m〉‖→∞

| fn+m(z1, ..., zn+m)− fn(z1, ..., zn) fm(zn+1, ..., zn+m)| → 0 (296)

where ‖ 〈n〉 − 〈m〉 ‖= dist({zi ∈ T∗(R3) : i = 1, ..., n}, {zi+n ∈ T∗(R3) : i = 1, ..., m}) is
a distance between two clusters with n ∈ Z+ and m ∈ Z+ numbers of the particles. If a
special solution of the hierarchy (289) exists in the functional form

fn(z, ..., zn; t) = fn(z1, ..., zn; f1(z; t)) (297)

for all t ∈ R+ and n ∈ Z+, then the corresponding equation for one-particle distribution
function of the system in the external field V0 :R3 → is the following

∂

∂t
f1(z; t) + 〈p/m|∇x f1(z; t)〉+ 〈∇xV0(x)|∇p f1(z; t)〉 = J( f1(z; t)), (298)

where J( f1(z; t)) is the so called ”collision integral” [56,143,149,150,155], and is called the
kinetic Boltzmann equation [56,149,156]. Below, we will focus on the such special solutions
of the Bogolubov’s hierarchy of the Equations (294), using the above developed algebraic
method of Bogolubov’s generating functional.
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9.2. Generating Representation Functional and Its Solution Space Structure

Let us consider Bogolubov’s functional Equation (291)

d
dt
L(f) =

∫
T∗(R3)

dz
{

1
i

δL(f)
δf(z)

, T(p)
}(1)

+ (299)

+
1
2

∫
T∗(R3)

dz1

∫
T∗(R3)

dz2

{
:

1
i

δ

δf(z1)

1
i

δ

δf(z2)
: L(f), V(x1 − x2)

}(2)
,

generated by the statistical operator evolution

P(t, t0) = exp
[

i
�
(t0 − t)H

]
P̄ exp

[
i
�
(t− t0)H

]
(300)

for t, t0 ∈ R, solving the Heisenberg evolution equation

dP
dt

=
i
�
[P, H], P

∣∣∣∣
t=t0

= P̄ (301)

for the statistical Gibbs operator P : ΦW → ΦW with TrP̄ = 1.
When �→ 0 in the Wigner representation, the expression (300), as an explicit solution

of the (301), allows the following expansion

L(f) = Tr
(

exp
[

i
�
(t0 − t)H

]
P̄ exp

[
i
�
(t− t0)H

]
exp[iw(f)]

)
= (302)

= Tr
(

exp
[

i
�
(t0 − t)(H0 + V)

]
P̄ exp

[
i
�
(t− t0)(H0 + V)

]
exp[iw(f)]

)∣∣∣∣
�→0

=

= Tr
(

exp
[

i
�
(t0 − t)H0

]
P̄ exp

[
i
�
(t− t0)H0

]
exp[π(t, t0)] exp[iw(f)]

)
,

where we denoted H = H0 + V,

H0 =
∫

T∗(R3)

dz
p2

2m
w(z), V =

∫
T∗(R3)

dz1

∫
T∗(R3)

dz2V(x1 − x2) : w(z1)w(z2) :, (303)

exp[π(t, t0)] = P0(t0, t)P(t, t0), P0(t0, t) = exp
[

i
�
(t0 − t)H0

]
P̄ exp

[
i
�
(t− t0)H0

]
.

The operator π(t, t0), t, t0 ∈ R, in (303) is called a “cluster operator” and allows the next
expansion into the unlimited series:

π(t0, t) = ∑
n∈Z+

1
n!

∫
T∗(R3)

dz1...
∫

T∗(R3)

dzn πn(z1, ..., zn; t, t0)× (304)

× : w(z1)...w(zn) :
de f
= π(t, t0; w),

where the functions πn(z1, ..., zn; t, t0), n ∈ N, can be defined uniquely form the representa-
tion (303) under the condition that the Gibbs operator P̄ : ΦW → ΦW is defined explicitly
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in the Wigner representation. Thus, from (302)–(304) we obtain the following expressions
for the Bogolubov’s generating functional

L( f ) = Tr(P0 exp[π(t, t0; w)] exp(iw))

∣∣∣∣
�→0

= (305)

= exp
[

π

(
t, t0;

1
i

δ

δf

)]
Tr(P0 exp[iw(f)]) = exp

[
π

(
t, t0;

1
i

δ

δf

)]
L0(f),

where L0(f), f ∈ J (T∗(R3);R), is a generating functional if the initial dynamical system of
the particles under absent of interaction, that is

L0(f)(t, t0) = ∑
n∈Z+

1
n!

∫
T∗(R3)

dz1...
∫

T∗(R3)

dzn×

× fn
(
x1 +

p1
m (t0 − t), p1; ...; xn +

pn
m (t0 − t), p1

) n
∏
j=1

{
exp

[
if(zj)

]
− 1

}
.

(306)

Applying to (306) when t0 → −∞ Bogolubov’s correlation weakening (296), we obtain
that for all t ∈ R+

L0(f)(t) = exp

⎡⎢⎣ ∫
T∗(R3)

dz f1(x− p
m

t; p){exp[if(z)]− 1}

⎤⎥⎦, (307)

where L0(f)(t) = lim
t0→−∞

L0(f)(t, t0). Now, according to (305) and (307), we find that

L(f)(t) = exp
[

π

(
t, t0;

1
i

δ

δf

)
L0(f)(t)

]
(308)

is a solution of Bogolubov’s functional Equation (299), where

π

(
t;

1
i

δ

δf

)
= lim

t0→−∞
π

(
t, t0;

1
i

δ

δt

)
(309)

for all t ∈ R+. To specify the form of the operators (309), we note that operator ξ(t, t0; w) =
exp[π(t, t0; w)] for all t, t0 ∈ R+ satisfies under �→ 0 the following differential evolution
relationship:

dξ

dt
=

1
i�
[ξ, H]0 + lim

�→0

1
�

(
V− P−1

0 VP0

)
ξ, (310)

where all operators are assumed to be given in the Wigner representation. Expanding the
operator ξ(t, t0, w) into the sum of n-particles components, n ∈ N, we find

ξ(t, t0; w) = ∑
n∈Z+

1
n!

∫
T∗(R3)

dz1...
∫

T∗(R3)

dzn ξn(z1, ..., zn; t, t0) : w(z1)...w(zn) :, (311)

and there is mutually unambiguous correspondence [56,59] between coefficient functions
ξn(z1, ..., zn; t, t0) in (311) and coefficient functions in the expansion (304)

πn(z1, ..., zn) = ∑
σ∈Σn

(−1)n+i(σ− 1)
∞

∏
j=1

ξσ(z〈k〉 ∈ σj), (312)

ξn(z1, ..., zn) = ∑
σ∈Σn

∞

∏
j=1

πσj(z〈k〉 ∈ σj).

Here, σ ∈ Σn is an arbitrary partition of the symmetry group Σn of all permutations
of the set of numbers {1, 2, ..., n} on the subsets {σj : j = 1, ..., s}, which are not intersect,
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that is
n⋃

j=1
σj = {1, ..., n} and ξσj and πσj , j = 1, ..., s, are the corresponding to this partition

coefficient functions. In particular,

ξ1(z1) = π1(z1), π2(z1, z2) = ξ2(z1, z2)− ξ1(z1)ξ1(z2)

and so on. Thus, on the base of the defined operator series (304) or (311), the problem of
the explicit calculations of the distribution functions become very simple. Below we will
analyze these series by means of the language of Bogolubov’s generating functional L(f),
f ∈ J (T∗(R3);R), using Bogolubov’s functional hypothesis [56,143,149,150,155].

9.3. Bogolubov–Boltzmann Kinetic Equation in the Frame of Functional Hypothesis

The generating functional, as it was stated above, is given by the expression

L(f)(t) = exp
[

π

(
t0;

1
i

δ

δf

)]
L0(f)(t). (313)

Here, L0(f)(t), t ∈ R+, is a generating functional of the system of non-interacting particles,
which is equal to the expression (307) when t0 → −∞. From (313), it follows that for
all t ∈ R+ for the n-particle distribution function fn(z1, ..., zn; t) the general functional
relationship holds

fn(z1, ..., zn; t) := fn(z1, ..., zn; f1(z; t)). (314)

Respectively, the generating functional (313) satisfies, according to (290) when t = 0,
the following dynamic equation:

d
dt
L(f) =

∫
T∗(R3)

dz
{

1
i

δL(f)
δf(z)

, T(p)
}(1)

+ (315)

+
1
2

∫
T∗(R3)

dz1

∫
T∗(R3)

dz2

{
:

1
i

δ

δf(z1)

1
i

δ

δf(z2)
: L(f), V(x1 − x2)

}(2)
,

Let us put f1(z)→ f1(z; τ), where τ ∈ R− and that

∂ f1(z; τ)

∂τ
= { f1(z; τ), T(p)}(1) +

∫
T∗(R3)

dz1{ f1(z1) f1(z), V(x1 − x)}(2). (316)

Then from (315), we also obtain that

d
dτ
L(f) = {{L(f),H(F )}} =

∫
T∗(R3)

dz

⎧⎪⎨⎪⎩1
i

δL(f)
δf(z)

, T(p) +
∫

T∗(R3)

dz1 f1(z1), V(x1 − x)

⎫⎪⎬⎪⎭
(1)

(317)

for all τ ∈ R−. Then Equation (317) can be rewritten in the following way:

d
dτ
L(f) =

{{
L(f), H̃(F )

}}
=

∫
T∗(R3)

dz
{

1
i

δL(f)
δf(z)

, H̃( f1)

}(1)

, (318)

where, by definition, H̃( f1) := δ
δ f1
H̃(F ) and

H̃(F ) =
∫

T∗(R3)

dz
p2

2m
f1(z) +

1
2

∫
T∗(R3)

dz1

∫
T∗(R3)

dz2 f1(z1) f1(z2)V(x1 − x2), (319)
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is the Vlasov-type Hamiltonian of the self-consistent particles interaction. Let us define the
following mapping on the phase space of n ∈ Z+ particles:

Sn(τ)xj = xj(τ), Sn(τ)pj = pj(τ), (320)

where for all τ ∈ R−, j = 1, n,

dx(τ)
dt

=
{

H̃, x(τ)
}(1), dp(τ)

dt
=

{
H̃, p(τ)

}(1), (321)

H̃ =
n

∑
j=1

p2
j

2m
+

1
2

n

∑
j=k

V(xj − xk).

It easy to see that the system of Equations (321) gives the exact solution [157] for the dual
Equation (316) in the form of the sum of δ-functions of n ∈ Z+ particles:

f1(z) =
n

∑
j=1

δ(z− zj), (322)

where zj ∈ R3, j = 1, ..., n, are the coordinates of the cluster. Using (320) from (318) we
obtain that for all τ ∈ R

d
dτ
L(f)(τ) =

{{
L(f)(τ), H̃(F )

}}
+

1
2

∫
R3×R3

dz1

∫
T∗(R3)

dz2× (323)

×
{

:
1
i

δ

δf(z1)

1
i

δ

δf(z2)
: L(f), V(x1 − x2)(τ)

}(2)
,

where we denoted

L(f)(τ) = S(τ)L(f|S(−τ) f1), (324)

V(x1 − x2)(τ) = S(τ)V(S(−τ)(x1 − x2)),

f2(z, z1)(τ) = S(τ) f2(z1, z|S(−τ) f1)

Integrating the Equation (323) in limits τ ∈ (−∞, 0), we obtain that

L(f)|τ=0 = lim
τ→−∞

S(τ)L(f|S(−τ) f1) +
0∫

−∞
dτ

{
1
i

δ
δ f (z)L(f)(τ), H̃(F (τ))

}(1)
+

+ 1
2

0∫
−∞

dτ
∫

R3×R3
dz1

∫
T∗(R3)

dz2

{
: 1

i
δ

δf(z1)
1
i

δ
δf(z2)

: L(f), V(x1 − x2)(τ)
}(2)

⎤⎦ (325)

We should also note here, that due to the Bogolubov’s principle of correlations weakening
(296) and using (307) the first item in (325) can be represented in the form

lim
τ→−∞

S(τ)L(f|S(−τ) f1) = lim
τ→∞

exp

⎡⎣ ∫
T∗(R3)

dzS(τ) f1(z)(τ){exp[if(z)]− 1}

⎤⎦ =

= exp

⎡⎣ ∫
T∗(R3)

dz f1(z){exp[i f(z)]− 1}

⎤⎦.

(326)
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Applying to the expression (325) the different variants of the successive approxima-
tions method [56,143,149,150,155], we can get the generating functional L(f) in explicit
form and then, using formula

fn(z1, ..., zn) =:
1
i

δ

δf(z1)
...

1
i

δ

δf(zn)
: L(f)

∣∣∣∣
f=0

(327)

for all n ∈ Z+ obtain distribution function for any order of perturbation theory. In particular,
choosing expansion by the particle density in container A ∈ R3 as a small parameter,
it is easy to get the modified kinetic Bogolubov–Boltzmann equation for one-particle
distribution function f1(z; t), z ∈ T∗(R3), t ∈ R+:

∂ f1(z1; t)
∂t

+ 〈 p
m
|∇x f1(z1; t)〉 =

∫
T∗(R3)

dz2
{

f̃2(z1, z2; t), V(x1 − x2)
}(2), (328)

where the function f̃2(z2, z1; t) is defined according to (325) and (326) by the following
expression:

f̃2(z1, z2; t) = f1(z̃1; t) f1(z̃2; t), (329)

z̃j = lim
τ→∞

S2(τ)S1(−τ)zj ⇒
{

x̃j = lim
τ→∞

S2(−τ)xj + τ
pj
m ,

p̃j = lim
τ→∞

S2(−τ)pj,

for j = 1, 2. Taking into account that the Poisson bracket {·, ·}(n) is invariant with respect
to the mappings Sn(τ), n ∈ Z+, from (329) it is easy to find that{

f̃2(z1, z2; t), V(x2 − x1)
}(2)

= |p2−p1|
m

∂
∂ξ ( f1(z̃1; t) f1(z̃2; t))−

−〈 ( p̃2−p1)
m |∇x1 f1(z̃1; t)〉 f1(z̃2; t) + 〈 ( p̃2−p1)

m |∇x2 f1(z̃2; t)〉 f1(z̃1; t),

(330)

where ξ ∈ R1 is a parameter of the axis in a cylindrical coordination system which
is directed along the vector (p2 − p1) ∈ E3 and beginning at the point x1 ∈
R3. After substituting (330) into (328), we can get the kinetic Bogolubov–Boltzmann
equation [56,143,149,150,155] in the form of (298) with the explicitly defined collision
integral J( f1), obtained from (330) via integration by ξ ∈ R. Choosing in (326) other ap-
proximations of the generating functional L(f), f ∈ J (T∗(R3);R), one can find other forms
of Bogolubov–Boltzmann kinetic Equations (298).

We can also make a remark concerning the nature of the operator-functional ex-
pression (309) or (304). Namely, it is easy to see that generating functional L(f)(t, t0),
f ∈ J (T∗(R3);R), allows the following operator-functional representation for all t, t0 ∈ R:

L(f)(t, t0) = exp

⎡⎢⎣1
2

∫
T∗(R3)

dz1

∫
T∗(R3)

dz2

{
:

1
i

δ

δf(z1)
× (331)

× 1
i

δ

δf(z2)
:, V(x1 − x2)

}(2)
(t− t0)

]
L0(f)(t, t0).

Comparing the expressions (331) and (305), we find that for arbitrary t, t0

π
(

t, t0; 1
i

δ
δf

)
= 1

2 (t− t0)×

×
∫

T∗(R3)

dz1
∫

T∗(R3)

dz2

{
: 1

i
δ

δf(z1)
1
i

δ
δf(z2)

:, V(x1 − x2)
}(2) (332)
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since the functional L0(f)(t, t0), f ∈ J (T∗(R3);R), is arbitrary. It is easy to see from (332),
that operator π

(
t, t0; 1

i
δ
δf

)
is not poly-local with respect to the functional derivatives 1

i
δ
δf ,

which corresponds to the singularity in the operator expansion (304). Thus, using the
expression (331), the arbitrariness of the initial state and the classical Bogolubov weakening
correlation condition gives a possibility to find many types of the solutions via the method
of successive approximations, which follows from (331) and the Bogolubov functional
hypothesis subject to the generating representation functional of distribution functions.

Having analyzed the Bogolubov generating functional (331) within the quasi-classical
Wigner density operator representation (287), one can obtain an exact functional-operator
solution to the evolution Bogolubov functional Equation (323):

L( f ) = Z( f )/Z(0), Z( f ) = exp[Ṽ(δ)]L0( f ) (333)

for f ∈ J (T∗(R3);R). Here we denoted

Ṽ(δ) = ∑
n∈Z+

1
n!

∫
T(R3)

dz1

∫
T(R3)

dz2... (334)

×
∫

T(R3)
dznΦn(z1, z2, ..., zn|t) :

1
i

δ

δ f (z1)

1
i

δ

δ f (z2)
...

1
i

δ

δ f (zn)
: ,

L0( f ) = ∑
n∈Z+

1
n!

∫
T(R3)

z1

∫
T(R3)

dz2...
∫

T(R3)
dzn

× f̄n(x1 −
p1

m
t, x2 −

p2

m
t, ..., xn −

pn

m
t; p1, p2, ..., pn)

n

∏
j=1
{exp[i f (zj)]− 1},

where f̄n( z1, z2, ..., zn), n ∈ N, are given n−particle distribution functions at t = 0, that is,
owing to the definition (237),

f̄n(z1, z2, ..., zn) := tr(P̄ : w(z1)wz2)...w(zn) :)

=:
1
i

δ

δ f (z1)

1
i

δ

δ f (z2)
...

1
i

δ

δ f (zn)
: L( f )|t=0, f =0, (335)

and Φn(x1, x2, ..., xn; p1, p2, ..., pn|t), n ∈ Z+, are so-called cluster potential functions, deter-
mined recursively by means of the following functional-operator relationships:

log(P−1
0 P) := ∑n∈Z+

1
n!

∫
T(R3) dz1

∫
T(R3) dz2...

∫
T(R3) dzn

×Ṽn(z1, z2, ..., zn|t) : w(z1)w(z2)...w(zn) :
(336)

with
P0 = exp(− it

h̄
H0)P̄ exp(

it
h̄

H0) (337)

being the statistical operator of the non-interacting particle system.
If the initial distribution at t = 0 is ”chaotic”, that is for all n ∈ N, the following

relationships

f̄n(z1, z2, ..., zn) =
n

∏
j=1

f̄1(zj) (338)

hold, one easily gets from (334) and (338) that

L0( f ) = exp
(∫

T(R3)
dz f1(x− p

m
t; p){exp[i f (z)]− 1}

)
. (339)
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If the ”chaotic” condition is not fulfilled, we can proceed to the usual cluster Ursell–Mayer
type representation [20,22,115,118] for the Bogolubov generating functional (333), where

L0( f ) = exp

(
∑

n∈Z+

1
n!

∫
T(R3)

dz1

∫
T(R3)

dz2...
∫

T(R3)
dzn× (340)

×ḡn (x1 −
p1

m
t, x2 −

p2

m
t, ..., xn −

pn

m
t; p1, p2, ..., pn)

n

∏
j=1
{exp[i f (zj)]− 1}

)
,

where ”cluster” distribution functions ḡn(z1, z2, ..., zn), n ∈ N, have the form

ḡn(z1, z2, ..., zn) := ∑
σ[n]

(−1)m+1(m− 1)!
m

∏
j=1

F̄σ[j](zk ∈ σ[j]),

f̄n(z1, z2, ..., zn) := ∑
σ[n]

m

∏
j=1

ḡσ[j](zk ∈ σ[j]), (341)

and σ[n] denotes a partition of the set {1, 2, ..., n} into non-intersecting subsets {σ[j] : j =
1, m}, that is σ[j] ∩ σ[k] = ∅ for j �= k = 1, m, and σ[n] = ∪m

j=1σ[j]. In particular,

ḡ1(z1) = f̄1(z1), (342)

ḡ2(z1, z2) = f̄2(z1, z2)− f̄1(z1) f̄1(z2), ...,

and so on. The classical Bogolubov generating functional (333), owing to (334) and (340),
allows a natural infinite series expansion, whose coefficients can be represented as above,
by means of the usual Ursell–Mayer type diagram expressions, which can be effectively
used for studying the kinetic properties of our many-particle statistical system.

9.4. The Kinetic Equations for Many-Particle Distribution Functions, Their Lie-Algebraic
Structure and Invariant Reductions

It is well known that the classical Bogolubov–Boltzmann kinetic equations under
the condition of many-particle correlations [56,86,142,149–151,155,157–161] at weak short
range interaction potentials describe long waves in a dense gas medium. In general, based
on the Liouville equations of a finite number of particles in a fixed volume, it is easy to
get for these distribution functions a finite chain of the corresponding kinetic equations,
within which one can formally proceed to the statistical mechanics limit and get a chain
of equations for the limiting distribution functions. There will be strong difficulties here
if we try to mathematically justify the correctness of this limiting transition in a chain of
multi-particle kinetic equations. If we do not pay attention to this complex problem, and
consider a fairly weak interaction between particles under appropriate initial conditions,
one can obtain the related Boltzmann equation, characterizing the process of establishing
statistical equilibrium. Many of the problems related to these limiting distribution functions
can be omitted if the infinite particle statistical physics ensemble is worked with from the
very beginning, making use of the secondly quantized representation [56,76,151,162] of the
particle states in the corresponding Fock type space.

Relating to the Boltzmann kinetic equation, the same equation, called the Vlasov
equation, as it was shown by N. Bogolubov [157], also describes exact microscopic solutions
of the infinite Bogolubov chain [86] for the many-particle distribution functions, which was
widely studied, making use of both classical approaches in [20,21,56,76,77,142,161–179],
and making use of the generating Bogolubov functional method and the related quantum
current algebra representations.

A.A. Vlasov proposed his kinetic equation [180] for electron-ion plasma, based on
general physical reasonings that in contrast to the short range interaction forces between
neutral gas atoms, interaction forces between charged particles slowly decrease with
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distance, and therefore the motion of each such particle is determined not only by its pair-
wise interaction with either particle, but also by the interaction with the whole ensemble
of charged particles. In this case, the Bogolubov equation for distribution functions in a
domain Λ ⊂ R3

∂ f1(z; t)
∂t

+ 〈 p
m
|∇x f1(z; t)〉 =

∫
T∗(Λ)

dz′{ f2(z, z′; t), V(x− x′)}(2), (343)

where z := (x, p) ∈ T∗(Λ), t ∈ R+ is the temporal evolution parameter, {·, ·}(m) denotes
the canonical Poisson bracket [56,122,181] on the product T∗(Λ)m, m ∈ N, and V(x −
x′), x, x′ ∈ Λ, is an interparticle interaction potential, - reduces to the Vlasov equation if to
put in (343)

f2(z, z′; t) = f1(z; t) f1(z′; t), (344)

that is to assume that the two-particle correlation function [142,158,161,179] vanishes:

g2(z, z′; t) = f2(z, z′; t)− f1(z; t) f1(z′; t) = 0 (345)

for all z, z′ ∈ T∗(Λ) and t ∈ R+. Then one easily obtains from (343) that

∂ f1(z; t)
∂t

+ 〈 p
m
|∇x f1(z; t)〉 = 〈∂ f1(z; t)

∂p
|∇x

∫
T∗(Λ)

dz′ V(x− x′) f1(z′; t)〉 (346)

for all z ∈ T∗(Λ) and t ∈ R+. We remark here that the Equation (346) is reversible un-
der the time reflection R− � −t � t ∈ R+, thus it is obvious that it can not describe
thermodynamically stable limiting states of the particle system in contrast to the classical
Bogolubov–Boltzmann kinetic equations [20,56,86,142,149,151,161,166], being a priori time
non-reversible owing to the choice of boundary conditions in the correlation weakening
form. This means that in spite of the Hamiltonicity of the Bogolubov chain for the distri-
bution functions, the Bogolubov–Boltzmann equation a priori is not reversible. It is also
evident that the condition (345) does not break the Hamiltonicity—the Equation (346) is
Hamiltonian with respect to the following Lie–Poisson–Vlasov bracket:

{{a( f ), b( f )}} :=
∫

T∗(Λ)
dz f (z){grad a( f )(z), grad b( f )(z)}(1), (347)

where grad(·) := δ(·)/δ f , f ∈ D(T∗(Λ)) := Mf1 , respectively a, b ∈ D( Mf1) are smooth
functionals on the functional manifold Mf1 , consisting of functions fast decreasing at
the boundary ∂Λ of the domain Λ ⊂ R3. The statement above easily ensues from the
following proposition.

Proposition 11. Let MF denote a set of many-particle distribution functions. Then the classical
Bogolubov–Poisson bracket [20,21,86,172] on the functional space D(MF ) reduces invariantly on
the subspace D( Mf1) ⊂ D(MF ) to the Lie–Poisson–Vlasov bracket (347).

Concerning the general case when we work with an infinite Bogolubov chain of kinetic
equations on the many-particle distribution functions and are forced to break it at some
place, numbered by some natural number N ∈ N, the usual approaches always give rise
to the resulting inconsistency [155,158] of the chain and, as a result, to the nonphysical
solutions. The most successful approach to obtaining the Boltzmann kinetic equation for the
one-particle distribution function was suggested many years ago by N. Bogolubov [86,149],
based on the effective application of the so called weak correlation condition. So far,
regretfully, this approach, being conjugated with the complex problem of solving functional
equations, also gives rise to inconsistency of the higher order kinetic equations. Nonetheless,
being inspired by former studies [20,76,162] of these problems, based on the geometrical
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interpretation of the Bogolubov kinetic equations chain, we devised a new functional
analytic approach [23] to constructing its compatible reduction a priori free of any non-
physical consequences. We also succeeded in constructing a reduced set of kinetic equations,
based on a suitably devised Dirac type invariant reduction scheme of the corresponding
many-particle Lie–Poisson phase space. The approach to solving this problem and its
different consequences will be analyzed in more detail in sections to follow below.

9.5. The Classical Lie-Poisson-Vlasov Bracket and Kinetic Equation For The One-Particle
Distribution Function

The bracket expression (347) allows a slightly different Lie-algebraic interpretation,
based on considering the functional space D(Mf1) as a Poisson manifold, related with
the canonical symplectic structure on the diffeomorphism group Diff(Λ) of the domain
Λ ⊂ R3, first described [31,32] in 1887 by Sophus Lie. Namely, the following classical
theorem holds.

Theorem 8. The Lie-Poisson bracket at point (μ; η) ∈ T∗η (Diff(Λ)) on the coadjoint space
T∗η (Diff(Λ)), η ∈ Diff(Λ), is equal to the expression

{ f , g}(μ) = (μ|[δg(μ)/δμ, δ f (μ)/δμ])c (348)

for any smooth right-invariant functionals f , g ∈ C∞(T∗η (Diff(Λ));R).

Proof. By classical definition [31,32,122,131,181] of the Poisson bracket of smooth functions
(μ|a)c, (μ|b)c ∈ C∞(T∗η (Diff(Λ));R), a, b ∈ diff(Λ) � Tη(Diff(Λ)) on the symplectic space
T∗η (Diff(Λ)), it is easy to calculate that

{μ(a), μ(b)} := δα(Xa, Xb) =
= Xa(α|Xb)c − Xb(α|Xa)c − (α|[Xa, Xb])c,

(349)

where Xa := δ(μ|a)c/δμ = a ∈ diff(Λ), Xb := δ(μ|b)c/δμ = b ∈ diff(Λ). Since the
expressions Xa(α|Xb)c = 0 and Xb(α|Xa)c = 0 owing the right-invariance of the vector
fields Xa, Xb ∈ Tη(Diff(Λ)), the Poisson bracket (349) transforms into

{ (μ|a)c, (μ|b)c} = −(α|[Xa, Xb])c =
= (μ|[b, a])c = (μ|[δ(μ|b)c/δμ, δ(μ|a)c/δμ])c

(350)

for all (μ; η) ∈ T∗η (Diff(Λ)) � diff∗(Λ), and any a, b ∈ diff(Λ). The Poisson bracket (350)
is easily generalized to

{ f , g}(μ) = (μ|[δg(μ)/δμ, δ f (μ)/δμ])c (351)

for any smooth functionals f , g ∈ C∞(diff∗(Λ);R), finishing the proof.

Concerning our special problem of describing evolution equations for one-particle
distribution functions, we will consider the one particle cotangent space T∗(Λ) over a
domain Λ ⊂ R3 and the canonical Poisson bracket {·, ·} := {·, ·}(1) on T∗(Λ), for which,
by definition, for any f , g ∈ Mf1

{ f , g}(z) := 〈 ∂ f
∂p
| ∂g
∂x
〉 − 〈 ∂g

∂p
|∂ f
∂x
〉, (352)

where z = (x, p) ∈ T∗(Λ). We denote now by G := ( Mf1 ; {·, ·}) the related functional
Lie algebra and G∗ its adjoint space with respect to the standard bilinear symmetric form
(·|·) : Mf1 × Mf1 → R on the product Mf1 × Mf1 , where

( f |g) :=
∫

T∗(Λ)
f (z)g(z)dz. (353)
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The constructed Lie algebra G with respect to the bilinear symmetric form (353) proves to
be metrized, that is G � G∗ and

({ f , g}|h) = ( f |{g, h}) (354)

for any f , g and h ∈ G . I f γ ∈ D(G∗) is a smooth functional on G∗, its gradient grad γ( f ) ∈
G at point f ∈ G∗ is naturally defined via the limiting expression

(g| grad γ( f )) :=
d
dε

γ( f + εg)
∣∣∣∣
ε=0

(355)

for arbitrary element g ∈ G∗. Now we define the Poisson structure {{·, ·}} : G∗ × G∗ → R
by means of the standard Lie–Poisson [31,32,59,122,159,181–184] expression:

{{γ, μ}} := ( f |{grad γ( f ), grad γ( f )}) (356)

for arbitrary functionals γ, μ ∈ D(G∗). It is evident that the expression (356) identically
coincides with the Poisson bracket (347).

Consider a functional γ ∈ D(G∗) and the related coadjoint action of the element
grad γ( f ) ∈ G at a fixed element f := f1 ∈ G∗:

∂ f1/∂t := ad∗grad γ( f1)
f1, (357)

where t ∈ R is the corresponding evolution parameter. It is easy observe that

∂ f1/∂t = {{γ, f1}} (358)

is a Hamiltonian equation with the functional γ ∈ D(G∗) taken as its Hamiltonian, being
simultaneously equivalent to the following canonical Hamiltonian flow:

∂ f1/∂t = { f1, grad γ( f1)}, (359)

if to choose as a Hamiltonian the following functional

γ( f1) :=
∫

T∗(Λ)
dz1

p2
1

2m
f1(z1) +

1
2

∫
T∗(Λ)2

dz1dz2V(x1 − x2) f1(z1) f1(z2), (360)

where V(x1 − x2) is a two-particle interaction potential, x1, x2 ∈ Λ. It is easy to observe
here that the Hamiltonian (360) is obtained from the corresponding classical Hamiltonian
expression

H(F ) :=
∫

T∗(Λ)
dz1

p2
1

2m
f1(z1) +

1
2

∫
T∗(Λ)2

dz1dz2V(x1 − x2) f2(z1, z2), (361)

where F = ( f1, f2, ...) ∈ MF denotes an infinite vector from the space MF := ∏
j∈N

Mfj
of

multiparticle distribution functions, and if to impose on it the constraint (344). Thus, we
have stated the following proposition.

Proposition 12. The Boltzmann–Vlasov kinetic Equation (346) is a Hamiltonian system on the
functional manifold G∗ � G = (Mf ; {·, ·}) with respect to the canonical Lie–Poisson structure
(356) with Hamiltonian (360). As a consequence, the flow (346) is time reversible.

9.6. Boltzmann–Vlasov Kinetic Equations and Microscopic Exact Solutions

Proposition 11, stated above, claims that the Boltzmann–Vlasov Equation (346)
is a suitable reduction of the whole Bogolubov chain upon the invariant functional
subspace Mf1 ⊂ MF . Moreover, this invariance in no way should be compatible
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a priori [20,21,24,157,166,171,173,174] with the other kinetic equations from the Bogolubov
chain, and can even be contradictory. Nonetheless, as it was stated [157] by N. Bogol-
ubov, namely owing to this invariance of the subspace Mf1 ⊂ MF the Boltzmann–Vlasov
Equation (346) in the case of the Boltzmann–Enskog hard sphere approximation of the
inter-particle potential possesses exact microscopical solutions which are compatible with
the whole hierarchy of the Bogolubov kinetic equations. The latter is, obviously, equivalent
to its Hamiltonicity on the manifold Mf1 with respect to the Lie–Poisson bracket (356). The
Boltzmann–Enskog kinetic equation [151,157,158,161,179] equals

∂ f1(z;t)
∂t + 〈 p

m |∇x f1(z; t)〉 =

= a2
∫
S2 dn

∫
E3 dp′ 〈p′|n〉〈 p̃

m
′|n〉[ f2(x, p̃; x + an, p̃′; t)− f2(x, p; x− an, p′; t)]

, (362)

where p̃ := p + n〈p′ − p|n〉, p̃′ := p− n〈p′ − p|n〉, a > 0− a particle diameter, n ∈ S2 −
a unit vector, 〈n|n〉 = 1, and, by definition, f2(z, z′; t) = 0 for all z, z′ ∈ T∗(Λ), t ∈ R,
satisfying the condition ||z− z′|| < a. The Equation (362) easily reduces to the Vlasov–
Enskog equation

∂ f1(z;t)
∂t + 〈 p

m |∇x f1(z; t)〉 = JV−E( f ),

JV−E( f ) = a2
∫
S2 dn

∫
E3 dp′ 〈p′|n〉〈 p̃

m
′|n〉×

×[ f1(x, p̃; t) f1(x + an, p̃′; t)− f1(x, p; t) f1(x− an, p′; t)]

(363)

for all (z; t) ∈ T∗(Λ) × R owing to its Hamiltonicity on the space Mf1 ⊂ MF . If, in
addition, there exists a nontrivial interparticle potential, the equation above is naturally
generalized to the kinetic equation

∂ f1(z;t)
∂t + 〈 p

m |∇x f1(z; t)〉 = JV−E( f )+

+
∫

T∗(Λ) dz′{ f1(z; t) f1(z′; t), V(x− x′)}(2),
(364)

which remains to be Hamiltonian on Mf1 and possesses, in particular, the following exact
singular solution:

f1(z; t) = ∑
j=1,N

δ(z− zj(t)), (365)

where zj(t) ∈ T∗(Λ), j = 1, N—phase space coordinates in T∗(Λ)N of N ∈ N interacting
particles in the domain Λ ⊂ R3. Specified above the Hamiltonicity problem and the
existence of exact solutions to the Boltzmann–Vlasov kinetic Equation (364) is deeply
related to that of describing correlation functions [142,161,179], suitably breaking the infinite
Bogolubov chain [20,76,77,86,142,161] of many-particle distribution functions. Namely,
if to introduce many-particle correlation functions [142,161,179] for related Bogolubov
distribution functions as

g1(z1) = 0, g2(z1, z2) = f2(z1, z2)− f1(z1) f1(z2), (366)

g3(z1, z2, z3) = f3(z1, z2, z3)− f1(z1) f1(z2) f1(z3)− f1(z1)g2(z2, z3)−
− f1(z2)g2(z3, z1)− f1(z3)g2(z1, z2), ...,

where zj ∈ T∗(Λ), j ∈ N, then the Vlasov Equation (364) is obtained from the Bogolubov
hierarchy at n = 1 and g2(z1, z2) = 0 for all z1, z2 ∈ T∗(Λ).
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As it was mentioned above, the constraint imposed on the infinite Bogolubov hierarchy
is compatible with its Hamiltonicity. Yet in many practical cases, this closedness procedure
by means of imposing the conditions like

gm+1(z1, z2, . . . , zm+1) = 0 (367)

for all zs ∈ T∗(Λ), s = 1, m + 1 at some fixed m ≥ 2 gives rise to some serious dynamical
problems related to its mathematical correctness. Namely, if to close the infinite Bogolubov
chain of kinetic equations on many-particle distribution functions in this way, one easily
checks that the imposed constraint (367) does not persist in time subject to the evolution
of the distribution functions f j(z1, z2, . . . , zj), zj ∈ T∗(Λ), j = 1, m. This means that these
naively reduced kinetic equations are written down somehow incorrectly, as the reduced
functional submanifold M(m)

F := {F ∈ MF : gm+1 = 0} should remain invariant in time.
To dissolve this problem, we are forced to consider the whole Bogolubov hierarchy of kinetic
equations on multiparticle distribution functions as a Hamiltonian system on the functional
manifold MF and correctly reduce it on the constructed above functional submanifold
M(m)
F ⊂ MF via the classical Dirac type [11,59,63,122,181] procedure. The kinetic equations

obtained this way by means of the reduced Lie–Poisson–Bogolubov structure will evidently
differ from those naively obtained by means of the direct substitution of the imposed
constraint (367) into the Bogolubov chain of kinetic equations, and in due course will
conserve the functional submanifold M(m)

F ⊂ MF invariant.

9.7. The Invariant Reduction of the Bogolubov Distribution Functions Chain

Consider the constructed before Hamiltonian functional H(F ) ∈ D(MF ) (361)

H(F ) =
∫

T∗(Λ)
dz1

p2
1

2m
f1(z1) +

1
2

∫
T∗(Λ)2

dz1dz2V(x1 − x2) f2(z1, z2) (368)

and calculate the evolution of the distribution functions vector F ∈ MF under the simplest
constraint (367) at m = 1, that is

g2(z1, z2) = f2(z1, z2)− f1(z1) f1(z2) = 0 (369)

for all z1, z2 ∈ T∗(Λ). To perform this reduction on M(1)
F ⊂ MF , we need [11,59,63] to

constraint the λ-extended Hamiltonian expression

Hλ(F ) := H(F )+
1
2

∫
T∗(Λ)2

dz1dz2λ(z1, z2)[ f2(z1, z2)− f1(z1) f1(z2)] (370)

for some smooth function λ ∈ D(T∗(Λ)2) and next to determine it from the submanifold
M(1)
F invariance condition

∂g2(z1,z2)
∂t = {{Hλ(F ), g2(z1, z2)}} =

= ∂ f2(z1,z2)
∂t − ∂ f1(z1)

∂t f1(z2)− f1(z1)
∂ f1(z2)

∂t = 0
(371)

for all z1, z2 ∈ T∗(Λ) and t ∈ R. To effectively calculate the condition (371), let us first
calculate the evolutions for distribution functions f1 and f2 ∈ MF :

∂ f1(z1)

∂t
= {{Hλ(F ), f1(z1)}} =

{
f1(z1),

δHλ(F )

δ f1(z1)

}(1)

+ (372)

+
∫

T∗(Λ)
dz2

{
f2(z1, z2),

δHλ(F )

δ f2(z1, z2)

}(1)

,
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and

∂ f2(z1,z2)
∂t = {{Hλ(F ), f2(z1, z2)}} =

{
f2(z1, z2),

δHλ(F )
δ f1(z1)

+ δHλ(F )
δ f1(z2)

}(2)
+

+
{

f2(z1, z2),
δHλ(F )

δ f2(z1,z2)

}(2)
+

∫
T∗(Λ) dz3

{
f3(z1, z2, z3),

δHλ(F )
δ f2(z1,z3)

+ δHλ(F )
δ f2(z2,z3)

}(2)
,

(373)

which can be rewritten equivalently as follows:

∂ f1(z1)

∂t
= −〈∂ f1(z1)

∂p1
|
∫

T∗(Λ)
dz2

∂λ(z1, z2)

∂x1
f1(z2)− (374)

− 〈 p1

m
−

∫
T∗(Λ)

dz2
∂λ(z1, z2)

∂p1
f1(z2)|

∂ f1(z1)

∂x1
〉+

+
1
2

∫
T∗(Λ)

dz2〈
∂

∂x1
[V(x1 − x2) + λ(z1, z2)]|

∂ f2(z1, z2)

∂p1
〉−

− 1
2

∫
T∗(Λ)

dz2〈
∂λ(z1, z2)

∂p1
|∂ f2(z1, z2)

∂x1
〉

and

∂ f2(z1, z2)

∂t
= −〈∂ f2(z1, z2)

∂p1
|
∫

T∗(Λ)
dz2

∂λ(z1, z2)

∂x1
f1(z2)〉− (375)

− 〈∂ f2(z1, z2)

∂p2
|
∫

T∗(Λ)
dz1

∂λ(z1, z2)

∂x2
f1(z1)〉−

− 〈∂ f2(z1, z2)

∂x1
| p1

m
−

∫
T∗(Λ)

dz2
∂λ(z1, z2)

∂p1
f1(z2)〉−

− 〈∂ f2(z1, z2)

∂x2
| p2

m
−

∫
T∗(Λ)

dz1
∂λ(z1, z2)

∂p2
f1(z1)〉+

+
1
2
〈∂ f2(z1, z2)

∂p1
| ∂

∂x1
[V(x1 − x2) + λ(z1, z2)]〉+

+
1
2
〈∂ f2(z1, z2)

∂p2
| ∂

∂x2
[V(x1 − x2) + λ(z1, z2)]〉−

− 1
2
〈∂ f2(z1, z2)

∂x1
|∂λ(z1, z2)

∂p1
〉 − −1

2
〈∂ f2(z1, z2)

∂x2
|∂λ(z1, z2)

∂p2
〉+

+
1
2
〈
∫

T∗(Λ)
dz3

∂ f3(z1, z2, z3)

∂p1
| ∂

∂x1
[V(x1 − x3) + λ(z1, z3)]〉+

+
1
2
〈
∫

T∗(Λ)
dz3

∂ f3(z1, z2, z3)

∂p2
| ∂

∂x2
[V(x2 − x3) + λ(z2, z3)]〉−

− 1
2
〈
∫

T∗(Λ)
dz3

∂ f3(z1, z2, z3)

∂x1
|∂λ(z1, z2)

∂p1
〉 − 1

2
〈
∫

T∗(Λ)
dz3

∂ f3(z1, z2, z3)

∂x2
|∂λ(z1, z2)

∂p2
〉

Having now substituted temporal derivatives (374) and (375) into the equality (371) in their
explicit form, one obtains the following functional relationship:

1
2 〈 f1(z2)

∂ f1(z1)
∂p1

| ∂
∂x1

(V(x1 − x2) + λ(z1, z2)−
−

∫
T∗(Λ) dz3 f1(z3) [V(x1 − x3) + λ(z1, z3)])〉+

+ 1
2 〈 f1(z1)

∂ f1(z2)
∂p2

| ∂
∂x2

(V(x2 − x1) + λ(z2, z1)−
−

∫
T∗(Λ) dz3 f1(z3)[V(x2 − x3) + λ(z2, z3)])〉 = 0,

(376)

which is satisfied if
λ(z1, z2) = −V(x1 − x2) (377)
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for all z1, z2 ∈ T∗(Λ). Taking into account the result (377), one easily obtains from the
Equation (374) the invariantly reduced on the submanifold M(1)

F ⊂ MF kinetic equation on
the one-particle distribution function:

∂ f1(z1)

∂t
+ 〈p1/m|∂ f1(z1)

∂x1
〉 = 〈∂ f1(z1)

∂p1
| ∂

∂x1

∫
T∗(Λ)

dz2 f1(z2)V(x1 − x2)〉, (378)

which can be rewritten in the following compact form:

∂ f1(z1)

∂t
=

{
f1(z1),

δH̃(F )

δ f1(z1)

}(1)

, (379)

where we put, by definition,

H̃(F ) :=
∫

T∗(Λ)
dz1

p2
1

2m
f1(z1) +

1
2

∫
T∗(Λ)2

dz1dz2V(x1 − x2) f1(z1) f1(z2). (380)

The kinetic Equation (378) naturally coincides exactly with that obtained previously from
the naively reduced evolution equation

∂ f1(z1)

∂t
= {{H(F ), f1(z1)}}|M(1)

F
(381)

on the submanifold M(1)
F ⊂ MF , as it is globally invariant [20,172] with respect to the

classical Lie–Poisson–Bogolubov structure on MF .
The obtained result can be formulated as the following proposition.

Proposition 13. The first correlation function Dirac type reduction on the functional submanifold
M(1)
F ⊂ MF , formed by relationships (369), reduces the corresponding Bogolubov chain of many-

particle kinetic equations to the well known classical Vlasov kinetic equation.

Remark 9. It is worth mentioning here that the well known classical Bogolubov approximation
of the many-particle distribution functions as fn(z1, z2, . . . , zn) := ϕn(z1, z2, . . . , z; f1), zj ∈
T(Λ), j = 2, n, with mapping ϕn : (. . .)× Mf1 → R, n ∈ N\{1}, presenting smooth nonlinear
functionals, independent of the temporal parameter t ∈ R+, define a suitably different functional
submanifold M̃(1)

F ⊂ MF , upon which the reduced evolution flow

∂ f1(z1)

∂t
= {{H(F ), f1(z1)}}|M(1)

F
(382)

gives rise to a new Boltzmann type kinetic equation, being compatible with evolution equations for
higher distribution functions, free of evolution inconsistencies and completely different from that
derived previously by Bogolubov [86].

In the same way as above, one can explicitly construct the system of invariantly
reduced kinetic equations

∂ f1(z1)

∂t
= {{H(F ), f1(z1)}}|M(2)

F
,

∂ f2(z1, z2)

∂t
= {{H(F ), f2(z1, z2)}}|M(2)

F
(383)

on the submanifold M(2)
F ⊂ MF , which already is not a priori globally invariant with respect

to the Hamiltonian evolution flows on MF and whose detail structure and analysis are
postponed to another place.
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9.8. Conclusions and Perspectives

We presented a review of the Boltzmann type kinetic equations in statistical physics as
analytical objects based on the non-relativistic current algebra symmetry approach to con-
structing the Bogolubov generating functional of many-particle distribution functions. We
then applied it to an important classical problem of describing Boltzmann–Bogolubov and
Boltzmann–Vlasov type kinetic equations, naturally related with an invariantly reduced
canonical Hamiltonian system on the infinite-dimensional space of distribution functions
subject to the constraints imposed on suitably chosen many-particle correlation functions.
As an interesting introductory example of deriving Boltzman–Vlasov type kinetic equations,
we considered a quantum-mechanical model of spinless particles with delta-type interac-
tion, having applications [159,185,186] for describing so called Benney type hydrodynamic
particle flows. We also reviewed new results on a special class of dynamical systems of
Boltzmann–Bogolubov and Boltzmann–Vlasov type on infinite dimensional functional
manifolds modeling kinetic processes in many-particle media. There was demonstrated
construction of the classical Bogolubov generating functional method in non-equilibrium
statistical mechanics within the classical Wigner quasi-classical representation. We also
analyzed and presented the kinetic Boltzmann type equation in non-equilibrium statistical
mechanics in the frame of the Bogolubov functional hypothesis. Moreover, the Hamiltonian
analysis of the infinite hierarchy of many-particle distribution functions was reviewed, and
the algebraic structure of the Boltzmann–Bogolubov kinetic equations and their invariant
Poissonian reductions were analyzed in detail, including the derivation of the related
Boltzmann–Vlasov kinetic equations. Based on the methods and devised techniques, an
approach was proposed to invariant reduction of the chain of Bogolubov distribution
functions on suitably chosen correlation function constraints, which allowed the deriva-
tion of the related modified Boltzmann–Bogolubov kinetic equations for a finite set of
multi-particle distribution functions.

We also elaborated in detail effective enough invariant analytical tools reducing the infi-
nite Boltzmann–Bogolubov hierarchy of kinetic equations upon the two-particle correlation
function constraint. Within this aspect of invariant reduction of the infinite Boltzmann–
Bogolubov hierarchy of kinetic equations that has very important applications, there stays
an interesting problem of analytically presenting this reduction upon the three-particle
correlation function constraint and deriving a closed system of the Boltzmann type kinetic
equations on the corresponding one- and two-particle distribution functions. The similar,
yet much more complicated, analytical problem for the future analysis consists of deriving
invariantly reduced kinetic equations under the Bogolubov functional hypothesis and its
modified versions.

10. The Current Algebra Functional Representations and Geometric Structure of
Quasi-Stationary Hydrodynamic Flows

10.1. Introductory Notes

This section is devoted to compressible liquid or gas motions in which entropy remains
locally constant throughout the flow field, i.e., the flow for which the entropy of a moving
element along a streamline remains constant, is called isentropic. This means that along
different streamlines, the entropy changes normal to the streamlines. As a typical example,
one can mention the flow field behind a curved shock wave, where streamlines, passing
through different locations along the curved shock wave, experience different increases
in entropy. Hence, downstream from this shock, the entropy can be constant along a
given streamline but differs from one streamline to another. This type of flow, with entropy
constant along streamlines, is defined as isentropic. Flow with entropy constant everywhere
is then called homentropic. Here we need to remark that owing to the second law of
thermodynamics, an isentropic flow does not strictly exist. We know from thermodynamics
that an isentropic flow is defined to be along streamlines both adiabatic and reversible.
Yet, all real flows always experience to some extent the irreversible phenomena of friction,
thermal conduction, and diffusion. For instance, any non-equilibrium, chemically reacting
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flow is always irreversible, when considered to be a closed system. Nonetheless, there
are a large number of liquid and gas dynamic problems with entropy increase negligibly
slight, which for the purpose of analysis are assumed to be isentropic. Examples are
flows through subsonic and supersonic nozzles, as in wind tunnels and rocket engines,
or shock-free flows over a wing, fuselage, or other aerodynamic shapes. For all of them,
except for a flow near the thin boundary-layer region, adjacent to the surface where friction
and thermal conduction effects can be strong, the outer inviscid flow can be considered
isentropic. In contrast, if shock waves exist in the flow, the entropy increase across these
shocks destroys the assumption of isentropic flow, although the flow along streamlines
between shocks may persist to be isentropic.

As an isentropic flow is governed by thermodynamically reversible processes, being
adiabatic along a streamline, it needs to be specified with locally defined [187] thermody-
namical parameters, such as the medium density ρ, the specific entropy σ, the local medium
absolute temperature T, the pressure p and the specific energy e. All these quantities are
related to each other in some way, which can be retrieved following the classical Gibbs
reasonings. We assume from the very beginning that the reversible thermodynamical state
of the medium under regard is completely locally described by means of the following first
pair: (p-local pressure, ρ-specific density) of thermodynamical parameters. Assume now that
the same thermodynamical state of this medium can also be simultaneously described by
means of the following second pair: (T-local absolute temperature, σ-specific entropy). The
latter, in particular, means that a suitable functional transformation from one parameter to
another, if smooth, is diffeomorphic, which is the Jacobian J(σ,T)(p, ρ) of this transformation
R2
+ � (σ, T)→ (p, ρ) ∈ R2

+ is not degenerate everywhere, i.e.,

J(σ,T)(p, ρ) =
∂(p, ρ)

∂(σ, T)
:= det

(
∂p
∂σ

∂p
∂T

∂ρ
∂σ

∂ρ
∂σ

)
�= 0 (384)

at all points (σ, T) ∈ R2
+. Taking into account that the local absolute temperature T and

the adiabatic σ parameters are, in general, defined with some scaling ambiguity, we can
always put, by definition, that J(σ,T)(p, ρ) = ρ2 �= 0 everywhere. As a simple consequence
of multiplying this expression by the unity Jacobian J(σ,ρ)(σ, ρ) = 1 one easily derives that

J(σ,T)(p, ρ)× J(σ,ρ)(σ, ρ) =

= ∂(p,ρ)
∂(σ,T)

∂(σ,ρ)
∂(σ,ρ) =

∂(ρ,p)
∂(σ,ρ)

∂(σ,ρ)
∂(σ,T) = ρ2,

(385)

or, equivalently,
∂(p, ρ)

∂(σ, ρ)
= ρ2 ∂(σ, T)

∂(σ, ρ)
⇐⇒ ∂(p/ρ2)

∂σ

∣∣∣∣
ρ

=
∂T
∂ρ

∣∣∣∣
σ

(386)

at all points (σ, ρ) ∈ R2
+. The equality of partial derivatives above simply means, owing

to the well known Montel–Menchoff–Young theorem [188–190], the existence of such a
differentiable thermodynamic state function R2

+ � (ρ, σ) → e ∈ R, that its differential
satisfies the following equality:

δe(ρ, σ) = Tδσ + pδρ/ρ2. (387)

The latter expression presents exactly the written down second thermodynamic law with
respect to the locally defined variables, if the smooth function R2

+ � (ρ, σ) → e ∈ R is
interpreted as the specific medium energy of the system at the internal absolute temperature
T = T(ρ, σ) and pressure p(ρ, σ) at suitably fixed state parameters (ρ, σ) ∈ R2

+. Taking into
account that our medium is embedded into some domain M ⊂ R3, moving in space-time,
our next task is to adequately describe the related motion spatial phase space variables,
compatible with the corresponding Euler evolution equations.
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10.2. Diffeomorphism Group Structure and Functional Phase Space Description

It is well known that the same physical system is often described using different
sets of variables, related with their different physical interpretation. Simultaneously, this
same system is endowed with different mathematical structures deeply depending on
the geometric scenario used for its description. In general, these structures prove to
be not equivalent but some special way connected to each other. In particular, such
double descriptions commonly occur in systems with distributed parameters such as
hydrodynamics, magnetohydrodynamics and diverse gauge systems, which are effectively
described by means of both symplectic and Poisson structures on suitable phase spaces.
In particular, it was observed [25–33] that these structures are canonically related to each
other. Mathematical properties, lying in a background of their analytical description, make
it possible to study additional important parameters [34–50] of different hydrodynamic
and magnetohydrodynamic systems, amongst which we will mention integral invariants,
describing such internal fluid motion peculiarities as vortices, topological singularities [51]
and other different instability states, strongly depending [52,53] on imposed isentropic
fluid motion constraints. Being interested in their general properties and mathematical
structures, responsible for their existence and behavior, we present a detailed enough
differential geometrical approach to investigating thermodynamically quasi-stationary
isentropic fluid motions, paying more attention to analytical argumentation of tricks and
techniques used during the presentation.

In particular, we consider a compressible liquid filling a compact linearly-connected
domain M ⊂ R3 with smooth boundary ∂M, and moving free of external forces. A con-
figuration of this fluid is called the reference or Lagrangian configuration, its points are
called material or Lagrangian points and are denoted by X ∈ M and are referred to as
material, or Lagrangian coordinates. We shall not for now be specific about the correct
choices of the related functional spaces to be used and refer to works [191,192], where this
is discussed in great detail. The manifold M ⊂ R3, thought of as the target space of a
configuration η ∈ Diff(M) of the fluid at a different time, is called the spatial or Eulerian
configuration, whose points, called spatial or Eulerian points, will be denoted by small let-
ters x ∈ M. Then a motion of the fluid is a time dependent family [26,29,41,48,122,192–195]
of diffeomorphisms written as

M � xt = η(X, t) := ηt(X) ∈ M (388)

for any initial configuration X ∈ M and some mapping ηt ∈ Diff(M), t ∈ R. We also are
given the mass density ρ0 ∈ R(M) ⊂ C∞(M;R+) and the specific entropy σ0 ∈ Σ(M) ⊂
C∞(M;R+) of the fluid in the reference configuration, changing in time in such a way that

ρ0(X) = ρt(xt)Jηt(xt), σ0(X) = σt(xt), (389)

where Jηt(xt) denotes the standard Jacobian determinant of the motion ηt ∈ Diff(M) at
xt ∈ M and σt(xt) denotes the specific entropy for any xt = ηt(X) ∈ M and t ∈ R. For a
motion xt = ηt(X) ∈ M and arbitrary X ∈ M, t ∈ R, one usually defines three velocities:

the material or Lagrangian velocity

V(X, t) = Vt(X) := ∂ηt(X)/∂t, (390)

the spatial or Eulerian velocity

v(xt, t) = vt(xt) := vt ◦ ηt(X) (391)

and convective or body velocity

V(X, t) = Vt(X) := −∂X(xt, t)/∂t = −∂η−1
t (xt)/∂t, (392)
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being equivalent to the expression Vt = η−1
t,∗ vt for all t ∈ R. Since the velocity vt : M ∈

T(M) is tangent to M for all t ∈ R at xt = ηt(X) ∈ M, it determines a time dependent
vector field on M. On the other hand, tangency of Vt(X) and ηt(X), X ∈ M, means that the
velocity Vt is a vector field over a configuration ηt ∈ Diff(M) on M, that is Vt : M → T(M)
is such a map that Vt(X) is tangent to M not at X ∈ M, but at point xt = ηt(X) ∈ M.
Simultaneously, the velocity Vt(X) is a tangent vector to M at X ∈ M, that is Vt is also
a time dependent vector field on M. In what will follow, we will think of the fluid as
moving smoothly in the domain M ⊂ R3, at any time filling it and producing no shocks
and cavitation.

We present in the introductory section a modern differential geometric description
of the isentropic fluid motion phase space and featuring diffeomorphism group structure,
modelling the related dynamics, as well as its compatibility with the quasi-stationary
thermodynamical constraints. The next section is devoted to the Hamiltonian analysis of
the adiabatic liquid dynamics, within which, following the general approach of [28,41,194],
we explain the nature of the related Poissonian structure on the fluid motion phase space,
as a semidirect Banach groups product, and a natural reduction of the canonical symplectic
structure on its cotangent space to the classical Lie–Poisson bracket on the adjoint space
to the corresponding semidirect Lie algebras product. A modification of the Hamiltonian
analysis in case of the isothermal liquid dynamics is presented in the next section. We
proceed further to studying the differential-geometric structure of the adiabatic magneto-
hydrodynamic superfluid phase space and its related motion within the Hamiltonian
analysis and invariant theory. We construct there an infinite hierarchy of different kinds
of integral magneto-hydrodynamic invariants, generalizing those previously constructed
in [194,196], and analyzing their differential-geometric origins. The last section presents
charged fluid dynamics on the phase space invariant with respect to an Abelian gauge
group transformation.

10.3. A Modified Current Algebra, Its Functional Representation And Geometric Description of the
Ideal Liquid Dynamics

It is well known that the motion of an ideal compressible and isentropic fluid is
governed by the Euler equations

∂v/∂t + 〈v|∇〉v + ρ−1∇p(0) = 0,
∂ρ/∂t + 〈∇|ρv〉 = 0, ∂σ/∂t + 〈v|∇〉σ = 0,

(393)

where p0 : M → R is the internal fluid pressure, σ = σ(xt, t) = σt(xt) is the specific
entropy at a spatial point xt = ηt(X) ∈ M for any t ∈ R, which is fixed owing to the
Euler Equation (393), ∇ := ∂/∂x is the usual gradient on the space of smooth functions
C∞(M;R) and 〈·|·〉 denotes the usual convolution on T(M)× T(M) subject to the usual
metric in R3, reduced on the submanifold M. The evolution (393) is considered to be
a priori thermodynamic equilibrium and quasi-stationary, meaning that the following
infinitesimal heat convective and strictly mathematical relationship (387), derived above in
the Introduction,

δet(ρt(xt), σt(xt)) = Tt(xt)δσt(xt) + p(0)t (xt)ρ
−2
t (xt)δρt(xt) (394)

holds for all xt ∈ M and t ∈ R, where et : R(M)× Σ(M) → C∞(M×R;R) denotes the
internal specific fluid energy, Tt : M→R+ denotes the internal fluid absolute temperature,
p(0)t : M→ R is the internal liquid pressure and the variation sign “δ′′ means the change
subject to both the temporal variable t ∈ R and the spatial variable xt ∈ M.

Let us now analyze the internal mathematical structure of quantities (ρt, σt) ∈ R(M)×
Σ(M) as the physical observables subject to their evolution (393) with respect to the group
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diffeomorphisms ηt ∈ Diff(M), t ∈ R, generated by the liquid motion vector field
dxt/dt = vt(xt), xt := ηt(X), t ∈ R, X ∈ M:

Ld/dt(ρtd3xt〈vt|dxt〉) = ρtd3xt(−ρ−1
t dp(0)t + d|vt|2/2),

Ld/dt(ρtd3xt) = 0, Ld/dtσt = 0,
(395)

where Ld/dt : Λ(M) → Λ(M) denotes the corresponding Lie derivative with respect to
the vector field d/dt := ∂/∂t + 〈vt|∇〉 ∈ Γ(M×R; T(M)), t ∈ R. The relationships (395)
here simply mean that at every fixed t ∈ R the space of physical observables, being by
definition, the adjoint space G∗ := (Λ1(M)⊗Λ3(M))⊕ (Λ3(M) ⊕Λ0(M)) to the vector
space G := Γ(M; T(M))× (Λ0(M)⊕Λ3(M)) � TId(G), the tangent space at the identity
Id to the extended differential-functional current group manifold G := Diff(M)×(Λ0(M)
×Λ3(M)) � Diff(M)×(R(M) ×Σ(M)), where we have naturally identified the Abelian
group product Λ0(M) ×Λ3(M) with its direct tangent space sum T(Λ0(M)) ⊕T(Λ3(M)).

Consider now the natural action Diff(M) × G → G of the Diff(M)-group on the
constructed differential-functional manifold G:

(η ◦ ϕ)(X) := ϕ(η(X)), (η ◦ r)(X) := r(η(X)),
η ◦ (s(X)d3X ) := η∗(s(X)d3X)

(396)

for η ∈ Diff(M), X ∈ M and any (ϕ; r, s) ∈ Diff(M)×(R(M) × Σ(M)). Then, taking
into account the suitably extended action (396) on the differential-functional manifold
G, one can formulate the following easily checkable and crucial for what will follow
further proposition.

Proposition 14. The functional manifold G := Diff(M) × (R(M) × Σ(M)) in Eulerian
coordinates is a smooth symmetry Banach group G := Diff(M)� (R(M)× Σ(M)), equal to the
semidirect product of the diffeomorphism group Diff(M) and the direct product R(M)× Σ(M)
of the Abelian functional R(M) � Λ 0(M), and density Σ(M) � Λ3(M) group, endowed in
Eulerian variables with the following right group multiplication law:

(ϕ1; r1, s1d3x) ◦ (ϕ2; r2, s2d3x) =
= (ϕ2 · ϕ1; r1 + r2 · ϕ1, s1d3x + (s2d3x) · ϕ1)

(397)

for arbitrary elements ϕ1, ϕ2 ∈ Diff(M), r1, r2 ∈ Λ0(M) and s1d3x, s2d3x ∈ Λ3(M).

This proposition allows a simple enough interpretation, namely, it means that the
adiabatic mixing of the G � (ϕ2; r2, s2d3x)-liquid configuration with the G � (ϕ1; r1, s1d3x)-
liquid configuration amounts to summation of their densities and entropies, simultaneously
changing the common specific density owing to the fact that some space of the domain
M is already occupied by the first liquid configuration and the second one should be
diffeomorphically shifted from this configuration to another free part of the spatial domain
M, whose volume is assumed to be fixed and bounded.

The second important observation concerns the variational one-form (394), which can
be naturally interpreted as some constraint on the group manifold G for any fixed initial ex-
tended Lagrangian configuration (η; ρ0, σ0d3X) ∈ G, as it follows from the conditions (389):

Jηt(X)ρt ◦ ηt(X) := ρ0(X), σt ◦ ηt(X) := σ0(X) (398)

for all X ∈ M, ηt ∈ Diff(M) and t ∈ R. In addition, if to determine, owing to (394) and the
streamline adiabatic constraint δσt(xt) = 0 for all t ∈ R, the specific energy density

et(ρt, σt) := w(0)
t (ρt, σt) + ct(σt) (399)
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for some still unknown mapping ct : Σ(M) → C∞(M×R;R) and the internal potential
energy function w(0)

t : R(M)× Σ(M) → C∞(M;R) of the liquid under regard, the local
energy conservation property

d
dt

∫
Dt

et(ρt, σt)ρt(xt)d3xt = −
∫

Dt
〈∇|p(0)t (xt)vt(xt)〉d3xt (400)

holds for all t ∈ R and the domain Dt := ηt(D ) ⊂ M, where a smooth submanifold D
⊂ M is chosen arbitrarily and ηt : M → M denotes the corresponding evolution subgroup
of the diffeomorphism group Diff0(M), generated by the Euler evolution Equation (393),
becomes compatible with constraint (394) if there holds the following equality:

p(0)t (xt) = ρt(xt)
2∂w(0)

t (ρt, σt)/∂ρt (401)

for all xt ∈ M and t ∈ R. In particular, from (400) and (401) the following global internal
energy functional

H :=
∫

M
[w(0)

t (ρt, σt) + ct(σt)] ρt(xt)d3xt (402)

is conserved that is dH/dt = 0 for all t ∈ R.
As the extended Lagrangian configuration (η; ρ0, σ0d3X) ∈ G is fixed for all whiles

of time t ∈ R and the dynamical variables ρt ∈ R(M) and σt ∈ Σ(M) depend only
on the evolution diffeomorphisms ηt ∈ Diff(M), t ∈ R, it is reasonable to consider the
constraint (394) as an element of the cotangent space T∗ηt(Diff(M)) to the diffeomorphism
group Diff(M) at the point ηt ∈ Diff(M) for any t ∈ R.

Determine first the tangent space Tη(G) to the group manifold G at point
(η; ρ0, σ0d3X) ∈ G, which will be the direct product of the tangent spaces
Tη(Diff(M)), Tρ0(Λ

0(M)) and Tσ0d3X(Λ
3(M)). The last two tangent spaces are isomor-

phic, respectively, to themselves, that is Tρ0(Λ
0(M)) � Λ0(M) and Tσ0d3X(Λ

3(M)) �
Λ3(M) at any X ∈ M. Their adjoint spaces are naturally determined as suitably con-
structed density and functional spaces on the manifold M : T∗ρ0

(Λ0(M)) � Λ3(M) and
T∗

σ0d3X(Λ
3(M)) � Λ0(M). Concerning the tangent space Tη(Diff(M)) at a configuration

η ∈ Diff(M) we will make use of the construction, devised before in [122,181,194].
Namely, let η ∈ Diff(M) be a Lagrangian configuration and determine the tangent space
Tη(Diff(M)) at η ∈ Diff(M) as the collection of left invariant vectors ξη := Lη,∗ξ at
η ∈ Diff(M), where Lη : Diff(M) → Diff(M) is, by definition, the left shift on the dif-
feomorphism group Diff(M) and ξ ∈ TId(Diff(M)) is a tangent vector at the unity
Id ∈ Diff(M). It is obvious that for all reference points X ∈ M and any smooth curve
R � τ → ητ ∈ Diff(M) of diffeomorphisms of M, the set of right invariant vectors
ξ(X) = (η−1 ◦ dηt/dτ)(X))|τ=0 ∈ TX(M) at point X ∈ M defines a smooth vector field
ξ : M → T(M) on the manifold M. Since, by definition, the tangent space TId(Diff(M))
coincides with the Lie algebra Diff(M) of the diffeomorphism group Diff(M), strictly
isomorphic to the Lie algebra Γ(T(M)) of right invariant vector fields on M, the dual
space T∗Id(Diff(M)) can be naturally determined from the geometric point of view as the
space di f f ∗(M), consisting of analytic functions on di f f (M) and coinciding with the set of
one-form densities on M:

di f f ∗(M) � Λ1(M)⊗ |Λ3(M)|. (403)

Similarly, the cotangent space T∗η (Diff(M)) consists of all one-form densities on M over
η ∈ Diff(M):

T∗η (Diff(M)) = {αη : M → T∗(M)⊗ |Λ3(M)| : αη(X) ∈ T∗η(X)(M)⊗ |Λ3(M)|} (404)
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subject to the canonical nondegenerate convolution (·|·)c on T∗η (Diff(M))× Tη(Diff(M)) :
if α η ∈ T∗η (Diff(M)), ξη ∈ Tη(Diff(M)), where αη |X = 〈αη(X)|dx〉 ⊗ d3X, ξη |X =
〈ξη(X)|∂/∂x〉, then

(αη |ξη)c :=
∫

M
〈αη(X)|ξη(X)〉d3X. (405)

The construction above makes it possible to identify the cotangent bundle T∗η (Diff(M))
at the fixed Lagrangian configuration η ∈ Diff(M) to the tangent space Tη(Diff(M)), in-
somuch as the tangent space T(M) is endowed with the natural internal tangent bundle
metric 〈·| ·〉g at any point η(X) ∈ M, identifying T(M) with T∗(M) via the metric iso-
morphism � : T∗(M) → T(M). The latter can also be naturally lifted to T∗η (Diff(M)) at
η ∈ Diff(M), namely: for any elements αη , βη ∈ T∗η (Diff(M)), αη |X = 〈αη(X)|dx〉 ⊗ d3X
and βη |X = 〈βη(X)|dx〉 ⊗ d3X ∈ T∗η (Diff(M)) we can define the metric

(αη |βη)g :=
∫

M
ρ0(X)〈α�η(X)|β�

η(X)〉gd3X, (406)

where, by definition, α�η(X) := �(ρ0(X)−1〈αη(X)|dx〉), β�
η(X) := �(ρ0(X)−1〈βη(X)|dx〉)

∈ Tη(X)(M) for any X ∈ M.
The diffeomorphism group Diff(M) can be naturally restricted to the factor-group

Diff0(M) := Diff(M)/Di f fρ0,σ0(M) subject to the stationary normal symmetry subgroup
Diffρ0,σ0(M) ⊂ Diff(M), where

Di f fρ0,σ0(M) := {ϕ ∈ Diff(M) : ρ0(X) = Jϕ(X)ρ0(ϕ(X)), σ0(X) = σ0(ϕ(X))} (407)

for any X ∈ M. Based on the construction above, one can proceed to construct-
ing smooth flows and functionals on the specially extended group manifold G0 :=
Diff0(M)� (Λ0(M)× Λ3(M)) and consider their coadjoint action on the cotangent bundle
T∗gη

(G0), gη := (η; ρ0, σ0) ∈ G0, and relate them in some way to the evolution with respect
to the Euler Equation (393). Moreover, as the cotangent bundle T∗gη

(G0), gη ∈ G0, is a priori
endowed with the canonical Poisson structure, one can study both the Hamiltonian flows
on it, related with the Euler Equation (393), and a hidden geometrical meaning of the
differential constraints like (394).

10.4. The Hamiltonian Analysis and Related Adiabatic Liquid Dynamics

We observed above that the liquid motion is adequately described by means of the
symmetry diffeomorphism group Diff0(M), acting on the target manifold M ⊂ R3, and in
this way the modeling liquid motion, generated by suitable vector fields on Diff0(M). This
also means that the fluid motion strongly depends on the constraint (394) on the cotangent
bundle T∗gη

(G0), gη ∈ G0, and a priori possesses the canonical Poisson structure on it. Taking
into account that the diffeomorphism group Diff0(M) acts on the extended group density
manifold G0 := Diff0(M) � (Λ0(M) × Λ3(M)), fixed by the element (η; ρ0, σ0d3X) ∈
G, one can suitably construct the canonical Poisson bracket on the cotangent bundle
T∗gη

(G0), gη ∈ G0, using the canonical coordinate variables on it. Namely, let (μη ; ρ0d3X, σ0)

∈ T∗gη
(G0), gη ∈ G0, be coordinates on T∗gη

(G0), where

μη(X) = ρ0(X)[V�
η (X)]d3X|x=η(X) = (408)

= ρ0(X)v�(η(X))Jη−1(x)d3x := ρ(x)v(x)d3x,

rη(X) = ρ0(X)d3X = ρ0(X)d3X|x=η(X) := ρ(x)d3x,

sη(X) = σ0(X) = σ(η(X))|x=η(X) := σ(x)

and � := �−1, being suitably represented into the Eulerian spatial variables on T∗gη
(G0)

at point (η; ρ, σd3x) ∈ G0. In particular, the quantities μ(x) := ρ(x)v(x)d3x = (η∗μη)(X),
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r(x) := ρ(x)d3x = (η∗rη)(X) and s(x) := σ(x) = (η∗sη)(X) are called, respectively, the
Eulerian momentum density, the Eulerian fluid density and entropy variables at point
x = η(X) ∈ M. The corresponding metric on T∗gη

(G0) is given by the expression(
(αη,1; rη,1sη,1)|(αη,2; rη,2sη,2)

)
:= (αη,1|αη,2)+

+(rη,1|rη,2) + (sη,1|sη,2),
, (409)

where (αη,1|αη,2) for αη,1, αη,2 ∈ T∗η (Diff0(M)) is determined by (406) and for any rη,1, rη,2 ∈
T∗η (Λ3(M)) and sη,1, sη,2 ∈ T∗η (Λ0(M)) one determines, respectively, as

(rη,1|rη,2) :=
∫

M
(ρ1(x)ρ2(x))d3x, (sη,1|sη,2) :=

∫
M
(σ1(x)σ2(x))d3x. (410)

Consider now the cotangent bundle T∗gη
(G0) at point gη = (η; ρ, σd3x) ∈ G0 as a

smooth manifold endowed with the canonical symplectic structure on it, equivalent to the
corresponding canonical Poisson bracket on T∗gη

(G0). Taking into account that the manifold
T∗gη

(G0), shifted by the right Rη−1 -action to the manifold T∗Id(G0), Id ∈ G0, becomes diffeo-
morphic to the adjoint space G∗ to the Lie algebra G of the group G0, as was stated [30–33,41]
by S. Lie in 1887, this canonical Poisson bracket on T∗η (G0) transforms [26,31,32,41,181,195]
into the classical Lie–Poisson bracket on the adjoint space G∗. Moreover, the orbits of the
group G0 on T∗gη

(G0), gη = (η; ρ, σd3x) ∈ G0, transform into the corresponding coadjoint
orbits on the adjoint space G∗, generated by elements of the Lie algebra G . To construct this
Lie–Poisson bracket, we formulate the following preliminary proposition.

Proposition 15. The Lie algebra G � Γ(M; T(M))� (Λ0(M))⊕Λ3(M)) is determined by the
following Lie commutator relationships:

[(a1; r1, s1), (a2; r2, s2)] = ([a1, a2];

〈a1|∇r2〉 − 〈a2|∇r1〉, 〈∇|a1s2〉 − 〈∇|a2s1〉)
(411)

for any vector fields a1, a2 ∈ di f f0(M) � Γ(M; T(M)) and scalar quantities r1, r2 ∈ Λ0(M) and
s1, s2 ∈ Λ3(M) on the manifold M.

Proof. Proof of the commutation relationships (411) easily follows from the group mul-
tiplication (397), if to take into account that tangent spaces T(Λ0(M)) � Λ0(M) and
T(Λ3(M)) � (Λ3(M)).

As an example, we calculate, for brevity, the Poisson bracket on the cotangent space
T∗η (Diff(Tn)) at any η ∈ Diff(Tn). Consider the cotangent space T∗η (Diff(Tn)) � di f f ∗(Tn),
the adjoint space to the tangent space Tη(Diff(Tn)) of left invariant vector fields on Diff(Tn)
at any η ∈ Diff(Tn), and take the canonical symplectic structure on T∗η (Diff(Tn)) in
the form ω(2)(μ, η) := δα(μ, η), where the canonical Liouville form α(μ, η) := (μ|δη)c
∈ Λ1

(μ,η)(T
∗
η (Diff(Tn))) at a point (μ, η) ∈ T∗η (Diff(Tn)) is defined a priori on the tangent

space Tη(Diff(Tn)) � Γ(T(M)) of right-invariant vector fields on the torus manifold Tn.
Having calculated the corresponding Poisson bracket of smooth functions (μ|a)c, (μ|b)c
∈ C∞(T∗η (Diff(Tn));R) on T∗η (Diff(Tn)) � di f f ∗(Tn), η ∈ Diff(Tn), one can formulate
the following proposition.

Proposition 16. The Lie–Poisson bracket on the coadjoint space T∗η (Diff(Tn)) � di f f ∗(Tn) is
equal to the expression

{ f , g}(μ) = (μ|[δ f (μ)/δμ, δg(μ)/δμ])c (412)
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for any smooth functionals f , g ∈ C∞(G∗;R).

Proof. By definition [26,122] of the Poisson bracket of smooth functions (μ|a)c, (μ|b)c
∈ C∞(T∗η (Diff(Tn));R) on the symplectic space T∗η (Diff(Tn)), it is easy to calculate that

{μ(a), μ(b)} := −δα(Xa, Xb) =
= −Xa(α|Xb)c + Xb(α|Xa)c + (α|[Xa, Xb])c,

(413)

where Xa := δ(μ|a)c/δμ = a ∈ di f f (Tn), Xb := δ(μ|b)c/δμ = b ∈ di f f (Tn). Since the
expressions Xa(α|Xb)c = 0 and Xb(α|Xa)c = 0 owing the right-invariance of the vector
fields Xa, Xb ∈ Tη(Diff(Tn)), the Poisson bracket (412) transforms into

{(μ|a)c, (μ|b)c} = (α|[Xa, Xb])c =
= (μ|[a, b])c = (μ|[δ(μ|a)c/δμ, δ(μ|b)c/δμ])c

(414)

for all (μ, η) ∈ T∗η (Diff(Tn)) � di f f ∗(Tn), η ∈ Diff(Tn) and any a, b ∈ di f f (Tn). The
Poisson bracket (412) is easily generalized to

{ f , g}(μ) = (μ|[δ f (μ)/δμ, δgμ)/δμ])c (415)

for any smooth functionals f , g ∈ C∞(G∗;R), finishing the proof.

Proceed now to the Grassmann algebra Λ(M) endowed with Hodge [197] star-
isomorphism ∗ : Λ(M)→ Λ(M) subject to the usual metric on the tangent space T(M) and
determine the adjoint space to the Abelian subalgebra R(M)⊕ Σ(M) � Λ0(M)⊕Λ3(M)
as the space ∗Λ3(M)⊕ ∗Λ0(M) with respect to the following scalar product on Λ(M) :

(α(n)|β(m)) := δmn

∫
M
(α(n) ∧ ∗β(m)) (416)

for any α(n), β(m) ∈ Λ(M), m, n = 0, 3. Then the adjoint space G∗, owing to the expressions
(409) and (389), is described by means of the Eulerian variables (μ; ρd3x, σ) ∈ G∗ �
(Λ1(M) ⊗ |Λ3(M)|) � (Λ3(M) ⊕ Λ0(M)). The latter makes it possible to calculate the
corresponding Lie–Poisson bracket on the adjoint space G∗ at a point l := (μ; ρd3x, σ) ∈ G∗,
generalizing the Poisson bracket (414):

{ f , g}(l) = (l|[δ f /δl, δg/δl])c =

=
∫

M d3x
〈

m
∣∣∣[〈 δ f

δm |∇
〉

δg
δm −

〈
δg
δm |∇

〉
δ f
δm

]〉
+

+
∫

M ρd3x
[〈

δ f
δm

∣∣∣∇ δg
δρ

〉
−

〈
δg
δm

∣∣∣∇ δ f
δρ

〉 ]
+

+
∫

M σ
[〈
∇
∣∣∣ δ f

δm
δg
δσ

〉
−

〈
∇
∣∣∣ δg

δm
δ f
δσ

〉]
d3x

(417)

for any smooth functionals f , g ∈ C∞(G∗;R), where we put, by definition, μ(x) :=
〈m(x)|dx〉 ⊗ d3x, m(x) = ρ(x)v(x) ∈ T∗(M) for all x ∈ M and any t ∈ R.

Return now to the constraint (394) in the following variational form:

δet(ρt, σt)/δt = Tt(xt)δσt(xt)/δt + p(0)t (xt)ρ
−2
t (xt)δρt(xt)/δt, (418)

which should hold at any xt ∈ M for all t ∈ R. Insomuch as, owing to the Euler
Equation (393), the full (convective) derivative δσt(xt)/δt = 0 at any xt ∈ M for all
t ∈ R, one checks once more that the expression (399) holds at any xt ∈ M for all t ∈ R.
To determine the energy density function (399), we consider the Euler Equation (393) and
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check their Hamiltonian structure subject to the Poisson bracket (417), i.e., the existence of
a Hamiltonian functional H : G∗ → R, for which

∂

∂t
(m; ρ, σ)ᵀ = {H, (m, ρ, σ)ᵀ} (419)

at any element l = (m := ρv; ρ, σ)ᵀ ∈ G∗. By means of easy calculations, one obtains from
the system (419) the variational gradient vector

δH(l)/δl = (mρ−1;−|m|2/(2ρ2) + w(0) (ρ, σ) + ρ∂w(0)(ρ, σ)/∂ρ, ρ∂w(0)(ρ, σ)/∂σ), (420)

from which one derives [11,59,120] via the Volterra homotopy mapping

H =
∫ 1

0
(δH(λl)/δl|l)cdλ (421)

the exact Hamiltonian expression

H =
∫

M
(|m|2/(2ρ) + ρw(0)(ρ, σ)]d3x, (422)

coinciding with the expression (402) at c(σ) := |m|2/(2ρ2) = |v|2/2, as m := ρv for
v ∈ T(M). Thus, we obtain the internal energy density functional (399) as

et(ρt, σt) = |vt|2/2 + w(0)
t (ρt, σt), (423)

for all ρ := ρt ∈ R(M), σ := σt ∈ Σ(M) and vt ∈ T(M), satisfying simultaneously both the
constraint (394) and the Euler evolution Equation (393) for all t ∈ R. Moreover, from the
condition (400) one easily finds [194] the following important local differential relationship:

∂[ρt(xt)et(ρt, σt)]/∂t + 〈∇|ρt(xt)vt(xt)(et(ρt, σt)+

+ρt(xt)∂w(0)
t (ρt, σt)/∂ρt )〉 = 0,

(424)

satisfied for all xt ∈ M and t ∈ R, also confirming the energy conservation (422).

10.5. The Hamiltonian Analysis and Related Isothermal Liquid Dynamics

Consider a liquid motion governed by the Euler equations

∂v/∂t + 〈v|∇〉v + ρ−1∇p(0) = 0,
∂ρ/∂t + 〈∇|ρv〉 = 0, ∂T/∂t + 〈v|∇T〉 = 0,

(425)

and describing the ideal compressible and isothermal motion of an ideal compressible
and adiabatic fluid in a spatial domain M ⊂ R3, as the temperature Tt(xt) = T0(xt) at
any evolution point xt := ηt(X) ∈ M for all X ∈ M and t ∈ R. The evolution (425) is
considered to be a priori thermodynamically quasi-stationary, i.e., the following, infinitesimal
convective energy relationship

δh̃t(ρt, Tt) = −σt(xt) δTt + p(0)t (xt) ρ−2
t δρt (426)

holds for all densities ρt ∈ R(M), temperature Tt ∈ T (M) and specific entropy σt ∈
Σ(M), where h̃ : R(M) × T (M)→ R denotes the corresponding internal specific fluid
“energy”and the variation sign “δ′′ means the change subject to both the temporal variable
t ∈ R and the spatial variable xt ∈ M. Under the imposed isothermal condition δTt = 0 the
expression (426) transforms into

h̃t(ρt, Tt) = |vt|2/2 + w̃(0)
t (ρt, Tt), (427)
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where w̃(0)
t (ρt, Tt) := w(0)

t (ρt, σt)|σt :=σ̃(ρt ,Tt) − Ttσt(ρt, Tt), is the specific potential liquid
energy for the isothermal flow, determined at σt := σt(ρt, Tt), solving the functional relation
Tt = ∂w(0)

t (ρt, σt)/∂σt ∈ T (M) subject to the entropy argument σt ∈ Σ(M), if the condition

∂2w(0)
t (ρt, σt)/∂σ2

t �= 0 holds for all densities ρt ∈ R(M) and t ∈ R.
Observe now that the third equation of (425) is exactly equivalent to the internal

average fluid kinetic energy conservation integral relationship

d
dt

∫
Dt

ρt(xt)Tt(xt)d3xt = 0 (428)

over the domain Dt := ηt(D) ⊂ M, where a smooth submanifold D = Dt|t=0 ⊂ M is cho-
sen arbitrarily and ηt : M → M, t ∈ R, denotes the corresponding evolution subgroup of the
diffeomorphism group Diff0(M), generated by the Euler evolution Equation (425). The re-
lationship (428) simply means that if the density function ρt ∈ R(M) transforms under dif-
feomorphism group Diff0(M) action as the Abelian functional group R(M) � Λ0(M), the
corresponding transformation of the temperature Tt ∈ T (M) is induced by the diffeomor-
phism group Diff0(M) action on the related Abelian group T (M) � Λ3(M). Concerning
the energy density (427) one easily obtains the following differential relationship:

∂[ρt(xt)h̃t(ρt, Tt)]/∂t + 〈∇|ρt(xt)vt(xt)
[

h̃t(ρt, Tt)〉+ ρt∂w̃(0)
t (ρt, Tt)/∂ρt

]
〉 = 0, (429)

satisfied for all t ∈ R. As a simple consequence of the relationship (429), one obtains that
the following functional

H̃ =
∫

Dt
ρt(xt)h̃t(ρt, Tt)d3xt (430)

is conserved over the domain Dt := ηt(D) ⊂ M, t ∈ R, where a smooth submanifold
D = Dt|t=0 ⊂ M is chosen arbitrarily.

Similarly to the reasoning above, one can now construct the differential-functional
group space Diff(M) × (R(M) × T (M)) and formulate the following easily checkable
proposition. The differential-functional group functional manifold Diff(M)× (R(M)×
T (M)) in Eulerian coordinates is a smooth Banach group G := Diff(M)� (R(M)×T (M)),
equal to the semidirect product of the diffeomorphism group Diff(M) and the direct product
R(M) × T (M) of Abelian functional R(M) � Λ0(M) and density T (M) � Λ3(M)
groups, endowed with the following group multiplication law:

(ϕ1; r1, τ1d3x ) ◦ (ϕ2; r2, τ2d3x) =
+(ϕ2 · ϕ1; r1 + r2 · ϕ1, τ1d3x + (τ2d3x) · ϕ1)

(431)

for arbitrary elements ϕ1, ϕ2 ∈ Diff(M), r1, r2 ∈ Λ0(M) and τ1d3x, τ2d3x ∈ Λ3(M).
This proposition allows a simple enough interpretation, namely, it means that the

adiabatic mixing of the G � (ϕ2; r2, τ2d3x) liquid configuration with the G � (ϕ1; r1, τ1d3x)
liquid configuration amounts to summation of their spatially shifted densities, simultane-
ously changing the common specific kinetic energy, proportional [55,198,199] to the liquid
temperature, owing to the fact that some space in the domain M is already occupied by
the first liquid configuration and the second one should be diffeomorphically shifted from
this configuration to another free part of the spatial domain M with fixed and bounded
volume. The diffeomorphism group Diff(M) can be naturally restricted to the factor-group
Diff0(M) := Diff(M)/Diffρ0,T0(M) subject to the stationary normal symmetry subgroup
Diff0(M) := Diffρ0,T0(M) ⊂ Diff(M), where

Diffρ0,T0(M) := {ϕ ∈ Diff(M) : ρ0(X) = Jϕ(X)ρ0(ϕ(X)), T0(X) = T0(ϕ(X))} (432)

for any X ∈ M. Based on the construction above one can proceed to studying the extended
Banach group G := Diff0(M)� (Λ0(M)×Λ3(M)) action on the cotangent bundle T∗gη

(G)
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at gη := (η; ρ0, T0) ∈ G0, generated by the fluid evolution with respect to the Euler
Equation (425). The related fluid motion is naturally modelled by means of the coadjoint
action of the corresponding Lie algebra G � Tgη (G0) � Γ(M; T(M))� (Λ0(M)⊕Λ3(M))

of the group G0, gη = Id ∈ G0, on its adjoint space G∗ � (Λ1(M)⊗Λ3(M))� (∗Λ0(M)⊕
∗Λ3(M)) = (Λ1(M)⊗Λ3(M)) �(Λ3(M)⊕Λ0(M)).

The related Lie structure on G easily ensues from the action (431):

[(a1; r1, τ1), (a2; r2, τ2)] = ([a1, a2];
〈a1|∇r2〉 − 〈a2|∇r1〉, 〈∇|a1τ2〉 − 〈∇|a2τ1〉)

(433)

for any representative elements (a1; r1, τ1) and (a2; r2, τ2) ∈ G. Moreover, as the cotangent
bundle T∗gη

(G0) at gη = Id ∈ G0 is diffeomorphic to the adjoint space G∗ to the Lie algebra
G of the Banach group G0, it is a priori endowed with the canonical Lie–Poisson structure

{ f , g}(l) = (l|[δg/δl, δ f /δl])c =

=
∫

M d3x
〈

m
∣∣∣[〈 δ f

δm |∇
〉

δg
δm −

〈
δg
δm |∇

〉
δ f
δm

]〉
+

+
∫

M ρd3x
[〈

δ f
δm

∣∣∣∇ δg
δρ

〉
−

〈
δg
δm

∣∣∣∇ δ f
δρ

〉 ]
+

+
∫

M T
[〈
∇
∣∣∣ δ f

δm
δg
δT

〉
−

〈
∇
∣∣∣ δg

δm
δ f
δT

〉]
d3x

(434)

for any smooth functional f , g ∈ C∞(G∗;R), where we put, by definition, an element
l := (m; ρ, T) � (μ; ρd3x, T) ∈ G∗, μ(x) := 〈m(x)|dx〉 ⊗ d3x, m(x) = ρ(x)v(x) ∈ T∗(M)
for all x ∈ M and t ∈ R, one can easily check that the flow (425) is Hamiltonian:

dl/dt = {H̃, l} (435)

subject to the adjusted Hamiltonian functional (430):

H̃ :=
∫

M
ρtht(ρt, Tt)d3xt =

∫
M

ρt(|mt|2/2ρ2
t + w̃(0)

t (ρt, Tt))d3x. (436)

satisfying the conservative condition dH̃/dt = 0 for all t ∈ R, following simultaneously
both from (435) and from the differential relationship (429).

10.6. The Hamiltonian Analysis and Adiabatic Magneto-Hydrodynamic Superfluid Motion

We start with considering a quasi-neutral superfluid contained in a domain M ⊂
R3 and interacting with a “frozen” sourceless magnetic field B ∈ B(M) ⊂ C∞(M;E3),
satisfying the superconductivity conditions

Ẽ := E + v× B = 0, ∂E/∂t = ∇× B, (437)

where Ẽ : M → E3 is the internal net superfluid electric field, E = −∂A/∂t : M → E3 and
B = ∇× A : M → E3 are the internal electric and magnetic fields, respectively, generated
by the corresponding magnetic vector field potential A : M → E3, v : M −→ T(M) is the
superfluid velocity and “×” denotes the usual vector product in the Euclidean space E3.
The following natural boundary conditions 〈n|v〉|∂M = 0 and 〈n|B〉|∂M = 0 are imposed
on the superfluid flow, where n ∈ T∗(M) is the vector normal to the boundary ∂M, which
is considered to be smooth almost everywhere.

Then, in adiabatic magneto-hydrodynamics (MHD), quasi-neutral superconductive
superfluid motion is described by the following system of evolution equations:

∂v/∂t + 〈v|∇〉v + ρ−1∇p− ρ−1(∇× B)× B = 0,
∂ρ/∂t + 〈∇|ρv〉 = 0, ∂σ/∂t + 〈u|∇σ〉 = 0, ∂B/∂t = ∇× (v× B),

(438)

where, as before, ρ := ρt ∈ R(M) is the superfluid density, B := Bt : M −→ E3 is the
“frozen” into the superfluid magnetic field, p := pt : M −→ R is the internal liquid pressure
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and σ := σt : M −→ R is the specific superfluid entropy at time t ∈ R. The latter is related
to the internal MHD superfluid specific energy function e = et(ρt, σt) owing to the first
thermodynamic law:

Tt(ρt, σt) δσt = δet(ρt, σt)− ptρ
−2
t δρt, (439)

satisfied for any admissible variations of the phase space parameters ρt ∈ R(M), σt ∈
Σ(M), where Tt = Tt(ρt, σt) is the internal absolute temperature in the superfluid for t ∈ R.
The isentropic condition δσt(xt) = 0, where xt := ηt(X) ∈ M for all X ∈ M and that related
to (438) evolution diffeomorphism ηt ∈ Diff(M), t ∈ R, entails the following expression for
the specific internal energy

et(ρt, σt) = w(0)
t (ρt, σt) + ct(ρt, Bt), (440)

where w(0)
t : R(M)× Σ(M)→ C∞(M;R) is the corresponding internal potential specific

energy density and ct : R(M) × B(M) → C∞(M;R) is some still unknown function,
depending in general on the imposed magnetic field Bt : M −→ E3, t ∈ R.

Let us now analyze, as before, the mathematical structure of quantities (ρt, σt, Bt) ∈
R(M) × Σ(M) × B(M) as the physical observables subject to their evolution (438) with
respect to the group diffeomorphisms ηt ∈ Diff(M), t ∈ R, generated by the liquid motion
vector field dxt/dt = vt(xt), xt := ηt(X), t ∈ R, X ∈ M:

Ld/dt(〈ρtvt|dxt〉d3xt) = [−dp(0)t + ρ−1
t d|vt|2/2 + 〈Bt|∇〉〈Bt|dxt〉)]ρtd3xt,

Ld/dt(ρtd3xt) = 0, Ld/dtσt = 0, Ld/dt(∗〈Bt|dxt〉) = 0,
(441)

where Ld/dt : Λ(M) → Λ(M) denotes the corresponding Lie derivative with respect
to the vector field d/dt := ∂/∂t + 〈vt|∇〉 ∈ Γ(M × R; T(M)), t ∈ R. The relationships
(441) mean that the space of physical observables, being by definition, the adjoint space
G∗em := Λ1(M)d3x× (Λ3(M)⊕Λ0(M)⊕Λ2(M)) to the extended configuration space is
equal to Gem := di f f (M)× (Λ0(M)⊕Λ3(M)⊕Λ1(M)) � TId(Gem), the tangent space at
the identity Id to the extended differential-functional group manifold Gem := Diff(M)×
Λ0(M) ×Λ3(M)×Λ1(M) � Diff(M)×R(M) ×Σ(M)×B(M), where we have naturally
identified the Abelian group product Λ0(M) ×Λ3(M) × Λ1(M) with its direct tangent
space sum T(Λ0(M)) ⊕T(Λ3(M)) ⊕T(Λ1(M)).

Consider now the constructed differential-functional current group manifold Gem in
Eulerian variables, on which one naturally acts the Diff(M)-group Diff(M)× Gem → Gem
the standard way:

(η ◦ ϕ)(X) := ϕ(η(X)), (η ◦ r)(X) := r(η(X)),
η ◦ (s(X)d3X ) := η∗(s(X)d3X ),
η ◦ 〈b(X)|dX〉 := η∗〈b(X)|d3X〉

(442)

for η ∈ Diff(M), X ∈ M and any (ϕ; r, s, b) ∈ Diff(M)×R(M)× Σ(M)× B(M). Then,
taking into account the suitably extended action (442) on the differential-functional man-
ifold Gem,, one can formulate the following easily checkable further proposition that is
crucial for what will follow.

Proposition 17. The differential-functional current group manifold Gem := Diff(M)×R(M)×
Σ(M) ×B(M) in Eulerian coordinates is a smooth symmetry Banach group Gem := Diff(M)�
(R(M)× Σ(M)×B(M)), equal to the semidirect product of the diffeomorphism group Diff(M)
and the direct product R(M)× Σ(M)× B(M) of abelian functional R(M) � Λ0(M), density
Σ(M) � Λ3(M) and one-form B(M) � Λ1(M) groups, endowed with the following group
multiplication law in Eulerian variables:

(ϕ1; r1, s1d3x, 〈b1|dx〉) ◦ (ϕ2; r2, s2d3x, 〈b2|dx〉) =
= (ϕ2 · ϕ1; r1 + r2 · ϕ1, s1d3x + (s2d3x) · ϕ1, 〈b1|dx〉+ 〈b2|dx〉 ◦ ϕ1)

(443)
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for arbitrary elements ϕ1, ϕ2 ∈ Diff(M), r1, r2 ∈ Λ0(M), s1d3x, s2d3x ∈ Λ3(M) and 〈b1|dx〉,
〈b2|dx〉 ∈ Λ1(M).

Thus, one can proceed to studying the corresponding coadjoint action of the Lie algebra
Gem � TId(Gem), Id ∈ Gem, on the adjoint space G∗em. As the Lagrangian configuration
η0 ∈ Diff(M) and the entropy σ0 ∈ Σ(M) are assumed to be invariant under the Banach
diffeomorphism group action Diff(M), the resulting group action can be reduced to the
factor-group Di f f0(M) := Diff(M)/Di f fη0,σ0(M) action on the semidirect group product
Gem,0 := Di f f0(M)� (R(M)× Σ(M)×B(M). Based on the multiplication law (443), one
easily calculates the following Lie algebra commutation relationships:

[(a1; r1, s1, b1), (a2; r2, s2, b2)] = ([a1, a2]; 〈a1|∇r2〉−
−〈a2|∇r〉, 〈∇|a1b2〉 − 〈∇|a2s1〉, 〈a1|∇〉b2−
−〈a2|∇〉b1 + 〈b2| ◦ ∇a1〉 − 〈b1| ◦ ∇a2〉)

(444)

for any elements a1, a2 ∈ di f f (M) � T(M), r1, r2 ∈ R(M) � Λ0(M), s1, s2 ∈ Σ(M) �
Λ3(M) and b1, b2 ∈ B(M) � Λ1(M).

The adjoint space to the semidirect product Lie algebra Gem,0 = di f f (M)� (R(M)⊕
Σ(M) ⊕B(M)) can be, naturally, written symbolically as the space G∗em,0 = (Λ1(M) ⊗
Λ3(M))× (∗Λ0(M)⊕ ∗Λ3(M) ⊕ ∗ Λ1(M)) = di f f ∗(M)× (Λ3(M)⊕ Λ0(M)⊕ Λ2(M)),
whereas before, the mapping ∗ : Λ(M)→ Λ(M) denotes the Hodge isomorphism. Then,
taking into account the adjoint space G∗em,0 to the current Lie algebra Gem,0 is endowed with
the following [27,28,41,177,194,200] canonical Lie–Poisson bracket

{ f , g} :=
∫

M〈m|〈
δ f
δm |∇〉

δg
δm − 〈 δg

δm |∇〉
δ f
δm 〉d3x+

+
∫

M ρ
(
〈 δ f

δm |∇
δg
δρ 〉 − 〈

δg
δm |∇

δ f
δρ 〉

)
d3x +

∫
M σ〈∇|( δ f

δm
δg
δσ −

δg
δm

δ f
δσ )〉d3x+

+
∫

M

(
〈B|〈 δ f

δm |∇〉
δg
δB −

〈
δg
δm |∇

〉
δ f
δB 〉+ 〈 δ f

δB |〈B|∇〉
δg
δm 〉 − 〈

δg
δB |〈B|∇〉

δ f
δm 〉

)
d3x

(445)

for any smooth functionals f , g ∈ D(G∗em,0) on the adjoint space G∗, where, as before, we
denoted by m := ρv ∈ T∗(M) the specific momentum of the superfluid. The bracket (445)
naturally ensues from the canonical symplectic structure on the cotangent phase space
T∗(Gem,0), as it was previously demonstrated in the section above.

We now write down the first two equations of the Euler MHD system (438) as the local
fluid mass and momentum conservation laws in the integral Ampere–Newton form

d
dt

∫
Dt

ρtd3xt = 0, d
dt

∫
Dt

ρtvt d3xt+

+
∫

∂Dt
p(0)t (xt)d2St −

∫
Dt
〈Bt(xt)|∇〉Bt(xt)d3xt = 0,

(446)

which is completely equivalent to the relationships (441) and where p(0)t : M → R+ is the
net internal superfluid pressure, (∇× Bt(xt))× Bt(xt) : M → C∞(M;E3) is the spatially
distributed Lorentz force on the superfluid, d2St is the respectively oriented surface
measure on the boundary ∂Dt for the domain Dt := ηt(D ) ⊂ M, t ∈ R, and a smooth
submanifold D ⊂ M is chosen arbitrarily. Taking into account that (∇× Bt(xt))× Bt(xt) =
〈Bt|∇〉Bt −∇〈Bt|Bt〉/2 for any Bt ∈ B(M), the second integral relationship (446) becomes
equivalent to the following:

∂vt/∂t + 〈vt|∇〉vt + ρ−1
t ∇p(0)t (ρt, σt)− ρ−1

t 〈Bt|∇〉Bt = 0, (447)

where we have represented the internal superfluid pressure quantity as

pt(xt) := p(0)t (ρt, σt)− 〈Bt|Bt〉/2 (448)
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for some mapping p(0)t : R(M) × Σ(M) → C∞(M;R), strictly depending only on the
internal liquid configuration ηt ∈ Diff(M) for all t ∈ R.

Based on the Poisson bracket expression (445), one can now easily determine the
Hamiltonian function H : M → R, corresponding to the Euler evolution equation (438) on
the adjoint space G∗:

H =
∫

M ρt(|mt|2/(2ρ2
t ) + w(0)

t (ρt, σt)+
+|Bt|2/(2ρt))dx3

t :=
∫

M ρ(xt)et(ρt, σt)d3xt,
(449)

where the quantity

et(ρt, σt) = |mt|2/(2ρ2
t ) + w(0)

t (ρt, σt)+ (450)

+|Bt|2/(2ρt) := |mt|2/(2ρ2
t ) + wt(ρt, σt)

denotes the specific internal superfluid energy, modified by means of the “frozen” mag-
netic field Bt ∈ B(M), t ∈ R, replacing the previously defined internal specified poten-
tial energy w(0)

t (ρt, σt) by the shifted specified potential energy quantity wt(ρt, σt) :=

w(0)
t (ρt, σt) +|Bt|2/(2ρt). In particular, the Equation (447) reduces to the equivalent

Hamilton expression
∂mt/∂t = {H, mt} (451)

for mt ∈ T∗(M) � di f f ∗(M) and all t ∈ R. It is also seen that if Bt → 0 uniformly with
respect to time t ∈ R, the internal energy expression (450) brings about that (423). Recall
now that the following quasi-stationary second thermodynamic energy conservation law

δet(ρt, σt) = ρ−2
t pt(xt)δρt + Tt(xt)δσt (452)

holds for all admitted superfluid variations δρt ∈ R(M) and δσt ∈ Σ(M), t ∈ R. As,
by isentropic assumption, δσt = 0 for all t ∈ R along fluid streamlines, for the internal
pressure one easily obtains the expression pt(xt) = ρ2

t ∂w(0)
t (ρt, σt)/∂ρt − 〈Bt|Bt〉/2, exactly

coinciding with that of (448).
The Hamiltonian function (449) evidently satisfies the conservation condition dH/dt =

0 for all t ∈ R. To check this directly, it is enough to observe [194] that the following
differential relationship

∂et(ρt, σt)/∂t + 〈∇|ρtvt

[
et(ρt, σt) + ρt∂w0(ρt, σt)/∂ρt − |Bt|2/2

]
) = 0 (453)

holds for all t ∈ R and whose integration over the domain M ⊂ R3 easily gives rise to the
conservation of the Hamiltonian function (449).

10.7. A Modified Current Lie Algebra, Magneto-Hydrodynamic Invariants and Their Geometry

The importance of spatial invariants describing the stability [194] of MHD superfluid
motion was previously stated long ago [181,193,194,201]. Based on the modern symplectic
theory of differential–geometric structures on manifolds, we devise a unified approach to
study MHD invariants of compressible superfluid flow, related with specially constructed
symmetry structures and commuting to each other vector fields on the phase space.

We start from a useful differential-geometric observation that the magneto-
hydrodynamic Euler equations Γ(M; T(M)) action on the adjoint space to the Lie algebra
G of the modified Banach current group G = Diff(M) � (Λ0(M) ⊕ Λ3(M) ⊕ ∗1(M)),
generated by the following vector field differential relationship:

dxt/dt = vt(xt), (454)

where xt = ηt(X) ∈ M, X ∈ M, and vt : M → T(M), t ∈ R, is an acceptable time-
dependent vector field on the domain M, describing the adiabatic superfluid and super-
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conductive motion via the diffeomorphism subgroup mappings ηt ∈ Diff(M), ηt|t=0 =
η0 ∈ Diff0(M). Taking into account that the initial superfluid configuration η0 ∈ Diff(M) is
fixed, one can define, following reasonings from [81], a new differential relationship

dxτ/dt = ut(xτ) (455)

on the domain M with respect to the evolution variable τ ∈ R, parameterized by the time
parameter t ∈ R, where ut : M → T(M), is a τ-independent vector field on M, generating
the diffeomorphism subgroup ψt ∈ Diff(M), xτ := ψι(η0(X)), X ∈ M, commuting to that
generated by the vector field (454), i.e., ηt ◦ ψι = ψt ◦ ηι for all t, τ ∈ R. The action of the
diffeomorphism subgroup ψt ∈ Diff(M) at any fixed time t ∈ R can be naturally interpreted
as rearranging the particle configurations in the superfluid, not changing its other dynamic
characteristics. If to denote the corresponding Lie derivatives with respect to the vector
fields (454) and (455) by differential expressions Ld/dt := ∂/∂t + 〈vt|∇〉◦ : C∞(M;R) →
C∞(M;R) and Lut := 〈ut|∇〉◦ : C∞(M;R) → C∞(M;R), the commutation condition
ηt ◦ ψι = ψt ◦ ηι for all t, τ ∈ R is equivalently rewritten as the operator commutator

[Ld/dt,Lut ] = 0. (456)

Consider now an arbitrary integral invariant of the MHD superfluid, governed by the
Euler system (438):

I =
∫

Dt
ρt(xt)γt(mt; ρt, σt, Bt)d3xt, (457)

generated by some specific density functional γt : G∗ → C∞(M × R;R) and held over
the domain Dt = ηt(D) for any domain D ⊂ M, corresponding to the diffeomorphism
subgroup ηt ∈ Diff(M), t ∈ R, generated by flow (454). Taking into account that there
holds the following density relationship

Ld/dt(ρt(xt)d3xt) = 0 (458)

for any t ∈ R, one easily derives from (457) and (458) that also

Ld/dtγt(mt; ρt, σt, Bt) = 0 (459)

for any t ∈ R. Thus, based on the commutation relationship (456) one can formulate the
following important lemma.

Lemma 1. Let vector fields (454) and (455) commute to each other and a density functional
γ0 : G∗ ×R→C∞(M×R;R) satisfies for all t ∈ R the condition

Ld/dtγ0(mt; ρt, σt, Bt) = 0, (460)

then the following expressions

In,k =
∫

Dt
ρt(Ln

ut γ0(mt; ρt, σt, Bt)
kd3xt (461)

over the domain Dt = ηt(D), generated by corresponding to the flow (454) diffeomorphism subgroup
ηt ∈ Diff(M), t ∈ R, and arbitrary domain D ⊂ M, are for all integers n ∈ Z+, k ∈ Z, the MHD
invariants of the superfluid flow (438).

Proof. A proof easily follows from the commutation condition (456) and the superfluid
density relationship (458).

As examples, let us take following [81,194], the vector field ut := ρ−1
t Bt ∈ Γ(T(M)),

commuting to the vector field vt ∈ Γ(T(M)), and γ0 = iut〈At |dxt〉 = 〈At |ρ−1
t Bt〉 ∈

C∞(M ×R;R), where the magnetic vector potential At ∈ C∞(M;R), t ∈ R, satisfies the
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classical Maxwell relationships: the magnetic field Bt = ∇ × At and the electric field
Et = −∂At/∂t = −vt × Bt, owing to the net electric field superconductivity (437) condition
Ẽt = Et + vt × Bt = 0. Really, the commutativity condition (456) means that

Ld/dt(ρ
−1
t Bt)− 〈ρ−1

t Bt|∇ > vt = 0, (462)

which is satisfied, owing to the second and fourth equations of the Euler MHD system
(438), as well as to the invariance

Ld/dtγ0 = Ld/dtiut〈At |dxt〉 = [Ld/dt, iut ]〈At |dxt〉+
+iutLd/dt〈At |dxt〉 = i[d/dt,ut ]〈At |dxt〉+ iutLd/dt〈At |dxt〉 = 0, (463)

which holds owing to the algebraic relationship

[Ld/dt, iut ] = i[∂/∂t+vtvt ,ut ], (464)

commutativity of vector fields ut and vt ∈ Γ(M) and the integral relationship

d
dt

∫
∂St
〈At |dxt〉 =

∫
∂St
Ld/dt〈At |dxt〉 =

=
∫

∂St
[〈Ld/dt At |dxt〉+ 〈At |Ld/dtdxt〉] =

=
∫

∂St
[〈Ld/dt At |dxt〉+ 〈At |dvt〉] =

=
∫

∂St
[〈vt × B + 〈vt|∇〉At |dxt〉+ 〈At |dvt〉] =

=
∫

∂St
[〈vt × (∇× A) + 〈vt|∇〉At |dxt〉+ 〈At |dvt〉] =

=
∫

∂St
[〈dAt|vt〉+ 〈At |dvt〉] =

∫
∂St

[d〈At |vt〉] = 0,

(465)

equivalent to the condition Ld/dt〈At |dxt〉 = 0 for all t ∈ R. The same statement we obtain
from the slightly simpler reasoning:

d
dt

∫
∂St
〈At |dxt〉 = d

dt

∫
St
〈∇ × At|dS2

t 〉 =
= d

dt

∫
St
〈Bt|dS2

t 〉 := −
∫

∂St
〈Ẽt|dxt〉 = 0,

(466)

following from the net electric field Ẽt = 0 superconductivity condition (437) along the
boundary ∂St, where St := ηt(S0) ⊂ M is the surface, generated by the diffeomorphism
subgroup ηt ∈ Diff(M), t ∈ R, and an arbitrarily chosen surface S0 = St|t=0 ⊂ M. The latter
is, evidently, equivalent to the equalityLd/dt〈At |dxt〉 = 0 modulo the gauge transformation
At → At +∇ξt, where Ld/dtξt + 〈At|vt〉 = 0 for some function ξt ∈ C∞(M;R) and all
t ∈ R. Thus, one can formulate [81,194] the following proposition.

Proposition 18. The functionals

I(B)
n,k =

∫
Dt

ρt

(
Ln

ρ−1
t Bt

〈A|ρ−1
t Bt〉

)k
d3xt (467)

over the domain Dt = ηt(D), generated by corresponding to the flow (454) diffeomorphism subgroup
ηt ∈ Diff(M), t ∈ R, and arbitrary domain D ⊂ M, are for all integers n ∈ Z+, k ∈ Z, the MHD
invariants of the superfluid flow (438). In particular, the following relationships {H, I(B)

n,k } = 0
hold for all n ∈ Z+.

It is natural here to mention [194,196] that the specific entropy functional γ0 = σt : M
→ C∞(M×R;R) satisfies the sufficient condition Ld/dtσt = 0, t ∈ R, a priori generates
for the superfluid flow (438) the infinite hierarchy

I(σ)n,k =
∫

Dt
ρt

(
Ln

ρ−1
t Bt

σt(xt)
)k

d3xt, (468)
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n ∈ Z+, k ∈ Z, of the MHD invariants over the domain Dt = ηt(D), generated by the
corresponding to the flow (454) diffeomorphism subgroup ηt ∈ Diff(M), t ∈ R, and
arbitrary domain D ⊂ M.

To construct other MHD invariants, depending on the superfluid velocity
vt ∈ Γ(T(M)), t ∈ R, let us consider, following [81], two differential one-forms
〈αt|dxt〉, 〈βt|dxt〉 ∈ Λ1(M), xt := ηt(X), X ∈ M, satisfying for all t ∈ R the following
identity:

Ld/dt〈αt|dxt〉 = dht + Lut〈βt|dxt〉, (469)

for some function ht ∈ Λ0(M), where the vector field

dxt/dτ = ut(xt) (470)

is uniform with respect to the evolution parameter τ ∈ R and satisfies the following
constraints:

[Ld/dt,Lut ] = 0, 〈∇|ρtut 〉 = 0 (471)

and ut ‖ ∂M at almost all points xt ∈ ∂M for all evolution parameters t, τ ∈ R. Then one
can formulate the following general proposition.

Proposition 19. The following integral expressions

I(α,β)
0 =

∫
M

ρt〈αt|ut〉d3xt, I(α,β)
1 =

∫
M

ρt[〈αt|vt〉+ ht]d3xt,

I(α,β)
2 =

∫
M

ρt〈Ld/dtαt|ut〉d3xt (472)

over the whole domain M ⊂ R3 are for all integers n ∈ Z+, k ∈ Z, the global MHD invariants.

Proof. Consider, for example, a proof that I(α,β)
0 : G →R is an invariant: taking into account

that Ld/dt(ρtd3xt) = 0, one obtains the expression:

dI(α,β)
0 /dt =

∫
M ρtLd/dt〈αt|ut〉d3xt =

=
∫

M ρtiut(dht + Lut〈βt|dxt〉)d3xt =
=

∫
M ρt(iut dht + iut(iut d + diut)〈βt|dxt〉)d3xt =

=
∫

M ρtiut d(ht + 〈βt|ut〉)d3xt =
=

∫
M〈∇|h̃tρtut〉d3xt =

∫
∂M〈h̃tρtut|dS2

t 〉 = 0

(473)

for all t ∈ R, where we put, by definition, h̃t := (ht + 〈βt|ut〉), denoted dS2
t the surface

measure on the boundary ∂M, used the Cartan representation Lut = iut d + diut and the
natural boundary tangency condition ρtut � ∂M, thus proving the proposition. Exactly
similar calculations ensue for the next two invariant I(α,β)

k : G → R, k = 1, 2, on which we
will not stop here.

As a simple example, one can put α
(0)
t := �(vt) � vt, βt := Bt, the vector field

ut = ρ−1
t Bt : M → T(M), t ∈ R, and show by easy calculations, using the variational

equality (439) that

Ld/dt〈vt|dxt〉 = d(|vt|2/2 − ht − |Bt|2/ρt) + Lut〈Bt|dxt〉+ Ttdσt, (474)

where, we have denoted the specific enthalpy [55,198,199] function ht := et + ptρ
−1
t . As a

consequence of equality (474), under the spatial temperature constancy ∇Tt = 0 condition
for all t ∈ R, one obtains the following MHD superfluid invariant:

I(v,B)
0 :=

∫
M
〈vt|Bt〉d3xt =

∫
M
〈mt|ρ−1

t Bt〉, (475)
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where mt � 〈mt(xt)|dxt〉 ⊗ d3xt ∈ di f f ∗(M) and ρ−1
t Bt � 〈ρ−1

t (x)Bt|∂/∂x〉 ∈ T(M),
coinciding with the MHD invariant, presented before in [81,194]. If the above temperature
condition does not hold, the equality (474) reduces to the differential relationship

∂〈vt|Bt〉/∂t + 〈∇|[vt〈vt|Bt〉+ Bt(ht − |vt|2/2]〉+ ρtTt〈ρ−1
t Bt|∇σt〉, (476)

satisfied for all xt ∈ M and t ∈ R.
Remark. It is worth remarking here that the following baroclinic relationship

∇ρ−1
t ×∇pt = −∇Tt ×∇σt (477)

holds for all xt ∈ M and t ∈ R.
Similarly, we also easily obtain the following invariant

I(v,B)
1 =

∫
M

ρt[|mt|2/
(

2ρ2
t

)
+ w(0)

t (ρt, σt) + |Bt|2/(2ρt)]d3xt = H, (478)

coinciding exactly with the Hamiltonian function for the flow (438) on the phase space G∗.
The third invariant is, eventually, closely related to the vorticity vector ξt := ∇× vt : M →
E3, t ∈ R, and needs a more detailed analysis.

It is instructive now to analyze the existence of integral invariants for the pure hy-
drodynamic case when the magnetic field Bt = 0, t ∈ R, following the approach, devised
before in [81]. In particular, owing to the relationship (477), there holds the following
integral expression for the vorticity ξt := ∇ × vt, t ∈ R :

Ld/dtξt − 〈ξt|∇〉vt = ∇Tt ×∇σt (479)

and define the vector field
ut := ρ−1

t ξt exp ft(xt) (480)

for some scalar smooth mapping ft : M → R, which we will choose from the assumed
commutation condition

[Ld/dt,Lut ] = 0. (481)

The latter gives rise to the equality ξtLd/dt ft(xt) = −∇Tt ×∇σt at any xt := ηt(X) ∈ M,
X ∈ M, or

ḟt (∇× vt) +∇Tt ×∇σt = 0, (482)

where we took into account that Ld/dt ft(xt) = d ft(xt)/dt := ḟt(xt), xt ∈ M, with respect to
the temporal parameter t ∈ R. From (482), one obtains that the mapping ft : M → R should
satisfy the following constraints:

∇ ḟt = ktvt, ḟtvt = ρ−1
t ∇p(t) +∇ωt (483)

for some scalar smooth functions kt and ωt : M → R, t ∈ R. It is easy to check that the
system (483) is compatible, i.e., the quasi-stationary thermodynamic relationship p(0)t =
ρ2

t ∂w0(ρt, σt)/∂ρt jointly with the Euler Equation (393) make it possible to determine these
unknown scalar smooth functions kt and ωt : M → R for all t ∈ R.

Consider now, following [81], a slightly modified expression (474) at the magnetic
field Bt = 0:

Ld/dt〈vt exp ft|dxt〉 = exp ftd(ωt + |vt|2/2) (484)

and calculate the related integral expression:

d
dt

∫
M ρt(iut〈vt|dxt〉)d3xt =

∫
M ρtLd/dt(iut〈vt|dxt〉)d3xt =

=
∫

M ρt(iutLd/dt〈vt|dxt〉)d3xt =
∫

M ρt
(
iut dh̃

)
d3xt =

=
∫

M
(
iρtut dh̃

)
d3xt =

∫
M〈∇h̃t|ρtut〉d3xt =

∫
M〈∇h̃t|ξt exp ft(xt)〉d3xt,

(485)
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where we put, by definition, the function h̃t := ωt + |vt|2/2.
If now to put that the mapping ft : M → R satisfies for all t ∈ R the constraint

〈∇ ft|ξt〉 = 0, the integral expression (485) reduces to

d
dt

∫
M ρt (iut〈vt|dxt〉)d3xt =

∫
M〈∇|

(
exp ft(xt)h̃tξt

)
〉d3xt =

=
∫

∂M〈exp ft(xt)h̃tξt|d2St〉 = 0,
(486)

where the vorticity vector tangency ξt||∂M constraint is assumed. Thus, under conditions
assumed above, the following vortex functional

I =
∫

M
〈vt|∇ × vt〉d3xt (487)

persists to be conserved for all t ∈ R.
If the function ft : M → R, being defined by relationships (483), satisfies for all t ∈ R

the scalar constraint 〈∇ ft|ξt〉 = 0, one easily derives the following differential relationship:

Ld/dt〈∇ ft|ξt〉 = kt〈vt|ξt〉+ 〈∇| ft∇Tt ×∇σt〉 = (488)

=< ∇ ḟt|ξt〉+ 〈∇| ft∇Tt ×∇σt〉 = 0,

or, equivalently, in the integral form

d
dt

∫
Dt
〈∇ ft|ξt〉ρtd3xt =

∫
Dt
Ld/dt〈∇ ft|ξt〉ρtd3xt =

=
∫

Dt

[
〈∇ ḟt|ξt〉+ 〈∇| ft∇Tt ×∇σt〉

]
ρtd3xt =

=
∫

Dt

[
〈∇ ḟt|ξt〉 − 〈∇ ft|∇ × ρ−1

t ∇p(0)t 〉
]
ρtd3xt

=
∫

Dt

[
〈∇ ḟt|ξt〉ρt − ρt〈∇ρ−1

t |∇ × p(0)t ∇ ft〉
]
d3xt =

=
∫

Dt

[
〈∇ ḟt|ξt〉ρt + 〈∇ ln ρt|∇ × p(0)t ∇ ft〉

]
d3xt =

=
∫

Dt
〈∇ ḟt|ξt〉ρtd3xt,

(489)

where we took into account that for the isentropic fluid flow under regard there holds the
tangency ∇ρt||∂Dt condition for all t ∈ R. If the right hand side of (489) proves to be zero,
i.e., 〈∇ ḟt|ξ t〉 = 0, t ∈ R, this will mean that the constraint 〈∇ ft|ξt〉 = 0 for all t ∈ R, if
〈∇ ft|ξt〉|t=0 = 0 at t = 0, thus producing the vortex conservation functional (487).

11. A Modified Current Lie Algebra Symmetry on Torus, Its Lie-Algebraic Structure
and Related Integrable Heavenly Type Dynamical Systems

11.1. Introductory Notes

The main object of our study is integrable multidimensional dispersionless differential
equations, which possess modified Lax–Sato type representations, related with their hidden
Hamiltonian structures. Equations of this type arise and are widely applied in mechanics,
general relativity, differential geometry and the theory of integrable systems. Among the
most mentioned are the Boyer–Finley equations, heavenly type Plebański equations, which
are descriptive of a class of self-dual 4-manifolds, as well as the dispersionless Kadomtsev–
Petviashvili (dKP) equation, also known as the Khokhlov–Zabolotskaya equation, which
arises in non-linear acoustics and the theory of Einstein–Weyl structures. Their integrability
have been investigated by a whole variety of modern techniques including symmetry analy-
sis, differential-geometric and algebrogeometric methods, dispersionless ∂̄-dressing, factor-
ization techniques, Virasoro constraints, hydrodynamic reductions, etc. The first important
examples of the related Hamiltonian structures were previously demonstrated in [202–206]
and later were developed in [207–214] , where many examples of dispersionless differential
equations were analyzed in detail as flows on orbits of the coadjoint action of loop vector
field algebras d̃iff(Tn), generated by specially chosen seed elements l̃ ∈ d̃iff(Tn)∗. In these
works, it was observed that many integrable multidimensional dispersionless differential
equations are generated by seed elements of a very special structure, namely for them
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there exist such analytical functional elements η̃, ρ̃ ∈ Ω0(Tn) ⊗ C that l̃ = η̃dρ̃. As the
latter naturally generates the symplectic structure ω̃(2) :=

∫
Tn dη̃ ∧ dρ̃ ∈ Ω2(Tn)⊗C on

the moduli space [215,216] of flat connections on Tn, related to coadjoint actions of the cor-
responding Casimir functionals, the geometric nature of many integrable multidimensional
dispersionless differential equations can be also studied using cohomological techniques,
devised in [215,217] for the case of Riemannian surfaces. It is also worth mentioning that
in [207–209] a deep connection of the related Hamiltonian flows on d̃iff(Tn)∗ was revealed
with the well known in classical mechanics Lagrange–d’Alembert principle.

In this section, developing the approach, devised in [202,203,218], we will describe
a Lie algebraic structure and integrability properties of a generalized hierarchy of the
Lax-Sato type compatible systems of Hamiltonian flows and related integrable multidi-
mensional dispersionless differential equations. Such systems are called the heavenly
type equations and were first introduced by Plebański in [219]. The heavenly type equa-
tions were analyzed in many articles (see, e.g., [203,218,220–227]) using several different
approaches. In [131,207,209,228] the heavenly type equations were analyzed by using
non-associative and non-commutative current algebras on the torus Tm, m ∈ N. We also
mention that [229,230] B. Szablikowski and A. Sergyeyev developed some generalizations
of the classical AKS-algebraic and related R-structures [11,17–19]. In [203,218] and recently
in [207,231], these ideas were applied to a semi-direct Lie algebra G̃ := d̃iff(Tn)� d̃iff(Tn)∗

of the loop Lie algebra d̃iff(Tn) := Ṽect(Tn) of vector fields on the torus Tn, n ∈ Z+, and
its dual space d̃iff(Tn)∗. Several interesting and deep results about the orbits of the cor-
responding coadjoint actions on the space G̃∗ � G̃ and the classical Lie–Poisson type
structures on them were presented. It is worth especially remarking here that the AKS-
algebraic scheme is naturally embedded into the classical R-structure approach via the
following construction.

Let a (G̃; [·, ·]) denote a Lie algebra over C and G̃∗ be its natural adjoint space. Take
some tensor element r ∈ G̃ ⊗ G̃ � Hom(G̃∗; G̃) and consider its splitting into symmetric
and antisymmetric parts

r = k⊕ σ, (490)

respectively, and assume that the symmetric tensor k ∈ G̃ ⊗ G̃ does not degenerate. That
allows the definition on the Lie algebra G̃ of a symmetric non-degenerate bi-linear product
(·|·) : G̃ ⊗ G̃ → C via the expression

(a|b) := k−1a(b) (491)

for any a, b ∈ G̃. The composed mapping R := σ ◦ k−1 : G̃ → G̃, following the scheme

G̃ k−1
→ G̃∗ σ→ G̃, (492)

defines the following R-structure on the Lie algebra G̃:

[a, b]R := [Ra, b] + [a, Rb] (493)

for all elements a, b ∈ G̃. The following theorem, defining the related Poissonian struc-
ture [19,121,207,217,232,233] on the adjoint space G̃ holds.

Theorem 9. Let α, β ∈ G̃∗ be arbitrary and define the bracket

{α, β} := ad∗rαβ− ad∗rβα. (494)

Then the bracket (494) is Poissonian if the R-structure on the Lie algebra G̃ defines the Lie structure
on G̃, that is there holds the Yang–Baxter equation

[Ra, Rb]− R[a, b]R = −[a, b] (495)
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for any a, b ∈ G̃.

Remark 10. The above theorem makes it possible to consider the Hamiltonian flows on the coadjoint
space G̃∗ as those determined on the Lie algebra G̃. The latter is exceptionally useful if for the scalar
product (491) there exists such a trace-type Tr(·) symmetric and ad-invariant functional (of Killing
type) that

Tr(ab) := (a|b), (a|[b, c]) = (([a, b]|, c) (496)

for any a, b and c ∈ G̃. Then any Hamiltonian flow of an element a ∈ G̃ is representable in the
standard Lax type form

da/dt = [grad(h), a], (497)

where grad(h) ∈ G̃ is generated by the corresponding smooth Hamiltonian function h ∈ D(G̃).

Concerning the loop Lie algebra G̃ := d̃iff(Tn) on the torus Tn, it is well known that
such a trace-type functional on G̃ does not exist, thus we need to study the Hamiltonian
flows on the adjoint loop space G̃∗ � Ω1(Tn) of meromorphic differential forms on the torus
Tn and obtain, as a result, integrable dispersionless differential equations as compatibility
conditions for the related loop vector fields, generated by Casimir functionals on G̃∗. This
procedure is much more complicated for analysis than the standard one and employs
more geometrical tools and considerations about the orbit space structure of the seed
elements l̃ ∈ G̃∗, generating a hierarchy of integrable Hamiltonian flows. The latter,
in part, is deeply related to its reduction properties, guaranteeing the existence of nontrivial
Casimir invariants on its coadjoint orbits. By applying and extending these ideas to
central extensions of Lie algebras, we construct new classes of commuting Hamiltonian
flows on an extended adjoint space Ḡ := G̃∗ ⊕C. These Hamiltonian flows are generated
by seed elements (ã � l̃; α) ∈ Ḡ∗ and specially constructed Casimir invariants on the
corresponding orbits of G̃∗. In most cases, these seed elements appeared to be represented
as specially factorized differential objects, whose real geometric nature is still much hidden
and not clear. Moreover, we found that the corresponding compatibility condition of
constructed Hamiltonian flows coincides exactly with the compatibility condition for a
system of related three Lax–Sato type linear vector field equations. As examples, we
found and described new multidimensional generalizations of the Mikhalev–Pavlov and
Alonso–Shabat type integrable dispersionless equation, whose seed elements possess a
special factorized structure, allowing to extend them to the multidimensional case of
arbitrary dimension.

11.2. Differential-Geometric Setting: The Diffeomorphism Group Diff(Tn) and Its Description

Consider the n-dimensional torus Tn and call points X ∈ Tn as the Lagrangian
variables of a configuration η ∈ Diff(Tn). The manifold Tn, thought of as the target space of
a configuration η ∈ Diff(Tn), is called the spatial or Eulerian configuration, whose points,
called spatial or Eulerian points, will be denoted by small letters x ∈ Tn. Then any one-
parametric configuration of Diff(Tn) is a time t ∈ R dependent family [41,122,181,192,193]
of diffeomorphisms written as

Tn � x = η(X, t) := ηt(X) ∈ Tn (498)

for any initial configuration X ∈ Tn and some mappings ηt ∈ Diff(Tn), t ∈ R.
Being interested in studying flows on the space of Lagrangian configurations η ∈

Diff(Tn) with respect to the temporal variable t ∈ R, generated by group diffeomorphisms
ηt ∈ Diff(Tn), t ∈ R, let us proceed to describing the structure of tangent Tηt(Diff(Tn))
and cotangent T∗ηt(Diff(Tn)) spaces to the diffeomorphism group Diff(Tn) at the points
ηt ∈ Diff(Tn) for any t ∈ R. Determine first the tangent space Tηt(Diff(Tn)) to the diffeo-
morphism group manifold Diff(Tn) at point η ∈ Diff(Tn) for which we will make use of
the construction, devised before in [122,181,194]. Namely, let η ∈ Diff(Tn) be a Lagrangian
configuration and try to determine the tangent space Tη(Diff(Tn)) at η ∈ Diff(Tn) as
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the collection of vectors ξη := dητ/dτ|τ=0, where R � �→ητ ∈ Diff(Tn), ητ |τ=0 = η,
is a smooth curve on Diff(Tn), and for arbitrary reference point X ∈ Tn there holds
ξη(X) = dητ(X)/dτ|τ=0. The latter equivalently means that the vectors ξη(X) ∈ Tη(X)(T

n),
X ∈ Tn, represent a vector field ξ : Tn → T(Tn) on the manifold Tn for any η ∈ Diff(Tn).
Thus, the tangent space Tη(Diff(Tn)) coincides with the set of vector fields on Tn:

Tη(Diff(Tn)) � {ξη ∈ Γ(T(Tn)) : ξη(X) ∈ Tξ(X)(T
n)} (499)

and similarly, the cotangent space T∗η (Diff(Tn)) consists of all one-form densities on Tn

over η ∈ Diff(Tn):

T∗η (Diff(Tn)) = {αη ∈ Ω1(Tn)⊗Ω3(Tn) : αη(X) ∈ T∗η(X)(T
n)⊗ |Ω3(Tn)|} (500)

subject to the canonical non-degenerate pairing (·|·)c on T∗η (Diff(Tn)) × Tη(Diff(Tn)) :
if αη ∈ T∗η (Diff(Tn)), ξη ∈ Tη(Diff(Tn)), where αη |X = 〈αη(X)|dx〉 ⊗ d3X, ξη |X =
〈ξη(X)|∂/∂x〉, then

(αη |ξη)c :=
∫
Tn
〈αη(X)|ξη(X)〉d3X. (501)

The construction above makes it possible to identify the cotangent bundle T∗η (Diff(Tn))
at the fixed Lagrangian configuration η ∈ Diff(Tn) to the tangent space Tη(Diff(Tn)), as
the tangent space T(Tn) is endowed with the natural internal tangent bundle metric 〈·| ·〉
at any point η(X) ∈ Tn, identifying T(Tn) with T∗(Tn) via the related metric isomorphism
� : T∗(Tn)→ T(Tn). The latter can be also naturally lifted to T∗η (Diff(Tn)) at η ∈ Diff(Tn),
namely: for any elements αη , βη ∈ T∗η (Diff(Tn)), αη |X = 〈αη(X)|dx〉 ⊗ d3X and βη |X =

〈βη(X)|dx〉 ⊗ d3X ∈ T∗η (Diff(Tn)) we can define the metric

(αη |βη) :=
∫
Tn
〈α�η(X)|β�

η(X)〉d3X, (502)

where, by definition, α�η(X) := �〈αη(X)|dx〉), β�
η(X) := �〈βη(X)|dx〉 ∈ Tη(X)(T

n) for
any X ∈ Tn. Based on the construction above, one can proceed to constructing smooth
invariant functionals on the cotangent bundle T∗(Diff(Tn)) subject to the correspond-
ing coadjoint actions of the diffeomorphism group Diff(Tn). Moreover, as the cotan-
gent bundle T∗(Diff(Tn)) is a priori endowed with the canonical symplectic structure,
equivalent [11,18,19,26,28,41,122,181,195] to the corresponding Poisson bracket on the
space of smooth functionals on T∗(Diff(Tn)), one can study both the related Hamilto-
nian flows on it and their adjoint symmetries and complete integrability.

Consider now the cotangent bundle T∗(Diff(Tn)) as a smooth manifold endowed
with the canonical symplectic structure [26,122] on it, equivalent to the corresponding
canonical Poisson bracket on the space of smooth functionals on it. Taking into account
that the cotangent space T∗η (Diff(Tn)) at η ∈ Diff(Tn), shifted by the right Rη−1 - action
to the space T∗Id(Diff(Tn)), Id ∈ Diff(Tn), becomes diffeomorphic to the adjoint space
diff∗(Tn) to the Lie algebra diff(Tn) � Γ(T(Tn)) of vector fields on Tn, as there was
stated [31–33,41] still by S. Lie in 1887 this canonical Poisson bracket on T∗η (Diff(Tn))
transforms [26,31,32,41,181,195] into the classical Lie-Poisson bracket on the adjoint space
G∗. Moreover, the orbits of the diffeomorphism group Diff(Tn) on T∗(Diff(Tn)) respec-
tively transform into the coadjoint orbits on the adjoint space G∗, generated by suitable
elements of the Lie algebra G. To construct in detail this Lie–Poisson bracket, we formulate
the following preliminary simple lemma.

Lemma 2. The Lie algebra diff(Tn) � Γ(T(Tn)) is determined by the following Lie commutator
relationships:

[a1, a2] = 〈a1|∇〉a2 − 〈a2|∇〉a1 (503)

for any vector fields a1, a2 ∈ Γ(T(Tn)) on the manifold Tn.
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Proof. Proof of the commutation relationships (503) easily follows from the group multi-
plication

(ϕ1,t ◦ ϕ2,t)(X) = ϕ2,t(ϕ1,t(X)) (504)

for any local group diffeomorphisms ϕ1,t, ϕ2,t ∈ Diff(Tn), t ∈ R, and X ∈ Tn under
condition that aj(X) := dϕj,t(X)/dt|t=0 and ϕj,t|t=0 = Id ∈ Diff(Tn), j = 1, 2.

To calculate the Poisson bracket on the cotangent space T∗η (Diff(Tn)) at any
η ∈ Diff(Tn), let us consider the cotangent space T∗η (Diff(Tn)) � diff∗(Tn), the ad-
joint space to the tangent space Tη(Diff(Tn)) of left invariant vector fields on Diff(Tn)
at any η ∈ Diff(Tn), and take the canonical symplectic structure on T∗η (Diff(Tn)) in
the form ω(2)(μ, η) := δα(μ, η), where the canonical Liouville form α(μ, η) := (μ|δη)c
∈ Ω1

(μ,η)(T
∗
η (Diff(Tn))) at a point (μ, η) ∈ T∗η (Diff(Tn)) is defined a priori on the tangent

space Tη(Diff(Tn)) � Γ(T(M)) of right-invariant vector fields on the torus manifold Tn.
Having calculated the corresponding Poisson bracket of smooth functions (μ|a)c, (μ|b)c
∈ C∞(T∗η (Diff(Tn));R) on T∗η (Diff(Tn)) � diff∗(Tn), η ∈ Diff(Tn), one can formulate the
following proposition.

Proposition 20. The Lie–Poisson bracket on the coadjoint space T∗η (Diff(Tn)) � diff∗(Tn), η ∈
M, is equal to the expression

{ f , g}(μ) = (μ|[δg(μ)/δμ, δ f (μ)/δμ])c (505)

for any smooth functionals f , g ∈ C∞(G∗;R).

Proof. By definition [26,122] of the Poisson bracket of smooth functions (μ|a)c, (μ|b)c
∈ C∞(T∗η (Diff(Tn));R) on the symplectic space T∗η (Diff(Tn)), it is easy to calculate that

{μ(a), μ(b)} := δα(Xa, Xb) =
= Xa(α|Xb)c − Xb(α|Xa)c − (α|[Xa, Xb])c,

(506)

where Xa := δ(μ|a)c/δμ = a ∈ diff(Tn), Xb := δ(μ|b)c/δμ = b ∈ diff(Tn). Since the
expressions Xa(α|Xb)c = 0 and Xb(α|Xa)c = 0 owing the right-invariance of the vector
fields Xa, Xb ∈ Tη(Diff(Tn)), the Poisson bracket (506) transforms into

{ (μ|a)c, (μ|b)c} = −(α|[Xa, Xb])c =
= (μ|[b, a])c = (μ|[δ(μ|b)c/δμ, δ(μ|a)c/δμ])c

(507)

for all (μ, η) ∈ T∗η (Diff(Tn)) � diff∗(Tn), η ∈ Diff(Tn) and any a, b ∈ diff(Tn). The Poisson
bracket (506) is easily generalized to

{ f , g}(μ) = (μ|[δg(μ)/δμ, δ f (μ)/δμ])c (508)

for any smooth functionals f , g ∈ C∞(G∗;R), finishing the proof.

Based on the Lie–Poisson bracket (505), one can naturally construct Hamiltonian flows
on the adjoint space diff∗(Tn) via the expressions

∂l/∂t = −ad∗grad h(l)l (509)

for any element l ∈ diff∗(Tn), t ∈ R, where, by definition, d
dε h(l + εm)|ε=0 :=

(m| grad h(l))c, for some smooth Hamiltonian function h ∈ C∞(diff∗(Tn);R). If the sys-
tem possesses enough additional invariants except the Hamiltonian function, one can
expect its simplification often reducing to its complete integrability. Below, we proceed
to developing an effective enough analytical scheme, before suggested in [207,209,234]
for suitably constructed holomorphic loop diffeomorphism groups on tori, allowing to
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generate infinite hierarchies of such completely integrable Hamiltonian systems on related
functional phase spaces.

11.3. A Modified Current Lie Algebra and Related Symmetry Analysis on Functional Manifolds

Consider a smooth manifold M ⊂ Rn, n ∈ N, endowed with the generalized quantum
current group [26,181,216] group G as the semidirect product Diff(M)� (Λ0(M)×Λ1(M))
of the diffeomorphism group Diff(M) with the Abelian groups Ω0(M) and Ω1(M),
defined by the natural Diff(M)—group action Diff(M)× G → G:

(η ◦ ϕ)(X) := ϕ(η(X)), (η ◦ r)(X) := r(η(X)),
η ◦ 〈b(X)|dX〉 := η∗〈b(X)|dX〉 (510)

for η ∈ Diff(M), X ∈ M, and any (ϕ; r, b) ∈ Diff(M)× (Ω0(M)×Ω0(M). The semidirect
product group G is endowed with the following internal right group multiplication subject
to the Eulerian variable x := η(X) ∈ M:

(ϕ1; r1, 〈b1|dx〉) ◦ (ϕ2; r2, 〈b2|dx〉) =
= (ϕ2 · ϕ1; r1 + r2 · ϕ1, 〈b1|dx〉+ 〈b2|dx〉 ◦ ϕ1)

(511)

at a fixed point η ∈ Diff(M) and arbitrary elements ϕ1, ϕ2 ∈ Diff(M), r1, r2 ∈ Ω0(M) and
b1 � 〈b1|dx〉, b2 � 〈b2|dx〉 ∈ Ω1(M).

Let G � TId(G) = di f f (M)� (Ω0(M)×Ω1(M)), Id ∈ G, denote the Lie algebra of
the current group G, where we took into account that T(Ω0(M)) � Ω0(M), T(Ω1(M)) �
Ω1(M), and proceed to studying its coadjoint action on the adjoint space G∗. Using (511),
one can easily write down that

[(a1; r1, b1), (a2; r2, b2)] = (La1 a2;La2 r1 −La1 r2,La2〈b1|dx〉 − La1〈b2|dx〉), (512)

where La denotes the standard [122,123,181] Lie derivative with respect to a vector field
a ∈di f f (M). From (512) one easily ensues the following current Lie algebra G commutation
relationships:

[(a1; r1, b1), (a2; r2, b2)] = (〈
(
〈a1| ∂

∂x 〉a2 − 〈a2| ∂
∂x 〉a1

)
| ∂

∂x 〉; 〈a2| ∂
∂x r1〉−

−〈a1| ∂
∂x r2〉, 〈〈a2| ∂

∂x 〉b1|dx〉 − 〈〈a1| ∂
∂x 〉b2|dx〉+ 〈b1|〈dx| ∂

∂x 〉a2〉 − 〈b2|〈dx| ∂
∂x 〉a1〉),

(513)

for any elements a1, a2 ∈ di f f (M) � T(M), r1, r2 ∈ Ω0(M) and b1, b2 ∈ Ω1(M), where we

have also denoted the gradient vector ∂
∂x :=

(
∂

∂x1
, ∂

∂x2
, ..., ∂

∂xn

)ᵀ
at x ∈ M. The adjoint space

G∗ to the semidirect product Lie algebra G =di f f (M)� (Ω0(M)⊕Ω1(M)) can be written
symbolically as G∗ = (Ω1(M)⊗Ωn(M))× (∗Ω0(M)⊕∗Ω1(M)) =di f f ∗(M)× (Ωn(M)⊕
Ωn−1(M)), where ∗ : Ω(M) → Ω(M) denotes the corresponding Hodge isomorphism
with respect to the natural scalar product

(α(k)|γ(s)) := δsk

∫
M
(α(k) ∧ ∗γ(s)) (514)
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for any forms α(k) ∈ Ωk(M) and γ(s) ∈ Ωs(M) , k, s = 1, n. Then, taking into ac-
count that the adjoint space G∗ is endowed [27,28,41,177,194,200] with the canonical Lie–
Poisson bracket

{ f , h}(l) := (l|[∇ f (l),∇h(l)]) =
∫

M

(
〈μ|〈 δ f

δμ
| ∂

∂x
〉 δh

δμ
− 〈 δh

δμ
| ∂

∂x
〉 δ f

δμ
〉
)

dnx+

+
∫

M
ρ

(
〈 δ f

δμ
| ∂

∂x
δh
δρ
〉 − 〈 δh

δμ
| ∂

∂x
δ f
δρ
〉
)

dnx+

+
∫

M

(
〈β|〈 δ f

δμ
| ∂

∂x
〉 δh

δβ
−

〈
δh
δμ
| ∂

∂x

〉
δ f
δβ
〉+ (515)

+ 〈 δ f
δβ

, 〈β| ∂

∂x
〉 δh

δμ
〉 − 〈 δh

δβ
, 〈β| ∂

∂x
〉 δ f

δμ
〉
)

dnx

for any smooth functionals f , g ∈ D(G∗) on the G∗, where we have denoted by l :=
(〈μ|dx〉 ⊗ dnx; ρdnx, ∗〈β|dx〉 ⊗ dnx) ∈ G∗ and by ∇(◦)(l) :=

(
〈 δ(◦)

δμ | ∂
∂x 〉;

δ(◦)
δρ , 〈 δ(◦)

δρ |dx〉
)

the corresponding functional gradient.

Remark 11. We remark here that the bracket (515) naturally derives, as it was demonstrated
in [29,31,32,41], from the canonical symplectic structure on the cotangent phase space T∗(G).

Based on the Lie–Poisson bracket, one can construct the Hamiltonian system

∂

∂t
(μ, ρ, β)ᵀ = {H, (μ, ρ, β)ᵀ}, (516)

where t ∈ R is the related evolution parameter and H ∈ D(G∗) is some suitably con-
structed Hamiltonian function. For the evolution flow (516) to be integrable, it should
possess [11,122,181,235] enough commuting to each of the other invariant functionals
Hj ∈ D(G∗), j ∈ N, which is in most cases a very complicated problem. Thereby, taking this
into account, we will proceed the following way: we will construct a set a priori commuting
to each of the other invariants hj ∈ D(G̃∗), j ∈ N, defined on the coadjoint space G̃∗ to a
suitably generalized Lie algebra G̃.

Namely, let us consider a group G̃ := G̃+ × G̃−,where G̃± := D̃iff±(M)� (Ω0
±(M)×

Ω1
±(M)) are subgroups of the smooth loop mappings {C ⊃ S1 → G}, holomorphically

extended, respectively, on the interior D1
+ ⊂ C and on the exterior D1

− ⊂ C domains of the
unit centrally located disk D1 ⊂ C1 and such that for any g̃(λ) ∈ G̃−, λ ∈ D1

−, g̃(∞) =

Id ∈ G. The corresponding Lie subalgebras G̃± � d̃iff±(M)� (Ω0
±(M)×Ω0

±(M)) of the
loop current subgroups G̃± consist, in general, of vector fields on S1 ×Tn, holomorphically
extended, respectively, on regions D1

± ⊂ C1, where for any p̃(λ) ∈ G̃− the value p̃(∞) = 0.
The loop current Lie algebra splitting G̃ = G̃+ ⊕ G̃−, where

G̃+ =
⋃

m∈Z+

{
m

∑
j=0

λj〈a−j(x)| ∂

∂x
〉 ⊗ dnx;

m

∑
j=0

λjρ−j(x),
m

∑
j=0

λj〈b−j(x)|dx〉
}

, (517)

G̃− =

{
∑
j∈N

λ−j〈aj(x)| ∂

∂x
〉 ⊗ dnx; ∑

j∈N
λ−jρj(x), ∑

j∈N
λ−j〈bj(x)|dx〉

}
,

can be naturally identified with a dense subspace of the dual space G̃∗ through the pairing

(l̃|ã) := res
λ∈C

(l(x; λ)|p(x; λ))H0 (518)
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with respect to the scalar product

(l(x; λ)|p(x; λ))H0 :=
∫
M

dnx[〈μ(x; λ)|a(x; λ)〉+ ρ(x; λ)r(x; λ) + 〈β(x; λ)|b(x; λ)〉]. (519)

on the usual Hilbert space H0 := L2(M;Cn+1 × C1 × Cn+1) for any elements l̃ :=
(μ̃; ρ̃, β̃) ∈ G̃∗ and p̃ := (ã; r̃, b̃) ∈ G̃, naturally represented in their component wise
canonical form as

p̃ := (ã; r̃, b̃) =
(〈

a(x; λ)| ∂

∂x

〉
; r(x; λ), 〈b(x; λ)|dx〉

)
, l̃ := (μ̃; ρ̃, β̃) = (520)

= (〈μ(x; λ)|dx〉 ⊗ dnx; ρ(x; λ)d3x, ∗〈β(x; λ)|dx〉 ⊗ dnx),

where for any x := (x; λ) ∈ C×M we have denoted, for brevity, the gradient op-

erator ∂
∂x := ( ∂

∂λ ; ∂
∂x ) =

(
∂

∂λ ; ∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)ᵀ
in the Euclidean space (En; 〈·, ·〉) and

ã :=
〈

a(x; λ)| ∂
∂x

〉
:= a(0)(x; λ) ∂

∂λ +
〈

a(x; λ)| ∂
∂x

〉
, b̃ := 〈b(x; λ)|dx〉 := b(0)(x; λ)dλ +

〈b(x; λ)|dx〉, μ̃ := 〈μ(x; λ)|dx〉 := μ(0)(x; λ)dλ + 〈μ(x; λ)|dx〉. The corresponding Lie
commutator [ p̃1, p̃2] ∈ G̃ of any vectors p̃1 = (ã1; r̃1, b̃1), p̃2 = (ã2; r̃2, b̃2) ∈ G̃ is calculated
the standard way, using (513), and equals

[(ã1; r̃1, b̃1), (ã2; r̃2, b̃2)] =
(〈

(〈a1| ∂
∂x 〉a2− 〈a2| ∂

∂x 〉a1)| ∂
∂x

〉
;

〈a2| ∂
∂x r1〉 − 〈a1| ∂

∂x r2〉, 〈a2| ∂
∂x 〉〈b1|dx〉−

−〈a1| ∂
∂x 〉〈b2|dx〉+ 〈b1|〈dx| ∂

∂x 〉a2〉 − 〈b2|〈dx| ∂
∂x 〉a1〉

)
.

(521)

The expression (521) makes it possible to construct the related Lie–Poisson bracket on the
adjoint space G̃∗, modifying that of (515):

{ f , h} := resλ

∫
M
〈μ|〈 δ f

δμ
| ∂

∂x
〉 δh

δμ
− 〈 δh

δμ
| ∂

∂x
〉 δ f

δμ
〉dnx+

+ resλ

∫
M

ρ

(
〈 δ f

δμ
| ∂

∂x
δh
δρ
〉 − 〈 δh

δμ
| ∂

∂x
δ f
δρ
〉
)

dnx+

+ resλ

∫
M

(
〈β|〈 δ f

δμ
| ∂

∂x
〉 δh

δβ
−

〈
δh
δμ
| ∂

∂x

〉
δ f
δβ
〉+ (522)

+ 〈 δ f
δβ
|〈β| ∂

∂x
〉 δh

δμ
〉 − 〈 δh

δβ
|〈β| ∂

∂x
〉 δ f

δμ
〉
)

dnx

for any smooth functionals f , h ∈ D(G̃∗).
The Lie–Poisson bracket (522) is strongly degenerate and possesses a lot of Casimir

invariants hj ∈ D(G̃∗), j ∈ Z+, satisfying the condition

{ f , hj} = 0 (523)

for all smooth functionals f ∈ D(G̃∗) and j ∈ Z+. As the Lie algebra G̃ acts on its adjoint
space G̃∗ for any p̃ = (ã; r̃, b̃) ∈ G̃ and l̃ = (μ̃; ρ̃, β̃) ∈ G̃∗ as ad∗ : G̃ × G̃∗ → G̃∗, where

ad∗p̃ l̃ =
(
−〈 ∂

∂x
◦ |a〉〈μ|dx〉⊗dnx−〈μ|〈dx| ∂

∂x
〉a〉 ⊗ dnx+ (524)

+ρ〈dx| ∂r
∂x
〉 ⊗ dnx + 〈β|〈dx| ∂

∂x
x〉 ⊗ dnx− 〈 ∂

∂x
◦ |β〉〈x|dx〉 ⊗ dnx;

〈 ∂

∂x
|ρa〉 ⊗ dnx, ∗〈〈 ∂

∂x
◦ |x〉β|dx〉 ⊗ dnx− ∗〈〈β| ∂

∂x
〉a|dx〉 ⊗ dnx

)
,
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the latter condition (523) is easily rewritten as

ad∗∇h(l̃) l̃ = 0, (525)

where ∇h(l̃) :=
(
〈 δh

δμ | ∂
∂x 〉; δh

δρ , 〈 δh
δβ |dx〉

)ᵀ
∈ G̃, being equivalent, owing to (524), to the

following three differential-functional relationships:

〈 ∂
∂x ◦ | δh

δμ 〉μ+〈μ| ◦ ∂
∂x

δh
δμ 〉 − 〈β| ◦ ∂

∂x
δh
δβ 〉+ 〈 ∂

∂x ◦ |β〉 δh
δβ−

−ρ ∂
∂x

δh
δρ = 0, 〈 ∂

∂x |ρ δh
δμ 〉 = 0, 〈 ∂

∂x ◦ | δh
δμ 〉β−〈β| ∂

∂x 〉 δh
δμ = 0

(526)

for any (μ̃; ρ̃, β) ∈ G̃∗. Recall now that the constructed above loop Lie algebra G̃ = G̃+⊕ G̃−,
as the direct sum of its subalgebras, possesses the additional Lie commutator

[ p̃1, p̃2]R := [Rp̃1, p̃2] + [ p̃1,Rp̃2] = [ p̃1,+, p̃2,+]− [ p̃1,−, p̃2,−] (527)

for any p̃1, p̃2 ∈ G̃, where, by definition, the linear homomorphism R := (P+ − P−)/2,
projectors P± : G̃ → G̃±, and p̃j,± := P± p̃j ∈ G̃±, j = 1, 2. Based on the second Lie
commutator (527) we can construct, in the same way as above, the second Lie–Poisson
bracket on the adjoint space G̃∗ as

{ f , h}R := resλ

∫
M
〈μ|〈R δ f

δμ
| ∂

∂x
〉 δh

δμ
− 〈R δh

δμ
| ∂

∂x
〉 δ f

δμ
〉dnx+

+ resλ

∫
M
〈μ|〈 δ f

δμ
| ∂

∂x
〉R δh

δμ
− 〈 δh

δμ
| ∂

∂x
〉R δ f

δμ
〉dnx+

+ resλ

∫
M

ρ

(
〈R δ f

δμ
| ∂

∂x
δh
δρ
〉 − 〈R δh

δμ
| ∂

∂x
δ f
δρ
〉
)

dnx+

+ resλ

∫
M

ρ

(
〈 δ f

δμ
| ∂

∂x
R

δh
δρ
〉 − 〈 δh

δμ
| ∂

∂x
R

δ f
δρ
〉
)

dnx+

+ resλ

∫
M

(
〈β|〈R δ f

δμ
| ∂

∂x
〉 δh

δβ
−

〈
R

δh
δμ
| ∂

∂x

〉
δ f
δβ
〉+ (528)

+ 〈β|〈 δ f
δμ
| ∂

∂x
〉R δh

δβ
−

〈
δh
δμ
| ∂

∂x

〉
R

δ f
δβ
〉+

+ 〈 δ f
δβ
|〈β| ∂

∂x
〉R δh

δμ
〉 − 〈 δh

δβ
|〈β| ∂

∂x
〉R δ f

δμ
〉+

+ 〈R δ f
δβ
|〈β| ∂

∂x
〉 δh

δμ
〉 − 〈R δh

δβ
|〈β| ∂

∂x
〉 δ f

δμ
〉
)

dnx

11.4. A New Modified Spatially Four-Dimensional Mikhalev–Pavlov Heavenly Type
Integrable System

Let a seed element ã � l̃ ∈ G̃∗ be chosen as

ã � l̃ = ((ux + vxλ− λ2)∂/∂x � (wx + ζxλ)dx, (529)

where u, v, w, ζ ∈ C2(R2 × (S1 × T1);R). The asymptotic splits for the components of
the gradient of the corresponding Casimir functional h ∈ I(G̃∗), as |λ| → ∞ have the
following forms:

∇hl̃ ∼ 1− vxλ−1 − uxλ−2 − vzλ−3 − (uz + vxvz − 2(∂−1
x vxxvz))λ

−4+

+ vyλ−5 − (−uy − vxvy + 2(∂−1
x vxxvy))λ

−6 + . . . ,

∇hã ∼ ζxλ−1 + wxλ−2 + ζzλ−3 + (wz − ζxvz + 2vxζz − (∂−1
x vxζx)z)λ

−4−
− ζyλ−5 + (−wy + ζxvy − 2vxζy + (∂−1

x vxζx)y)λ
−6 + . . . .
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In the case when

∇h(y)
l̃,+

:= λ4 − vxλ3 − uxλ2 − vzλ− (uz + vxvz − 2(∂−1
x vxxvz)),

∇h(y)ã,+ := ζxλ3 + wxλ2 + ζzλ + (wz − ζxvz + 2vxζz − (∂−1
x vxζx)z),

and

∇h(t)
l̃,+

= λ6 − vxλ5 − uxλ4 − vzλ3 − (uz + vxvz − 2(∂−1
x vxxvz))λ

2+ (530)

+ vyλ− (−uy − vxvy + 2(∂−1
x vxxvy)),

∇h(t)ã,+ = ζxλ5 + wxλ4 + ζzλ3 + (wz − ζxvz + 2vxζz − (∂−1
x vxζx)z)λ

2−
− ζyλ + (−wy + ζxvy − 2vxζy + (∂−1

x vxζx)y),

the compatibility condition of the Hamiltonian vector flows leads to the system of new
integrable evolution equations:

uzt + uyy = −uyuxz + uzuxy − vyvxy + vzvxt − uzvyvxx + uyvzvxx− (531)

− v2
xvzvxy + v2

xvyvxz − 2exuxy − 2sxuxz + 2ext − 2sxy + 2exvyvxx + 2sxvzvxx,

vzt + vyy = −uyvxz + uzvxy − vyuxz + vzuxy − 2exvxy − 2sxvxz − 2vxvyvxz + 2vxvzvxy,

− uxy − uzz = uxuxz − uzuxx − uxxvxvz + uxvxzvx − uxvxxvz + (vxvz)z + 2uxxex − 2exz,

− vxy − vzz = uxzvx − uzvxx − uxxvz + uxvxz − 2vxxvxvz + v2
xvxz + 2vxxex,

− uxt + uyz = −uxuxy + uyuxx + uxxvxvy − uxvxyvx + uxvxxvy − (vxvy)z + 2uxxsx − 2sxz,

− vxt + vyz = −uxyvx + uyvxx + uxxvy − uxvxy + 2vxxvxvy − v2
xvxy + 2vxxsx,

where
exx = vxxvz, sxx = −vxxvy.

Under the constraint v = 0, one obtains a new spatially four-dimensional system

uzt + uyy = −uyuxz + uzuxy, (532)

− uxy − uzz = uxuxz − uzuxx,

− uxt + uyz = −uxuxy + uyuxx,

which reduces to the Mikhalev–Pavlov [204,208,223] integrable heavenly type equation,
if to put z = x ∈ R.

Here, we can observe that the seed element (529) can be presented in the following
special compact form:

ã � l̃ :=
dη̃

dx
∂/∂x � dρ̃, η̃ = u + vλ− λ2x, ρ̃ = w + ζλ, (533)

deeply connected with the geometry of the related moduli space of flat connections, related
to the coadjoint actions of the corresponding Casimir functionals. Its possible generalization
to multidimensional Mikhalev–Pavlov type equations can be done by the seed element

ã � l̃ := 〈∇η̃|∇〉� dρ̃ (534)

for some elements η̃, ρ̃ ∈ Ω0(Tn)⊗C, n ∈ N. An analysis of the case (534) and correspond-
ing systems of multidimensional Mikhalev–Pavlov type equations is planned to be done in
a separate study.
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11.5. A Modified Martinez Alonso-Shabat Heavenly Type Integrable System

If the seed element ã � l̃ ∈ G̃∗ is chosen as

ã � l̃ = (((ux1 + cux2) + λ)∂/∂x1 + ((vx1 + cvx2) + cλ)∂/∂x2)�

�((wx1 + cwx2)dx1 + (ζx1 + cζx2)dx2), (535)

where u, v, w, ζ ∈ C2(R2 × S1 ×T2;R), c ∈ R \ {0}, one has the following asymptotic splits
for the components of the gradients of the corresponding Casimir functionals h(1), h(2) ∈
I(G̃∗) as |λ| → ∞:

∇h(1)
l̃
∼

(
1 + (ux1 + cux2)λ

−1 − uzλ−2 + . . .
c + (vx1 + cvx2)λ

−1 − vzλ−2 + . . .

)
,

∇h(1)ã ∼
(

(wx1 + cwx2)λ
−1 − wzλ−2 + . . .

(ζx1 + cζx2)λ
−1 − ζzλ−2 + . . .

)
,

and

∇h(2)
l̃
�

(
1 + (ux1 − cux2)λ

−1 + χλ−2 + . . .
−c + (vx1 − cvx2)λ

−1 + ωλ−2 + . . .

)
,

∇h(2)ã �
(

(wx1 − cwx2)λ
−1 + �λ−2 + . . .

(ζx1 − cζx2)λ
−1 + χλ−2 + . . .

)
,

where

χx1 + cχx2 = −(uzx1 − cuzx2) + 2c(ux1 ux1x2 − ux2 ux1x1 + vx1 ux2x2 − vx2 ux1x2), (536)

ωx1 + cωx2 = −(vzx1 − cvzx2) + 2c(ux1 vx1x2 − ux2 vx1x1 + vx1 vx2x2 − vx2 vx1x2),

and

ρx1 + cρx2 = −(wzx1 − cwzx2) + 2c(ux1 wx1x2 − ux2 wx1x1 + 2wx2 ux1x1−
− 2wx1 ux1x2 + vx1 wx2x2 − vx2 wx1x2 + wx2 vx1x2 − wx2 vx2x2 + ζx2 vx1x1 − ζx1 vx1x2),

χx1 + cχx2 = −(ζzx1 − cζzx2) + 2c(vζx2x2 − vx2 ζx1x2 + 2ζx2 vx1x2−
− 2ζx1 vx2x2 + ux1 ζx1x2 − ux2 ζx1x1 + ζx2 ux1x1 − ζx1 ux1x2 + wx2 ux1x2 − wx1 ux2x2).

In the case when the reduced Casimir gradients are equal to the expressions

∇h(y)
l̃,+

=

(
λ2 + (ux1 + cux2)λ− uz
cλ2 + (vx1 + cvx2)λ− vz

)
,∇h(y)ã,+ =

(
(wx1 + cwx2)λ− wz
(ζx1 + cζx2)λ− ζz

)
,

and

∇h(t)
l̃,+

=

(
λ2 + (ux1 − cux2)λ + χ
−cλ2 + (vx1 − cvx2)λ + ω

)
,∇h(t)ã,+ =

(
(wx1 − cwx2)λ + ρ
(ζx1 − cζx2)λ + χ

)
,
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the Lax–Sato compatibility condition of the Hamiltonian vector flows leads to the system
of evolution equations:

uzt + χy = −uzx1 χ− uzx2 ω + uzx1 + vzx2 , (537)

vzt + ωy = −vzx1 χ− vzx2 ω + uzωx1 + vzωx2 ,

uyx1 + cuyx2 = −(ux1 + cux2)uzx1 − (vx1 + cvx2)uzx2 + (ux1x1 + cux1x2)uz+

+ (ux1x2 + cux2x2)vz − uzz,

vyx1 + cvyx2 = −(ux1 + cux2)vzx1 − (vx1 + cvx2)vzx2 + (vx1x1 + cvx1x2)uz+

+ (vx1x2 + cvx2x2)vz − vzz,

utx1 + cutx2 = (ux1 + cux2)χx1 + (vx1 + cvx2)χx2 − (ux1x1 + cux1x2)χ−
− (ux1x2 + cux2x2)ω + χz,

vtx1 + cvtx2 = (ux1 + cux2)ωx1 + (vx1 + cvx2)ωx2 − (vx1x1 + cvx1x2)χ−
− (vx1x2 + cvx2x2)ω + ωz,

generalizing the Martinez Alonso–Shabat heavenly type integrable system. Thus, the
following proposition holds.

Proposition 21. The constructed system of heavenly type Equations (536) and (537) has the Lax–
Sato vector field representation with the “spectral” parameter λ ∈ C, which is related to the element
ã � l̃ ∈ G̃∗ in the form (535).

The system of Equations (536) and (537) admits the reduction when u = v. In this case,
under c = 1 one obtains such a system:

uzt + χy = −(uzx1 + uzx2)χ + uz(χx1 + χx2), (538)

χx1 + χx2 = −(uzx1 − uzx2)− 2(ux1 ux2)x1 − 2(ux1 ux2)x2 .

The additional constraint uz = ux1 + ux2 transforms the system (538) into the following
interesting integro-differential equation:

(ut̃x1
+ ut̃x2

)− (uỹx1 − uỹx2) = ux1x2(ux1 − ux2)− ux1x1 ux2 + ux2x2 ux1−
− ux1x2(u

2
x1
− u2

x2
)− ux1x1 ux2(ux1 + ux2) + ux2x2 ux1(ux1 + ux2)−

− 2(P(ux1 ux2)ỹ) + (ux1x1 + 2ux1x2 + ux2x2)(Pux1 ux2),

P = (∂/∂x1 + ∂/∂x2)
−1(∂/∂x1 − ∂/∂x2),

where t̃ = 2t and ỹ = 2y. Thus, the Equation (538) is integrable and can be considered as
some multi-dimensional generalization of the Martinez Alonso–Shabat system [236].

11.6. A Modified Current Loop Algebra and Multidimensional Heavenly Type Integrable
Equations: The Generalized Lie-Algebraic Structures

A further generalization of the multi-dimensional case related to the loop group
D̃iff(Tn) on the torus Tn, n ∈ Z+ can be developed [207–209] by the following approach.
Since the Lie algebra d̃iff(Tn) consists of the loop group elements, analytically continued
from the circle S1 := ∂D1, being the boundary of the disk D1 ⊂ C, by means of the
complex “spectral”variable λ ∈ C both into the interior D1

+ ⊂ C and the exterior D1
− ⊂ C

parts of the disk D1 ⊂ C, one can take into account its analytical invariance to the circle
diffeomorphism group Diff(S1). The latter gives rise to the naturally extended holomorphic
Lie algebra diff(Tn × C) = d̃iff(Tn × D1

+)⊕ d̃iff(Tn × D1
−) on the torus Tn × C, whose

elements are representable as ā(x; λ) :=
〈

a(x; λ), ∂
∂x

〉
=

n
∑

j=1
aj(x; λ) ∂

∂xj
+ a0(x; λ) ∂

∂λ for

some holomorphic in λ ∈ D1
± vectors a(x; λ) ∈ E× En for all x ∈ Tn, and where we
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denoted by ∂
∂x := ( ∂

∂λ , ∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)ᵀ the generalized Euclidean vector gradient with
respect to the vector variable x := (λ, x) ∈ C×Tn.

Let us construct a modified current loop Lie algebra Ḡ as the semi-direct sum Ḡ :=
diff( Tn×C)�diff(Tn×C)∗ of the Lie algebra diff(Tn×C) and its adjoint space diff(Tn×
C)∗, taking into account their natural pairing

(l̄|ā) := res
λ∈C

(l(x)|a(x))H0 (539)

for any l̄ ∈ diff(Tn ×C)∗ and ā ∈ diff( Tn ×C). The corresponding Lie commutator on the
loop Lie algebra Ḡ is given for any ā1 � l̄1, ā2 � l̄2 ∈ Ḡ by

[ā1 � l̄1, ā2 � l̄2] := [ā1, a2]� ad∗a1
l̄2 − ad∗a2

l̄1. (540)

The Lie algebra Ḡ also splits into the direct sum of two subalgebras:

Ḡ = Ḡ+ ⊕ Ḡ−, (541)

allowing the introduction of the classical R-structure:

[ā1 � l̄1, ā2 � l̄2]R := [R(ā1 � l̄1), ā2 � l̄2 ] + [ ā1 � l̄1, R(ā2 � l̄2)] (542)

for any ā1 � l̄1, ā2 � l̄2 ∈ Ḡ, where, by definition,

R := (P+ − P−)/2, (543)

and
P±Ḡ := Ḡ± ⊂ Ḡ. (544)

The space Ḡ∗ (adjoint to the Lie algebra Ḡ ) can be identified with the space Ḡ by using
the symmetric and non-degenerate form

(ā � l̄|r̄ � m̄) : = res
λ∈C

(ā � l̄|r̄ � m̄)H0 , (545)

where, by definition,
(ā � l̄|r̄ � m̄)H0 = (m̄|ā)H0 + (l̄|r̄)H0 (546)

for any pair of elements ā � l̄, r̄ � m̄ ∈ Ḡ .

Remark 12. The above constructed Lie algebra Ḡ, being metrized by means of the symmetric,
nondegenerate bilinear form (545), is owing to the construction described in the introduction,
to uniquely represent the coadjoint orbits on Ḡ∗ � Ḡ in the standard Lax type form on Ḡ, that will
be used further.

Owing to the convolution (546), the Lie algebra Ḡ becomes metrized. For arbitrary
smooth functions f , g ∈ D(Ḡ∗) one can naturally determine two Lie–Poisson brackets

{ f , g} := (ā � l̄|[∇ f (l̄, ā),∇g(l̄, ā)]) (547)

and
{ f , g}R := (ā � l̄|[∇ f (l̄, ā),∇g(l̄, ā)]R) , (548)

where at any seed element ā � l̄ ∈ Ḡ∗ � Ḡ the gradient element ∇ f (l̄, ā) := ∇ fl̄ �
∇ fā � 〈∇ f (l, a)|(∂/∂x, dx)ᵀ〉 ∈ Ḡ and ∇ fl̄ = 〈∇ fl |∂/∂x〉, ∇ fā = 〈∇ fa|dx〉, and, similarly,
the gradient element ∇g(l̄, ā) := ∇gl̄ �∇gā � 〈∇g(l, a)|(∂/∂x, dx)ᵀ〉 ∈ Ḡ∗ and ∇gl̄ =
〈∇gl |∂/∂x〉, ∇gā = 〈∇ga|dx〉 are calculated with respect to the metric (546).
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Let us now assume that a smooth function h ∈ I(Ḡ∗) is a Casimir invariant, that is

ad∗∇h(l̄,ā)(ā � l̄) = 0 (549)

for a chosen seed element ā � l̄ ∈ Ḡ∗ � Ḡ. Since for an element ā � l̄ ∈ Ḡ∗ � Ḡ and an
arbitrary f ∈ D(Ḡ∗) the adjoint mapping is

ad∗∇ f (l̄,ā)(ā � l̄) = ([∇hl̃ , ã]� (ad∗∇hl̃
l̃ + ad∗ã∇hã)), (550)

the condition (549) can be rewritten as

[∇hl̃ , ã] = 0, ad∗∇hl̃
l̃ + ad∗ã∇hã = 0, (551)

and one can easily obtain that the Casimir functional h ∈ I(Ḡ∗) satisfies the system of
determining equations

〈∇hl |∂/∂x〉a− 〈a|∂/∂x〉∇hl = 0,

〈∂/∂x| ◦ ∇hl〉l + 〈l|(∂/∂x∇hl)〉+

+〈∂/∂x| ◦ a〉∇ha + 〈a|(∂/∂x∇ha) 〉 = 0.

(552)

For the Casimir functional h ∈ D(Ḡ∗) the Equation (552) should be be solved analytically.
In the case when an element l̄ � ā ∈ Ḡ∗ is singular as |λ| → ∞, one can consider the general
asymptotic expansion

∇h(p)(l, a) ∼ λp ∑
j∈Z+

(∇h(p)
l,j ;∇h(p)

a,j )λ
−j (553)

for some suitably chosen p ∈ Z+, which is substituted into the Equation (552). The latter
is then solved recurrently giving rise to a set of gradient expressions for the Casimir
functionals h(p) ∈ D(Ḡ∗) at the specially found integers p ∈ Z+.

Assume now that h(y), h(t) ∈ I(Ḡ∗) are such Casimir functionals for which the Hamil-
tonian vector field generators

∇h(y)(l̄, ā)+ := ( ∇h(py)(l̄, ā))+, ∇h(t)(l̄, ā)+ := ( ∇h(pt)(l̄, ā))+, (554)

are, respectively, defined at some specially found integers py, pt ∈ Z+. These invariants
generate owing to the Lie–Poisson bracket (548) the following commuting to each other
Hamiltonian flows:

∂

∂y
(ā � l̄) = −ad∗∇h(y)(l̄,ā)+

(ā � l̄), (555)

∂

∂t
(ā � l̄) = −ad∗∇h(t)(l̄,ā)+

(ā � l̄),

on an element ā � l̄ ∈ Ḡ∗ � Ḡ with respect to the corresponding evolution parameters
t, y ∈ R. Owing to the construction, the flows (554) can be rewritten equivalently as

∂l/∂t = −
〈

∂

∂x
| ◦ ∇h(pt)

l

〉
l −

〈
l|( ∂

∂x
∇h(pt)

l )

〉
−

〈
∂

∂x
| ◦ a

〉
∇h(pt)

a −
〈

a|( ∂

∂x
∇h(pt)

a )

〉
, (556)

∂l/∂y = −
〈

∂

∂x
| ◦ ∇h

(py)

l

〉
l −

〈
l|( ∂

∂x
∇h

(py)

l )

〉
−

〈
∂

∂x
| ◦ a

〉
∇h

(py)
a −

〈
a|( ∂

∂x
∇h

(py)
a )

〉
,

∂a/∂t = −
〈
∇h(pt)

l | ∂

∂x

〉
a +

〈
a| ∂

∂x

〉
∇h(pt)

l , ∂a/∂y = −
〈
∇h

(py)

l | ∂

∂x

〉
a +

〈
a| ∂

∂x

〉
∇h

(py)

l ,
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where y, t ∈ R are the corresponding evolution parameters. Since the invariants h(y), h(t) ∈
I(Ḡ∗) are commuting to each other with respect to the Lie–Poisson bracket (548), the flows
(556) are commuting too, meaning equivalently that the corresponding Hamiltonian vector
field generators

∇h(t)+ :=
〈
∇h(pt)

l (l)+|
∂

∂x

〉
, ∇h(y)+ :=

〈
∇h

(py)

l (l)+|
∂

∂x

〉
(557)

satisfy the Lax type compatibility condition

∂

∂y
∇h(t)+ − ∂

∂t
∇h(y)+ = [∇h(t)+ ,∇h(y)+ ] (558)

for all y, t ∈ R. On the other hand, the condition (558) is equivalent to the compatibility
condition of two linear equations(

∂

∂t
+∇h(t)+

)
ψ = 0, 〈a| ∂

∂x
〉ψ = 0,

(
∂

∂y
+∇h(y)+

)
ψ = 0 (559)

for a function ψ ∈ C2(R2×Tn ×C;C), all y, t ∈ R and any x ∈ Tn ×C. The results obtained
above can be formulated as the following proposition.

Proposition 22. Let a seed element ā� l̄ ∈ Ḡ∗ and h(y), h(t) ∈ I(Ḡ∗) are some Casimir functionals
subject to the metric (·|·) on the holomorphic current loop algebra Ḡ and the natural coadjoint action
on the co-algebra Ḡ∗ � Ḡ. Then the following dynamical systems

∂

∂y
(ā � l̄) = −ad∗∇h(y)(l̄,ā)+

(ā � l̄),
∂

∂t
(ā � l̄) = −ad∗∇h(t)(l̄,ā)+

(ā � l̄) (560)

are commuting to each other Hamiltonian flows for evolution parameters y, t ∈ R. Moreover,
the compatibility condition of these flows is equivalent to the vector field representation

(∂/∂t +∇h(t)+ )ψ = 0, 〈a|∂/∂x〉ψ = 0, (∂/∂y +∇h(y)+ )ψ = 0, (561)

where ψ ∈ C2(R2 ×Tn ×C;C) and the vector fields ∇h(t)+ ,∇h(y)+ ∈ diff(Tn ×C) are given by
the expressions (557).

Remark 13. As it was mentioned above, the expansion (553) is effective if a chosen seed element
ā � l̄ ∈ Ḡ∗ is singular as |λ| → ∞. In the case when it is singular as |λ| → 0, the expression (553)
should be respectively replaced by the expansion

∇h(p)(l̄, ā) ∼ λ−p ∑
j∈Z+

∇h(p)
j (l̄, ā)λj (562)

for suitably chosen integers p ∈ Z+, and the reduced Casimir function gradients are then given by
the Hamiltonian vector field generators

∇h(y)(l̄, ā)− = λ(λ−py−1∇h(py)(l̄, ā))−, ∇h(t)(l̄, ā)− = λ(λ−pt−1∇h(pt)(l̄, ā))− (563)

for suitably chosen positive integers py, pt ∈ Z+ and the corresponding Hamiltonian flows are,
respectively, written as

∂

∂t
(ā � l̄) = ad∗�h(t)(l̄,ā)−

(ā � l̄),
∂

∂y
(ā � l̄) = ad∗�h(y)(l̄,ā)−

(ā � l̄) (564)

for evolution parameters y, t ∈ R.
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As it was demonstrated above, the presented construction of Hamiltonian flows on
the adjoint space Ḡ∗ can be generalized proceeding to the point product Ḡ := ḠS1

= ∏
z∈S1

Ḡ

of the holomorphic current Lie algebra Ḡ, endowed with the central extension, generated
by a two-cocycle ω2 : Ḡ×Ḡ→ C, where

ω2(ā1 � l̄1, ā2 � l̄2) :=
∫
S1
[(l̄1, ∂ā2/∂z)1 − (l̄2, ∂ā1/∂z)1]dz (565)

for any pair of elements ā1 � l̄1, ā2 � l̄2 ∈ G. The resulting R-deformed Lie–Poisson bracket
for any smooth functionals h, f ∈ D(Ĝ∗) on the adjoint space Ĝ∗ to the centrally extended
loop Lie algebra Ĝ := Ḡ⊕C becomes equal to

{h, f }R := (ā � l̄|[∇h(l̄, ā),∇ f (l̄, ā)]R)+ (566)

+ ω2(R∇h(l̄, ā),∇ f (l̄, ā)) + ω2(∇h(l̄, ā), R∇ f (l̄, ā)).

The corresponding Casimir functionals h(p) ∈ I(Ĝ∗) for specially chosen p ∈ Z+, are
defined with respect to the standard Lie–Poisson bracket as

{h(p), f } := (ā � l̄|[∇h(p)(l̄, ā),∇ f (l̄, ā)]) + ω2(∇h(p)(l̄, ā),∇ f (l̄, ā)) = 0 (567)

for all smooth functionals f ∈ D(Ĝ∗). Based on the equality one easily finds that the
gradients ∇h(p) ∈ Ĝ of the Casimir functionals h(p) ∈ I(Ĝ∗), p ∈ Z+, satisfy the following
equations:

[∇hl̄ , ā]− ∂

∂z
∇hl̄ = 0, ad∗∇hl̄

l̄ + ad∗ā∇hā −
∂

∂z
∇hā = 0 (568)

for a chosen element ā � l̄ ∈ Ĝ∗. Making use of the suitable Casimir functionals h(y), h(t) ∈
I(Ĝ∗), one can construct, making use of (566), the following commuting Hamiltonian flows
on the adjoint space Ĝ∗:

∂

∂y
(ā � l̄) = {h(y), ā � l̄}R,

∂

∂t
(ā � l̄) = {h(t), ā � l̄}R, (569)

which are equivalent to the evolution equations

∂

∂y
ā = −[∇h(y)

l̃,+
, ā] +

∂

∂z
∇h(y)l̄,+,

∂

∂t
ā = −[∇h(t)

l̃,+
, ā] +

∂

∂z
∇h(t)l̄,+ (570)

and

∂

∂y
l̄ = −ad∗

∇h(y)l̄,+

l̄ − ad∗ā(∇h(y)ā,+) +
∂

∂z
∇h(y)ā,+ , (571)

∂

∂t
l̄ = −ad∗

∇h(t)l,+
l̄ − ad∗ā(∇h(t)ā,+) +

∂

∂z
∇h(t)ā,+ .

The results obtained above are summarized as

Proposition 23. The Hamiltonian flows (569) on the adjoint space Ĝ∗ generate the separately com-
muting evolution flows (570) and (571), giving rise to the following unique Lax type compatibility
condition:

[∇h(y)l,+,∇h(t)l,+]−
∂

∂t
∇h(y)l̄,+ +

∂

∂y
∇h(t)l̄,+ = 0, (572)
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being equivalent to some system of nonlinear heavenly type equations in partial derivatives. More-
over, the system of evolution flows (570) and (571) can be considered as the compatibility condition
for the following set of linear vector equations

∂ψ

∂y
+∇h(y)

l̃,+
ψ = 0,

∂ψ

∂z
+ 〈a|∂/∂x〉ψ = 0,

∂ψ

∂t
+∇h(t)

l̃,+
ψ = 0 (573)

for all (y, t, z; x) ∈ (R2 × S1)×Tn ×C and a function ψ ∈ C2((R2 × S1)×Tn ×C;C).

Remark 14. The Lie-algebraic scheme of constructing heavenly type integrable equations on
respectively chosen smooth functional manifolds, applied above for the modified current loop Lie
algebra Ḡ := d̃iff(Tn ×C)� d̃iff(Tn ×C)∗ as the semi-direct sum of the Lie algebra d̃iff(Tn ×
C) and its dual space d̃iff(Tn ×C)∗, can be naturally reformulated within a respectively generalized
Lagrange–d’Alembert mechanical principle, as was done in the work [214], and which will be
analyzed in a separate work under preparation.

11.7. A New Modified Spatially Four-Dimensional Mikhalev-Pavlov type Heavenly Equation

Let a seed element ã � l̃ ∈ Ĝ∗ be chosen as

ã � l̃ = ((ux − λ)∂/∂x + vx∂/∂λ)� (wxdx + ηxdλ), (574)

where u, v, w, η ∈ C2(R2 × (S1 ×C);R). The asymptotic expressions for the components
of the gradients (562) of the corresponding Casimir functionals h(p) ∈ I(Ĝ∗), p ∈ Z+, as
|λ| → ∞ have the following forms:

∇hl̃ ∼ λp
(

1− uxλ−1 + (−uz + (p− 1)v)λ−2 + (uy + (p− 2)(uxv + χx))λ−3 + . . .
−vxλ−1 − vzλ−2 + (vy − (p− 2)vxv)λ−3 + . . .

)
,

∇hã ∼ λp
(

wxλ−1 + wzλ−2 + (−wy + (p− 2)(wv)x)λ−3 + . . .
ηxλ−1 + (ηz + (p− 1)w)λ−2 + (−ηy + (p− 2)ωx)λ−3 + . . .

)
,

p ∈ Z+, where

χxx = vz + uxvx, ωxx = wz − uxwx − vxηx + vηx.

In the case when

∇h(y)
l̃,+

:=
(

λ2 − uxλ + (−uz + v)
−vxλ− vz

)
,

∇h(y)ã,+ :=
(

wxλ + wz
ηxλ + (ηz + w)

)
,

and

∇h(t)
l̃,+

=

(
λ3 − uxλ2 + (−uz + 2v)λ + (uy + uxv + χx)

−vxλ2 − vzλ + (vy − vxv)

)
,

∇h(t)ã,+ =

(
wxλ2 + wzλ + (−wy + (wv)x)

ηxλ2 + (ηz + 2w)λ + (−ηy + ωx)

)
,
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the compatibility condition of the Hamiltonian vector flows (569) leads to the system of
evolution equations:

uzt + uyy = −uyuzx + uzuxy − uxyv− uzzv− χxuxz, (575)

vzt + vyy = vv2
x − v2

z − vvxy − vvzz − uyvxz + uzvxy − uzv2
x − χxvxz,

− uxy − uzz = uxuxz − uzuxx + uxxv,

− vxy − vzz = v2
x + vxxv + uxvxz − uzvxx,

− uxt + uyz = −uxuxy + uyuxx + uxzv + uxxχx,

− vxt + vyz = −uxvxy + uyvxx + uxv2
x + vxxv + 2vxvz.

Under the constraint v = 0 one obtains the modified Michalev–Pavlov type integrable
system (532).

Here, we can also observe that the seed element (574) can also be presented in the
compact form:

ã � l̃ := (
∂η̃1

∂x
∂

∂x
+

∂η̃0

∂λ

∂

∂λ
)� dρ̃, (576)

η̃0 = λvx, η̃1 = u − λx, ρ̃ = w + ηxλ,

being closely connected with the geometry of the related moduli space of flat connections,
related to the coadjoint actions of the corresponding Casimir functionals. Its suitable
generalization to multidimensional Mikhalev–Pavlov type equations can be chosen as

ã � l̃ := (〈∇x η̃|∇x〉+∇λη̃0∇λ)� dρ̃ (577)

for some elements η̃, η̃0, ρ̃ ∈ Ω0(Tn)⊗C, n ∈ N. The analysis of corresponding systems of
integrable multidimensional Mikhalev–Pavlov type equations is planned to be presented
in a separate study.

12. Conclusions

A wide variety of multidimensional completely integrable evolution flows on smooth
functional manifolds have been constructed. Our approach was based on a generalized
Lie-algebraic Adler–Kostant–Symes scheme, applied to the modified holomorphic current
loop algebra G := d̃iff(Tn ×C)� d̃iff(Tn ×C)∗, the semi-direct sum of the loop Lie algebra
d̃iff(Tn ×C) := Ṽect(Tn ×C) of vector fields on the Tn ×C, n ∈ Z+, and its adjoint space
d̃iff(Tn ×C)∗. Its relation to the classical R-structure on the loop Lie algebra Ṽect(Tn ×
C) is also discussed. The structure of the corresponding seed elements is analyzed, its
multidimensional generalizations are presented. We also demonstrated that the obtained
Hamiltonian flows are equivalent to the compatibility conditions for the suitably related
Lax–Sato type linear vector field equations. We also mentioned a very interesting Lagrange–
d’Alembert type mechanical interpretation, naturally related to the devised Lax–Sato
vector field equations and their compatibility conditions. As interesting examples, we
constructed new modified spatially four-dimensional Mikhalev–Pavlov and Alonso–Shabat
type completely integrable equations, appearing in the study of some differential geometric
structures on Riemannian spaces with symmetries.
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appreciation belongs to Stefan Duplij for friendly encouragement to write this article and to Joel

141



Universe 2022, 8, 288

Lebowitz for the invitation to take part in the 121-st Statistical Mechanics Conference, held 12–14 May
2019 at the Rutgers University, New Brunswick, NJ, USA. I cordially appreciate Joel Lebowitz, Denis
Blackmore and Nikolai N. Bogolubov for instructive discussions, useful comments and remarks on
the work during the Conference. My warm acknowledgements also belong to my close collaborators
Alex A. Balinsky, Radoslaw Kycia, Yarema A. Prykarpatsky, Valeriy H. Samoilenko for the support
during my work on manuscript.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Goldin, G.A. Lectures on diffeomorphism groups in quantum physics. In Contemporary Problems in Mathematical Physics,
Proceedings of the Third International Workshop, Helsinki, Finland, 30–31 October 2014; World Scientific Publishing: Singapore, 2004;
pp. 3–93.

2. Goldin, G.A.; Sharp, D.H. Lie algebras of local currents and their representations. In Group Representations in Mathematics and
Physics; Battelle Seattle 1969 Rencontres, Lecture Nootes in Physics; Springer: Berlin/Heidelberg, Germany, 1970; Volume 6,
pp. 300–311.

3. Goldin, G.A.; Sharp, D.H. Functional Differential Equations Determining Representations of Local Current Algebras in Magic without
Magic: John Archibald Wheeler; Klauder, J.R., Ed.; Freeman: San Francisco, CA, USA, 1972.

4. Goldin, G.A. Nonrelativistic current algebras as unitary representations of groups. J. Math. Phys. 1971, 12, 462–487. [CrossRef]
5. Goldin, G.A.; Grodnik, J.; Powers, R.T.; Sharp, D. Nonrelativistic current algebra in the N/V-limit. J. Math. Phys. 1974, 15, 88–100.

[CrossRef]
6. Goldin, G.A.; Menikoff, R. Sharp F.H. Diffeomorphism groups, gauge groups, and quantum theory. Phys. Rev. Lett. 1983, 51,

2246–2249. [CrossRef]
7. Goldin, G.A.; Menikoff, R.; Sharp, F.H. Representations of a local current algebra in nonsimply connected space and the

Aharonov-Bohm effect. J. Math. Phys. 1981, 22, 1664–1668. [CrossRef]
8. Bogolubov N.N., Jr.; Prorok, D.; Prykarpatski, A.K. Integrability Aspects of the Current Algebra Representation and the Factorized

Quantum Nonlinear Schrëdinger Type Dynamical Systems. Phys. Part Nucl. 2020, 51, 434–442. [CrossRef]
9. Prorok, D.; Prykarpatski, A. Quantum Current Algebra Symmetries and Integrable Many-Particle Schrëdinger Type Quantum

Hamiltonian Operators. Symmetry 2019, 11, 975. [CrossRef]
10. Prorok, D.; Prykarpatski, A. The current algebra representations of quantum many-particle Schrëdinger Hamiltonian models,

their factorized structure and integrability. Condens. Matter Phys. 2019, 22, 33101–33130. [CrossRef]
11. Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-

Geometrical Integrability Analysis; World Scientific: Singapore, 2011.
12. Bogolyubov, N.N., Jr.; Prikarpatskii, A.K. Quantum current Lie algebra as the universal algebraic structure of the symmetries of

completely integrable nonlinear dynamical systems of theoretical and mathematical physics. Theor. Math. Phys. 1988, 75, 329–339.
[CrossRef]

13. Mitropolsky, Y.A.; Bogolubov, N.N.; Prykarpatsky, A.K.; Samoylenko, V.H. Integrable dynamical systems. In Spectral and
Differential Geometric Aspects; Naukova Dumka: Kyiv, Ukraine, 1987.

14. Kowalski, K. Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems; World Scientific: Singapore, 1994.
15. Kowalski, K.; Steeb, W.-H. Non Linear Dynamical Systems and Carleman Linearization; World Scientific Singapore, 1991.
16. Prykarpatsky, A.K.; Bogoliubov, N.N., Jr.; Golenia, J.; Taneri, U. Introductive Backgrounds to Modern Quantum Mathematics

with Application to Nonlinear Dynamical Systems. Int. J. Theor. Phys. 2008, 47, 2882–2897. [CrossRef]
17. Faddeev, L.D.; Tahtadjian, L.A. Hamiltonian Approach in Soliton Theory; Springer: Berlin/Heidelberg, Germany, 1987.
18. Blaszak, M . Bi-Hamiltonian Dynamical Systems; Springer: New York, NY, USA, 1998.
19. Reyman, A.G.; Semenov-Tian-Shansky, M.A. Integrable Systems; The Computer Research Institute: Moscow, Russia, 2003. (In

Russian)
20. Bogolubov, N.N., Jr.; Prykarpatsky, A.K. Quantum method of Bogolyubov generating functionals in statistical physics: Lie current

algebra, its representations and functional equations. Sov. J. Part. Nucl. 1986, 17, 789–827.
21. Bogolubov, N.N., Jr.; Prykarpatsky, A.K. NN Bogolyubov’s quantum method of generating functionals in statistical physics: The

current Lie algebra, its representations and functional equations. Ukr. Mat. Zhurnal 1986, 38, 245–249. [CrossRef]
22. Bogolyubov, N.N., Jr.; Prykarpatsky, A.K. The Wigner quantized operator and N. N. Bogolyubov generating functional method in

nonequilibrium statistical physics. Dokl. Akad. Nauk SSSR 1985, 285, 1365–1370.
23. Ivankiv, L.I.; Prykarpatsky, Y.A.; Samoilenko, V.H.; Prykarpatski, A.K. Quantum Current Algebra Symmetry and Description of

Boltzmann Type Kinetic Equations in Statistical Physics. Symmetry 2021, 13, 1452. [CrossRef]
24. Prykarpatsky, Y.A.; Kycia, R.; Prykarpatski, A.K. On the Bogolubov’s chain of kinetic equations, the invariant subspaces and the

corresponding Dirac type reduction. Ann. Math. Phys. 2021, 4, 074–083. [CrossRef]
25. Kupershmidt, B. Hydrodynamical Poisson brackets and local Lie algebras. Phys. Lett. 1987, 21, 167–174. [CrossRef]
26. Arnold, V.I. Sur la geometrie differerentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des

fluides parfaits. Ann. Inst. Fourier 1966, 16, 319–361. [CrossRef]

142



Universe 2022, 8, 288

27. Holm, D.; Kupershmidt B. Poisson structures of superfluids. Phys. Lett. 1982, 91, 425–430. [CrossRef]
28. Kupershmidt, B.A.; Ratiu, T. Canonical Maps between Semidirect Products with Applications to Elasticity and Superfluids.

Commun. Math. Phys. 1983, 90, 235–250. [CrossRef]
29. Marsden, J.; Ratiu, T.; Schmid, R.; Spencer, R.; Weinstein, A. Hamiltonian systems with symmetry, coadjoint orbits, and plasma

physics. Atti Acad. Sci. Torino 1983, 117, 289–340.
30. Marsden, J.; Weinstein, A. The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D 1982, 4, 394–406. [CrossRef]
31. Weinstein, A. Sophus Lie and symplectic geometry. Expos. Math. 1983, 1, 95–96.
32. Weinstein, A. The local structure of Poisson manifolds. J. Differ. Geom. 1983, 18, 523–557. [CrossRef]
33. Marsden, J.; Weinstein, A. Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 1974, 5, 121–130. [CrossRef]
34. Gay-Balmaz, F.; Monastyrsky, M.; Ratiu, T.S. Lagrangian Reductions and Integrable Systems in Condensed Matter. Commun.

Math. Phys. 2015, 335, 609–636. [CrossRef]
35. Gay-Balmaz, F.; Yoshimira, H. Dirac reduction for nonholonomic mechanical systems and semi-direct product. arXiv 2014,

arXiv:1410.5394v1.
36. Holm, D.D.; Tronci, C. Euler-Poincare formulation of hybrid plasma models. arXiv 2011, arXiv:1012.0999v2.
37. Khesin, B.; Lenells, J.; Misiolek, G.; Preston, S.C. Geometry of diffeomorphism groups, complete integrability and geometric

statistics. Geom. Funct. Anal. 2013, 23, 334–366. [CrossRef]
38. Kolev, B. Lie groups and mechanics: Introduction. J. Nonl. Math. Phys. 2004, 11, 480–498. [CrossRef]
39. Kushner, A.; Lychagin, V.; Roop, M. Optimal Thermodynamic Processes for Gases. Entropy 2020, 22, 448. [CrossRef]
40. Marsden, J.E.; Ratiu, T.S.; Shkoller, S. The geometry and analysis of the averaged Euler equations and a new diffeomorphism

group. Geom. Funct. Anal. 2000, 10, 582–599. [CrossRef]
41. Marsden, J.; Ratiu, T.; Weinstein A. Reduction and Hamiltoninan structures on duals of semidirect product Lie algebras. Contemp.

Math. 1984, 28, 55–100.
42. Mrugala, R. Continuous contact transformations in thermodynamics. Rep. Math. Phys. 1993, 33, 149–154. [CrossRef]
43. Mrugala, R. Lie, Jacobi, Poisson and quasi-Poisson structures in thermodynamics. Tensor New Ser. 1995, 56, 37–45.
44. Preston, S.C. For ideal fluids, Eulerian and Lagrangian instabilities are equivalent. Geom. Funct. Anal. 2004, 14, 1044–1062.

[CrossRef]
45. Schneider, E. Differential invariants. In Nonlinear PDEs, Their Geometry, and Applications; Kycia, R.A., Ulan, M., Schneider, E., Eds.;

Springer Nature: Cham, Switzerland, 2019.
46. Schneider, E. Differential invariants of measurements, and their connection to central moments. arXiv 2020, arXiv:2005.08895v1.
47. Tronci, C.; Tassi, E.; Camporeale, E.; Morrison, P.J. Hybrid Vlasov-MHD models: Hamiltonian vs. non-Hamiltonian. arXiv 2014,

arXiv:1403.2773v2.
48. Vizman, C. Geodesic Equations on Diffeomorphism Groups. SIGMA 2008, 4, 030. [CrossRef]
49. Blackmore, D.; Balinsky, A.A.; Prykarpatski, A.K. Entropy and Ergodicity of Boole-Type Transformations. Entropy 2021, 23, 1405.

[CrossRef]
50. Nikitin, V.Y.; Tsybenko, S. On Clebsch variables in hydrodynamics of classical fluids and plasmas. Czechoslov. J. Phys. 2002, 52,

305–309.
51. Jackson, D.M.; Moffatt, I. An Introduction to Quantum and Vassiliev Knot Invariants; Springer: Berlin/Heidelberg, Germany, 2019.
52. Esen, O.; Grmela, M.; Gumral, H.; Pavelka, M. Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy. Entropy 2019, 21,

907. [CrossRef]
53. Grmela, M. Contact Geometry of Mesoscopic Thermodynamics and Dynamics. Entropy 2014, 16, 1652–1686. [CrossRef]
54. Balinsky, A.A.; Blackmore, D.; Kycia, R.; Prykarpatski, A.K. Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity

Invariants. Entropy 2020, 22, 1241. [CrossRef] [PubMed]
55. Berezin F.A. The Method of Second Quantization (Monographs and Textbooks in Pure and Applied Physics); Academic Press: Cambridge,

MA, USA, 1966.
56. Bogolubov, N.N.; Bogolubov N.N., Jr. Introduction to Quantum Statistical Mechanics; Gordon and Breach: New York, NY, USA;

London, UK, 1994.
57. Berezin, F.A.; Shubin, M.A. Schrëdinger Equation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; 555p.
58. Faddeev, L.D.; Yakubovskii, O.A. Lectures on Quantum Mechanics for Mathematics Students; American Mathematical Society:

Providence, RI, USA, 2009.
59. Prykarpatsky, A.; Mykytyuk, I. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects;

Kluwer Academic Publishers: Alphen aan den Rijn, The Newtherlands, 1998.
60. Takhtajan, L.A. Quantum Mechanics for Mathematicians; Department of Mathematics, Stony Brook University: Stony Brook, NY,

USA, 2008.
61. Berezanskii, Y.M. Expansions in Eigenfunctions of Selfadjoint Operators; Translations of Mathematical Monographs; American

Mathematical Society: Providence, RI, USA, 1968; 809p.
62. Berezansky, Y.M.; Kondratiev, Y.G. Spectral Methods in Infinite Dimensional Analysis, v.1 and 2; Kluwer: Alphen aan den Rijn,

The Netherlands, 1995.
63. Dirac, P.A.M. The Principles of Quantum Mechanics, 2nd ed.; Clarendon Press: Oxford, UK, 1935.
64. Fock, V.A. Konfigurationsraum und zweite Quantelung. Zeischrift Phys. Bd. 1932, 75, 622–647. [CrossRef]

143



Universe 2022, 8, 288

65. Prykarpatsky, A.K.; Taneri, U.; Bogolubov, N.N., Jr. Quantum Field Theory and Application to Quantum Nonlinear Optics; World
Scientific: Singapore, 2002.

66. Gelfand, I.; Vilenkin, N. Generalized Functions ; Academic Press: Cambridge, MA, USA, 1964; Volume 4.
67. Balakrishnan, A.V. Applied Functional Analysis; Springer: New York, NY, USA, 1981.
68. Bogolubov, N.N., Jr.; Prykarpatsky, A.K. Quantum method of generating Bogolubov functionals in statistical physics: Current Lie

algebras, their representations and functional equations. Phys. Elem. Part. At. Nucl. 1986, 17, 791–827.
69. Reed, M.; Simon, B. Theory of Operators, v.3; SpringerBerlin/Heidelberg, Germany, 1987.
70. Albeverio, S.; Kondratiev, Y.G.; Streit, L. How to Generalize White Noice Analysis to Non-Gaussian Measures; Bi-Bo-S: Bielefeld,

Germany, 1992.
71. Albeverio, S.; Daletsky, A.; Kondratiev, Y.; Lytvynov, E. Laplace operators in de-Rham complexes associated with measures on

configuration spaces. J. Geom. Phys. 2003, 47, 259–302. [CrossRef]
72. Aref’eva, I.Y. Current formalism in nonrelativistic quantum mechanics. Theoret. Math. Phys. 1972, 10, 146–155. [CrossRef]
73. Parthasarathy, K.R. Introduction to Probability and Measure; Hindustan Book Agency: New Delhi, India, 2005.
74. Goldin, G.A.; Sharp, D.H. Rotational generators in two-dimensional space and particles obeying unusual statistics. Phys. Rev. D

1983, 28, 830–832. [CrossRef]
75. Araki, H. Hamiltonian Formalism and the Canonical Commutation Relations in Quantum Field Theory. J. Math. Phys. 1960, 1,

492–504. [CrossRef]
76. Menikoff, R. Generating functionals determining representation of a nonrelativistic local current algebra in the N/V-limit. J.

Math. Phys. 1974, 15, 1394–1408. [CrossRef]
77. Menikoff, R.; Sharp, D. Representation of a local current algebra: Their dynamical determination. J. Math. Phys. 1975, 16,

2341–2352. [CrossRef]
78. Campbell, C.E. Extended Jastrow functions. Phys. Lett. 1973, 44, 471–477. [CrossRef]
79. Feenberg, E. Ground state of an interacting boson system. Ann. Phys. 1974, 84, 128–137. [CrossRef]
80. Berezansky, Y.M. A generalization of white noice analysis by means of theory of hypergroups. Rep. Math. Phys. 1996, 38, 289–300.

[CrossRef]
81. Prykarpatsky, A.K.; Bogoliubov, N.N., Jr.; Golenia, J. A symplectic generalization of the Peradzyński helicity theorem and some
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Abstract: We show that a Minkowski phase space endowed with a bracket relatively to a conformable
differential realizes a Poisson algebra, confering a bi-Hamiltonian structure to the resulting manifold.
We infer that the related Hamiltonian vector field is an infinitesimal Noether symmetry, and compute
the corresponding deformed recursion operator. Besides, using the Hamiltonian–Jacobi separability,
we construct recursion operators for Hamiltonian vector fields in conformable Poisson–Schwarzschild
and Friedmann–Lemaître–Robertson–Walker (FLRW) manifolds, and derive the related constants of
motion, Christoffel symbols, components of Riemann and Ricci tensors, Ricci constant and compo-
nents of Einstein tensor. We highlight the existence of a hierarchy of bi-Hamiltonian structures in
both the manifolds, and compute a family of recursion operators and master symmetries generating
the constants of motion.

Keywords: Einstein field equation; recursion operator; Noether symmetry; master symmetry; con-
formable differential; Poisson manifold

1. Introduction

Conformable fractional calculus has a long and rich history. In 1695, Gottfried Leibniz
asked Guillaume l’Hôspital if the (integer) order of derivatives and integrals could be
extended [1]. Would it be possible if the order was some irrational, fractional or complex
number? This idea motivated many mathematicians, physicists and engineers to develop
the concept of fractional calculus in diverse fields of science and engineers (see, e.g., [2–9],
and references therein). Over four centuries, many famous mathematicians contributed
to this development. It is still nowadays one of the most intensively developing areas of
mathematical analysis, including several definitions of fractional operators like Riemann–
Liouville, Caputo, Grünwald–Letnikov, Riesz and Weyl definitions [5,10–12]. Two of these
definitions, namely Riemann–Liouville and Caputo, are famous. Mathematicians prefer
the Riemann–Liouville fractional derivative while physicists and engineers use the Caputo
fractional one. Indeed, the Riemann–Liouville fractional derivative of a constant is not
zero, and it requires fractional initial conditions that are not generally specified [5]. In
contrast, the Caputo derivative of a constant is zero, and a fractional differential equation
expressed in terms of a Caputo fractional derivative requires standard boundary conditions.
Unfortunately, the Riemann–Liouville derivative and Caputo derivative do not obey the
Leibniz rule and chain rule, which sometimes prevents us from applying these derivatives
to ordinary physical systems with a standard Newton derivative. In 2014, Khalil et al. [13]
introduced the new fractional derivative called the conformable fractional derivative and
the integral obeying the Leibniz rule and chain rule. One year later, i.e., in 2015, Chung [5]
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used this conformable fractional derivative and integral to discuss the fractional version
of the Newtonian mechanics. In that work, he constructed the fractional Euler–Lagrange
equation from the fractional version of the calculus of variations and used this equation
to discuss some mechanical problems such as fractional harmonic oscillator problem,
the fractional damped oscillator problem and the forced oscillator problem. In 2017,
Chung et al. [14] discussed the dynamics of a particle in a viscoelastic medium using
the conformable fractional derivative of order α with respect to time. Further, in 2019,
the same authors [15] discussed the fractional classical mechanics and applied it to the
anomalous diffusion relation from the α-deformed Langevin equation. During the same
year, Kiskinov et al. [16] investigated the Cauchy problem for nonlinear systems with
conformable derivatives and variable delays. Furthermore, Khalil et al. gave the geometric
meaning of a conformable derivative via fractional cords in 2019 [17]. In 2020, Chung et
al. [18] studied the deformed special relativity based on α-deformed binary operations. In
that work, they gave the α-translation invariant distance (α-distance) of infinitesimally close
space-time based on the definition of α-translation invariant infinitesimal displacement
and α-translation invariant infinitesimal time interval.

In addition, in the last few decades, there was a renewed interest in completely inte-
grable Hamiltonian systems (IHS), the concept of which goes back to Liouville in 1897 [19]
and Poincaré in 1899 [20]. In short, IHS are defined as nonlinear differential equations
admitting a Hamiltonian description and possessing enough constants of motion so that
they can be integrated by quadratures [21]. This Liouville formalism does not provide a
method for obtaining the integrals of motion; it has therefore been necessary to elaborate
different methods for obtaining constants of motion (Hamilton–Jacobi separability, Lax
pairs formalism, Noether symmetries, Hidden symmetries, etc). A relevant progress in the
analysis of the integrability was the important remark that many of these systems are Hamil-
tonian dynamics with respect to two compatible symplectic structures [22–24], permitting
a geometrical interpretation of the so-called recursion operator [25–27]. A description
of integrability working both for systems with finitely many degrees of freedom and for
field theory can be given in terms of an invariant, diagonalizable mixed (1, 1)-tensor field,
having bidimensional eigenspaces and vanishing Nijenhuis torsion. One of the powerful
methods of describing IHS with involutive Hamiltonian functions or constants of motion
uses the recursion operator admitting a vanishing Nijenhuis torsion. In 2015, Takeuchi
constructed recursion operators of Hamiltonian vector fields of geodesic flows for some
Riemannian and Minkowski metrics [28], and obtained related constants of motion. In his
work, Takeuchi used five particular solutions of the Einstein equation in the Schwarzschild,
Reissner–Nordström, Kerr, Kerr–Newman, and FLRW metrics, and constructed recursion
operators inducing the complete integrability of the Hamiltonian functions. Further, in
2019, we investigated the same problem in a noncommutative Minkowski phase space [29].

In the present work, we investigate Noether symmetry and recursion operators in-
duced by a conformable Poisson algebra in a Minkowski phase space. We construct
recursion operators using conformable Schwarzschild and Friedmann–Lemaître–Robertson–
Walker (FLRW) metrics and discuss their relevant master symmetries.

The paper is organized as follows. In Section 2, we give the notion of conformable
differential and related formulation of the wellknown Takeuchi Lemma [28]. In Section 3,
we construct a conformable Poisson algebra and the Lie algebra of deformed vector fields,
prove the existence of infinitesimal Noether symmetry and bi-Hamiltonian structure, and
compute the corresponding recursion operator in a conformable Minkowski phase space. In
Section 4, we construct recursion operators for Hamiltonian vector fields, related constants
of motion, Christoffel symbols, components of Riemann and Ricci tensors, Ricci constant,
and components of Einstein tensor in the framework of conformable Schwarzschild and
FLRW metrics. In Section 5, we derive a hierarchy of master symmetries and compute the
conserved quantities. In Section 6, we end with some concluding remarks.
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2. Conformable Differential and Formulation of Takeuchi Lemma

A Hamiltonian system is a triple (Q, ω, H), where (Q, ω) is a symplectic manifold
and H is a smooth function on Q, called Hamiltonianor Hamiltonian function [30].

Given a general dynamical system defined on the 2n-dimensional manifold Q [31,32],
its evolution can be described by the equation

ẋ(t) = X(x), x ∈ Q, X ∈ T Q. (1)

If the system (1) admits two different Hamiltonian representations:

ẋ(t) = XH1,H2 = P1dH1 = P2dH2, (2)

its integrability as well as many other properties are subject to Magri’s approach. The bi-Hamiltonian
vector field XH1,H2 is defined by two pairs of Poisson bivectors P1,P2 and Hamiltonian functions
H1, H2. Such a manifold Q equipped with two Poisson bivectors is called a double Poisson mani-
fold, and the quadruple (Q,P1,P2, XH1,H2 ) is called a bi-Hamiltonian system. P1 and P2 are two
compatible Poisson bivectors with a vanishing Schouten–Nijenhuis bracket [33]:

[P1,P2]NS = 0. (3)

A recursion operator T : T Q −→ T Q is defined by

T := P2 ◦ P−1
1 . (4)

A Noether symmetry is a diffeomorphism Φ : Q −→ Q such that [34]:

Φ∗ω = ω, Φ∗H = H. (5)

An infinitesimal Noether symmetry is a vector field Y ∈ X(Q) (the set of all differentiable vector
fields on Q) such that:

LYω = 0, LY H = 0. (6)

Definition 1. Consider the map g and its inverse g−1:

g : R2n
α −→ R2n g−1 : R2n −→ R2n

α

z %−→ g(z) = |z|α−1z = Z Z %−→ g−1(Z) = |Z|(1/α)−1Z = z, (7)

where g(0) = 0, g(1) = 1, and g(±∞) = ±∞. Then, for this map, the α-addition, α-subtraction,
α-multiplication, and α-division are given by:

a⊕α b = |a|a|α−1 + b|b|α−1|(1/α)−1(a|a|α−1 + b|b|α−1),

a&α b = |a|a|α−1 − b|b|α−1|(1/α)−1(a|a|α−1 − b|b|α−1),

a⊗α b = ab,

a'α b =
a
b

,

where a, b ∈ R2n
α .

Definition 2. Let h be a differentiable coordinates function on R2n
α . The conformable differential, also called

α-differential in the sequel, with respect to the position q and its associated momentum p is defined by:

dα : R2n
α −→ R2n

h %−→ dαh :=
2n

∑
μ=1

α|xμ|α−1 ∂

∂xμ
h, (xν = qν, xν+n = pν, n = 4, ν = 1, 2, 3, 4) (8)

satisfying the following properties:

(i) dα(ah + b f ) = adαh + bdα f for all a, b ∈ R;
(ii) dα(hm) = mhm−1dαh, for all m ∈ R;
(iii) dα(c) = 0, for all constant functions h(q, p) = c;
(iv) dα(h f ) = hdα f + f dαh;
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(iv) dα

(
h
f

)
=

f dαh− hdα f
f 2 , where f is also a differentiable coordinates function on R2n

α .

The α-differential produces a new deformed phase space called a conformable phase space.
The ordinary differential is obtained for α = 1. Using the α-addition and α-subtraction, we
obtain the following infinitesimal distance between two points of coordinates (xi, . . . , xn) and
(xi ⊕α dαxi, . . . , xn ⊕α dαxn)

dαs = (d2
αxi + . . . + d2

αxn)
1
2 . (9)

In the R2n
α , Takeuchi Lemma [28] takes the following form:

Lemma 1. Consider the conformable vector fields

Xαi = −|xi|(1−α)|xn+i|(1−α) ∂

∂xn+i
, i = 1, . . . , n (10)

on R2n
α and

Tα =
n

∑
i=1

|xi|(α−1)|xi

(
∂

∂xi
⊗ dxi +

∂

∂xn+i
⊗ dxn+i

)
, (11)

a (1, 1)-tensor field on R2n
α . Then, we have that the Nijenhuis torsion of Tα is vanishing, i.e., NTα

= 0 and
LXαi

Tα = 0, that is, the (1, 1)-tensor field Tα is a conformable recursion operator of Xαi , (i = 1, . . . , n).

Proof of Lemma 1. We have:

LXαi
Tα = LXαi

{
n

∑
i=1

|xi|(α−1)|xi

(
∂

∂xi
⊗ dxi +

∂

∂xn+i
⊗ dxn+i

)}

=
n

∑
i=1

{
LXαi

(|xi|(α−1)|xi)

(
∂

∂xi
⊗ dxi +

∂

∂xn+i
⊗ dxn+i

)

+ |xi|(α−1)|xi

(
LXαi

[
∂

∂xi
⊗ dxi

]
+ LXαi

[
∂

∂xn+i
⊗ dxn+i

])}

LXαi
Tα =

n

∑
i=1

|xi|(α−1)|xi

(
LXαi

[
∂

∂xi
⊗ dxi

]
+ LXαi

[
∂

∂xn+i
⊗ dxn+i

])

because LXαi
(|xi|(α−1)|xi) = 0.

Then,

LXαi
Tα =

n

∑
i=1

|xi|(α−1)|xi

(
LXαi

[
∂

∂xi

]
⊗ dxi +

∂

∂xi
⊗LXαi

(dxi)

+ LXαi

[
∂

∂xn+i

]
⊗ dxn+i +

∂

∂xn+i
⊗LXαi

(dxn+i)

)
LXαi

Tα = 0.

The components of the Nijenhuis torsion are as follows [28]:

(NTα
)h

ij = (Tα)
k
i

∂(Tα)h
j

∂xk
− (Tα)

k
j

∂(Tα)h
i

∂xk
+ (Tα)

h
k

∂(Tα)k
i

∂xj
− (Tα)

h
k

∂(Tα)k
j

∂xi

= |xi|(α−1)|xi
∂(Tα)h

j

∂xi
− |xj|(α−1)|xj

∂(Tα)h
i

∂xj
+ (Tα)

h
i

∂(|xi|(α−1)|xi)

∂xj
− (Tα)

h
j

∂(|xj|(α−1)|xj)

∂xi

= |xi|(α−1)|xi
∂(Tα)h

j

∂xi
− |xj|(α−1)|xj

∂(Tα)h
i

∂xj
+ α(Tα)

h
i |xi|(α−1)δi

j − α(Tα)
h
j |xj|(α−1)δ

j
i .

1. If i = j, we have δi
j = δ

j
i = 1 and we get
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(NTα
)h

ij = |xi|(α−1)|xi
∂(Tα)h

i
∂xi

− |xi|(α−1)|xi
∂(Tα)h

i
∂xi

+ α|xi|(α−1)(Tα)
h
i − α|xi|(α−1)(Tα)

h
i = 0; (12)

2. If i �= j, we have δi
j = δ

j
i = 0 and

∂(Tα)h
j

∂xi
=

∂(Tα)h
i

∂xj
= 0. Then,

(NTα
)h

ij = 0. (13)

From (12) and (13), we get NTα
= 0.

3. Recursion Operator in Conformable Minkowski Phase Space

In this section, we derive the recursion operator of Hamiltonian vector fields of geodesic flow
for a free particle in a conformable Minkowski phase space and obtain the associated constants
of motion.

3.1. Symplectic Structure, Poisson Bracket and Lie Algebra
We consider our configuration space as a manifold Q = R4

α\{0} that is, a four-dimensional real
Euclidean vector space with the origin removed. The cotangent bundle T ∗Q = Q×R4

α has a natural
symplectic structure ωα : T Q −→ T ∗Q which, in local coordinates (q, p), is given by

ωα =
4

∑
μ=1

dα pμ ∧ dαqμ =
4

∑
μ=1

α2|pμ|α−1|qμ|α−1dpμ ∧ dqμ. (14)

Since ωα is non-degenerate, it induces an inverse map, called bivector field Pα: T ∗Q −→ T Q
(tangent bundle) defined by

Pα =
4

∑
μ=1

α−2|pμ|1−α|qμ|1−α ∂

∂pμ
∧ ∂

∂qμ , ωα ◦ Pα = Pα ◦ωα = 1, (15)

and is used to construct the Hamiltonian vector field Xα f of a Hamiltonian function f by the relation

Xα f = Pαd f .

We consider now the next conformable Minkowski metric on the manifold Q:

dαs2 = −α2|q1|2(α−1)(dq1)2 + α2|q2|2(α−1)(dq2)2 + α2|q3|2(α−1)(dq3)2 + α2|q4|2(α−1)(dq4)2, (16)

where c = 1 for commodity yielding the tensor metric (gμν)α and its inverse (gμν)α

(gμν)α = α2

⎛⎜⎜⎜⎝
−(q1)2(α−1) 0 0 0

0 (q2)2(α−1) 0 0
0 0 (q3)2(α−1) 0
0 0 0 (q4)2(α−1)

⎞⎟⎟⎟⎠, (17)

(gμν)α =
1
α2

⎛⎜⎜⎜⎝
−(q1)2(1−α) 0 0 0

0 (q2)2(1−α) 0 0
0 0 (q3)2(1−α) 0
0 0 0 (q4)2(1−α)

⎞⎟⎟⎟⎠. (18)

In our framework, the equation of the geodesic on the manifold Q is given by

d2qμ

dt2 + (Γμ
νλ)α

dqν

dt
dqλ

dt
= 0, (ν, μ, λ = 1, 2, 3, 4), (19)

where

(Γμ
νλ)α =

1
2
(gμε)α

(
∂(gεν)α

∂qλ
+

∂(gελ)α

∂qν
− ∂(gνλ)α

∂qε

)
(20)
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are Christoffel symbols. From (20), we have

(Γ1
11)α =

α− 1
q1 ; (Γ2

22)α =
α− 1

q2 ; (Γ3
33)α =

α− 1
q3 ; (Γ4

44)α =
α− 1

q4 ; (Γμ
νλ)α = 0, otherwise, (21)

and obtain that the Riemann tensor components are vanished, i.e., Rijkl = 0, (i, j, k, l = 1, 2, 3, 4).
Then, the Minkowski phase space endowed with the metric dαs2 is a flat space. Thus, we notice that
this result does not change the geometric structure of the ordinary Minkowski phase space. Further,
the presence of the Christoffel symbols (Γi

ii)α, (i = 1, 2, 3, 4) means that the parallel displacement of
any basic vector of our considered manifold with respect to itself always remains parallel with this
same basic vector. The ordinary Minkowski phase space is obtained for α = 1.

Since the quantities (Γ̃μ
νλ)α =

1
α + 1

(Γμ
νλ)α do not change the geometric structure of the

Minkowski phase space, we replace (Γμ
νλ)α by (Γ̃μ

νλ)α in (19). Then, the equation of the geodesic
becomes:

d2qμ

dt2 + (Γ̃μ
νλ)α

dqν

dt
dqλ

dt
= 0, (ν, μ, λ = 1, 2, 3, 4). (22)

If we put υμ =
dqμ

dt
, we have a first order differential equation on the tangent bundle T (Q) of

the manifold Q:

q̇μ = υμ, υ̇μ = − 1
α + 1

(Γμ
νλ)αυνυλ. (23)

From the above equations, we get the geodesic spray

Xα := υμ ∂

∂qμ −
1

α + 1
(Γμ

νλ)αυνυλ ∂

∂υμ . (24)

By setting pμ = εμευε, ε = sgn(−,+,+,+), the vector field Xα is equivalently transformed to
the vector field Xα on the cotangent bundle T ∗(Q) such that

Xα = −p1
∂

∂q1 +
4

∑
k=2

pk
∂

∂qk +

(
α− 1
α + 1

)
p2

1
q1

∂

∂p1
−

4

∑
k=2

(
α− 1
α + 1

)
p2

k
qk

∂

∂pk
, (25)

The vector field Xα is a Hamiltonian vector field of a certain Hamiltonian function Hα.

Proposition 1. The set F of differentiable functions defined on T ∗(Q) endowed with the bracket

{ f , g}α :=
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂ f

∂pμ

∂g
∂qμ −

∂ f
∂qμ

∂g
∂pμ

)
(26)

is a conformable Poisson algebra.

Proof of Proposition 1. To prove this Proposition, we just have to prove that the bracket {., .}α is a
conformable Poisson bracket.

Let us consider f , g, and h as the three arbitrary elements of F.

• Antisymmetry

{ f , g}α =
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂ f

∂pμ

∂g
∂qμ −

∂ f
∂qμ

∂g
∂pμ

)
,

= −
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂g

∂pμ

∂ f
∂qμ −

∂g
∂qμ

∂ f
∂pμ

)
,

= −{g, f }α. (27)

• Jacobi identity
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{ f , {g, h}α}α =

{
f ,

4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂g

∂pμ

∂h
∂qμ −

∂g
∂qμ

∂h
∂pμ

)}
α

=
4

∑
μ,ν=1

α−4|pν|(1−α)|qν|(1−α)

[
∂ f
∂pν

(
σ1|pμ|(1−α)(qμ)−α

(
∂g

∂pμ

∂h
∂qμ −

∂g
∂qμ

∂h
∂pμ

)

+ |pμ|(1−α)|qμ|(1−α)
(

∂2g
∂qν∂pμ

∂h
∂qμ +

∂g
∂pμ

∂2h
∂qν∂qμ −

∂2g
∂qν∂qμ

∂h
∂pμ

− ∂g
∂qμ

∂2h
∂qν∂pμ

))

− ∂ f
∂qν

(
σ2|qμ|(1−α)(pμ)

−α

(
∂g

∂pμ

∂h
∂qμ −

∂g
∂qμ

∂h
∂pμ

)
+ |pμ|(1−α)|qμ|(1−α)

×
(

∂2g
∂pν∂pμ

∂h
∂qμ +

∂g
∂pμ

∂2h
∂pν∂qμ −

∂2g
∂pν∂qμ

∂h
∂pμ

− ∂g
∂qμ

∂2h
∂pν∂pμ

))]
, (28)

{h, { f , g}α}α =

{
h,

4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂ f

∂pμ

∂g
∂qμ −

∂ f
∂qμ

∂g
∂pμ

)}
α

=
4

∑
μ,ν=1

α−4|pν|(1−α)|qν|(1−α)

[
∂h

∂pν

(
σ1|pμ|(1−α)(qμ)−α

(
∂ f

∂pμ

∂g
∂qμ −

∂ f
∂qμ

∂g
∂pμ

)

+ |pμ|(1−α)|qμ|(1−α)
(

∂2 f
∂qν∂pμ

∂g
∂qμ +

∂ f
∂pμ

∂2g
∂qν∂qμ −

∂2 f
∂qν∂qμ

∂g
∂pμ

− ∂ f
∂qμ

∂2g
∂qν∂pμ

))

− ∂h
∂qν

(
σ2|qμ|(1−α)(pμ)

−α

(
∂ f

∂pμ

∂g
∂qμ −

∂ f
∂qμ

∂g
∂pμ

)
+ |pμ|(1−α)|qμ|(1−α)

×
(

∂2 f
∂pν∂pμ

∂g
∂qμ +

∂ f
∂pμ

∂2g
∂pν∂qμ −

∂2 f
∂pν∂qμ

∂g
∂pμ

− ∂ f
∂qμ

∂2g
∂pν∂pμ

))]
, (29)

{g, {h, f }α}α =

{
g,

4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂h

∂pμ

∂ f
∂qμ −

∂h
∂qμ

∂ f
∂pμ

)}
α

=
4

∑
μ,ν=1

α−4|pν|(1−α)|qν|(1−α)

[
∂g
∂pν

(
σ1|pμ|(1−α)(qμ)−α

(
∂h

∂pμ

∂ f
∂qμ −

∂h
∂qμ

∂ f
∂pμ

)

+ |pμ|(1−α)|qμ|(1−α)
(

∂2h
∂qν∂pμ

∂ f
∂qμ +

∂h
∂pμ

∂2 f
∂qν∂qμ −

∂2h
∂qν∂qμ

∂ f
∂pμ

− ∂h
∂qμ

∂2 f
∂qν∂pμ

))

− ∂g
∂qν

(
σ2|qμ|(1−α)(pμ)

−α

(
∂h

∂pμ

∂ f
∂qμ −

∂h
∂qμ

∂ f
∂pμ

)
+ |pμ|(1−α)|qμ|(1−α)

×
(

∂2h
∂pν∂pμ

∂ f
∂qμ +

∂h
∂pμ

∂2 f
∂pν∂qμ −

∂2h
∂pν∂qμ

∂ f
∂pμ

− ∂h
∂qμ

∂2 f
∂pν∂pμ

))]
, (30)

where σ1 = (1− α)(sgn(qμ))1−α and σ2 = (1− α)(sgn(pμ))1−α.
Summing (28)–(30), we get

{ f , {g, h}α}α + {g, {h, f }α}α + {h, { f , g}α}α = 0, (31)

which is the Jacobi identity.
• Derivation
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{ f , gh}α =
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂ f

∂pμ

∂(gh)
∂qμ − ∂ f

∂qμ

∂(gh)
∂pμ

)

=
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

[
∂ f

∂pμ

(
∂g
∂qμ h + g

∂h
∂qμ

)
− ∂ f

∂qμ

(
∂g

∂pμ
h + g

∂h
∂pμ

)]

=
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

[
g
(

∂ f
∂pμ

∂h
∂qμ −

∂ f
∂qμ

∂h
∂pμ

)
+

(
∂ f

∂pμ

∂g
∂qμ −

∂ f
∂qμ

∂g
∂pμ

)
h

]
, (32)

which proves the derivative property: { f , gh}α = g{ f , h}α + { f , g}αh.

Thus, the bracket {., .}α is antisymmetric and satisfies the Jacobi identity and the derivation
property. Therefore, it is a Poisson bracket and (F, {., .}α) is a conformable Poisson algebra.

Proposition 2. The set of Hamiltonian vector fields XαF endowed with the Lie bracket given by the commuta-
tor [., .] is a conformable Lie algebra.

Proof of Proposition 2. Using the Jacoby identity, we have:

{ f , {g, h}α}α + {g, {h, f }α}α + {h, { f , g}α}α = 0. (33)

The left hand side of this identity can be handled as:

{ f , {g, h}α}α + {g, {h, f }α}α + {h, { f , g}α}α

= { f , {g, h}α}α − {g, { f , h}α}α − {{ f , g}α, h}α

= Xα f {g, h}α − {g, Xα f h}α − {Xα f g, h}α

= Xα f Xαg h− Xαg Xα f h− Xα{ f ,g}α
h

= [Xα f , Xαg ]h− Xα{ f ,g}α
h

leading to

[Xα f , Xαg ]h = Xα{ f ,g}α
h. (34)

Then, the map f %→ Xα f = { f , .}α, { f , .g}α %→ Xα{ f ,g}α
is a conformable Lie algebra morphism

(F, {., .}α)→ (XαF , [., .]). Therefore, (XαF , [., .]) is a conformable Lie algebra.

3.2. Noether Symmetry and Recursion Operator
By definition, we have

Xα := {Hα, .}α =
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂Hα

∂pμ

∂

∂qμ −
∂Hα

∂qμ

∂

∂pμ

)
. (35)

Using (25) and (35), we obtain the following set of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α−2|p1|(1−α)|q1|(1−α) ∂Hα

∂p1
= −p1

α−2|p1|(1−α)|q1|(1−α) ∂Hα

∂q1 = −
(

α− 1
α + 1

)
p2

1
q1

α−2|pk|(1−α)|qk|(1−α) ∂Hα

∂pk
= pk, k = 2, 3, 4

α−2|pk|(1−α)|qk|(1−α) ∂Hα

∂qk =

(
α− 1
α + 1

)
p2

k
qk , k = 2, 3, 4

(36)

leading to

Hα = − α2

α + 1
|q1|α−1|p1|α+1 +

4

∑
k=2

α2

α + 1
|qk|α−1|pk|α+1. (37)

This function is called the Hamiltonian function. For α = 1, we naturally obtain the Hamiltonian
function of a free particle on the ordinary Minkowski phase space.
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The vector field

Yα = − 1
2α2 |p1|1−α p−2

1 |q1|1−α|q1| 1−α
1+α

∂

∂p1
+

1
2α2

4

∑
k=2

|pk|1−α p−2
k |qk|1−α|qk| 1−α

1+α
∂

∂pk
(38)

is a master symmetry, i.e.,
[[Yα, Xα], Xα] = 0, (39)

and the following relations hold:

Lα := LYα
Hα =

1
2

(
p−1

1 (q1)
1−α
1+α +

4

∑
k=2

p−1
k (qk)

1−α
1+α

)
, (40)

ωα1 := LYα
ωα = dιYα

ωα + ιYα
dωα

= p−3
1 |q1| 1−α

1+α dp1 ∧ dq1 −
4

∑
k=2

p−3
k |qk| 1−α

1+α dpk ∧ dqk, (41)

Xα1 := [Xα, Yα]

= − 1
2α2

[
1− α

(1 + α)
G1|p1|−α|q1| 1−2α−α2

1+α
∂

∂p1
+ |p1|1−α p−2

1 |q1| 2−α−α2
1+α

∂

∂q1

]
− 1

2α2

4

∑
k=2

[
1− α

(1 + α)
Gk p−α

k |qk| 1−2α−α2
1+α

∂

∂pk
+ |pk|1−α p−2

k |qk| 2−α−α2
1+α

∂

∂qk

]
, (42)

where Gi = sgn(pi)sgn(qi), i = 1, 2, 3, 4.
We notice that Xα1 satisfies the relation

ιXα1
ωα = −dLα,

where ιXα1
ωα is the interior product of ωα with respect to the vector field Xα1 . Since Xα1 is a dynamical

symmetry, i.e., [Xα, Xα1 ] = 0, Lα is a first integral, also called a constant of motion. Thus, we arrive at
the following property:

Proposition 3. The vector field Xα1 is an infinitesimal Noether symmetry.

Proof of Proposition 3. We have:

LXα1
ωα = dιXα1

ωα + ιXα1
dωα = dιXα1

ωα = −d2Lα = 0. (43)

Since Xα1 is a dynamical symmetry, then

LXα1
Hα = Xα1 (Hα) = 0. (44)

Equations (43) and (44) show that Xα1 is both an infinitesimal geometric symmetry, i.e., leaving
invariant the geometric structure (the symplectic form ωα), and an infinitesimal Hamiltonian sym-
metry leaving invariant the dynamics (the Hamiltonian function Hα). Hence, Xα1 is an infinitesimal
Noether symmetry.

In the sequel, we consider the following Poisson bivector

Pα1 = p3
1|q1| α−1

1+α
∂

∂p1
∧ ∂

∂q1 −
4

∑
k=2

p3
k |qk| α−1

1+α
∂

∂pk
∧ ∂

∂qk (45)

and define the conformable Poisson bracket

{ f , g}α1 := p3
1|q1| α−1

1+α

(
∂ f
∂p1

∂g
∂q1 −

∂ f
∂q1

∂g
∂p1

)
−

4

∑
k=2

p3
k |qk| α−1

1+α

(
∂ f
∂pk

∂g
∂qk −

∂ f
∂qk

∂g
∂pk

)
, (46)

with respect to the symplectic form ωα1 .
Thus, the vector field Xα is a bi-Hamiltonian vector field with respect to (ωα, ωα1 ), i.e.,

ιXα
ωα = −dHα and ιXα

ωα1 = −dL̃α, Xα = {Hα, .}α = {L̃α, .}α1 , (47)
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where

L̃α =
4

∑
μ=1

|qμ| 1−α
1+α p−1

μ (48)

are first integrals for XHα
.

Therefore, the associated recursion operator Tα is given by:

Tα := Pα1 ◦ P−1
α

=

(
p3

1|q1| α−1
1+α

∂

∂p1
∧ ∂

∂q1 −
4

∑
k=2

p3
k |qk| α−1

1+α
∂

∂pk
∧ ∂

∂qk

)
◦
( 4

∑
μ=1

α2|pμ|(α−1)|qμ|(α−1)dpμ ∧ dqμ

)

= α2 p3
1|p1|(α−1)|q1| −2+α2+α

1+α
∂

∂p1
⊗ dp1 − α2

4

∑
k=2

p3
k |pk|(α−1)|qk| −2+α2+α

1+α
∂

∂pk
⊗ dpk

+ α2 p3
1|p1|(α−1)|q1| −2+α2+α

1+α
∂

∂q1 ⊗ dq1 − α2
4

∑
k=2

p3
k |pk|(α−1)|qk| −2+α2+α

1+α
∂

∂qk ⊗ dqk, (49)

providing the constants of motion

Tr(Th
α ) = 2hα2h

{(
p3

1|p1|(α−1)|q1| −2+α2+α
1+α

)h
+ (−1)h

( 4

∑
k=2

p3
k |pk|(α−1)|qk| −2+α2+α

1+α

)h
}

, h ∈ N. (50)

This work can be considered as a conformable case of previous investigations [28,29]. The only
difference resides in the fact that we here use the method of Noether symmetry to obtain the integrals
of motion instead of the method of Hamilton–Jacobi separability, developed in [27–29].

4. Conformable Einstein Field Equation

In this section, we investigate the solutions of the Einstein field equation in the conformable
Schwarzschild and Friedmann–Lemaître–Robertson–Walker (FLRW) metrics. We consider the Ein-
stein field equation shortly written in the tensor form as:

Gα + Λgα = κTα, (51)

where the tensor
Gα = Rα −

1
2

gαRα (52)

is the Einstein tensor, the constant Λ is the cosmological constant, κ is a constant; Tα and Rα are
the tress-energy tensor and Ricci tensor measuring the geodesic deviation, respectively. gα is the
metric tensor, and Rα, is the scalar curvature. The energy-momentum tensor Tα, determines how the
geometry is.

4.1. Recursion Operator in Conformable Schwarzschild Metric
The Schwarzschild metric is the simplest one among the particular solutions of the Einstein

field equation.
Here, we consider the following conformable Schwarzschild metric

dαs2 = −
(

1− 2M
q2

)
(q1)2(α−1)(dq1)2 +

(
1− 2M

q2

)−1

(q2)2(α−1)(dq2)2

+ (q2)2(q3)2(α−1)(dq3)2 + (q2)2(q4)2(α−1) sin2 q3(dq4)2, (53)

where t = q1, r = q2, θ = q3, φ = q4, M is a positive constant representing the mass of the black
hole, t ∈ (−∞, ∞), r ∈ (2M, ∞), θ ∈ (0, π), and φ ∈ (0, 2π).

The metric is defined on a manifold

Q = {(q1, q2, q3, q4)| 0 �= q1 ∈ (−∞, ∞), q2 ∈ (2M, ∞),
0 �= q3 ∈ (0, π), and 0 �= q4 ∈ (0, 2π)}. (54)

For α = 1, we recover the Karl Schwarzschild metric [35].
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For our purpose, let us consider the phase space T ∗Q � (q, p), q ∈ Q, and the Hamiltonian
function

HSα = −1
2

(
1− 2M

q2

)−1

(q1)2(1−α)p2
1 +

1
2

(
1− 2M

q2

)
(q2)2(1−α)p2

2

+
1

2(q2)2 (q
3)2(1−α)p2

3 +
1

2(q2)2 sin2 q3
(q4)2(1−α)p2

4. (55)

The Hamiltonian vector field of HSα in a conformable Schwarzschild metric with respect to the

canonical symplectic structure ωα =
4

∑
μ=1

α2|pμ|(α−1)|qμ|(α−1)dpμ ∧ dqμ is given by

XSα := {HSα, .}α =
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)

(
∂Hα

∂pμ

∂

∂qμ −
∂Hα

∂qμ

∂

∂pμ

)

=
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)
(

Vμ
∂

∂qμ + Uμ
∂

∂pμ

)
, (56)

where

V1 = −
(

1− 2M
q2

)−1

η1, V2 =

(
1− 2M

q2

)
η2, V3 =

1
(q2)2 η3, V4 =

1
(q2)2 sin2 q3

η4,

U1 = (1− α)

(
1− 2M

q2

)−1

ζ1, U3 = −
(

1− α

(q2)2 ζ3 −
cos q3

(q2)2 sin3 q3
η4 p4

)
, U4 = − 1− α

(q2)2 sin2 q3
ζ4,

U2 = −
{

M
(q2)2

(
1− 2M

q2

)−2

η1 p1 + (1− α)

(
1− 2M

q2

)
ζ2 +

M
(q2)2 η2 p2 −

1
(q2)3 η3 p3

− 1
(q2)3 sin2 q3

η4 p4

}
,

with ην = (qν)2(1−α)pν, and ζν = (qν)(1−2α)p2
ν, ν = 1, 2, 3, 4.

Then, we get in conformable Schwarzschild metric, the Christoffel symbols (Γk
ij)α, the compo-

nents of the Riemann and Ricci tensors (Rii)α, the Ricci scalar R, and the components of the Einstein
tensor (Gij)α, i, j, k, l = 1, 2, 3, 4, see Appendix A.

Note that the components of defined geometric objects are obtained in the usual undeformed
Schwarzschild metric by setting α = 1.

Now, we consider the Hamilton–Jacobi equation for the Hamiltonian function HSα

ES = HSα

(
q,

∂W
∂q

)
= −1

2

(
1− 2M

q2

)−1

(q1)2(1−α)
(

∂W
∂q1

)2

+
1
2

(
1− 2M

q2

)
(q2)2(1−α)

(
∂W
∂q2

)2

+
1

2(q2)2 (q
3)2(1−α)

(
∂W
∂q3

)2

+
1

2(q2)2 sin2 q3
(q4)2(1−α)

(
∂W
∂q4

)2

, (57)

where ES is a constant and W =
4

∑
μ=1

Wμ(qμ) is the generating function. In particular, we put

W1 =
a
α
|q1|α, where a is a constant. This equation is a type of separation of variables; then, the above

Hamilton–Jacobi equation becomes

2ES(q2)2 +

(
1− 2M

q2

)−1

(q2)2a2 −
(

1− 2M
q2

)
(q2)2(2−α)

(
dW2

dq2

)2

= (q3)2(1−α)
(

dW3

dq3

)2

+
1

sin2 q3
(q4)2(1−α)

(
dW4

dq4

)2

, (58)
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which can be rewritten through a constant K as:

K = 2ES(q2)2 +

(
1− 2M

q2

)−1

(q2)2a2 −
(

1− 2M
q2

)
(q2)2(2−α)

(
dW2

dq2

)2

(59)

K = (q3)2(1−α)
(

dW3

dq3

)2

+
1

sin2 q3
(q4)2(1−α)

(
dW4

dq4

)2

. (60)

From the above, we set: (
K− (q3)2(1−α)

(
dW3

dq3

)2)
sin2 q3 = G (61)

(q4)2(1−α)
(

dW4

dq4

)2

= G. (62)

and obtain

W4 =

√
G

α
|q4|α−1q4 + A, (63)

where A is a constant.
We put the solutions of Equations (59) and (61) in the form:

W2 = W2(q2, ES, a, K), W3 = W3(q3, K, G). (64)

Then, a generating function W takes the form:

W =
a
α
|q1|α + W2(q2, ES, a, K) + W3(q3, K, G) +

√
G

α
|q4|α−1q4 + A. (65)

Now, we consider the canonical system (Q, P), where

Q1 = ES, Q2 = a, Q3 = K, Q4 =
√

G, (66)

P1 := − ∂W
∂Q1 = − ∂W2

∂Q1 , P2 := − ∂W
∂Q2 = − a

α
(q1)α − ∂W2

∂Q2 , (67)

P3 := − ∂W
∂Q3 = − ∂W2

∂Q3 −
∂W3

∂Q3 , and P4 := − ∂W
∂Q4 = − ∂W4

∂Q4 −
∂W3

∂Q4 = − 1
α
|q4|α−1q4 − ∂W3

∂Q4 . (68)

In this new canonical system, we define the following Poisson bracket

{ f , g}α =
4

∑
μ=1

α−2|Pμ|(1−α)|Qμ|(1−α)

(
∂ f

∂Pμ

∂g
∂Qμ −

∂ f
∂Qμ

∂g
∂Pμ

)
, (69)

with respect to the symplectic form

ωα =
4

∑
μ=1

α2|Pμ|(α−1)|Qμ|(α−1)dPμ ∧ dQμ. (70)

Then, the Hamiltonian vector field takes the form:

XSα := {HSα, .}α = −α−2|P1|(1−α)|Q1|(1−α) ∂

∂P1
. (71)

Now, we consider a (1, 1)-tensor field TSα as

TSα =
4

∑
μ=1

|Qμ|α−1Qμ

(
∂

∂Pμ
⊗ dPμ +

∂

∂Qμ ⊗ dQμ

)
. (72)

We can put Qμ = xμ and Pμ = xμ+n, where n = 4 in this case and μ = 1, 2, 3, 4. Then, by
Lemma 1, TSα satisfies LXSα

TSα = 0, NTSα
= 0, and degQμ = 2. Hence, TSα is a recursion operator of

XSα. The constants of motion Tr(Tl
α) (l ∈ N) of the Hamiltonian vector field XSα for the conformable

Schwarzschild metric are finally obtained as:

Tr(Tl
Fα) = 2((Q1)l + (Q2)l + (Q3)l + (Q4)l), l ∈ N. (73)
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4.2. Recursion Operator in Conformable FLRW Metric
Now, we consider the following conformable Friedmann–Lemaître–Robertson–Walker (FLRW) metric:

dαs2 = −|q1|2(α−1)(dq1)2 + R2(q1)

{ |q2|2(α−1)

1− k(q2)2 (dq2)2 + (q2)2
(
|q3|2(α−1)(dq3)2

+ |q4|2(α−1) sin2 q3(dq4)2
)}

(74)

defined on the same manifold Q (54), where R(q1) is a scale factor and k is a constant representing
the curvature of the space. Considering the Hamiltonian function

HFα = −1
2
(q1)2(1−α)p2

1 +
1− k(q2)2

2R2(q1)
(q2)2(1−α)p2

2 +
(q3)2(1−α)

2(q2)2R2(q1)
p2

3 +
(q4)2(1−α)

2(q2)2R2(q1) sin2(q3)
p2

4, (75)

we obtain the following Hamiltonian vector field

XFα =
4

∑
μ=1

α−2|pμ|(1−α)|qμ|(1−α)
(

Ṽμ
∂

∂qμ + Ũμ
∂

∂pμ

)
, (76)

with respect to the symplectic structure

ωα =
4

∑
μ=1

α2|pμ|(α−1)|qμ|(α−1)dpμ ∧ dqμ, (77)

where

Ṽ1 = η1, Ṽ2 =
1− k(q2)2

2R2(q1)
η2, Ṽ3 =

1
(q2)2R2(q1)

η3, Ṽ4 =
1

(q2)2R2(q1) sin2(q3)
η4,

Ũ1 = (1− α)ζ1 +
1

R3(q1)

(
(1− k(q2)2)η2 p2 +

1
(q2)2 η3 p3 +

1
sin2 q3

η4 p4

)
dR(q1)

dq1 ,

Ũ2 = − p2
2

R2(q1)

(
− kq2η2 p2 + (1− α)(1− k(q2)2)ζ2

)
+

1
(q2)3R2(q1)

η3 p3 +
1

(q2)3R2(q1) sin2 q3
η4 p4,

Ũ3 = − (1− α)

(q2)2R2(q1)
ζ3 +

cos q3

(q2)2R2(q1)sin3q3 η4 p4, Ũ4 = − (1− α)

(q2)2R2(q1)sin2q3 ζ4,

with ην = (qν)2(1−α)pν, ζν = (qν)(1−2α)p2
ν, and ν = 1, 2, 3, 4.

Here, we perform in a conformable FLRW metric, the computation of the Christoffel symbols,
the components of the Riemann and Ricci tensors, the Ricci scalar and the components of the Einstein
tensor, see Appendix A.

Remark that for α = 1, we recover the components of these geometric objects in the usual FLRW
metric, as expected.

The Hamiltonian–Jacobi equation here takes the form:

2EF = −(q1)2(1−α)
(

∂W
∂q1

)2

+
1− k(q2)2

R2(q1)
(q2)2(1−α)

(
∂W
∂q2

)2

+
(q3)2(1−α)

(q2)2R2(q1)

(
∂W
∂q3

)2

+
(q4)2(1−α)

(q2)2R2(q1) sin2(q3)

(
∂W
∂q4

)2

, (78)

where EF is a constant and W =
4

∑
μ=1

Wμ(qμ) is the generating function. The above equation can be

rewritten as

2EFR2(q1) + (q1)2(1−α)R2(q1)

(
dW1

dq1

)2

= (1− k(q2)2)(q2)2(1−α)
(

dW2

dq2

)2

+
(q3)2(1−α)

(q2)2

(
dW3

dq3

)2

+
(q4)2(1−α)

(q2)2 sin2(q3)

(
dW4

dq4

)2

,
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which is of a type of separation of variables. Thus, we can also express them via a constant K as:

K = 2EFR2(q1) + (q1)2(1−α)R2(q1)

(
dW1

dq1

)2

, (79)

K = (1− k(q2)2)(q2)2(1−α)
(

dW2

dq2

)2

+
(q3)2(1−α)

(q2)2

(
dW3

dq3

)2

+
(q4)2(1−α)

(q2)2 sin2(q3)

(
dW4

dq4

)2

. (80)

Moreover, from Equation (80), we get

(1− k(q2)2)(q2)2(2−α)
(

dW2

dq2

)2

− (q2)2K = −(q3)2(1−α)
(

dW3

dq3

)2

− (q4)2(1−α)

sin2(q3)

(
dW4

dq4

)2

. (81)

Since Equation (81) is of a type of separation of variables, we can introduce a constant L,
such that

L = (q2)2K− (1− k(q2)2)(q2)2(2−α)
(

dW2

dq2

)2

, (82)

L = (q3)2(1−α)
(

dW3

dq3

)2

+
(q4)2(1−α)

sin2(q3)

(
dW4

dq4

)2

, (83)

and the Equation (83) can be expressed as

L sin2(q3)− (q3)2(1−α) sin2(q3)

(
dW3

dq3

)2

= (q4)2(1−α)
(

dW4

dq4

)2

. (84)

Setting

G = L sin2(q3)− (q3)2(1−α) sin2(q3)

(
dW3

dq3

)2

, (85)

G = (q4)2(1−α)
(

dW4

dq4

)2

, (86)

we can formulate the solutions of the Equations (79), (82), and (85) as:

W1 = W1(q1; EF, K), W2 = W2(q2; K, L), W3 = W3(q3; L, G). (87)

From (86), we obtain

W4 =

√
G

α
|q4|α−1q4 + C, (88)

where C is a constant, and, hence,

W = W1(q1; EF, K) + W2(q2; K, L) + W3(q3; L, G) +

√
G

α
|q4|α−1q4 + C. (89)

Considering now the canonical system (Q, P), where

Q1 = EF, Q2 = K, Q3 =
√

L, Q4 =
√

G, (90)

P1 := − ∂W
∂Q1 = − ∂W1

∂Q1 , P2 := − ∂W
∂Q2 = − ∂W1

∂Q2 −
∂W2

∂Q2 , (91)

P3 := − ∂W
∂Q3 = − ∂W2

∂Q3 −
∂W3

∂Q3 , and P4 := − ∂W
∂Q4 = − ∂W3

∂Q4 −
∂W4

∂Q4 = − 1
α
|q4|α−1q4 − ∂W3

∂Q4 , (92)

the Hamiltonian vector field XFα and the (1, 1)-tensor field TFα are given by

XFα := {HFα, .}α = −α−2|P1|(1−α)|Q1|(1−α) ∂

∂P1
, TFα =

4

∑
μ=1

|Qμ|α−1Qμ

(
∂

∂Pμ
⊗ dPμ +

∂

∂Qμ ⊗ dQμ

)
, (93)

respectively.
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Similarly, by Lemma 1, TFα satisfies LXFα
TFα = 0, NTFα

= 0, and degQμ = 2. Thus, TFα is a
recursion operator of XFα, and the constants of motion Tr(Tl

Fα) (l ∈ N) of the vector field XFα for the
conformable FLRW metric are provided in the form

Tr(Tl
Fα) = 2((Q1)l + (Q2)l + (Q3)l + (Q4)l), l ∈ N. (94)

5. Family of Conserved Quantities

In this section, we consider the Hamiltonian system (T ∗Q, ω, Q1), for which the Hamiltonian
function Hα, the vector field Xα, the symplectic form ωα, the bivector field Pα, and the recursion
operator Tα are given in both the conformable Schwarzschild and FLRW metrics by: Hα = Q1 > 0,

Xα = {Hα, .}α = −α−2|P1|(1−α)|Q1|(1−α) ∂

∂P1
, ωα =

4

∑
μ=1

α2|Pμ|(α−1)|Qμ|(α−1)dPμ ∧ dQμ,

Pα =
4

∑
μ=1

α−2|Pμ|(1−α)|Qμ|(1−α) ∂

∂Pμ
∧ ∂

∂Qμ , and Tα =
4

∑
μ=1

|Qμ|α−1Qμ

(
∂

∂Pμ
⊗ dPμ +

∂

∂Qμ ⊗ dQμ

)
.

In the sequel, we introduce the functions

H̃αj = −
4

∑
μ=1

α|Qμ|α(1−j)−1Qμ|Pμ|α−1Pμ (95)

and obtain the vector fields Zαj ∈ T ∗Q,

Zαj := {H̃αj , .}α =
4

∑
μ=1

|Qμ|−αj
(
(1− j)Pμ

∂

∂Pμ
−Qμ ∂

∂Qμ

)
. (96)

satisfying the relation
ιZαj

ωα = −dH̃αj . (97)

Then, it is straightforward to notice that the symplectic structure ωα generates a set of Hamilto-
nian systems on the same manifold T ∗Q. The Lie bracket between the vector fields Xαi

and Zαj obeys
the relations

[Xαi
, Zαj ] = Xαi+j

, [Xαi
, Xαi+j

] = 0, i, j ∈ N, Xα0 = Xα, (98)

with
Xαi+j = −α−2(1− αi)[1− (i + j)α]|Q1|1−α(i+j+1)|P1|(1−α) ∂

∂P1
. (99)

These relations are diagrammatically well represented in Figure 1. In terms of differential
geometry, Zαj and H̃αj are called master symmetries for Xαi and master integrals, respectively. For more
details on these symmetries, see [36–40].

Xα0
Xα1

Xα2
Xα3 · · ·Xαn−1 Xαn

Zα1
Zα1

Zα1
Zαn−1

Zα2

Zαn−1

Zα2

Zα3

Zαn

Zα0 Zα0
Zα0

Zα0
Zα0

Figure 1. Diagrammatical illustration of Equation (98).
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Thus, we can generate a family of Hamiltonian functions:

Hαi+j := {Hαi , H̃αj} = (1− αi)(Q1)1−α(i+j), with Hα0 = Hα, i, j ∈ N. (100)

The recursion operator Tα can be written as:

Tα = Pα1 ◦ P−1
α , (101)

where

Pα1 =
4

∑
μ=1

α−2Qμ|Pμ|(1−α) ∂

∂Pμ
∧ ∂

∂Qμ (102)

andPα are two compatible Poisson bivectors with the vanishing Schouten–Nijenhuis bracket [Pα,Pα1 ]NS = 0.

Furthermore, we put P k+1
α1

= Sk+1Pα1 = Sk+1

4

∑
μ=1

α−2Qμ|Pμ|(1−α) ∂

∂Pμ
∧ ∂

∂Qμ , with Sk+1 =

1− kα

1− (k + 1)α
, k = i + j ∈ N, (1− (k + 1)α) �= 0, and introduce the following α-Poisson bracket {., .}k1

α1

{ f , g}k+1
α1

:=
4

∑
μ=1

α−2Sk+1Qμ|Pμ|(1−α)

(
∂ f

∂Pμ

∂g
∂Qμ −

∂ f
∂Qμ

∂g
∂Pμ

)
(103)

with respect to the symplectic form

ωk+1
α1

=
4

∑
μ=1

α2S−1
k+1(Q

μ)−1|Pμ|(α−1)dPμ ∧ dQμ (104)

and get
Xαk = {Hαk , .}α = {Hαk+1 , .}k+1

α1
, (105)

proving that Xαk are bi-Hamiltonian vector fields defined by the two Poisson bivectors Pα and P k+1
α1

.
Then, the quadruple (Q,Pα,P k+1

α1
, Xαk ) is a bi-Hamiltonian system for each k.

The associated recursion operators are given by

T(k+1)α := P k+1
α1

◦ P−1
α =

4

∑
μ=1

Sk|Qμ|α−1Qμ

(
∂

∂Pμ
⊗ dPμ +

∂

∂Qμ ⊗ dQμ

)
. (106)

In addition, we have

LZα0
(Pα) = 0, (α̃ = 0), LZα0

(P k+1
α1

) = −α
4

∑
μ=1

α−2Sk+1Qμ|Pμ|(1−α) ∂

∂Pμ
∧ ∂

∂Qμ = −αP k+1
α1

,

(β̃ = −α), LZα0
(Hα) = −Q1 = −Hα, (γ̃ = −1)

permitting to conclude that the vector field

Zα0 =
4

∑
μ=1

(
Pμ

∂

∂Pμ
−Qμ ∂

∂Qμ

)
(107)

is a conformal symmetry for Pα,P k+1
α1

and Hα [39].
Defining now the families of quantities Xk+1

αl
, Zk+1

αl
, P k+1

αl
, ωk+1

αl
and dHk+1

αl
by Xk+1

αl
:=

Tl
(k+1)αXα, Zk+1

αl
:= Tl

(k+1)αZα0 , P k+1
αl

:= Tl
(k+1)αPα, ωk+1

αl
:= ((Tl

(k+1)α)
∗)ωα, dHk+1

αl
:= (Tl

(k+1)α)
∗

dHα, where l ∈ N, and T∗(k+1)α := P−1
α ◦ P k+1

α1
denoting the adjoint of T(k+1)α := P k+1

α1
◦ P−1

α ,
we obtain

Xk+1
αl

= −α−2(Sk+1)
l(Q1)1+α(l−1)|P1|(1−α) ∂

∂P1
; (108)

Zk+1
αl

=
4

∑
μ=1

(Sk+1)
l |Qμ|l(α−1)(Qμ)l

(
Pμ

∂

∂Pμ
−Qμ ∂

∂Qμ

)
; (109)

P k+1
αl

=
4

∑
μ=1

α−2(Sk+1)
l(Qμ)l |Pμ|(1−α)|Qμ|(1−α)(1−l) ∂

∂Pμ
∧ ∂

∂Qμ ; (110)
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ωk+1
αl

=
4

∑
μ=1

α2(Sk+1)
l(Qμ)l |Pμ|(α−1)|Qμ|(α−1)(l+1)dPμ ∧ dQμ; (111)

dHk+1
αl

= (Sk+1)
l(Q1)αldQ1; and Hk+1

αl
=

1
lα + 1

(Sk+1)
l(Q1)αl+1 (112)

and for each l ∈ N, we derive the following plethora of conserved quantities:

LZk+1
αl

(Zk+1
αh

) = α(l − h)(Sk+1)
l+h

4

∑
μ=1

|Qμ|(l+h)(α−1)(Qμ)l+h
(

Pμ
∂

∂Pμ
−Qμ ∂

∂Qμ

)
= α(l − h)Zk+1

αl+h
; (113)

LZk+1
αl

(Xk+1
αh

) = α−2(Sk+1)
l+h(hα + 1)(Q1)1+α((l+h)−1)|P1|(1−α) ∂

∂P1

= −(hα + 1)Xk+1
αl+h

; (114)

LZk+1
αl

(P k+1
αh

) = α−1(Sk+1)
l+h(l − h)(Qμ)l+h|Pμ|(1−α)|Qμ|(1−α)(1−(l+h)) ∂

∂Pμ
∧ ∂

∂Qμ

= α(l − h)P k+1
αl+h

; (115)

LZk+1
αl

(ωk+1
αh

) = −α3(Sk+1)
l+h(l + h)

4

∑
μ=1

(Qμ)l+h|Pμ|(α−1)|Qμ|(α−1)((l+h)+1)dPμ ∧ dQμ

= −α(l + h)ωk+1
αl+h

; (116)

< dHk+1
αl

, Zk+1
αh

> = −(Sk+1)
l+h α(l + h) + 1

α(l + h) + 1
(Q1)1+α(l+h)

= −(α(l + h) + 1)Hk+1
αl+h

; (117)

LZk+1
αl

(T(k+1)α) = −α
4

∑
μ=1

(Sk+1)
l+1|Qμ|(α−1)(l+1)(Qμ)l+1

(
∂

∂Pμ
⊗ dPμ +

∂

∂Qμ ⊗ dQμ

)
= −αTl+1

(k+1)α, (118)

satisfying the following relations linking the master symmetries Zαj to the conformal symmetry Zα0

for Pα,P k+1
α1

and Hα, and to a set of conformal symmetries generated by successive applications of
the recursion operator T(k+1)α on Zα0 :

LZk+1
αl

(Zk+1
αh

) = (β̃− α̃)(h− l)Zk+1
αl+h

, LZk+1
αl

(Xk+1
αh

) = (β̃ + γ̃ + (h− 1)(β̃− α̃))Xk+1
αl+h

,

LZk+1
αl

(P k+1
αh

) = (β̃ + (h− l − 1)(β̃− α̃))P k+1
αl+h

, LZk+1
αl

(ωk+1
αh

) = (β̃ + (l + h− 1)(β̃− α̃))ωk+1
αl+h

,

LZk+1
αl

(T(k+1)α) = (β̃− α̃)T1+l
(k+1)α, 〈dHk+1

αh
, Zk+1

αl
〉 = (γ̃ + (l + h)(β̃− α̃))Hk+1

αl+h
.

This is reminiscent to the well-known Oevel formulas (see [26,31,32,39,41,42]).
Finally, it is worth mentioning a generalization of the conformable Poisson brackets (103), as

follows:

{ f , g}k+t
αt

:=
4

∑
μ=1

α−2Sk+t|Qμ|1+α(t−1)|Pμ|(1−α)

(
∂ f

∂Pμ

∂g
∂Qμ −

∂ f
∂Qμ

∂g
∂Pμ

)
, (119)

where Sk+t =
1− kα

1− (k + t)α
, k, t ∈ N, (1− (k + t)α) �= 0, and { f , g}0

α0
= { f , g}α, with S0 = 1, leading

to a set of generalized bi-Hamiltonian vector fields

Xαk = {Hαk , .}α = {Hαk+t , .}k+t
αt

, (120)

the main ingredients governing the Hamiltonian dynamics and pertaining symmetries.

6. Concluding Remarks

In this work, we have proved that a Minkowski phase space endowed with a bracket relatively
to a conformable differential realizes a conformable Poisson algebra, conferring a bi-Hamiltonian
structure to the resulting manifold. We have deduced that the related conformable Hamiltonian vector
field for a free particle is an infinitesimal Noether symmetry. We have computed the corresponding
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conformable recursion operator. Using the Hamiltonian–Jacobi separability, we have constructed
recursion operators in the framework of conformable Schwarzschild and Friedmann–Lemaître–
Robertson–Walker (FLRW) metrics, and obtained related constants of motion. We have highlighted
the existence of a hierarchy of bi-Hamiltonian structures in both the metrics, and derived a family of
conformable recursion operators and master symmetries generating the constants of motion. This
study has also shown that Hamiltonian dynamics hint at a connection between the geometry of our
physical system, (conformable symplectic manifolds and related Hamiltonian vector fields), and
conservation laws. In this connection, the free particle positions on the conformable manifolds are
viewed as states and vector fields as laws governing how those states evolve.

Further, we have calculated the conformable Christoffel symbols, Ricci scalar, components of the
Riemann, Ricci, and Einstein tensors. This study has revealed that the Christoffel symbols ((Γ1

11)α, (Γ2
22)α,

(Γ3
33)α, and (Γ4

44)α) in conformable Minkowski metric are no longer null, contrary to the ordinary case
corresponding to α = 1. Similarly, the Christoffel symbols ((Γ1

11)α, (Γ3
33)α, and (Γ4

44)α) are not equal zero
in conformable Schwarzschild and FLRW metrics. The existence of these symbols (Γi

ii)α, (i = 1, 2, 3, 4)
informs us about the way in which the parallel displacement of any basic vector on the conformable
manifolds with respect to itself always remains parallel to the same basic vector.
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26. Hounkonnou, M.N.; Landalidji, M.J.; Mitrović, M. Noncommutative Kepler Dynamics: Symmetry groups and bi-Hamiltonian

structures. Theor. Math. Phys. 2021, 207, 751–769. [CrossRef]
27. Hounkonnou, M.N.; Landalidji, M.J. Hamiltonian dynamics for the Kepler problem in a deformed phase space. In Trends in

Mathematics, Proceedings of the XXXVII Workshop on Geometric Methods in Physics, Bialowieża, Poland, 1–7 July 2018; Springer Nature
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Abstract: The need for modification of the Huygens–Fresnel superposition principle arises even
in the description of the free fields of massive particles and, more extensively, in nonlinear field
theories. A wide range of formulations and superposition schemes for secondary waves are captured
by Kirchhoff’s integral theorem. We discuss various versions of this theorem as well as its connection
with the superposition principle and the method of Green’s functions. A superposition scheme
inherent in linear field theories, which is not based on Kirchhoff’s integral theorem but instead relies
on the completeness condition, is also discussed.

Keywords: superposition principle; asymptotic conditions; Kirchhoff’s integral theorem

1. Introduction

An excellent and detailed explanation of Huygens’ principle for undergraduate stu-
dents, together with the optical-mechanical analogy and the Hamilton–Jacobi method, can
be found in the monograph by Arnold [1]. Students are introduced to a generalization
of Huygens’ principle, viz. the Huygens–Fresnel superposition principle, in the study
of general physics (see, e.g., [2]), and this principle is presented in greater detail in the
study of theoretical physics (see, e.g., [3]). The method of Green’s functions (GF), which
has found numerous applications in a large variety of different fields, is discussed in the
first volume of a two-volume monograph by Bjorken and Drell [4,5], where, in particular,
the superposition principle is used in §§ 21 and 22 to derive the equation for the Green’s
function. Further development of concepts related to the superposition principle has led to
the emergence in quantum theory of the path integral formalism, an excellent overview of
which can be found in the monograph by Dittrich and Reuter [6]. A detailed presentation of
the superposition principle for electromagnetic fields, its rationale and its generalizations,
based on Kirchhoff’s integral theory [7], is given in the monograph by Born and Wolf [8].

Thus, it is clear that the superposition principle is closely related to the GF method
which, in turn, lies at the heart of quantum field theory and the diagram technique. In the
literature, this relationship is typically mentioned only in passing, while the mathematical
aspects, modifications, and physical meaning of the generalized schemes of superposition
are treated as matters beyond dispute.

A rigorous formulation of the superposition principle is based on Kirchhoff’s integral
theorem. The generalizations to which it leads are used also in the theory of interacting
fields. In this paper, we attempt to specify the precise place of the superposition principle
in classical and quantum field theory and discuss its relationship with the GF method and
Kirchhoff’s integral theorem.

Surprisingly, the answers to the main questions can be obtained by analyzing the
dynamics of the one-dimensional oscillator. The oscillator problem from the viewpoint of
Kirchhoff’s integral theorem, as well as its connections with the superposition principle
and the GF method, is discussed in the next section. In Section 3, we consider a free
massive scalar field. For massive fields, the superposition scheme includes an integral
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over three-dimensional space. Both in the limit of zero mass and for monochromatic fields,
the canonical superposition scheme, in which the summation of the sources of secondary
waves is limited to a two-dimensional surface, arises. The statement of Kirchhoff’s theorem
depends on the asymptotic conditions imposed on the propagator at t → ±∞. In quantum
field theory, the Feynman asymptotic conditions are used. Emphasis is therefore placed on
the versions of the theorem that satisfy the Feynman asymptotic conditions. In Section 4,
we discuss a charged scalar field in an external electromagnetic field, prove the appropriate
version of Kirchhoff’s integral theorem, and demonstrate that in an external electromagnetic
field, the superposition schemes are not fundamentally modified.

In nonlinear theories, the superposition principle holds in relation to the secondary
waves. In Section 5, we consider a class of nonlinear scalar field theories. The physical
meaning of Kirchhoff’s integral theorem is discussed, including its connections with the GF
method and the superposition principle. Vectorial generalizations of Kirchhoff’s integral
theorem for retarded Green’s function are discussed in Appendix A. The conclusions section
summarizes the discussion.

The material of this work is intended for students studying quantum field theory and
researchers specializing in the theory of the propagation of electromagnetic waves and
light phenomena.

2. The Huygens–Fresnel Superposition Principle and Kirchhoff’s Integral Theorem in
the Oscillator Problem

A free scalar field obeys the Klein–Gordon equation:

(�+ m2)φ0(x) = 0. (1)

Of interest are the general features of solutions of the wave equation, which extend
to its nonlinear modifications. The main consequences of Kirchhoff’s theorem and the
physical content of the Fresnel–Huygens superposition principle can be explained using
the example of the one-dimensional oscillator; thus, we begin by considering the evolution
of a one-dimensional harmonic oscillator. This problem can also be regarded as a problem
of the evolution of a free scalar field in momentum space.

2.1. Harmonic Oscillator

We write the equation in the form(
d2

dt2 + m2
)

φ0(t) = 0. (2)

Here, m is the frequency of the oscillator and φ0(t) is its coordinate. If φ0(t) is a spatially
homogeneous field in the Klein–Gordon equation, then m is the mass of the particle.

2.1.1. Complete Orthonormal Basis Functions

A complete set of solutions to Equation (2) is formed by the two functions

f (+)(t) =
e−imt
√

2m
and f (−)(t) =

eimt
√

2m
. (3)

The normalization and completeness conditions are expressed in terms of the Wronskian.
If ϕ and χ are two functions, then their Wronskian is equal to

W[ϕ, χ] = det
∥∥∥∥ ϕ χ

ϕ̇ χ̇

∥∥∥∥ = ϕχ̇− ϕ̇χ. (4)

The notation
ϕ
↔
∂ t χ = W[ϕ, χ]
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is often used. The normalization and orthogonality of the basis functions are represented
as follows:

iW[ f (±)∗, f (±)] = ±1 and W[ f (±)∗, f (∓)] = 0. (5)

If the functions for which we compute the Wronskian are solutions of Equation (2), then
the Wronskian is independent of time. Let φ0(t) be a solution of Equation (2). We define
the following time-independent complex numbers:

a = iW[ f (+)∗, φ0] and a∗ = −iW[ f (−)∗, φ0]. (6)

After quantization, the values a and a∗ become annihilation and creation operators.
The completeness condition takes the form

φ0(t) = f (+)(t)iW[ f (+)∗, φ0]− f (−)(t)iW[ f (−)∗, φ0]. (7)

This equation also allows for the decomposition of the solution into its positive- and
negative-frequency components:

φ0(t) = φ
(+)
0 (t) + φ

(−)
0 (t), (8)

where
φ
(±)
0 (t) = ± f (±)(t)iW[ f (±)∗, φ0]. (9)

Equation (7) is valid not only in the linear vector space spanned by the basis func-
tions (3), but also for any function evaluated at time t. The right-hand side of Equation (7)
for an arbitrary function χ(t) has the form

r.h.s. = i
(

f (+)(t) f (+)∗(t)− f (−)(t) f (−)∗(t)
)

χ̇(t)− i
(

f (+)(t) ḟ (+)∗(t)− f (−)(t) ḟ (−)∗(t)
)

χ(t).

Using the explicit form of f (±)(t), one can see that r.h.s. = χ(t). Although this property
appears fortuitous, it is rather fundamental.

Let us consider the Poisson bracket relations

{φ0(t), φ0(t)} = 0, (10)

{φ0(t), π0(t)} = 1, (11)

where π0(t) = φ̇0(t) is the canonical momentum. A simple calculation using Equation (7)
gives

{φ0(t′), φ0(t)} = f (+)(t)i{φ0(t′), W[ f (+)∗, φ0]} − f (−)(t)i{φ0(t′), W[ f (−)∗, φ0]}
= f (+)(t)i{φ0(t′), f (+)∗(t′)π0(t′)− ḟ (+)∗(t′)φ0(t′)}
− f (−)(t)i{φ0(t′), f (−)∗(t′)π0(t′)− ḟ (−)∗(t′)φ0(t′)}
= i

(
f (+)(t) f (+)∗(t′)− f (−)(t) f (−)∗(t′)

)
, (12)

{φ0(t′), π0(t)} = i
(

ḟ (+)(t) f (+)∗(t′)− ḟ (−)(t) f (−)∗(t′)
)

. (13)

By virtue of Equations (10) and (11),

f (+)(t) f (+)∗(t)− f (−)(t) f (−)∗(t) = 0, (14)

f (+)(t) ḟ (+)∗(t)− f (−)(t) ḟ (−)∗(t) = i, (15)

ḟ (+)(t) f (+)∗(t)− ḟ (−)(t) f (−)∗(t) = −i. (16)

Identity r.h.s. = χ(t) is, therefore, a consequence of the completeness condition (7) for
functions φ0(t), which are solutions of Equation (2), and the Poisson bracket relations for
the canonical variables.
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2.1.2. The Green’s Functions

A Green’s function is defined by the equation(
d2

dt2 + m2
)

ΔX(t) = −δ(t). (17)

By performing the Fourier transform in time, we obtain the Green’s function in frequency
space: ΔX(ω) = (ω2 −m2)−1. For the inverse Fourier transformation,

ΔX(t) =
∫ +∞

−∞

dω

2π
e−iωt 1

ω2 −m2 , (18)

it is necessary to bypass the poles on the real axis that arise for ω = ±m. There are four
possibilities, which correspond to four Green’s functions:

ΔF(t′ − t) =
∫ +∞

−∞

dω

2π
e−iω(t′−t) 1

ω2 −m2 + i0

= −i
(

f (+)(t′) f (+)∗(t)θ(t′ − t) + f (−)(t′) f (−)∗(t)θ(−t′ + t)
)

, (19)

Δc
F(t

′ − t) =
∫ +∞

−∞

dω

2π
e−iω(t′−t) 1

ω2 −m2 − i0

= i
(

f (−)(t′) f (−)∗(t)θ(t′ − t) + f (+)(t′) f (+)∗(t)θ(−t′ + t)
)

, (20)

Δret(t′ − t) =
∫ +∞

−∞

dω

2π
e−iω(t′−t) 1

ω2 −m2 + i0sgn(ω)

= −i
(

f (+)(t′) f (+)∗(t)− f (−)(t′) f (−)∗(t)
)

θ(t′ − t), (21)

Δadv(t′ − t) =
∫ +∞

−∞

dω

2π
e−iω(t′−t) 1

ω2 −m2 − i0sgn(ω)

= i
(

f (+)(t′) f (+)∗(t)− f (−)(t′) f (−)∗(t)
)

θ(−t′ + t). (22)

Each of these functions satisfies Equation (17). The difference between any two Green’s
functions is a solution of the free Equation (2).

It is instructive to verify by the direct calculation that the representation (19) satisfies
Equation (17). With the help of equation

f (x)δ′(x) = f (0)δ′(x)− f ′(0)δ(x),

one finds(
d2

dt′2
+ m2

)
iΔF(t′ − t) = 2

(
ḟ (+)(t′) f (+)∗(t)− ḟ (−)(t′) f (−)∗(t)

)
δ(t′ − t)

+
(

f (+)(t′) f (+)∗(t)− f (−)(t′) f (−)∗(t)
)

δ′(t′ − t)

=
(

ḟ (+)(t′) f (+)∗(t)− ḟ (−)(t′) f (−)∗(t)
)

δ(t′ − t)

+
(

f (+)(t) f (+)∗(t)− f (−)(t) f (−)∗(t)
)

δ′(t′ − t). (23)

Using Equations (14) and (16), we arrive at Equation (17).
In terms of quantized variables, the Feynman propagator is defined by

iΔF(t′ − t) = 〈0|Tφ̂0(t′)φ̂0(t)|0〉. (24)

The T product entering this expression occurs naturally in solutions of the evolution equation
i∂tΨ(t) = Ĥ(t)Ψ(t) of systems with a time-dependent Hamiltonian. If, at various times, Ĥ
does not commute with itself, namely, [Ĥ(t′), Ĥ(t)] �= 0, then the solution Ψ(t) = U(t, 0)Ψ(0)
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is expressed in terms of the time-ordered exponential U(t, 0) = T exp(−i
∫ t

0 Ĥ(t′)dt′). In per-
turbation theory, ΔF(t′ − t) then arises by Wick’s theorem, which explains why ΔF(t′ − t)
plays a special role in quantum theory. The definition (24) is consistent with the definition (19).

2.1.3. Superposition Principle from Kirchhoff’s Integral Theorem

Let us compute the Wronskian of the Feynman propagator ΔF(t
′ − t) and a solution

φ0(t) of Equation (2). By taking the derivative with respect to t of W[ΔF(t′ − t), φ0(t)]
and integrating the result over the interval (t1, t2), the following equation is obtained for
t1 < t′ < t2:

φ0(t′) = W[ΔF(t
′ − t2), φ0(t2)]−W[ΔF(t

′ − t1), φ0(t1)]. (25)

This relation is the harmonic oscillator analog of Kirchhoff’s integral theorem. Despite
the drastic simplification, the fundamental meaning is maintained and is amenable to
interpretation. According to Equation (25), the coordinate φ0(t) is determined by both the
past and the future. From the past, the Wronskian selects the positive-frequency component
of φ0(t1) and propagates it into the future up to the moment t = t′ > t1. From the future,
the Wronskian selects the negative-frequency component of φ0(t2) and propagates it into
the past up to the moment t = t′ < t2. The result is a superposition of the two waves.
Equation (2) is commonly regarded as the equation of motion of a particle (oscillator) in
the one-dimensional space. A less obvious interpretation of this equation as an evolution
equation of a wave in the zero-dimensional space is also possible. Equation (25) underlines
the second interpretation.

The analogy with quantum field theory is apparent: particles are identified with
positive-frequency solutions of wave equations, and antiparticles are identified with
negative-frequency solutions. Particles move forward in time, whereas antiparticles move
backward in time. In accordance with the Huygens–Fresnel superposition principle adapted
here for the Feynman asymptotic conditions, the wave φ0(t′) is equal to the sum of the
negative-frequency component of φ0(t2), propagating backward in time, and the positive-
frequency component of φ0(t1), propagating forward in time. Equation (25) can thus be
interpreted both in the spirit of the Huygens–Fresnel superposition principle and in the
spirit of the GF method, thereby establishing the close relationship between them.

According to Equation (25), the coordinate φ0(t′) is determined by its value and its first
derivative at the other two time points. Arguing reversely, this suggests that the evolution
equation contains time derivatives of no higher than second order.

If t′ /∈ (t1, t2), then there is a zero on the left-hand side of Equation (25):

0 = W[ΔF(t′ − t2), φ0(t2)]−W[ΔF(t′ − t1), φ0(t1)]. (26)

Equations (25) and (26) remain valid after the replacement ΔF with any other prop-
agator. For the retarded Green’s function, the analog of Equations (25) and (26) for
t2 → +∞ reads

φ0(t
′)θ(t′ − t1) = −W[Δret(t

′ − t1), φ0(t1)]. (27)

Here, the positive- and negative-frequency components propagate forward in time, corre-
sponding to the usual formulation of the Huygens–Fresnel superposition principle, so that
φ0(t) is determined by the past only.
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2.1.4. Superposition Principle from the Completeness Condition

Here, we present a different formulation of the superposition principle. To begin, let
us find the Wronskian W of ΔF(t′ − t) and φ0(t). The expression (19), when substituted
into W, yields

W[ΔF(t′ − t), φ0(t)] = −i f (+)(t′)W[ f (+)∗(t)θ(t′ − t), φ0(t)]

−i f (−)(t′)W[ f (−)∗(t)θ(t− t′), φ0(t)]

= −i f (+)(t′)θ(t′ − t)W[ f (+)∗(t), φ0(t)]

−i f (−)(t′)θ(t− t′)W[ f (−)∗(t), φ0(t)]

+Δ(t′ − t)φ0(t)δ(t′ − t), (28)

where
iΔ(t′ − t) = f (+)(t′) f (+)∗(t)− f (−)(t′) f (−)∗(t). (29)

By virtue of Equation (12),
Δ(t′ − t) = {φ0(t′), φ0(t)}.

In the transition to the last lines of Equation (28), the properties of the Wronskian and
the definitions of the basis functions (3) are used. According to Equation (14), the term
∼ Δ(t′ − t)δ(t′ − t) vanishes, yielding

φ
(+)
0 (t′)θ(t′ − t)− φ

(−)
0 (t′)θ(t− t′) = −W[ΔF(t

′ − t), φ0(t)]. (30)

Equation (30) can be regarded as an equation for ΔF(t′ − t). By taking the time (t)
derivative of both sides, we obtain Equation (17). The superposition principle, formalized
as in (30), thus determines the Green’s function up to a solution of the free equation. To
obtain a unique Green’s function, the asymptotic behavior must be fixed. By taking the
differences between both sides of Equation (30) for t = t2 and t = t1 < t2, we obtain
Equation (25), provided that t′ ∈ (t1, t2). If the inverse condition, t′ /∈ (t1, t2), holds,
then we obtain Equation (26). Finally, by taking the time (t′) derivative, we obtain the
superposition principle for the canonical momentum π0(t) = φ̇0(t):

π
(+)
0 (t′)θ(t′ − t)− π

(−)
0 (t′)θ(t− t′) = −W[ΔF(t

′ − t), π0(t)]. (31)

The proof of Equation (30) is not based on Kirchhoff’s theorem, nor its obvious
modification. For the retarded Green’s function, the completeness condition does not lead
to a new equation (compared with (27)). In quantum field theory, the diagram technique is
based on the Feynman propagator; thus, what is of interest to us here is the superposition
principle formalized as in (25), (26) and (30).

2.1.5. Path Integral

Kirchhoff’s integral theorem can also be used as a starting point for developing path
integral method.

To show this, we note a useful relation

iW[ΔF(t3 − t2), ΔF(t2 − t1)] = −θ(t3 − t2)θ(t2 − t1) f (+)(t3) f (+)∗(t1)

+θ(t1 − t2)θ(t2 − t3) f (−)(t3) f (−)∗(t1). (32)

This relation indicates that a wave propagating toward the future continues to propagate
forward in time. A similar property holds for waves propagating backward in time. We
choose a sequence of the intervals (t1, t2) ⊂ (t3, t4) ⊂ . . . ⊂ (t2n−1, t2n) and consider
t′ ∈ (t1, t2). Equation (25) being iterated n times gives
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φ0(t′) = W[ΔF(t′ − t2), W[ΔF(t2 − t4), W[. . . , W[ΔF(t2n − t2n+2), φ0(t2n+2)] . . .]]]

+ (−)n+1W[ΔF(t′ − t1), W[ΔF(t1 − t3), W[. . . , W[ΔF(t2n−1 − t2n+1), φ0(t2n+1)] . . .]]]. (33)

According to this equation, φ0(t2n+2) generates a secondary wave that propagates into
the past. In the neighboring instant of time t = t2n < t2n+2, it generates new secondary
wave, and so on. The same interpretation is valid for the wave propagating forward in
time. Equation (25) is reproduced with n = 0 for t−1 = t0 = t′. The mixed terms containing
forward and backward propagation do not arise as a consequence of (32). In the limit of
n → ∞, t2− t1 → 0 and (tl+3− tl+2)→ (tl+1− tl), we arrive at the continuous product over
history. Equation (33) can be regarded as a path-integral representation in the space R1,0.

Path integral in the space R1,3 is discussed in Section 3.5.

2.2. Harmonic Oscillator with a Time-Dependent Frequency

A field theoretical version of the evolution problem with a time-dependent oscillator
frequency, in light of the superposition principle, is discussed in Section 4, where proofs
are presented. Here, we restrict ourselves to statements of the main assertions.

We consider the equation(
d2

dt2 + m2 + Δm2(t)
)

φ(t) = 0, (34)

where Δm2(±∞) = 0. The perturbation Δm2(t) is switched on and off adiabatically. Let
ΔF(t′, t) be the Feynman propagator for Equation (34). The following superposition
schemes hold: As a consequence of Kirchhoff’s integral theorem,

φ(t′) = W[ΔF(t′, t2), φ(t2)]−W[ΔF(t′, t1), φ(t1)] for t′ ∈ (t1, t2),

0 = W[ΔF(t′, t2), φ(t2)]−W[ΔF(t′, t1), φ(t1)] for t′ /∈ (t1, t2),

and, as a consequence of the completeness condition,

φ(+)(t′)θ(t′ − t)− φ(−)(t′)θ(t− t′) = −W[ΔF(t
′, t), φ(t)],

where φ(±)(t) ∼ f (±)(t) at t → ±∞. The expansion of φ(t) into positive- and negative-
frequency components φ(±)(t) has an objective meaning because the evolution equation
is linear.

2.3. Anharmonic Oscillator

In nonlinear theories, the superposition principle requires reformulation. Its general-
ization, based on Kirchhoff’s integral theorem, preserves the idea in relation to secondary
waves. The main technical points can be illustrated by the example of anharmonic oscillator.

We add to the oscillator potential an arbitrary potential V(φ). The equation of motion
takes the form (

d2

dt2 + m2
)

φ(t) = −V′(φ(t)). (35)

2.3.1. Secondary Waves beyond Fresnel’s Superposition Scheme

Equation (25) is modified as follows:

φ(t′) = W[ΔF(t
′ − t2), φ(t2)]−W[ΔF(t

′ − t1), φ(t1)] +
∫ t2

t1

dtΔF(t
′ − t)V′(φ(t)). (36)
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The propagator ΔF(t) is determined from Equation (17). On the interval (t1, t2), the sum of
the first two terms satisfies the evolution equation of the harmonic oscillator. We denote
this sum as

φ0(t′) ≡ W[ΔF(t
′ − t2), φ(t2)]−W[ΔF(t

′ − t1), φ(t1)]. (37)

The solution takes the form

φ(t′) = φ0(t′) +
∫ t2

t1

dtΔF(t
′ − t)V′(φ(t)). (38)

Given that the Green’s function properties of the harmonic oscillator are known, the solution
can be written immediately. If t′ /∈ (t1, t2), then we obtain

0 = φ0(t′) +
∫ t2

t1

dtΔF(t
′ − t)V′(φ(t)). (39)

The last two equations constitute a version of Kirchhoff’s integral theorem for the
one-dimensional anharmonic oscillator.

Equation (38) cannot be interpreted canonically. Although the first term has the
standard meaning under the Fresnel superposition scheme, the second term indicates that
a component arises among the secondary waves that is generated continuously in time.

According to the Huygens–Fresnel superposition principle, to describe the propagation
of a wave, it is sufficient to know its phase and amplitude at a fixed time. However, this is
true only in linear theories. In nonlinear theories, the propagation of a wave is determined
by its entire history (for retarded solutions, its prehistory), even if the original wave
equation is local. The dependence of the wave observables on the entire history of the
wave indicates, in general, the nonlocal nature of its evolution. Only a narrow family of
representations that contain an integral over time correspond to local but nonlinear theories.

The derivative of the potential is an additional source of secondary waves (corrections
to the coordinate), and the potential depends on the exact coordinate. This means that
Equation (38) is self-consistent and that its solution is obvious only in the context of
perturbation theory.

In quantum field theory, an equation similar to Equation (38) serves as the starting
point for the development of the diagram technique (see, e.g., [4]). The equations obtained
by replacing the Feynman propagator in Equation (38) with the retarded and advanced
propagators are used to develop the axiomatic scattering theory (see, e.g., [5]).

2.3.2. Positive- and Negative-Frequency Solutions

In the theory of interacting fields, the decomposition of solutions into positive- and
negative-frequency components makes sense only asymptotically for outgoing and incom-
ing states. We assume that the nonlinear interaction is adiabatically switched on at t → −∞
and adiabatically switched off at t → +∞. If positive- and negative-frequency components
φ(±)(t) are somehow defined, then the subsequent modification of Equation (30) is obvious:

φ(+)(t′)θ(t′ − t)− φ(−)(t′)θ(t− t′) = −W[ΔF(t
′ − t), φ(t)] +

∫ t′

t
dτΔF(t′ − τ)V′(φ(τ)). (40)

By taking the time (t) derivative, after some simple transformations, we obtain
φ(t) = φ(+)(t) + φ(−)(t) and Equation (17). The difference in this equation at two un-
equal time points leads to Equations (36)–(39). It might seem, therefore, that Equation (40)
is no less general than Equation (36)–(39). However, we do not have an independent
definition of the decomposition into positive- and negative-frequency components. We
are forced, therefore, to regard Equation (40) as a definition of φ(±)(t). According to this
equation, φ(±)(t) ∼ f (±)(t) at t → ±∞.

The calculation of the first derivative of Equation (40) in t′ leads to the superposition
principle for the canonical momentum
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π(+)(t′)θ(t′ − t)− π(−)(t′)θ(t− t′) = −W[ΔF(t′ − t), π(t)] +
∫ t′

t
dτΔF(t

′ − τ)V′′(φ(τ))π(τ). (41)

This equation is consistent with the evolution equation for π(±)(t) = φ̇(±)(t).
Obviously, in nonlinear theories, a full generalization of (30) does not exist.
A field theoretical version of the anharmonic oscillator problem is discussed in

Section 5.

2.3.3. Numerical Example

We use a numerical example to demonstrate the application of the superposition
scheme (38) for the description of radial motion in the Keplerian problem. After separation
of the angular variables, the evolution problem reduces to solving a problem of one-
dimensional motion in an effective potential

U = −α

r
+

L2

2μr2 ,

where α = GM*μ, M* is the solar mass, μ is the mass of a celestial body, and L is the
angular momentum. We add and subtract from the potential U an oscillator potential

Uosc =
1
2

μm2(r− a)2

and treat Uosc as the undisturbed potential. The perturbation potential is thus V = U−Uosc.
In order to improve convergence and eliminate the need to determine optimized Uosc, the
frequency parameter m is chosen in agreement with the exact solution (see, e.g., [1]):
m = 2π/T, where T = 2πμab/L is the orbital period, a = (rmin + rmax)/2 and b =

√
pa

are the major and minor semi-axes of the ellipse and L =
√

pαμ; the variable r lies in the
interval (rmin, rmax), where rmin = p/(1 + e), rmax = p/(1− e), p is the semi-latus rectum,
and e is the eccentricity.

As a zeroth-order approximation for φ(t) ≡ r(t)− a, we choose a free solution

φ[0](t) = C[0]
+ f (+)(t) + C[0]

− f (−)(t) (42)

with unknown coefficients C[0]
± and f (±)(t) defined by Equation (3). The motion begins

at perihelion φ[0](0) = rmin − a, with the vanishing velocity φ̇[0](0) = 0. These conditions
allow C[0]

± to be fixed.
Given the lth-order approximation, r[l](t) = a + φ[l](t) can be substituted in place of

the argument of V′ in Equation (38) to produce the next-order iteration

φ[l+1](t) = C[l+1]
+ f (+)(t) + C[l+1]

− f (−)(t) +
∫ t2

t1

dτΔF(t− τ)V′(a + φ[l](τ)), (43)

where ΔF(t) is defined by (19). The interval (t1, t2) covers an interval within which we seek
the solution. C[l+1]

± are fixed by the conditions φ[l+1](0) = rmin − a and φ̇[l+1](0) = 0.

Table 1. Expansion coefficients of free solutions in the unperturbed potential for the first two iterations
and for the exact solution (l = ∞).

l C[l]
+ C[l]

−
0 −0.142872 −0.142872
1 −0.155969− i0.040544 −0.155322− i0.068246
∞ −0.151619− i0.033743 −0.151875− i0.033990
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The numerical convergence of the recursion is a subtle issue that should be studied
separately. Assuming the convergence of the approximate sequence, we should obtain an
identity when using r(t) to evaluate the integral in Equation (38):

φ[∞](t) = C[∞]
+ f (+)(t) + C[∞]

− f (−)(t) +
∫ t2

t1

dτΔF(t− τ)V′(a + φ(τ)). (44)

The exact solutions are parameterized in terms of the eccentric anomaly E: r =
a(1− e cos E) and t =

√
ma3/α(E− e sin E), where t is time. For our numerical estimates,

we choose α = μ = p = 1 and e = 0.2. The values t1 and t2 are taken arbitrarily; they
correspond to E1 = −1 and E2 = 7.2. The coefficients C[l]

± for l = 0, 1, ∞ found as described
above are presented in Table 1. Table 2 shows r[0], r[1] and r[∞] for seven values of E ∈ [0, 2π].
The inclusion of the secondary waves generated by the nonlinear source V′ reduces the
standard deviation χ2 = ∑(r[l] − r)2 from 0.0038 to 0.0015, whereas r[∞] coincides with r.

Equation (38) can also be derived directly, under the assumption of t ∈ (t1, t2), by using
the GF method, whereas Equations (37) and (39) are specific consequences of Kirchhoff’s
integral theorem. We verified that the free term in Equation (44) fulfills, numerically,
Equation (37) and checked Equation (39) for a sample set of time points t /∈ (t1, t2), as well.

In summary, the idea of Kirchhoff’s integral theorem was explained in this section
with a one-dimensional toy model (a harmonic oscillator). Such a pedagogical approach
illustrates formalism, while the attempt to draw a physical analogy with well-known
phenomena leads to the seemingly paradoxical observation: no waves in the R1,0 space,
but the superposition principle is there, and even the problem of celestial mechanics was
solved using Kirchhoff’s integral theorem in a technically consistent manner. A parallelism
between classical mechanics and geometrical optics was regarded as purely formal until
the advent of quantum mechanics. The possibility of solving the problems of classical
mechanics using the methods of wave optics seems to be a surprising circumstance.

Table 2. First two iterations r[l] for the approximate solution of the radial equation of motion as
compared to the exact solution r = r[∞] for seven values of E ∈ [0, 2π].

E r[0] r[1] r[∞]

0 0.8333 0.8333 0.8333
π/3 0.9079 0.9410 0.9375

2π/3 1.1131 1.1619 1.1458
π 1.2500 1.2500 1.2500

4π/3 1.1132 1.1232 1.1458
5π/3 0.9079 0.9094 0.9375

2π 0.8333 0.8333 0.8333

3. Kirchhoff’s Integral Theorem for a Free Scalar Field

3.1. Complete Orthonormal Basis Functions

A complete set of solutions to the Klein–Gordon equation is formed by the functions

f (+)
k (x) =

e−ikx
√

2ωk
and f (−)

k (x) =
eikx
√

2ωk
,

where k = (ωk, k), ωk =
√

k2 + m2, x = (t, x) ∈ R1,3, and kx = ωkt− kx. These functions
correspond to the positive- and negative-frequency solutions in the oscillator problem. The
orthonormality conditions are

i
∫

dxW[ f (±)∗
k′ (x), f (±)

k (x)] = ±(2π)3δ(k′ − k),∫
dxW[ f (∓)∗

k′ (x), f (±)
k (x)] = 0. (45)
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For any function φ0(x) that is a solution of the Klein–Gordon equation,

φ0(x) =
∫ dk

(2π)3

(
f (+)
k (x)i

∫
dyW[ f (+)∗

k (y), φ0(y)]− f (−)
k (x)i

∫
dyW[ f (−)∗

k (y), φ0(y)]
)

. (46)

After the second quantization, the time-independent quantities

a(k) = i
∫

dyW[ f (+)∗
k (y), φ0(y)] and a∗(k) = −i

∫
dyW[ f (−)∗

k (y), φ0(y)]

become annihilation and creation operators.
The first and the second terms in Equation (46) are identified with the positive- and

negative-frequency components of φ0(x). According to the completeness condition (46),
the solutions of the free equation thereby split into the sum

φ0(x) = φ
(+)
0 (x) + φ

(−)
0 (x).

This decomposition is analogous to the decomposition of Equation (8). The orthonormality
conditions (45) and the completeness condition (46) are the generalized equivalents to
Equations (5) and (7), respectively, for the oscillator problem.

Using the analogy with Equations (10)–(16) and the Poisson bracket relations

{φ0(x), φ0(y)}|x0=y0 = 0, (47)

{φ0(x), π0(y)}|x0=y0 = δ(x− y), (48)

one can prove that∫ dk

(2π)3

(
f (+)
k (x) f (+)∗

k (y)− f (−)
k (x) f (−)∗

k (y)
)
|x0=y0 = 0, (49)∫ dk

(2π)3

(
f (+)
k (x) ḟ (+)∗

k (y)− f (−)
k (x) ḟ (−)∗

k (y)
)
|x0=y0 = iδ(x− y), (50)∫ dk

(2π)3

(
ḟ (+)
k (x) f (+)∗

k (y)− ḟ (−)
k (x) f (−)∗

k (y)
)
|x0=y0 = −iδ(x− y). (51)

Equations (49) and (50) can be used to show that the completeness condition (46) holds for
arbitrary functions at x0 = y0.

3.2. Feynman Propagator

The equation for the Feynman propagator is

(�+ m2)ΔF(x) = −δ4(x). (52)

It is easiest to find the solution in four-momentum space and then apply the Fourier
transform to convert it into coordinate space. Here, as in the oscillator problem, we must
shift the contour of the integral over k0 from the real axis in the vicinity of k0 = ±ωk. The
four possible ways to do so correspond to four Green’s functions.

The Feynman propagator can be written as follows:

ΔF(x− y) =
∫ d4k

(2π)4
e−ik(x−y)

k2 −m2 + i0
(53)

= −i
∫ dk

(2π)3

(
f (+)
k (x) f (+)∗

k (y)θ(x0 − y0) + f (−)
k (x) f (−)∗

k (y)θ(−x0 + y0)
)

.

In comparison with Equation (19), the phase space integral is added here. After the re-
placement f (±)(t)→ f (±)

k (x) and the integration over the phase space in Equations (20)–(22),
the form of the other propagators is restored. Using the analogy with Equation (23) and
Equations (49) and (51), one can verify that the propagator (53) satisfies Equation (52).
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3.3. Superposition Principle from Kirchhoff’s Integral Theorem
3.3.1. General form of the Superposition Principle

We start from the identity

φ0(ξ)δ
4(ξ − x) = ΔF(x− ξ)

(
(�ξ + m2)φ0(ξ)

)
−

(
(�ξ + m2)ΔF(x− ξ)

)
φ0(ξ). (54)

The right-hand side can be written in divergence form as follows:

φ0(ξ)δ
4(ξ − x) =

∂

∂ξμ

(
ΔF(x− ξ)

↔
∂

∂ξμ φ0(ξ)

)
. (55)

By taking the integral over a four-dimensional region Ω and transforming the right-
hand side into a surface integral, the equation

φ0(x)θ(x ∈ Ω) =
∫

∂Ω
dSμ

ξ

(
ΔF(x− ξ)

↔
∂

∂ξμ φ0(ξ)

)
, (56)

is obtained, where θ(x ∈ Ω) is the indicator function of Ω:

θ(x ∈ Ω) =

{
1, x ∈ Ω ,
0, x /∈ Ω .

By choosing for the surface ∂Ω a hyperplane ξ0 = y0 in the past, i.e., three-dimensional
space at a time ξ0 = y0 < x0, and a three-dimensional space ξ0 = z0 at a time ξ0 = z0 > x0

in the future, and then combining these spaces at infinity, where the integral vanishes, we
arrive at

φ0(x) =
∫

dzW[ΔF(x− z), φ0(z)]−
∫

dyW[ΔF(x− y), φ0(y)]. (57)

If x /∈ Ω, we obtain

0 =
∫

dzW[ΔF(x− z), φ0(z)]−
∫

dyW[ΔF(x− y), φ0(y)]. (58)

Equation (57) states that φ0(x) is determined by its past and future. Equation (58) suggests
that the interference of secondary waves outside the interval (y0, z0) is strictly destructive.

Equation (56) and its consequences (57) and (58) constitute a version of Kirchhoff’s
theorem in the most general form; these equations hold for any choice of propagator.

3.3.2. Monochromatic Field

The Fourier transform simplifies the superposition scheme of secondary waves. We
restrict ourselves to the case of monochromatic, spatially inhomogeneous waves. Consider
the following Fourier transforms in time of the scalar field and the Green’s function:

φ0(ω, x) =
∫ +∞

−∞
dteiωtφ0(t, x), ΔF(ω, x) =

∫ +∞

−∞
dteiωtΔF(t, x). (59)

They satisfy the equations

(Δ + k2)φ0(ω, x) = 0, (Δ + k2)ΔF(ω, x) = δ(x),

where k2 = ω2 −m2. The right-hand side of the identity

φ0(ω, ξ)δ(ξ − x) = −ΔF(ω, x− ξ)
(
(Δξ + k2)φ0(ω, ξ)

)
+
(
(Δξ + k2)ΔF(ω, x− ξ)

)
φ0(ω, ξ). (60)
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can be represented as the divergence

φ0(ω, ξ)δ(ξ − x) = − ∂

∂ξα

(
ΔF(ω, x− ξ)

↔
∂

∂ξα
φ0(ω, ξ)

)
.

Integrating over the region Ω3, we obtain von Helmholtz’s theorem for the monochro-
matic field [9]:

φ0(ω, x)θ(x ∈ Ω3) = −
∫

∂Ω3

dSα
ξ ΔF(ω, x− ξ)

↔
∂

∂ξα
φ0(ω, ξ), (61)

which is a particular case of the third Green’s identity [10] and a precursor of Kirchhoff’s
integral theorem. The integration is performed over the surface ∂Ω3, which is the boundary
of Ω3. The equation shows that the field at the point x is determined by its values on any
surrounding surface. This surface is not required to be the wave surface. If the point x lies
outside the closed surface, then the integral vanishes. Regardless of the specific form of
ΔF(ω, x), we can conclude from the form of the equation alone that if the field φ0(ω, x)
satisfies a differential equation, then this equation contains derivatives over the spatial
coordinates that are no higher than second order.

Equation (61) is used to describe the diffraction phenomena of light [3,8].
In the monochromatic, spatially inhomogeneous case, the integration is over the

surface rather than over the volume, as in Equation (57). However, because we are dis-
cussing the calculation of the Fourier transform in time, an implicit time integration enters
the problem.

3.3.3. Massless Field

For massless particles, the interference scheme for secondary waves is simplified. Let
us apply the inverse Fourier transform in Equation (61):

φ0(t, x)θ(x ∈ Ω3) = −
∫

∂Ω3

dSα
ξ

∫ +∞

−∞
dt′ΔF(t− t′, x− ξ)

↔
∂

∂ξα
φ0(t′, ξ). (62)

This equation follows from Equation (56) if we select for Ω an infinite cylinder whose
spatial section Ω3 is covered by the surface of integration ∂Ω3 and the axis is parallel to the
time axis.

As is well known, the propagator ΔF(t, x) does not vanish outside of the light cone
t2 − x2 < 0. This property does not generally violate causality, as ΔF(t, x) also describes the
propagation of the wave surfaces at which the phase remains constant. In the relativistic
theory, the phase velocity vp ≡ ωk/|k| ≥ 1 is greater than the speed of light; however, it
is the group velocity vg ≡ ∂ωk/∂|k|= |k|/ωk ≤ 1 with which the propagation of signals
is associated.

In the limit of zero mass, the propagator ΔF(t, x) takes the following form (see [5],
Appendix B or Equation (29) in [11] in the massless limit):

ΔF(t, x) =
i

4π2
1

t2 − |x|2 − i0
. (63)

Substituting (63) into (62) and taking into account that∫ +∞

−∞
dt′ΔF(t− t′, x)e∓iωkt′ =

1
4π|x| e

∓iωk(t∓|x|),
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we obtain

φ0(t, x)θ(x ∈ Ω3) =
1

4π

∫
∂Ω3

dSα
ξ

[
−1

ρ

∂

∂ξα

(
φ
(+)
0 (t− ρ/c, ξ) + φ

(−)
0 (t + ρ/c, ξ)

)
+

(
∂

∂ξα

1
ρ

)(
φ
(+)
0 (t− ρ/c, ξ) + φ

(−)
0 (t + ρ/c, ξ)

)
− 1

ρ

∂ρ

∂ξα

∂

c∂t

(
φ
(+)
0 (t− ρ/c, ξ)− φ

(−)
0 (t + ρ/c, ξ)

)]
, (64)

where ρ = |ξ − x| and in the first term, the differentiation with respect to ξα does not apply
to ρ. The dependence on the speed of light c is here made explicit.

Equation (64) represents a general form of Kirchhoff’s integral theorem for the Feyn-
man asymptotic conditions. The function is determined by its values on the selected
arbitrary closed surface, taking into account the delay of the positive-frequency component
and the advancement of the negative-frequency component. This representation is possible
because massless particles travel at the speed of light, regardless of their momentum. 1 By
contrast, the speed of a massive particle depends on its momentum; therefore, the more
general representation (62) includes the integral over time delay and advance. Kirchhoff’s
theorem is a precise mathematical formulation of the Huygens–Fresnel superposition prin-
ciple. A special feature of the Feynman asymptotic conditions is that the negative-frequency
components are determined by the future. An analogue of Equation (64) for the retarded
solutions is the original version of Kirchhoff’s integral theorem. It is briefly outlined in
Appendix A and discussed in detail in Reference [8].

3.4. Superposition Principle from the Completeness Condition

As a formalization of the superposition principle for the Feynman asymptotic condi-
tions, by analogy with Equation (30), we can consider

φ
(+)
0 (x)θ(x0 − y0)− φ

(−)
0 (x)θ(−x0 + y0) = −

∫
dyW[ΔF(x− y), φ0(y)]. (65)

The physical content of this equation is quite traditional: At the moment y0, the
wave is a source of secondary waves, and the propagation from point y to point x is
described by ΔF(x− y). To construct the positive-frequency waves, the past y0 < x0 must
be known, and to construct the negative-frequency waves, the future x0 < y0 must be
known. This property is reflected in the presence of the theta functions on the left-hand
side of the equation.

The proof of Equation (65) is similar to the proof of Equation (30). It is not based
on Kirchhoff’s theorem, but instead relies on the completeness condition (46) and the
expansion of the Feynman propagator into plane waves. Given that Equation (65) is
postulated, the Green’s function is uniquely determined. Indeed, let us take the derivative
over y0 on both sides of the equation. After the transformation of the integrand, we obtain
Equation (52); it must then be supplemented by asymptotic conditions.

We take the difference (65) for two instants of time, z0 and y0, such that y0 < x0 < z0.
The result is Equation (57). If x0 /∈ (y0, z0), then we obtain (58).

According to Equations (65) and (57), the field is determined by its values and first
derivatives at two time points. This property indicates the local nature of the evolution
equation. Arguing backward, since the initial conditions required to determine the field
are the field values and the first derivatives, the evolution equation may contain time
derivatives of no higher than second order. Additionally, in Equation (56), a hypersurface
∂Ω in the form of an infinite cylinder with its axis parallel to the time axis, can be chosen. In
such a case, Kirchhoff’s theorem would assert that the wave is determined by its values and
gradients on a two-dimensional surface at all times. This version of the theorem indicates
the local nature of the evolution equation in the spatial coordinates. The corresponding
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differential equation may contain derivatives of the spatial coordinates of no higher than
second order.

3.5. Path Integral

The path integral representation is a consequence of Equation (56). We choose a set
of four-dimensional regions Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωn ⊂ R1,3. By iterating Equation (56),
we obtain

φ0(x)θ(x ∈ Ω1) =
∫

∂Ω1

dSμ1
ξ1

∫
∂Ω1

dSμ2
ξ2

. . .
∫

∂Ωn
dSμn

ξn
(66)

× ΔF(x− ξ1)

↔
∂

∂ξ
μ1
1

ΔF(ξ1 − ξ2)

↔
∂

∂ξ
μ2
2

. . . ΔF(ξn−1 − ξn)

↔
∂

∂ξ
μn
n

φ0(ξn).

There exists considerable freedom in choosing Ωi. A similar freedom exists in the
factorization of unitary evolution operator U(t2, t1) in quantum mechanics, where the
equation U(t2, t1) = U(t2, t)U(t, t1) holds for any instant of time t ∈ (t1, t2). While the
evolution operator is factorized in time, the integration in the path integral goes over
the coordinates in three-dimensional space. Such a representation easily follows from
Equation (66). Indeed, choosing Ωi to be cylinders with infinite radii and axes parallel
to the time axis, we arrive at a representation of this kind. The broken lines connecting
the points x and ξn ∈ ∂Ωn through ξi ∈ ∂Ωi (i = 1, . . . , n − 1) form in the continuum
limit the class of paths over which the continual integral is defined. The comparison of
Equations (56) and (66) also yields, in the limit of n → ∞, an integral representation for the
Green’s function in the form of a continual integral.

4. Charged Scalar Field in an External Electromagnetic Field

Equations (56) and (65) and their particular cases were obtained for a free field. The
following question arises: which relations can be generalized in the presence of an external
field? We restrict ourselves to scalar electrodynamics.

4.1. Complete Orthonormal Basis Functions

Substituting the normal derivatives with respect to the space-time coordinates in the
Klein–Gordon equation with gauge covariant derivatives,

∂μ → Dμ = ∂μ + ieAμ (67)

yields the evolution equation for a complex scalar field in an external electromagnetic field,

(DμDμ + m2)φ(x) = 0. (68)

The external field is adiabatically switched on at t → −∞ and off at t → +∞. The
set of positive- and negative-frequency asymptotic solutions f (±)

k (x) is complete and

orthonormal. The second-order Equation (69) has a set of independent solutions F(±)
k (x).

The asymptotic conditions can be taken as

F(±)
k (x)→ f (±)

k (x) ≡ e∓ikx
√

2ωk
for t → −∞.

All other solutions of Equation (68) are expressed as linear superpositions of the basis
functions F(±)

k (x).
It would be natural to use the prescription (67) for extending the Huygens–Fresnel

superposition principle. It can be assumed that in an external electromagnetic field, the
suitable generalization of the Wronskian is given by

WA[ϕ
∗, χ] ≡ ϕ∗(

↔
∂ t +2ieA0)χ = ϕ∗(Dtχ)− (Dt ϕ)∗χ.
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We note a useful property:

∂tWA[ϕ
∗, χ] = ∂t(ϕ∗(Dtχ)− (Dt ϕ)∗χ)

= ϕ∗(DtDtχ)− (DtDt ϕ)∗χ. (69)

It is not difficult to show that if ϕ and χ are two solutions of Equation (68), then the
following condition holds:

∂t

∫
dxWA[ϕ

∗, χ] = 0.

This condition allows us to calculate the normalization integral by sending the time
variable to negative infinity, where solutions are represented as plane waves. The orthonor-
mality conditions thus take the form

i
∫

dxWA[F
(±)∗
k′ (x), F(±)

k (x)] = ±(2π)3δ(k′ − k),∫
dxWA[F

(±)∗
k′ (x), F(∓)

k (x)] = 0.

The completeness condition is obvious:

φ(x) =
∫ dk

(2π)3

(
F(+)

k (x)i
∫

dyWA[F
(+)∗
k (y), φ(y)]− F(−)

k (x)i
∫

dyWA[F
(−)∗
k (y), φ(y)]

)
. (70)

In the theory of a charged scalar field, the canonical momenta are defined by the equa-
tions π∗(x) = Dtφ(x) and π(x) = (Dtφ(x))∗. The canonically conjugate variables satisfy

{φ(x), π(y)}|x0=y0 = {φ(x)∗, π∗(y)}|x0=y0 = δ(x− y), (71)

while other pairs have the vanishing Poisson bracket. The generalization of the correspond-
ing relations of a free scalar field can be written as follows∫ dk

(2π)3

(
F(+)

k (x)F(+)∗
k (y)− F(−)

k (x)F(−)∗
k (y)

)
|x0=y0 = 0, (72)∫ dk

(2π)3

(
F(+)

k (x)D∗
t F(+)∗

k (y)− F(−)
k (x)D∗

t F(−)∗
k (y)

)
|x0=y0 = iδ(x− y), (73)∫ dk

(2π)3

(
DtF

(+)
k (x)F(+)∗

k (y)− DtF
(−)
k (x)F(−)∗

k (y)
)
|x0=y0 = −iδ(x− y). (74)

Equations (72) and (73) show that the completeness condition (70) holds for arbitrary
functions evaluated at x0 = y0.

In conclusion, we note that the zeroth component of vector potential can be removed
by a gauge transformation, in which case, WA = W and other relations and their proofs
take the form more similar to the free case.

4.2. Feynman Propagator

The decomposition of the Feynman propagator over the basis functions has the form

ΔF(x, y) = −i
∫ dk

(2π)3

(
F(+)

k (x)F(+)∗
k (y)θ(x0 − y0) + F(−)

k (x)F(−)∗
k (y)θ(−x0 + y0)

)
. (75)

The use of Equations (72) and (74) allows to verify by the direct calculation that

(DμDμ + m2)ΔF(x, ξ) = −δ4(x− ξ). (76)
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4.3. Superposition Principle from Kirchhoff’s Integral Theorem

To derive Equation (55), the identity (54) was used. After recapitulating the arguments
used in the proof of Equation (69), we rewrite the divergence of

ϕ
↔
Dμ χ ≡ ϕ(Dμχ)− (D∗

μ ϕ)χ,

where ϕ and χ are arbitrary functions, in the form

∂μ(ϕ
↔
Dμ χ) = ϕ(DμDμχ)− (D∗

μD∗μ ϕ)χ.

Substituting ΔF(x, ξ) and φ(ξ) in place of ϕ and χ, respectively, we obtain

φ(ξ)δ4(x− ξ) =
∂

∂ξμ

(
ΔF(x, ξ)(Dμ φ(ξ))− (D∗

μΔF(x, ξ))φ(ξ)
)

. (77)

By choosing as the integration region a four-dimensional space with the variable ξ0

running in the interval (y0, z0), we find for x0 ∈ (y0, z0)

φ(x) =
∫

dzWA[ΔF(x, z), φ(z)]−
∫

dyWA[ΔF(x, y), φ(y)]. (78)

In the opposite case of x0 /∈ (y0, z0) the left-hand side vanishes.

4.4. Superposition Principle from the Completeness Condition

The linearity of the evolution equation allows for the generalization of the superposi-
tion principle (65) in the presence of an external electromagnetic field. The completeness
condition leads to the following scheme:

φ(+)(x)θ(x0 − y0)− φ(−)(x)θ(−x0 + y0) = −
∫

dyWA[ΔF(x, y), φ(y)]. (79)

Under the integral sign, the derivative entering WA also generates the term

Δ(x, y) = −i
∫ dk

(2π)3

(
F(+)

k (x)F(+)∗
k (y)− F(−)

k (x)F(−)∗
k (y)

)
multiplied by φ(y)δ(x0 − y0). In view of the relationship x0 = y0 and Equation (72), this
term vanishes. By calculating the derivative of Equation (79) with respect to y0, one can
prove that the propagator obeys equation

(D∗
μDμ∗ + m2)ΔF(x, ξ) = −δ(x− ξ), (80)

where the differentiation is over ξ. This equation is equivalent to Equation (76), where Dμ

acts on x.
The superposition scheme for the retarded propagator is as follows

φ(x)θ(x0 − y0) = −
∫

dyWA[Δret(x, y), φ(y)]. (81)

This equation is the analog of Equation (27). It can also be derived from Equation (77).
To conclude, the superposition schemes for a free scalar field are fundamentally valid

for a scalar complex field in an external electromagnetic field.

5. Nonlinear Field Theory

The superposition principle for secondary waves, which is the consequence of the GF
method, should be distinguished from the superposition principle as a manifestation of the
linearity of the problem. In linear theory, the wave is a source of secondary waves. In non-
linear theory, two sources of secondary waves exist: the wave itself plus a function V′(φ).
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In both cases, secondary waves satisfy free linear wave equations, so the superposition
principle applies to secondary waves universally.

5.1. Secondary Waves beyond Fresnel’s Superposition Scheme

For a Lagrangian L = Lfree −V, that contains a term V = V(φ) of a general form, the
identity (54) is modified as follows:

φ(ξ)δ4(ξ − x) = ΔF(x− ξ)((�ξ + m2)φ(ξ) + V′(φ(ξ)))− ((�ξ + m2)ΔF(x− ξ))φ(ξ)

=
∂

∂ξμ

(
ΔF(x− ξ)

↔
∂

∂ξμ φ(ξ)

)
+ ΔF(x− ξ)V′(φ(ξ)). (82)

For x0 ∈ (y0, z0), this equation gives

φ(x) = φ0(x)−
∫

d4ξΔF(x− ξ)V′(φ(ξ)), (83)

where the integration over ξ0 runs over ξ0 ∈ (y0, z0) and the integral in ξ extends over all
space. The field φ0(x) is defined by the relation

φ0(x) =
∫

dzW[ΔF(x− z), φ(z)]−
∫

dyW[ΔF(x− y), φ(y)]. (84)

For x0 ∈ (y0, z0), φ0(x) satisfies the free Klein–Gordon equation. If x0 /∈ (y0, z0), then

0 = φ0(x)−
∫

d4ξΔF(x− ξ)V′(φ(ξ)). (85)

In quantum field theory, Equation (83) in the infinite limits (y0, z0) = (−∞,+∞) is
used in the development of perturbation theory. Unlike in the canonical formulation of
the Fresnel superposition scheme, the integrand contains the nonlinear term V′(φ(ξ))
as an additional source of secondary waves and the integration spans the entire four-
dimensional space.

Equations (83)–(85) in nonlinear scalar field theory are analogous to Equations (36)–(38)
in the anharmonic oscillator problem.

The mass term ofL can be attributed either toLfree or to the potential V. In the last case,
Lfree describes massless particles. This might seem disadvantageous, because asymptotic
states of L are massive in general. The positive feature is that the retarded Green’s function
of massless particles, being localized on the light cone (see Equation (A1)), ensures reduction
of four-dimensional integrals in Equations (83) and (85) to three-dimensional integrals and
transformation of integrals in Equation (84) to surface integrals.

5.2. Positive- and Negative-Frequency Solutions

Interacting fields can be decomposed into a sum of positive- and negative-frequency
solutions only asymptotically. In Section 2.3.2, we demonstrated that the straightforward
generalization of the Fresnel superposition scheme to nonlinear dynamical systems is
possible and consistent; however, its value is limited to only providing the definitions of
positive- and negative-frequency solutions for arbitrary t. For the sake of completeness, we
present here a field theoretical version of the nonlinear superposition scheme (40):

φ(+)(x)θ(x0 − y0)− φ(−)(x)θ(−x0 + y0) = −
∫

dyW[ΔF(x− y), φ(y)]

+
∫

d4ξΔF(x− ξ)V′(φ(ξ)), (86)

where the integral over ξ0 runs from y0 to x0.
The derivative over y0 leads to the relation φ(t) = φ(+)(t) + φ(−)(t) and Equation (52).

The difference in Equation (86) at two different time points leads to Equations (83)–(85).
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Equation (86) ensures that φ(±)(x) is a linear superposition in k of the basis functions
f (±)
k (x) at t → ±∞.

The calculation of the first derivative of Equation (86) in x0 yields a superposition
scheme for the canonical momentum:

π(+)(x)θ(x0 − y0)− π(−)(x)θ(−x0 + y0) = −
∫

dyW[ΔF(x− y), π(y)]

+
∫

d4ξΔF(x− ξ)V′′(φ(ξ))π(ξ), (87)

where the integral over ξ0 runs from y0 to x0.

6. Conclusions

The evolution of the ideas underlying the Huygens–Fresnel superposition principle
from geometrical and wave optics to the theory of interacting fields is highly instructive.

In geometrical optics, a wave front refers to the two-dimensional surface that defines
the farthest extent to which the wave has arrived after a certain period of time. Huygens’
principle (1678), based on the Fermat principle, allows for the determination of how the
wave front is propagating.

In wave optics, the term wave front has no strict definition. Instead, the term wave
surface is used. The wave surface is the two-dimensional surface on which the phase of
the wave is constant. A.-J. Fresnel proposed the principle of superposition (1816), which
details the wave process. A wave is a result of interference of secondary waves emitted
at an earlier time. At any fixed point, it is determined by the phase and amplitude at a
wave surface corresponding to a preceding instant of time. The wave surface in the past
can be chosen arbitrarily. The superposition principle anticipates informal content of the
GF method (1828).

Kirchhoff’s integral theorem (1883) is a dynamic, four-dimensional extension of
Green’s third identity of the static potential theory. More than half a century separates
this theorem from Green’s major work [10], which introduced the basic concepts of the GF
method.2 Kirchhoff’s integral theorem provides a mathematical proof of the superposition
principle, clarifying and quantifying it.

First, the theorem demonstrates that the amplitude of the secondary waves is deter-
mined by the Wronskian of the Green’s function and the field at a previous time.

Second, the wave surfaces are not highlighted; this is perfectly consistent with the fact
that they are not necessarily observable (in the massive theory, e.g., the speed of a wave
surface of a plane wave is always greater than the speed of light). The surface must be
closed and contain the point at which the wave is calculated; otherwise, it can be arbitrarily
chosen. Outside the closed surface, the interference of the secondary waves is strictly
destructive: for any exterior point, the calculation of the surface integral yields zero.

The reasoning used in the proof can be regarded as a standard piece of the GF method;
it is of high generality, goes beyond the problem of propagation of electromagnetic waves
and allows for an understanding of how the superposition principle should be modified in
the theory of interacting fields. Note the most significant modifications:

(i) According to the Huygens–Fresnel superposition principle, a wave at a given point is
expressed as a superposition of secondary waves emitted from centers located on a
two-dimensional surface. This property arises only in massless theories, including the
theory of electromagnetic fields, where the group and phase velocities coincide with
the speed of light, which is the necessary condition for the integral over time delay
and advance to not be available in Equation (64). Kirchhoff’s integral theorem for
massive particles, Equation (62), states that a wave is determined by its values on a
closed surface at all times. The physical interpretation of this fact is quite transparent.
The Fourier expansion of a massive field contains components of various momenta
corresponding to various group and phase velocities, which leads to a spread in time
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lags. As a result, the two-dimensional integral over the sources of secondary waves is
transformed into a three-dimensional integral;

(ii) In the nonlinear theory, there is a need for a more extensive modification of the
superposition scheme. In addition to the wave itself, a nonlinear function of the
field V′(φ(ξ)) becomes the source of secondary waves. The summation runs over
distributed sources: from a two-dimensional surface in theories with massless particles
to a two-dimensional surface and the time axis in theories with massive particles and
the entirety of four-dimensional space. This type of representation holds for both local
nonlinear and nonlocal theories.

We see that after each modification, the effectiveness of the superposition principle
weakens. In the most general nonlinear case, the modified principle certainly does not
promise fast results. To determine the field, it is necessary to calculate a four-dimensional
integral in a self-consistent manner. In linear theories, the superposition principle solves
the evolution problem, but in nonlinear theories, it only offers a different formulation
of the problem. Nevertheless, relations of this type are still useful when searching for
solutions within the framework of perturbation theory, when the non-linearity is small.
In other cases, the solutions found using other techniques can be checked. The four-
dimensional representation given by Equation (83) is a consequence of Kirchhoff’s integral
theorem, but in quantum field theory, it is typically derived directly from the properties of
Green’s functions.

In the context of a field theory, the original form of the superposition principle only
has heuristic value. The superposition schemes for the secondary waves that are used to
solve specific problems are unified by Kirchhoff’s integral theorem, which exploits the
properties of the Wronskian of the Green’s functions and solutions of the wave equation
under consideration. The spectrum of such problems is quite comprehensive: from the
harmonic oscillator to scalar electrodynamics and nonlinear field theories.

In addition to the use of the GF method, which has found a variety of applications in
quantum field theory, Kirchhoff’s theorem has a wider range of corollaries. Equation (62),
which represents one version of Kirchhoff’s theorem, does not arise in quantum field theory
because of the boundary conditions, which are atypical of a scattering problem. However,
the superposition scheme represented by Equation (65), which is not based on Kirchhoff’s
theorem, is not sufficiently general because it does not extend to theories with interaction.

The statement of Kirchhoff’s integral theorem depends on the asymptotic conditions
imposed on Green’s function. In the main part of the paper, as we were interested in the
place of this remarkable principle and well-known theorem in quantum field theory, we
applied the Feynman asymptotic conditions almost universally.
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Appendix A. Kirchhoff’s Integral Theorem and Its Vector Extensions with the

Retarded Green’s Function

In the main sections of the paper, emphasis is placed on the Feynman asymptotic con-
ditions, which play a special role in quantum field theory. Here, we formulate Kirchhoff’s
integral theorem and its vectorial generalizations for the retarded Green function.

Appendix A.1. Free Massless Scalar Field

Equation (56) is essentially the third Green identity for time-dependent solutions of
the wave equation; its proof is outlined in Section 3.1. As noted earlier, Equation (56) holds
for any Green function.
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The retarded Green function in the coordinate representation has the following form
(see, e.g., [5])

Δret(t, x) =
∫ d4q

(2π)4 e−iqx 1
q2 + i0sgn(q0)

= − 1
4π|x| (δ(|x| − t)− δ(|x|+ t))θ(t). (A1)

The product of generalized functions of a single variable is not defined. The propagator
depends on four space-time coordinates. Generalized functions of four variables allow for
products of up to four generalized functions of one variable, provided their arguments are
independent. Δret(t, x) is thus a well-defined generalized function.

Δret(t, x) is localized on the upper half of the light cone t2 − x2 = 0. Substituting (A1)
in place of ΔF(t, x) in Equation (62), one arrives at the original Kirchhoff representation [7,8]

φ0(t, x)θ(x ∈ Ω3) =
1

4π

∫
∂Ω3

dSα
ξ

[
−1

ρ

∂

∂ξα
φ0(t− ρ/c, ξ) +

(
∂

∂ξα

1
ρ

)
φ0(t− ρ/c, ξ)

− 1
ρ

∂ρ

∂ξα

∂

c∂t
φ0(t− ρ/c, ξ)

]
, (A2)

where ρ = |ξ − x| and where the differentiation in ξα does not affect ρ in the first term.
The dependence on the speed of light c is here made explicit. The wave φ0(t, x) at x ∈ Ω3
is determined by its values on the closed surface ∂Ω3 considering the delay ρ/c. Linear
second-order hyperbolic partial differential equations possessing this property are well-
studied from a mathematical point of view [13–15].

Appendix A.2. Monochromatic Electromagnetic Fields with Sources

A generalization of Kirchhoff’s integral theorem, which takes into account vectorial
character of the electromagnetic field and the electromagnetic currents, was obtained by
von Ignatowsky [16]. First, however, we consider a generalization of von Helmholtz’s
theorem, following Stratton and Chu [17].

Most methods used in Section 3.3.2 for a free monochromatic scalar field apply to a
monochromatic electromagnetic field with sources after some slight modifications. We
replace scalar field φ0 by the electromagnetic field tensor Fμν = ∂ν Aμ − ∂μ Aν. In the
Lorentz gauge ∂μ Aμ = 0, the evolution equations ∂νFμν = jμ become �Aμ = jμ, where
jμ is the electromagnetic current. It is assumed that the fields are harmonic and that all
quantities contain a factor exp(−iωt), so that ∂0 jμ = −iωjμ, (ω2 +�)Aμ = −jμ, and

(ω2 +�)Fμν = −∂ν jμ + ∂μ jν.

Since the right-hand side of this equation is different from zero, the analogue of
Equation (60) takes a more complicated form:

Fμν(ω, ξ)δ(ξ − x) = Δret(ω, x− ξ)(−∂ν jμ(ω, ξ) + ∂μ jν(ω, ξ))

− ∂

∂ξα

⎛⎝Δret(ω, x− ξ)

↔
∂

∂ξα
Fμν(ω, ξ)

⎞⎠. (A3)

The sum in α runs from 1 to 3, while μ, ν = 0, 1, 2, 3. By integrating over a three-
dimensional region Ω3, one obtains

Fμν(ω, x)θ(x ∈ Ω3) =
∫

Ω3

dξΔret(ω, x− ξ)(−∂ν jμ(ω, ξ) + ∂μ jν(ω, ξ))

−
∫

∂Ω3

dSβ
ξ Δret(ω, x− ξ)

←→
∂

∂ξβ
Fμν(ω, ξ). (A4)
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The dependence on the derivatives of Fμν can be eliminated [17].

Appendix A.3. Non-Monochromatic Electromagnetic Fields with Sources

In the presence of external currents, electromagnetic fields satisfy the identity

Fμν(ξ)δ4(ξ − x) = Δret(x− ξ)(−∂ν jμ(ξ) + ∂μ jν(ξ))

− ∂

∂ξσ

⎛⎝Δret(x− ξ)

↔
∂

∂ξσ
Fμν(ξ)

⎞⎠. (A5)

The sum in σ runs from 0 to 3. By taking the integral over a four-dimensional region Ω,
we obtain

Fμν(x)θ(x ∈ Ω) =
∫

Ω
d4ξΔret(x− ξ)(−∂ν jμ(ξ) + ∂μ jν(ξ))

−
∫

∂Ω
dSσ

ξ

⎛⎝Δret(x− ξ)

↔
∂

∂ξσ
Fμν(ξ)

⎞⎠. (A6)

The representation becomes linear in Fμν after replacing jμ with ∂νFμν. The field
derivatives are assumed to be smooth.

Equation (A6) can be simplified by choosing Ω to be an infinite cylinder, Ω = R1 ⊗Ω3,
whose cross section is a three-dimensional space-like region Ω3. With the use Equation (A1),
the integration over the time coordinate gives [16]

Fμν(t, x)θ(x ∈ Ω3) = − 1
4π

∫
Ω3

dξ
1
ρ
(− ∂

∂ξν
jμ(t− ρ, ξ) +

∂

∂ξμ
jν(t− ρ, ξ))

+
1

4π

∫
∂Ω3

dSα
ξ

[
−1

ρ

∂

∂ξα
Fμν(t− ρ, ξ)

+

(
∂

∂ξα

1
ρ

)
Fμν(t− ρ, ξ)− 1

ρ

∂ρ

∂ξα

∂

∂t
Fμν(t− ρ, ξ)

]
, (A7)

where ρ = |ξ − x|. In the first two lines, the differentiation with respect to ξα does not
apply to ρ.

Kirchhoff’s integral theorem (A2) and Equation (A4) extend von Helmholtz’s theo-
rem (61) in different directions. Equation (A7) constitutes, on one hand, the generalization
of Kirchhoff’s integral theorem by taking into account the vectorial character of electromag-
netic field and including the effect of electromagnetic currents and, on the other hand, the
generalization of Equation (A4) by going beyond the monochromatic field assumption.

Notes

1 In Euclidean space of dimension n ≥ 3, Green’s function has the form Δ(x) ∼ 1/(x2)(n−2)/2. Performing a Wick rotation, we find
that the Green’s function as an analytic function of the variable t = x0 has two isolated poles in the spaces of even dimension and
two root branching points in the spaces of odd dimension. This means that in the massless case, the Green’s function is effectively
localized on the light cone in the spaces of even dimension only. Here, an analogue of the representation (64) holds. In the spaces
of odd dimension, the superposition scheme involves the integration over all spatial coordinates. This property of the Green’s
function suggests that the requirement of equal phase and group velocities and the speed of light is a necessary but not sufficient
condition for the representation of superposition scheme in the form of a surface integral.

2 In 1839, G. Green came closely to the notion of the four-dimensional Green’s function. The value of the GF method in quantum
field theory is highly appreciated [12].
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Quantum Empiricism

Yurii V. Brezhnev

Department of Quantum Field Theory, Tomsk State University, 634050 Tomsk, Russia; brezhnev@phys.tsu.ru

Abstract: Clarifying the nature of the quantum state |Ψ〉 is at the root of the problems with insight into
counter-intuitive quantum postulates. We provide a direct—and math-axiom free—empirical derivation
of this object as an element of a vector space. Establishing the linearity of this structure—quantum
superposition—is based on a set-theoretic creation of ensemble formations and invokes the following
three principia: (I) quantum statics, (II) doctrine of the number in the physical theory, and (III) mathema-
tization of matching the two observations with each other (quantum covariance). All of the constructs
rest upon a formalization of the minimal experimental entity—the registered micro-event, detector click.
This is sufficient for producing the C -numbers, axioms of linear vector space (superposition principle),
statistical mixtures of states, eigenstates and their spectra, and non-commutativity of observables. No
use is required of the spatio-temporal concepts. As a result, the foundations of theory are liberated to
a significant extent from the issues associated with physical interpretations, philosophical exegeses,
and mathematical reconstruction of the entire quantum edifice.

Keywords: quantum foundations; non-axiomaticity; detector clicks; ensembles; superposition principle;
arithmetic; numbers; vector space; abstracting; interpretations; self-referentiality

1. Introduction and Summary

. . . somewhat curious that, even after nearly a full century, physicists still do not
quite agree on what the theory tells us . . . —G. ’t Hooft ([1], p. 5)

It is almost a crying shame that we are nowhere close to that with quantum
mechanics, given that it is over 70 years old now—C. Fuchs ([2], p. 32)

The contradiction between the fundamental nature of quantum theory (QT) and the
phenomenological feature of its mathematics [3] is likely to never cease instigating the
attempts to overcome it. As H. Putnam had said, “Human curiosity will not rest until . . .
questions [of the nature of the QT-formalism] are answered”.

The subject-matter and leitmotiv of what follows is that the linear superposition and
theory’s axioms have an origin—they are derivable, and it is entirely empirical. The theory
is thereby demystified, and the interpretative challenges that accompany the exegeses of
QT are a nonexistent problem coming from “a confusion of categories” ([4], p. 89), i.e., from
the “semantic confusion” ([5], p. 10). A direct outgrowth of this ideology is not only a
derivation of the superposition principle (page 35) but also the axiom-free production of
the “chief” quantum formula—the Born rule p = |a|2 [6].

1.1. On the Foundations of Quantum Theory

The debates concerning the foundations of quantum mechanics (QM) hitherto “show
no sign of abating” ([7], p. 222, [8,9]), and despite widespread scepticism [10–15], it is
generally acknowledged that the problem is a real one [9,16–19]; it is not something made
up or “just a dispute over words” ([20], p. 5) and sometimes “has been regarded as a very
serious one” ([15], p. 418, [21,22]). Say, R. Penrose has expressed (2004) an even more
radical “conviction that present-day quantum mechanics has no credible ontology, so that
it must be seriously modified”.
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In recent decades, the discussions have even worsened [2,23], and current research has
intensified due to the tremendously increased and formerly inconceivable technological
possibilities of operating with individual micro-objects and the urge to implement the idea
of quantum computing [20,24].

The reason for this state of affairs remains the same as it was before. Unlike the
classical theories, e.g., thermodynamics or relativity theory, ”Ma di assiomatizzazioni della
teoria quantistica ce ne sono moltissime” ([17], p. 30) and the QM-axiomatics itself seems
wholly divorced from human language [5,8,9,15,17,25–32]. Quantum postulates are not
merely formal. They are phrased in terms of linear operators on a complex Hilbert space
H [4,10,13,25,33–37] and, with that, literally not a single word here can be brought into
conjunction with reality by means that have at least some kind of relationship with the
classical description. What is more, it is very well known that the abstract character of
these terms is required by the essence of the point (covariance) and, at the same time,
that the attempt to link them with physical images is imposed by a decree and results
in the famous paradoxes associated with concepts, such as causality, (non)locality, and
realism [9,27,28,38–45]. All of that causes a problem with interpretations of QM.

It is well known that the theory has steadfastly resisted any unique ontological reading
and, in particular, reconciliation between interpretations. This is reflected not only in the
voluminousness of the literature. The differences in viewpoint are often based on points
of principle [3,8,14,15,46–51], and even highly qualified publications face criticism [52–55].
Among other things, we encounter appeals [3,12,16,17,43,56–58] (there is even a mani-
festo(s) [50], (p. 990), [59], ), striking titles such as “scandal of quantum mechanics” [60,61],
“QUANTUM OUTCOME: ALLAH WILLED IT?” ([62], p. 188; Wheeler), “the Oxford Questions
. . . to two clouds” ([63], p. 6), “The Canon for Most of the Quantum Churches” ([50], p. 988),
“Quantum mechanics for the Soviet naval officers” ([64], p. 161), “the patron saint of heretics
in the One True Church of Copenhagen” (about D. Bohm), “A Feminist Approach to Teach-
ing Quantum Physics” ([2], p. 182), “Church of the Larger Hilbert Space” (J. Smolin) [2,12],
and also April Fools’ [65] and the medical jokes about “the “state of health of the quantum
patient’” ([66], p. vii), political parallels with “Marxism . . . [and] the Cold War” [67], and
many more [3,9,27,68–71].

An interesting fact is that Cambridge University Press has published a 500-page-long
book [2] containing an arresting electronic correspondence—D. Mermin called it “samizdat”
(self-published)—between C. Fuchs and modern researchers and philosophers in the field of
quantum foundations. This correspondence has continued ([23], over 2300 pages) and now
covers 1995–2011. It characterizes the state of affairs in the field, and does not merely add
to one’s impression of the unending discussions about quantum matters (see introductory
sections in [50] (!) and in [64]), it also represents, due to the lack of formality, a plentiful
source of ideas and of valuable thoughts. Schlosshauer’s very informative “quantum
interviews” [16] pursue the same goals.

It is worth mentioning that the quantum challenges had led, quite a while ago, to
attempts to revise, even formalizing, the logic of our thinking [72,73]—a very nice mathe-
matical theory dating back to von Neuman in the 1930s ([25], Section III.5) termed quantum
logic [74]. There are handbooks on that subject [75], and this topic is still under intensive
investigation now. See also the last paragraph in Section 6.3.1.

The lack of transparent motivations for mathematics—a pressing requirement of
physics—means that QM-formalism is hard to distinguish from a “cook book of procedures
and rituals” (J. Nash), a “user-manual” ([32], p. 1690), [76], ([27], p. xiii), or from “a library
of . . . tricks and intuitions” [21]. Therefore, the “dissatisfaction regarding comprehension”
and the “need for interpretation that is alien to an exact science” ([77], pp. 7–8) lead to the
fact that “we admit, be it willingly or not, that quantum mechanics is not a physical theory
but a mathematical model” ([32], p. 1701) or that “nature imitates a mathematical scheme”
([78], p. 347; Heisenberg). De facto, QT “is in a sense like a traditional herbal medicine used
by “witch doctors”. We do not REALLY understand what is happening” (J. Nash) and “we
have essentially no grasp on why the theory takes the precise structure that it does” ([2],
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p. 32), which raises the suspicion that “something is wrong with the theory” (H. Putnam)
and that “this quantum skyscraper is built on very shaky ground” ([64], p. 8). (Throughout
the text, the italic and slanted type in “quotations” is original, unless otherwise indicated.)

At the same time, well-founded opinions have long been known to the effect that
“quantum theory needs no “interpretation’” [43], in refs. [3,12,60] or that “only conse-
quences of the basic tenets of quantum mechanics can be verified by experiment, and
not its basic laws” ([11], p. 16). In other words, the discrepancies between opinions are
significant and often radical: from epithets such as “schizoid, . . . situation is desperate”
([15], p. 420), ([79], p. 424) to supporting the rationale for quantum computations [24] and
whole books written on the subject [8]. Concerning the “schizoid”, the case in point is
the many-world conception by Everett–DeWitt. See also pages 158, 161, 176–179 in [80]
regarding the “state of schizophrenia” and “explanations” as to why “schizophrenia cannot
be blamed on quantum mechanics” ([80], p. 182).

In any case, the controversy between “the warring factions, . . . , many [quantum]
faiths, . . . and instrumentalist camps” ([16], pp. 60–61), ([81], Section 5.5), [30,33]—“[t]hey
all declare to see the light, the ultimate light” ([50], p. 987)—cannot be considered as an
acceptable state of affairs (see also Section 11.1) for the simple reason that the quantum
philosophy issues turn into an “industry”of interpretations—an unhealthy state of affairs—
while, at the same time, the very same philosophers call for its denial: “interpretation of
QM emerged as a growth industry” ([82], p. 92).

1.2. Formula of Superposition

Conversely, the “dominant role of mathematics in constructing quantum mechanics”
has led to the conclusion that mathematical “assumptions are usually considered to be
physical” ([32], p. 1691). That is to say, “there has been a substitution of concepts” ([76],
p. 295) and “one of the consequences of quantum revolution was the replacement of
explanations of physical phenomena by their mathematical description” ([76], p. 296).
These characteristics convey, in the best possible way, the dissatisfaction with the fact that
quantum physics “was actually reduced to a physical interpretation of the Hilbert space
theory” ([32], p. 1690). The H-space in itself is a fairly cumbersome mathematical structure
and even determines a crucial principle: the superposition of states [26]. It is thus not
surprising that this principle becomes “one of the vague points . . . the [Dirac] argument is
difficult to consider as rational . . . the physical principle simply fits underneath it” (excerpt
from the preface to the Russian edition of [83]).

The mathematics of the H-space contains three constituents: a vector space, the inner-
product add-on over it, and topology. The two latter ones invoke the first one, which is
completely independent (algebra) and begins with the formula

|ψ〉 = a · |ϕ〉+ b · |χ〉 . (1)

This is the pivotal expression of quantum theory. Comprehending its genesis is tantamount
to comprehending the nature of the linearity of QM.

In Formula (1), there occur the complex numbers a, b ∈ C, symbols of operations
· and +, and also vectors |ψ〉, |ϕ〉, |χ〉 ∈ H. It is clear that until an empirical basis for
all these devices is found, the interpretation of Abstraction (1) and questions of the kind
“Quantum States: What the Hell Are They?” (55 times in [23]) will remain a problem. To
all appearances, the problem is considered so difficult—“quantum states . . . cannot be
“found out’” ([8], p. 428)—that the non-axiomatic meaning of these symbols was not even
discussed in the literature. In the meantime, not only is the situation far from hopeless,
but it also admits a solution. The present work is devoted to gradual progress towards
an understanding of Formula (1). Stated differently, Equality (1) becomes an empirical
“theorem” (p. 56).
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• The main part of the challenge is not only to ascertain what is being added/multiplied
in Formula (1), but also to realize primarily what “to add/multiply” is, and “Where
Mathematics Comes from” [84] at all.

“What does it mean, physically, to “add” things?” [2], (p. 178; D. Darling). More than that,
aside from the symbols {a, b, |ψ〉, |ϕ〉, |χ〉, ·, +}, Expression (1) contains the sign of equality
= (see also [85] (pp. 29, 30 (!), [86]), and, surprising as it may seem, it conceals one of the
key points—the third principium of quantum theory (III, p. 29).

The guiding observation is based on the fact that the only thing that we have access to
are the microscopic events, and therefore, “we have little to begin with other than what an
experimental physicist would call experiments with a single microsystem” ([87], p. 5).

“[W]e must recognize that the focusing on individual elements whatever these
may be is absolutely indispensable for all our thinking. . . . What may be regarded
as an individual event?”

R. Haag ([88], p. 302)

Consequently, we must begin from individual events and from collecting them into
ensemble formations. It is precisely in this context that we will use the word empiricism—
quantum empiricism of micro-acts of perception—and it is in this respect that QT has a
statistical nature. As Einstein put it, “It may be a correct theory of statistical laws, but
an inadequate conception of individual elementary processes” ([30], p. 156; Einstein);
see also ([25], ([30], Chs. 7–8), [70], [89], pp. 38–40), ([89], p. 40). Such a viewpoint has
been long championed by L. Ballentine [90] and H. Groenewold ([91], p. 468) and justified
in detail by G. Ludwig [87,92–94]. A. Leggett proposes accordingly “extreme statistical
interpretation”[16] (p. 79) , [95], in the sense that “to seek any further “meaning” in the
formalism is pointless and can only generate pseudoquestions”. With that, he overtly
applies such characteristics as “complete gibberish” ([95], p. 70) and “verbal window
dressing” ([16], p. 79).

The difficulty is, of course, in creating the object |ψ〉 itself. A step-by-step characteriza-
tion of this procedure (Sections 3–8) and key words to what follows have been reflected in
the (sub)section titles listed in the Contents.

1.3. Physics � Mathematics; Doctrine of Numbers

Thus, the situation appears to be one whereby the physics itself faces inconsistencies
in its foundations and the mathematical superstructures are difficult to reconcile with its
motivations (physical principles) [96]. However, on the other hand, attempts to axiomatize
an interface between them [97] only conceal a deeper insight [22]. M. Born had called
attention to the fact that “probable refinements of mathematical methods will not suffice to
produce a satisfactory theory, but that somewhere in our doctrine is hidden a concept” and
T. Maudlin was more definite: “physicists have been misled by the mathematical language
they use to represent the physical world”.

In other words, we observe an overemphasis on the role of the ready-made math-
structures—algebras, spaces, and the like—and an under-evaluation of “seemingly naïve”
empirical aspects voiced in the ordinary language [98]. The situation is no different from
that which H. Weil had characterized in the introductory section to ([99], p. 10) as follows.

“All beginnings are obscure. Inasmuch as the mathematician operates with their
conceptions along strict and formal lines, he, above all, must be reminded from
time to time that the origins of things lie in greater depths than those to which
their methods enable them to descend”.

The “origins” are expressible of course only in the natural language; Section 2 is
devoted to this.

What we propose below is an implementation of the idea that the postulational
view must be abandoned and replaced by a negation of the prior existence of both the
physical “preconceived notions” [92] (p. 328) and the mathematical structures. Physics
and mathematics should be created “from scratch”. Paul Benioff calls this idea “a coherent
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theory of physics and mathematics” [2] (p. 33; P. Benioff), [96] (p. 639), Then, due to the
initial absence of mathematics, introducing mathematical structures is almost ruled out,
proofs must be replaced by an empirical inference, and semantics of physics—the language
of physical reasoning—is initially under a linguistic ban. It cannot exist a priori. That is to
say, even the natural-language conjunction of mathematical terms with physical adjectives
(and verbs [100] (p. 3102; “to happen, to be, to exist”)) becomes far from being free, as with
the classical description’s language (Sections 2.1, 5.4, 6.4 and 6.5). R. Haag, on the first page
of the work [101], emphasizes:

• “we should not consider [“vocabulary of Quantum Theory”] as sacrosanct. . . . every
word in the vocabulary is subject to criticism”.

Returning to the ensemble formations, it is only they that have to come to the fore,
and argumentation should be subordinated only to the low-level microscopic empiricism.
The predominance of the empirical over the theoretical will then immediately touch on the
closest creature of the latter—the notion of a number—since numbers do not come “from
the sky”, and the theory will have to be a quantitative one.

Despite the overflow of abstracta in QT, the doctrine of number—,number × unit-, to be
precise (Sections 7 and 9)—has, it seems, not yet entered foundational discussions [102].
Consequently, the numbers turn into a kind of “problem of numbers” (principium II), and
we are thus led to the necessity of revising the take on the foundations themselves:

,quantum fundamentals- ���� ,the problem/doctrine of the number- .

This paradigm shift is a unique trait of the quantal (not the classical) view of things
and a substantial part of the following is devoted specifically to that.

In the outline of the present work, the workflow will constitute re-creating the structure
of a linear vector space. More precisely, producing an a priori unknown mathematics, which
will be an algebra of such a space with a complex conjugation. As a matter of fact, we provide
an answer to Haag’s question “How do we translate the description of an experimental
arrangement into mathematical symbols?” in the context of their own “idea of basing the
interpretation of quantum theory on the concept of “events” which may be considered as
facts independent of the consciousness of an observer” ([88], p. 295).

The main point to be immediately emphasized is that the mathematization of the
discrete micro-acts of observations is quite a nontrivial procedure (105), and further, the
strategy, along with the structure of this article, can be schematized as follows.

natural language, prolegomena to the quantum
(no math and ontology here)

(Section 2)

↓ ↓

accumulation of micro-events,
low-level quantum empiricism, ensemble mixtures

(Sections 3 and 4)

↓ ↓

mathematization of ensembles’ empiricism
(how the math comes about)

(Section 5)

↓ ↓

quantum superposition and QM-linearity
(no physical concepts and numbers here)

(Section 6)
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↓ ↓

algebraic structure “the numbers R and C”,
binary and unary operations

(Section 7)

↓ ↓

,quantum states- = ,linear vector space-
formula |ψ〉 = a · |ϕ〉+ b · |χ〉 (Section 8)

↓ ↓

naturalness and inevitability of abstracta,
observable quantities and their values,
quantum statistics, the Born rule, . . .

(no interpretations here)

(Sections 9 and 10)

This box-diagram cannot be reduced or restructured. For example,

• Superposition foregoes numbers, and measurement and physical properties follow strictly
after the |ket〉-vectors have been created.

By and large, the aforesaid ideology is supported by the common belief—often cer-
tainty even [12]—that QM is not perturbative, its linearity is not associated with linear
approximation of something else, and, in general, it is not extensible (ultimate [103] and
non-deformable) and must be free of interpretations [12,43]. All of these concerns, in one
way or another, are directly related to the derivation of Formula (1).

2. Points of Departure

In the Beginning was the Word—A. Zeilinger ([39], 01:05′47′′)

Most of the time the apparatus is empty and sometimes you have a photon
coming through—A. Zeilinger ([39], 12′39′′)

Since empiricism is in essence supra-mathematical [104], i.e., it is concerned with
metamathematics [105,106], its mathematization, i.e., theory construction, should begin
not with postulates and definitions, but rather with the semantic formation of an object
language (of “the Quanta”) of vocabulary that “may only be described by “words” and not
by a theory” [58], [87] ( p. 106), [93]. As A. Peterson and K. Popper had observed, “Math can
never be used in phys until have words” ([107], p. 209), i.e., “we cannot construct theories
without using words” ([108], p. 12). Therefore, relying on the established understanding
of the underlying causes for the quantum eye on physics [13,25,27,33], up until the end
of this section, we will adopt the natural-language meaning of the words observation,
system, state, numbers (!), plus and to divide, physical influence, transition, large/small,
micro/macro, etc. Their contents will later be defined more precisely or entirely changed.
For instance, the sense of the word “state” will be drastically transformed, to which we are
drawing attention in advance. Accordingly, a degree of informality—it has been clarified in
Remark 10—is inevitable here, but “the lack of precision . . . is a necessity” ([109], p. 48) at
the moment.

2.1. Variations as Micro-Level Transitions

We will (and “must” [105] (Ch. 3)) first view the concept of a system at an intuitive
level ([110], Section 1.1)—there is what is referred to as an isolated system S .

S
Let us tentatively (a priori) relate the concept of a state to the associated context
describable by the words “the system S can vary, be different, or in different states”. That
is to say, system S is always in a certain state Ψ belonging to the set T = {Ψ, Φ, . . .},
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each element of which is admissible for S , and all of them are different from each
other: Ψ �= Φ.

In other words, the concept of a quantum system may not have a precise/axiomatical
definition at the moment. Otherwise, if it comes to that, the system is what is being
constantly varied when observed, and “varied” is the key word here.

The statement “states are different” does not require a consideration when Ψ and
Φ, referred to as state, are the abstract elements of an abstract set {Ψ, Φ, . . .}. How-
ever, in order to tie its elements to reality, we have to introduce the criteria of coinci-
dence/distinguishability of one from the other. Criteria may not come from observational
procedures, without which it is impossible to either detect states or claim that they differ,
coincide, or that they are, if any.

On the other hand, the nature of micro-phenomena shows that observations are always
associated with an irreducible intervention in the system, manifesting in what is known as
transition Ψ � Ψ′ (or destruction). As an example, observations at accelerators are literally
the destructions, and bulk at that. Due to a lack of criteria, there is no sense in attributing
to this concept the adjectives small/large, (in)significant/partial, or collocations such as
“comparison of destructions at instants t1, t2”. Let us proceed from the idea that initially
there is nothing but the transition. Transitions may actually occur without destruction
Ψ � Ψ, however.

Two different Ψ, Φ may be destroyed into new Ψ′, Φ′, as well as into the combinations
of the old/new. Thus, strictly speaking, the sense of words “different, new, . . . ” eludes
us in this case, which is why even the identification of Ψ-elements and the T itself, as a
set, becomes questionable. Therefore, besides the formal writings Ψ = Φ and Ψ �= Φ for
Ψ, Φ ∈ T, the physical distinguishability/equivalence (recognizability �≈/≈) needs to be
established. As to the identification (and to the identity) in this regard, see von Neumann’s
reasoning: “One might object against II . . . ” on page 302 of their book [25]. The
sole thing that distinguishability may rely on is the transition acts. In turn, variation is a
key element in transitions, which is why we will begin constructing with distinguishability.

Let us take the still virtually unlimited way A of intervening ��A in S and attempt
to introduce distinguishability Ψ �≈ Φ as A -distinguishability. Due to the fact that micro-
transition Ψ ��A Ψ′ is not pre-determined, initial states Ψ undergo arbitrarily free changes.
Next time, the results will be different and absolutely arbitrary (the term “different” is
understood to mean �=), and each act is indiscernible from a case in which it contains ones
similar to itself within itself. It would be natural to associate such a case to the absurd,
which is unrelated to the meaning of the words “physical observation”, and to discard the
given A .

Non-meaninglessness arises only if we impose the negation of random combinations
of �= and = in transitions, at least for a part of T, i.e., introduce the preservation acts
Ψ ��A Ψ. The “preservation” should be read here as indestructibility of state, i.e., as a
(=)-coincidence under the secondary act Ψ � Ψ � Ψ. Otherwise, the vanishing difference
between “preservation” and “variation” leads to linguistic chaos ([111], p. 232). This
means that the destruction Ψ � Ψ′ may not be considered as a one-fold one. State Ψ′

on the right should be examined for changeability and transform into the left part of the
subsequent transition: Ψ � Ψ′ � Ψ′′. Thereby, the structure Ψ′ � Ψ′′ with the binate entity
“before/after” or “on the left/right” becomes the key one, and we consider it an initial
object in subsequent constructs. The preserved states are, by definition, those that pass the
reproducibility test.

Thus, logic requires beginning with the transition compositions

Ψ ���A Ψ′ ���A Ψ′′ ���A · · · ,

wherein the cases such as

· · · Ψ′ ���A Ψ′ ���A Ψ′′ · · · (2)
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are ruled out (a ban on changing of what has been unchanged), and the never-ending
sequence

Ψ ���A Ψ′ ���A · · · ���A Ψ′′ ���A · · · (3)

(non-recognisability of states) must be terminated

Ψ ���A Ψ′ ���A · · · ���A Ψ′′ ���A α ���A α , (4)

yielding a “finiteness” (= realisticness) and the concept of conserved/distinctive α-states.
The terminology α-event [12] could be used instead.

Freedom of elements in Sequence (4), including the choice of α-states, is not limited by
anything besides the ban on Equation (2). Therefore, this arbitrariness, which is physically
never recognizable, curtails the generic chain from Sequence (4) into the shortened one

Ψ ���A · · · · · · ���A α ���A α , (5)

which is identical to the scheme
· · ·Ψ · · · ���A α (6)

with certain α ∈ T.
Discussions on “what happens . . . [and] “how” ([25], p. 217) at the very microscopic

level are extremely widespread in the literature [18,41,44,45,53,56,77] (see [19,33,40,112] for
the exhaustive references), although it is not difficult to predict the fact that the attempts to
understand the inner structure of Box (6) will only lead back to an identical box; so, the
“turtles all the way down” (ascribed to W. James), followed by the great Wheeler’s slogan
“No tower of turtles” (1989).

Indeed, the uncontrollability of micro-changes is universally known, yet describing
them as a process in time t %→ t + ε will start employing language terminology—functions,
arithmetic operations, the physical words, etc.—that has not yet been created even for
the fixed instants t1, t2. However, what may be associated with fixed time are only non-
temporal entities, for which we have nothing but transitions (Equation (5)). The attempt
to manage them, i.e., to control intervention in S , results in looping or “measuring the
measurement”, in addition to the ambiguity of this term itself.

“[I]t is not meaningful to speak of a measurement “at time t̃.” . . . the real physical
meaning of the time parameter . . . has nothing to do with the notion “time of
measurement””. “[T]he description of the measurement process in quantum
mechanics in terms of “pre-theories” is not possible”

G. Ludwig ([87], p. 288), ([92], p. 340)

See also [58] (p. 100), [92] (p. 365), [94] (p. 150), [113] (pp. 644–646), and [114]. Just as
before, the physical assessments such as “abrupt”, “(ir)reversible”, “(non)simultaneous”,
“immediately following . . . ” [25] (pp. 231, 410), or the “weak/nondemolishing” (mea-
surements [53]), etc.are unacceptable here. No temporal process may be present in the
foundations of the theory (([87], Sections VII.4, 6), ([92], Chs. III, XVII), [93]) since it is
immediately not clear: “Furthermore, what exactly are we having at instants t1 or t2?”. In
the reverse direction—,time ��� measurement-—the situation is also rather indefinite since
the ““Time” is not an entity to which the operations of measurement, direct or indirect,
apply” ([114], p. 5).

Remark 1. All the information stated above means that attempts to deduce QM dynamically ([16],
10 · Reconstructions) are beforehand doomed to vicious circles “round the boxes” and time t, such
as attempts to dynamically “vindicate” Lorenz’s contraction instead of kinematic postulates of the
relativity theory [69]. A consistent theory must rest either on “irreducible” elements (6) or upon
“boxes” of a different kind. In the latter case, the theory becomes a particular model with inter-
pretation; e.g., the Lindblad equations [115,116], decoherence [112,117–119], stochastic dynamics,
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and other statistic-dynamical models [40,77]. Anyway, an ability to model and understanding
are not the same thing, and this point was repeatedly emphasized in the literature ( [16], ([17],
Section I.2), [32]) with regard to QT.

That said, if theory is built as a fundamental one rather than as a model ([16], p. 144),
with a primary entity changeability ��A , Box (6) may only be involved in it as the initial
starting point and as an indescribable object with the absolute rather than with a relative
sense. Elements of reality, in whatever understanding—say, Bell’s “beables” [28]—may
not exist before/after/inside/outside of the box. It can only be the structureless abstractio.
Accordingly, the notions of preparation, of measurement, of “interaction with”, and of a
physical process are meaningless without the construction of Box (6).

These statements are clearly in agreement with the fact that any reasoning must not
contradict the formal logical rules [105]; hence, there must exist [96,106,120] the empirically
undefinable logical atoms. A. Peres writes ([121], p. 173): “While quantum theory can in
principle describe anything, a quantum description cannot include everything. In every
physical situation something must remain unanalyzed”. Moreover, as Pauli put it, “Like
the ultimate fact without any cause, the individual outcome of a measurement is . . . not
comprehended by laws”. Specifically, the set T and transitions arrows ��A are also the
atoms. It is a “. . . preexisting concept . . . We cannot formulate the theory without this
concept”, concludes B. Englert ([12], p. 2). From the aforesaid, we may formulate the
following tenet.

I
Quantum statics should forego quantum dynamics.

(The first principium of quantum theory)

The rationales do not end here and will be later amplified once we begin to exploit
the terminology that is usually taken for granted from the outset, viz., the quantitative
descriptions ([2], p. 178). If they arise not as numerical interpretations of something but
out of an experiment, then observation should be the beginning, and the “manufacture of
numbers’—the end. In other words, the model “theory with boxes” other than
Boxes (5) and (6) implicitly implies the logical sequence ,model of process-	 ,numerical
interpretation-, in which empiricism holds a role other than primary. It is clear that, regard-
less of the model, such a situation will always remain unsatisfactory in the physical respect.

2.2. Observation

The sequences addressed above lead to the following outcome.

• Any meaningful micro-act ��A either saves a state (α ��A α) or turns it into a conserved
one (Ψ ��A α).

The two extremes do not contradict this fact. The first—maximally rough observations—is
when all states are destroyed into a certain one: Ψ � Ψ0 (“whatever and however we
watch, all we see is one and the same”). In this, the state Ψ0 is not destroyed: Ψ0 � Ψ0.
Another extreme is when none of the states are destroyed: Ψ � Ψ. This is the case of ideal
(quantum) observation, but, due to the absence of any changes, it is indistinguishable from
the case where observations are entirely absent.

Situated in between these extremes lies the simplest case with two distinctive states

α1 ���A α1 , α2 ���A α2 . (7)

Of course, these are prohibited from transitioning into each other. Because there is still
the free admissibility of transitions Ψ ��A α1, Ψ ��A α2, we can turn the semantic sequence⌈

arbitrariness 	 preservation 	 distinctive α’s
⌉

into the more rigorous scheme⌈
T = {Ψ, Φ, . . .}

⌉
+

⌈
A -observations

⌉
	 {α1 , α2 , . . .} =: TA ⊂ T , (8)
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which gives, even though partially, rise to the concept of a physical distinguishability
(“distinguo”). It is formally defined only on the subset TA : the statement α1 �≈ α2 is
equivalent to (7). To avoid overloading the further notation, we do not use symbols such
as ≈A and �≈A ; the context is always obvious.

O
By a physical observation A or, in short, observation we will mean such interventions
���A , in which the “never-ending” chaos (3) is replaced by chaos with the notion of
preservation, i.e., “chaos with rule (6)”:

Ψ ����A α, where α ����A α . (9)

The set of α-objects TA with the property

α1 ����A α1 , α2 ����A α2 , . . . (10)

is discrete, and the αs themselves are termed the eigen (proper) for observation A . They
define A and do not depend on S . No logical connection between Ψ (the left of (9)),
family TA , and system S exists.

(The comprehensive terminology here is this: a micro-act of observation by instrument A .
The zig-zag arrow �� is replaced with the straight one ���.) Expressed another way, the
introduction of the concept “the eigen” is equivalent to the following informal, yet minimal,
motivation: at least some certainty instead of total arbitrariness.

Two instruments A and B may have arbitrarily different eigen-states {α1, . . . , αn}
�= {β1, . . . , βm}. Accordingly, as regards observation B, the (distinctive) states {αs} do
not differ, in general, from the “regular” Ψ’s, i.e., from those chaotically destroyable into
the B-eigen states: αj ���B βk. All kinds of instruments {A , B, . . . } are thus defined by
aggregates {TA , TB, . . . }. The number |TA | of corresponding α-objects therein may be
an arbitrary integer. There are also no (logical) grounds for restricting/prescribing the
composition of TA . Any element of T may be the conserved one for a certain instrument.
Parenthetically, the notion of an eigen-state—in different forms—is sometimes present in
axiomatics of QM [18,72,122].

In a generic case, the chaos present in Rule (9) leaves open the problem of correlating
the recognizability Ψ �≈ Φ (or Ψ ≈ Φ) with physics. Clearly, the issue is linked to the
ambiguity of the term Ψ-state itself, which is used in pt. S—an important point—because
we need to start with something since building the mathematical description without some
sort of a set is impossible.

Remark 2. Informally, metalinguistic semantics—the association of meanings with texts [58]—is
in general as follows. Inasmuch as we are receiving different α-responses to each micro-act ���A , let
us say that “on the other side from us there is something that can also be different”, and all of that is
to be described. This reflects our intuitive perception of reality, which, both at the micro-level and
the macro-level, boils down to pt. S and to an ineradicable pair: ,something outside- + ,that which
can be different for us-. If we give up either of these semantic premises—“something outside” (Ψ) or

“can be different” (αj)—then, as above, we face a linguistic dead end, as the possibility for reasoning
disappears. There must be two sides present. Because of this, the arrow ���A must be accompanied
by “some things” to the left and right of it. The low-level set T = {Ψ, Φ, . . . , α1, α2, . . . } does arise.
Then, the arbitrary elements Ψ ∈ T (unrestricted chaos) are assigned to the left of this act instead of
“some thing” and the micro �≈-distinguishable α-objects (αj �≈ αs) to the right. Put another way,

• What is being abstracted is not “concrete things” ([13], p. 27) or behavior of things” ([123],
p. 414) but a primitive element of perception—a micro-event—the α-click. Other than “the
click”, no entities, such as very small objects/particles, fields, or, much less the knowledge,
human psychology, “personal judgments”, “memory configuration” [52,124], “mysterious
interaction . . . brain of the observer” [108] (p. 11, thesis 3), [113] (p. 645), agents, their
belief/consciousness [55,71,125], etc., may exist in empiricism. This is a kind of “Radical Em-
piricism . . . [by] William James” ([23], pp. 289, . . . ). The “click . . . and nothing more” ([16],
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p. 42; Č. Brukner) is a kind of experimental zero-principium of QT. Therefore, the initial math
premises of QT should contain nothing but the �≈A -distinguishability and formalization from
(9) and (10).

Ideas of “a click (signal) in a counter” ([126], p. 758) have, time and again, already been
expressed in the literature [2] (A. Peres), [123], and we draw attention to answers of Č. Brukner
on pp. 41–43 in [16], their work [127] (p. 98), and page 635 in [22]. “Having grown up collecting
clicks . . . I would start with “clicks” as the only point of contact between observer and observed”,
wrote J. Summhammer in [23] (p. 261). It may be added that the micro-observation, as such, is
terminated at the eigen elements; one and the same αj has always remained on the right.

As a result, the minimal entity Ψ ���A αj constitutes, mathematically, an ordered pair
(Ψ, αj) of elements of the set T, which are labeled by the symbol A , which is equivalent
to the TA -family (8). Accordingly, the customary physical notion of the observation is
substituted for a micro-event, an act. “Physics should forget” about processes or time of
interaction when observing about the interaction itself and about anything but Ψ ���A α.
This object represents a completed formalization of the empirical/laboratory notion of
a quantum micro-event—a detector click. The click is sometimes considered from an
information viewpoint as an information bit [22]. However, it cannot be such a (classical)
bit with reified content because it is completely unpredictable. The next (different) click
does entirely negate the previous one, and the information bit is in turn a concrete thing—
the bit. For the same reason, there cannot be any information behind the single event. It
is “too small and too momentary” to possess or to carry information about something
inasmuch as even the “something” is composed from elementary clicks—see below.

2.3. Numerical Realizations

Is there a possibility of relying exclusively on the inflexibility of the eigen-type el-
ements (10) or of defining the sought-for ultimate distinguishability �≈ through the A -
(micro)distinguishabilities αj �≈A αs? Let us formulate a thesis.

T
There is no (linguistic) means of recognizing the system S to be different (pt. S) other
than through the results of its destructions into the {α1, α2, . . . }-objects of observational
instruments A .

Granted, the stringency of this linguistic taboo (T) must be accompanied by something
constructive, and we will adopt the following program, which reflects the fact that the
unequivocal description may only take the form of a quantitative mathematical theory.

R • Out of the primary (“proto”)elements {Ψ, α, . . .} ∈ T, one constructs a new set H, of
which the elements

|Ξ〉 := ⊕(a1, |α1〉; a2, |α2〉; . . .) ∈ H (11)

are said to be (number) representations in the “reference frame for instrument A ”, and
as are the numerical objects. The distinguishability relation �≈A is carried over to H
and admits an a-coordinate realization there—symbol �≈.

•• No preferential or preordained observational reference frame A {α1, α2, . . .}—an abso-
lute instrument—exists.

Identification (11) is always tied to a certain family TA . Accordingly, images of
αs—symbols |αs〉—are present in Equation (11), and character ⊕ is also no more than a
symbol here. Even though coordinates as are declared to be numbers or aggregates of
numbers, there is no arithmetic stipulated for them yet. The number is a name for as. The
distinguishability |Ψ〉 �≈ |Ψ̃〉 of two representatives

⊕(a1, |α1〉; a2, |α2〉; . . .) =: |Ψ〉, ⊕(ã1, |α1〉; ã2, |α2〉; . . .) =: |Ψ̃〉

by means of numbers ak �= ãk and mathematical implementation of (11) and of the H-space,
i.e., a “coordinatization” scheme have yet to be established. This will comprise the meaning
of the word “constructs” (Sections 7–8), which may not be even linked to the mathematical
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term mapping yet, since no math of QM exists at the moment. It immediately follows that the
question about number entities—specifically, about (11)—is nontrivial in physics.

II
To speak of an exact correspondence between experiment and mathematics (,obser-
vation + measurement-) makes no sense until there is a detailed mechanism for the
emergence of what is understood by number.

(The second principium of quantum theory)

In other words, we wonder what an empiricist/observer understands (semantics) by
the word (syntax) “number”. The underlying message here implies that the reliance
upon the all-too-familiar arithmetic elucidates nothing. There is no arithmetic in interfer-
ometers/colliders—there are only clicks there—and the empirical nature arising from this
construction (along with the measurement) must be scrutinized.

From pts. T, R, and II, it also follows that the search for a description through hidden
variables, over which something is averaged, is indistinguishable from the utopian attempts
to find out intrinsic content of boxes (5).

2.4. Macro and Micro

The task becomes more precise at this point. Instead of nonphysical identity/
noncoincidence (Ψ = Φ or Ψ �= Φ) of two abstract elements Ψ, Φ of the abstract set T, we
need the concept of a physical ∼∼∼-equivalence ( �∼∼∼-distinguishability) of H-representatives
{|Ψ〉, |Φ〉, . . . }. That is, there must hold either relation |Ψ〉 ∼∼∼ |Φ〉 or its negation |Ψ〉 �∼∼∼ |Φ〉
for all |Ψ〉, |Φ〉 ∈ H. The primitive set T, initially required by point S, must disappear from
the ultimate mathematics of symbols |Ψ〉 ∈ H. Therefore, elements Ψ ∈ T are henceforth
named primitives.

Let us sum up the fallaciousness of the metaphysical belief in the meaningfulness of
the wording “there is a quantum state”, i.e., the belief that the existence of a state has some
math-numerical form.

• There is no a priori way to endow the term (quantum) state of system S with any
meaning ([15], p. 419). It may not have a definition and any predefined semantics.
This term should be created. Meanwhile, one cannot get around the concept of the
(micro)observation A [127] (pp. 98–100), [113] (p. 646), [34,96]. Essentially, no one
thing, including Ψ, α, or the T-set itself, can be the primary bearer of data about S .
“There is an entirely new idea involved, . . . in terms of which one must proceed to
build up an exact mathematical theory” (P. Dirac [26] (p. 12)).

There is no escape from quoting K. Popper: “. . . language for the theory; . . . it remains
(like every language) to some extent vague and ambiguous. It cannot be made “precise”:
the meaning of concepts cannot, essentially, be laid down by any definition, whether formal,
operational, or ostensive. Any attempt to make the meaning of the conceptual system
“precise” by way of definitions must lead to an infinite regress, and to merely apparent
precision, which is the worst form of imprecision because it is the most deceptive form.
(This holds even for pure mathematics.)” ([108], p. 13).

The notions of a physical observable and of its observable values are also ambiguous
at this point ([87], p. 5). Their ambiguity is even greater than that of state due to questions
such as “what is being measured?” and even ‘what is a measurement?’. Nonetheless, up
until the end of this section, we will not discard the term state within the context of pt. S.

The irreproducibility of outcomes, i.e., the “turnability of Ψ-primitives into the vari-
ous”, leaves only one option: “to take a look at S again, once again, . . . ”—in other words,
to seek the source of description in repeatability. It is necessary, then, to move to the subject
of macro- rather than micro-observation. This intention fits perfectly with the undefined
verb “constructs” in pt. R, and the following paradigm should be understood as the macro.
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M
The only way of handling the uncontrollable micro-level changes is the treatment of
the results of repeated destructions, accompanied by what we shall call the common
physical macro-setting (experimental context):

Ψ · · · Ψ Ψ · · · Ψ · · · · · ·
A

���
���
���
���
���
���

��� A

α1 · · · α1 α2 · · · α2 · · · · · ·
+ ,common macro-environment M- . (12)

To be precise, we should have to (and we shall do) indicate the different {Ψ, Ψ′, . . . } here
because the same ingoing Ψ’s in (12) is a preassumption, which we eschew throughout the
work. This point will be very fully addressed further below (Sections 2.5, 2.6, and 3.1).

The importance of repetitions and distinguishability had long been noted (Bohr,
von Neumann et al. [78]), and recently, it was particularly emphasized in the work [128].
The words “copy/repeat. . . /distin. . . ” occur 90 times therein.

Thus, the empiricism of quantum statics forces us to operate exclusively with such
formations of copies α, . . . , Ψ, and this is the maximum amount of data provided by the
supra-mathematical problem setup. All further mathematical structures may come only
from constructions such as (12) and from nothing else. Getting ahead of ourselves, let us
once again turn our attention to the fact that the implementation of this idea is not short-
length—“the mathematization process (cor) is not simple” ([58], p. 24), and Sections 3–9 are
devoted specifically to this—see, e.g., the chain (105).

One can once more repeat (Section 1.3) that much of what follows does not and cannot
contain the mathematical definienda and proofs as they are usually present in the literature
on quantum foundations. Instead, there appears a step-by-step inference of objects as they
result themselves: numbers, operations, groups, algebras, etc. The only instrument that
may be applicable here is the empirical inference.

The common macro-environment M in (12) is also viewed as a supra-mathematical
notion [106], the mathematical implementation of which is yet to be created. The same
considerations regarding qualitative adjectives are applicable as to the physical convention
M as well as the transition acts in Section 2.1. Representations (11) will be the formalization
of the meaning ,observation- + ,data on system S-, but now with no references to the
elementary acts in (12). The physical distinguishability criteria |Ψ〉 �∼∼∼ |Φ〉 may not be
formulated yet because the physical attributes are not yet available, but |αs〉-elements have
already appeared in (11) as prototypes of explicitly distinguishable αs.

Remark 3. The dual form of the typical quantum statements such as “S is a micro-system and A -
instrument is a macro-object” (N. Bohr) is identical to the initial premise “observation does always
destroy a system”. It follows that there is actually little need for that terminology. Indeed, QM-micro
has no internal structure and, hence, an oft-discussed issue about boundary (and limit (According
to A. Zeilinger, “. . . no limit. The limit is only a question of . . . money and of experience” ([39],
13′09′′).)) between micro and macro [8,30,33,90] is devoid of sense; “The notions of ’microscopic’
and ’macroscopic’ defy precise definition” ([28], p. 215). Therefore, this may be a matter only of

“different macro”, either “smaller/bigger”, i.e., when they describe certain models.
As a (partially philosophical) note, what is understood by observational randomness does,

in fact, boil down to distinguishability, and more specifically, to postulating the micro-chaos (9).
In considering the denial of (9) as an impossible proposition, we arrive at the M-paradigm and
conclude that the only way to deal with that which is contemplated for the subject-matter of a
physical description must be the treatment of micro-acts as assemblages ([129], Lect. 6). In other
words, and in accordance with the outline of the clicks’ analysis set out below, the determinism
of micro-processes (micro-ontology)—much less the microscopic time-arrow—is meaningless as a
concept since they are not processes but rather structureless acts that have not even any relationship
to each other. Since there are no physical phenomena as of yet, the claim that “phenomenon-1
appears to be the cause that precedes phenomenon-2 as the effect” is no more than a collection of
words. To attribute physical content and mathematical formulation at the micro-level to them is
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impossible in principle—the “problem of boxes” noted above. Accordingly, the cause of (classical)
macro-indeterminism is the absurdity of the notion of its twin concept—micro-determinism—and
the unavoidable repetition of the arrows ��� (M). N. Bohr puts the point very definitely: “there can
be no question of causality in the ordinary sense of the word” ([78], p. 351), and Heisenberg adds
that “l’indeterminismo, . . . ë necessario, e non solo consistentemente possibile” ([17], Section IX.4).
See also ([129], p. 223).

2.5. Quantum Ensembles and Statistics

Let us call the upper row in Scheme (12), as a collection of the Ψ-copies, a (quantum)
homogeneous ensemble (Kollektiv, by von Mises [129]). We will designate it, simplifying
when needed, by

{Ψ Ψ · · ·Ψ︸ ︷︷ ︸
N times

} ≡ {Ψ · · ·Ψ}N ≡ {Ψ}N ,

where N is understood to be an arbitrary large number. Scheme (12) also dictates consider-
ing the generic ensembles{

{α1 · · · α1}n1
{α2 · · · α2}n2

· · · · · ·
}

, {· · ·Ψ · · ·Ψ Φ · · ·Φ Θ · · ·Θ · · ·} (13)

as collections of homogeneous sub-ensembles. Ensembles are symbolized in the same
manner as sets but, for typographical convenience, without the numerous commas and
internal parentheses {} in Ensemble (13); for example,{

ab · · · b{bca} · · ·
}
= {a, b, . . . , b, b, c, a, . . .} = · · · =: {ab · · · bbca · · ·} .

Scheme (12) is the first point in which numbers emerge in theory, and conversion

,α-ensemble (13)- 	 (n1 , n2 , . . .)

into the integer collection anticipates a numerical A -measurement of S . Quantities ns ∈ Z+,
however, should not be associated with such, as they are potentially infinite. The minimal
way of creating the knowingly finite numbers out of independent and potential infinities ns

(without loss of their independence) is to divide each of them by a greater infinity, which is
a “constant” Σ for Ensemble (13). It is clear that one should put

Σ := n1 + n2 + · · · and
{
f1 :=

n1

Σ
, f2 :=

n2

Σ
, . . .

}
(Σ � ∞) , (14)

and that Ensemble (13) does not provide any numerical data besides the relative frequen-
cies (14). All the other data are functions of fs. An independence of the theory from the
ensemble’s Σ-constant, i.e., the scheme Σ � ∞, is also implied to be a principle, and it can
only be the semantic one. Without it—the Σ-postulate of infinity—there can be no question
of a rational theory, i.e., empiricism will not turn into a mathematics (Sections 5.1 and 5.2).
In turn, the concepts “closely, limit, the limiting frequencies”, and the like will arise later
when we obtain the state of space as a Hilbert one H and topology on it [130].

Thus, the M-paradigm in Scheme (12) does not only give birth to a concept of numeri-
cal data in the theory per se but also converts their Z+-discreteness into the R-continuum
of real measurements. Namely, numbers fs ∈ R are the statistics (f1, f2, . . .) of destructions
���A into the ensemble of primitives {{α1}n1 , {α2}n2 , . . . }.

2.6. Distinguishability and Numbers

The distinguishability of the two ensembles now turns out to be the R-numerical, i.e.,
it is determined by the difference between f-numbers. As a result, and according to pt. R,
the two elements |Ψ〉 �≈A |Ψ̃〉 of H will differ in the numbers as and ãs if the latter turn out
to be the bearers of different statistics

fj(a1, a2, . . .) �= f̃j(ã1, ã2, . . .) . (15)
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As a consequence, distinguishability �≈ is carried over to H with an extension to the
non-eigen objects, but it is inherently incomplete since it does not take into account the
most significant fact—arbitrariness of transitions (6).

The collection (f1, . . .), as a final result of transitions {Ψ ��� αs}, actually “knows
nothing” about their left-hand side, much less about its uniqueness Ψ. For instance, if under
the equal α-statistics {fs} for the two families {? ��� αs}N and {Ψ ��� αs}N (collectivity
of ?’s), we would claim ? = Ψ, which would mean a mass control over transitions (9).
Instead of a “black box” above, we find that prior to acts ���A , all the undefined ?’s were
equal to Ψ. This, however, is the declaration of a property: “prior to observation the
system S was/dwelled in . . . ”. With any continuation of this sentence, it is pointless and
prohibited if one theoretically accepts that, prior to observation, nothing exists, and there
are no properties (Section 2.1). The words “initial state of S” thus make no sense. The
indeterminacy of the ongoing ?’s is therefore mandatory, and numbers (f1, f2, . . .) required
for recognition are manifestly insufficient. Considering that the micro-changeability of
single primitives Ψ also means nothing [15] (p. 419 (!), left column), [33] (p. 493), [41], only
a generic ensemble

{? · · ·?} 	 {· · ·Ψ · · ·Ψ Φ · · ·Φ Θ · · ·Θ · · ·} =: A (16)

can be an intermediary in the sought-for translation of Ψ’s onto representations |Ξ〉 ∈ H
under Construction (11).

In the accustomed physical terminology, the above is expressed in the sequence

,state- ������Aquant ,state′- %−→ ,measurement- . (17)

The removal of the intermediate component here, i.e., switch to the sequence

,state- ������Aclass · · · · · · %−→ ,measurement- (18)

amounts to the rejection of micro-destructibility and of unpredictability. Even with the
classical framework, this supposition is questionable since the notion of a “change when
observed” disappears. The relationships between the dual concepts—(micro/macro)-
scopicity, big/middle/small, etc.—do also get lost. That is the reason why, developing
Heisenberg’s question “. . . is it . . . I can only find in nature situations which can be described
by quantum mechanics?”’ ([78], p. 325), we conclude that, strictly speaking,

• All observations, regardless of (the envisioned physical) macro/meso/micro character-
istics, do have the structure (17), i.e., are quantum. No non-quantal observations exist.

With their idealized “roughening”, the classical description appends numerical f-
statistics to (18), which is when the left/right sides of (18) become indistinguishable with
respect to the arrow symbols. The arrows may then be replaced with the equivalence

,state- 
�����������
Aclass ,f-statistics numbers- . (19)

Supplementing the right-hand side here with the concept of numerical values {αs}
for all of the observables A = A(q, p) (or for phase variables {q1, q2, . . . ; p1, p2, . . .}), this
side will turn into an exhaustive numerical realization of the left-hand side. Criterion
≈, then, turns into the R-number equality = of all the A -statistics or into an equality of
phase distributions �(q1, . . . ; p1, . . .). This is a situation of the classical (statistical) physics
(ClassPhys), i.e., when “the physics is initially identified” with quantities being numerical
in character: the particle coordinates/numbers, the number values of field functions, etc.
The ill-posedness of such a paradigm—the core motive of QT—is discussed further below
at greater length in Sections 6.4, 6.5, and 7. Consequently, “classicality” is not and cannot
be regarded as a primitive in the logical construct. In both these cases, distinguishability �≈
depends on the concept of α-states.
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Remark 4. From this point onward, by state we will strictly mean representations (11). Thus, it
makes no sense to speak of transitions between states, much less of “transition from possible to
actual” ([107], p. 189; Everett), [117–119]. The writing |Ξ〉 ��� |α〉 and its typical wave-function
collapse interpretation are not correct. Indeed, in treating transition |Ξ〉 ��� |α1〉 as a state-to-
state destruction, its left-hand side cannot carry any information about f(A )-frequencies for other
events |Ξ〉 ��� |αs〉, much less about the amount of destruction from envisioned B-observations
|Ξ〉 ���B |β〉. Such “f(B)-amounts” are always present at the experimental interpretation of the
|Ξ〉-symbol. For this reason, the concept of a state should not be used as a correct term at all [58];
the terminology, however, has been settled.

The motivation given above—S (system, primitives), O (observation), R (representa-
tions), T (taboo), the semantic principia I (QM-statics), and II (numbers) complemented
below with the principium III—is sufficient for further creating the basis of the mathe-
matical formalism of QM. These tenets should hardly be regarded as postulates, at least
in the common meaning of the phrase “postulates of a physical theory”, since they are a
natural language and are, as we believe, the points of departure for reasoning whatever the
approach to the micro-world. It is clear that they are directly concerned with the familiar
dialogs, which reflect, in the words by Bohr, “[Einstein’s] feeling of disquietude as regards
the apparent lack of firmly laid down principles . . . , in which all could agree” ([131], p. 228).

The underpinning of QT must thus begin, at least to a large extent, with a simplifi-
cation/reducing the terminology in use and putting the language and the semantics of
observations/numbers in order, rather than giving the “improved” postulates or defini-
tions.

“The task is not to make sense of the quantum axioms by heaping more structure,
more definitions, . . . , but to throw them away wholesale”

C. Fuchs ([50], p. 989)

“Simplicity is implicit in the basic goals of scientific inquiry. . . . only simple
theories can attain a rich explanatory depth. . . . the Basic Propert[ies] should
indeed be very simple”

N. Chomsky ([132], pp. 4–5)

As was underscored above, these (organizing) principles do not stipulate for pre-
determined mathematics and physics, with the exception of a linguistic/metamathematical
understanding [105,106] of how to look at the mathematical axioms, structures, rational the-
ories, and their interpretations altogether. See also Remarks 7 and 10 and Sections 5 and 10.

3. Ensemble Formations

Your acquaintance with reality grows literally by buds or drops of perceptions.
. . . they come totally or not at all—W. James (1911)

Are billions upon billions of acts of observer- participancy the foundation of
everything?—J. Wheeler ([62], p. 199)

The key corollary of Macro-paradigm (12) is not merely the appearance of numerical
data in the theory but also the fact that the further construct cannot rely on isolated
primitives but rather on their aggregates being considered as an integrated whole, i.e., as a
set. This causes a choice for the ensemble notation.

3.1. Mixtures of Ensembles

Returning to the analysis of transitions ? ��� αs, one obtains that the lower row in (12)
actually comes from indeterminacy

{α1}n1{α2}n2 · · · · · ·

��
�

��
�

��
�

��
�

��
�

? · · ·? · · ·? · · · · · ·
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and thus (12), by virtue of (16), should be replaced with the scheme

{· · ·Ψ · · ·Φ · · ·Θ · · ·}
A

���
���
���
���
��� A{

· · · α1 · · · α2 · · ·
} , (20)

wherein the composition of the upper ingoing row may not be predetermined. Funda-
mentally, according to (17), it may not be withdrawn from (20), yet at the same time, the
meaning of the row can in no way be aligned with the adjective “observable” via typical em-
pirical/physical words: properties, readings, quantities/amounts, and other “observable”
characteristics. Such non-detectability is the equivalent of a box that may be prepended to
Scheme (6):

· · · · · · ��� Ψ ���A α . (21)

If β’s serve as Ψ in (21), then we have the schemes of precedence and of continuation:

· · · · · · ���A α ���B β or · · · · · · ���B β ���A α .

Let an observer capture the fact of any distinguishability in the penultimate A .
Section 2.1 tells us that this may only be the distinguishability of objects {α1, α2, . . .};
hence, this very A turns into an observation (pt. O). The M-paradigm then gives rise
to the numbers of α-events (n1, n2, . . .) and, thereupon, their relative frequencies (�1, �2, . . .)
by the rule (14). If subsequently micro-observations B are to follow, then a composite
macro-observation B ◦ A has been formed, and frequencies {�j} cannot impact statistical
characteristics of these later B-observation’s micro-events. However, being an ongoing
ensemble for B, each homogeneous {αs · · · αs}ns is indistinguishable from an indefinite
ensemble {· · ·Ψ · · ·Φ · · ·}ns since the concept of “≈A -sameness” is unknown for B. In-
strument B is “aware of only its own ≈B and cannot know what it destroys”, or that the
source-object consists of one and the same αs. Rejecting this point brings us once again (p. 9)
to attempts at “penetrating the black box” of transitions (5), i.e., to attempts at creating
the physics of a more primary level. According to pts. O and M, an instrument produces
nothing more than its own “destruction list”; in this case, ({β1}m1 , {β2}m2 , . . .). This list is
completely independent of the preceding one since, according to pt. R••, there cannot be
restrictions on TA and TB. In case the set {αs · · · αs}ns transits into collection {βk · · · βk}ns ,
this means that αs has always transited into one and the same βk every time (under the
convention Σ � ∞), and merely a coincidence αs = βk of eigen-primitives in the lists TA

and TB takes place.
If B ◦ A is proceeded with a third observation C , the preceding analysis is repeated

recursively with the same result; only the values {�j} will be changed. As a consequence,
only the following two ongoing types for macro-scheme (20) are conceivable:

{
· · ·Ψ · · ·Φ · · ·Θ · · ·

} indefinite ensemble
,no statistics- ,

(22)

{
{···Ψ···Φ···Θ···}(�1){···Ψ···Φ···Θ···}(�2) · · ·

} ensemble mixture
,with statistics (�1, �2, . . .)- .

(23)

It is reasonable to regard Case (23) as a “non-interfering” mixture of the system’s
A -preparations

{S (�1), S (�2), . . .} ⇐⇒ {α
(�1)

1 , α
(�2)

2 , . . .} ,

to each of which one assigns the positive number �s < 1 referred to as its statistical weight.
These weights—“an element of reality” ([113], p. 649)—are all that is inherited from the
preparation A , and subsequent micro-observation acts B are performed again on indefinite
ensembles (22).
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It is clear that in the view of transitions ��� in scheme (20), this situation is a derivative
of (22) and this very type (22) is crucial ([34], p. 53). In other words, if the preparation
is regarded as a concept as essential as observation (pt. O), we still remain within the
framework of the binate essence of the transition:

Ψ ����B β, α ����B β .

Its left-hand side should always be seen as an undetermined primitive, even though
we treat/call it the preparatory (micro)observation. See also “preparation-measurement
reciprocity” in [133].

3.2. Ensemble Brace

According to pts. R and M, the representations in (11) must reflect all information
about the physics of the problem: primitives/incomes, transitions (“arrows” ���), and
outgoing statistics. All the data are contained in Scheme (20), which is why the maximum
that the model of a future mathematical object—it characterizes everything we obtain while
watching the S—can rely on is the ensemble brace:

⎧⎩Ξ
⎫⎭ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
{· · ·Ψ · · ·Φ · · ·Θ · · ·}

A

���
���
���
���
��� A{
· · · α1 · · · α2 · · ·

}
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (24)

(or a couple of ensemble bunches).
It is immediately seen that (24) carries the radical difference between situation (17)

and its “roughening” (19) because of the upper row. The enormous arbitrariness within
the brace and arrows ���A is “programmed” to give birth to the different processing rules
of statistics and to effects that are typical for QM. Thanks to the maximality of (24), it is
only this row that encodes all the sought-for cases of distinguishability �≈. In particular,
by varying the upper row while the lower one remains unchanged, we get into a situation
when α-statistics (f1, f2, . . .) are found to be the same for

⎧⎩Ξ
⎫⎭ and

⎧⎩Ξ̃
⎫⎭, and meanwhile,⎧⎩Ξ

⎫⎭ �≈ ⎧⎩Ξ̃
⎫⎭.

The problem is thus as follows. With the indefinite A-ensemble (16) in hand, i.e., with
the upper row of (24), is it possible, based on the principles described above, to bring the
still incomplete relation �≈ to the maximal quantum-physical distinguishability of states?

4. Why Does Domain C Come into Being?

. . . quod ideo sint imaginariae, . . . quod ideo sint . . . tum certe forent reales
ideoque non imaginariae—L. Euler (1736)

(. . . this is why they are imaginary. Were they . . . , they would certainly be real
and therefore not imaginary.)

. . . denn die imaginären Größen existierten doch nicht?—D. Hilbert (1926)

The first priority in the �≈-distinguishability of objects (24) is to separate the closest
and unconditional criterion—the outgoing α-statistics. To do this, let us split the lower row
into families

{
{α1}∞1

{α2}∞2
· · ·

}
, where

∞1 + ∞2 + · · · = ∞ , (25)

and, subsequently (rather than the reverse, otherwise (23)), taking into account the “arbi-
trariness of arrows”, we also split the upper row:

⎧⎩Ξ
⎫⎭=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
{
{···Ψ···Φ···Θ···}∞1

{···Ψ···Φ···Θ···}∞2
· · ·

}

���
���
���
���

���
���
���
���{

{α1 · · · · · · α1}∞1
{α2 · · · · · · α2}∞2

· · ·
}
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (26)

218



Universe 2022, 8, 217

(the indication of observation ���A is omitted further below since it has been mirrored in
primitives α). Hereafter, infinities ∞j stand for cardinal numbers (a number of elements,
possibly finite) of their own ensembles. Therefore, the extension of distinguishability (15)
should be produced by comparing the sub-objects such as

{···Ψ···Φ···Θ···}∞1���
���
���
���

{α1 · · · · · · α1}∞1

, (27)

that differ from each other in the upper-row composition.

4.1. Continuum of Quantum Phases

The cardinality of the T-set cannot be finite. This would finitely entail many α-
primitives for all kinds of instruments. However, the finiteness of this number nT would
mean an exclusivity of its value that does not follow from anywhere. At the same time, all
the A-ensembles (16) are subsets of the set T (boolean 2T); any finite portion of it is ruled
out. Hence, the endless variety of upper rows in (27) is uncountable.

Aside from the number of f-statistics, program R does also require an association of
the numerical objects with each row

A = {· · ·Ψ · · ·Ψ Φ · · ·Φ Θ · · ·Θ · · ·}∞ ⇐⇒ · · · ,

because primitive’s symbols must disappear in the ultimate description. To avoid intro-
ducing the structures ad hoc, we will produce numbers here—the upper row—in the same
manner, in which statistics were producing in Section 2.5—the lower row. Indeed, the
genesis of the concept of the number must be single in theory. That is, we should again
take into account the presence of copies of primitives and write

· · · ⇐⇒
{
{Ψ′}∞′ {Ψ′′}∞′′ · · ·︸ ︷︷ ︸

K times

}
, (28)

and numbers per se will come into being by the Σ-convention, such as (14), i.e., through
the cardinal ratios

κ′ :=
∞′

∞
, κ′′ :=

∞′′

∞
, . . . . (29)

Now, the discreteness of micro-transition acts is embodied in (28) with the sequence
(Ψ′, Ψ′′, . . . ), and the uncountability of micro-arbitrariness is inherited by attaching the
symbolic “quantities”—“countless” characters (∞′, ∞′′, . . . )—to elements of this sequence.
The global discreteness says that there are no grounds to assume a more than countable
infinity ℵo for the set T, i.e., |T| = ℵo. The infinity of the family (28), hence, has the type

2ℵo = ℵ ,

i.e., it is continual [134]. Parenthetically, the 2ℵo is the only known way of introducing the
continual (more than discrete) mathematical infinity. Which possibilities exist for the form
of row (28)?

The trivial case A =
{
{Ψ′}∞′

}
, i.e., K = 1 in (28) drops out at once since element Ψ′

would always go into the same primitive:

{Ψ′ · · · · · ·Ψ′}∞1���
���
���
���

{α1 · · · · · · α1}∞1

=

{Ψ′}∞1

A

��� ···

��� A

{α1}∞1

. (30)

However, this is tantamount to the identity Ψ′ ≡ α1, which robs of any meaning
the concept of the transition Ψ ���A α. We obtain a single number here—the number of
α1-clicks—and arrive thereby at classical statistics, the physics of which is inadequate with
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respect to the interference patterns. Hence, the following options are admissible for the
formations (28):{

{Ψ′}∞′ {Ψ′′}∞′′︸ ︷︷ ︸
K=2

}
, . . . ,

{
{Ψ′}∞′ {Ψ′′}∞′′ {Ψ′′′}∞′′′ · · ·︸ ︷︷ ︸

3�K<∞

}
, . . .

. . . ,
{
{Ψ′}∞′ {Ψ′′}∞′′ {Ψ′′′}∞′′′ · · ·︸ ︷︷ ︸

K=∞

}
(31)

with minimal K = 2. If some of the infinities (∞′, ∞′′, . . .) are finite here or countable, this
does not change the total continuality ℵ. The extreme case K = ∞—a countable infinity
of continuums—also changes this count because of ℵ+ ℵ+ · · · = ℵ [135]. All of these
infinities may be even countably duplicated without augmenting the continuum since
ℵ · ℵ · · · = ℵℵo = ℵ.

What can one say about relationship of cases (31) between each other? Do we have to
deal with their total arbitrariness or with only one of these schemes? The latter case—the
sameness/indistinguishability of upper rows in (27)—would correspond to the structural
staticity of theory. Otherwise, whether one (unrecognizable upper) row should differ
(why?) from another in the number (what?) of defining primitives {Ψ′, Ψ′′, . . .} (which
ones?)?

Suppose the variability of K. That is, consider the simultaneous existence of, say, the
K = {2, 3} rows {

{Ψ′}∞′ {Ψ′′}∞′′
}

,
{
{Ψ′}∞′ {Ψ′′}∞′′ {Ψ′′′}∞′′′

}
.

However, each of the 2-row is a particular case of the 3-row with a cardinal number ∞′′′ = 0:{
{Ψ′}∞′ {Ψ′′}∞′′

}
=

{
{Ψ′}∞′ {Ψ′′}∞′′ {Ψ′′′}{∞′′′=0}

}
⊂

{
{Ψ′}∞′ {Ψ′′}∞′′ {Ψ′′′}∞′′′

}
(the case in point is sets). Therefore, these situations are structurally indistinguishable from
each other, and the K = 2 theory is a subtheory for K = 3. So, the cases K = {2, 3} are
actually not mutually exclusive; rather, they form an embedding. We thus have arrived
at the one cumbersome and common construct akin to the Russian dolls 2 ⊃ 3 ⊃ 4 ⊃ · · ·.
Hence, the minimal 2-theory will always be present inside all the higher orders K > 2 as an
“independent (sub)world”. For this reason, the K = 2 theory must be created in any way;
incidentally, it will enclose the K = 1 case.

In the other part, we have no criteria to terminate the sequence 2 	 3 	 · · · at some
intermediate K < ∞. Such a cut-off does immediately raise an issue of the questionable em-
pirical exclusivity of a certain “world integer K � 3” that defines the number of “physically
inaccessible” Ψ-objects. Moreover, these options would be related to a certain topological
dimension K � 3 that has an unmotivated origin. We thus conclude that the non-minimal
options K = 3, K = 4, . . . in (31) should be dismissed.

Remark 5. A few remarks can be made in connection with the case when K = ∞. It is related to a
conglomerate of infinities, which has the form of a discretely infinite family of continual infinities {κ′,
κ′′, . . . }, and things would have been even “worse” had the staticity of the schemes (31) been changed
to variability. Such formations would need to be equipped with topology and with associated concepts
of convergence and of limit. However, all this touches on principally unobservable numerical entities,
for which it is not clear how to motivate the further reductions to “finite mathematics” as required:
dimensions, finite approximations, finite numbers (which ones?), and the like. More to the point, all
of that would pertain to the global structural parameters of the theory prior to constructing it per
se, not to mention the physical models. To put it plainly, such an assumption would result not in a
theory but in a theory of theories, and so on ad infinitum, which should be somewhere terminated in
some way. For these reasons, we leave the case K = ∞ aside, though it might be worth elaborating
on it. However, in Section 7.6, we will give a further justification that the number domain of the
theory is what it has already been known in QM.
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As a result, one has a choice: the structural staticity K = 2 or entirely non-structured/
undetermined set of outgoing primitives {Ψj, Ψk, . . .}, i.e., extremely complex case K = ∞.
We do choose K = 2. This option might have been adopted even before on the ground that
the most minimalistic construction, which set-theoretically gives rise, as a minimum, to
the minimal numerical object—a single number—corresponds to the minimal K = 2 in
(31). The maximal case is problematic, while the mid-ones are ruled out. That is to say, all
possible assumptions regarding the upper row structure in (27) are indistinguishable from a
case just as if the row contained two primitives only {Ψ′, Ψ′′} =: {Ψ, Φ}. The functionality
of the symbol ∪, with regards to the inclusion of the {Ψ, Φ}’s copies, is unchanged (see
Section 5.1 further below).

We establish in the following writing of Scheme (27) that

{Ψ · · ·Ψ}∞′
1
∪ {Φ · · ·Φ}∞′′

1
������
��� {α1 · · · α1}∞1

none of the primitives {Ψ, Φ} coincide with α1. Otherwise, the unrestricted adjunction of
identical transitions α1 ��� α1 to (27) would mean indeterminacy of both the number κ1

and the actual statistics (f1, f2, . . .).
Let us take into account that numbers (29) are mathematically generated by the

standard scheme: ,(ordered) integers-	 ,(ordered) rationals-	 ,(ordered) continuum
-. The natural ordering < is always present here and, as is well known ([136], p. 52), can
be isomorphically represented by the set-theoretic inclusion ⊂ on a certain system of sets.
That inclusion (= “to be contained in”), in turn, is directly concerned with the semantics of
Section 2. The natural-language term “accumulating”—“the old is being nested into the
new”—is formalized to create sets by the cumulative ensembles (see Section 5.1).

We now conclude that all kinds of schemes (27) form an ℵ-continuum, for which there
is no reasonable rationale for equipping it with a topology other than the standard order
topology of the one-dimensional real R-axis or its equivalents. Call the quantity κ ∈ R
quantum phase.

It should be added that in considering some two upper rows in (27) as infinite sets

{Ψ · · ·Ψ}∞′ ∪ {Φ · · ·Φ}∞′′ and {Ψ · · ·Ψ}∞̃′ ∪ {Φ · · ·Φ}∞̃′′ ,

one can always establish their formal identity. However, physics requires distinguishing
the rows, which is what the numerical part of pt. R and comparison of cardinals (∞′, ∞′′)
do “serve”.

4.2. Statistics + Phases

Thus, the closest reconciliation of Scheme (26) with the R•-postulate is an ensemble
brace of the form

⎧⎩Ξ
⎫⎭=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
{
{Ψ}∞′

1
{Φ}∞′′

1

}

���
���
���
���

{α1 · · · · · · α1}∞1

{
{Ψ}∞′

2
{Φ}∞′′

2

}

���
���
���
���

{α2 · · · · · · α2}∞2

· · · · · ·

· · · · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (32)

followed by the (upper) continual numeration through R-numbers

κs :=
∞′

s

∞s
(∞s := ∞′

s + ∞′′
s ) . (33)

In other words, the quantitative description in the theory is created on the basis of the
minimal building bricks ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
{Ψ}∞′ {Φ}∞′′

}

���
���
���
���

{α · · · · · · α}∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (unitary brace) (34)
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with two abstract ongoing primitives.
Now, we have had cardinals connected by Relation (25) and Structures (32) and (33).

In the above-described context, parentheses { } and symbols Ψ, Φ, ��� no longer carry
meaning at this point. Therefore, we may omit them as “extraneous” and write (32) as

⎧⎩Ξ
⎫⎭ ⇐⇒

⎧⎪⎪⎩κ1

∞1

∣∣∣∣ κ2

∞2

∣∣∣∣ · · ·· · ·
⎫⎪⎪⎭ = · · · ,

where αs are well represented by a subscripted numerals; observation A has been fixed so
far. Let us now introduce a statistics from the “embracing infinity” (25):

· · · =
⎧⎪⎪⎩ κ1

f1 ·∞

∣∣∣∣ κ2

f2 ·∞

∣∣∣∣ · · ·· · ·
⎫⎪⎪⎭ =

⎧⎪⎪⎩κ1

f1

∣∣∣∣ κ2

f2

∣∣∣∣ · · ·· · ·
⎫⎪⎪⎭·∞

, fs :=
∞s

∞
.

Then, by Σ-postulate, one arrives at a continually numeral labeling of objects (32):

⎧⎩Ξ
⎫⎭ ⇐⇒

{(κ1
f1

)
,
(κ2
f2

)
, . . .

}
.

Recall that the arithmetical operations on the emergent pairs (f,κ) are still out of the
question, and Σ-limit does not care the “innards” of

⎧⎩Ξ
⎫⎭. Only one of all the potentially

infinite quantities tends to the ∞-infinity—the total cardinality (25) of brace (32). What
remains “non-extraneous” in (32) is α’s, and we return them to their place. Hence, from the
viewpoint of observation A , the aggregate of the possible brace (24) is indistinguishable
from an order-indifferent two-parametric family of data

⎧⎩Ξ
⎫⎭=

{(κ1
f1

)
α1,

(κ2
f2

)
α2, . . .

}
. (35)

We drop a lower bar in the symbolic designation
⎧⎩Ξ

⎫⎭, highlighting the fact that the
meaning of the

⎧⎩Ξ
⎫⎭-object becomes increasingly divorced from primitives in pt. S and gets

into the number domain to match program R.
As an outcome, despite the freedom of ingoing collection in (26) and quantum micro-

arbitrariness, the distinguishability
⎧⎩Ξ

⎫⎭ �≈ ⎧⎩Ξ̃
⎫⎭ is indeed determinable, it is determinable not

only by statistics, and is the (R×R)-numerical:

⎧⎩Ξ
⎫⎭ �≈ ⎧⎩Ξ̃

⎫⎭, if (fs, κs) �= (f̃s, κ̃s) . (36)

What is more, the preliminary (classical) �≈-criterium (15) fits in (35)–(36) as a particular
case by omitting the κ-numbers and middle link from (17). That is to say, ignoring quantum
“κ-effects” is only possible via the (3 %→ 2) reduction of (17) into (18), with an automatic
imposition of the ClassPhys description. A simplified and hypothetical version of QM

over R1 is also ruled out. It would mean a reduction in the two numbers (f,κ) to a single
one. However, they have fundamentally different origins. The construct and reasoning
in Section 2.1 also tell us that the attempt at a greater “quantum specification” to (5) and
(17) is impossible by virtue of the two-row structure—ingoing/outgoing—of the object

⎧⎩Ξ
⎫⎭,

and distinguishability by numerical pairs (36) is the highest possible.
The

⎧⎩Ξ
⎫⎭-objects (35) remain, and they, as a family, exhaustively inherit the problem’s

physics. The quantities fs are the really observable (unitless) numbers—the percentage
quantity of events—which are declared by instrument/observer to be the distinguishable α-
objects. The quantities κs are the internal and unremovable degrees of freedom. Figuratively
speaking, the κ’s may be speculatively referred to as phases, but they may not be associated
with an actual quantity of something. Not only is any material or the classical treatment of
these “amounts” impossible, but it is fundamentally prohibited since the converse would
have meant endowing the nonexistent boxes (5) and (6) with a notional content or asserting
the nature of their origin. Justification is only allowed here for the fact of their existence,

222



Universe 2022, 8, 217

which is mirrored by the presence of the left-hand side in the concept of the transition of
Ψ ���A α (Remark 2).

In view of numerous ongoing discussions of the meaning to the quantum state [21],
note that, for the same reason, any (even merely similar) classical/ontological and causal
“visualization mechanisms” ([5], p. 137) as the wave function of a certain real matter, of a
hypothetical observable, of an “objective knowledge’, or of the classical data (whatever this
all means) are—and this we stress with emphasis—pointless. This is why, strictly speaking,
without further theoretical conventions,

• It is impossible ([12], p. 13) to make/prepare, observe/read-off, transmit or mea-
sure/approximate a state, or to endow it with the property of being known/unknown,
or physically recognize/compare/distinguish it from the other.

We will be repeatedly turning back to this matter in Sections 6.3.1, 6.4, 6.5, and 10.2.
The present thesis has not undergone a change even with regard to the word “statistics”
in the Born rule [6], if only because the rule is a substantial—two-to-one—reduction in
the (f,κ)-data. The state will itself, when created as a mathematical object, determine the
meaning of all of these words (see Section 5.3) with an appropriate concept of the physical
distinguishability (Section 2.4). Cf. the works [53,54] and the “methods to directly measure
general quantum states . . . by weak measurements” in [137] and, on the other hand, the
statements in Section 15.5 of the book [33].

All the κs and fs are independent of each other, except for relation f1 + f2 + · · · = 1.
Taking into account the admissible renormalization of both R-numbers, the pair (f,κ) can
be topologically identified with a point on the complex plane:

(κ
f

)
� (λ, μ) ∈ R2 =: C .

That is, the domain C is at the moment just a two-dimensional numeric continuum
without algebra of complex numbers. Notice that the pairs of R-numbers is a starting
point—different from ours—to the QT in ref. [138]. More than that, the impossibility of the
real-number QM became a subject of the direct experimental test to distinguish between the
complex-number and real-number representations of QT: on photonic systems [139] and
the superconducting qubits [140].

The issue of the numerical domain over which the quantum description is being
conducted—the real R, the complex C, the quaternions Q, or whatever—is non-trivial and
continues to be the subject of study [57,93,138,141,142]. The complexity C is often motivated
by quantum dynamics (Schrödinger’s equation) ([36], p. 132; Stueckelberg), [143]; however,
such a motivation is inconsistent, and as we have seen, there is no need for it. The rigidity
of the C-domain points to the fact that, in particular, the quaternion QM also has no place to
originate from ([33], Section 10.1), although it was the object of theoretical constructs in the
1960–1970s [144]. Note that even the most comprehensive works [36] (p. 131), [72] (p. 234),
[93] (p. 217), [96,138], and [142] (!) observe a difficulty in the full substantiation of the C-
domain in QT. Within the last decade, this theme had also attracted the particular attention
of the information-theoretic approach to QT [138,145,146].

The above-outlined emergence of the numerical quantities in theory is a draft at the
moment and will be refined further below in Section 7.

5. Empiricism and Mathematics

Set theory does not seem today to have . . . organic interrelationship with physics—
P. Cohen and R. Hersh ([147], p. 116)

. . . physics has . . . to say about the foundations of mathematics . . . “if we believe
in ZF there is nothing for physics to say” is not right—P. Benioff ([2], p. 31)

Up to this point, we have dealt, roughly speaking, with a single abstract aggregate⎧⎩Ξ
⎫⎭ isolated from the others. However, the constructional nature of the ensemble brace (32)

entails the following closedness relation between them. Every brace
⎧⎩Ξ

⎫⎭ is composed of
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some others in infinitely many ways (for remote analogies, see ([40], Section 11.2)), i.e., it is
a union ⎧⎩Ξ

⎫⎭= ⎧⎩Ξ′⎫⎭∪ ⎧⎩Ξ′′⎫⎭ , (37)

and, to put it in reverse, any union of two braces is a third object-brace. In assemblages
(37), the operation ∪, which generates them, is commutative and associative:

A ∪ B = B ∪ A, (A ∪ B) ∪ C = A ∪ (B ∪ C) , (38)

and these two- and three-term relations not only are not a formal supplement, but should
be read as the structural properties in general. Let us address the matter more closely.

5.1. Union of Ensembles

Consider the lower α-rows of brace (26) and experimentally forming the new real
α-ensembles from them. Let the procedure of that forming be denoted by U(A, B, . . .),
where (A, B, . . .) are the ensembles per se. Its essence is such that it is comprehensively
determined by the following minimum. A rule that involves the fewest (i.e., two) number of
arguments U(A, B) = ? and a rule of the repeated applying U to itself: U(U(. . .), . . .) = ?.
Obviously, we should write

U(A, B) = U(B, A), U
(
U(A, B), C

)
= U

(
A,U(B, C)

)
, (39)

which is of course merely the empirical rephrasing the standard properties (38) of operation
∪. However, the converse is logically preferable: Empiricism (39) is formalized into
the abstract properties (38). If we now attach the upper “quantum” primitives to the
low α-rows—a requirement of Section 2.1—then the operationality of actions with the
resulting

⎧⎩Ξ
⎫⎭-braces would be just like that of U, i.e., (39). In other words, we carry over

(and had already used everywhere) properties (39) to the general operation on
⎧⎩Ξ

⎫⎭-brace,
without distinguishing between the essences of symbols ∪ and U. “Micro-operationality’ of
empiricism and its formalization are confined, at most, by the rules (38) and (39).

Let us temporarily discontinue using the numerical terminology as applied to
⎧⎩Ξ

⎫⎭-
objects. They differ from each other due to relationships between their “innards”, rather
than because of our assignment of differed symbols (λ, μ) to them. The brace is comprised
of elements that are combined into sets and are added to them. In the language of the
abstract logic, we are dealing with the fact that transitions x form the brace A, B, . . . , i.e.,
they are in the membership relationships x ∈ A, x ∈ B, . . . or, when accumulated as micro-
acts, “get belonged to them”. That is to say, the braces themselves and their formation
(accumulation of statistics for the Σ-limit) are equivalent to a huge number of propositional
“micro-sentences x ∈ A or x ∈ B or . . . ”. However, again, this is nothing but a logically
formal equivalent of the union operation ∪:

A ∪ B =
{

x
∣∣ (x ∈ A) ∨ (x ∈ B)

}
, (40)

which is already being constantly exploited above.

Remark 6. As is well known [134,136], due to properties of logical atoms ∈ (membership)
and ∨ (or), the properties of sentences such as (40) are determined precisely by rules (38) for
∪. Technically, we should also take an idempotence A ∪ A = A into account, however. At the
same time, the need to have a number requires that the duplicates in ensembles have to be taken
into consideration. Nevertheless, this situation is easily simulated by the set theory itself. Indeed,
look first at the lower row in (24) as a strictly abstract set {α′, α′′, . . .} ⊂ T. Then, instrument
A “asserts” the distinguishable elements {α1, α2, . . .} and those that should be thought of as their
equivalents:

α′1 ≈ α′′1 ≈ · · · =: α1 , α′2 ≈ α′′2 ≈ · · · =: α2 , . . . .
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This equivalence can be characterized, say, by words “a detector click at one and the same place α1”.
Upon such a formalization, one obtains the formation {α′1 α′′1 · · ·}{α′2 α′′2 · · ·} · · · ≈ {α1 · · ·}{α2 · · ·}
· · ·, i.e., the very lower row in (26). It is within this context that we think of the union operation
without running into inconsistencies. Accordingly,

⎧⎩Ξ
⎫⎭∪ ⎧⎩Ξ

⎫⎭ �= ⎧⎩Ξ
⎫⎭, but the standard symbol ∪

continues to be used for simplicity.

Therefore if we get back to the numeral labels (35) but ignore the “inner composition”
of

⎧⎩Ξ
⎫⎭, i.e., the M-paradigm, thus excluding ∪ and (38) from the reasoning, then all possible⎧⎩Ξ

⎫⎭-objects would turn into the semantically “segregated ideograms”. Micro-transitions,
their mass nature, arbitrariness, �≈-distinguishability, and the “quantumness” of the task
simply disappear. To illustrate, the obvious statement

the brace {Ψ ���A α} =:
⎧⎩Ξ

⎫⎭ has an empirical “kindred”

with its duplication {Ψ ���A α, Ψ ���A α} =:
⎧⎩Ξ′⎫⎭

becomes pointless because the property
⎧⎩Ξ

⎫⎭∪ ⎧⎩Ξ
⎫⎭ =

⎧⎩Ξ′⎫⎭ is missing. Furthermore, this
is despite the fact that creating the transition copies in

⎧⎩Ξ′⎫⎭ is a primary operation for
generating the objects and reasoning at all. The construction of the theory would then
become possible only with the interpretative introduction of the vanished concepts anew.
Therefore, macro-empiricism necessitates that the relationships (38) be operative rules, and
with that, the quantumness or classicality of consideration is of no significance.

Remark 7. Let us take a closer look at the situation on the opposite—mathematical—side. The
union of sets ∪ is already a fundamental operation at the level of the set-theoretic formalization, e.g.,
the Zermelo–Fraenkel (ZF) axioms [134]. This is one of the first ways to create sets—the axiom of
union. Thus, if we believe in the set-theoretic mode of explaining/creating the quantum rudiments,
the quantitative description will inevitably invoke the operationality of the mathematical primitive
∪ through rules (38). This would be suffice to declare,

• Inasmuch as we have nothing but ∪ and
⎧⎩Ξ

⎫⎭ (taboo T), commutativity/associativity of
theory is then postulated from the outset by (38), with the subsequent carrying these structures
over to numerical representations, i.e., to R or C.

It is preferable, however, to adhere to the sequence order in ideology more stringently—,obser-
vation-	 ,mathematics-, ,empiricism-	 ,numerical representation-—without substituting it
for the opposite. At least, if we rely upon the comprehension of the empiricism as a formalization of
the zero-principium of QT (Remark 2):

• Our primordial perceptions are formalized only into sets and set-theoretic ∪-abstraction (40).

See also [2] (p. 178), [58] (Ch. 3), [78] (p. 323), [96,104], [148] (pp. 12, 86, Ch. 4), [149] (Section V.9),
and Section 11.1.

Summing up, we detect a kind of junction point: the physical and mathematical
fundamentality of operation ∪ for describing the elementary acts. That is to say, the
mathematics of

⎧⎩Ξ
⎫⎭-brace (32) and of objects (35) may not inherently be exhausted by them

as “bare” sets without structures.
Recalling now pr. II, we draw a conclusion regarding the very construction of the

theory.

• The reconciliation of the R-paradigm with empiricism must transform itself into
rewriting the primary ensemble ∪-constructions (26), (32), (34), and relationships
between them into the language of numerical symbols.

More formally, we have the following continuation of pt. R•.

R+
Homomorphism of the ensemble-brace properties “onto numbers”: mutual ∪-relationships
(38) between the

⎧⎩Ξ
⎫⎭-brace should be carried over to relations between their numerical⎧⎩Ξ

⎫⎭-representations (35).
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Thereby, we once again fix the maximum that is available for the building up of quan-
tum mathematics. One may only handle the ∪-aggregates of transitions—constructions
(32), (35)—and the minimal modules (34).

5.2. Semigroup

In line with (37), let us split the unitary brace (34) into two or combine two brace into
one, then delete the symbols of primitives Ψ and Φ from there. As was pointed out above,
they are not necessary at this stage. By replacing the notation of upper cardinals (34) with
pairs (∞′

1, ∞′
2) and (∞′′

1 , ∞′′
2 ), upon the union, one obtains

(∞′
1, ∞′

2) ∪ (∞′′
1 , ∞′′

2 ) = (∞′
1 + ∞′′

1 , ∞′
2 + ∞′′

2 ) . (41)

Here, addition + obviously satisfies the properties (38). If the cardinal “∞-coordinates”
are replaced with the “finite percentages” (κ,S) introduced above, i.e., if one puts{

κ =
∞1

∞1 + ∞2

, S = ∞1 + ∞2

}
,

{
∞1 = κS, ∞2 = (1−κ)S

}
(42)

as in (33), then Rule (41) acquires the form of a number composition:

(κ′,S′) ◦ (κ′′,S′′) =

(
κ′S′ +κ′′S′′

S′ +S′′ , S′ +S′′
)

. (43)

The commutativity/associativity properties of operation ◦ hold here due to the bira-
tionality of (42). Then, the formal application of Σ-postulate S′ +S′′ → ∞ breaks, however,
the symmetry (′)↔ (′′) and associativity of ◦ since

(κ′,S′) ◦ (κ′′,S′′) 	 κ′ ◦ κ′′ = s ·κ′ + (1− s) ·κ′′ , s :=
S′

S′ +S′′ (44)

and s is an undefined parameter. The consequence of the same kind holds true for the
f-components of pairs (35), for which a convex w-combination of the statistical weights
does arise:

(f′1, f′2, . . .) ◦ (f′′1, f′′2, . . .) =: (f′ ◦ f′′) = w · f′ + (1− w) · f′′ , w :=
Σ′

Σ′ + Σ′′ . (45)

At the same time, the splitting (41) is no more than an “intrinsic reshuffle” of one and
the same

⎧⎩Ξ
⎫⎭-brace, which “knows nothing” about the concept of a number (numbers s, w),

much less about the concept of observation or its numerical form. Therefore, mathematics
of the ensemble structures should be independent of any representation for (37) by such
operations as (43). Composition

⎧⎩Ξ′⎫⎭◦ ⎧⎩Ξ′′⎫⎭ =
⎧⎩Ξ

⎫⎭ should be determined solely by its
constituents (f′,κ′) and (f′′,κ′′), i.e., such numbers as (s, w) must not appear here.

Remark 8. In classical statistics, the foregoing has an analog as indifference of data on events to the
way of gathering and layout thereof. For example, (2, 3) + (1, 4) ≡ (0, 6) + (3, 1) ≡ · · · =: data.
Then, the observation proper is being created by the scheme data 	 (3, 7) %→

(
3

3+7 , 7
3+7

)
=

(0.3, 0.7) = (f1, f2) =: observ. Parameters such as w can appear in
⎧⎩Ξ

⎫⎭ only if, prior to
any of the ∪-unions (37), a construction similar to (23) has been fixed. That is, the invariantly
number-free brace (37) has been supplemented by an external number w and ratio w : (1−w).
The correction

⎧⎩Ξ
⎫⎭ 	

{⎧⎩Ξ′⎫⎭(w),
⎧⎩Ξ′′⎫⎭(1−w)

}
of the theory, related to this number and to arrays

(23), is very well known. This is a w-statistical mixture {(w; ψ′), (1− w; ψ′′)} of wave functions,
accompanied by a formalization in terms of the statistical operator w · |ψ′〉〈ψ′ |+ (1−w) · |ψ′′〉〈ψ′′ |.

Now, to ensure that numerical (f,κ)-realization (35) of ensemble brace (32) inherits
quantum empiricism (O, M) and structural properties (37) and (38) properly, we reas-
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sign the quantities (f,κ) with a “percentage meaning” and replace them with different
numbers [λ, μ]: ⎧⎩Ξ

⎫⎭=
{[μ1

λ1

]
α1 ,

[μ2
λ2

]
α2, . . .

}
(46)

(this important move will be touched upon once again in Section 7.1). In so doing, each
pair [μ′

λ′ ], [
μ′′
λ′′ ] behaves as a whole, and, under coinciding αs, the pairs are endowed with a

composition [μ′
λ′ ] ⊕ [

μ′′
λ′′ ] that is to be commutative. Along with this, if symbol 0 denotes a

composition of objects (46), it should obviously copy properties (38):

⎧⎩Ξ
⎫⎭0 ⎧⎩Ψ

⎫⎭= ⎧⎩Ψ
⎫⎭0 ⎧⎩Ξ

⎫⎭,
(⎧⎩Ξ

⎫⎭0 ⎧⎩Ψ
⎫⎭) 0 ⎧⎩Φ

⎫⎭= ⎧⎩Ξ
⎫⎭0 (⎧⎩Ψ

⎫⎭0 ⎧⎩Φ
⎫⎭) .

The finite ensembles are vanishingly small in their contribution into infinite ones
(Σ-postulate), i.e., elements of the

⎧⎩Ξ
⎫⎭-family, as infinite sets, are considered modulo

finite ensembles. Once again, the “finitely many” is forbidden in theory. As soon as
we put the numbers of α1, of α2, . . . to be finite, we immediately obtain the numerical
distinguishability n1 �= n2, . . . , i.e., the act of macro-observation. Let us designate the image
of finite ensembles as

⎧⎩0
⎫⎭, and, due to property

⎧⎩Ξ
⎫⎭0 ⎧⎩0

⎫⎭= ⎧⎩Ξ
⎫⎭, it is naturally referred to

as zero. The collection (46) itself has also been formed by the ∪-combining the ingredients
{[μ1

λ1

]
α1 ,

[μ2
λ2

]
α2 , . . .

}
≡

{[μ1
λ1

]
α1

}
∪

{[μ2
λ2

]
α2

}
∪ · · · = · · · ,

which is why the same symbol 0 may be freely used between objects with different αs:

· · · =
{[μ1

λ1

]
α1

}
0

{[μ2
λ2

]
α2

}
0 · · · .

For the sake of brevity, we omit the redundant curly brackets further, redefining

⎧⎩Ξ
⎫⎭
A :=

[μ1
λ1

]
α1 0

[μ2
λ2

]
α2 0 · · · . (47)

As a result, we have had that the set-theoretic prototypes (26) and (27), (32) of states
(11) do invariantly exist in the form of every possible ∪-decomposition. Thus, in dealing
with the only instrument A , one reveals the following property.

• For each observation A , the set of
⎧⎩Ξ

⎫⎭
A -objects forms an infinite commutative semi-

group G with respect to operation 0.
An internal (beyond the observation) nature of

⎧⎩Ξ
⎫⎭
A -objects (47) is characterized by

commutative superpositions
⎧⎩Ξ′⎫⎭

A 0 ⎧⎩Ξ′′⎫⎭
A thereof, which are independent of the

classical composition of observational f-statistics.

5.3. Measurement

The described above numerical
⎧⎩Ξ

⎫⎭-version of the
⎧⎩Ξ

⎫⎭-brace “∪-phenomenology”
makes it possible now to preliminarily formalize a concept, the absence of which deprives
the theory of its basis. Namely, measuring statistics by observation A over S :

QM-measurement:
(
[λ1, μ1], [λ2, μ2], . . .

)
%−→ (f1, f2, . . .) . (48)

That is, the [λ, μ]-collection gets mathematically mapped into the f-statistics. This is a
maximum of information provided by observation A . Mapping (48) annihilates the pairs
[λ, μ]. Therefore, the inheritance/homomorphism of operations ∪ and 0 onto anything
at all is eliminated. Upon operation (48), both the (f,κ)-sets and ∪-unions thereof, 0-
operations, and the semigroup G per se disappear. As a well-known result, the distinctive
feature subsequently referred to as a superposition will also disappear after measurement.
The new numbers {fs} may be “added up” only as required by the different, i.e., the
classical rule: forming the convex combinations (45). We note that the formalization of the
measurement does not now depend on how the mathematical map [λ, μ] 	 (f) would be
further implemented—it is a separate job [6]—or how the t-dynamics would be introduced.

227



Universe 2022, 8, 217

Remark 9. The incorporation of t-dynamics into the theory is still impossible due to the absence of
mathematics to be applied to instants t1, t2. Accordingly, no physical t-process, a temporal imitation
of the measuring, or its dynamical description may correspond to the mathematical mapping shown
in Mapping (48). The known “conceptual” problems with the collapse dynamics [1,13,18,45,115]
are actually non-existent [15,87,93]. More precisely, they stem from the blurring of meaning that
we typically give to the words “states” (what is that?), “ensembles” (what are they comprised of?),
and “dynamics/collapse” (of what?). In regard to the latter, the authors of the book [58] speak out in
a most definitive manner—the “fairy tales”. See also Section 10.3 further below.

In Section 2.1, the fundamental premise of the α-symbol-based distinguishability �≈
was the foundation of the entire subsequent language; “two clicks are never identical”
([126], p. 761). One then observes that the measurement or its outcome will essentially
remain a vacuous term “for microsystems nothing can be directly measured” ([92], p. 304)
until it invokes the concept of a QM-state, i.e., the

⎧⎩Ξ
⎫⎭- and α-objects. In the following, we

shall see that, as a rough guide, everything that is observable whatsoever is a function of
the state and of the state space.

Once again, it is stressed that the concept of the state must precede the notion of
measurement, rather than the reverse. “[J.] Bell fulminated against the use of the word
“measurement” as a primary term when discussing quantum foundations” ([30], p. 262).
See also the entire chapter 23—“Against “measurement’”—in ([28], pp. 213–231).

5.4. Covariance with Respect to Observations (“the same”)

Up to this point, we had had no need for the matching of observation A with ob-
servation B, although it is clear that a description based on a certain specified A will
inevitably be non-invariant with respect to the tool {A , B, . . .}—“observation space”—and
unacceptable (pt. R) due to the impermissible exclusivity of the set {α1, . . .}. At the same
time, we do not have anything but {A , B, . . .} and micro-acts (12) (pts. T and M). In the
brace, this fact has already been present; transitions ���A are combined into integrities (24).
Logically, however, the

⎧⎩Ξ
⎫⎭
A -,

⎧⎩Ξ
⎫⎭
B-objects are incomparable and isolated from each other

as carriers of statistics of different origins.
On the other hand, “the same is observed by instrument B, as by instrument A ”.

Although this context has not yet been invoked, without it, the application of set-theoretic
constructs to physics is devoid of meaning, just like the union of the speeds of an elec-
tron and of the Moon into a set {ve, vM}, with the subsequent creating a certain physical
characteristic of this “two-body system”—say, the mean velocity 1

2 (ve + vM). Indeed, “The
statements of quantum mechanics are meaningful and can be logically combined only if
one can imagine a unique experimental context” ([40], p. 115).

Thus, the global structuredness is required in the set of various
⎧⎩Ξ

⎫⎭-data according
to the context “the same, identical” or its negation. Apparently, this addition implies
such entities as “the same particle”, “in the same preparation/state”, “under the same
temperature and M-environment (12)”, “the same closed system S”, “in the same external
field”, “in the same interferometer” with “the same detectors/solenoids”, the like [33,40,44];
the short and generalized notation 〈〈S , M, . . .〉〉. All the notions here, including the state, are
physical conventions, yet their formalization and modeling are called for the creation of a
theory (Section 2.4).

The notion “with the same initial data” falls under the same category, if the intention
is to use the term time t. Again, the very creation of the

⎧⎩Ξ
⎫⎭-brace as a set “by the piece” is

from the outset thought of as (Section 2.4) a creation on the assumption of common 〈〈S , M,
. . .〉〉. For instance, the A -statistics

⎧⎩Ξ
⎫⎭
A are gathered within “the same” 〈〈S , M, . . .〉〉 as the

B-statistics
⎧⎩Ξ

⎫⎭
B. On its part, any variation is sufficient to obtain “not the same”, even if

we “envision it as null” in the spirit of the widely known “without in any way disturbing a
system” ([131], p. 234). To take an illustration, equipment of interferometer (Section 6.5)
with additional ”which-slit” detectors is already at variance with the notion of “the same
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S”. In similar cases, we end up in situations similar to Case (23) since the detectors cause
an α-distinguishability.

Notice that the notions “the same” and ”distinguishable” (Remark 2), while antony-
mous, mutually exclude each other. Semantically, one without the other makes no sense,
which closely resembles Bohr’s conception of complementarity [78].

It follows from the above that in order to match A and B, the metatheoretical [149]
category 〈〈S , M, . . .〉〉 is required; however, we are only in possession of the ensemble brace⎧⎩Ξ

⎫⎭
A and

⎧⎩Ξ
⎫⎭
B (pt. T). On the other hand, without joint consideration of the two instruments,

i.e., without introducing a mechanism for the mathematical matching
⎧⎩Ξ′⎫⎭

A � ⎧⎩Ξ′⎫⎭
B,⎧⎩Ξ′′⎫⎭

A � ⎧⎩Ξ′′⎫⎭
B, . . . , the segregation of the

⎧⎩Ξ
⎫⎭-objects is absolute. (It is clear that the

matching of single micro-events Ψ ���A αs and Ψ ���B βj is also futile.) It is impossible to
associate physics with the abstractly segregated

⎧⎩Ξ
⎫⎭
A -brace. Otherwise, the solitary object⎧⎩Ξ

⎫⎭
A , generating nothing more than statistics provided by the single instrument A , would

yield a description of everything, which is absurd by pt. R••. The physical contents (to
come) arise precisely through the above-mentioned matching (see Section 6.4 below).

As a result, we adopt a kind of the relativity-principle analogue—a tenet on the
quantum observational covariance.

III
Theory should introduce a means of equating the macro-observations (pts. O +M) by
differing instruments {α1, . . .}A �= {β1, . . .}B under a common (the same) experimental
environment 〈〈S , M, . . .〉〉.

(The third principium of quantum theory)

Cf. [22] (p. 632) and mathematical analogies [85,86].

5.4.1. Semantic Closedness and the Equal Sign =

We are currently returning once again to Section 2.1, falling into a situation when the
case in hand does not just entail fundamental theory in the form of ,math- + ,physical “bla-
bla-bla”-, while, continuing on an informal note, the mathematics of physics—quantum
mathematics—is being created “from scratch”. When building up this math, it is impossible
to forego the physical conventions 〈〈S , M, . . .〉〉; meanwhile, any preliminary and the formal
characterization for 〈〈S , M, . . .〉〉 is ruled out.

Indeed, the attempts to mathematically formalize the physical context of observation,
rather than observation itself, will not logically manage without another “more funda-
mental” observation, in this case, of the very experimental environment. The semantic
cycling is apparent here, and any of its mathematization will lead to a retrogression of
definitions into infinity, which is known as the “von Neumann catastrophe” ([80], pp. 158–
. . . )) or as “trying to swallow itself by the tail” ([28], p. 220). Which is why, once again, the
“Box (6) method” prohibitions are required. See also a paragraph containing the capitalized
emphasize “CANNOT IN PRINCIPLE” on p. 418 of the work [15]. Sooner or later, it will
have to be declared that mathematics will be created for the convention 〈〈S , M, . . .〉〉and
that this mathematics will be a mathematical model for this 〈〈S , M, . . .〉〉. The analogous
argument—“mathematics is there to serve physics, and not the other way round” ([16],
p. 242; L. Hardy)—has already long been met in the literature [23,33,40]. In connection
with the “general contextual models”, see the books [64,150] (the Växjö-model, “quantum
contextuality”) and bibliography therein.

Remark 10 (semantic). To avoid the just mentioned linguistic closedness—a kind of mathematical
“pathology” of the physical and natural languages—a description that lays claim to the role of an
unambiguous/rigorous theory requires a careful separation of the object- and meta-languages. For
more detail, see [105] (Sections 14–16), [106] (Section V.1), and [136] (Section 3.9). For this reason,
the constructs should track the blending of the object QM-domain (syntax) and the meta-domain (se-
mantics) and, more generally, the penetration of extra-linguistic elements of thinking [148] into QM.
The notion of “the same 〈〈S , M, . . .〉〉”, which is intuitive in the natural language, should explicitly
be indicated as an external and fundamental category (pr. III), and its circular re-interpretations/re-
translations within the theory should be banned. That is, re-stating “the sameness 〈〈S , M, . . .〉〉, the
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identical 〈〈S , M, . . .〉〉” by way of word or of the equality symbol = between some other entities is
forbidden.

• “The same” may no have a definition in terms of anything else. It exists prior to theory and
has only a meaning (= verbal context), though its natural-language descriptions may be of
great variety and be “presented to us in wildly different ways” ([86], p. 2 and the whole of the
Section “The awkwardness of equality”).

One could, e.g., accept the typical verbal vehicle “a complex of conditions, which allows of any
number of repetitions” (quotation from the literature). It is clear that the words “complex . . . allows
. . . repetitions” here are just another semantic equivalent to the word “the same 〈〈S , M, . . .〉〉”. The
physics terminology per se (Sections 6.4, 6.5, and 9.1) will become accessible when physical concepts
are introduced via the originating—and obligatorily very ascetic—quantum-mechanics language.
See also the selected thesis on page 70.

It is crucial to immediately note that, in the same manner, the classical description
contains the cited arguments in their entirety. It is easy to convince that such a description
also implies implicitly that which is designated above as 〈〈S , M, . . .〉〉; otherwise, the physical
reasoning would be entirely impossible. “[W]e often prefer to regard a number of outcomes
of distinct physical operations as registering the same property, . . . representing the same
measurement. . . . permitting an unrestricted identification of outcomes would lead to
"grammatical chaos"” (Foulis–Randall ([111], p. 232)). More to the point, the physics and
mathematics not merely have been closely interwoven with each other. Any recursive
procedure of definitions will inevitable result in either a cyclic definition at some level,
or a definition that refers outside not only of the physics but even of the math. Hence,
the hierarchical arrangement of notions/. . . /definitions—a property that is frequently
uncontrolled and violated in the human thinking—can only be meaningful if at least one
knot in the definition network is externally defined. In this work, that basic points are, as
a rough guide, the brace Ψ ���A α and the notion of “the same 〈〈S , M, . . .〉〉”, motivated in
Remarks 2 and 10, respectively.

Remark 11. Here, the situation is similar to the role of the axiom of choice in the ZF-system [134,147].
It has been well known for a long time that the axiom is often subconsciously implied ([149],
Chs. II, IV); it can also not be either circumvented or ignored. Another counterexample to “infinite
retrogression and circularity” in logic comes from the very same system. This is a ban on infinite
chain of set memberships ∈ on the left

‖ · · · ∈ Xn ∈ · · · ∈ X2 ∈ X1 ∈ X0

(the regularity axiom [∀x ∈ X, x ∩ X �= ∅] ⇒ [X = ∅]) under the permissibility of the infinite
(∈)-continuing to the right:

X0 ∈ X1 ∈ X2 ∈ · · · ∈ Xn ∈ · · · ∈ · · ·

(not rigorously, the infinity axiom) [120,134].
The obvious parallels here are the famous Russell paradox [149] or a chaos in the computer

file system when the “hard links” from a folder to the parent folder are allowed. Thus, the relations
∈ “downwards” to the left and necessarily terminates in something, i.e., in a set X0 that contains
nothing: ∅ = X0 ∈ · · · ∈ Xn ∈ · · ·. Therefore, one needs to give “meaning” to the only set—the
empty one ∅. Incidentally, it is these axioms that guarantee the existence of infinitely many ordinal
numbers (106) and the uniqueness of this structure. The ordinals and numbers have yet to be dealt
with further below in more detail.

All that remains is to add that no theory in physics is feasible without re-calculations of
physical units and of vectors/tensors without transformations in the fiber superstructures
over manifolds, etc. Accordingly, the considerations on invariance and on transformations
should be present in the quantum case as well, but it, which is its principal difference from
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the classical case, still lacks the concepts of physical quantities/properties (see Section 6.4).
Therefore, such argumentation may only be applied to those objects that we have at our
disposal, i.e., to the

⎧⎩Ξ
⎫⎭-brace. The renunciation of pr. III would actually be tantamount to

the inability to make the physics theories whatsoever.
Now, pr. III and the “quantum diversity of the reference frames” {A , B, . . . } require

a kind of factorization of the entire family {⎧⎩Ξ
⎫⎭
A ,

⎧⎩Ξ
⎫⎭
B, . . . ,

⎧⎩Ξ
⎫⎭′
A ,

⎧⎩Ξ
⎫⎭′
B, . . .} with respect

to the conception 〈〈S , M, . . .〉〉, i.e., the introduction of an operation of equating the results⎧⎩Ξ
⎫⎭
A ,

⎧⎩Ξ
⎫⎭
B that came when observing S .

⎧⎩Ξ
⎫⎭
A =?

⎧⎩Ξ
⎫⎭
B should not be immediately put since

these braces are simply different sets. That is why, with isolated semigroups{
0A ;

⎧⎩Ξ′⎫⎭
A ,

⎧⎩Ξ′′⎫⎭
A , . . .︸ ︷︷ ︸

GA

}
,

{
0B ;

⎧⎩Ξ′⎫⎭
B ,

⎧⎩Ξ′′⎫⎭
B , . . .︸ ︷︷ ︸

GB

}
, . . .

at our disposal, we have to conceive of them as elements of a new set H of objects having
a single nature, 1) to carry out the mapping {GA ,GB , . . .} %→ H , assigning new repre-
sentatives |ΞA 〉 ∈ H to the

⎧⎩Ξ
⎫⎭-brace, and 2) to equip H with an equivalence relation

|ΞA 〉 ≈ |ΞB〉 (the concept “the same” above). Let us implement all of that by the scheme

⎧⎩Ξ
⎫⎭
A :=

[μ1
λ1

]
α1 0

A [μ2
λ2

]
α2 0

A · · · 	
[μ1

λ1

]
|α1

⎫⎭+ [μ2
λ2

]
|α2

⎫⎭+ · · · =: |ΞA 〉 ∈ H ,

⎧⎩Ξ
⎫⎭
B :=

[μ1
λ1

]
β1 0

B [μ2
λ2

]
β2 0

B · · · 	
[μ1

λ1

]
|β1

⎫⎭+ [μ2
λ2

]
|β2

⎫⎭+ · · · =: |ΞB〉 ∈ H ,

. . . . . . . . . . . . . . . . . . . . . . . .

(49)

In this, the new addition + must of course homomorphically inherit operations 0A , 0B,
. . . , and the extension of this definition throughout H is then made with the aid of the very
equivalence ≈:

|Ξ′
A 〉+ |Ξ′′

B〉 =
∣∣∣|Ξ′′

B〉 ≈ |Ξ′′
A 〉 ⇒

∣∣∣ = |Ξ′
A 〉+ |Ξ′′

A 〉 = |Ξ′
B〉+ |Ξ′′

B〉 .

The negation �≈ of the relation ≈, e.g., |Ξ′
A 〉 �≈ |Ξ′′

A 〉, is exactly the very same distin-
guishability that was discussed in Sections 2 and 3.

For the sake of convenience, we adopt the regular sign = for≈ in order not to introduce
yet a further homomorphism, which are already numerous, with more to come. In other
words, the physics 〈〈S , M, . . .〉〉 is “concentrated” in the sign =, turning the empirical
structures (49) into the A -, B-implementations of the object |Ξ〉 ≡ |ΞA 〉 = |ΞB〉 under
construction. The adequate term for it—the Info/Data-Source or “representative of
information” (Č. Brukner (2014))—corresponds to the preliminary prototype of the concept
of a state, but we will remain within the standard term, disregarding its variance.

6. Quantum Superposition

How come the quantum? . . . No space, no time—J. Wheeler (1989)

. . . postulation of something as a Primary Observable is itself a sort of theoretical
act and may turn out to be wrong—T. Maudlin ([151], p. 142)

6.1. Representations of States

Let us simplify notation according to the rule [μ
λ] =: a. The sought-for relationships

between A , B, . . . then turn into the key point of further construct—the equalities⌈
representations

of |Ξ〉-state

⌉
: a1 |α1

⎫⎭+ a2 |α2

⎫⎭+ · · · =“the same”
b1 |β1

⎫⎭+ b2 |β2

⎫⎭+ · · · = · · · . (50)

They furnish representations |ΞA 〉, |ΞB〉, . . . of quantum state |Ξ〉 of system S . By design,
this DataSource object |Ξ〉 carries data

⎧⎩Ξ
⎫⎭
A ,

⎧⎩Ξ
⎫⎭
B and, more generally,

⎧⎩Ξ
⎫⎭-data (47)

from arrays of any observations, including the imaginary ones. That is what eliminates
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the initial need for the
⎧⎩Ξ

⎫⎭
A -brace (24) to come from the observation A , which is reflected

in the shortening of the term “representation of state” to simply “state” |Ξ〉. It should be
added that the straightforward storing of objects {|ΞA 〉, |ΞB〉, . . . } in a certain set H , but
with the independence of operations {+(A ), +(B), . . . } preserved, would not differ from the
tautological substitution of symbols. Accordingly, the semantic autonomy of

⎧⎩Ξ
⎫⎭-brace

would also be inherited, whereas covariance III requires an elimination of precisely this
autonomy. What is more, the set-theoretic original copy for operations {0A , 0B, . . . } and + is
one and the same—the union ∪.

The symbols |αs

⎫⎭and |βs

⎫⎭ in (50) are no more than symbols. Hence, the objects’ prop-
erty (50) of being identical must be reflected in terms of their coordinate a, b-components
(pt. R•). This means that any aggregate (a1, a2, . . . ) is unambiguously calculated by means
of a certain transformation Û into any other (b1, b2, . . . ) when the two aggregates represent
a common |Ξ〉:

(a1, a2, . . .) = Û(b1, b2, . . .) .

The Û then becomes an isomorphism between these aggregates (a preimage of the future
unitary transformation ([6], p. 14)) and, accordingly, their lengths must coincide. This
length—a certain single constant—will be symbolized as D.

6.2. Representations of Devicesand Spectra

Naturally, the instrument is converted to the H-structure language along with
⎧⎩Ξ

⎫⎭-
objects. It is a set of symbols {|γ1

⎫⎭, |γ2

⎫⎭, . . . } in place of the previous {γ1, γ2, . . . }. As has just
been shown, their number for any C -instrument should be equal to D. However, generally
speaking, |TA | �= |TB| since TA and TB are assigned in an arbitrary way (pt. O). Therefore,
if we take an illustration A {α1, α2} and B{β1, β2, β3}, then H-representation of instrument
A should appear at least as {|α1

⎫⎭, |α2

⎫⎭, |α3

⎫⎭}. Clearly, the already present distinguishability
α1 �≈ α2 (Section 2.2) is automatically converted into an abstract distinguishability of new
symbols |α1

⎫⎭ �= |α2

⎫⎭, and empirical A -distinguishability is confined exclusively by these
two symbols. In that case, for the purpose of noncontradiction, the added third symbol
|α3

⎫⎭, as an adjunction to the abstract relations |α3

⎫⎭ �= |α1

⎫⎭ and |α3

⎫⎭ �= |α2

⎫⎭, should be
complemented with the notion of its physical indiscernibility from |α1

⎫⎭ or |α2

⎫⎭. By an
extension of this argument, one obtains that every A -instrument should be endowed with
the (non)equivalence relation (�/ ��) in terms of the H-structure by its formal {|α1

⎫⎭, . . .}-
representations. How do we do this?

Let us proceed further from a self-suggested extension of pt. R. Let us declare—and it
is more than natural—that the number representations αs are linked not only to observations
but to instruments as well. Each αs is the new object of a numerical type: a number or a
collection of numbers. Then, indiscernibility, say |α3

⎫⎭� |α1

⎫⎭, is recorded by coincidence
of the numeral labels α3 = α1 attached to the symbols |α3

⎫⎭ and |α1

⎫⎭, respectively. The
abstract (“old”) distinguishability |α3

⎫⎭ �= |α1

⎫⎭, meanwhile, remains as it is. From here,
we have the following formalization of the relationship between � and = by means of
dropping/adding the brackets |

⎫⎭:

|αs

⎫⎭ �� |αk

⎫⎭ ⇐⇒ αs �= αk

|αs

⎫⎭� |αk

⎫⎭ ⇐⇒ αs = αk

}
under |αs

⎫⎭ �= |αk

⎫⎭ . (51)

Call the quantity αs (numerical) the spectral label/marker of eigen-element |αs

⎫⎭. Then, by
the H-representation [A ] of instrument A , we will mean the set of objects

{
|α1

⎫⎭, . . . , |αD
⎫⎭}

supplemented with the spectral structure (51):

[A ] :=
{
|α1

⎫⎭
1α1

, |α2

⎫⎭
1α2

, . . .
}

. (52)

It is not difficult to see that if |α1

⎫⎭ �� |α2

⎫⎭, then either |α3

⎫⎭ � |α1

⎫⎭ or |α3

⎫⎭ � |α2

⎫⎭.
Otherwise, spectral markers 1α1 = 1α2 should coincide, and primary primitives α1 �≈ α2 lose
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their empirical distinguishability in contrast to (7). The multiple coincidence of 1αs-markers
is admissible.

In the presence of relations (51), it is natural to state that instrument A is coarser
(more symmetrical) than B and, terminologically, to declare that the degeneration of the
spectral-label values takes place. In cases of embeddability such as A2{α1, α2} ⊂ A3{α1, α2,
α3}, instrument A2 can even be called the same as (coinciding with) A3, but with a more
rough scale. Conversely, A3 is a more precise extension of A2. In particular, the natural
notion of a device resolution fits here.

All instruments may then be mathematically imagined as having the same resolution,
but, perhaps, with degeneration of spectra. The non-coinciding instruments may be inter-
preted as non-equivalent reference frames A �= B in an observation space. According to
pts. R•• and III, they are mandatorily present in the description. The spectral degenerations
are also always present since element α1 can always be removed from TA , and there are no
logical foundations to prohibit an observational instrument with family TA − {α1}. Hence,
it follows that introducing the spectra—instrumental readings—is required even formally,
without physics. It is of course implied here that spectral (in)discernibility is realized
in the same manner as its statistical counterpart in Sections 2.6 and 4, i.e., by numbers.
Incidentally, such a property of 1αs—i.e., of being a numerical object—is not at all necessary
at the moment. The spectrum {1α1, 1α2, . . .} may be thought of as an abstract set of labels
attached to the eigen-elements. As numbers, it is introduced for the subsequent creation of
models to classical/macroscopic dynamic, and they are numerical.

Returning to D, we note that, in any case, the toolkit {A , B, . . .} =: O in real use has
always been defined, fixed, and is finite. Consequently, the constant

D � 2 (53)

has also been defined and fixed, and it becomes the globally static observable characteristic—
an empirically external parameter. Meanwhile, the entire scheme internally contains the
natural method of its own extension D %→ D + 1, and the potentially all-encompassing
choice D = ∞ may be considered the universally preferable one in QT. By freezing the
different D < ∞, the theory makes it possible to create models, and they are not only
admissible but also well-known. Their efficiency is examined in experiments. Once again:

• The D-constant concept of spectra and their degenerations is created by the (A , B)-
covariance requirement, i.e., by principium III.
As a result, the structure of H-representations of states and of instruments are lib-

erated from the arbitrariness in assigning the subsets TA in (8). The statistical unitary
pre-images (34) and H-elements of the form c|γs

⎫⎭can be associated with any “eigen symbol”
|γs

⎫⎭. They are always available because every possible brace (32) is known to contain
subfamilies when ongoing Ψ, Φ-primitives get to a single one, e.g., to γ1. Therefore, every
representation a1 |α1

⎫⎭+ · · · is always equivalent to a
⎧⎩Ξ

⎫⎭
C -brace for some observation C

with a homogeneous outgoing ensemble {γ1 · · · γ1}. That is, one may always write

a1 |α1

⎫⎭+ a2 |α2

⎫⎭+ · · · = c1 |γ1

⎫⎭+ 0|γ2

⎫⎭+ · · · =: c1 |γ1

⎫⎭ , (54)

while naturally referring to c1 |γ1

⎫⎭as one of the eigen-states of instrument C , with an appropri-
ate adjustment of the similar definition in pt. O. The construction of the representation-state
space is far from being complete since it is still a “bare” semigroup H .

6.3. Superposition of States

Since writings (50) exist for any ensemble
⎧⎩Ξ

⎫⎭-brace, let us consider the following two
representations:

a1 |α1

⎫⎭+ a2 |α2

⎫⎭= b1 |β1

⎫⎭+ b2 |β2

⎫⎭+ · · · ,

a2 |α2

⎫⎭= b′1 |β1

⎫⎭+ b′2 |β2

⎫⎭+ · · · .
(55)
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Comparison of these equalities tells us that the second one is a solution of the first one
with respect to a2 |α2

⎫⎭. Hence, the semigroup operation + admits a cancellation of element
a1 |α1

⎫⎭. This means that there exists an H-element ã1 |α1

⎫⎭such that{
ã1 |α1

⎫⎭+ a1 |α1

⎫⎭}+ a2 |α2

⎫⎭= ã1 |α1

⎫⎭+ {
b1 |β1

⎫⎭+ b2 |β2

⎫⎭+ · · ·
}

⇓
0|α1

⎫⎭+ a2 |α2

⎫⎭= ã1 |α1

⎫⎭+ b1 |β1

⎫⎭+ b2 |β2

⎫⎭+ · · ·
⇓ (due to (54))

a2 |α2

⎫⎭= b′1 |β1

⎫⎭+ b′2 |β2

⎫⎭+ · · ·
⇓ ⇓

|0
⎫⎭ := 0|α1

⎫⎭= ã1 |α1

⎫⎭+ a1 |α1

⎫⎭, ã1 |α1

⎫⎭+ b1 |β1

⎫⎭+ · · · = b′1 |β1

⎫⎭+ · · · ,

where |0
⎫⎭ stands for a zero in the semigroup H (image

⎧⎩0
⎫⎭ of the finite-length brace

⎧⎩Ξ
⎫⎭)

and 0 in 0|α1

⎫⎭ is a symbol of its [λ, μ]-coordinates. By canceling out as |αs

⎫⎭, one by one,
if necessary, one deduces that any element of H does have an inversion. That is, H is
actually a group. We re-denote inverse elements ãs |αs

⎫⎭ by (−as)|αs

⎫⎭ and inversions of
sums are formed from (+)-sums thereof. Moreover, all the [λ, μ]-pairs turn into a set
{a, b, . . .} equipped with the above-mentioned composition ⊕, which follows from an
obvious property of unitary brace:

a|α1

⎫⎭+ b|α1

⎫⎭= (a ⊕ b)|α1

⎫⎭ (56)

(inheritance of clossedness under the ∪-operation). This composition is also a ⊕-operation
of a group and of a commutative one:

a ⊕ b = b ⊕ a, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c), a ⊕ 0 = a, a ⊕ (−a) = 0 . (57)

Therefore, the group nature of semigroup H and the group (57) come from the scheme

⌈
single observations

A , B, . . .

⌉
⇒

⌈
semigroups
GA , GB, . . .

⌉
	

	
⌈

(A , B)-covariance,
〈〈S , M, . . .〉〉 and principium III

⌉
⇒

⌈
group H

⌉
and, technically, from equatings/identifyings (50), i.e., from conception “the same” (Section 5.4).
For its part, it is this very structure of algebraic operations—the two- and three-term
(and nothing else) axioms of commutativity/associativity, i.e., the group—that comes
from properties (39). All of this provides an answer to the key question: where do the
(semi)group and the minus sign come from and why?

Thus, handling the |Ξ〉-objects breaks free from its ties to the notion of observation,
and the objects admit the formal writings a|Ψ

⎫⎭+ b|Φ
⎫⎭+ · · ·. Call them superpos i t ions.

However, as soon as they or the state are associated in meaning with the word “readings”
(this is discussed at greater length in Sections 6.4 and 6.5), this term should be replaced
with a non-truncated one, i.e., a representation of the state with respect to a certain observa-
tion. Specifically, the statistical weights fj are extracted from such expressions only after
their conversion into a sum over eigen-states of the form (50); a task of the subsequent
mathematical tool.

No superposition a|Ψ
⎫⎭+ b|Φ

⎫⎭+ · · ·, including (54), has any physical sense in and of
itself [5] (p. 137), [12] nor is it preferable to any other one. It merely mirrors the closedness
of states with respect to operation + since any |Ξ〉 is re-recorded as a sum of various {a|Ψ

⎫⎭,
b|Φ

⎫⎭, . . . } in a countless number of ways and is linked to any other such sum. Without
a system of |αs

⎫⎭-symbols for instrument A , nothing observable is extractable out of the
aggregate of coefficients {±a, ±b, . . . } (and, of course, of the |Ψ

⎫⎭-letters themselves) in any
imaginable way. Accordingly, it is incorrect to speak of—a widespread misconception—
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the destruction of the superposition or of the “relative-phase information” ([119], p. 253),
associating the word destruction with the physical/observational meanings or processes.

As a result, even without having a numerical theory yet and without recourse to the
concept of a physical quantity, superposition may not address whatever physical concepts,
we arrive at the paramount property, which characterizes the most general type of micro-
observation’s ensembles (17).

• Superposition principle
A (+)-composition of quantum states a|Ψ

⎫⎭and b|Φ
⎫⎭, which are admissible for system

S , is an admissible state
a|Ψ

⎫⎭+ b|Φ
⎫⎭= c|Ξ

⎫⎭ (58)

and, with that, the set
{
a|Ψ

⎫⎭, b|Φ
⎫⎭, c|Ξ

⎫⎭, . . .
}
=: H forms a commutative group with

respect to operation +. The family {a, b, . . .} of coordinate R2-representatives of states
(50) is also equipped with the same group structure under the ⊕-operation (57) and
with the rule of carrying the operation + over to ⊕:

a|Ψ
⎫⎭+ b|Ψ

⎫⎭= (a ⊕ b)|Ψ
⎫⎭ . (59)

Let us clarify the transferring of (56) to (59). The union of the state prototypes
a|Ψ

⎫⎭, b|Ψ
⎫⎭ ∈ H is known to belong to G. Thus, the composition a|Ψ

⎫⎭+ b|Ψ
⎫⎭ should

be identical to a certain element c|Ψ
⎫⎭ ∈ H . It is clear that c depends on a, b and, hence,

a|Ψ
⎫⎭+ b|Ψ

⎫⎭ = c(a, b)|Ψ
⎫⎭. The exhaustive properties of dependence c(a, b) are given by

Formulas (57) and (59) under notation c(a, b) =: (a ⊕ b).

6.3.1. “Physics” of Superposition

Besides the essentially unphysical nature of the (+)-superpositions, i.e., “we cannot
recognize them” ([12], p. 13), the primary and salient property of quantum addition is in the
fact that, due to the group subtraction, it is possible to experimentally obtain a “quantum
zero” in statistics from “non-zeroes’. With that, these “seem to be” positive, but there are
“negative non-zeroes”, i.e., negative numbers (Section 9.2). Subtraction manifests by the
typical obscurations in interference pictures. S. Aaronson adds to this: “We have got minus
signs, and so we have got interference” ([20], p. 220). No classical composition

w�1 + (1− w)�2 (60)

of non-zero statistics �1, �2 can provide a zero value since the zero will never be obtained
via the ∪-unions. The same is true for the pre-superposition in isolated brace

⎧⎩Ξ
⎫⎭
A , i.e.,

when one instrument is in question.

Remark 12. One cannot help but mention yet another counterexample to the superposition’s
“physicality”: the (in)famous “quantum cat”. Any combination of the dead and living animal is
meaningless as a statement about new/nonclassical entity such as a “(half-)dead/alive cat” or such
statements about particles as “their being neither here nor there but everywhere”, especially with the
stress on “at the same point in time” (see pr. I). It makes absolutely no sense to add (allegedly in
accord with the character +) to each other the nature’s phenomena and notions that have not yet
been created and are dynamical (“alive”) at that.

• What is being added is states, not their denominations or verbal descriptions of
envisioned (“fantasized”, “fantastic phantoms” ([12], p. 15)) physical properties such as
spin up/down or dead/alive. Cf. [151] (pp. 134 (!), 135).

The “cat-box open” is a click, not state, without a notion of “a cat”. Accordingly, the word
combination ”the quantum objects exist in “superpositions” of different possibilities” (a representa-
tive excerpt from the literature) is at most an interpretative allegory (Section 10) without physical
and mathematical content. That is to say, strictly speaking,
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• No quantum (micro)system has ever been/dwelled in any state, much less in a superposition
one, and much less at an instant t. Ludwig, on pp. 16 and 78 of the book [58], insists
that it is a “myth” and “a fairy tale, . . . the very widespread idea that each microsystem
has a real state . . . represented by a vector in a Hilbert space”, and M. Nielsen remarks
in [21] that “Saying 0.6|0〉+ 0.8|1〉 is simultaneously 0 and 1 makes about as much sense
as Lewis Carroll’s nonsense poem Jabberwocky: . . . ”. K. Svozil does also underscore that
”’coherent superpositions’ just correspond to improper, misleading representations of non-
existing aspects of physical reality. They are delusive because they confuse ontology with
epistemology” ([152], p. 26).

The meaning of the word “add” is still being created, including an implementation at objects
to be thought of as the “atomic irreducible” entities—the numbers (Section 7).

T. Maudlin notes on p. 133 of the work [151]: “Our job . . . is to invent mathematical rep-
resentations . . . , rather than merely linguistic terms such as “z-up.” . . . we are in some danger
of confusing physical items with mathematical items” (italics supplied). Here is an example
of confusion. If we are going to measure the z-spin in one of the (�x)-beams in a Stern–Gerlach
device, then why and when does this “observable” certainty—say |→x〉—get turned into a (↑↓z)-
uncertainty |↑〉+ |↓〉? (see [153] (p. 232)). However, what if we are about not to do this? We come
up against the question:

• What does one mean by an equal-sign = in the orthodox notation |→〉 = |↑〉+ |↓〉?
Which state does the system “intend” to fall into: the z-uncertainty or the x-determinacy? Which of
the states is it in, after all? Examples to the “physicality of states” may be continued endlessly [154].

A statement about QM-superposition (without C-numbers) as a non-independent
axiom can be found in the book ([36], p. 108) but arguments given there are circular:
,Hilbert space-	 ,quantum logic of propositions-	 ,superposition principle-. Similarly,
in the works [122] and [72] (p. 164), all of that is “derived” from modular lattices [155].
However, the lattices are known to enter QM from the Hilbert space structure and, on
the other hand, the purging quantum rudiments of such a space’ axiomatics constitutes
Birkhoff’s 110-th problem ([155], p. 286). Note also that, in connection with the formal logic
approaches to the theory construction [9,36,72,111,122,156,157], the issue of vindicating the
matters that this logic deals with (logic of what?) [58,93,158] should not be neglected. What
we mean here is the questions on logic: of propositions? [105,106] of relations? of (math-
logic) classes/sets? [120] of phenomena/properties? (which ones?) of quantum/classical
events? . . . ? “For example, would one have to develop a quantum set theory?” ([110], p. 17).
“If by “logic” we mean something like “correct reasoning,” then it would make no sense to
think of logic as “just another theory.”” ([73], p. 258). The more abstract micro-events and
Boolean logic we have used in metamathematical reasoning at the moment ([87], pp. 189,
193) contain nothing that depends on classical physics. That is, quantum foundations do
not require [58] a different quantum/non-classical logic. See also [74] (p. 29).

6.3.2. When and What Is Non-Commutativity?

Yet another fact that results from the above constructs is that the availability of a
superposition math-structure (58) reflects the presence of at least two A , B with non-
coinciding families of eigen-primitives {αs}, {βk}. This consequence of pt. R•• should be
particularly emphasized since it will manifest in the non-commutativity of operators ̂A and
B̂ in the future. Although the present work does not get to operators as a mathematical
structure, it is clear that the emergent eigen-states and spectra have a direct bearing on
them. In this context, the “commuting instruments” {|α1

⎫⎭, |α2

⎫⎭, . . .} = {|β1

⎫⎭, |β2

⎫⎭, . . .} can
be treated, roughly speaking, as coinciding because this fact is independent of the specific
spectra {1α1, 1α2, . . .}, {1β1, 1β2, . . .} assigned to them. If they differ, this is merely a different
(numerical) graduation of the spectrum scale. It is the same for all instruments, and its
length is the parameter D.
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Notice that the definition of an A -observation is not different from the formal as-
signment of the family TA (pt. O and (8)), which is why the non-coinciding sets TA , TB

do always exist. This provides a kind of abstractly deductive existence’s proof for the
non-commutativity, QM-interference—see Section 6.5 further below—and for the utmost
low-level finality of QM altogether [13,33,93]. The whys and wherefores of theory do not
require invoking the physical conceptions; cf. [10] (p. 2).

Of no small importance is that this point entails an independence of the (existence/
presence of) classical physics or of its formal deformation, which are yet to be created
from the quantum one (cf. a selected thesis on page 15). In particular, no use is required of
the notion of a certain pretty small—again the classical/physical term—quantity, i.e., the
Plank constant h̄ ([123], Section 6.5). (Parenthetically, no numerical value of this constant
matters here; it is not dimensionless and its zero limit is not meaningful.) What is more,
the quantum paradigm (17)–(19) tells us that the classical description begins,i.e., we do
create/introduce, with the notions of a micro-event’s average and of time, whereas these
conceptions are still absent at the moment and in the present work. Similarly for the notions
of locality, causality, the classical event, and the classical object.

6.4. Physical Properties

Now, the “general physics” 〈〈S , M, . . .〉〉 is mathematized into representations (50) of
states |Ξ〉 of system S . There is, however, an ambiguity, the source of which is the fact
that the natural/classical language also lays claims to a similar formulation. This refers
to the belief in the existence of mathematics (“bad habit” [3]; see also [38], [58] (p. 122),
and [159]) that describes S as an individual object with properties regardless of observation;
an observation that is not a functioning attribute of the mathematics itself. In classical
description, it is specified by definitions: point P of a phase space, (q, p)-coordinatization
of the point (manifold), and statistical distribution �(q, p).

On the other hand, quantum empiricism provides nothing more to us besides the
ensemble brace and |Ξ〉-states (pt. T). Preordained definienda with physical contents are
unacceptable, i.e., S should not be conceived as “something with physical properties” or
as an “individual object”[93,94], [113] (p. 645). However, since the observational data (in
the broadest sense of the word) may not originate from anywhere but a certain |Ξ〉-object,
there should subsequently create:

(1) The very concept of physical objects and properties ([160], pp. 211–230);
(2) Their numerical values/characteristics, i.e., the “physical attributes of objects” ([131],

p. 238; N. Bohr).

This is habitually referred to as elements/images of reality [27] (p. 194), [40] (Sec-
tion 10.2), [94] (Section XIII.4.8)—Bell’s “beables” [28]—or what we have been calling
attributes of a physical system.

• “The very notion of ‘phenomenon’ or of ’the appearance of things,’ . . . is a cognitive
and perceptual act of abstraction”

M. Wartofsky ([160], p. 220)

That is to say, the physical phenomena per se do not exist [92] (p. 310), [127].
Indeed, the primary ideology of Sections 1.3 and 2.1 tells us that an invasion of

physically self-apparent images into the theory should be avoided ([87], p. 69) because
“quantum theory not only does not use—it does not even dare to mention—the notion of
a “real physical situation”” ([27], p. 198; E. Jaynes). Continuing a quotation from R. Haag
on page 5, one requires “the renunciation of the absolute significance of conventional
physical attributes of objects” ([131], p. 238; N. Bohr) and of concomitant and accustomed
logic in reasoning. In fact, we are led to (re)build the language of the classical description.
Therefore, everything, with no exceptions, should be created mathematically: coordinates,
momenta, energies, optical spectra, device readings, lengths/distances and time, extension
and lifetime of objects, the language of particles, their number/numeration (Fock space),
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(in)discernibility/individuality (bosons/fermions), the notions of a subsystem of system S
(see (23)), and even a notion of the physical rigor (in reasoning), etc.

Degrees of freedom, the concepts of the field/body/mass/inertia/interaction, the
numerical labeling the space-time continuum, Newtonian mechanics with its equations and
the concepts of the force, interaction, and the causality of classical events, thermodynamics,
the very term “the classical state”, the numerical labels of the space-time continuum
and numerical forms of what is known as the classical reference frames—coordinates on
manifolds—need to also be created. Once more to underscore, the numerical forms of
the classical space coordinates and the time (e.g., the metric tensor gαβ(x)dxαdxβ) have a
quantum empirical origin. The latter fact is required for carefully posing the questions of
quantum gravity, and it should be noted in passing that the simultaneity is an ill-defined
term not only in the (general) relativity theory; in QTit is even worse. In common with the
simultaneous measurability, this term appears to have come from the classical framework,
which is why it is illegal as a quantum-theoretical primitive (pr. I and [87]).

6.4.1. Waves/Particles?

The concept of a (non-elementary) particle, which is conceptually close to the notion
of a subsystem/part, is also a physical convention and can only arise from the |Ξ〉 or its
models: Bose-condensates, deformation excitations in crystal lattices, quasi-particles in a
superfluid phase, quantum theories of various fields (relativistic or non), and more. Here,
by particle we mean the classical kinematic conception. “What do we detect? The presence
of a particle? Or the occurrence of a microscopic event?” wondered R. Haag (2013). H. Zeh
and G. Ludwig do answer: “There are no particles in reality” [161], “we must abandon the
notion of a microscopic “object”, one to which we have been accustomed” ([87], p. 69).

Clearly, the QFTs is a subclass of QM rather than its extension; not that we have yet
given a definition of QM. In particular, it is common knowledge in QFT that there is no
logical way to distinguish a particle from a certain state—normally, a vacuum excitation.
One word should therefore be used for both. To this extent, the familiar “dualism of . . . the
particle picture and the wave picture” [78] (Section 7.2), [91], [108] (p. 28) simply disappears.
K. Popper is rather emphatic concerning this “problem” and puts it, in their “thirteen
theses” [108], quite rightly in the following terms: “the great quantum muddle”, “alleged
“duality” or “complementarity”, . . . this kind of “understanding” is of little value”, “has
not the slightest bearing on either physics, . . . ”, “fashionable among quantum theorists,
. . . a vicious doctrine”, and the like. As a matter of fact, both the particles and waves are
the classical terms [61] and, in quantum language, they turn into the derivatives of the
concepts of state and mixture (23).

• Like waves, the particle is already an appearance—an observable one (phenomenology,
derivative)—rather than a logical primitive or a fundamental substance, which is
why it may not exist [161] prior to theory’s principles ([126], p. 762 (!)). Paraphrasing
Heisenberg, Haag remarks, in the context of their “event theory”, that “Particles are
the roof of the theory, not its foundation” ([88], p. 300).

Both these notions should be superseded by a mathematics of clicks.
The f-statistics also falls under observable quantities, and constant D, if declared finite,

is an example of an already created characteristic: the dimension of a state space to come.
A tensorial structure of this space—compound systems—also pertains to the physical
properties, but we do not touch upon this point here. As an aside, this compositional
structure will provide the means of distinguishing the aforementioned models under
D = ∞.

In other words, the logic of the above constructs prohibits not only endowing the
phraseology “internal state of an individual object S” and “the system is in a (definite)
state [4,58,93,94] with a meaning but also indirectly using its numerical forms. That would
work in the circumvention of empiricism, assuming the a priori availability of mathematical
structures that do not rest on the state space. L. Ballentine remarks in this regard: “the
habit of considering an individual particle to have its own wave function is hard to break”
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([34], p. 238); cf. “To speak of a single possible initial apparatus state is pure fantasy” ([80],
pp. 241–242; N. Graham).

6.5. Interference

Let us go on with comments as to involving the physics-related argumentation to
explicate the quantal behavior. We have already mentioned above that for this purpose
there is simply no language of physics (Sections 2.1 and 6.4) and of mathematics yet
(Sections 2.3 and 5). That is why analogies of this sort are not only deceptive but must be
prohibited for exactly the same reasons that accompanied boxes (5). The typical examples
in this connection are the simultaneous measurability mentioned above and the two-slit
interference [5,17].

First and foremost, the two cases—whether one or two slits are open—are utterly
“different experimental arrangements” [153] (p. 236), [64] (p. 58):

〈〈S , M, . . .〉〉′ �= 〈〈S , M, . . .〉〉′′ .

There is nowhere to seek a means of their comparison or the transference of one into
another ([153], p. 236). Nonetheless, the classical approach, when opening another slit 〈〈S ,
M, . . .〉〉′2 together with the first one 〈〈S , M, . . .〉〉′1, does literally envision properties for 〈〈S ,
M, . . .〉〉′′ (see Section 6.4). In doing so, the transference method itself—”addition of the
two 1-slit 〈〈S , M, . . .〉〉′-physicae” by the rule of arithmetical addition of statistics (60)—is
meanwhile considered self-apparent. Thus, natural questions arise, such as “why/where
are the zeroes coming from, they should not be there”. In accordance with the aforesaid,
everything here is erroneous, including the “natural” questions. There are no rules at the
outset whether (non)classical and even quantum, just as there is no addition per se. An
a priori assumption that stem from the obvious images for 〈〈S , M, . . .〉〉′1 and 〈〈S , M, . . .〉〉′2
is actually a declaration of the physical properties for 〈〈S , M, . . .〉〉′′, but they do not follow
from anywhere [17], [64] (p. 55), [162]. The (illegal) assumption of the “negligible effect of
which-slit detectors” were mentioned on p. 28 is identical with a declaration of a physical
property, as well as a solenoid’s switch-on/off in the Aharonov–Bohm effect.

Taken alone, the �-distributions—separate for 〈〈S , M, . . .〉〉′1 and 〈〈S , M, . . .〉〉′2—are en-
tirely correct observational pictures, but introducing the rule (60) is indistinguishable from
“invention” of physics—a logically prohibited operation. As Slavnov had put it, “to invent
the physical exegesis of a . . . mathematical scheme” ([76], p. 304). “Our custom of seeing
classical mechanics as a no-nonsense description of ’reality as it is’ does not seem to be
justified. This custom is actually based on a confusion of categories . . . ” (W. de Muynck ([4],
p. 89)). In other words, the mere fact of non-adherence to this rule means that the grammat-
ical conjunction of the verbs “to understand/deduce” with the noun “micro-phenomena”
is unacceptable even linguistically. It is the point T that prohibits predefined (classical)
semantics, and this was faithfully summarized by C. Fuchs: “badly calibrated linguistics is
the predominant reason for quantum foundations continuing to exist as a field of research”
([2], p. xxxix). To figure out or deduce (from mathematics) that quantal phenomena are
unfeasible ([5], p. 111) and are “absolutely impossible, to explain in any classical way” (quo-
tation by Feynman). Just as with the elucidation of the nature of the quantum state on p. 23,
any (circum-)classical justification or even motivation are guaranteed to fail here since they
are based on significant and implicit assumptions.

The classical theory is a theory of observational objects with observational properties
expressed by observational numbers. We possess none of the three items required to create
the quantum (= correct) description (Section 2). The adjective “observational” itself is a
linguistic notion of the classical vocabulary (Section 2.2). Accordingly, the description can
only be changed “to describe in newly created terms”. A. Leggett notes [95] that which is
understood as common-sense should also be changed (see also [12] (p. 10)). The reason
is clear.
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• Common-sense operates—and that is perfectly normal—with observational categories
rather than with structureless “microscopy” (9) and ∪-abstractions of Section 5.1;

cf. Bohr’s correspondence principle [78]. In effect, we have dealt with a “fundamental
chasm” between the right description—“what is really going on?” ([12], p. 12)—and our
ability to give a (naturally speaking) explanation in terms of these categories:

“All our intuition, all our sense of what constitutes concreteness are based upon
our everyday experience, and the terms used to describe a phenomenon con-
cretely are necessarily drawn from that experience. There is no indication that
such a language could be used without contradictions for phenomena which are
as far removed from it as those of microscopic physics” (A. Messiah. Quantum
mechanics).

The total dismissal of this has to be at the heart of quantum reconstructing.

6.5.1. Detector Micro-Events

For similar reasons, we may not think or envision that a particle in an interferometer
“flies through the slit”, “has (not) arrived”, “is located somewhere in the region of space”
([26], p. 7)], “here, not there”, “now/later”, that “the choice of a detector has been delayed”
([27], Wheeler), [62], or that a “photon . . . interferes . . . with itself” ([26], p. 9), and that,
generally, “something is flying along a trajectory”, and “something” is a particle at an
intuitive understanding. Cf. Dirac’s description of “the translational states of a photon” in
Section 3 of [26].

• “Photons are just clicks in photon detectors; nothing real is traveling from the source
to the detector” (ascribed to A. Zeilinger),

and this point is supported by all the known varieties of interferometers. There has to be
an amendment here.

The clicks themselves are not the clicks of photons/particles, just “merely clicks”. “[T]he
click is no . . . produced by a particle. . . . nothing takes place in the source that could be
a cause of the click . . . , the genuinely fortuitous click comes without a cause and has no
precursor” ([126], pp. 758, 765). Nothing really interferes inside interferometers, nor is
anything superposed/reinforced. For example, the fact that the path of “photons” is not
represented by trajectories was impressively demonstrated with the nested Mach–Zehnder
experimental setup in the work [163]. Asking “where the photons have been” [163] is also
the matter of a certain α-distinguishability. An interferometer—the entire installation—
should be perceived as nothing more than a black box 〈〈S , M, . . .〉〉—the box (5)—outside
of space and time. This is a kind of irreducible element that produces the only entity—
distinguishable α-events, and no other. The box contains no “flying particles”. Exempli
gratia, none of the words in the typical sentence “photon propagates a definite path” are
well-defined. Any assessment of the screen flashes observed within the interferometer,
e.g., “is zero statistics possible in any spot?”, lacks meaning until the theory’s numerical
apparatus is presented.

Remark 13. Thus, Young’s interference of the light beams (1803) is inherently the quantum
not the classical effect: a micro-events’ accumulation is usually termed as the light intensity.
The classical electromagnetism and optics, in an exact sense, do not explain, only describe, the
phenomenon quantitatively with the use of the numerical concepts of the positive and, which is
important, the negative values of observable strength-fields �E and �H. (The negative numbers are
specifically discussed further in Section 9.2.) Accordingly, operations of their addition/subtraction

“rephrase” the effect in words “superposing, suppressing, waves, intensities”’, and we call this “the
explanation”. In a quantum way of looking at it, all of these concepts are not yet available, and the
phenomenon per se is no more than statistics of the “positively accumulative” quantal clicks:

• There are no particles, waves, or subtractions there.

The same macroscopic effect, which is visible with the naked eye and “explainable by waves”,
would take place if we had a “laser” of, say, mono-energetic very slow electrons (a proposal for
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experimentalists). To put it more precisely: a gun or emitter of something we envision as the “tiny
bodily formations” the electrons, molecules, microbes, and the like. It is self-evident that we would
have seen the wave-like manifestation even from a single slit.

Criticism of the typical (a common event-space) examination of the two-slit experi-
ment [164] is already abundant in the literature. See, for example, the works [17] (Sections V.1,
VI.1–2), [64] (pp. 55–58), [66] (Ch. 2), and [121] (p. 93), [162] (!), [165].

By way of continuing the last sentence in Remark 3, we add the following. To force an
electron-click to happen each time at the same (or predictable) place is no different from
“completely describing everything that we have”, i.e., from the precise setting of “the same”
and of macro-context 〈〈S , M, . . .〉〉. It is amply evident that this is a manifest absurdity.
Hence, it immediately follows that the unpredictability of microscopic events must exist in
principle and macro-determinism may be only an idealization through a (math) model: the
model description of the 〈〈S , M, . . .〉〉 itself.

Summing up, it is not the quantum interference that requires interpretative compre-
hension but its classic “roughening”. In other words, a scheme that latently presumes the
rule (60) of extrapolation of what is observed in macro and micro ([160] (!), last sentence
on p. 101). It is this scheme and not the quantum approach that contradicts the logic and
experience. Pauli characterizes this as habits “known as ’ontology’ or ’realism’”. More than
that, the chief component of constructs—,observation 	 state′-—is cast out and replaced
with (19) under such a transformation. The DataSource object (p. 31) begins to be identi-
fied with observational and numerical characteristics (see a paragraph preceding Remark 4),
while the logic of the micro-world requires precisely distancing these two concepts, with
no need for the characteristics themselves.

Thus, we should not be deriving the physics of one phenomenon from another ([58],
p. 92) and making (super)generalizations, as soon as the incorrectness of the previous
derivation method was established.

• Quantum-mathematics is not a physical theory—and that is its distinguishing feature—
but rather a single syntactical (meta)principle of forming the mathematical models being
subsequently turned into (the physical) theories. This principle is not subject to any
physical validation.

Scott Aaronson was likely the first to advance the line of thought about non-physicality.
On page 110 of the book [20], he writes that “it’s not a physical theory in the same sense as
electromagnetism or general relativity . . . quantum mechanics sits at a level between math
and physics . . . is the operating system . . . ”. Fuchs–Peres provoke: “quantum theory does
not describe physical reality” ([43], p. 70).

To create the models, we already have a good deal of latitude: the toolkit O =
{A , B, . . .}, the parameter D, the families {TA , TB, . . . }, numbers {�s} of mixtures (23),
and—thanks to the notion of covariance III—spectra, a structure of a group, and the concept
of (different) representations of a mathematical structure. This liberty will be subsequently
augmented with the key notions of a mean and of time t and also with the composite
systems, the classical Lagrangians/Hamiltonians, their symmetries, gauge fields, and phe-
nomenological constants. This is what is currently termed the quantum phenomenology or
a quantization procedure of the classical models: the path-integrals, S-matrix, etc.

All that remains is to examine the numerical constituent of quantum mathematics.
The further strategy (Sections 7–9) lies in the fact that the numbers need to be created
at first as a theoretical concept—arithmetic—and then as the “numerical values for ob-
servable quantities”—the observations numbers. Sections 9.1 and 9.2 contain some more
explanations along these lines.

7. Numeri

By number we understand not so much a multitude of unities, as the abstracted
ratio of any quantity to another quantity of the same kind, which we take for
unity—I. Newton (1707)
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7.1. Replications of Ensembles

In connection with the emergence of a group, the numerical representation of brace also
undergoes a change since the “doubling” of a semigroup into a group through adjoining
the inversions deprives coordinate a of its distinction in comparison with the inversion −a.
Given the involution

− (−a) = a , (61)

it makes no difference what to call an element and what to call its inversion in the pair
{a,−a}. This doubling is formally known as a symmetrization of the commutative as-
sociative law (monoid) [166]. Curiously, under commutativity and associativity ([167],
Section 1.10), the solution to the problem of embedding is unique ([166], pp. 15–17), and
otherwise, no solution, in general, exists. There exist the classes (Mal’cev (1936)), which are
not axiomatized by finitely many ∀-formulas ([168], pp. 216–217).

The aforesaid is best demonstrated by another way of “numeralizing” the empiricism,
which is realized as the infinite replication of finite ensembles{

{Ψ}n{Ψ}n · · ·
}
=

{
{Ψ}n

}
∞
=: {Ψ}n∞ . (62)

That is, empirically, any infinite ensemble is thought of as created by repetitions
(copies) of the finite objects {Ψ}n. It is in this sense, and in this sense alone, that one
should read the writing Σ � ∞ for the infinity postulate (14) because, at the moment,
we possess neither the mathematics nor the topological concepts, such as a passage to
the limit lim

Σ→∞
. For example, the expression Σ × ∞ can be viewed as a conjunction of the

actual and potential infinity [105,169]. Simply put, the case in point is not an axiomatic
act—an imposition of the math-existence condition for numbers {fj} in (14). The latter has
been typically criticized as an idea of the stable limiting frequencies in QM [8] (pp. 15, 183,
211, . . . ), [23], [170] (pp. 97–99), [171]. Rather, we claim that the only way to consistently
incorporate the language notions of infinity and of the finite (observational) numbers
in theory—”to cross an abyss” (Poincaré)—is the above semantics and correspondence
between symbols {nj, fj; Σ,�, ×, ∞}. See also subsection “StatLength and infinity” in
the work [6].

In turn, the above-mentioned copies {Ψ}n are replications of the atomic primitive
{Ψ}1. Replication is thus an operation of the same significance as ∪ and 0. With this point,
the

⎧⎩Ξ
⎫⎭-brace is characterized by the “numerical” combination

(35) 	
{
[n1∞, m1∞], [n2∞, m2∞], . . .

}
� ⎧⎩Ξ

⎫⎭

(indices label the αs-primitives), which has been created from the unitary brace by the scheme

(34) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
{
{Ψ}∞′ {Φ}∞′′

}

���
���
���
���

{α · · · · · · α}∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ 	

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
{
{Ψ}n∞{Φ}m∞

}

���
���
���
���

{α · · · · · · α}(n+m)∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ 	 [n∞,m∞]α . (63)

The semigroup union
⎧⎩Ξ′⎫⎭0 ⎧⎩Ξ′′⎫⎭ is then conformed with the writing{

[n′1∞, m′
1∞], [n′2∞, m′

2∞], . . .
}
0
{
[n′′1∞, m′′

1∞], [n′′2∞, m′′
2∞], . . .

}
=

=
{
[(n′1 + n′′1)∞, (m′

1 +m′′
1)∞], [(n′2 + n′′2)∞, (m′

2 +m′′
2)∞], . . .

}
. (64)

Moreover, the n-, m-quantities may be freely thought of as real ones due to the R2-
continual infinity of ensembles proven above (Section 4). The empirical rationale of this is
apparent; namely, fractions of the arbitrarily large ensembles {Ψ Ψ · · ·}.

This way of matching the infinity with Σ-postulate automatically inherits translation
of associativity/commutativity because the “percentages”, such as s and w, just as the
rules (44) and (45) themselves, do not even emerge. There, these numbers originated from
Σ-postulate, but it, in turn, was demolishing the pair (κ,S) itself in (43): S→ ∞. It is clear

242



Universe 2022, 8, 217

that, according to (64), the semigroup structure G is also inherited, turning into the addition
of the numerical pairs

(n′,m′) ⊕ (n′′,m′′) = (n′ + n′′,m′ +m′′) . (65)

Returning to the group, we observe that the “negative symbols” (−n,−m) might be
initially taken as the semigroup G being duplicated, with equal success and with the same
arithmetical addition ⊕, while the positive (n,m) could be thought of as inversions thereof.

Summing up, let us specify the rules of passing to the numerical representations

(34) ⇐=⇒ {±p
Ψ
,±q

Φ}α, (p, q) ∈ R2 (66)

and, to avoid ambiguity, replace the binary-composition symbols {0,+} with a new
symbol +� for objects (66):

{pΨ, q
Φ}α +

� {nΨ,m
Φ }α .

The previously dropped primitives Ψ, Φ have been restored here since they will be
further needed for the theory’s covariance (Sections 7.4 and 7.5), although they are still
unnecessary at the moment.

It is not accidental that we spoke of “numerally labeling” the brace (p. 22) since
the question of arithmetic on them had not yet arisen. Although f-statistics—the real
R-numbers—are already involved, their use was based on an accustomed perception of
the number. In accordance with pr. II, the numerical formalization of ensemble empiricism
should be considered in greater detail.

7.2. The Number as an Operator

Let us take up the “process of manufacturing” the numbers (pr. II). We begin with the
classical simplification

A =
{
{Ψ}, {ΨΨ}, {ΨΨΨ}, {ΨΨΨΨ}, . . .

}
, (67)

and the notion of the number does not yet appear in any form.
The mathematical abstracting the observation micro-acts is an employment of the op-

eration ∪ and of its closedness (see Section 5.1). For example, {Ψ} ∪ {ΨΨΨ} = {ΨΨΨΨ}.
All the symbols in (67), as well as the character ∪, is of course merely a convention, and they
may be changed. By writing (67) in symbols such as {a, b, c, d, . . .} and +, this set should be
supplemented with identities as a + b = c, b + b = d, . . . , i.e., with a binary construction +.
Then, (semi)group and commutative superpositions arise. Though note that introducing
the numbers at this point—even if only as symbols—is not necessary. It would reduce to
re-notating the set’s elements, to be precise. However, the empirical description calls for
their unification, as manifested in the numerical notation as {Ψ} =: 1{Ψ}, {ΨΨ} =: 2{Ψ},
. . . . It is precisely this pattern that was implicitly kept in mind in procedures (34), (35), (62),
and (63), i.e., when introducing the numbers n by means of replication of finite or infinite
ensembles:

{Ψ · · ·Ψ}n ⇐⇒ n{Ψ},
{
{Ψ}∞ · · · {Ψ}∞

}
n
⇐⇒ n{Ψ} .

The symbol⇐⇒ should read here as “the same thing as”. Clearly, the very idea of the
conjunction of the two entities—empirical brace (34) and the concept of a (quantitative and
ordinal) number (Sections 5.1 and 5.2)—is not otherwise implementable. That is to say:
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• We have no any means of translating the aggregates of micro-acts ���A (i.e., macro-
observations M) into the numerical language other than through the counting of
things [172], i.e., through the natural-language notion of the “quantity of something”:

��� · · ·

���
��� A -transitions

���
��� · · ·

���

⇓ ⇓
,quantity of- ,something- (replication)

⇓ ⇓
,numbers- ,Ψ-primitives, ensembles-

↘ ↙
n{Ψ}

. (68)

Heisenberg stresses an obligatory relationship with “the natural language because it
is only there that we can be certain to touch reality” ([98], pp. 201–202). Otherwise, the
quantitative theory would have nowhere to originate even at the level of calculating the
natural entities by the N-number tokens. It may be added that arising the numbers is a
permanently present (innate) process of creating the thought objects by an abstraction in
the human brain: the mental suppressing/neglecting of the inessential and identifying the
distinguishable entities—perceptual objects—irrespective of their nature ([84], “forming
collections, . . . putting objects together”; pp. 99, 251). It is something that humans do all
the time without even realizing they are doing it. This process, say,

,language, words- · · ·	 {sheep, Ψ, verb, Ψ, theory, . . . }	
{a sheep, a Ψ, a verb, . . . } · · ·	 ,something/thing/. . . /Stücke- · · ·	
{•Stück, •Stück, •Stück, •Stück, •Stück, . . .}	 {•, •, •, •, •; Stücke}	
{1, 1, 1, 1, 1; Stücke}	 5Stück 	 5 Stück 	 5 	 ,abstraction 5- ,

is akin to Cantor’s concept of a Menge ([136], Ch. 1, Section 1.1) and has no the mathematical
(math-logic) nature. Rather, the math of numbers does originate from it [84] (Ch. 3); see
also [173] (Section 2.4.5.1 ARITHMETIC).

Incidentally, the “inessential and identifying” just mentioned have the nature just like
the “the same” in Section 5.4. It is with these notions—a key feature of the natural/physical
language and of speech—that any abstracting begins: the “abstracting from . . . ”.

On the other hand, the numerical tokens are “affixed” not only to the “atom” {Ψ} but
also to other objects, any at that; for more details, see Remark 16 further below. Therein
lies the primary meaning of this still proto-mathematical concept [174] (“Psychologie du
nombre”). One might even say, a definition according to which this notion has been
conceived (“20 Stück”, “half an hour” . . . ) and is being used universally. Here are a few
examples:

{ΨΨΨ} ≡ 3{Ψ}, {ΘΘΦΦ} ≡ 2
(
{Θ} ∪ {Φ}

)
{ΦΨ}	2 {ΦΨΦΨ}, a 	3 3a, c 	1 1c

. (69)

Accordingly, in between the elements, there arise identities such as 2b ≡ 4a, 3a ≡ c, 1c ≡ c.
In other words, as we complete Simplification (67),

• While abstracting the empirical contents of the number entities into math-symbols,
they should be defined as unary operations {1̂, 2̂, . . ., 3̂/4, . . ., π̂, . . . } that take action at
A-set (67) as automorphisms: {2̂b = 4̂a, 1̂c = c, . . .}.

That said, replication is formalized as an operator n̂ with its numerical symbol n:

ψ %→̂n nψ, ψ, nψ ∈ A, n ∈ R , (70)

where ψ is understood to be any (sub)ensemble/(sub)set. In the language of the ZF-theory,
nψ would be formally organized as an ordered pair (n, ψ) := {{n}, {n, ψ}} [134], where n
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is a cardinality of a set consisting of copies of the object/set ψ. We will refer to these facts
as the implementation of a replication operator by numbers.

Attention is drawn to the fact that the case in point at the moment is not a math-logical
definitio/formalization of the concept of a number, such as (106), but is an introduction of
what is understood by number in the empirical/physical theory (II). For example, Chomsky
says with regard to this point: “When multiplying numbers in our heads, we depend on
many factors beyond our intrinsic knowledge of arithmetic” ([132], p. 3).

7.3. QM and Arithmetica

We immediately observe the following properties.
The operators are applicable to each other. Being a family {n̂, m̂, p̂, . . .}, they are

closed with respect to their composition n̂ (m̂ψ) = (n̂ ◦ m̂)ψ = p̂ψ, and among them,
there is an identical operator 1̂ψ = ψ. The empirical meaning of the concept indicates a
fractional portion of the ensemble (see (62)) requires that for each n̂ there exists its inversion
n̂−1. Hence, the composition of replications n̂ ◦ n̂−1 must return the former “quantity”: (n̂ ◦

n̂−1)ψ = 1̂ψ. Therein lies “the actual meaning of division. . . . this [operator] construction
really corresponds to division” ([85], p. 37). By virtue of the fact that family {n̂, m̂, p̂, . . .}
provides automorphisms of the A-set, these operators entail the associative identities
((n̂ ◦ m̂) ◦ p̂)ψ = (n̂ ◦ (m̂ ◦ p̂))ψ. This point is a property, and it has a proof [175] (Section I.1.2).
The common nature of the replication and of the ∪-union also signifies that there are
relations in place that mix the actions of the unary n̂’s and the binary union of ensembles.
At a minimum, suffice it to define the action of the replicator on a “∪-sum” of replications.
Clearly, the case in point is the distributive coordination of ◦ and ∪:

p̂ (n̂ψ ∪ m̂ψ) = ( p̂ ◦ n̂)ψ ∪ ( p̂ ◦ m̂)ψ .

We now observe that the indication of ψ everywhere in the identities above loses
the necessity, and the ψ-label becomes a semblance of a dummy index or the unit symbol
(kg), which can be changed. As we omit it, the theory is freed of ψ as a “calculation unit”.
Then, the last relation, as an example, acquires the form of a property between the operator
n-symbols (70), if {∪, ◦} are replaced with the symbols of binary operations {+, ×}:

p × (n+m) = (p × n) + (p ×m) . (71)

Supplementing this relation with other empirically determining properties, one infers
that the unary operationality of n̂-replications (70) is indistinguishable from the binary opera-
tionality on their n-symbols. The latter, in turn, acquires the multiplicative structure of a
commutative group

n ×m = m × n, (n ×m) × p = n × (m × p), n × 1 = n, n × n−1 = 1 , (72)

and, as for the addition +, it is already binary and commutative due to properties of ∪
(Section 5.1):

n+m = m+ n, (n+m) + p = n+ (m+ p), n+ 0 = n . (73)

Incidentally, the three-term multiplicative associativity relation in (72) has the same
operatorial nature and origin as operations {∪,∪} do in (39). We have already commented
on the additive analog in this situation—a determinative structure of the binary operation—
after Formula (57).

It is also clear that Rules (71)–(73) must be supplemented with the concept of a negative
number

n+ (−n) = 0 , (74)

for such numbers have been fully justified in the superposition principle.
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After having acquired Properties (71)–(74)—call them arithmetica—symbols {n,m, . . .}
turn into abstract numbers, although their operator genesis does not go away and is yet
to be involved. This is where a full list of requirements for the concept of a real number
should be added, and which have to do with ordering <, completeness/continuality, and
their relations with Rules (71)–(74). We will assume that this is conducted axiomatically
([176], pp. 35–38), although the algebraic constituent of this “axiomatics”, as we have seen,
is not axiomatical but deducible from empiricism. Multiplication ×, and also the subsequent
*-multiplication of C-numbers (82), is a most nontrivial part in deriving the structure from
“the arithmetic”.

As an outcome, we reveal an essential asymmetry in the genesis of the standard binary
structures + and × (cf. [84] (p. 60)), and thereby a greater primacy of QM-consideration
even over the (seemingly self-evident) arithmetic. Indeed, binarity may come only from
operation ∪, which is primordially unique and, thereby, is inherited only to the one natural
prototype—addition.

• Multiplication is not featured in the superposition principle, nor does it arise directly
as a binary structure. The absence of a multiplication symbol in (58) and (59) is no
accident.

The multiplication originates in the closedness of replications n̂ ◦ m̂, and they are re-
quired according to the M-paradigm (12). In effect, any non-operatorial way of introducing
the n-numbers is not self-evidence for empiricism. An operator nature of the number is
precisely that which gives rise to the second binary operation. Moreover, without such a
comprehension of the number, the “linear nature” of QM (Section 8.1) will remain axiomatic
at all times, and, as will be seen below, quantum foundations will be doomed to never-
ending interpreting the mathematical symbols. However, the pure axiomatic declaration of
Arithmetic (71)–(74) will, in one way or another, require a (reciprocal to (68)) treatment of
the number in a context of “the quantity of what?”, while its empirical pre-image always
appears in the pair ,the quantity of- + ,something-. Another way to put it is:

• In the foundations of theory, there arises a predecessor/analog to the notion of a
physical unit,

though the ultimate description is a description in terms of binary structures in Arith-
metic (71)–(74). It is carried out by dropping/attaching the symbols such as ψ, which is a
quantum generalization to the independence of a physical theory, from the measurement
units.

Certainly, when formalized, the n̂-replication and its binary n-twin become universally
abstract. For example, the n̂-operator (70) may be applied to the quantum case in which the
object ψ has already an internal structure associated with the presence of Ψ, Φ-primitives.
This changes no the essence of the matter. Another example is when numbers n give birth to
really observable quantities. See also Section 5.3, Remark 16, and additional discussion in
Section 9. Let us now proceed from the fact that the comprehension/relation of the number
and its operator has been formalized as described above. This is “Axioms” (71)–(74).

As concerns the philosophical literature, the issue of numbers was likely
discussed [177–179] (see also [172] and non-philosophical book [174]), and it would be
appropriate to quote T. Maudlin: “. . . numbers: they can be added to one another, perhaps
multiplied by one another, . . . . However, it is typically obscure what sort of physical relation
these mathematical operations could possibly represent” ([151], p. 138; first emphasis ours,
second in original). Cf. Einstein’s remarks regarding the “concepts and propositions” and
“the series of integers” on p. 287 in [180].

7.4. Two-Dimensional Numbers

A number in and of itself, as a replication operator, may be applied to any ensemble
and to anything at all. However, in the quantum case, the “upper” primitives are attached
to every “lower” α-event. These primitives, as was noted above, have to be discarded. At
the same time, the minimal structure associated with the homogeneous array {αs · · · αs}
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as a whole is a unitary brace {nΨ,m
Φ }αs containing two “upper” primitives Ψ, Φ. Their

order, however, is arbitrary there. That is to say, given (n,m)α, there are two quite equal
objects {nΨ,m

Φ }α and {nΦ,m
Ψ }α that are subjected to a replication. Each of them should be

in a relationship (see Section 5.1) to any other brace (63), which is already apparent in
the example of “one-dimensional” versions (n, 0)α and (n′, 0)α. We mean that for each
pair {(n, 0)α, (n′, 0)α}, there always exists the number m such that m̂(n, 0)α = (n′, 0)α, i.e.,
m × n = n′.

As in the classical case (69), the sought-for generalizations of replicators are the
transitive automorphisms on unitary α-brace (66), but they are not abstract and not arbitrary.
They are strictly bound to the declared meaning of the number: N̂-operation of creating the
copies. Therefore, by virtue of the equal rights of Ψ and Φ, it is imperative to bring the two
one-fold copying acts N̂{nΨ ,m

Φ }α and M̂{nΦ ,m
Ψ }α into play, which differ in the permutation

of primitives Ψ � Φ. This point will determine a quantum extension of the replication.
As a result, since we have nothing but the copying N̂ and “union” +

� , the most
general transformation of the brace {nΨ,m

Φ }α into (any) brace {nΨ ′,mΦ ′}α, which has been in a
quantum-replication relation with it, is determined by the rule

{nΨ ,m
Φ }α 	(N̂,M) {nΨ ′,mΦ ′}α ⇒ {nΨ ′,mΦ ′}α = N̂{nΨ,m

Φ }α +
� M̂{nΦ,m

Ψ }α . (75)

This is the quantum version of Operators (69) and (70), and the foregoing ideology
of N̂-operators and of liberation from the Ψ-symbols remains in force and entails the
following. The numeral implementation of replicating the unitary brace (66), along with
the (n,m)-representation of itself, is also determined by a certain pair (N,M) ∈ R2, i.e., by
an operator symbol (N̂, M).

The aforesaid means that the numerical form (n,m) 	(N̂,M)
(n′,m′) of Transforma-

tion (75) is indistinguishable from a composition of pairs

(N,M) * (n,m) = (n′,m′) ,

where * is a designation for the new binary operation. Its resultant structure is derived
from the arithmetical nature (72) of the one-dimensional replication (69) described above,
i.e., from the rules

N̂{nΨ,m
Φ }α = {N×

Ψ

n, N×
Φ

m}α, M̂{nΦ,m
Ψ }α = {M×

Φ

n, M×
Ψ

m}α . (76)

Here, a positivity/negativity of symbols (n,m) in (66) should also be taken into account.
Having regard to the foregoing, Rules (75) and (76) generate the Ansatz

(N,M) * (n,m) = (±Nn±Mm, ±Nm±Mn) , (77)

wherein all four signs ± are independent of each other, and the (×)-multiplication of one-
dimensional numbers in (72) and (76) have been re-denoted by the habitual standard
Nm := N ×m. What should the pair-composition rule (77) be?

As was the case previously, the just-emerged binarity for * should inherit—due to
its operator origin—associativity, the existence of unity 1, and inversions. Namely, if the
(n,m)-pairs are identified with the notation (57) according to the convention

(n,m) =: a , (78)

then the following properties should be declared:

(a * b) * c = a * (b * c), a * 1 = a, a * a−1 = 1 . (79)
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From (75) and (76), it is not difficult to see that the combining (79) with (57) leads to a
distributive coordination of operations ⊕ and *:

c * (a ⊕ b) = (c * a) ⊕ (c * b) . (80)

However, the direct examination of this property shows that Ansatz (77) satisfies it
automatically. More than that, we can even consider Ansatz (77) with parameters {α, β, γ, δ}
instead of (±)-signs:

a * b = (N,M) * (n,m) = (αNn+ βMm, γNm+ δMn) .

Then, the straightforward calculation shows that Distributivity (80) holds under the
arbitrary {α, β, γ, δ}.

In turn, the examination of associativity—the first equality in (79)—under the same
meaning for {α, β, γ, δ} yields α = γ = δ and free β. Returning to the (±)-values of these
parameters, this associativity particularizes Ansatz (77) into the expression

(N,M) * (n,m) = ±(Nn±Mm,Nm+Mn);

now, with two independent signs ±. Moreover, in passing, we reveal the commutativity

a * b = b * a , (81)

though it was not presumed prior to that.
The search for unity 1 and subsequent finding of an inversion of the element (n,m)

yield:

1 = (±1, 0), (n,m)−1 =
(

n

Δ
,−m

Δ

)
, Δ := n2 ±m2 .

Both the (±)-symbols continue to be independent here. The choice Δ = n2 −m2 results
in the absence of inversions (n, n)−1. This is in conflict with the group property (79) and
also causes the unmotivated exclusivity of the unitary brace {nΨ, n

Φ}α. There remains the
case Δ = n2 +m2, and it reduces the scheme to the form

1 = ±(1, 0), (N,M) * (n,m) = ±(Nn−Mm,Nm+Mn)

with a single symbol ±. It is a simple matter to see that the choice of sign + or − leads
to the models that are isomorphic in regard to which of representatives (+1, 0) or (−1, 0)
should be assigned for the identical replication Î. By virtue of (61), it does not matter, and
we declare

1 := (1, 0), (N,M) * (n,m) = (Nn−Mm,Nm+Mn) . (82)

This is nothing more nor less than the canonical multiplication of complex numbers
n+ i ·m = a ∈ C, if the following identifications are performed:

(1, 0) � 1, (0, 1) � i, {⊕, *}� {+, ·}, (n,m) � (n+ i ·m) . (83)

Notice that the known fully matrix (over R) equivalent to (82)

(n+ i ·m) %→ (n,m) %→
(

n
m

)
%→

(
n −m
m n

)
,

(
n′ −m′

m′ n′

)
=
(

N −M
M N

)
◦

(
n −m
m n

)
does directly reflect the above ascertained operator essence

(n̂′, m′) = (N̂, M) ◦ (n̂, m)
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of both the number multiplication * and the C-number itself.
In view of the paramount importance of the C-number field in QT [96,138,142], let us

provide additional substantiations to the rigidity of the emergence of this specific number
structure, i.e., of the axiom collection (57), (79)–(82). Among other things, the transpositions
Ψ � Φ used above fit more general reasoning.

7.5. Involutions and C̃∗-Algebra

Apart from a freedom in ordering the primitives Ψ � Φ in brace {nΨ,m
Φ }α, there is one

more arbitrariness: reappointing them (Ψ 	 Θ, . . . ) as elements of the set T. However, no
physics predetermines any of these degrees of freedom. For, if other ingoing T-elements Θ
Ω were present in (32) instead of Ψ, Φ, then the theory of semigroup G, strictly, should be
declared the segregated theories GΨΦ, GΘΩ, etc. It is clear that the labeling the theories, or
a family thereof, is a manifest absurdity, and they should be thus factorized with respect
to all kinds of ways to label them by T-primitives. The liberation from the Ψ, Φ-icons and
reconciliation of the result with pt. R+ (p. 25) are then performed by the scheme ,primitive
has changed-	 ,a number character is changing-.

Inasmuch as declaring the {Ψ, Φ, Θ, . . .} to be ongoing primitives in (32) is a replace-
ment of one to another, any such an appointment boils down to permutations of no more
than pairs with two types (inner/outer):

ΨΦג̂ : (Ψ, Φ)�
Ψ↔Φ

(Φ, Ψ), ℵ̂ΦΘ : (Ψ, Φ)�
Φ↔Θ

(Ψ, Θ) . (84)

However, it is immediately obvious that these reappointments change nothing in the
∪-relationships between (32) and are defined by the structural relations 2ג̂

ΨΦ = Î, ℵ̂2
ΦΘ = Î.

Then, the need to indicate the primitives themselves, as required, is eliminated, and their
symbols may be thrown away if semigroup G is properly furnished with the two abstract
involutions ג̂ and ℵ̂. The G itself, of course, also possesses involution (61) that turns it into
the group H , but this involution has already had a numerical representation (66) by signs ±.
To be precise, it suffices to identify here the term “numerica” with the group arithmetic of
the ⊕-addition (57) coming from the superposition principle realized on pairs (65) and (66).
Therefore, the operators’ actions (84) should be carried over onto objects defined in precisely
this manner; nothing more needs to be assumed.

Operator ΨΦג̂ is immediately translated into a numerical form independently of the
property that the objects {nΨ,m

Φ }α form a (semi)group. Indeed, since the swap Ψ � Φ in the
unordered pair

ΨΦג̂ : {nΨ,m
Φ }	 {nΦ,m

Ψ } = {mΨ , n
Φ} · · ·

(the α-label is dropped here as superfluous) is indistinguishable from the permutation of
numbers n � m, the symbols Ψ and Φ may be thrown away, organizing the numbers
themselves into ordered pairs

· · · ⇒ (n,m) ג̂	 (m, n) .

When required, the α-symbol returns hereinafter.
Let us now proceed to the outer involution Φ � Θ in (84):

ℵ̂ΦΘ : {nΨ,m
Φ }	 {nΨ,m

Θ } .

It is indifferent to the (first) Ψ-element of the pair, and, by extracting it by the rule

{n
Ψ

,m
Φ

} = {n
Ψ

, 0
Φ

}+� {0
Ψ

,m
Φ

} ,

the question boils down to finding a representation of the transformations(
{n

Ψ

, 0
Φ

}+� {0
Ψ

,m
Φ

}
)
	

(
{n

Ψ
′, 0

Φ

}+� {0
Ψ

,m
Θ
′}
)

(n
? ′,m

? ′) .
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The component {n
Ψ

, 0
Φ

} must go into itself since the symbol Ψ attached to it has not
changed. It means that n′ = n, and one is left with the task

{0
Ψ

,m
Φ

} �
?
{0

Ψ

,m
Θ
′} .

However, operation ℵ̂ΦΘ recognizes only the primitive’s symbols rather than their

numbers. That is, replications m̂{0
Ψ

,±1
Φ

} = {0
Ψ

,±m
Φ

} do formally commute with ℵ̂ΦΘ. Hence,
by omitting the letters {Ψ, Φ, Θ}, it will suffice to look for the representation of ℵ̂ by numer-
ical pairs (0,±m) factorized with respect to replications m̂, i.e., by the set {(0, 1), (0,−1)}.
It, for its part, remains to be transformed into itself, and the replication operators n̂, m̂ will
recreate the generic case. The identical transformation (0,±1) 	 (0,±1) is ruled out since
ℵ̂ΦΘ �= Î; therefore, (0,±1) 	̂ℵ (0,∓1). Restoring all the symbols that were dropped, the
effect of ℵ̂ reduces to the sign change for the second element of the coordinate pair:

(n,m) 	̂ℵ (n,−m) . (85)

There is no need to change sign for the first element, as this change is the operator
−Î ◦ ℵ̂. Furthermore, one observes that the already existing group inversion −Î coincides
with composition

(ℵ̂ ◦ 2(ג̂ = −Î , (86)

and we may even “forget” about (the “old”) subtraction, leaving the equipment

{⊕, Î, m̂, ℵ̂, {ג̂ (87)

of semigroup G as an irreducible set of mathematical structures over it.
In this connection, yet another—more formal—motivation of the passage ,semigroup

	 group- and thus of the superposition principle does arise. Indeed, the derivation of
ℵ̂ above engaged the inversion (61), but the reappointment of primitives Φ � Θ in (84)
is a fully independent act. Therefore, if we forget about “(−)-copies of the positive pairs”
(0,m), the involutory nature of automorphism ℵ̂ΦΘ would still reproduce the semigroup G

in numbers by “duplication” m 	 ±m, i.e., create the negative pairs (0,−m), thus turning
G into a group H . An analogous reasoning on the symbol “−” could be cited even earlier,
when the C-field was being derived.

Now, remembering the above-described move to the binarity of *-multiplication on
the (n,m)-pairs, we arrive at the problem of matching it with structures (87). Clearly, one
needs only to ascertain the functionality of operators ג̂ and ℵ̂ that were not available yet.

Relation (86) immediately gives us the correspondence ℵ̂ ◦ ג̂ � i since i2 = −1. Hence,
one of these operators, say ,ג̂ manifests itself in the imaginary unit i. The origin of this
operator—permutation ΨΦג̂ in (84)—is the very same permutation Ψ � Φ that generated
the i-object in algebra (82) and (83). The second operator, i.e., (85), as is directly seen, is also
not related to the binary ⊕ and * but determines the change i 	 −i. This means that the
QM-consideration does not just give birth to the field C but to a division C̃∗-algebra, which
is equipped with two non-binary operations

a 	̂ℵ a∗ , a ג̂	 ã .

Informally, it defines all the basic actions as “complex quantities” and thereby deter-
mines a QM-extension/generalization to the intuitive and habitual arithmetical manipu-
lations (68)–(74) with real things. Consequently, the four binary arithmetical operations—
addition/subtraction/multiplication/division—should be supplemented with the two
unary ones: conjugation ℵ̂ and swap .ג̂

Remark 14. A curious observation for formal complex-number mathematics is appropriate here.
None of these operators boil down to involution −Î. We mean that each of the pairs (ℵ̂,−Î) or
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(Î−,ג̂) is expressible through ,ג̂) ℵ̂) and not the reverse; see (86). To put it plainly, the self-suggested
going from the natural sign-change (i.e., −1̂ over R) to the inversion of the two-dimensional ⊕-
addition (i.e., −Î over C) deprives the involution −Î of its primary character, as it has taken in the
one-dimensional domain R. Furthermore, the second operation ג̂ is, in a sense, more “primitive”
than the complex conjugation ℵ̂, as this operation has had to conduct it with a formal pair (n,m)—
merely transposes it—and does not invoke an arithmetic action, as does ℵ̂ when changing the sign
m %→ −m in (85).

The relationship between the operators is by binary multiplication: ã = i * a∗. By virtue of this
relation, it makes no odds which one of these unary operators is left for C-algebra.

We note—and this is important [6]—that the observational statistics fj are unchanged
upon both operations ג̂ and ℵ̂.

7.6. Naturalness of C-Numbers

Thus, the T-set primitives have been entirely banished from the theory, with the excep-
tion of the eigen-state αs-markers, which are needed only for distinguishability (Section 2.1)
in A -observations. These markers may be interchanged, but permutability αj � αk is
already reflected by the superposition’s commutativity. Taking now into account the fact
that reassigning the α-labels does not touch on the concept of the number, one infers: the
covariance attained above is exhaustive. As a result, we draw the following conclusion.

• The coordinate representatives {a, b, c, . . .} of states and superpositions thereof (58)
form a complex number field C̃∗ equipped with the structures of conjugation and
swap:

(n+ im) %→∗ (n− im), (n+ im) %→̃ (m+ in) . (88)

Statistical weights fj in object (35) are invariant with respect to both the involutions
fj(a∗) = fj(a) = fj(ã) for each component as independently.

What is more, the commentary on the primacy of QM over the abstract arithmetic (see
p. 46) has a logical continuation.

• Quantum-theoretic description invokes no C-numbers, nor does it introduce them. It
does create them together with the C̃∗-algebra. The C-numbers are in and of themselves
the quantum numbers.

This fact is remarkable in its own right because the “two-dimensional” numbers arise
at the lowest empirical level, not from the need for solving any mathematical problems.
Mathematics is still lacking. Therefore, pt. R+ (p. 25) could have even been weakened
by replacing ,homomorphism onto numbers-, roughly, with the ,homomorphism onto
continuum-. Our minimal points of departure are replications and the ingoing/outgoing
structure of brace (32). The imaginary part of the complex number—as a supplement to
the real one—comes, as a rough guide, from the left-hand side of the conception Ψ ��� α.
The theory does not depend on the meanings that will be later attached to the physical
concepts—observables, measurement, spectra, means, etc.—their interpretations, or rigor-
ous definitions. At the same time, the interferential “effects of subtraction and of zeroes”
are intrinsically present within the construct’s foundation itself.

Let us add, in conclusion, two more formal vindications of rigidity of the emerging
C-structure. In doing so, one assumes that we have already had the R-numbers.

Unitary brace contain pairs of the form {n
Ψ

, 0
Φ

}. The binary operations {⊕, *} on their
numerical representatives (n, 0) are closed and, as easily seen, form a commutative field,
which is isomorphic to R. It is a subset of the generic pair set (n,m). From the operator
nature of *, it follows that these pairs form a certain distributive ring with general-group
properties (79) and (80). The presence of the field R contained in it tells us that these pairs
can be realized by the elements n+mx of, at most, associative algebra A over R. Here,
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n,m ∈ R, x is a generator of any ring’s element beyond R, and the habitual + replaces the
sign ⊕. The multiplication of two such elements

(n+mx) * (n′ +m′x) = nn′ + (mn′ + nm′)x +mm′x2 = · · ·

immediately shows that the result does not depend on the order of factors, i.e.,

· · · = (n′ +m′x) * (n+mx) ,

due to the permutability of {n,m, n′,m′} between each other and of any x with itself. This
is a direct consequence of the two-dimensionality of the algebra A; it must be commutative.
Invoking now the well-known Frobenius theorem on associative and commutative struc-
tures containing the field R [181], we arrive once again at a multiplication of the form (82).
Körner puts this point as follows: “The complex numbers constitute the largest system of
objects that most people are content to call numbers” ([172], p. 230).

Topologies on Numbers

Yet another reasoning about exclusivity of C-numbers follows from matching the
topological and algebraic properties of the general number systems ([182], Section 27). The
case in hand is the uniqueness and non-arbitrariness in the emergence of the topological
field C; Pontryagin (1932). In our case, we have two continuums: the numerical symbols n
and m, each of which, by the very method of constructing the

⎧⎩Ξ
⎫⎭-objects (34), is equipped

only with the natural ordering <. Since we do not have any more math-structures yet,
the topology, continuity, and limits on each of the continuums can already be introduced
with respect to this relation. For example, there is no need to introduce the topology a
priori by creating the arithmetical operation of multiplication/divisibility of rationals (and
a concept of the prime integer), as is conducted in the p-adic approaches to QM [66,183,184].
The “non-naturalness” of multiplication as compared with addition was already noted
above. Moreover, in the p-adic versions for a numerical domain, the topologically and
physically required matching between the natural ordering, connection, and continuity
([182], Ch. 4) is destroyed, and the approaches themselves stipulate the existence of the
observations numbers with a comprehensive arithmetic. At the same time, questions about
the “structure” of the physical x-space at Planck’s scale and about measurements by
rationals (see motivation in [183,184]) have not yet emerged because we are not relying on
physical conceptions and are not yet introducing these notions as numerical. The x-space
itself is as of yet absent, and D. Mermin [3] overtly claims along these lines that “when
I hear that spacetime becomes a foam at the Planck scale, I do not reach for my gun”.
From the low-level empiricism standpoint, any objects, apart from the R2-continuality and
frequencies f, call for independent axioms. In turn, the primary nature of the R-continuality
itself follows directly from the boolean 2T (p. 19) and Σ-postulate of infinity.

8. State Space

Quantum states . . . cannot be “found out”—W. Zurek ([8], p. 428)

. . . quantum theory refuses to offer any picture of what is actually going on out
there—D. Mermin (1988)

8.1. Linear Vector Space

Once the replication (N̂, M) of brace {nΨ,m
Φ }α has acquired a binary character

(N̂, M)
(
{nΨ,m

Φ }α
)
⇐⇒

(
(N,M) * (n,m)

)
|α

⎫⎭= a|α
⎫⎭ , (89)

the difference between “what is replicated” and “how many times” disappears. A symbol
|α

⎫⎭of the eigen-state has been attached to the abstract C-number a. Construing this point
as a quantum analog of re-choosing (liberation of) the measurement units (p. 46), we
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obtain that the two formal states a|α
⎫⎭and b|α

⎫⎭are always connected by a certain number
operator p̂:

b|α
⎫⎭= p̂

(
a|α

⎫⎭), p̂ � b * a−1 .

Manipulating the numbers becomes independent of symbols |α
⎫⎭. The way to formalize

this is to think of generic states a|Ψ
⎫⎭∈ H as the “solid characters”

a|Ψ
⎫⎭	 |Ξ〉 ∈ H , (90)

i.e., as the |Ξ〉-elements of a new set H, which is equipped with the p̂-replication images
represented by the p-family (p ∈ C) of maps

C×H %→· H : p · |Ξ〉 = |Φ〉 ∈ H , (91)

and which is obliged to inherit the structure (89). This inheritance says that the coordina-
tion of *-multiplication in (89) with the replication’s p-realization is performed by a new
operation · of the unary kind on H, i.e., (91), which should be subordinated to the rule

p · (a · |Ψ〉) = (p * a) · |Ψ〉 (p, a ∈ C, |Ψ〉 ∈ H) . (92)

Due to this connection between operations * and ·, the latter is usually referred to
as “multiplication” as well; however, such an intuition with dropping the word “unary”
may have implications ([130], Section 6.2). An analogous rule had already occurred in the
relationship (59) between the ⊕-number C-structure and the (+)-group superposition, i.e.,
when the multiplicative structures {*, ·} were not available yet.

Among replication operators p̂, there exists an identical transformation

p̂ = Î : a|Ψ
⎫⎭	̂I a|Ψ

⎫⎭ ,

to which a symbol of the numerical unity p = 1 corresponds. From this, in accordance
with (90) and (91), there follows the rule

1 · |Ξ〉 = |Ξ〉, ∀ |Ξ〉 ∈ H .

It is clear that the (·)-multiplication needs to be agreed with the 0-union. Let us
make use of the fact that an object of (quantum) replication may be not only the unitary
brace {nΨ,m

Φ }α, which is equivalent to the eigen-element a|α
⎫⎭, but a (+

�
)-sum of the like

objects and, in general, any constituents of quantum ensembles (see p. 44). Therefore, the
p̂-replication

p̂
(
a|α

⎫⎭+ b|β
⎫⎭) = · · · (93)

is known to have its twin-sum

· · · = a′ |α
⎫⎭+ b′ |β

⎫⎭= · · · (94)

with certain coefficients a′, b′.
Let us, for the moment, give back (93) to the initial language of operators/brace

according to the scheme

(N̂, M︸ ︷︷ ︸
p

), {nΨ ′,mΦ ′︸ ︷︷ ︸
a

}α +
� {nΨ ′′,mΦ ′′︸ ︷︷ ︸

b

}β . (95)

Take into account a pre-image of operation +
� on objects (93), i.e., the +. Then, (95)

and the content of Sections 7.4 and 7.5 certainly show that the expression (94) must be of
the form

· · · = (p * a)|α
⎫⎭+ (p * b)|β

⎫⎭= · · · .
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Reconverting, by (92), expressions such as (p * a)|α
⎫⎭ into the operatorial p̂(a|α

⎫⎭), we
complete the ellipsis

· · · = p̂
(
a|α

⎫⎭)+ p̂
(
b|β

⎫⎭) .

Passing now to the p-number and to the |Ξ〉-objects (90), i.e., replacing a|α
⎫⎭ 	 |Ψ〉

and b|β
⎫⎭	 |Φ〉, one derives an additivity of operation · when acting on a sum:

p · (|Ψ〉 +̂ |Φ〉
)
= p · |Ψ〉 +̂ p · |Φ〉 .

Here, the H-addition + has been carried over to the group H as a new symbol +̂.
This is nothing but a distributive coordination of the (·)-multiplication with the group
addition +̂.

In a similar way, through a number operator, one establishes yet another relation

a · |Ξ〉 +̂ b · |Ξ〉 = (a ⊕ b) · |Ξ〉

between · and +̂. Its origin is equivalent to (59). From the constructs above, it is not difficult
to see that we have examined all the possibilities of C-replicating the superpositions (58) or
their constituents, which is why we have exhausted all the compatibility rules that stem
from the two fundamental operations—replication and union (+).

Thus, having considered the passage (90) and (91) as a final homomorphism of the
H-group elements a|Ψ

⎫⎭onto the objects |Ξ〉 ∈ H, i.e., adjusting the previous concept of a
state and of DataSource (p. 31), we infer the following.

• The minimal and mathematically invariant bearer of the observation’s empiricism is
an abstract space H of states |Ψ〉 of the system S . The structural properties

H :=
{
|Ψ〉, |Φ〉, . . .

}
,commutative group under operation +̂- , (96)

C := {a, b, . . .} ,field of complex numbers (57), (78)–(82)- ,

â|Ψ〉 =: a · |Ψ〉 ∈ H ,closedness under operation ·
⇐⇒ operator automorphism â|Ψ〉- ,

(97)

a · (b · |Ψ〉) = (a * b) · |Ψ〉, a · |Ψ〉 +̂ b · |Ψ〉 = (a ⊕ b) · |Ψ〉 ,

1 · |Ψ〉 = |Ψ〉, a · (|Ψ〉 +̂ |Φ〉
)
= a · |Ψ〉 +̂ a · |Φ〉 (98)

of the space coincide with the axioms of a linear vector space (LVS) over the field C.

Attention is drawn to the fact that this is the first place in our construct where the word
”linear” has appeared, and even the superposition principle, page 35, was formulated
without using this term. The “axiom list” (96)–(98) should also be complemented with a
declaration of the global D-number value (53) established above.

In a nutshell, the nature of the quantum state space is two-fold: group superposi-
tion (58) and operator nature of the “a-numbering” the elements of the group. It admits the
C-field scalars as operators. Relations (98) describe the rules of “interplay” between all the
objects. It is known that such formations, while being implemented by a binary algebra
of numbers, turn into the vector spaces and modules [175] (Ch. 5), [181] (Sections I(7.1–2),
II(13.4)). Concerning the consistency of these rules—say, of numerical distributivity (80)—
with relations (98), see the work [185].

Remark 15. A certain oddity is in place. QM-empiricism is such that the standard definition of
LVS by the all-too-familiar axioms (96)–(98) is more “nonphysical” by its nature than the “gener-
alistic” abstraction of a group with operator automorphisms of the group H-structure itself [166]
(Section I(4.2)), [175]. A point like this might be expected, though. This is because, as noted in
Section 1.2, meaning all of the tokens in (1) and their origin are entirely unknown, and the linearity
of QM is radically different from other “linearities” in physics.

All told, the appearance sequence of the mathematical structures is as follows:
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,sets, union ∪, . . . - 	 ,semigroup (Section 5.2)-
	 ,group H (Section 6.3)- 	 ,numbers & arithmetics (Section 7)-
	 ,compatibility of the group and numbers (Section 8.1)-
	 ,the abstract LVS and its bases- .

This sequence is rigid, such as the box-diagram in Section 1.3, so the structure of LVS cannot be
weakened because we have the two fundamental principia (II and III) in between the semigroup, the
group, and the vector space.

8.2. Bases, Countability, and Infinities

From a ban on transitions αs ��� αn under s �= n, it follows that unitary αs-brace (34)
corresponds to vectors as · |αs〉 that are linearly inexpressible through each other. Aside
from the general ensemble brace (32), no other elements exist, and all of them are in one-
to-one correspondence with the vector representations a1 · |α1〉 +̂ a2 · |α2〉 +̂ · · ·. Each such
vector has a statistical pre-image (32), and vice versa; there are no gaps. This means that
the system of vectors {|α1〉, |α2〉, . . .} forms a basis of H as the basis of LVS—basis of an
observable A or A -basis—and the number of symbols |αs〉 is its dimension: dimH = D.
The D = ∞ case, just like anything associated with infinity, cannot be formalized without
topology, and its presence is presumed, but this discussion is dropped. We just remark
that even earlier, when arising the two-dimensional continuum, we have silently assumed
the (R×R)-product topology on it. This supposition is natural, inasmuch as it does not
involve additional constructions/requirements. Thus, if Properties (96)–(98) are directly
accepted as empirical, then the mathematical rigors augment them axiomatically on the
outside because one constructs the mathematical theory.

The micro-transition ��A in Section 2.1 is a solitary entity. This means that the number
of eigen αs-primitives for an actual instrument may be either finite or discretely unbounded.
We base this on the fact that continual formations are products of mathematics rather than
empiricism (see also [58] (p. 35)). The T-set, as an example, is also non-continual, but that
premise may even be given up because only a discrete portion of this set is present at
arguments (transitions ���A ). Notice incidentally that continuum, along with the number,
does not feature in the ZF-axioms [134] but is also created, just as “an infinity is actually
not given to us at all, but is . . . extrapolated through an intellectual process.” [105] (p. 55;
Hilbert–Bernays); see also the book [84] for the conceptualization of infinity. One obtains
a countability of the A -basis. Hence, it follows a completeness of H and countability of
dimension (53), as of the number LVS-invariant:

D = 2, 3, . . . ,ℵo (= dimH) . (99)

Finally, let us mention the following. The basis is a term that in no way is present in
the abstract axiomatics (96)–(98), and LVS on its own account does not contain a motive
for introducing that concept. However, empirically, the H-space is arising entirely and ab
initio in all possible linear combinations over |αj〉, i.e., through A -bases. Because of this, in
order for an abstract LVS to become the quantum state space, the LVS should be considered
as being accompanied by the concepts bases and changes thereof. Conforming to such
a requirement and the formal existence of a basis is given by a nontrivial math theorem
invoking the axiom of choice ([166], Section II(7.1)).

8.3. The Theorem

The states |Ψ〉 and sums thereof, at the moment, form a formal family of different
elements. Recall that symbols {≈, �≈} in pt. R, as from the end of Section 5.4, have been
replaced with the standard ones {=, �=}. The physical aspects of 〈〈S , M, . . .〉〉 were being
left aside so far, and, for example, |Ψ〉 and c · |Ψ〉 were the different vectors of the H-space.
However,
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• empiricism (deals with and) yields originally not states and superpositions thereof but
|α〉-representations.

It is these representations (alone) that carry information about statistics (f1, f2, . . .) through
coefficients aj. The replicative character of c-multipliers and Σ-postulate entail, however,
that the two vectors 1 · |Ψ〉 and c · |Ψ〉 should correspond to the one and same statistics
f(D) = (1, 0, . . .) = f̃(D) under an observation D with the eigen collection {1|Ψ

⎫⎭, . . .}.
Let us write the equalities

f(D) � 1 · |Ψ〉︸ ︷︷ ︸ = a1 · |α1〉 +̂ a2 · |α2〉 +̂ · · ·︸ ︷︷ ︸ � f(A ) ,

observation D observation A

f̃(D) �
︷ ︸︸ ︷
c · |Ψ〉 =

︷ ︸︸ ︷
c · (a1 · |α1〉 +̂ a2 · |α2〉 +̂ · · ·

)
� f̃(A )

(100)

and look at them in the following order: the first line from right to left and the second in
the reverse direction. Their right-hand sides are the carriers of some statistics f(A ) and f̃(A ).
The frequencies f(A ) = (f1, f2, . . .) come from the number set (a1, a2, . . .) under the same
environments 〈〈S , M, . . .〉〉 that give rise to the statistics f(D). However, it is also generated by
the representative c · |Ψ〉, which is associated with the same 〈〈S , M, . . .〉〉; hence, f̃(D) = f(D).
By virtue of the second equal sign in (100), the same 〈〈S , M, . . .〉〉 are associated with the
second A -collection (c * a1, c * a2, . . .). Therefore, the frequencies f̃(A ) that emanate from it
have to be identical to those emanating from the first collection (a1, a2, . . .). That is to say
f̃(A ) = f(A ), and the scale stretches |Ψ〉	 c · |Ψ〉 are not recognized by any A -instruments.
A more concise reasoning is that the quantum replication c = n+ im may be viewed as one-
dimensional replications n̂ (a|α

⎫⎭), ı̂ (a|α
⎫⎭) of all the brace as|αs

⎫⎭-images and of sums such
as n̂ (a|α

⎫⎭) + (ı̂ ◦ m̂)(a|α
⎫⎭). These replications do not change the superposition statistics as

a whole.
The aforesaid gives birth to a universal—stronger than ≈ and irrespective of

instruments—observational equivalence relation

|Ψ〉 ∼∼∼ const · |Ψ〉

on the space H, i.e., the “physical” indistinguishability (Section 2.4).
The basis vectors |αs〉 and their (∼∼∼)-equivalents will be referred to as eigen vectors/states

of instrument A . Clearly, the concepts of instrument and of (macro)-observation (O) should
now be distinguished. Accordingly, the spectral constructions (51) and (52) should be
corrected. Call the data set {

|α1〉1α1
, |α2〉1α2

, . . .
}
=: [A ] (101)

the [A ]-representative of instrument A in H. The add-on (101) does not touch on H-space
since the spectral labels 1αj are the self-contained objects independent of vectors |αk〉. These
labels and their degenerations determine internal properties of the formalized notion of
an instrument (101). Conversely, any state vector |Ψ〉 or c · |Ψ〉 may be treated as a [C ]-
representative for an imagined/actual instrument C (spectrum is arbitrary) and is a certain
(+̂)-sum of the eigen elements for any other [A ]-representative.

Remembering (23), we arrive at the quantum “kinematic framework” [69], i.e., at the
ultimate conclusion that determines the pre-dynamical theory of macroscopic data on
micro-events.

• The core first theorem of quantum empiricism:

(1) The mathematical representatives of physical observations and of preparations
are the quantum states |Ψ〉 and statistical mixtures of eigen |α〉-states{

|α1〉(�1), |α2〉(�2), . . .
}

, �1 + �2 + · · · = 1 . (102)
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(2) Properties (96)–(99) define objects |Ψ〉 as elements of a (complete separable)
linear vector space H over the algebra of complex numbers C∗.

(3) Dimension dimH = D � 2, representing an observable quantity (D < ∞), is set
to the value max{|TA |, |TB|, . . .} = D as required by the accuracy of the toolkit
O = {A , B, . . . }. The eigen |α〉-vectors for each [A ]-representative provide a
basis of H (D < ∞) independently of spectra (101).

(4) The A -bases stand out because the observational number-notion has been associ-
ated to them—statistics of the micro-events. The frequencies fk(a) are invariant
under involutions (88) and states |Ψ〉 and c · |Ψ〉 are statistically indistinguish-
able.

(5) Rules (96)–(99), for a fixed D �= ∞, are categorical as an axiomatic system; they
admit no non-isomorphic models.

The words “complete separable” have been supplemented here for mathematical
reasons. This point is partly commented on in [6] and more fully in [130]. Indeed, the
algebra constructed above calls for some amendments of a topological nature because
the construction contains three infinities: continuum C, continuum H, and dimension
D. In this connection, see the book [182]. The term “categorical” may require some ex-
planation, and it is fully given in [130]. Here, one suffices to mention the point that
one mathematical axiomatical system can in general have different inequivalent realiza-
tions/models [105,106,136]. In turn, the only thing that distinguishes two vector-space
models between themselves is their dimension D.

Now, having considered the micro-destruction arrays with empirical rather than a
formal take on arithmetic, the ideology of creating the quantitative theory leads to the
key feature of quantum states—addition thereof—and the quantities under addition ”do
amount to” the complex numbers.

Remark 16. As in Section 7.3, we draw attention to a hidden and (logically) unremovable extension
of the physical units’ concept.

• “. . . units. Despite the rudimentary nature of units, they are probably the most inconsistently
understood concept in all of physics . . . where do units come from?”.

S. Gryb and F. Mercati ([102], p. 91)

Surprisingly, the naïve and straightforward conjunction of this concept with an abstract
number seems to contravene the multiplication arithmetic but not the addition one. The typical
example illustrates the point:

(2kg) × (3kg) �= 6kg (3sheep+ 5ψ �= 8Stück)

(see also [172] (items (4) and (5) on p. 16)). On the other hand, 2 × (3kg) = 6kg and (2kg) +
(3kg) = 5kg, and the kg may be replaced here with any other entity: the classical meters, the
abstract “Quanten Stücke ψ”, and the like. They have no any operational significance, but one
cannot get by without them.

The numeral characters acquire their usual abstract-numerical meaning—mathematization [58]
—only when we throw (Section 7.3) the “units” ,Stück, ◦C, sheep, ψ, . . .- out of data like ,5Stück,
5 ◦C, 5sheep, 5ψ, . . .-. The symbol "5” in 5 ◦C is the very same “5” as in 5 · |α〉. It is pointless
without such a matching/abstracting. In the Newtonian spirit (epigraph to Section 7), the symbol
could be defined as follows:

,the abstraction 5- :=
5̂◦C
1̂◦C

=
5̂ |Ψ〉
1̂ |Ψ〉 = · · · = 5̂ unit

1̂ unit
.

It may be even said that creating the number n (from its operator n̂) as an abstracted entity
reflects a kind of covariance with respect to attaching the various language tags regardless of whether
they are real Stück, sheep, or the abstract ones such as |Ψ〉. At the same time, the inversion
of this abstraction—attaching the ,Stück, ◦C, sheep, ψ, . . .- to the character 5—is always an
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interpretation of abstraction: interpreting “the Stück”, “◦C-interpretation the Celsius”, etc. It is
not improbable that this is the only point when the completed QT—QM/QFT/quantum-gravity yet
to be constructed will resort to word interpretation. See also comments by D. Darling on “sheep,
fingers, tokens, numbers, things, to “add” things, abstraction—the process of addition” and the like
on p. 178 in the book [2] and in [23] (pp. 263–264).

Incidentally, within this physical and quantum context:

• The LVS itself should be regarded as no less a primary math-structure than the numbers
themselves. Empiricism gives birth to both these structures together. Neither of them is
more/less abstract/necessary than the other. Behind them is certainly a commutative
group with operator automorphisms over it, and “numbers” is just a shortened term
for that operators. Therein lies their nature (Section 7.2).

The habitual physics’ construct ,number- × ,physical unit- exemplifies in effect the
simplest (one-dimensional) LVS. However, the structure “the LVS”, in contrast to the “bare”
arithmetic, simply “does not forget and keeps” an operator nature (unary multiplication ·)
of the structure “the number” and its empirical inseparability from the notion of the unit:

2̂ (3̂ unit) ⇐⇒ 2 · (3 · unit)︸ ︸
vector space

	 · · · abstracting · · ·	 (2 × 3) unit︸ ︸
arithmetic

.

A direct corollary of this point is the fact that principium II can in no way be given
up or disregarded. This would be tantamount to impossibility to introduce the further
empirical (and classical) notion of a physical unit. The “forgetfulness” of arithmetic about
measuring units even leads to a new way of looking at the classical Pythagoras theorem
([130], Section 6).

At the moment, it is worthwhile to summarize where we stand. As we have seen,
nothing above and beyond what was used in constructing the mathematics (96)–(99) is
required to explain the nature and meaning of the quantum state. Moreover, we have
obtained not merely a completion of construction (11):

⊕(a1, |α1〉; a2, |α2〉; . . .) = a1 · |α1〉 +̂ a2 · |α2〉 +̂ · · · .

In the first place, one establishes a genesis of the quantal discreteness. Discriminating is an
isolated act in the very nature of the perception process: “one thing is distinct from another“,
“the controlling the minimal begins with a distincting of something the two”, and the like
(Section 2.2). Accordingly, “indivisibility, or “individuality”, characterizing the elementary
processes” ([131], p. 203; N. Bohr) must be formalized into the “elemental” click.

• The classical continuality of the perceptual reality—the (3+1)-space, fields {u(x, t),
ψ(x, t), . . .}, and the R-numbers—is a theorization act, whereas the nature of the
perception fundamentally “contains an element of discontinuity” ([4], p. 179). The
continuality of the classical-physics mathematics we are used to is a “quantum effect”.

The theorization also bears on preparation 〈〈S , M, . . .〉〉. For example, smoothly re-
ducing the interferometer intensity is not an empiricism but an imagination of abstracta
the continuity/infinity. Clearly, such an (incorrect) substitution of the perception process
should somewhere be replaced with a “correct understanding”, such as the introduction
of the categories: ,isolated micro-events- + ,(myriads) assemblages thereof-. Granted,
the natural language is able to describe the discontinuity only in the classical (the energy)
terms—Plank’s quantum of action h̄, although the quantum discreteness is not a discretization
of something classical but a discreteness on its own account.

We also clarify the formalization of measurement/preparation and of genesis of the
C-numbers. The well-known (∗)-conjugation operation also finds its origin. Moreover,
it is supplemented with a transposition 6(a) � 7(a) of the real/imaginary part of the
C-number, and this transposition should be regarded just as natural operation as the
conjugation. The emergent concepts of spectra and of their degenerations and eigen-states
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provide a nearly comprehensive mathematical image of physical observables. The state
becomes devoid of its mysteriousness [21,31,186] since it is explicitly built in terms of
the unique model of the “statistical” |α〉-representatives supplemented with macroscopic
mixtures (102).

9. Numbers, Minus, and Equality; Revisited

. . . quas decet numeris negativis exprimantur, additio et subtractio consueto more
peracta nullis premitur difficultatibus—L. Euler (1735)

(. . . if we represent the notions, which are necessary, by negative numbers, then
addition and subtraction . . . are executed without any difficulty.)

9.1. Separation of the Number Matters

The empirical adequacy of QT can be based only on empirical ensembles
(Sections 2.5 and 4). The creation of their mathematics tells us, then, that the “quantity of
something” (68)–(70) turns into a formal operational algebra through labeling the operator
replications (Sections 7.1 and 7.2) and properly yields the numbers. At first, they appear
merely as

︷ ︷
n-symbols of abstractions (68) and (69) with ordering <︸ ︸

↓ ↓
. . . . . . . . . . . .

and then as internal objects of theory:

. . . . . . . . . . . .

↓ ↓︷ ︷
numbers n as elements of arithmetic (71)–(74)︸ ︸

↓ ↓︷ ︷
(m, n)-numbers a and their C̃∗-algebra (57), (78)–(82), (88)︸ ︸

.

↓ ↓
. . . . . . . . . . . .

These steps are necessary and mean that not only are the complex numbers far from
self-evident, but even the negative ones are; a key place (50), (55) wherein a group arises.
All the other structural points, first and foremost the observational quantities, may be
further produced (even as concepts) only by way of certain mathematical mappings:

. . . . . . . . . . . .

↓ ↓︷ ︷
the observations numbers fj and αj:

a %→ ,statistics fj-, |αj〉 %→ ,spectra αj-
tensorial structure of the H-space︸ ︸

. (103)

In other words, if a concept is a numerical one already in empiricism—frequencies,
spectra, etc.—then its meaningful formalization by means of a mathematical definitio can
only resort to mathematics that we have at our disposal: LVS and algebra of numbers.

Thus, numerical quantities in the entire theory are initially divided up by their emer-
gence mechanism (II): the intrinsic abstracta and reifications (103). Without such a division,
the circular logic is inevitable, and the above-mentioned “unit” treatment of numbers would
still be supplemented with the task of their observational interpretation complicated by
two-dimensionality. This task would be present in formalism not merely as a problem but
as an inherently intractable challenge. Actually, any entity can be identified with numbers,
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and this is why, the quantum empiricism and principium II—paradigm of the very num-
ber in the physical theory—insist on the need to pay the closest possible attention to all
these things.

Remark 17. In this regard, the situation is parallel with the familiar history of electrodynamics
of moving bodies, as was pointed out just before principium III. Lorentz’s contraction theory
is inconsistent, if the space-time tags to events are not linked up to the empirically precise and
operationally defined concepts in different reference frames: clocks, simultaneity, rigid rods, distances,
and the like.

In the quantum case, the chief subject of empirical definition is a concept of the number and
of the “numerical value of . . . ”. Otherwise, the meaning given to the conception of a quantitative
theory itself has been blurred. The “quantum numbers” C are built up from the reals, and the latter
have an operator nature (Section 7.2). However, the complexes C, being also operators and unlike the
reals, never act (operationally) on the reified quantities. They do act on the abstract |Ψ〉-elements of
the abstract commutative group H. Recall that this group and superposition principle were arising
before the numbers.

We have seen now that “it is quite wrong to try founding a theory on observable
magnitudes[/categories] alone” [8] (p. 504; Einstein, in a talk (1926) to Heisenberg), and
resorting to the physical notions—the camouflaged M-observations—is prohibited (see
also Remark 2). The attempts to use statistics at the very beginning of the theory are
known [29,34,87,90,93,187,188], and rightly so; they were initiated by H. Margenau (1936) [33]
(Ch. 15). However, the scheme just given is rigid. To obviate the premature appearance of
the very need for an interpretation, the scheme must not be varied. Being a sequence of
steps, it provides in essence an answer to principium II.

9.2. Operations on Numbers

The last step in this scheme contains, in particular, the map a %→ f, i.e., measure-
ment (48). Its form should be established in its own right—Born’s rule [6]. To illustrate,
the naïve transformation of negative numbers p into the actually perceived quantities by a
“seemingly natural” rule such as |±p| is not correct and does not follow from anywhere.
For the built algebra (96)–(98), the operation ±p %→ |±p| is extrinsic and illegal. According
to ideology of Section 1.3, not only objects—numbers, vectors, quantities, characteristics,
etc.—but also all the math operations should be created because one without the other
is meaningless. The numerical object of the theory—the complex pair (±p,±q)—is as
yet single, and it contains a principally “non-materializable” ingredient (Section 7.4) and
behaves as a whole. With regards to empiricism, the negative and C-numbers are equally
“nonexistent, fictitious entities” since the state’s mathematics (96)–(98) has not been supple-
mented with the doctrine of “empirically perceived” quantities (103). As a matter of fact,
the step-by-step transformation of the binary operation ∪ to symbols 0, +, +� and, finally,
to operations {+̂, ·, ⊕, *} does not terminate at states. Algebra (96)–(98) will be further
required to create the mathematically correct calculation rules of the proper observational
quantities.

The foregoing is amplified by the fact that pr. II has been involved in the classical
description and in vindication/refutation of, say, the hidden variable theories. Here,
numbers are identified with the reified quantities, and subtraction is taken for granted
from the outset. However, the negative quantities are also being created here, and they are
constructed in the same manner as the “quantum zero” for the H-group in Section 6.3.

Indeed,

• the instrument indications and physical quantities are not numbers, nor the (“pointer”)
states;

“detector . . . does not measure a field or an S-matrix-element” (R. Haag (2010)). They are no
more than notches, and “negative notches” are introduced prior to mathematics of symbols
according to the following subconsciously intended scheme. The self-apparent physical
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conventionality, which has been called “an addition” of two such notches, must produce,
in accord with the supra-mathematical requirements of physics, what is named “nought,
zero”. Two waves at a point, for instance, compensate each other. The result is asserted to
be identical with a mathematical zero, and that is the subtraction.

The classical “explanations” are the ones that use compensations/subtractions (see
Remark 13), whereas the minus we have become accustomed to is a fairly abstract construction
in its own right. J. Baez and J. Dolan best reflected the situation, observing on page 37 of [85]
that “half an apple is easier to understand than a negative apple!”; on the same page, a
good discussion of division is given. In this respect, one might state that the very classical
physics needs an interpretation in terms of strictly positive “the number of Stücke”. The
mathematization of empiricism into numbers is not a distinctive feature of a quantum
description. However, comprehending “abstracting the minus sign” is not confined to this.
A word of explanation is necessary with regard to the situation.

Mathematics formalizes [134] the positive/negative ±p into the pairs’ classes (m, n)
being equivalent with respect to an “adding” of the class (�, �) (the “zero”):

(+m) := (m, 0) ≈ (m + �, 0 + �), (−n) := (0, n) ≈ (0 + �, n + �) ,

±p ⇐⇒ (m− n) := (m, n) ≈ (m + �, n + �) , (104)

where m, n, � are to be seen as “something strictly positive”. This “adding” is yet another
tacitly assumed and much more abstract action: the addition of objects of some other
kind—“positive couples” (m, n). Technically, at an appropriate place in Section 7, we had
to introduce such classes and to assign their own algebraic operations for them. The result
might be called the “genuine” arithmetic (of “the positives”) and could be enlarged to the
“complete arithmetic” with multiplication and division.

As a consequence, the single-token object (+m) or (−n), which we perceive as self-
evident (cf. pr. II), is a highly unobvious construction—the generic equivalence-class of
two-token (m, n)-abstractions (104). The essence of the symbol of a negative number (−n)
is revealed only when contrasting the two positive ones. Exactly the same situation has
occurred when deriving the superposition principle in (49), (50), and (55).

It is clear that once all the ±p-numbers and the “normal” positive +p’s among them
have been formalized into the equivalences (104), the fact that they possess any “natural
meanings”, such as the “operation of the quantity p %→ |p|” invented above, becomes
more than unnatural; the abstract class operations appear out of nowhere. Similarly with
Q-numbers and their R-extension: classes of equivalent pairs (n/m) := (n, m) ≈ (n�, m�).

9.3. Naturalness of Abstracta

We thus infer that the rejection or disregard of the similar “naturally abstract” set-
theoretic models would be tantamount to the rejection of the minus sign even in elementary
physics. This is absurd, but its root is a need for abstracting. On the other hand, the moti-
vated deduction of these models cannot be replaced with (hidden) axiomatic assumptions
or with ready-made math-structures. Such an ambivalence is, in our view, one reason
why the problem with “decrypting” quantum postulates is so difficult; it touches on the
metamathematical and metaphysical aspects of the very thinking [84,105,148,169,179]. The
stream of subconsciously abstractive homomorphisms

,pt. S, T-	 {α, Ψ}	 {Ψ, ∪}	 · · ·	
{⎧⎩Ξ

⎫⎭
A , 0A ; . . .

}
	 · · ·	{[

μ
λ

]
α, 0

}
	 · · ·	 {a|Ψ

⎫⎭, +}	
{
{mΨ , n

Φ}α, +�
}
	 {a · |α〉, +̂}	

	
{
a, |Ψ〉; +̂, ·} ⇒ H (105)

is considerable and is always larger than it seems. In Sections 3–9, we have described not
all of them. Each such homomorphism is a mapping into a representation by a model, and
for a philosophical discussion of these representations and the origin of these models, see
pages 1–230 in [160]. For another comment concerning abstracting/realism, we refer the
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reader to the first half of a letter from A. Einstein to H. Samuel in [189] (pp. 157–160); see
also [180].

Thus, “difficulties” with complex numbers, stricto sensu, should already be attributed
to the level of the usual negative ones. Bearing in mind that the minus comes from the
equal sign = [86] and the equality comes from the scheme (49) 	 (50), both principia II
and III are very important (and functioning) in the classical case. In quantum case, they
are just fundamentally unavoidable for the very creation of the theory. The nature of QM

theory, of arithmetic, of complex numbers, and of their algebras is one and the same.
Transferring the reasoning above to the natural numbers N, the degrees of classical

and quantum abstractions become indistinguishable. Empirical motivation leads, in one
way or another, to the standard von Neumann’s representation for ordinals

0 := ∅, 1 := {∅}, 2 := {∅, {∅}}, 3 := {∅, {∅}, {∅, {∅}}}, . . . , (106)

i.e., to using the ZF-axiom of union: n + 1 := {n} ∪ n [134]. Therefore, the N-numbers
are less obvious themselves, followed by the ordering <, topologies, extensions, gener-
alizations, etc. The formal characterization of all the experimental values reduces to the
successive creation of the set-theoretic atoms—unions of sets—some direct products thereof
and mappings into other constructions of the same kind. Hence, both the physical images
“being under a ban above” and auxiliary structures—dimensionalities/orders, etc.—should
equally become homomorphisms onto certain formal constructions regardless of the de-
scription’s classicality/quantumness. The presence of, say, non-binary operations (88) does
not stand out because their nature does not differ from the one of habitual subtraction and
of division. All of these are involutory structures that have been mathematically inherited
from the empirical meta-requirements: repetitions (M-paradigm), experimental context 〈〈S ,
M, . . .〉〉, and covariance III (Section 5.4).

To close the section, we add that the distancing of concepts of state/DataSource
and of a physical property is the continuation of a more primary idea—detaching the
proper macro-perceptions from what is being represented theoretically [87,93,160] and from
conceptualizing the notions [84]. As B. Mazur has noted in [86] (p. 2), “This issue has been
with us . . . forever: the general question of abstraction, as separating what we want from
what we are presented with”, i.e., the separating the “bare” empiricism from mathematics
with Σ-limit and the number.

The atomic constituent of perception—sensory experience—is an elementary quan-
tum event [93,97,123,126], and it begins and terminates in the ( �≈A )-distinguishability
of α-clicks (Section 2.1). Any continual is a “speculative theory” (act of abstracting),
not the underlying empiricism. Therefore, all the further matters—numbers, arithmetic,
cause/effect, (non)inertial reference frames, the notions of an observer, of a classical event
in the Minkowski space, the spacetime concept itself and coordinates in the relativity theory
(a quantum view of the equivalence principle), device read-out, tensors, composite systems,
symbols ⊗, and the like—self-evident as they may seem, are the math add-ons, which
could originate only in the “∪-theory” of Section 5. Following von Weizsäcker, it might be
coined the name “Ur-theory”. There are no contradictions in the observations themselves,
regardless of whether we call them macro- or micro-scopic. Contradictions do arise in the
“mathematicae being constructed”.

10. About Interpretations

It is . . . not . . . a question of a re-interpretation . . . quantum mechanics would
have to be objectively false, in order that another description . . . than the statistical
one be possible—J. von Neumann ([25], p. 325)

. . . one begins to suspect that all the deep questions about the meaning of mea-
surement are really empty—S. Weinberg

“At this point in time it appears that a stalemate has been reached with regard to the
interpretation of quantum mechanics” (E. Tammaro [190] (p. 1)). A “stalemate in which
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each side refuses to cede territory but is unable to produce a defining argument that would
change the hearts and minds of the opponents” (M. Schlosshauer [16] (p. 227)).

10.1. Click, Again

The source of the “foundational skirmishes” [16] (p. 227) and the numerous treatments
of QM [7,8], [9] (Ch. 10), [30] (Ch. 10), [33,112]—“the Copenhagen” among them—is the fact
that the α-event and intuitive sense of the Ψ-primitive (pt. S) are a priori endowed with
physical properties, observational/determinative characteristics of the DataSource, and
operationality of the canonical QM-concept of the ket-vector |Ψ〉. A representative example
in this regard is one of the first sentences from Everett’s PhD: “The state function ψ is
thought of as objectively characterizing the physical system . . . at all times . . . independently
of our state of knowledge of it” [107] (p. 73), [124] (p. 3), and also, on p. 48, “The general
validity of pure wave mechanics, without any statistical assertions, is assumed for all
physical systems, including observers and measuring apparata”. Furthermore, again the
Everett’s: “The physical ’reality’ is assumed to be the wave function of the whole universe
itself” [67] (p. 100), [107] (p. 70). However, none of these initially exist. The primitive
α-events’ abstractions Ψ ���A α are all there is.

An important point is that the eigen α-click (of a photon/electron in the EPR-experiment,
say) should not be identified with an |α〉-state. The latter is re-developable with respect to
eigen-states associated with other click-sets of any other instruments:

|α1〉 = b1 · |β1〉 +̂ b2 · |β2〉 +̂ · · · = c1 · |γ1〉 +̂ c2 · |γ2〉 +̂ · · · = · · · ,

which is why it is logically meaningless to attribute one α-click to that which carries the
statistics of other clicks βk, γk, . . . and has nothing in common with α. All the more so
the click may not be related with the physical texts or physically descriptive collocations,
such as “the measuring act on Bob’s electron reveals the spin-up state”. As in the “cat
case” (Section 6.3.1), the spin-up here is a click-up rather than a state |↑〉. Similarly, a click
(allegedly of a photon) with Alice/Bob has nothing to do with distance between photons
(the locality “problem”), with speed of light, nor with a kinematic “understanding” of the
photon.

The quantum-detection micro-event is not a classical one as we have been under-
standing it, say, in the special relativity. The “click does not establish the presence of
something” [126] (p. 761), it “is an elementary act of “fact creation.”” [23] (Wheeler). The
facts and phenomena are made up of clicks. That is to say, the distinguished α-clicks
are not the events spaced at some distance from each other or at different points in time.
These are just clicks without accounting to them such descriptive notions, such as distance,
coordinates, point of time t, or the picturesque words, such as “dead/alive/. . . /cat”; of
course, the click itself has no size/duration. Exempli gratia, the particles at accelerators
and their physical properties are observed not as “material bodies in the proper sense of
the word” [109] (p. 62)—this is impossible—but rather through the abstract detector-snaps.
Neither the electron in interferometer nor the Higgs boson at a collider are observed in a
detector as objects that are finite in extent; they are not observable entities. “A Higgs” is
just a frequency 5σ-histogram at LHC.

Likewise, the math-properties of the eigen |α〉 and of the abstract |Ψ〉 can in no
way be “syncretized” with α-events when they are still being accumulated. The screen
scintillation is not a photon and a photon is not a scintillation. Similarly, “the arrival of
an electron” [164] (p. 3) at the screen does not mean “what is here at this point in time
with a given coordinate is the materialized particle-electron”. |α〉-states and α-clicks are
accompanied by the phenomenological and dramatic words “up/down/. . . /alive/dead”,
and this has nothing to do with physics, which is yet to be created. The click should not be
an element of the language in which |Ψ〉-terminology, numbers, and physical properties
have been employed whatsoever.
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10.2. Abstraction the State

Then, something subsequently referred to as a state (the abstract) and a measurement
(the concrete) is created. However, as already stressed in Section 2.4, the process of abstract-
ing is a rather multistage one (Sections 3–9), and a reduction in the long sequence (105)
“for physical reasons” does always contain phenomenological axioms a priori. Clearly, in
the reverse direction, we confront hard-to-disentangle assumptions and the well-known
axiomatic cycle. The physical considerations and phenomenology should not be present in
fundamentals of quantum mathematics.

To avoid paradoxes with “quantum cats”, “state vector does not describe . . . a sin-
gle cat” [68] (p. 37)), and “One cannot think about it as in a superposition” [16] (p. 134;
D. Greenberger), with “the presence of a particle here and there”, or with “quantum bomb-
testing” (Elitzur–Vaidman) [27,33]:

• It is imperative to keep a severe conceptual differentiation [3] (first column) between
the term “the state” and “physically sounding” adjectives/verbs and the spatiotempo-
ral or cause-effect images.

Similarly T. Maudlin: “. . . we need to keep the distinction between mathematical and
physical entities sharp. Unfortunately, the usual terminology makes this difficult” [151]
(p. 129). Even indirect usage of the terminology borrowed from the classical description
can be a source of confusion. For example, a so-called exchange interaction as a “cause of
correlation” between identical parts of system.

It seems preferable to radicalize the non-connectivity of these categories, i.e., to pro-
claim it a postulate. For instance, boldface italics in Remark 12 or the selected thesis on
page 41. At least, the differentiation between them should not be neglected in reasoning,
inasmuch as it seems unrealistic to change the deeply ingrained [59] (p. 7) and ill-defined
terminological locutions, such as a “photon is in a certain state of polarization . . . one pho-
ton being in a particular place” [26] (p. 5, 9), “an observable has/acquires a (numerical)
value when being measured” [92] (p. 310; criticism), “outcome of a measurement” [9,30,33],
“quantum parallelism” [30] (p. 282), or “simultaneous measurability”; see Section 2.1 and
pr. I. (As if we have had some micro-physics prior to math; there is nothing a priori.) With
this mixing, the circular logic pointed out in Remark 10 will be present at all times. See, for
instance, pages 29–30 in the work [74] and notably an emphasized warning by D. Foulis
about “a mistake, and a serious one!”, including criticism addressed to von Neumann on
p. 29. This

• trap of the “braketting the ClassPhys’—|physical words〉 or |in〉/|out〉—is the
very “somewhere . . . hidden a concept” that M. Born spoke of (Section 1.3, p. 4), i.e.,
the mistaken “physicality of |ψ〉 and of +” in (1).

Again (see p. 23 and Section 6.4), even the indirect attempts to physically characterize
the state function or “reconcile” its non-classicality with any observational prototypes are
hopeless. “The wave function is in the head and not in nature” ascribed to A. Zeilinger
(2014) by A. Khrennikov. The function is the very information DataSource around which
all sorts of words on physics—readings, frequencies, objects, phenomena, particles, events,
and other entities—are only slated to create.

• “We cannot . . . manage to make do with such old, familiar, and seemingly indispensi-
ble terms” (Schrödinger (1933)) as the “” physikalische Realität ” . . . . “ Realität der
Aussenwelt ”, “ Real-Zustand eines Systems ”” [89] (p. 34) in the way we are doing
this in classical physics, even philosophically. To put it both informally and more
precisely, the automatic speech—stereotype—“the system in a state” (pt. S) [93,94]
(criticism) should be dismissed from QT-fundamentals because the microscopy of
quantum α-clicks shows that this colloquial habit is an unmeaning collocation.

This term may only be a theoretical conventionality in the follow-up physical theory. See
also the first sentence in [61] and the selected theses on page 23 and at the beginning of
Section 2.4.
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The principled abstractness of the |Ψ〉-object [13] (pp. 27–28) is a core attribute of
quantum theory as contrasted to the classical one. This abstraction cannot be “struggled”;
it is not an idealization of something phenomenological. It is absolute. An interpretative
comprehension such as |dead〉 +̂ |alive〉, even if it is permissible, may issue only from
the |α〉-representations a1 · |α1〉 +̂ a2 · |α2〉 +̂ · · ·, i.e., from a treatment of the (+̂)-addition
(of quantum amplitudes) as an accumulation of α-microevents—many “cat boxes”.

• In other words, the interpretation of the quantum state is its very definiendum (96)–(98).
Even with the physical terminology created, there may be only one paraphrase for
the meaning to the state: an abstract element of the abstract, linear (not Hilbert [130])
vector space over C∗. (Point (4) in Theorem determines a supplement—the number
add-on over the utterly abstract LVS.)

The “not Hilbert” here is because the norm and inner-product are the extra, nonessential
math add-ons over H [130], which come from the follow-up introducing the Born statis-
tics [6]. In and of itself, the state needs none and knows nothing of them. These concepts,
similarly to the descriptive physical notions and a measurement, will be required further
but not now for the calculation of observable quantities: math-calculus of statistics fk and
of means.

We may not blend the fundamentally abstract part of quantum mathematics—pre-
physics and the structural properties ofH—with those in charge of its observational/physical
constituent, i.e., we may not ascribe the ontological status [95,186] to everything. In the
strict sense, the ontology of/and physics, the classical one included, cannot arise before the
statistical processing of quantum micro-events. (Parenthetically, the sixth Hilbert problem
on “Mathematical Treatment of the Axioms of Physics” [191] becomes an ill-posed problem
([130], Section 8).) The processing itself begins with the Born rule [6].

Continuing Scheme (68), a certain parallel takes place between the following couples:

observations’ language: ,R-numbers- +,physical quantities/. . . -
↓ ↑ ↓ ↑

quantum language: ,C-, |Ψ〉-objects- +,physical properties/data/. . . -
.

Just as we are not raising the question about the abstractness/treatment of the ,R-
numbers- in isolation from the ,physical quantities/. . . - (Remark 16), so also we should
not question a treatment or the physical meaning of the ,C-, |Ψ〉-objects-. By analogy,
being torn away from the $-symbol in $5, the number 5 in and of itself may carry neither
the financial nor any other (“bank/(non)commuting/. . . ”) treatment, nor does it contain
some hidden “microeconomic” content. The number has no a “retrograde memory”.

The first “summands” in the aforementioned (+)-conjunctions are the abstracta of
principle. They may exist as the “math-things-in-themselves”, and we know that they really
do just as we are comprehending the existence of the N-arithmetic that has been constructed
in Section 7. The second “summands” are the interpretative supplementations in their own
rights. If a theory does not spell out a nature of accounting the second to the first (pr. II),
then it is impossible to find-out/guess the “true” interpretation or nonexistent physical
“protosource” of the abstracta n, a, and |Ψ〉 “ab intra” their algebras (57), (71)–(74), (79)–(81),
(88), and (96)–(98) or from the Hilbert-space mathematics. See again Remarks 2 and 16, and
warnings by Ludwig of “a mistake. . . . false notion that “mathematical objects” must be
pictures of physical objects” [94] (p. 228) and of a “reality [of the] word “state,” a reality in
which one must not believe!” [58] (p. 78). A. Peres also makes special note of the analogous:
“. . . physicists have been tempted to elevate the state vector ψ to the status of substitute of
reality” [113] (p. 645); D. Mermin puts this as “a regretable atavistic tendency to reify the
quantum state” [23] (p. 144).
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10.3. Measurement “Problem”

The most representative example is the (in)famous problem of measurement [25]
(Section V.4 and Ch. VI)—“tyranny of thinking of von Neumann measurements” [23]
(p. 534) with the collapse postulate. This is the subject of an “endless stream of pub-
lications suggesting new theories . . . unending discussions . . . symposia” [91] (p. 519)
and of “the mountains of literature” [94] (p. 118) containing opposing opinions [91]
(Ch. 11), [9,18,19,30,45,56,159]. It is, indeed, the source of questions around locality in
QM. As we have seen, this problem “is simply not a problem at all!” [50] (p. 1013). It
is a nonexistent—“the alleged . . . does not exist as a problem of quantum theory” [12]
(p. 15)—as well as a pseudo problem and a non-issue [93] (p. 79 (!)), [94] (p. 118 (!)) [110],
because

• in measurements, nothing propagates (much less at superluminal speeds) or interacts;
nothing collapsed [92] (Section XVII.4.3), [9] (p. 328), [58,68], nullified, or localized;
there are no such things as quantum jumps [161]; no “pieces” of the wave function are
“cut out” [192] (p. 57, 158).

It is no exaggeration to say that the need to projective postulate—“a fruit of realist
thinking” [4] (p. 172)—is much the same as the necessity for the world ether supporting the
electromagnetic waves. All the more so because such a view of the theme has been present
in the literature for quite a while [4,13,15,32,37,93,94,124,188] even as appeals.

“There is nothing . . . problematic about measurement”
L. Ballentine (1996)

“. . . there is no collapse of wave packets in reality. Do not believe in fairy tales!”
G. Ludwig [58] (p. 104)

“A state vector . . . does not evolve continuously between measurements, nor sud-
denly “collapse” into a new state vector whenever a measurement is performed”

A. Peres [113] (p. 644)

“This “reduction” . . . is not a new fundamental process, and, . . . has nothing . . .
to do with measurement”

L. Ballentine [34] (p. 244)

“The mystifying notions arise from attributing physical reality to the “jump” at a
given time t”

G. Ludwig [92] (p. 327)

“Really bad books . . . claim that the state of the physical system . . . collapses into
the corresponding un. This is sheer nonsense. (Finding appropriate references is
left as an exercise for the reader.)”

A. Peres (2003)

Englert [12] (p. 8) does particularly object to the “folklore that “a measurement leaves
the system in the relevant eigenstate” . . . It is puzzling that some textbook authors consider
it good pedagogy to elevate this folklore to an “axiom” of quantum theory”. See also the
second epigraph to Section 2.

The point here, put very briefly, is that the measuring the “problem” is one of principle
not of practice. Expressed by Bell’s words, “the word [measurement] has had such a
damaging effect on the discussion, that . . . it should now be banned altogether in quantum
mechanics” [28] (p. 216). J. Bub and I. Pitowsky do insist in the book [8] (p. 453) that
presumptions “about the ontological significance of the quantum state and about the
dynamical account of how measurement outcomes come about, should be rejected as
unwarranted dogmas about quantum mechanics”.

Another example of circular logic is the critiqued [30,71,193] meaning of the phrase
“an ensemble of similarly prepared systems” [8,30,90]. The revision of this (by and large
correct) idea, as was set forth above, does actually demonstrate that, like in the ensem-
ble approaches, “quantum mechanics is a statistical theory” [4] (p. 2), [58] (p. 123), [129]
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(p. 223), [5,34,40,58,64,90,93,187], with a frequency content of randomness and the clas-
sical logic [58] but with a different math-calculus of the statistical weights. The “differ-
ent” is due to the fact that the theory is not tied, as in the classical description, to the
notion of an observable quantity, and the f’s are calculated from the “other/abstract”
numbers [6]. However, for the same reason, emphasizing a close resemblance with the
statistical mechanics [11,194], ref. [124] (p. 72) and “explanations” with playing cards/dice,
coins/balls/. . . /urns/“socks” [28] (Ch. 16) or with the classical phenomena—unusual as it
may sound—are in error. The case in point is not a drastic dismissal of the classical ideas,
but rather a “quantum audit” of the classical-physics language [130] (Section 8). The correct
“audit” of the classical is a recreation of the classical:

,
��������
classical

�����������
phenomena-	 ,classical events/objects-	 ,micro world-	

,micro-event-	 ,quantum micro-event-	(!) ,abstract click-	
,abstraction Ψ ��A α-	 ,⎧⎩Ξ

⎫⎭-brace (24), . . . -	 ,state |Ψ〉-	
,observable concepts-	 ,observable numbers-	 · · ·	
,statistics, the concept of a mean-	 ,state, objects, . . . , physics-	

,
��������
classical

�����������
phenomena-

(107)

and, consequently, the creation of the classical concept of a measuring process. Thus, this
scheme along with quanta’s statistics and LVS-mathematics all add up to a positive answer
to Wheeler’s question: “Is the entirety of existence, rather than being built on particles or
fields of force or multidimensional geometry, built upon billions upon billions of elementary
quantum . . . , . . . acts of “observer-participancy,” . . . ?” [16] (p. 286), [23].

10.4. Interpretations and Self-Referentiality

Although we have not yet touched on other significant attributes—the means over
statistics, operators, and products of H-spaces will be considered in their own rights—it is
clear that the need to quest for a description in terms of hidden variables is also eliminated.
Even from a formalistic perspective, the proof of the presence/absence [25,27,195] of these
“physical” quantities should be attributed to the semantic conclusions of meta-theory
(=physics) [106], i.e., to theorems about formal theory rather than to theorems of its inner
calculus. In our case, and more generally, the formal theory is the syntactical axioms
of QM. The corollaries of such axioms are inherently unable to lead to statements about
interpretations [106] since theorems about object-theory itself is not provable by means of
its object-language [106,120]. In a word, the nature and interpretation of axioms are not
recovered from the very axioms or from the replacement thereof by the other ones.

A similar line of reasoning has accompanied QT for quite a while: “claim that the
formalism by itself can generate an interpretation is unfounded and misleading” [68]
(p. 38). It is known that even the mathematics itself cannot be grounded in a self-contained
way [98] (p. 201), [105,149], [173] (!). All of this stands in stark contrast with the known
statement of DeWitt to the effect that “mathematical formalism of the quantum theory is
capable of yielding its own interpretation” [80] (pp. 160, 165, 168) or that “conventional
statistical interpretation of quantum mechanics thus emerges from the formalism itself” [80]
(p. 185). In particular, if we take account of the fact that it is not the theory itself but only its
formal interpretation that determines the very semantic terms truth/falsity/provability of
sentences (K. Gödel). In turn, “interpretation . . . allows a certain freedom of choice” [78]
(p. 310). See also [96] and specifically Ch. III in [105]. In other words, the subconscious
striving for “to interpret” and transporting the macro into the micro is the very thing that
prevents us from truly gaining an understanding of quantum mathematics.

In any case, the fact that we were initially constructed the set-theoretic model (cf. [96])
rather than an interpretation simply eliminates the problem or, at most, transfers it into the
domain of questions about micro-transitions ���A and T-family as entities being employed
(see Remark 2). This is the domain of questions that invoke the set theory and touch on
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the ontological status of sets at all [149] (Sections V.8 and 9 (!)). Be this as it may, logic—
formalized or not—does not allow us to make statements about statements, much less
a statement that refers to itself. The self-referentiality (“von Neumann catastrophe”) is
almost the chief trouble [4,18] encountered in quantum foundations.

All of this, of course, does not depend on whether interpretation is built in a strictly
formalized form [120] or in a physically natural one. In effect, the issue of interpretations—
in the rigorous definition sense [106] (Ch. 2), [120], ref. [136]—is simply nonexistent.
Accordingly, the demystification of the known and the quest for ontological interpretations
to a-coordinates of the |Ψ〉-vector [33,165,188]—the wave function—is no longer a problem,
and with it, disappears the Feynman question of “the only consistent interpretation of this
quantity” [164] (p. 22). See also M. Leifer’s review [186] and extensive list of references
therein.

11. Closing Remarks

. . . quantum mechanics has been a rich source for the invention of fairy tales—
G. Ludwig and G. Thurler ([58], p. 122)

I simply do not know how to change quantum mechanics by a small amount
without wrecking it altogether . . . any small change . . . would lead to logical
absurdities—S. Weinberg (1994)

11.1. Language and “Philosophy of Quanta”

Remembering and continuing Section 1.3, it is generally tempting to infer that when
creating the theory, we may not rest on any meanings that are tacitly associated with the
typical terminology—no matter physical or mathematical—and on the tacit assumption
that customary concepts are substantially correct [98].

One should also be very cautious about the wording of statements concerning the
phenomena outside the everyday experience. One means that even the very natural
utterances—“here/there, electron with Alice/Bob” (locality), “big(ger)/small(er)”, “let
there be a two-particle S” (quantitative statements), “subsystem S1 in such-and-such
system S , consisting of . . . ” (statements about structure)—are de facto “(apparently)
“plausible” conclusions from the observed phenomena” [92] (p. 334). These have comprised
an equivalent of a measurement/preparation ([4] (pp. 195–196) and Section 3.1) and of
physical (pre)imagery and thereby imitate the way of thinking and schemes of classical
mechanics; see also the second epigraph to Section 6.

• The “particle, here/there, big/small, this/that/another one, before/after”, and the like
are already “illegal” observations, numbers of sorts, and a premature arithmetization,
i.e., this is already the subconscious quantifying the micro-events or the arrays thereof
by a theory and classical (18) and (19) at that.

Reality’s attributes are only slated to create. Say, when we decrease the particles in
experiments and reach the atomic level, we still stay in the atomistic paradigm of the
particle and of numbers: the objects having mass, their coordinates, degrees of freedom,
etc. This is a mistaken intuition. Very informally, we should “religionize themselves” to
the quantum micro-events, while the return to the words “particle/. . . /macro” must be
performed by a new reasoning mechanism. It comprises, apart from the quantum-LVS

apparatus (Section 8.1), the re-creation of the very classical concept of the particle, as
schematized in (107).

At the other extreme is an attempt to “hurry up” and bring the reasoning to a Hilbert-
space theory or to the quantum mixtures (102). As in Section 6.5, all this may well be
incorrect [151]. A source of antinomies is implicit, implying, i.e., in the eclectic—this we
stress once again—confounding the observations, clicks, numbers, physics, time, math,
and imagination, followed by the uncontrollable lexical-“branching”, such as replacing the
symbol +̂ with a meaning taken from reality. For instance, the emerging the word “simulta-
neously” in the sequence ,the (+̂)-superposition of multiple states-	 ,simultaneously
- 	 ,quantum parallelism- [152] (p. 26). W. James has underscored that the “viciously
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privative employment of abstract characters and class names is, . . . , one of the great original sins
of the rationalistic mind” [23] (p. 547). This results in the sense messes, well-known no-go
(meta)theorems [28,44], the locality “problem” in QM, and paradoxes such as the EPR [92]
(Section XVII.4.4) or the jocular Bell question: “Was the world wave function waiting to
jump for thousands of millions of years . . . for some more highly qualified measurer—with
a Ph.D.?” [28] (p. 117), [9] (p. 18), [15,37]. As to the no-go theorems, Ballentine remarks that
“the growing number [thereof], combined with some peculiar terminology, has led to confu-
sion . . . A woefully common feature, . . . each protagonist had some interpretation of the
quantum state in mind, but never stated clearly what it was” [133] (pp. 2 and 6). Ludwig,
echoing Ballentine, asks: “However, what do we mean by the notion of a state?” [87] (p. 5).

Clearly, the quantum-clicks do not depend on whether personified homo sapiens
interpret the arrays thereof or a biological observer such as a “Heisenberg–Zeilinger
dog” [196] (pp. 171–174) [12,65] does simply perceive. The observer—without their “subjec-
tive features” [98] (pp. 55, 137) or “the anthropomorphic notions “specifying” and “know-
ing” ”[113] (p. 645)—is just a formally logical element O in theory. Without numbers,
solely a quantitative theory is not possible (Section 6.5) because the entire terminology
becomes indefinite.

Thus, once a mathematics and unambiguous language—spectra, means, and macro-
scopic dynamical models—have been created, not only is there no longer a need to call on
the “otherworldly”, eccentric, or anthropic explanations, but the very presence of a certain
share of mysticism, of subjectivity, and of (circum-)philosophy [192]—“a philosophical
Überbau” [12] (p. 12)—in quantum foundations becomes extremely questionable. Ludwig
is much more thoroughgoing in his assessment of the language games, which he refers to
as the “philosophical gymnastics” [93] (p. 79).

Eventually, we no longer have any freedom to invent exegeses of the quantum-
postulate as “a Bible” or “a sacred text” [23] (p. 1038). Moreover, the liberty to ask questions
is no longer there since the created object-language of states, of spectra, and of frequencies
narrows down the entire admissible lexicon. It is able to generate questions that are not
only ill-posed but must, as in Section 6.5, be qualified as “meaningless” [14] (p. 422). For
example, those that are based on (human-beings’) intuition taking the term observation or
questions about “the underlying nature of reality”. As we mentioned earlier, the notion
of “a physical level of rigor” (in reasoning) and the physical justification will not help us
with regard to the grounds of QT. Another example is the attempts at (or “to refrain from”)
“tying description to a clear hypothesis about the real nature of the world” (Schrödinger
(1933)) and, in general, the question of “how it should function” at the micro-level. See
also [58] (p. 100) on “reality”.

In the classical framework, the language sentences are always interrelated since all of
them, one way or another, handle the observational notions. In the famous Como address,
N. Bohr had remarked that “every word in the language refers to our ordinary perception”.
These notions, in medias res, form our natural speech when describing experiments but
are inadequate in the quantum [98] (!). That is, these concepts do not make clear the fact
that behind the QT are some structureless abstracta, rather than an “improved” physico-
mathematical axiomatics or sophisticated math vehicles, e.g., non-commutative calculus;
we believe that these are {Ψ ���A α, ∪} and procedures (105)—rather than an ‘improved’
physicomathematical axiomatics or sophisticated math vehicles; e.g., non-commutative
calculus.

Language intuition usually makes it easy for us to do away with paradoxes the
semantic closedness causes. However, the quantum situation is just one of a misuse
of the vocabulary, i.e., when contradictions are inevitable, and this unlimited source of
confusion demands control over the language itself. One does create the other (“relative”)
languages within itself [132]: at first, the language of quantum mathematics and thereafter
the language of math-physical description and of classical physics, followed by the language
of the semantic interpretations. This is just what we call the metamathematics and math-
logic [105], discriminating between metamathematics and philosophy [106]. If this is not
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the case—the “quantum conclusions” from thinking (even if partly/implicitly) in terms of
physical influences between the classical objects (Deutsch’s “bad philosophy”)—then we
obtain an everlasting source of paradoxes since human intuition has roots in the classical
world and is a rather problematic and personal category. A. Stairs calls upon “Do not trust
intuition” [73] (p. 256) because it is not meant for QM.

Inasmuch as the conceptual autonomy in quantum fundamentals is minimal (Section 2),
the quantum scheme of things must commence with an extremely “ascetic” language
(Remark 10), and it should be independent of our intuitive knowledge, which “tend to
declare war on our deductions” (van Fraassen). To avoid collisions between theory and
meta-language, the subconscious striving of the natural language to include one in the
other has to be limited. Einstein adds also the situations when “er führt dazu, überhaupt
alle sprachlich ausdrückbaren Sätze als sinnleer zu erklären” [89] (p. 33). A. Leggett’s
comments on “pseudoquestions” and “gibberish” at the end of Section 1.2 may then be
strengthened so that the meaninglessness by itself should become a constitutive element of
language, including the language of “philosophy of quanta”.

• The rudimentary quantum (meta)mathematics creates the notion of a prohibited state-
ment/phrase/question, one that is devoid of meaning. These are sentences that
involve the classical analogies in the circumvention of 1) the |α〉-representatives
to the non-interpretable abstraction |Ψ〉 and of 2) the numerical quantities’ nature
(Section 9.1).

It is appropriate at this point to quote the ’t Hooft remark: “I go along with everything
[Copenhagen] says, except for one thing, and the one thing is you’re not allowed to ask any
questions” and the Einstein reasoning on page 669 in the collected articles [131]: “One may
not merely ask . . . not even ask what this . . . means”. See also Heisenberg’s discussion of
the problem ,language � concepts- on pages 48–54 in [109], their work [197], the pages
234–235 in [131] with Bohr’s appeals regarding the “necessity of a radical revision of basic
principles for physical explanation . . . revision of the foundation for the unambiguous use
of elementary concepts”, and their comments on words “phenomena”, “observations”,
“attributes”, and “measurements” on p. 237.

The literature on this subject, even taking only the qualified sources into account, is
vast [1–3,8,9,16,24,27,29–31,33,41,44,57,64,71,77,119,151,154,159,165] and abounds with
terminology—“words, ostensibly English” (A. Leggett [9] (p. 300; emphasis ours))—that
defies translation into the language of events or of concretization: observer’s consciousness,
parallel/branching universes/worlds, free will, catalogue of knowledge, world branch,
and also such collocations as rational agents, information (“Whose” and “about what?” [28],
by “Bell’s sardonic comments” [30] (p. 262)) has been recorded/transmitted/(not)reached
an observer (Wigner’s friend), teleporting a state, many-minds/worlds/words, quantum
psychology, psycho-physical parallelism (in this connection, see [148] (p. 86 (!))), and many
other “bad words” by Bell. He italicizes them on p. 215 of [28].

Of course, “without philosophy, science would lose its critical spirit and would eventu-
ally become a technical device” [33] (p. 800), but, on the other hand, “the concept of the free
will cannot be defined by indications on devices” [94] (p. 151), and “one must not confuse
physics with philosophy” [12] (p. 12). Furthermore, yet, we should like to remember a
Heisenberg attitude [197] on “a misconception . . . [and ’possibility’] to avoid philosophical
arguments . . . and the way of thinking of . . . physicists who insisted on not dealing with
philosophy”. Namely, “[w]e can not avoid using a language bound up with the traditional
philosophy”. One cannot but mention the Rovelli article [198] that is entirely devoted to
this topic. Therefore, “[i]t must be our task to adapt our thinking and speaking—indeed
our scientific philosophy—to the new situation” with regard to the abstract meaning of the
linear quantum addition +̂ and quantum math altogether; all of the quotations are from
pages 32 and 37–38 of the work [197].

As concerns the attitudes towards QM—at the suggestion of M. Tegmark in the 1990s,
polls and statistical analysis of their correlations were even carried out [7]. There are also
known attempts to involve here the biology of consciousness/brain [71], [119] (Ch. 9), [125],
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[199] (Section 6). Regarding them, however, there have been not merely skeptical but quite
the opposite opinions [94] (Section XII.5 (!)), [200] (Sections 17.5–6). Of special note are
Ballentine’s remark “to stop talking about “consciousness” or “free will”” on the last page
of the preprint [133] and Popper’s criticism of “the alleged . . . intrusion of the observer, or the
subject, [or of consciousness] into quantum theory . . . based on bad philosophy and on a few
very simple mistakes” [108] (pp. 11, 17, 42; everything as in the original) with an appeal
“to exorcize the ghost called “consciousness” or “the observer” from quantum mechanics”
[108] (p. 7). “[Q]uantum mechanics is a physical theory, not psychology” [4] (p. 83).

11.2. Math-“Assembler” of Quantum Theory

As a result, we gain “a contribution to philosophy, but not to physics” [82] (p. 86). At
the same time, the proposed math ”∪-assembler”

αj �≈ αk , Ψ ����A α,
⎧⎩Ξ

⎫⎭-brace (32), (∨,∈,∪)-logic (37)–(40)

is quite sufficient for creating the object-language. Giving a natural form to it would be
acceptable; however, it is clear that the set-theoretic ∪-base of the language cannot be
avoided [96,149]. Nevertheless, the syntactically more formal description of the sequence
,transitions 	 brace 	 numbers- is surely of interest until the way of looking at quanta’s
mathematics is harmonized with the math-logic. This would turn, however, all the above
material into a pure-logic text, which we eschew in the present work. It is probably for this
reason that the very important and extremely thorough works (Pre-theories, 76 axioms [93]
(p. 241), ordered sets, morphisms, absence of the word superposition in monographs [87,93],
the (valid) criticism of “theories of . . . so-called states” [58] (p. 78), etc.) by Günther
Ludwig [87,92–94] and by their school are often left out of the literature on quantum
foundations. Among other things, in spite of explicitly pointing out a “solution in principle
of the measuring problem” in [93] (p. V) and “Derivation of Hilbert Space Structure” of [93],
this author has not been mentioned in the detailed reviews [112,118,186] or even in the
books [2,5,8,18,31,119].

11.3. Well, Where is Probability?

An answer to this question in quantum elements is brief enough—nowhere. “There is
no probability meter” [8] (p. 185; S. Saunders), and the relationship of this concept with
empiricism is unique [34] (p. 46)—the statistical proportions fk. Cf. the famous de Finetti’s
(1970) claim that “probability does not exist” [2] and A. Khrennikov’s remarks to the effect
that “the only bridge between “reality” and our subjective description is given by relative frequen-
cies” [23] (p. 139) and that “Experimenters are only interested in . . . frequencies” [150]
(p. 36). Moreover, more carefully stated by von Mises’ words,

“If we base the concept of probability, not on the notion of relative frequency, . . .
at the end of the calculations, the meaning of the word ’probability’ is silently
changed from that adopted at the start to a definition based on the concept of
frequency” ([129], p. 134; all the emphasis ours).

Indeed, suppose that the word “frequencies” has been banned [19] (p. 44) in substanti-
ating the QT-elements and so have the usage of the words “over/repetition/. . . /statistics”.
Then, the questions do immediately arise: why the Kolmogorovian axiomatic, and why does
it have this very quantification? In other words, why zero/one/. . . /positive? Why not the
(−1 . . . 1)-interval? Whence the single-case probability postulates? . . . subjectivity? Well,
what is the quantification thereof, and what does subjectivity do in the natural-scientific
theory?

“. . . it is very doubtful that quantum probabilities can be introduced as a measure
of our personal belief. Well, it may be belief, but belief based on frequency
information”

A. Khrennikov; Växjö Conference (2001)

271



Universe 2022, 8, 217

One way or the other, quantum foundations would demand an interpretation of Kol-
mogorov’s axioms (besides, these are not categorical in contrast to LVS), and the latter,
in turn, demand interpreting the concept of the number—an axiomatic add-on over the
ZF theory [134].

Bearing in mind the primary nature of numbers and nontriviality of their emergence
in physical theory (Section 7.2), it is not just impossible to avoid the statistical weights
fk [121] (p. 25). Logic also forbids them from being subsidiary with reference to probability
in any definition: “probability is the picture for reproducible frequencies; and it is the
[only] prescription for a correct experiment” [94] (p. 144). Pauli, among the few, had been
“convinced that

• the concept of ’probability’ should not occur in the fundamental laws of a satisfying
physical theory”.

(an excerpt from their 1925 letter to Bohr)

Ensemble empiricism, for its part, is self-sufficient, and the only conventionality within it is
an infinite number of repetitions. In this connection, we cannot agree with a statement of
theorem III in van Kampen’s work [56] (p. 99) and with further comment as to “a single
system” and “calculation of spectra”. At the same time, for formalizing the infinite, there is
an appropriate axiom in the ZF-theory [134,135].

To say all this still informally, any non-statistical/non-ensemble framework for what
we have been calling QM-probability does explicitly or implicitly—if the expression may
be tolerated—“parasitize” on statistics by addressing the words “repetitions, multiplied,
. . . ” and, at the same time, does “attract the empirically vague justifications” in terms of
anthropomorphic surrogates: potentiality, tendency, propensity, the amount of ignorance,
subjective uncertainty [8] or likelihood, degree of belief, and the like [165]. However,
even from a philosophical point of view “probability is a deeply troublesome notion” [16]
(p. 78; L. Hardy), which is supported by the vast literature on this subject [17,24,33], [66] (!),
[81] (pp. 41–43), [170] (Chs. 3–4), [196], [201] (!). According to Deutsch, D. Papineau calls
“this state of affairs . . . a scandal” [8] (p. 550).

An Einsteinian “scientific instinct” [30] (p. 174) against the probability is very well
known [78], and Pauli, again, had been recollecting their (Einstein’s) frequent remarks
in this regard: “One cannot make a theory out of a lot of “maybe’s” [= probably] . . .
deep down it is wrong, even if it is empirically and logically right”. More to the point,
the question of what exactly is meant by a probability event, i.e., “Probability of what
exactly?” [28] (p. 228), is also a matter of principle. The answer to it, as seen above, is this:
“not of the classical events”, i.e., “[n]ot of the . . . being” [28] (p. 228) such as “QM-cats”,
“particle is here/there”, “roll of the dice”, and the like. An excellent text about probability
and the aspects of the probability-physical constructs is the work [202]. Its “verdict”
concerning the treatment of this concept [202] (Sections 4.5 and 8) is clearly Misesian [129],
i.e. the “ensemble and frequency” [66] (p. xiii).

Thus, to sum up, the philosophy/axioms of probability or its “quantum deforma-
tions” should not be present in quantum foundations. There cannot be hidden details
underlying the quantum probability because the “details” imply some terminology with a
classical content. Quantum probability is the statistical regularity. It comes from Kollek-
tivs [129] of abstracta (32) and may only be a shortened term for the relative “frequencies
in long runs” (von Neumann) or “the Einstein hypothesis” by M. Jammer [91] (p. 441).
The realistic/physical/. . . /pictorial adjectives and descriptive supplementations to the
term “long runs” are prohibited. This is why the conventional tractability of the quantum-
postulates’ mathematics, i.e., the calculation of probabilities for the classical events to occur in
the reality—“alive/cat/. . . /imploded/bomb”—“is not adequate” neither as a doctrinal
point of departure nor as a post-math interpretation. It presents us with a circulus vitiosus
of re-exegeses. Fuchs, referring to de Finetti’s words in an interview with Quanta Magazine
(4 June 2015), prognosticates that this conception “will go the way of phlogiston”. The “not
adequate” is a R. Haag quotation, and he expresses this “conviction”, applying it even to
“the conceptual structure of standard Quantum Theory” [101] (p. 743).
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The ultimate conclusion completes Remarks 2 and 7. If we accept the set-theoretic eye
on things, Section 5.1, by all appearances, provides a positive answer to the question about
the rigidity of QT [103]—“change any one aspect, and the whole structure collapses” [57]
(p. 1); see also the second epigraph to this section. At least, it is hard to imagine what any
other axiom-free way of turning empiricism into quantum mathematics would look like, as
soon as we abandon the primitive minimality of the scheme

,distinguishable micro α-events- + ,ensembles of abstracta Ψ ���A α- .
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Abstract: In canonical gravity, general covariance is implemented by hypersurface-deformation
symmetries on thephase space. The different versions of hypersurface deformations required for full
covariance have complicated interplays with one another, governed by non-Abelian brackets with
structure functions. For spherically symmetric space-times, it is possible to identify a certain Abelian
substructure within general hypersurface deformations, which suggests a simplified realization as a
Lie algebra. The generators of this substructure can be quantized more easily than full hypersurface
deformations, but the symmetries they generate do not directly correspond to hypersurface deforma-
tions. The availability of consistent quantizations therefore does not guarantee general covariance or
a meaningful quantum notion thereof. In addition to placing the Abelian substructure within the full
context of spherically symmetric hypersurface deformation, this paper points out several subtleties
relevant for attempted applications in quantized space-time structures. In particular, it follows that
recent constructions by Gambini, Olmedo, and Pullin in an Abelianized setting fail to address the
covariance crisis of loop quantum gravity.

Keywords: canonical gravity; covariance; black holes

1. Introduction

Canonical gravity describes the 4-dimensional, generally covariant structure of space-
time by canonical fields defined on the slices of a spatial foliation. The evolution of
these fields in time as well as transformations between different foliations are described
by the geometrical structure of hypersurface deformations. In a canonical theory, these
transformations are generated by certain phase-space functions, the diffeomorphism and
Hamiltonian constraints. In spherically symmetric models, which will be considered here,
the full set of constraints can be written as D[M] and H[N] with arbitrary spatial functions
M (of density weight −1) and N. The constraint equations D[M] = 0 and H[N] = 0, valid
for any M and N, restrict the phase-space degrees of freedom, given by the spatial metric
and its momentum related to extrinsic curvature.

At the same time, the constraints generate (i) time evolution,

Lt(N,M) f = { f , H[N] + D[M]} (1)

for a phase-space function f along a time-evolution vector field ta = Nna + Msa in space-
time with the unit normal na to a spatial slice and the tangent vector field sa = (∂/∂x)a

within the radial manifold (with coordinate x) of a spatial slice, and (ii) gauge transformations

δξ(η,ε) f = { f , H[η] + D[ε]} (2)

along a space-time vector field
ξa = ηna + εsa (3)

where ε, like M, has density weight −1.
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The reference to normal and tangential directions relative to a foliation implies crucial
differences between the mathematical formulation of hypersurface deformations in canoni-
cal gravity and the more common formulation of general covariance in terms of space-time
tensors. In space-time, vector components ξa transform, by definition, in such a way
that ξa∂/∂xa determines a unique direction independent of coordinate choices. Similarly,
the spatial vector εsa = ε∂/∂x defines a coordinate-independent direction because a scalar
of density weight −1 in one dimension transforms like a 1-form dual to ∂/∂x. The normal
deformation, however, cannot be introduced in this way because the canonical setting
does not provide a time coordinate or the corresponding ∂/∂t. Moreover, even if such a
coordinate could be introduced by hand, for instance by using t merely as a parameter as it
also appears in Hamilton’s equations, it would be impossible to endow η with a density
weight −1 in the time direction because, canonically, there is no time manifold. The only
alternative is given by the procedure that has been used since [1,2] and formalized in [3]:
The normalization of na as a unit vector (with respect to the space-time metric, which is
available in the canonical setting through the spatial metric on a slice as well as lapse N
and shift M) associates a unique normal displacement to any given function η (without
density weight).

The normal can be made unit only by reference to the metric, which provides some
of the canonical degrees of freedom. The geometrical meaning of normal hypersurface
deformations and their commutators depend on the spatial metric, resulting in structure
functions in the canonical bracket relations. As a consequence, the canonical symmetries do
not form a Lie algebra. This property is responsible for several complications well-known in
attempts of canonical quantizations of the theory, starting with [4]. It also makes it harder to
develop suitable mathematical structures for transformations generated by the constraints,
in particular in an off-shell manner when one does not insist on solving the constraint
equations. In [3], for instance, it was shown that a direct composition of transformations
generated by the constraints is meaningful in the sense of path independence (a notion
introduced in there) only on-shell.

The full structure of transformations is nevertheless required for general covariance
to be implemented properly in the solutions of a canonical theory of gravity, in particular
one that has been quantized, modified or deformed by new physical effects. While the
restricted on-shell behavior may be easier to handle, the off-shell structure is important to
make sure that the theory has a well-defined space-time structure, independently of the
dynamics. Only in this case can the theory be considered a geometrical effective theory of
some deeper and as yet unknown quantum space-time, just as different dynamical versions
of gravity given by higher-curvature effective actions make use of the same Riemannian
form of space-time. Because of its importance for covariance and the classification of
meaningful effective theories, we will review the structure of hypersurface deformations
in the beginning of our first section below, combining classic results from gravitational
physics with more recent mathematical developments [5,6].

We will focus on aspects of hypersurface deformations of importance for a suggested
simplification of the hypersurface-deformation brackets in spherically symmetric models,
given by a partial Abelianization [7], but our statements will apply also to a variety of other
reformulations that rely on phase-space dependent lapse and shift. Analyzing a partial
Abelianization in the context of hypersurface deformations, we will show that this con-
struction captures only a certain subset of these transformations and, upon modification or
quantization, does not guarantee that invariance under hypersurface deformations or gen-
eral covariance are still realized. This conclusion may be surprising because, at first sight,
a partial Abelianization appears to implement the same number of symmetry generators as
standard hypersurface deformations and uses only a linear redefinition of the generators.
However, the coefficients of these linear redefinitions are phase-space dependent, compli-
cating their mathematical description [5,6]. (Heuristically, phase-space dependent linear
redefinitions of the generators introduce new structure functions or modify existing ones.)
It is then a non-trivial question whether the redefinitions can be inverted. If they cannot be
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inverted, the redefined theory is not invariant under full hypersurface deformations and its
solutions violate general covariance. An additional construction is therefore needed in a
partially Abelianized model (or other reformulations of standard hypersurface deforma-
tions) in order to recover all space-time transformations. As shown by explicit examples,
this is not always possible if the generators have been modified by quantum corrections.

A recent paper [8] claims that it may be possible to realize general covariance in
partial Abelianizations of spherically symmetric models with different types of quantum
modifications, such as a spatial discretization. The claim is not accompanied by a successful
reconstruction of hypersurface deformations and instead relies on a technical and so far
incomplete case-by-case study of quantities that should be invariant in a covariant theory.
Using our results about general hypersurface deformation structures, we will explain why
the covariance claims of [8] cannot hold.

2. Hypersurface Deformations

Space-time vector fields with their standard Lie bracket generate the Lie algebra of
diffeomorphisms. Similarly, the transformations generated by the canonical constraints
form an algebraic structure. They are labeled by the components η and ε of a vector field ξ
used in (3) in a basis (na, sa) adapted to a spatial foliation, rather than a coordinate basis.
Their commutators

δξ2(δξ1 f )− δξ1(δξ2 f )

= {{ f , H[η1] + D[ε1]}, H[η2] + D[ε2]} − {{ f , H[η2] + D[ε2]}, H[η1] + D[ε1]}
= { f , {H[η1] + D[ε1], H[η2] + D[ε2]}} (4)

are determined by Poisson brackets {H[η1] + D[ε1], H[η2] + D[ε2]} of the constraints (using
the Jacobi identity). Because the unit normal na is normalized by using the space-time
metric, including the spatial components qab on a slice, the brackets of two canonical gauge
transformations [1,2,9] turn out to depend on the metric. In spherically symmetric models,
in which the radial part of the metric is determined by a single function, q (of density
weight 2), we have

{H[η1] + D[ε1], H[η2] + D[ε2]} = H[ε1η′2 − ε2η′1] + D[ε1ε′2 − ε2ε′1 + q−1(η1η′2 − η2η′1)] . (5)

In general, the metric components are spatial functions independent of the components η
and ε that label different gauge transformations. Unlike the Lie bracket of two space-time
vector fields, the bracket of two pairs δξi , i = 1, 2, implied by the Poisson bracket (5) does
not form a Lie algebra because coefficients determined by spatial fields qab or q cannot be
considered structure constants.

2.1. Algebroids

Instead, the brackets have structure functions or, in a suitable mathematical formula-
tion, form the higher algebraic structure of an L∞-algebroid rather than a Lie algebra [10–12].
An L∞-algebroid is defined as a vector bundle over a base manifold M with fiber F and
bracket relations on bundle sections together with suitable anchor maps that map bundle
sections to objects in the tangent bundle of M. A Lie algebroid [13], for instance, has a
Lie bracket [·, ·] on its sections and an anchor ρ that maps (as a homomorphism) bundle
sections to vector fields on the base manifold, such that the Lie bracket of vector fields is
compatible with the algebroid bracket. The anchor map also appears in the Leibniz rule

[s1, f s2] = f [s1, s2] + s2Lρ(s1)
f (6)

where s1 and s2 are sections and f is a function on the base manifold. The anchor brings
abstract algebraic relations on bundle sections in correspondence with geometrical transfor-
mations as vector fields on the base manifold. While an anchor that maps any section to the
zero vector field is always consistent with the Lie-algebroid axioms (in which case the Lie
algebroid is a bundle of Lie algebras given by the fibers), non-trivial transformations on the

281



Universe 2022, 8, 184

base require a larger image of the anchor. A Lie algebroid with a non-trivial anchor gener-
alizes bundles of Lie algebras. Yet more generally, and in particular in the case of structure
functions, the brackets of bundle sections obey the axioms of an L∞-algebra, a generalized
form of a Lie algebra in which the Jacobi identity is not required to hold strictly.

The introduction of the base manifold makes it possible to formalize brackets with
structure functions in terms of an L∞-algebroid. In particular for gravity, the base manifold
is (a suitable extension [6]) of the canonical phase space, given by the spatial metrics and
momenta related to extrinsic curvature. The fibers are parameterized by the components
η and ε of a gauge transformation. A section is then an assignment of spatial functions η
and ε to any metric (or a pair of a metric and its momentum). In this way, the q-dependent
structure function in (5) finds a natural home as a bracket of sections over the space of
metrics (and momenta).

Constant sections, given by pairs of η and ε that are functions on space but do not
depend on the phase-space degrees of freedom, have a bracket, implied by (4), that can be
realized as a special case of sections of a Lie algebroid [5]. General, non-constant sections
of this Lie algebroid have a bracket that may differ from what hypersurface deformations
would suggest. Non-constant sections over phase space, discussed in more detail in [6],
either violate some of the Lie-algebra relations on sections (in the controlled way of a
specific L∞-structure, as it follows from a BV-BFV extension of general relativity [14,15]) or
require a base manifold that extends the phase space of canonical gravity in a way that is
not smooth. (The latter can be formulated by using the notion of a Lie-Rinehart algebra [16]
in which functions on the base manifold are replaced with a suitable commutative algebra.

Phase-space dependent functions η and ε are also important for physics. They are
often considered in specific gravitational applications, as in the simple case of cosmological
evolution written in conformal time where the lapse function equals the scale factor, a metric
component. More importantly for our purposes, the partial Abelianization of [7] relies
on an application of phase-space dependent ε and η. Hypersurface deformations with
such non-constant sections form a Lie algebroid only on-shell [6] when the constraints are
solved. The partial Abelianization is therefore able to describe the solution space to all
constraints and its covariance transformations, but it is not guaranteed that it correctly
captures off-shell transformations which are relevant for general covariance.

Since the standard derivation of the brackets (5) assumes that η and ε are not phase-
space dependent, the general brackets must be extended by additional terms that, heuristi-
cally, result from Poisson brackets of constraints with phase-space dependent η and ε. (A
complete derivation is based on the BV-BFV analysis of [14,15]). The Poisson bracket of
two diffeomorphism constraints, for instance, can still be written in the compact form

{D[ε1], D[ε2]} = D[ε2ε′1 − ε1ε′2] (7)

but with an application of the chain rule in the derivatives. Similarly, the mixed Poisson
bracket of a Hamiltonian and a diffeomorphism constraint in general form reads

{H[η], D[ε]} = H[−εη′] + D[ηLnε] (8)

where the normal derivative Ln of a spatial function is defined by the Poisson bracket with
the Hamiltonian constraint, η1Lnη2 = {H[η1], η2}. For two Hamiltonian constraints, we
have the Poisson bracket

{H[η1], H[η2]} = D[q−1(η1η′2 − η2η′1)] + H[η1Lnη2 − η2Lnη1]. (9)

In general, the extra terms implied by phase-space dependent η and ε, such as those in
ε′ = ∂xε + (∂xqi)(∂qi ε) + (∂xki)(∂ki

ε) summing over the two independent components qi,
i = 1, 2, of a spherically symmetric spatial metric as well as two components ki of extrinsic
curvature, introduce further structure functions, such as ∂xqi and ∂xki, that depend on the
metric as well as its momenta.
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While these Poisson brackets illustrate the additional complications encountered with
phase-space dependent ε and η, they do not immediately show the algebraic nature of
general non-constant sections of hypersurface deformations. In particular, Poisson brackets
do not directly mirror relevant L∞-structures. In our following discussion, we will not
need the full algebraic structure and instead perform a comparison of different versions of
constant and non-constant sections in gravitational applications.

2.2. Partial Abelianization

As noticed in [7], certain linear combinations of H[η] and D[ε] have vanishing Poisson
brackets in spherically symmetric models. In order to specify these combinations, we have
to refer to explicit variables that determine the spatial metric and its momenta. Following
Refs. [17–19], this is conveniently done in triad variables (Ex, Eϕ) such that the spatial
metric is given by the line element

ds2 =
(Eϕ)2

Ex dx2 + Ex(dϑ2 + sin2 ϑdϕ2) (10)

in standard spherical coordinates. (For our purposes, it is sufficient to assume Ex > 0,
fixing the orientation of the triad.) The triad components are canonically conjugate (up to
constant factors) to components of extrinsic curvature, (Kx, Kϕ), such that

{Kx(x), Ex(y)} = 2Gδ(x, y) , {Kϕ(x), Eϕ(y)} = Gδ(x, y) (11)

with Newton’s constant G. (We keep a factor of two in the first relation. As implicitly done
in [7,8], this factor can easily be eliminated by a rescaling of Kx. Since this procedure would
not affect the main equations and conclusions shown below, we do not make use of this
rescaling and instead keep the original components of extrinsic curvature).

The delta functions disappear in Poisson brackets of integrated (smeared) expressions,
resulting in well-defined brackets. In particular, the diffeomorphism constraint

D[M] =
1
G

∫
dxM(x)

(
−1

2
(Ex)′Kx + K′ϕEϕ

)
, (12)

and Hamiltonian constraint

H[N] =
−1
2G

∫
dxN(x)

(
|Ex|−1/2EϕK2

ϕ + 2|Ex|1/2KϕKx + |Ex|−1/2(1− Γ2
ϕ)Eϕ + 2Γ′ϕ|Ex|1/2

)
(13)

where Γϕ = −(Ex)′/(2Eϕ) have Poisson brackets

{D[M1], D[M2]} = D[M1M′
2] (14)

{H[N], D[M]} = −H[MN′] (15)

{H[N1], H[N2]} = D[Ex(Eϕ)−2(N1N′
2 − N2N′

1)] (16)

(for spatial functions Mi and Ni, i = 1, 2, that do not depend on the phase-space variables)
of the correct form for hypersurface deformations in spherically symmetric space-times.

Simple algebra and integration by parts shows that the linear combinations

C[L] = H[(Ex)′(Eϕ)−1 ∫ EϕLdx]− 2D[Kϕ

√
Ex(Eϕ)−1 ∫ EϕLdx] , (17)

where
∫

EϕLdx is understood as a function of x obtained by integrating EϕL from a fixed
starting point up to x, have zero Poisson brackets with one another for different L:

{C[L1], C[L2]} = 0 (18)

for all functions L1 and L2 on a spatial slice. To see this, it is sufficient to notice that the
combination eliminates any dependence on Kx and on spatial derivatives of Eϕ. The anti-
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symmetric nature of the Poisson bracket then implies that it must vanish. Explicitly, the new
combination of constraints takes the form

C[L] = − 1
G

∫
dxL(x)Eϕ

(√
|Ex|

(
1 + K2

ϕ − Γ2
ϕ

)
+ const.

)
. (19)

A free constant appears because a constant
∫

EϕLdx implies a non-vanishing lapse function
in (17), and therefore a non-trivial constraint, but corresponds to a vanishing EϕL in (19).
The new constraint C[L] therefore constrains one degree of freedom less than the original
H[N]. The free constant in (19) can be determined through boundary conditions, which
would also restrict the lapse functions allowed in gauge transformations.

At first sight, it seems that the partial Abelianization eliminates structure functions
from the brackets and may simplify quantization and the preservation of symmetries and
therefore covariance. However, the importance of metric-dependent structure functions in
the standard brackets, which make sure that deformations are defined with respect to a unit
normal that is in fact normalized, raises the question of whether an elimination of these
structure functions and their metric dependence by redefined generators can still capture
the full picture of general covariance. To answer this question, it is instructive to place
the partial Abelianization of the brackets in the context of the hypersurface-deformation
structure. Several features of the full mathematical construction are then relevant.

First, the integration of EϕL required to define C[L] as a combination of H[N] and
D[M] may seem unusual, but while this means that the relevant N and M are non-local in
space, they are local within both the fiber (spatial functions N and M) and the base (the
gravitational phase space with independent functions Ex, Eϕ, Kx and Kϕ or a suitable ex-
tension) that may be used to construct a corresponding L∞-algebroid. The combination (17)
therefore defines an admissible set of sections.

Secondly, while the section defined by (17) makes use of phase-space dependent
N and M in the Hamiltonian and diffeomorphism constraints, which are therefore not
constant over the base manifold, an Abelian bracket (18) is obtained only for functions
L1 and L2 that do not have the full phase-space dependence allowed for general sections.
In particular, if L1 or L2 are allowed to depend on (Eϕ)′ or Kx, the bracket {C[L1], C[L2]} no
longer vanishes, and it can then have structure functions. Partial Abelianization is therefore
obtained for a restricted class of sections, defined such that L does not depend on (Eϕ)′ and
Kx (while it may still have an unrestricted spatial dependence). If L does not depend on
(Eϕ)′ and Kx but on the other independent phase-space variables, Kϕ as well as Ex or on Eϕ

but not its derivatives, the bracket {C[L1], C[L2]} remains zero, but there are then structure
functions in the bracket of C[L] with the diffeomorphism constraint, analogously to (8).
Therefore, structure functions are eliminated from the brackets only for a restricted class of
sections. This observation raises the question whether full covariance can still be realized.

A restriction to constant sections over the base manifold is not unusual, for certain
purposes. A similar assumption is made in the standard form (14)–(16) of hypersurface-
deformation brackets, in which case the original N and M are often assumed to be constant
over the base (while their spatial dependence remains unrestricted). There is, however,
a crucial difference between assuming constant N and M over the base and assuming
constant L over the base: In the former case, allowing for non-constant sections produces
additional terms in the brackets, shown in (7)–(9) , that follow directly from an application
of the product rule of Poisson brackets. The partial Abelianization, however, relies on
cancellations between different structure functions in the original brackets that are no
longer realized once non-constant sections with phase-space dependent L are allowed.

In particular, allowing for phase-space dependent L and M in the (D[M], C[L]) system
makes the transformation from (N, M) to (M, L) invertible. It is then possible to write the
original H[N] as a combination of D[M] and C[L] in the partial Abelianization, regaining
the full non-Abelian brackets with metric-dependent structure functions. Restricting the
system to phase-space independent L, by contrast, implies that the transformation from
the original hypersurface-deformation structure to the brackets of D[M] and C[L] is not
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invertible. It is then unclear whether hypersurface deformations and general covariance
can be recovered from a partial Abelianization, in particular if the latter has been modified
by quantum corrections.

2.3. Modified Deformations

It has been known for some time [20–22] that spherically symmetric hypersurface
deformations can be modified consistently, maintaining closed brackets while modifying
the structure functions. The dependence on Kϕ in (13) can be generalized to

H[N] =
−1
2G

∫
dxN(x)

(
|Ex|−1/2Eϕ f1(Kϕ) + 2|Ex|1/2 f2(Kϕ)Kx + |Ex|−1/2(1− Γ2

ϕ)Eϕ + 2Γ′ϕ|Ex|1/2
)

(20)

where f1 and f2 are functions of Kϕ related by

f2(Kϕ) =
1
2

d f1(Kϕ)

dKϕ
. (21)

If this equation is satisfied, the bracket of two Hamiltonian constraints is still closed,

{H[N1], H[N2]} = D[β(Kϕ)Ex(Eϕ)−2(N1N′
2 − N2N′

1)] (22)

for phase-space independent N1 and N2. In this bracket, D[M] is the unmodified diffeo-
morphism constraint, but the structure function is multiplied by a new factor of

β(Kϕ) =
d f2(Kϕ)

dKϕ
=

1
2

d2 f1(Kϕ)

dK2
ϕ

. (23)

Additional terms in the bracket for non-constant sections follow immediately from the
product rule for Poisson brackets.

Similarly, the Abelianized constraint C[L] can be generalized in its dependence on Kϕ,
using the same function f1 as before:

C[L] = − 1
G

∫
dxL(x)Eϕ

(√
|Ex|

(
1 + f1(Kϕ)− Γ2

ϕ

)
+ const.

)
. (24)

Its brackets remain Abelian for phase-space independent L. There is no obvious term in
C[L] where the second function f2 might appear or the important consistency condition (21).
It therefore seems easier to modify (or quantize) the constraint C[L] compared with H[N].
However, for full hypersurface deformations and covariance to be realized in the modified
setting, we still have to make sure that the transformation from (N, M) to (L, M) can be
inverted. As shown in [23], this is possible only if we also modify the transformation (17) to

C[L] = H[(Ex)′(Eϕ)−1 ∫ EϕLdx]− 2D[ f2(Kϕ)
√

Ex(Eϕ)−1 ∫ EϕLdx] (25)

where f2 obeys the same consistency condition with f1, (21), as derived from the modified
Hamiltonian constraint. The partial Abelianization and the original form of hypersurface
deformations therefore imply equivalent results, provided one makes sure that the transfor-
mation of sections can be inverted. Only then can access to full hypersurface deformations
and covariance be realized.

3. Non-Covariant Modifications of Abelianized Brackets

A recent paper [8] by Gambini, Olmedo and Pullin (GOP) argues that general co-
variance can be realized in modified versions of spherically symmetric models, for which
a partial Abelianization of the brackets plays a crucial role: As the abstract claims, “We
show explicitly that the resulting space-times, obtained from Dirac observables of the
quantum theory, are covariant in the usual sense of the way—they preserve the quantum
line element—for any gauge that is stationary (in the exterior, if there is a horizon). The con-
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struction depends crucially on the details of the Abelianized quantization considered,
the satisfaction of the quantum constraints and the recovery of standard general relativ-
ity in the classical limit and suggests that more informal polymerization constructions of
possible semi-classical approximations to the theory can indeed have covariance problems.”

These claims raise several questions. For instance, how can the construction depend
“crucially on the details of the Abelianized quantization considered” if a partial Abelian-
ization is either completely equivalent to the non-Abelian orignal version of hypersurface
deformations (if the transformation is made sure to be invertible) or gives access to only
a subset of hypersurface deformations (if the transformation is not invertible owing to a
restriction to a subset of sections)?

A closer inspection of technical calculations performed by GOP shows that spheri-
cally symmetric hypersurface deformations are, in fact, violated in the construction. GOP
use two different kinds of modifications, a generalized dependence of C[L] on Kϕ of the
form (24), and a spatial discretization of phase-space functions and their derivatives. Be-
cause the authors use a certain combination of solutions to the constraints and gauge-fixing
conditions, it turns out that only the latter modification survives in the final expressions for
line elements that are supposed to be invariant.

However, also the former (a generalized dependence on Kϕ) is relevant because, as we
have seen, the correct form of a modification must appear in two different places, in the
constraint C[L] and in the transformation back to unrestricted hypersurface deformations.
These two appearances are clear but somewhat implicit in [8]: The modified C[L] is implied
by the modified solutions in Equation (14) in [8] (or, equivalently, (21) there, referring to the
preprint version) where f1(Kϕ) = sin2(ρKϕ)/ρ2 with a spatial function ρ. The modified
transformation back to unrestricted hypersurface deformations is implied by Equation (20)

in [8] which in our notation amounts to replacing Kϕ in (17) with
√

f1(Kϕ). Using the
same function f1(Kϕ) is crucial for the constructions in [8] because the partial gauge fixing

employed there replaces
√

f1(Kϕ) with a fixed function on space (rather than phase space).
The same gauge-fixing function is then used in both places, in the constraint C[L] or its
solutions and in the transformation back to unrestricted hypersurface deformations from
which a line element can be constructed. However, this construction, which is equivalent

to assuming f2(Kϕ) =
√

f1(Kϕ) in (25), violates the condition (21) required for unre-
stricted hypersurface deformations to follow for the modified constraint. (For the specific
f1(Kϕ) considered by GOP, f2 should have an additional cosine factor, or equivalently
have a doubled argument of the sine function.) The constructions of [8] therefore violate
hypersurface deformations.

How can GOP then claim to have performed crucial steps toward demonstrating
general covariance in this setting? Unfortunately, much of the constructions are obscured by
an application of incompletely defined mixtures of gauge fixings and idiosyncratic notions
of observables. Here, it suffices to highlight only a few of the shortcomings found in the

GOP analysis. (For more details, see [24].) Continuing with the replacement of
√

f1(Kϕ)

by a gauge-fixing function that depends only on space, GOP replace any appearance of√
f1(Kϕ) with gauge-fixing functions (on space) derived from the classical solutions for

Kϕ in two specific slicings. Implicitly, the authors simply remove the modification in

this way because they indirectly equate
√

f1(Kϕ) with Kϕ, mediated by the gauge-fixing
function. As a result, they do not test how non-classical f1(Kϕ) can be consistent with
covariance. It is also problematic that this step in a rather careless gauge-fixing procedure
replaces a phase-space function Kϕ that does not Poisson commute with the constraints
with a spatial function that does obey this commutation property. The procedure turns a
Kϕ-dependent expression for Eϕ, obtained by solving C[L] = 0, into a function that Poisson
commutes with C[L]. GOP then call the result a Dirac observable, even though Eϕ is not
gauge invariant.
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After replacing Kϕ with a spatial function, the resulting expression for Eϕ still does
not Poisson commute with the diffeomorphism constraint and is therefore not a Dirac
observable, even if Kϕ could meaningfully be replaced. The same expression for Eϕ also
depends on Ex, which is not a spatial invariant. Indeed, unlike C[L], the diffeomorphism
constraint (12) depends on Kx and therefore does not Poisson commute with Ex. GOP
arrive at their conclusion about Eϕ being a Dirac observable by misidentifying Ex as a Dirac
observable because the (loop) quantization procedure they use establishes a correspondence
between an operator Êx and labels of a spherically symmetric spin network state [17,25]
that are unchanged by the spatial shifts of a finite diffeomorphism. However, having
a correspondence between a classical object, Ex, that is not a Dirac observable and a
quantum operator, Êx, that is a Dirac observable may indicate that the theory fails to have
the correct classical limit. Since this way of imposing the diffeomorphism constraint is
directly inherited from more general constructions in the full theory of loop quantum
gravity [26,27], the issues revealed by our analysis of [8] might hint at deeper problems
within the kinematics of loop quantum gravity.

4. Conclusions

Our discussion of phase-space dependent coefficients in hypersurface deformations
has clarified a previously puzzling issue of partial Abelianizations in spherically symmetric
models: Is it possible for partial Abelianizations to simplify the construction of quantum
modifications of hypersurface deformation generators and, at the same time, retain full
access to all transformations required for general covariance? We have shown that the
answer is negative. A simplified construction of modified generators is based on the absence
of structure functions in partially Abelianized brackets obtained for a specific choice of
phase-space dependent gauge generators (lapse and shift functions). However, the partial
Abelianization is maintained only if the new generators are then restricted to be phase-space
independent. This condition renders the transformation from hypersurface-deformation
brackets to partially Abelian brackets non-invertible. Access to unrestricted hypersurface
deformations and general covariance is therefore lost in a partially Abelianized setting.
Consistent modifications of the partially Abelian brackets then do not necessarily imply
consistent realizations of general covariance.

A recent paper [8] by Gambini, Olmedo and Pullin has implicitly recognized this
shortcoming and instead proposed to test general covariance in a tedious case-by-case
study of presumed invariants, beginning with a discretized version of the line element. We
have pointed out a specific place (the choice of modification functions f1 and f2) where
hypersurface deformations are treated inconsistently in these constructions, which may
perhaps lead to improved versions of the transformations considered by GOP. However,
correcting this inconsistency requires an analysis of unrestricted hypersurface deformations
even in the partially Abelianized setting, making sure that the transformation between
these two versions of the brackets can be inverted. It is therefore impossible to analyze
covariance in isolation from general hypersurface deformations, as proposed by GOP.
No-go results [28] for covariance in models of loop quantum gravity, partially based on
various analyses of modified hypersurface deformations, therefore cannot be evaded by
the constructions of GOP.
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Abstract: We propose a generalization of the external direct product concept to polyadic algebraic
structures which introduces novel properties in two ways: the arity of the product can differ from
that of the constituents, and the elements from different multipliers can be “entangled” such that the
product is no longer componentwise. The main property which we want to preserve is associativity,
which is gained by using the associativity quiver technique, which was provided previously. For
polyadic semigroups and groups we introduce two external products: (1) the iterated direct product,
which is componentwise but can have an arity that is different from the multipliers and (2) the hetero
product (power), which is noncomponentwise and constructed by analogy with the heteromorphism
concept introduced earlier. We show in which cases the product of polyadic groups can itself be a
polyadic group. In the same way, the external product of polyadic rings and fields is generalized. The
most exotic case is the external product of polyadic fields, which can be a polyadic field (as opposed
to the binary fields), in which all multipliers are zeroless fields. Many illustrative concrete examples
are presented.

Keywords: direct product; direct power; polyadic semigroup; arity; polyadic ring; polyadic field

MSC: 16T25; 17A42; 20B30; 20F36; 20M17; 20N15

1. Introduction

The concept of a direct product plays a crucial role in algebraic structures in the study
of their internal constitution and their representation in terms of better known/simpler
structures (see, e.g., [1,2]). For instance, in elementary particle physics, the decomposition
of a gauge symmetry group of the model to the direct product gives its particle content [3,4].
Furthermore, the concept of semisimplicity in representation theory is totally based on the
direct product (see, e.g., [5,6]).

The general method of the construction of the external direct product is to take the
Cartesian product of the underlying sets and endow it with the operations from the
algebraic structures under consideration. Usually this is an identical repetition of the initial
multipliers’ operations componentwise [7]. In the case of polyadic algebraic structures,
their arity comes into the game, such that endowing the product with operations becomes
nontrivial in two aspects: the arities of all structures can be different (but “quantized”
and not unique) and the elements from different multipliers can be “entangled” meaning
that the product is not componentwise. The direct (componentwise) product of n-ary
groups was considered in [8,9]. We propose two corresponding polyadic analogs (changing
arity and “entangling”) of the external direct product which preserve its associativity, and
therefore allow us to analyze polyadic semigroups, groups, rings and fields.

From a mathematical viewpoint, the direct product is also important, especially be-
cause it plays the role of a product in a corresponding category (see, e.g., [10,11]). For
instance, the class of all polyadic groups for objects and polyadic group homomorphisms
for morphisms form a category which is well-defined, because it has the polyadic direct
product [12,13] as a product.

Here we also consider polyadic rings and fields in the same way. Since there exist
zeroless polyadic fields [14], the well-known statement (see, e.g., [2]) of the absence of

Universe 2022, 8, 230. https://doi.org/10.3390/universe8040230 https://www.mdpi.com/journal/universe289
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binary fields that are a direct product of fields does not hold in the polyadic case. We
construct polyadic fields which are products of zeroless fields, which can lead to a new
category (which does not exist for binary fields): the category of polyadic fields.

The proposed constructions are accompanied by concrete illustrative examples.

2. Preliminaries

In this section we briefly introduce the usual notation; for details see [15]. For a non-
empty (underlying) set G the n-tuple (or polyad [16]) of elements is denoted by (g1, . . . , gn),

gi ∈ G, i = 1, . . . , n, and the Cartesian product is denoted by G×n ≡
n︷ ︸︸ ︷

G× . . .× G and
consists of all such n-tuples. For all elements equal to g ∈ G, we denote n-tuple (polyad) by
a power (gn). To avoid unneeded indices we denote with one bold letter (g) a polyad for
which the number of elements in the n-tuple is clear from the context, and sometimes we
will write

(
g(n)

)
. On the Cartesian product G×n we define a polyadic (or n-ary) operation

μ(n) : G×n → G such that μ(n)[g] %→ h, where h ∈ G. The operations with n = 1, 2, 3 are
called unary, binary and ternary.

Recall the definitions of some algebraic structures and their special elements (in the
notation of [15]). A (one-set) polyadic algebraic structure G is a set that is G-closedwith
respect to polyadic operations. In the case of one n-ary operation μ(n) : G×n → G, it
is called polyadic multiplication (or n-ary multiplication). A one-set n-ary algebraic structure
M(n) =

〈
G | μ(n)

〉
or polyadic magma (n-ary magma) is a set that is G-closed with respect

to one n-ary operation μ(n) and without any other additional structure. In the binary case
M(2) was also called a groupoid by Hausmann and Ore [17] (and [18]). Since the term
“groupoid” was widely used in category theory for a different construction, the so-called
Brandt groupoid [19,20], Bourbaki [21] later introduced the term “magma”.

Denote the number of iterating multiplications by �μ, and call the resulting composi-

tion an iterated product
(

μ(n)
)◦�μ

, such that

μ′(n
′) =

(
μ(n)

)◦�μ de f
=

�μ︷ ︸︸ ︷
μ(n) ◦

(
μ(n) ◦ . . .

(
μ(n) × id×(n−1)

)
. . .× id×(n−1)

)
, (1)

where the arities are connected by

n′ = niter = �μ(n− 1) + 1, (2)

which gives the length of an iterated polyad (g) in our notation
(

μ(n)
)◦�μ

[g].

A polyadic zero of a polyadic algebraic structure G(n)
〈

G | μ(n)
〉

is a distinguished

element z ∈ G (and the corresponding 0-ary operation μ
(0)
z ) such that for any (n− 1)-tuple

(polyad) g(n−1)∈G×(n−1) we have

μ(n)
[

g(n−1), z
]
= z, (3)

where z can be in any place on the l.h.s. of (3). If its place is not fixed it can be a single zero.
As in the binary case, an analog of positive powers of an element [16] should coincide with
the number of multiplications �μ in the iteration (1).

A (positive) polyadic power of an element is

g〈�μ〉 =
(

μ(n)
)◦�μ

[
g�μ(n−1)+1

]
. (4)
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We define associativity as the invariance of the composition of two n-ary multipli-
cations. An element of a polyadic algebraic structure g is called �μ-nilpotent (or simply
nilpotent for �μ = 1), if there exist �μ such that

g〈�μ〉 = z. (5)

A polyadic (n-ary) identity (or neutral element) of a polyadic algebraic structure is a
distinguished element e (and the corresponding 0-ary operation μ

(0)
e ) such that for any

element g ∈ G we have
μ(n)

[
g, en−1

]
= g, (6)

where g can be in any place on the l.h.s. of (6).
In polyadic algebraic structures, there exist neutral polyads n ∈ G×(n−1) satisfying

μ(n)[g, n] = g, (7)

where g can be in any of n places on the l.h.s. of (7). Obviously, the sequence of polyadic
identities en−1 is a neutral polyad (6).

A one-set polyadic algebraic structure
〈

G | μ(n)
〉

is called totally associative if

(
μ(n)

)◦2
[g, h, u] = μ(n)

[
g, μ(n)[h], u

]
= invariant, (8)

with respect to the placement of the internal multiplication μ(n)[h] on the r.h.s. on any
of n places, with a fixed order of elements in the any fixed polyad of (2n− 1) elements
t(2n−1) = (g, h, u) ∈ G×(2n−1).

A polyadic semigroup S (n) is a one-set S one-operation μ(n) algebraic structure in which
the n-ary multiplication is associative, S (n) =

〈
S | μ(n) | associativity (8)

〉
. A polyadic

algebraic structure G(n) =
〈

G | μ(n)
〉

is σ-commutative, if μ(n) = μ(n) ◦ σ, or

μ(n)[g] = μ(n)[σ ◦ g], g ∈ G×n, (9)

where σ ◦ g =
(

gσ(1), . . . , gσ(n)

)
is a permutated polyad and σ is a fixed element of Sn, the

permutation group on n elements. If (9) holds for all σ ∈ Sn, then a polyadic algebraic
structure is commutative. A special type of the σ-commutativity

μ(n)
[

g, t(n−2), h
]
= μ(n)

[
h, t(n−2), g

]
, (10)

where t(n−2) ∈ G×(n−2) is any fixed (n− 2)-polyad, is referred to as semicommutativity. If
an n-ary semigroup S (n) is iterated from a commutative binary semigroup with identity,
then S (n) is semicommutative. A polyadic algebraic structure is called (uniquely) i-solvable,
if for all polyads t, u and element h, one can (uniquely) resolve the equation (with respect
to h) for the fundamental operation

μ(n)[u, h, t] = g (11)

where h can be on any place, and u, t are polyads of the needed length.
A polyadic algebraic structure which is uniquely i-solvable for all places i = 1, . . . , n

is called a n-ary (or polyadic) quasigroup Q(n) =
〈

Q | μ(n) | solvability
〉

. An associative

polyadic quasigroup is called an n-ary (or polyadic) group. In an n-ary group G(n) =〈
G | μ(n)

〉
the only solution of (11) is called a querelement of g and is denoted by ḡ [22],

such that
μ(n)[h, ḡ] = g, g, ḡ ∈ G, (12)
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where ḡ can be on any place. Any idempotent g coincides with its querelement ḡ = g. The
unique solvability relation (12) in an n-ary group can be treated as a definition of the unary
(multiplicative) queroperation

μ̄(1)[g] = ḡ. (13)

We observe from (12) and (7) that the polyad

ng =
(

gn−2 ḡ
)

(14)

is neutral for any element of a polyadic group, where ḡ can be on any place. If this i-th
place is important, then we write ng;i. In a polyadic group the Dörnte relations [22]

μ(n)[g, nh;i] = μ(n)
[
nh;j, g

]
= g (15)

hold true for any allowable i, j. In the case of a binary group, the relations (15) become
g · h · h−1 = h · h−1 · g = g.

Using the queroperation (13) one can give a diagrammatic definition of a polyadic
group [23]: an n-ary group is a one-set algebraic structure (universal algebra)

G(n) =
〈

G | μ(n), μ̄(1) | associativity (8), Dörnte relations (15)
〉

, (16)

where μ(n) is an n-ary associative multiplication and μ̄(1) is the queroperation (13).

3. Polyadic Products of Semigroups and Groups

We start from the standard external direct product construction for semigroups. Then
we show that consistent “polyadization” of the semigroup direct product, which preserves
associativity, can lead to additional properties:

(1) The arities of the polyadic direct product and power can differ from that of the initial
semigroups.

(2) The components of the polyadic power can contain elements from different multipliers.

We use here a vector-like notation for clarity and convenience in passing to higher
arity generalizations. Begin from the direct product of two (binary) semigroups G1,2 ≡
G(2)

1,2 =
〈

G1,2 | μ
(2)
1,2 ≡ (·1,2) | assoc

〉
, where G1,2 are underlying sets, whereas μ

(2)
1,2 are mul-

tiplications in G1,2. On the Cartesian product of the underlying sets G′ = G1 × G2 we

define a direct product G1 × G2 = G′ =
〈

G′ | μ′(2) ≡ (•′)
〉

of the semigroups G1,2 via the

componentwise multiplication of the doubles G =

(
g1
g2

)
∈ G1 ×G2 (being the Kronecker

product of doubles in our notation) , as

G(1) •′ G(2) =

(
g1
g2

)(1)

•′
(

g1
g2

)(2)

=

(
g(1)1 ·1 g(2)1

g(1)2 ·2 g(2)2

)
, (17)

and in the “polyadic” notation

μ′(2)
[

G(1), G(2)
]
=

⎛⎝ μ
(2)
1

[
g(1)1 , g(2)1

]
μ
(2)
2

[
g(1)2 , g(2)2

]
⎞⎠. (18)

Obviously, the associativity of μ′(2) follows immediately from that of μ
(2)
1,2 , because of

the componentwise multiplication in (18). If G1,2 are groups with the identities e1,2 ∈ G1,2,

then the identity of the direct product is the double E =

(
e1
e2

)
, such that μ′(2)[E, G] =

μ′(2)[G, E] = G ∈ G.
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3.1. Full Polyadic External Product

The “polyadization” of (18) is straightforward

Definition 1. An n′-ary full direct product semigroup G′(n′) = G(n)
1 × G(n)

2 consists of (two or k)
n-ary semigroups (of the same arity n′ = n)

μ′(n)
[

G(1), G(2), . . . , G(n)
]
=

⎛⎝ μ
(n)
1

[
g(1)1 , g(2)1 , . . . , g(n)1

]
μ
(n)
2

[
g(1)2 , g(2)2 , . . . , g(n)2

]
⎞⎠, (19)

where the (total) polyadic associativity (8) of μ′(n
′) is governed by those of the constituent semigroups

G(n)
1 and G(n)

2 (or G(n)
1 . . . G(n)

k ) and the componentwise construction (19).

If G(n)
1,2 =

〈
G1,2 | μ

(n)
1,2 , μ̄

(1)
1,2

〉
are n-ary groups (where μ̄

(1)
1,2 are the unary multiplicative

queroperations (13)), then the queroperation μ̄′(1) of the full direct product group G′(n′) =〈
G′ ≡ G1 × G2 | μ′(n

′), μ̄′(1)
〉

(n′ = n) is defined componentwise as follows:

Ḡ ≡ μ̄′(1)[G] =

(
μ̄
(1)
1 [g1]

μ̄
(1)
2 [g2]

)
, or Ḡ =

(
ḡ1
ḡ2

)
, (20)

which satisfies μ′(n)[G, G, . . . , Ḡ] = G with Ḡ on any place (cf. (12)).

Definition 2. A full polyadic direct product G′(n) = G(n)
1 ×G(n)

2 is called derived if its constituents

G(n)
1 and G(n)

2 are derived, such that the operations μ
(n)
1,2 are compositions of the binary operations

μ
(2)
1,2 , correspondingly.

In the derived case, all the operations in (19) have the form (see (1) and (2))

μ
(n)
1,2 =

(
μ
(2)
1,2

)◦(n−1)
, μ(n) =

(
μ(2)

)◦(n−1)
. (21)

The operations of the derived polyadic semigroup can be written as (cf., the binary
direct product (17) and (18))

μ′(n)
[

G(1), G(2), . . . , G(n)
]
= G(1) •′ G(2) •′ . . . •′ G(n) =

⎛⎝ g(1)1 ·1 g(2)1 ·1 . . . ·1 g(n)1

g(1)2 ·2 g(2)2 ·2 . . . ·2 g(n)2

⎞⎠. (22)

We will be more interested in nonderived polyadic analogs of the direct product.

Example 1. Let us have two ternary groups: the unitless nonderived group G(3)
1 =

〈
iR | μ

(3)
1

〉
,

where i2 = −1, μ
(3)
1

[
g(1)1 , g(2)1 , g(3)1

]
= g(1)1 g(2)1 g(3)1 is a triple product in C, the querelement

is μ̄
(1)
1 [g1] = 1/g1, and G(3)

2 =
〈
R | μ

(3)
2

〉
with μ

(3)
2

[
g(1)2 , g(2)2 , g(3)2

]
= g(1)2

(
g(2)2

)−1
g(3)2 , the

querelement μ̄
(1)
2 [g2] = g2. Then, the ternary nonderived full direct product group becomes

G′(3) =
〈
iR×R | μ′(3), μ̄′(1)

〉
, where

μ′(3)
[

G(1), G(2), G(3)
]
=

⎛⎝ g(1)1 g(2)1 g(3)1

g(1)2

(
g(2)2

)−1
g(3)2

⎞⎠, Ḡ ≡ μ̄′(1)[G] =

(
1/g1

g2

)
, (23)

which contains no identity, because G(3)
1 is unitless and nonderived.
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3.2. Mixed-Arity Iterated Product

In the polyadic case, the following question arises, which cannot even be stated in
the binary case: is it possible to build a version of the associative direct product such
that it can be nonderived and have different arity than the constituent semigroup arities?
The answer is yes, which leads to two arity-changing constructions: componentwise and
noncomponentwise.

(1) Iterated direct product (�). In each of the constituent polyadic semigroups we use the
iterating (1) componentwise, but with different numbers of compositions, because the
same number of compositions evidently leads to the iterated polyadic direct product.
In this case the arity of the direct product is greater than or equal to the arities of the
constituents n′ ≥ n1, n2.

(2) Hetero product (�). The polyadic product of k copies of the same n-ary semigroup
is constructed using the associativity quiver technique, which mixes (“entangles”)
elements from different multipliers, it is noncomponentwise (by analogy with het-
eromorphisms in [15]), and so it can be called a hetero product or hetero power (for
coinciding multipliers, i.e., constituent polyadic semigroups or groups). This gives
the arity of the hetero product which is less than or equal to the arities of the equal
multipliers n′ ≤ n.

In the first componentwise case 1), the constituent multiplications (19) are composed
from the lower-arity ones in the componentwise manner, but the initial arities of up and
down components can be different (as opposed to the binary derived case (21))

μ
(n)
1 =

(
μ
(n1)
1

)◦�μ1
, μ

(n)
2 =

(
μ
(n2)
2

)◦�μ2
, 3 ≤ n1,2 ≤ n− 1, (24)

where we exclude the limits: the derived case n1,2 = 2 (21) and the undecomposed case
n1,2 = n (19). Since the total size of the up and down polyads is the same and coincides
with the arity of the double G multiplication n′, using (2) we obtain the arity compatibility
relations

n′ = �μ1(n1 − 1) + 1 = �μ2(n2 − 1) + 1. (25)

Definition 3. A mixed-arity polyadic iterated direct product semigroup G′(n′) = G(n1)
1 � G(n2)

2

consists of (two) polyadic semigroups G(n1)
1 and G(n2)

2 of the different arity shapes n1 and n2

μ′(n
′)
[

G(1), G(2), . . . , G(n′)
]
=

⎛⎜⎝
(

μ
(n1)
1

)◦�μ1
[

g(1)1 , g(2)1 , . . . , g(n)1

]
(

μ
(n2)
2

)◦�μ2
[

g(1)2 , g(2)2 , . . . , g(n)2

]
⎞⎟⎠, (26)

and the arity compatibility relations (25) hold.

Observe that it is not the case that any two polyadic semigroups can be composed in
the mixed-arity polyadic direct product.

Assertion 1. If the arity shapes of two polyadic semigroups G(n1)
1 and G(n2)

2 satisfy the compatibil-
ity condition

a(n1 − 1) = b(n2 − 1) = c, a, b, c ∈ N, (27)

then they can form a mixed-arity direct product G′(n′) = G(n1)
1 � G(n2)

2 , where n′ = c + 1 (25).
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Example 2. In the case of 4-ary and 5-ary semigroups G(4)
1 and G(5)

2 the direct product arity of
G′(n′) is “quantized” n′ = 3�μ1 + 1 = 4�μ2 + 1, such that

n′ = 12k + 1 = 13, 25, 37, . . . , (28)

�μ1 = 4k = 4, 8, 12, . . . , (29)

�μ2 = 3k = 3, 6, 9, . . . , k ∈ N, (30)

and only the first mixed-arity 13-ary direct product semigroup G′(13) is nonderived. If G(4)
1 and

G(5)
2 are polyadic groups with the queroperations μ̄

(1)
1 and μ̄

(1)
2 correspondingly, then the iterated

direct G′(n′) is a polyadic group with the queroperation μ̄′(1) given in (20).

In the same way one can consider the iterated direct product of any number of
polyadic semigroups.

3.3. Polyadic Hetero Product

In the second noncomponentwise case 2) we allow multiplying elements from different
components, and therefore we should consider the Cartesian k-power of sets G′ = G×k

and endow the corresponding k-tuple with a polyadic operation in such a way that the
associativity of G(n) will govern the associativity of the product G′(n). In other words we
construct a k-power of the polyadic semigroup G(n) such that the result G′(n′) is an n′-ary
semigroup.

The general structure of the hetero product formally coincides “reversely” with the
main heteromorphism equation [15]. The additional parameter which determines the arity
n′ of the hetero power of the initial n-ary semigroup is the number of intact elements �id.
Thus, we arrive at

Definition 4. The hetero (“entangled”) k-power of the n-ary semigroup G(n) =
〈

G | μ(n)
〉

is the

n′-ary semigroup defined on the k-th Cartesian power G′ = G×k, such that G′(n′) =
〈

G′ | μ′(n
′)
〉

,

G′(n′) =
(
G(n)

)�k
≡

k︷ ︸︸ ︷
G(n) � . . . � G(n), (31)

and the n′-ary multiplication of k-tuples GT = (g1, g2, . . . , gk) ∈ G×k is given (informally) by

μ′(n
′)

⎡⎢⎣
⎛⎜⎝ g1

...
gk

⎞⎟⎠, . . . ,

⎛⎜⎝ gk(n′−1)
...

gkn′

⎞⎟⎠
⎤⎥⎦ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ(n)[g1, . . . , gn],
...

μ(n)
[

gn(�μ−1), . . . , gn�μ

]
⎫⎪⎪⎬⎪⎪⎭�μ

gn�μ+1,
...

gn�μ+�id

⎫⎪⎬⎪⎭�id

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, gi ∈ G, (32)

where �id is the number of intact elements on the r.h.s., and �μ = k − �id is the number of
multiplications in the resulting k-tuple of the direct product. The hetero power parameters are
connected by the arity-changing formula [15]

n′ = n− n− 1
k

�id, (33)

with the integer
n− 1

k
�id ≥ 1.
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The concrete placement of elements and multiplications in (32) to obtain the associative
μ′(n

′) is governed by the associativity quiver technique [15].
There exist important general numerical relations between the parameters of the

twisted direct power n′, n, k, �id, which follow from (32) and (33). First, there are non-strict
inequalities for them

0 ≤ �id ≤ k− 1, (34)

�μ ≤ k ≤ (n− 1)�μ, (35)

2 ≤ n′ ≤ n. (36)

Second, the initial and final arities n and n′ are not arbitrary, but “quantized” such that
the fraction in (33) has to be an integer (see Table 1).

Table 1. Hetero power “quantization”.

k �μ �id n/n′

2 1 1 n = 3, 5, 7, . . .
n′ = 2, 3, 4, . . .

3 1 2 n = 4, 7, 10, . . .
n′ = 2, 3, 4, . . .

3 2 1 n = 4, 7, 10, . . .
n′ = 3, 5, 7, . . .

4 1 3 n = 5, 9, 13, . . .
n′ = 2, 3, 4, . . .

4 2 2 n = 3, 5, 7, . . .
n′ = 2, 3, 4, . . .

4 3 1 n = 5, 9, 13, . . .
n′ = 4, 7, 10, . . .

Assertion 2. The hetero power is not unique in both directions, if we do not fix the initial n and
final n′ arities of G(n) and G′(n′).

Proof. This follows from (32) and the hetero power “quantization” shown in Table 1.

The classification of the hetero powers consists of two limiting cases.

(1) Intactless power: there are no intact elements �id = 0. The arity of the hetero power
reaches its maximum and coincides with the arity of the initial semigroup n′ = n (see
Example 5).

(2) Binary power: the final semigroup is of lowest arity, i.e., binary n′ = 2. The number of
intact elements is (see Example 4)

�id = k
n− 2
n− 1

. (37)

Example 3. Consider the cubic power of a 4-ary semigroup G′(3) =
(
G(4)

)�3
with the identity e,

then the ternary identity triple in G′(3) is ET = (e, e, e), and therefore this cubic power is a ternary
semigroup with identity.

Proposition 1. If the initial n-ary semigroup G(n) contains an identity, then the hetero power

G′(n′) =
(
G(n)

)�k
can contain an identity in the intactless case and the Post-like quiver [15]. For

the binary power k = 2 only the one-sided identity is possible.
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Let us consider some concrete examples.

Example 4. Let G(3) =
〈

G | μ(3)
〉

be a ternary semigroup, then we can construct its power

k = 2 (square) of the doubles G =

(
g1
g2

)
∈ G× G = G′ in two ways to obtain the associative

hetero power

μ′(2)
[

G(1), G(2)
]
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
μ(3)

[
g(1)1 , g(1)2 , g(2)1

]
g(2)2

)
,(

μ(3)
[

g(1)1 , g(2)2 , g(2)1

]
g(1)2

)
,

g(j)
i ∈ G. (38)

This means that the Cartesian square can be endowed with the associative multiplication
μ′(2), and therefore G′(2) =

〈
G′ | μ′(2)

〉
is a binary semigroup, being the hetero product G′(2) =

G(3) � G(3). If G(3) has a ternary identity e ∈ G, then G′(2) has only the left (right) identity

E =

(
e
e

)
∈ G′, since μ′(2)[E, G] = G (μ′(2)[G, E] = G), but not the right (left) identity. Thus,

G′(2) can be a semigroup only, even if G(3) is a ternary group.

Example 5. Take G(3) =
〈

G | μ(3)
〉

a ternary semigroup, then the multiplication on the double

G =

(
g1
g2

)
∈ G× G = G′ is ternary and noncomponentwise

μ′(3)
[

G(1), G(2), G(3)
]
=

⎛⎝ μ(3)
[

g(1)1 , g(2)2 , g(3)1

]
μ(3)

[
g(1)2 , g(2)1 , g(3)2

] ⎞⎠, g(j)
i ∈ G, (39)

and μ′(3) is associative (and described by the Post-like associative quiver [15]), and therefore the cubic
hetero power is the ternary semigroup G′(3) =

〈
G× G | μ′(3)

〉
, such that G′(3) = G(3) � G(3). In

this case, as opposed to the previous example, the existence of a ternary identity in G(3) implies the

ternary identity in the direct cube G′(3) by E =

(
e
e

)
. If G(3) is a ternary group with the unary

queroperation μ̄(1), then the cubic hetero power G′(3) is also a ternary group of the special class [24]:
all querelements coincide (cf., (20)), such that ḠT =

(
gquer, gquer

)
, where μ̄(1)[g] = gquer, ∀g ∈ G.

This is because in (12) the querelement can be foundon any place.

Theorem 1. If G(n) is an n-ary group, then the hetero k-power G′(n′) =
(
G(n)

)�k
can contain

queroperations in the intactless case only.

Corollary 1. If the power multiplication (32) contains no intact elements �id = 0 and does not
change arity n′ = n, a hetero power can be a polyadic group which has only one querelement.

Next we consider more complicated hetero power (“entangled”) constructions with
and without intact elements, as well as Post-like and non-Post associative quivers [15].

Example 6. Let G(4) =
〈

G | μ(4)
〉

be a 4-ary semigroup, then we can construct its 4-ary associa-

tive cubic hetero power G′(4) =
〈

G′ | μ′(4)
〉

using the Post-like and non-Post-associative quivers
without intact elements. Taking in (32) n′ = n, k = 3, �id = 0, we obtain two possibilities for the
multiplication of the triples GT = (g1, g2, g3) ∈ G× G× G = G′
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(1) Post-like associative quiver. The multiplication of the hetero cubic power case takes the form

μ′(4)
[

G(1), G(2), G(3), G(4)
]
=

⎛⎜⎜⎜⎝
μ(4)

[
g(1)1 , g(2)2 , g(3)3 , g(4)1

]
μ(4)

[
g(1)2 , g(2)3 , g(3)1 , g(4)2

]
μ(4)

[
g(1)3 , g(2)1 , g(3)2 , g(4)3

]
⎞⎟⎟⎟⎠, g(j)

i ∈ G, (40)

and it can be shown that μ′(4) is totally associative; therefore, G′(4) =
〈

G′ | μ′(4)
〉

is a
4-ary semigroup.

(2) Non-Post associative quiver. The multiplication of the hetero cubic power differs from (40)

μ′(4)
[

G(1), G(2), G(3), G(4)
]
=

⎛⎜⎜⎜⎝
μ(4)

[
g(1)1 , g(2)3 , g(3)2 , g(4)1

]
μ(4)

[
g(1)2 , g(2)1 , g(3)3 , g(4)2

]
μ(4)

[
g(1)3 , g(2)2 , g(3)1 , g(4)3

]
⎞⎟⎟⎟⎠, g(j)

i ∈ G, (41)

and it can be shown that μ′(4) is totally associative; therefore, G′(4) =
〈

G′ | μ′(4)
〉

is a 4-ary
semigroup.

The following is valid for both the above cases. If G(4) has the 4-ary identity satisfying

μ(4)[e, e, e, g] = μ(4)[e, e, g, e] = μ(4)[e, g, e, e] = μ(4)[g, e, e, e] = g, ∀g ∈ G, (42)

then the hetero power G′(4) has the 4-ary identity

E =

⎛⎝ e
e
e

⎞⎠, e ∈ G. (43)

In the case where G(3) is a ternary group with the unary queroperation μ̄(1), then the cubic hetero
power G′(4) is also a ternary group with one querelement (cf., Example 5)

Ḡ =

⎛⎝ g1
g2
g3

⎞⎠ =

⎛⎝ gquer
gquer
gquer

⎞⎠, gquer ∈ G, gi ∈ G, (44)

where gquer = μ̄(1)[g], ∀g ∈ G.

A more nontrivial example is a cubic hetero power which has different arity to the
initial semigroup.

Example 7. Let G(4) =
〈

G | μ(4)
〉

be a 4-ary semigroup, then we can construct its ternary

associative cubic hetero power G′(3) =
〈

G′ | μ′(3)
〉

using the associative quivers with one intact
element and two multiplications [15]. Taking in (32) the parameters n′ = 3, n = 4, k = 3,
�id = 1 (see third line of Table 1), we obtain for the ternary multiplication μ′(3) for the triples
GT = (g1, g2, g3) ∈ G× G× G = G′ of the hetero cubic power case the form

μ′(3)
[

G(1), G(2), G(3)
]
=

⎛⎜⎜⎜⎝
μ(4)

[
g(1)1 , g(2)2 , g(3)3 , g(3)1

]
μ(4)

[
g(1)2 , g(2)3 , g(2)1 , g(3)2

]
g(1)3

⎞⎟⎟⎟⎠, g(j)
i ∈ G, (45)
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which is totally associative, and therefore the hetero cubic power of 4-ary semigroup

G(4) =
〈

G | μ(4)
〉

is a ternary semigroup G′(3) =
〈

G′ | μ′(3)
〉

, such that G′(3) =
(
G(4)

)� 3
. If

the initial 4-ary semigroup G(4) has the identity satisfying (42), then the ternary hetero power G′(3)
has only the right ternary identity (43) satisfying one relation

μ′(3)[G, E, E] = G, ∀G ∈ G×3, (46)

and therefore G′(3) is a ternary semigroup with a right identity. If G(4) is a 4-ary group with
the queroperation μ̄(1), then the hetero power G′(3) can only be a ternary semigroup , because in〈

G′ | μ′(3)
〉

we cannot define the standard queroperation [16].

4. Polyadic Products of Rings and Fields

Now we show that the thorough “polyadization” of operations can lead to some
unexpected new properties of ring and field external direct products. Recall that in the
binary case the external direct product of fields does not exist at all (see, e.g., [2]). The main
new peculiarities of the polyadic case are:

(1) The arity shape of the external product ring and its constituent rings can be different.
(2) The external product of polyadic fields can be a polyadic field.

4.1. External Direct Product of Binary Rings

First, we recall the ordinary (binary) direct product of rings in notation which would be
convenient to generalize to higher-arity structures [14]. Let us have two binary ringsR1,2 ≡
R(2,2)

1,2 =
〈

R1,2 | ν
(2)
1,2 ≡ (+1,2), μ

(2)
1,2 ≡ (·1,2)

〉
, where R1,2 are underlying sets, whereas ν

(2)
1,2

and μ
(2)
1,2 are additions and multiplications (satisfying distributivity) in R1,2, correspond-

ingly. On the Cartesian product of the underlying sets R′ = R1 × R2 one defines the external
direct product ring R1 ×R2 = R′ =

〈
R′ | ν′(2) ≡ (+′), μ′(2) ≡ (•′)

〉
by the componentwise

operations (addition and multiplication) on the doubles X =

(
x1
x2

)
∈ R1 × R2 as follows:

X(1) +′ X(2) =

(
x1
x2

)(1)

+′
(

x1
x2

)(2)

≡
(

x(1)1

x(1)2

)
+′

(
x(2)1

x(2)2

)
=

(
x(1)1 +1 x(2)1

x(1)2 +2 x(2)2

)
, (47)

X(1) •′ X(2) =

(
x1
x2

)(1)

•′
(

x1
x2

)(2)

=

(
x(1)1 ·1 x(2)1

x(1)2 ·2 x(2)2

)
, (48)

or in the polyadic notation (with manifest operations)

ν′(2)
[

X(1), X(2)
]
=

⎛⎝ ν
(2)
1

[
x(1)1 , x(2)1

]
ν
(2)
2

[
x(1)2 , x(2)2

]
⎞⎠, (49)

μ′(2)
[

X(1), X(2)
]
=

⎛⎝ μ
(2)
1

[
x(1)1 , x(2)1

]
μ
(2)
2

[
x(1)2 , x(2)2

]
⎞⎠. (50)

The associativity and distributivity of the binary direct product operations ν′(2) and
μ′(2) are obviously governed by those of the constituent binary rings R1 and R2, because
of the componentwise construction on the r.h.s. of (49) and (50). In the polyadic case,
the construction of the direct product is not so straightforward and can have additional
unusual peculiarities.
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4.2. Polyadic Rings

Here we recall definitions of polyadic rings [25–27] in our notation [14,15]. Consider
a polyadic structure

〈
R | μ(n), ν(m)

〉
with two operations on the same set R: the m-ary

addition ν(m) : R×m → R and the n-ary multiplication μ(n) : R×n → R. The “interaction”
between operations can be defined using the polyadic analog of distributivity.

Definition 5. The polyadic distributivity for μ(n) and ν(m) consists of n relations

μ(n)
[
ν(m)[x1, . . . xm], y2, y3, . . . yn

]
= ν(m)

[
μ(n)[x1, y2, y3, . . . yn], μ(n)[x2, y2, y3, . . . yn], . . . μ(n)[xm, y2, y3, . . . yn]

]
(51)

μ(n)
[
y1, ν(m)[x1, . . . xm], y3, . . . yn

]
= ν(m)

[
μ(n)[y1, x1, y3, . . . yn], μ(n)[y1, x2, y3, . . . yn], . . . μ(n)[y1, xm, y3, . . . yn]

]
(52)

...

μ(n)
[
y1, y2, . . . yn−1, ν(m)[x1, . . . xm]

]
= ν(m)

[
μ(n)[y1, y2, . . . yn−1, x1], μ(n)[y1, y2, . . . yn−1, x2], . . . μ(n)[y1, y2, . . . yn−1, xm]

]
, (53)

where xi, yj ∈ R.

The operations μ(n) and ν(m) are totally associative, if (in the invariance definition
[14,15])

ν(m)
[
u, ν(m)[v], w

]
= invariant, (54)

μ(n)
[

x, μ(n)[y], t
]
= invariant, (55)

where the internal products can be on any place, and y ∈ R×n, v ∈ R×m, and the polyads x,
t, u, w are of the needed lengths. In this way both algebraic structures

〈
R | μ(n) | assoc

〉
and

〈
R | ν(m) | assoc

〉
are polyadic semigroups S (n) and S (m).

Definition 6. A polyadic (m, n)-ring R(m,n) is a set R with two operations μ(n) : R×n → R and
ν(m) : R×m → R, such that:

(1) they are distributive (51)–(53);

(2)
〈

R | μ(n) | assoc
〉

is a polyadic semigroup;

(3)
〈

R | ν(m) | assoc, comm, solv
〉

is a commutative polyadic group.

In case the multiplicative semigroup
〈

R | μ(n) | assoc
〉

of R(m,n) is commutative,

μ(n)[x] = μ(n)[σ ◦ x], for all σ ∈ Sn, then R(m,n) is called a commutative polyadic ring,
and if it contains the identity, then R(m,n) is a (m, n)-semiring. A polyadic ring R(m,n) is
called derived, if 
(m) and μ(n) are repetitions of the binary addition (+) and multiplica-
tion (·), whereas 〈R | (+)〉 and 〈R | (·)〉 are commutative (binary) group and semigroup,
respectively.
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4.3. Full Polyadic External Direct Product of (m, n)-Rings

Let us consider the following task: for a given polyadic (m, n)-ring R′(m,n) =〈
R′ | ν′(m), μ′(n)

〉
to construct a product of all possible (in arity shape) constituent rings

R(m1,n1)
1 and R(m2,n2)

2 . The first-hand “polyadization” of (49) and (50) leads to

Definition 7. A full polyadic direct product ring R′(m,n) = R(m,n)
1 ×R(m,n)

2 consists of (two)
polyadic rings of the same arity shape, such that

ν′(m)
[

X(1), X(2), . . . , X(m)
]
=

⎛⎝ ν
(m)
1

[
x(1)1 , x(2)1 , . . . , x(m)

1

]
ν
(m)
2

[
x(1)2 , x(2)2 , . . . , x(m)

2

]
⎞⎠, (56)

μ′(n)
[

X(1), X(2), . . . , X(n)
]
=

⎛⎝ μ
(n)
1

[
x(1)1 , x(2)1 , . . . , x(n)1

]
μ
(n)
2

[
x(1)2 , x(2)2 , . . . , x(n)2

]
⎞⎠, (57)

where the polyadic associativity (8) and polyadic distributivity (51)–(53) of the direct product
operations ν(m) and μ(n) follow from those of the constituent rings and the componentwise operations
in (56) and (57).

Example 8. Consider two (2, 3)-ringsR(2,3)
1 =

〈
{ix} | ν

(2)
1 = (+), μ

(3)
1 = (·), x ∈ Z, i2 = −1

〉
and R(2,3)

2 =

〈{(
0 a
b 0

)}
| ν

(2)
2 = (+), μ

(3)
2 = (·), a, b ∈ Z

〉
, where (+) and (·) are op-

erations in Z, then their polyadic direct product on the doubles XT =

(
ix,

(
0 a
b 0

))
∈(

iZ, GLadiag(2,Z)
)

is defined by

ν′(2)
[

X(1), X(2)
]
=

⎛⎝ ix(1) + ix(2)(
0 a(1) + a(2)

b(1) + b(2) 0

) ⎞⎠, (58)

μ′(3)
[

X(1), X(2), X(3)
]
=

⎛⎝ ix(1)x(2)x(3)(
0 a(1)b(2)a(3)

b(1)a(2)b(3) 0

) ⎞⎠. (59)

The polyadic associativity and distributivity of the direct product operations ν′(2) and μ′(3) are

evident, and therefore R(2,3) =

〈{(
ix,

(
0 a
b 0

))}
| ν′(2), μ′(3)

〉
is a (2, 3)-ring R(2,3) =

R(2,3)
1 ×R(2,3)

2 .

Definition 8. A polyadic direct product R(m,n) is called derived if both constituent rings R(m,n)
1

and R(m,n)
2 are derived, such that the operations ν

(m)
1,2 and μ

(n)
1,2 are compositions of the binary

operations ν
(2)
1,2 and μ

(2)
1,2 , correspondingly.

So, in the derived case (see (1) all the operations in (56) and (57) have the form (cf., (21))

ν
(m)
1,2 =

(
ν
(2)
1,2

)◦(m−1)
, μ

(n)
1,2 =

(
ν
(2)
1,2

)◦(n−1)
, (60)

ν(m) =
(

ν(2)
)◦(m−1)

, μ(n) =
(

ν(2)
)◦(n−1)

. (61)
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Thus, the operations of the derived polyadic ring can be written as (cf., the binary
direct product (47) and (48))

ν′(m)
[

X(1), X(2), . . . , X(m)
]
=

⎛⎝ x(1)1 +1 x(2)1 +1 . . . +1 x(m)
1

x(1)2 +2 x(2)2 +2 . . . +2 x(m)
2

⎞⎠, (62)

μ′(n)
[

X(1), X(2), . . . , X(n)
]
=

⎛⎝ x(1)1 ·1 x(2)1 ·1 . . . ·1 x(n)1

x(1)2 ·2 x(2)2 ·2 . . . ·2 x(n)2

⎞⎠, (63)

The external direct product (2, 3)-ring R(2,3) from Example 8 is not derived, because
both multiplications μ

(3)
1 and μ

(3)
2 there are nonderived.

4.4. Mixed-Arity Iterated Product of (m, n)-Rings

Recall that some polyadic multiplications can be iterated, i.e., composed (1) from those
of lower arity (2), as well as those larger than 2, and so being nonderived, in general. The
nontrivial “polyadization” of (49) and (50) can arise, when the composition of the separate
(up and down) components on the r.h.s. of (56) and (57) will be different, and therefore
the external product operations on the doubles X ∈ R1 × R2 cannot be presented in the
iterated form (1).

Let the constituent operations in (56) and (57) be composed from lower-arity cor-
responding operations, but in different ways for the up and down components, such
that

ν
(m)
1 =

(
ν
(m1)
1

)◦�ν1
, ν

(m)
2 =

(
ν
(m2)
2

)◦�ν2
, 3 ≤ m1,2 ≤ m− 1, (64)

μ
(n)
1 =

(
μ
(n1)
1

)◦�μ1
, μ

(n)
2 =

(
μ
(n2)
2

)◦�μ2
, 3 ≤ n1,2 ≤ n− 1, (65)

where we exclude the limits: the derived case m1,2 = n1,2 = 2 (60) and (61) and the
uncomposed case m1,2 = m, n1,2 = n (56) and (57). Since the total size of the up and
down polyads is the same and coincides with the arities of the double addition m and
multiplication n, using (2) we obtain the arity compatibility relations

m = �ν1(m1 − 1) + 1 = �ν2(m2 − 1) + 1, (66)

n = �μ1(n1 − 1) + 1 = �μ2(n2 − 1) + 1. (67)

Definition 9. A mixed-arity polyadic direct product ring R(m,n) = R(m1,n1)
1 �R(m2,n2)

2 consists
of two polyadic rings of the different arity shape, such that

ν′(m)
[

X(1), X(2), . . . , X(m)
]
=

⎛⎜⎝
(

ν
(m1)
1

)◦�ν1
[

x(1)1 , x(2)1 , . . . , x(m)
1

]
(

ν
(m2)
2

)◦�ν2
[

x(1)2 , x(2)2 , . . . , x(m)
2

]
⎞⎟⎠, (68)

μ′(n)
[

X(1), X(2), . . . , X(n)
]
=

⎛⎜⎝
(

μ
(n1)
1

)◦�μ1
[

x(1)1 , x(2)1 , . . . , x(n)1

]
(

μ
(n2)
2

)◦�μ2
[

x(1)2 , x(2)2 , . . . , x(n)2

]
⎞⎟⎠, (69)

and the arity compatibility relations (66) and (67) hold valid.

Thus, two polyadic rings cannot always be composed in the mixed-arity polyadic
direct product.
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Assertion 3. If the arity shapes of two polyadic rings R(m1,n1)
1 and R(m2,n2)

2 satisfy the compatibil-
ity conditions

a(m1 − 1) = b(m2 − 1), (70)

c(n1 − 1) = d(n2 − 1), a, b, c, d ∈ N, (71)

then they can form a mixed-arity direct product.

The limiting cases, undecomposed (56) and (57) and derived (62) and (63), satisfy the
compatibility conditions (70) and (71) as well.

Example 9. Let us consider two (nonderived) polyadic rings

R(9,3)
1 =

〈
{8l + 7} | ν

(9)
1 , μ

(3)
1 , l ∈ Z

〉
, (72)

R(5,5)
2 =

〈
{M} | ν

(5)
2 , μ

(5)
2

〉
, (73)

where

M =

⎛⎜⎜⎝
0 4k1 + 3 0 0
0 0 4k2 + 3 0
0 0 0 4k3 + 3

4k4 + 3 0 0 0

⎞⎟⎟⎠, ki ∈ Z, (74)

and ν
(5)
2 and μ

(5)
2 are the ordinary sum and product of 5 matrices. Using (66) and (67) we obtain

m = 9, n = 5, if we choose the smallest “numbers of multiplications” �ν1 = 1, �ν2 = 2, �μ1 = 2,
�μ2 = 1, and therefore the mixed-arity direct product nonderived (9, 5)-ring becomes

R(9,5) =
〈
{X} | ν′(9), μ′(5)

〉
, (75)

where the doubles are X =

(
8l + 7

M

)
and the nonderived direct product operations are

ν′(9)
[

X(1), X(2), . . ., X(9)
]

=

⎛⎜⎜⎜⎜⎜⎝
8
(

l(1) + l(2) + l(3) + l(4) + l(5) + l(6) + l(7) + l(8) + l(9) + 7
)
+ 7⎛⎜⎜⎝

0 4K1 + 3 0 0
0 0 4K2 + 3 0
0 0 0 4K3 + 3

4K4 + 3 0 0 0

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠, (76)

μ′(5)
[

X(1), X(2), X(3), X(4), X(5)
]

=

⎛⎜⎜⎜⎜⎝
(
8lμ + 7

)⎛⎜⎜⎝
0 4Kμ,1 + 3 0 0
0 0 4Kμ,2 + 3 0
0 0 0 4Kμ,3 + 3

4Kμ,4 + 3 0 0 0

⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠, (77)

where, in the first line, Ki = k(1)i + k(2)i + k(3)i + k(4)i + k(5)i + k(6)i + k(7)i + k(8)i + k(9)i + 6 ∈ Z,
lμ ∈ Z is a cumbersome integer function of l(j) ∈ Z, j = 1, . . . , 9, and in the second line Kμ,i ∈ Z

are cumbersome integer functions of k(s)i , i = 1, . . . , 4, s = 1, . . . , 5. Therefore, the polyadic

ring (75) is the nonderived mixed arity polyadic external product R(9,5) = R(9,3)
1 �R(5,5)

2 (see
Definition 9).

303



Universe 2022, 8, 230

Theorem 2. The category of polyadic rings PolRing can exist (having the class of all polyadic
rings for objects and ring homomorphisms for morphisms) and can be well-defined, because it has a
product as the polyadic external product of rings.

In the same way one can construct the iterated full and mixed-arity products of any
number k of polyadic rings, merely by passing from the doubles X to k-tuples XT

k =
(x1, . . . , xk).

4.5. Polyadic Hetero Product of (m, n)-Fields

The most crucial difference between the binary direct products and the polyadic ones
arises for fields, because a direct product’s two binary fields are not a field [2].The reason
for this lies in the fact that each binary field F (2,2) necessarily contains 0 and 1, by definition.

As follows from (48), a binary direct product contains nonzero idempotent doubles
(

1
0

)
and

(
0
1

)
which are noninvertible, and therefore the external direct product of fields

F (2,2)
1 ×F (2,2)

2 can never be a field. In the opposite case,polyadic fields (see Definition 10)
can be zeroless (we denote them by F̂ ),and the above arguments do not hold for them.

Recall the definitions of (m, n)-fields (see [27,28]). Denote R∗ = R \ {z}, if the zero z
exists (3). Observe that (in distinction to binary rings)

〈
R∗ | μ(n) | assoc

〉
is not a polyadic

group, in general. If
〈

R∗ | μ(n)
〉

is the n-ary group, then R(m,n) is called a (m, n)-division

ring D(m,n).

Definition 10. A (totally) commutative (m, n)-division ringR(m,n) is called a (m, n)-fieldF (m,n).

In n-ary groups there exists an “intermediate” commutativity, known as semicommu-
tativity (10).

Definition 11. A semicommutative (m, n)-division ring R(m,n) is called a semicommutative
(m, n)-field F (m,n).

The definition of a polyadic field can be expressed in a diagrammatic form, analogous
to (16). We introduce the double Dörnte relations: for n-ary multiplication μ(n) (15) and for
m-ary addition ν(m), as follows

ν(m)
[
my, x

]
= x, (78)

where the (additive) neutral sequence is my =
(
ym−2, ỹ

)
, and ỹ is the additive querelement

for y ∈ R (see (14)). In distinction with (15), we have only one (additive) Dörnte relation
(78) and one diagram from (16) only, because of the commutativity of ν(m).

By analogy with the multiplicative queroperation μ̄(1) (13), introduce the additive unary
queroperation by

ν̃(1)(x) = x̃, ∀x ∈ R, (79)

where x̃ is the additive querelement (13). Thus, we have

Definition 12 (Diagrammatic definition of (m, n)-field). A (polyadic) (m, n)-field is a one-set
algebraic structure with 4 operations and 3 relations〈

R | ν(m), ν̃(1), μ(n), μ̄(1) | associativity, distributivity, double Dörnte relations
〉

, (80)

where ν(m) and μ(n) are commutative associative m-ary addition and n-ary associative multiplication
connected by polyadic distributivity (51)–(53), ν̃(1) and μ̄(1) are unary additive queroperation (79)
and multiplicative queroperation (13).
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There is no initial relation between ν̃(1) and μ̄(1); nevertheless the possibility of their
“interaction” can lead to further thorough classification of polyadic fields.

Definition 13. A polyadic field F (m,n) is called quer-symmetric if its unary queroperations com-
mute

ν̃(1) ◦ μ̄(1) = μ̄(1) ◦ ν̃(1), (81)

x̃ = x̃, ∀x ∈ R, (82)

in the other case F (m,n) is called quer-nonsymmetric.

Example 10. Consider the nonunital zeroless (denoted by F̂ )polyadic field F̂ (3,3) =〈
{ia/b} | ν(3), μ(3)

〉
, i2 = −1, a, b ∈ Zodd. The ternary addition ν(3)[x, y, t] = x + y + t

and the ternary multiplication μ(3)[x, y, t] = xyt are nonderived, ternary associative and distribu-
tive (operations are in C). For each x = ia/b (a, b ∈ Zodd) the additive querelement is x̃ = −ia/b,
and the multiplicative querelement is x̄ = −ib/a (see (12)). Therefore, both

〈
{ia/b} | μ(3)

〉
and〈

{ia/b} | ν(3)
〉

are ternary groups, but they both contain no neutral elements (no unit, no zero).

The nonunital zeroless (3, 3)-field F̂ (3,3) is quer-symmetric, because (see (82))

x̃ = x̃ = i
b
a

. (83)

Finding quer-nonsymmetric polyadic fields is not a simple task.

Example 11. Consider the set of real 4× 4 matrices over the fractions 4k+3
4l+3 , k, l ∈ Z, of the form

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
4k1 + 3
4l1 + 3

0 0

0 0
4k2 + 3
4l2 + 3

0

0 0 0
4k3 + 3
4l3 + 3

4k4 + 3
4l4 + 3

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ki, li ∈ Z. (84)

The set {M} is closed with respect to the ordinary addition of m ≥ 5 matrices, because the sum
of fewer of the fractions 4k+3

4l+3 does not give a fraction of the same form [14], and with respect to the
ordinary multiplication of n ≥ 5 matrices, since the product of fewer matrices (84) does not have the
same shape [29]. The polyadic associativity and polyadic distributivity follow from the binary ones
of the ordinary matrices over R, and the product of 5 matrices is semicommutative (see 10). Taking
the minimal values m = 5, n = 5, we define the semicommutative zeroless (5, 5)-field (see (11))

F (5,5)
M =

〈
{M} | ν(5), μ(5), ν̃(1), μ̄(1)

〉
, (85)

where ν(5) and μ(5) are the ordinary sum and product of 5 matrices, whereas ν̃(1) and μ̄(1) are
additive and multiplicative queroperations

ν̃(1)[M] ≡ M̃ = −3M, μ̄(1)[M] ≡ M̄ =
4l1 + 3
4k1 + 3

4l2 + 3
4k2 + 3

4l3 + 3
4k3 + 3

4l4 + 3
4k4 + 3

M. (86)
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The division ring D(5,5)
M is zeroless, because the fraction 4k+3

4l+3 , is never zero for k, l ∈ Z, and it
is unital with the unit

Me =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠. (87)

Using (84) and (86), we obtain

ν̃(1)
[
μ̄(1)[M]

]
= −3

4l1 + 3
4k1 + 3

4l2 + 3
4k2 + 3

4l3 + 3
4k3 + 3

4l4 + 3
4k4 + 3

M, (88)

μ̄(1)
[
ν̃(1)[M]

]
= − 1

27
4l1 + 3
4k1 + 3

4l2 + 3
4k2 + 3

4l3 + 3
4k3 + 3

4l4 + 3
4k4 + 3

M, (89)

or
M̃ = 81M̃, (90)

and therefore the additive and multiplicative queroperations do not commute independently of
the field parameters. Thus, the matrix (5, 5)-division ring D(5,5)

M (85) is a quer-nonsymmetric
division ring.

Definition 14. The polyadic zeroless direct product field F̂ ′(m,n) =
〈

R′ | ν′(m), μ′(n)
〉

consists of

(two) zeroless polyadic fields F̂ (m,n)
1 =

〈
R1 | ν

(m)
1 , μ

(n)
1

〉
and F̂ (m,n)

2 =
〈

R2 | ν
(m)
2 , μ

(n)
2

〉
of the

same arity shape, whereas the componentwise operations on the doubles X ∈ R1 × R2 in (56) and
(57) still remain valid, and

〈
R1 | μ

(n)
1

〉
,
〈

R2 | μ
(n)
2

〉
,
〈

R′ = {X} | μ′(n)
〉

are n-ary groups.

Following Definition 11, we have

Corollary 2. If at least one of the constituent fields is semicommutative, and another one is totally
commutative, then the polyadic product will be a semicommutative (m, n)-field.

The additive and multiplicative unary queroperations (13) and (79) for the direct
product field F̂ (m,n) are defined componentwise on the doubles X as follows

ν̃′(1)[X] =

(
ν̃
(1)
1 [x1]

ν̃
(1)
2 [x2]

)
, (91)

μ̄′(1)[X] =

(
μ̄
(1)
1 [x1]

μ̄
(1)
2 [x2]

)
, x1 ∈ R1, x2 ∈ R2. (92)

Definition 15. A polyadic direct product field F̂ ′(m,n) =
〈

R′ | ν′(m), ν̃′(1), μ′(n), μ̄′(1)
〉

is called
quer-symmetric if its unary queroperations (91) and (92) commute

ν̃′(1) ◦ μ̄′(1) = μ̄′(1) ◦ ν̃′(1), (93)

X̃ = X̃, ∀X ∈ R′, (94)

in the other case, F̂ ′(m,n) is called a quer-nonsymmetric direct product (m, n)-field.

Example 12. Consider two nonunital zeroless (3, 3)-fields

F̂ (3,3)
1,2 =

〈{
i
a1,2

b1,2

}
| ν

(3)
1,2 , μ

(3)
1,2 , ν̃

(1)
1,2 , μ̄

(1)
1,2

〉
, i2 = −1, a1,2, b1,2 ∈ Zodd, (95)

306



Universe 2022, 8, 230

where ternary additions ν
(3)
1,2 and ternary multiplications μ

(3)
1,2 are the sum and product in Zodd,

correspondingly, and the unary additive and multiplicative queroperations are ν̃
(1)
1,2 [ia1,2/b1,2] =

−ia1,2/b1,2 and μ̄
(1)
1,2 [ia1,2/b1,2] = −ib1,2/a1,2 (see Example 10). Using (56) and (57) we build the

operations of the polyadic nonderived nonunital zeroless product (3, 3)-field F̂ ′(3,3) = F̂ (3,3)
1 ×

F̂ (3,3)
2 on the doubles XT = (ia1/b1, ia2/b2) as follows

ν′(3)
[

X(1), X(2), X(3)
]
=

⎛⎜⎜⎜⎜⎝
i
a(1)1 b(2)1 b(3)1 + b(1)1 a(2)1 b(3)1 + b(1)1 b(2)1 a(3)1

b(1)1 b(2)1 b(3)1

i
a(1)2 b(2)2 b(3)2 + b(1)2 a(2)2 b(3)2 + b(1)2 b(2)2 a(3)2

b(1)2 b(2)2 b(3)2

⎞⎟⎟⎟⎟⎠, (96)

μ′(3)
[

X(1), X(2), X(3)
]
=

⎛⎜⎜⎜⎜⎝
−i

a(1)1 a(2)1 a(3)1

b(1)1 b(2)1 b(3)1

−i
a(1)2 a(2)2 a(3)2

b(1)2 b(2)2 b(3)2

⎞⎟⎟⎟⎟⎠, a(j)
i , b(j)

i ∈ Zodd, (97)

and the unary additive and multiplicative queroperations (91) and (92) of the direct product F̂ ′(3,3)

are

ν̃′(1)[X] =

⎛⎜⎝ −i
a1

b1

−i
a2

b2

⎞⎟⎠, (98)

μ̄′(1)[X] =

⎛⎜⎜⎝ −i
b1

a1

−i
b2

a2

⎞⎟⎟⎠, ai, bi ∈ Zodd. (99)

Therefore, both
〈
{X} | ν′(3), ν̃′(1)

〉
and

〈
{X} | μ′(3), μ̄′(1)

〉
are commutative ternary groups,

which means that the polyadic direct product F̂ ′(3,3) = F̂ (3,3)
1 × F̂ (3,3)

2 is the nonunital zeroless
polyadic field. Moreover, F̂ ′(3,3) is quer-symmetric, because (93) and (94) remain valid

μ̄′(1) ◦ ν̃′(1)[X] = ν̃′(1) ◦ μ̄′(1)[X] =

⎛⎜⎜⎝ i
b1

a1

i
b2

a2

⎞⎟⎟⎠, ai, bi ∈ Zodd. (100)

Example 13. Let us consider the polyadic direct product of two zeroless fields, one of them being
the semicommutative (5, 5)-field F̂ (5,5)

1 = F (5,5)
M from (85), and the other one being the nonderived

nonunital zeroless (5, 5)-field of fractions F̂ (5,5)
2 =

〈{√
i 4r+1
4s+1

}
| ν

(5)
2 , μ

(5)
2

〉
, r, s ∈ Z, i2 = −1.

The double is XT =
(√

i 4r+1
4s+1 , M

)
, where M is in (84). The polyadic nonunital zeroless direct
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product field F̂ ′(5,5) = F̂ (5,5)
1 × F̂ (5,5)

2 is nonderived and semicommutative, and is defined by

F̂ (5,5) =
〈

X | ν′(5), μ′(5), ν̃′(1), μ̄(1)
〉

, where its addition and multiplication are

ν′(5)
[

X(1), X(2), X(3), X(4), X(5)
]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
i
4Rν + 1
4Sν + 1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
4Kν,1 + 3
4Lν,1 + 3

0 0

0 0
4Kν,2 + 3
4Lν,2 + 3

0

0 0 0
4Kν,3 + 3
4Lν,3 + 3

4Kν,4 + 3
4Lν,4 + 3

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (101)

μ′(5)
[

X(1), X(2), X(3), X(4), X(5)
]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
i
4Rμ + 1
4Sμ + 1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
4Kμ,1 + 3
4Lμ,1 + 3

0 0

0 0
4Kμ,2 + 3
4Lμ,2 + 3

0

0 0 0
4Kμ,3 + 3
4Lμ,3 + 3

4Kμ,4 + 3
4Lμ,4 + 3

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (102)

where Rν,μ, Sν,μ ∈ Z are cumbersome integer functions of r(i), s(i) ∈ Z, i = 1, . . . , 5, and

Kν,i, Kμ,i, Lν,i, Lμ,i ∈ Z are cumbersome integer functions of k(i)j , l(i)j ∈ Z, j = 1, . . . , 4, i =

1, . . . , 5 (see (84)). The unary queroperations (91) and (92) of the direct product F̂ (5,5) are

ν̃′(1)[X] =

⎛⎜⎝ −3
√
i
4r + 1
4s + 1

−3M

⎞⎟⎠, (103)

μ̄′(1)[X] =

⎛⎜⎜⎜⎝
−
√
i

(
4s + 1
4r + 1

)3

4l1 + 3
4k1 + 3

4l2 + 3
4k2 + 3

4l3 + 3
4k3 + 3

4l4 + 3
4k4 + 3

M

⎞⎟⎟⎟⎠, r, s, ki, li ∈ Z, (104)

where M is in (84). Therefore,
〈
{X} | ν′(5), ν̃′(1)

〉
is a commutative 5-ary group, and〈

{X} | μ′(5), μ̄′(1)
〉

is a semicommutative 5-ary group, which means that the polyadic direct

product F̂ ′(5,5) = F̂ (5,5)
1 × F̂ (5,5)

2 is the nonunital zeroless polyadic semicommutative (5, 5)-field.
Using (90) we obtain

ν̃′(1)μ̄′(1)[X] = 81μ̄′(1)ν̃′(1)[X], (105)

and therefore the direct product (5, 5)-field F̂ ′(5,5) is quer-nonsymmetric (see (81)).

Thus, we arrive at
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Theorem 3. The category of zeroless polyadic fields zlessPolField can exist (having the class
of all zeroless polyadic fields for objects and field homomorphisms for morphisms) and can be
well-defined, because it has a product as the polyadic field product.

5. Conclusions

For physical applications, for instance, the particle content of any elementary particle
model is connected with the direct decomposition of its gauge symmetry group. Thus, the
proposed generalization of the direct product can lead to principally new physical models
having unusual mathematical properties.

For mathematical applications, further analysis of the direct product constructions
introduced here and their examples for polyadic rings and fields would be interesting, and
could lead to new kinds of categories.
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Abstract: We re-examine the appearance of semiheaps and (para-associative) ternary algebras in
quantum mechanics. In particular, we review the construction of a semiheap on a Hilbert space
and the set of bounded operators on a Hilbert space. The new aspect of this work is a discussion
of how symmetries of a quantum system induce homomorphisms of the relevant semiheaps and
ternary algebras.

Keywords: semiheaps; ternary algebras; para-associativity; quantum mechanics

1. Introduction

Heaps were introduced by Prüfer [1] and Baer [2] as a set equipped with a ternary
operation satisfying simple axioms. One can think of a heap as a group in which the identity
element has been forgotten. Indeed, these axioms are satisfied in a group if we define
the ternary operation as (a, b, c) %→ ab−1c. For example, given a vector space, or more
generally an affine space, we can construct a heap operation as (u, v, w) %→ u − v + w.
Conversely, by selecting any element in a heap, one can reduce the ternary operation to a
group operation, such that the chosen element is the identity element.

There is a slightly weaker notion of a semiheap.A semiheap is a non-empty set H,
equipped with a ternary operation [a, b, c] ∈ H that satisfies the para-associative law[

[a, b, c], d, e
]
=

[
a, [d, c, b], e

]
=

[
a, b, [c, d, e]

]
,

for all a, b, c, d and e ∈ H. A semiheap is a heap when all its elements are biunitary,
i.e., [a, b, b] = a and [b, b, a] = a, for all a and b ∈ H. This condition is also referred
to as the Mal’cev identities. A (semi)heap is said to be abelian if [a, b, c] = [c, b, a] for all
a, b and c ∈ H. A homomorphism of semiheaps φ : (H, [−,−,−])→ (H′, [−,−,−]′) is a map
φ : H → H′ such that φ

(
[a, b, c]

)
= [φ(a), φ(b), φ(c)]′. For more details about heaps and

related structures the reader may consult Hollings & Lawson [3] and/or Brzeziński [4].
In this paper, we re-examine the natural occurrences of semiheaps in the formalism of

standard non-relativistic quantum mechanics. The semiheaps explored here have appeared
scattered in the mathematics literature under different names. However, there seems to be
almost nothing written with physicists and quantum mechanics in mind. The exception
here is Kerner (see [5]), who refers to “2nd type associativity” or “B-associativity”, this is
precisely the above para-associativity law.

In the setting of quantum mechanics, we do not just have a semiheap but also a vector
space structure. A C-vector space with a ternary product that is linear in the first and third
arguments, and conjugate linear in the second argument, we will refer to as a ternary algebra
(see [6–9]). If, in addition, the ternary product is para-associative, so defines a semiheap
on the underlying set, then we speak of a para-associative ternary algebra. We will only deal
with the para-associative case past this point. A homomorphism of para-associative ternary
algebras is a linear map that is simultaneously a homomorphism of semiheaps.
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We review the construction of semiheaps and ternary algebras on a Hilbert space and
on the ∗-algebra of bounded operators on the said Hilbert space. While these constructions
are not new, they are not well-known within the context of quantum mechanics. The new
aspect of this work is a discussion of symmetries of quantum systems and how they induce
semiheap and, in turn, ternary algebra homomorphisms. Generalised derivations of the
ternary algebras are also discussed. We will focus on algebraic aspects of the theory and
not address topological issues.

Rather generally, ternary operations and relations have a long history in physics. As ex-
amples, we have Nambu brackets (1973; [10]), the Yang-Baxter Equation (1967, 1972; [11,12])
and the BLG model of M2-branes (2007, 2009; [13,14]). A review of n-ary generalisations
of Lie algebras and their physical applications can be found in [15]. We also mention that
L∞-algebras (cf. [16]) have found a wealth of applications in physics, notably through
the BV-formalism of gauge theories. Returning to the Yang-Baxter equation, it has found
applications in a diverse range of mathematics such as quantum groups, knot theory,
braided geometry, integrable systems and noncommutative geometry. The classification
of solutions to the Yang-Baxter equation is, at the time of writing, an unsolved problem.
This challenge, first posed by Drinfeld in 1992, has inspired the development of various
algebraic structures such as Rump’s braces (see [17] ) and Brzeziński’s trusses (see [4,18]).
For more information about current trends related to the Yang-Baxter equation the reader
may consult [19,20].

It is also curious to note that, within the standard model, the number three constantly
appears. Specifically, there are three generations of quarks, three generations of leptons,
three fundamental forces (gravity is not included and is different), and three quarks are
needed to make a baryon. Alongside this, there are three spatial dimensions and three
fundamental inversions-charge (C), parity (P) and time (T). It is only the combination of
CPT that is respected in all interactions. It is not known how, or indeed if, these threes
are related.

2. Semiheaps Associated with Hilbert Spaces

2.1. The Semiheap and Ternary Algebra of a Hilbert Space

Given a vector space, there is no obvious way to multiply two vectors together and
obtain another vector in the same space. However, if the vector space comes equipped with
an inner product, then we can multiply three vectors together in a canonical way to obtain
another vector. For the case at hand, we will restrict attention to (complex) Hilbert spaces
as found in quantum mechanics. Typically, the Hilbert spaces in question are isomorphic to
L2(Rn)⊗C2, with n = 1, 2, 3. We will employ Dirac’s notation throughout this paper. We
will denote by H both a Hilbert space and its underlying set, the context should be clear.
To emphasise the linear structure we will write (H,+).

Definition 1. LetH be a Hilbert space, the vector ternary product [−,−,−] : H×H×H −→ H
is defined as

[|ψ1〉, |ψ2〉, |ψ3〉] := |ψ1〉〈ψ2|ψ3〉 .

Recall that the norm of a vector is defined as || |ψ〉 || :=
√
〈ψ|ψ〉. It is then immediately

clear that || [|ψ1〉, |ψ2〉, |ψ3〉] || = |〈ψ2|ψ3〉| || |ψ1〉 || ≤ || |ψ3〉 || || |ψ2〉 || || |ψ1〉 || via the
Cauchy–Schwarz inequality.

The following proposition is evident.

Proposition 1. Let H be a Hilbert space. Then the vector ternary product, see Definition 1, is
linear with respect to the first and third arguments, and conjugate linear with respect to the second
entry, i.e.,

[|ψ1〉+ c1 |ψ′1〉, |ψ2〉, |ψ3〉] = [|ψ1〉, |ψ2〉, |ψ3〉] + c1 [|ψ′1〉, |ψ2〉, |ψ3〉] ,

[|ψ1〉, |ψ2〉+ c2 |ψ′2〉, |ψ3〉] = [|ψ1〉, |ψ2〉, |ψ3〉] + c∗2 [|ψ1〉, |ψ′2〉, |ψ3〉] ,

[|ψ1〉, |ψ2〉, |ψ3〉+ c3 |ψ′3〉] = [|ψ1〉, |ψ2〉, |ψ3〉] + c3 [|ψ1〉, |ψ2〉, |ψ′3〉] ,
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for all |ψ1〉, |ψ2〉, |ψ3〉 ∈ H and c1, c2, c3 ∈ C.

Thus, the linear structure and the vector ternary product are compatible in the above
sense. Moving on to the generalised notion of associativity we have the following theorem.

Theorem 1. The vector ternary product on a Hilbert space H, see Definition 1, satisfies the
para-associative law[

[|ψ1〉, |ψ2〉, |ψ3〉], |ψ4〉, |ψ5〉
]
=

[
|ψ1〉, [|ψ4〉, |ψ3〉, |ψ2〉], |ψ5〉

]
=

[
|ψ1〉, |ψ2〉, [|ψ3〉, |ψ4〉, |ψ5〉]

]
,

for all |ψ1〉, |ψ2〉, |ψ3〉 ∈ H. In other words,
(
H, [−,−,−]

)
is a semiheap.

Proof. This follows via direct computation.

(i)
[
[|ψ1〉, |ψ2〉, |ψ3〉], |ψ4〉, |ψ5〉

]
= [|ψ1〉〈ψ2|ψ3〉, |ψ4〉, |ψ5〉] = |ψ1〉〈ψ2|ψ3〉〈ψ4|ψ5〉.

(ii)
[
|ψ1〉, [|ψ4〉, |ψ3〉, |ψ2〉], |ψ5〉

]
= [|ψ1〉, |ψ4〉〈ψ3|ψ2〉, |ψ5〉] = |ψ1〉〈ψ2|ψ3〉〈ψ4|ψ5〉.

(iii)
[
|ψ1〉, |ψ2〉, [|ψ3〉, |ψ4〉, |ψ5〉]

]
= [|ψ1〉, |ψ2〉, |ψ3〉〈ψ4|ψ5〉] = |ψ1〉〈ψ2|ψ3〉〈ψ4|ψ5〉.

Clearly, (i)=( ii) = (iii).

Corollary 1. By fixing a vector |φ〉 ∈ H we have an associated binary product ·|φ〉 : H×H → H,
given by |ψ1〉 ·|φ〉 |ψ2〉 := [|ψ1〉, |φ〉, |ψ2〉], i.e., the binary product satisfies(

|ψ1〉 ·|φ〉 |ψ2〉
)
·|φ〉 |ψ3〉 = |ψ1〉 ·|φ〉

(
|ψ2〉 ·|φ〉 |ψ3〉

)
.

If the quantum system under consideration has a non-degenerate ground state |0〉
(normalised, i.e., 〈0|0〉 = 1), then we have a canonical associative binary product.

Note that we do not have a heap, and so any associated binary product does not lead
to a group structure. Specifically, the Mal’cev identities

[a, b, b] = a, and [b, b, a] = a ,

are not, in general, satisfied. Explicitly, we see that

[|ψ1〉, |ψ〉, |ψ〉] = |ψ1〉〈ψ|ψ〉 .

Thus, if |ψ〉 is normalised, i.e., 〈ψ|ψ〉 = 1, then |ψ〉 is right unitary. That is

[|ψ1〉, |ψ〉, |ψ〉] = |ψ1〉 .

Again, assuming that |ψ〉 is normalised, P|ψ〉 := |ψ〉〈ψ| projects an arbitrary vector onto
|ψ〉. Thus,

[|ψ〉, |ψ〉, |ψ3〉] = P|ψ〉
(
|ψ3〉

)
.

Thus, the binary product defined in Corollary 1, defines a semigroup, i.e., a set with
an associative binary product. In analogy with the situation for heaps, we refer to this
semigroup as the semigroup retract (with respect to |φ〉) of the semiheap (H, [−,−,−]).

Proposition 2. Let |φ〉 and |ψ1〉 ∈ H be non-orthogonal vectors, i.e., 〈φ|ψ1〉 �= 0. Then, |ψ1〉
is a regular point of the semigroup (H, ·|φ〉), i.e., there exists a vector |ψ〉 ∈ H (pesudoinverse)
such that

|ψ1〉 ·|φ〉 |ψ〉 ·|φ〉 |ψ1〉 = |ψ1〉
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Proof. Setting |ψ〉 := |φ〉
〈φ|ψ1〉 provides the required vector. Explicitly,

|ψ1〉 ·|φ〉 |ψ〉 ·|φ〉 |ψ1〉 = |ψ1〉
|φ〉

〈φ|ψ1〉
〈φ|ψ1〉 = |ψ1〉 .

It is clear from the definition of the vector ternary product that

[0, |ψ2〉, |ψ3〉] = [|ψ1〉, 0, |ψ3〉] = [|ψ1〉, |ψ2〉, 0] = 0 ,

where 0 ∈ H is the zero vector. In other words, the zero vector is an absorbing element for
the vector ternary product. Thus, 0 is also an absorbing element in any semigroup (H, ·|φ〉),
that is, multiplication of any vector by the zero vector on the left or right, yields the zero
vector. Similarly, the semigroup (H, ·0) is a null semigroup, i.e., |ψ1〉 ·0 |ψ2〉 = 0, for all
vectors |ψ1〉 and |ψ2〉 ∈ H.

From Proposition 1, Theorem 1 and the above discussion we see that a Hilbert space
naturally comes with the structure of a ternary algebra in which the ternary product
defines a semiheap (see [7] for further generalities on ternary algebras). Note that we have
conjugate linearity in the second argument of the product rather than linearity.

Definition 2. Let H be a Hilbert space. Then the ternary algebra (H,+, [−,−,−]) defined via
Proposition 1 and Theorem 1 is referred to as the vector ternary algebra.

Example 1. Consider the complex line C and define the inner product as 〈z1, z2〉 = z̄1z2 for
arbitrary complex numbers z1 and z2. Then the vector ternary product is given by

[z1, z2, z2] = z1z̄2z3 .

Thus, the complex line is a ternary algebra over itself.

Example 2. The Hilbert space we consider is finite-dimensional and given by the span of two
orthonormal vectors “spin up” and “spin down”

H = SpanC

{
| ↑〉, | ↓〉

} ∼= C2 .

The non-zero vector ternary products of the basis elements are

[| ↑〉, | ↑〉, | ↑〉] = | ↑〉 , [| ↑〉, | ↓〉, | ↓〉] = | ↑〉 ,

[| ↓〉, | ↓〉, | ↓〉] = | ↓〉 , [| ↓〉, | ↑〉, | ↑〉] = | ↓〉 .

All other vector ternary products are equal to the zero vector 0 ∈ H. Note that there are 8 possible
vector ternary products to consider. Using the linearity and conjugate linearity one can deduce the
vector ternary product for arbitrary vectors (not necessarily normalised). For example

[a| ↑〉, b| ↑〉, c| ↑〉+ d| ↓〉] = ab̄c| ↑〉 ,

with a, b, c and d ∈ C.

Example 3. The orthonormal basis of states for the one-dimensional harmonic oscillator is countably
infinite as each basis vector is labelled by n ∈ N (including zero). The Hilbert space here is, of course,
L2(R). The vector ternary product can be written in this natural basis (and then using linearity
and conjugate linearity to deduce the product of arbitrary vectors) as

[|n1〉, |n2〉, |n3〉] = |n1〉 δn2n3 .
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Remark 1. All quantum systems with a finite or countably infinite number of states, e.g., the
hydrogen atom, have a vector ternary product that can easily be expressed in a similar way to the
previous example.

Recall that a linear map ϕ : H → H′ between Hilbert spaces is said to be bounded
if there exists some r > 0 such that || ϕ|ψ〉 ||′ = r || |ψ〉 ||. It is a well-known result that
boundedness implies continuity of a linear map and vice versa. A bounded linear isometry is
a bounded linear map ϕ : H → H′ such that ϕ† ϕ = 1H.

Proposition 3. Let H and H′ be Hilbert spaces and let ϕ : H → H′ be a bounded linear isometry.
Then ϕ is morphism of semiheaps

ϕ : (H, [−,−,−]) −→ (H′, [−,−,−]′) .

Proof. Directly, using C-linearity and the condition that the bounded linear map be an
isometry, we observe that

ϕ[|ψ1〉, |ψ2〉, |ψ3〉] = ϕ
(
|ψ1〉〈ψ2|ψ3〉

)
= ϕ

(
|ψ1〉

)
〈ψ2|ψ3〉 = ϕ

(
|ψ1〉

)
〈ψ2|ϕ† ϕ|ψ3〉

= [ϕ|ψ1〉, ϕ|ψ2〉, ϕ|ψ3〉]′ .

Remark 2. If we consider bounded linear maps that are not isometries, then we will not, in general,
have a homomorphism of the relevant semiheaps.

As we are considering linear maps, it is clear that bounded linear isometries are also
ternary algebra homomorphisms.

Unitary operators, i.e., bounded operators such that U†U = UU† = 1H, form a group,
U (H), and their action on H are isometries. In particular, the action ρU : H → H is
|ψ〉 %→ U|ψ〉 for arbitrary U ∈ U (H). We then have the following corollary.

Corollary 2. Let U (H) be the group of unitary operators on a Hilbert space H. Furthermore,
let (H, [−,−,−]) be the associated semiheap. Then the action on U (H) on H is a semiheap
isomorphism and so an isomorphism of ternary algebras.

Symmetries in quantum mechanics are usually understood as projective representations
of some group G. That is, we have a map

U : G −→ U (H) ,

such that U(g1)U(g2) = ω(g1, g2)U(g1, g2), with ω : G×G → U(1) := {z ∈ C, | |z| = 1},
being referred to as the Schur factor. Associativity implies that ω(g1, g2)ω(g1g2, g3) =
ω(g1, g2g3)ω(g2, g3). Assuming that U(e) = 1H (as standard) implies that ω(e, e) = 1. One
can also deduce that ω(g, e) = ω(e, g) = 1 and ω(g, g−1) = ω(g−1, g). If ω(g1, g2) = 1 for
all g1, g2 ∈ G, then we have a unitary representation. Wigner’s theorem (see [21]) tells us
that symmetries in quantum mechanics act via either projective or unitary representations.
We thus, in general, have an “action up to a factor” ρU(−) : G × H → H given by
(g, |ψ〉) %→ U(g)|ψ〉.

Corollary 3. Let U (H) be the group of unitary operators on a Hilbert space H and let U : G −→
U (H) be a projective representation. Furthermore, let (H, [−,−,−]) be the associated semiheap.
Then, for any g ∈ G, ρU(g) : H → H is a semiheap homomorphism and so a homomorphism of
ternary algebras.
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Remark 3. The dual of a Hilbert space also comes with the canonical structure of a semiheap
and ternary algebra by defining [〈ψ3|, 〈ψ2|, 〈ψ1|] := 〈ψ3|ψ2〉〈ψ1|. By construction we have
[|ψ1〉, |ψ2〉, |ψ3〉]† = [〈ψ3|, 〈ψ2|, 〈ψ1|]. Note that although we can canonically identify a Hilbert
space and its dual, we consider them as distinct spaces.

The vector ternary product can be extended to direct sums of Hilbert spaces as follows.
Recall that the (orthogonal) direct sum H = H1 ⊕ H2 comes equipped with an inner
product given by (

|ψ1〉+ |φ1〉, |ψ2〉+ |φ2〉
)
%−→ 〈ψ1|ψ2〉+ 〈φ1|φ2〉 .

Then, the vector ternary product is given by

[|ψ1〉+ |φ1〉, |ψ2〉+ |φ2〉, |ψ3〉+ |φ3〉] := |ψ1〉〈ψ2|ψ3〉+ |φ1〉〈φ2|φ3〉
= [|ψ1〉, |ψ2〉, |ψ3〉] + [|φ1〉, |φ2〉, |φ3〉] .

This construction extends to the orthogonal direct sum of any finite number of Hilbert spaces.

Example 4. In supersymmetric quantum mechanics, the relevant Hilbert space is the (orthogonal)
direct sum on the bosonic sector H0 and the fermionic sector H1, i.e., H = H0 ⊕H1. Of course,
being orthogonal implies that linear combinations of bosonic and fermionic states cannot be physically
realised. Nonetheless, we can still consider the vector ternary product on the direct sum as the sum
of two vector ternary products on each sector.

Remark 4. Note that, as vector spaces, C ⊕ C � C2, and more over, they are isomorphic as
metric spaces. Specifically, the induced metric on C⊕C is given by 〈z1 + z′1, z2 + z′2〉 = z̄1z2 +
z̄′1z′2. Similarly, on C2 the standard metric is given by 〈Z1, Z2〉 = Z†

1 Z2 = z̄1z2 + z̄′1z′2, where
Zi = (zi, z′i)

T. However, the associated semiheaps are not identical, and so the associated ternary
algebras are distinct. In particular, [z1 + z′1, z2 + z′2, z3 + z′3] = z1z̄2z3 + z′1z̄′2z′3 ∈ C⊕C, while

[Z1, Z2, Z3] = Z1〈Z2, Z3〉 =
(

z1z̄2z3 + z′1z̄2 z3
z1z̄′2z′3 + z′1z̄′2z′3

)
∈ C2 .

Considering Example 2, and picking the natural representation | ↑〉 = (1, 0)T and | ↓〉 = (0, 1)T,
we see that we are using the natural metric on C2 and its associated semiheap structure. If we used
the induced semiheap structure on C⊕C, then of the 8 possible ternary products (using the natural
basis), the only non-zero ones are [| ↑〉, | ↑〉, | ↑〉] = | ↑〉 and [| ↓〉, | ↓〉, | ↓〉] = | ↓〉. In particular,
we note that there are at least two natural semiheap structures on C2 induced by the same underlying
metric structure.

Similarly, the vector ternary product can be extended to the tensor product of Hilbert
spaces. We denote the (completed) tensor product as H = H1 ⊗H2. We remark that com-
posite quantum systems are always described via the tensor products of their components.
Basic elements of H are pairs which, as standard, we write as |ψ〉 ⊗ |φ〉. The inner product
(used for the completion) is, on basic elements, given by(

|ψ1〉 ⊗ |φ1〉, |ψ2〉 ⊗ |φ2〉
)
%−→ 〈ψ1|ψ2〉 〈φ1|φ2〉 ,

which is then extended via linearity. The vector ternary product (on basic elements) is
given by

[|ψ1〉 ⊗ |φ1〉, |ψ2〉 ⊗ |φ2〉, |ψ3〉 ⊗ |φ3〉] := (|ψ1〉 ⊗ |φ1〉)〈ψ2|ψ3〉〈φ2|φ3〉
= |ψ1〉〈ψ2|ψ3〉 ⊗ |φ1〉〈φ2|φ3〉
= [|ψ1〉, |ψ2〉, |ψ3〉]⊗ [|φ1〉, |φ2〉, |φ3〉] .
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We observe that quite as expected, the vector ternary product on a tensor product of
Hilbert spaces is the tensor product of the vector ternary products. This construction then
generalises to any finite tensor product of Hilbert spaces.

2.2. Bounded Linear Operators and Their Ternary Algebra

We will denote the ∗-algebra of bounded (so, continuous) operators on H by B(H).
Following our previous notation, we may also mean by B(H) just the set of bounded linear
operators, the context should be clear. If we want to consider just the vector space structure
then we will write (B(H),+).

Definition 3. Let H be a Hilbert space and let B(H) be the the ∗-algebra of bounded operators on
H. The operator ternary product [−,−,−] : B(H)×B(H)×B(H) −→ B(H) is defined as

[A1, A2, A3] := A1 A†
2 A3 .

Remark 5. We focus on bounded linear operators to avoid mathematical subtleties with taking
adjoints and forming algebras under composition.

Remark 6. The ternary product of bounded operators is closely related to the notion of a ternary
ring of operators between Hilbert spaces as first introduced by Hestenes [22] and extended to the
C∗-algebra case by Zettl [23].

Proposition 4. The operator ternary product on B(H), see Definition 3,

1. is linear in the first and third arguments, conjugate linear in the second argument, and
2. satisfies the para-associative law, or in other words, (B(H), [−,−,−]) is a semiheap.

Proof. Part (1) is clear from the definition. Part (2) follows from a direct calculation.
Specifically,

(i)
[
[A1, A2, A3], A4, A5

]
= A1 A†

2 A3 A†
4 A5 ,

(ii)
[
A1, [A4, A3, A2], A5

]
= [A1, A4 A†

3 A2, A5] = A1(A4 A†
3 A2)

† A5 = A1 A†
2 A3 A†

4 A5,

(iii)
[
A1, A2, [A3, A4, A5]

]
= A1 A†

2 A3 A†
4 A5.

Clearly, (i) = (ii) = (iii).

Definition 4. Let B(H) be the the ∗-algebra of bounded operators on a Hilbert space H. Then
the ternary algebra (B(H),+, [−,−,−]) defined via Proposition 4 is referred to as the operator
ternary algebra.

Example 5. Considering the complex line, it is clear that B(C) = Mat1×1(C) = C. Thus,
the operator and vector ternary products are identical, see Example 1.

Example 6. Continuing Example 2, as the Hilbert space is isomorphic to C2, it is clear that
B(C2) ∼= Mat2×2(C). To set some notation, we denote the components of a matrix for the standard
basis as A j

i and the components of the Hermitian conjugate as Āj
i. Then the components of the

operator ternary product are
[A, B, C] j

i = A k
i B̄l

kC j
l .

The operator ternary product for Cn (n ∈ N) is of the above from.

As mentioned earlier, unitary operators, i.e., bounded operators such that
U†U = UU† = 1H, form a group. Because we have the structure of a group and U−1 = U†,
we have the following corollary. Alternatively, one needs only check the Mal’cev identities,
and in this case, it is obvious they hold.

317



Universe 2022, 8, 56

Corollary 4. The group of unitary operators U
(
H
)

on a Hilbert space H is a heap under the
operator ternary product.

As standard, we will denote the commutator of bounded operators as
[A1, A2] := A1 A2 − A2 A1, for arbitrary A1 and A2 ∈ B(H). We remind the reader that
[A1, A2]

† = −[A†
1, A†

2], and that we can cast the Jacobi identity into the Jacobi–Leibniz form

[A1, [A2, A3]] = [[A1, A2], A3] + [A2, [A1, A3]] . (1)

Proposition 5. The following identity holds for the operator ternary product on B(H), see
Definition 3,[

A1, [A2, A3, A4]
]
=

[
[A1, A2], A3, A4

]
−

[
A2, [A†

1, A3], A4
]
+

[
A2, A3, [A1, A4]

]
,

for all A1, A2, A3 and A4 ∈ B(H).

Proof. Directly we observe that[
A1, [A2, A3, A4]

]
= A1 A2 A†

3 A4 − A2 A†
3 A4 A1

= A1 A2 A†
3 A4 − A2 A†

3 A4 A1 − A2 A1 A†
3 A4

+ A2 A1 A†
3 A4 − A2 A†

3 A1 A4 + A2 A†
3 A1 A4

=
[
[A1, A2], A3, A4

]
−

[
A2, [A†

1, A3], A4
]
+

[
A2, A3, [A1, A4]

]
.

We interpret Proposition 5 as a generalised version of the Leibniz rule for the com-
mutator over the ternary product, and this should be compared with (1). We make the
following observation.

Corollary 5. If A1 ∈ B(H) is self-adjoint, i.e., A†
1 = A1, then [iA1,−] is a derivation over the

operator ternary product on B(H), i.e.,[
iA1, [A2, A3, A4]

]
=

[
[iA1, A2], A3, A4

]
+

[
A2, [iA1, A3], A4

]
+

[
A2, A3, [iA1, A4]

]
.

The unitary group U (H) acts on B(H) via similarity transformations. That is, ρU :
B(H) → B(H) is given by A %→ U† AU, for arbitrary U ∈ U (H). We then have the
following proposition.

Proposition 6. Let
(
B(H), [−,−,−]

)
be the semiheap associated with bounded linear operators on

a Hilbert space H. Then, the action of the unitary group U (H) on B(H) is a semiheap homomorphism.

Proof. The proposition is proved via direct calculation. Specifically,

ρU
(
[A1, A2, A3]

)
= U†[A1, A2, A3]U = U† A1 A†

2 A3U = U† A1U
(
U† A†

2U
)
U† A3 U

= [U† A1U, U† A2U, U† A3U] = [ρU(A1), ρU(A2), ρU(A3)] .

Corollary 6. Let U (H) be the group of unitary operators on a Hilbert space H and let U : G −→
U (H) be a projective representation. Furthermore, let

(
B(H), [−,−,−]

)
be the semiheap associated

with bounded linear operators. Then, for any g ∈ G, ρU(g) : H → H is a semiheap homomorphism
and so a homomorphism of ternary algebras.

Note that [A1, A2, A3]
† = [A†

3, A†
2, A†

1] and so the operator ternary product is well-
behaved with respect to taking adjoints. We denote the set of bounded self-adjoint operators,
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so the bounded observables, as Bs(H). Two operators A and B ∈ Bs(H) are said to be
compatible bounded observables if they commute, i.e., AB = BA. A compatible set of bounded
observables is a subset of Bs(H) such that all elements are pairwise compatible, that is, they
pairwise commute. Naturally, a sub-semiheap of a semiheap is a subset that is closed with
respect to the semiheap operation.

Proposition 7. Let Bs(H) be the set of bounded observables on a Hilbert space H. Then any
compatible set of bounded observables is closed with respect to the operator ternary product. In other
words, any set of compatible bounded observables forms a sub-semiheap of

(
B(H), [−,−,−]

)
.

Proof. Consider three arbitrary (not necessarily distinct) bounded observables A, B and
C ∈ Bs(H). Then directly

[A, B, C]† = C†BA† = CBA = [C, B, A] .

Upon the assumption these bounded observables pairwise commute we see that CBA = ABC
and so [A, B, C]† = [A, B, C] as required.

2.3. Distributivity of Operators and Derivations

From the definition of the vector ternary product on a Hilbert spaceH, see Definition 1,
we have the following “distributive law”,

A[|ψ1〉, |ψ2〉, |ψ3〉] = [A|ψ1〉, |ψ2〉, |ψ3〉] , (2)

for all |ψ1〉, |ψ2〉 and |ψ3〉 ∈ H, and all A ∈ B(H). The following was first, to our knowl-
edge, uncovered by Kerner [5]. Let us suppose the Hilbert space in question is finite or
countable infinite. Furthermore, let us fix an orthonormal basis {|n〉}n∈N. With respect to
this fixed basis, any vector and operator can be written as

|ψ〉 =
∞

∑
n=1

cn |n〉 , A =
∞

∑
l,m

aml |l〉〈m| .

Then, combining the two above expressions

A|ψ〉 =
∞

∑
n,m,l=1

cnaml |l〉〈m|n〉 =
∞

∑
n,m,l=1

cnaml [|l〉, |m〉, |n〉] . (3)

By employing semiheaps and para-associative ternary algebras, we have a unification
scheme in which vectors (states) and operators (observables) are treated as the same. It is
linear combinations of triplets of vectors that are central to the theory rather than separately
vectors and operators.

The distributivity law (2) can be written in the form of a generalised Leibniz rule,
and this should directly be compared with Proposition 5.

Proposition 8. Let H be a Hilbert space and let [−,−,−] be the associated vector ternary product.
Then any bounded linear operator A ∈ B(H) satisfies a generalised ternary Leibniz rule

A[|ψ1〉, |ψ2〉, |ψ3〉] = [A|ψ1〉, |ψ2〉, |ψ3〉]− [|ψ1〉, A†|ψ2〉, |ψ3〉] + [|ψ1〉, |ψ2〉, A|ψ3〉] ,

for all |ψ1〉, |ψ2〉 and |ψ3〉 ∈ H.

Proof. In light of (2), we require that −[|ψ1〉, A†|ψ2〉, |ψ3〉] + [|ψ1〉, |ψ2〉, A|ψ3〉] = 0. How-
ever, this is the case for any bounded operator A as, directly from Definition 3,

[|ψ1〉, A†|ψ2〉, |ψ3〉] = |ψ1〉〈ψ2|A|ψ3〉 = [|ψ1〉, |ψ2〉, A|ψ3〉] .
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Definition 5. Let H be a Hilbert space and let [−,−,−] be its associated vector ternary product.
A bounded linear operator D ∈ B(H) is said to be a derivation of the vector ternary product on
H if it satisfies the ternary Leibniz rule

D[|ψ1〉, |ψ2〉, |ψ3〉] = [D|ψ1〉, |ψ2〉, |ψ3〉] + [|ψ1〉, D|ψ2〉, |ψ3〉] + [|ψ1〉, |ψ2〉, D|ψ3〉] ,

for all |ψ1〉, |ψ2〉 and |ψ3〉 ∈ H.

There is a one-to-one correspondence between anti-self-adjoint and self-adjoint op-
erators given by multiplication by i =

√
−1. Specifically, if A is anti-self-adjoint, then iA

is self-adjoint, i.e., (iA)† = iA. Conversely, if B is self-adjoint, then iB is anti-self-adjoint,
i.e., (iB)† = −iB. The following proposition appears in ([5] Section 6).

Proposition 9. There is a one-to-one correspondence between the set of derivations of the vector
ternary product on H and the set of bounded observables Bs(H).

Proof. In light of (2), it is clear that 〈ψ2|D†|ψ3〉 + 〈ψ2|D|ψ3〉 = 0 if a bounded linear
operator is a derivation. Thus, as the vectors in H are arbitrary, D† = −D. That is, D must
be anti-self-adjoint. We can always find a unique self-adjoint operator A ∈ B(H) such
that D = iA. Conversely, any self-adjoint operator A corresponds to an anti-self-adjoint
operator iA = D.

Proposition 10. Derivations of the vector ternary product on a Hilbert space H are closed under
the commutator.

Proof. If D1 and D2 are anti-self-adjoint operators, then [D1, D2]
† = −[D1, D2], i.e., the

commutator is also anti-self-adjoint.

It is clear that the linear combination a D1 + b D2 is also anti-self-adjoint for a and
b ∈ R. Note, rather obviously, this is not the case for linear combinations with complex
coefficients with non-zero imaginary parts. We then have the following observation.

Corollary 7. Derivations of the vector ternary product on a Hilbert space H form a real Lie algebra
with respect to the commutator bracket.

2.4. The Heapification of Addition of Vectors

Note that Propositions 5 and 8 suggest that for a para-associative ternary product, the gen-
eralisation of Leibniz rule should be of the form D[a, b, c] = [Da, b, c]− [a, D†b, c] + [a, b, Dc]
for all elements a, b and c. This is in contrast to the obvious direct generalisation of the Leibniz
rule. In particular, we note that there is a linear combination of objects of the form “+ − +”
and that this is a sign that a heap operation is at play here.

From the Abelian group structure of addition of elements of a Hilbert space we can
construct an Abelian heap operation as

{|ψ1〉, |ψ2〉, |ψ3〉} = |ψ1〉 − |ψ2〉+ |ψ3〉 . (4)

This Abelian heap is then viewed as replacing the operation of the addition of vectors.
The generalised Leibniz rule (see Proposition 8) can then be cast into the form

A[|ψ1〉, |ψ2〉, |ψ3〉] =
{
[A|ψ1〉, |ψ2〉, |ψ3〉], [|ψ1〉, A†|ψ2〉, |ψ3〉], [|ψ1〉, |ψ2〉, A|ψ3〉]

}
.

The natural question is what replaces the ring distributive laws of multiplication over
the addition.
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Proposition 11. Let H be a Hilbert space, let [−,−,−] be its associated vector ternary product
and let {−,−,−} be the associated Abelian heap operation given by (4). We then have the following
distributive laws.

(i)
[
{|ψ1〉, |ψ2〉, |ψ3〉}, |ψ4〉, |ψ5〉

]
=

{
[|ψ1〉, |ψ4〉, |ψ5〉], [|ψ2〉, |ψ4〉, |ψ5〉], [|ψ3〉, |ψ4〉, |ψ5〉]

}
,

(ii)
[
|ψ1〉, {|ψ2〉, |ψ3〉, |ψ4〉}, |ψ5〉

]
=

{
[|ψ1〉, |ψ2〉, |ψ5〉], [|ψ1〉, |ψ3〉, |ψ5〉], [|ψ1〉, |ψ4〉, |ψ5〉]

}
,

(iii)
[
|ψ1〉, |ψ2〉, {|ψ3〉, |ψ4〉, |ψ5〉}

]
=

{
[|ψ1〉, |ψ2〉, |ψ3〉], [|ψ1〉, |ψ2〉, |ψ4〉], [|ψ1〉, |ψ2〉, |ψ5〉]

}
.

Proof. We will only prove (i) as the other two follow in the same way. We note that via the
linearity of vector ternary product that[
{|ψ1〉, |ψ2〉, |ψ3〉}, |ψ4〉, |ψ5〉

]
= [|ψ1〉, |ψ4〉, |ψ5〉]− [|ψ2〉, |ψ4〉, |ψ5〉] + [|ψ3〉, |ψ4〉, |ψ5〉] .

The above considerations suggest that one can define and study non-empty sets
equipped with an Abelian heap and a semiheap structure that satisfy the preceding dis-
tributive laws. Informally, such algebraic systems are rings in which both the addition and
multiplication are now para-associative ternary operations. This should be compared with
Brzeziński’s trusses (see [4,18]) in which the addition is replaced by an Abelian heap and
the multiplication remains a binary operation.

3. Concluding Remarks

In this paper, we have re-examined the semiheaps and associated para-associative
algebras that are naturally present in the mathematical setup of quantum mechanics.
In particular, their symmetries and generalised derivations have been studied, this has,
to the author’s knowledge, not been explored before. Interestingly, semiheaps allow one to
treat vectors and operators as non-distinct objects (see (3)). The action of an operator on
a state is replaced by a linear combination of triplets of states fed into the vector ternary
product. As far as we know, this observation, first made by Kerner, has not been exploited
in quantum mechanics.

In conclusion, quantum mechanics has provided much inspiration for the study of
operator algebras and noncommutative structures. Similarly, quantum mechanics provides
the impetus for the investigation of ternary and non-associative structures.

Funding: This research received no external funding.

Data Availability Statement: Not applicable

Acknowledgments: The author thanks Steven Duplij for his encouragement to complete this work.
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Maxwell’s Equations in Homogeneous Spaces for Admissible
Electromagnetic Fields
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Abstract: Maxwell’s vacuum equations are integrated for admissible electromagnetic fields in homo-
geneous spaces. Admissible electromagnetic fields are those for which the space group generates
an algebra of symmetry operators (integrals of motion) that is isomorphic to the algebra of group
operators. Two frames associated with the group of motions are used to obtain systems of ordinary
differential equations to which Maxwell’s equations reduce. The solutions are obtained in quadra-
tures. The potentials of the admissible electromagnetic fields and the metrics of the spaces contained
in the obtained solutions depend on six arbitrary time functions, so it is possible to use them to
integrate field equations in the theory of gravity.

Keywords: Maxwell’s vacuum equations; Hamilton–Jacobi equation; Klein–Gordon–Fock equation;
algebra of symmetry operators; separation of variables; linear partial differential equations

1. Introduction

A special place in mathematical physics is occupied by the problem of exact integration
of the equations of motion of a classical or quantum test particle in external electromagnetic
and gravitational fields. This problem is closely related to the study of the symmetry of
gravitational and electromagnetic fields in which a given particle moves. A necessary
condition for the existence of such symmetry is the admissibility of the algebra of sym-
metry operators, given by vector and tensor Killing fields, for spacetime and the external
electromagnetic field. The algebras of these operators are isomorphic to the algebras of the
symmetry operators of the equations of motion of a test particle—Hamilton–Jacobi, Klein–
Gordon–Fock, or Dirac–Fock. At present, two methods are known for the exact integration
of the equations of motion of a test particle. These are the methods of commutative and
noncommutative integration. The first method is based on the use of commutative algebra
of symmetry operators (integrals of motion) that form a complete set. The complete set
includes linear operators of first and second degree in momentum formed by vector and
tensor Killing fields of complete sets of geometric objects of V4. The method is known as
the method of complete separation of variables (in the Hamilton–Jacobi, Klein–Gordon–
Fock, or Dirac–Fock equations). The spaces in which the method of complete separation
of variables is applicable are called Stackel spaces. The theory of Stackel spaces was de-
veloped in [1–12]. A description of the theory and a detailed bibliography can be found
in [13–16]. The most frequently used exact solutions of the gravitational field equations in
the theory of gravity were constructed on the basis of Stackel spaces (see,
e.g., [17–19]). These solutions are still widely used in the study of various effects in
gravitational fields (see, e.g., [20–27]).

The second method (noncommutative integration) was developed in [28]. This method
is based on the use of algebra of symmetry operators, which are linear in momenta and
constructed using Killing vector fields forming noncommutative groups of motion of
spacetime G3 and G4. The algebras of the symmetry operators of the Klein–Gordon–
Fock equation constructed using the algebras of the operators of the noncommutative
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motion group of space V4 are complemented to a commutative algebra by the operators
of differentiation of the first order in 4 essential parameters. Among these spacetime
manifolds, the homogeneous spaces are of greatest interest for the theory of gravity (see,
e.g., [29–36]).

Thus, these two methods complement each other to a considerable extent and have
similar classification problems (by solving the classification problem, we mean enumer-
ating all metrics and electromagnetic potentials that are not equivalent in terms of ad-
missible transformations). Among these classification problems, the most important are
the following.

Classification of all metrics of homogeneous and Stackel spaces in privileged coor-
dinate systems. For Stackel spaces, this problem was solved in building the theory of
complete separation of variables in the papers cited above. For homogeneous spaces, this
problem was solved in the work of Petrov (see [37]).

Classification of all (admissible) electromagnetic fields applicable to these methods.
For the Hamilton–Jacobi and Klein–Gordon–Fock equations, this problem is completely
solved in homogeneous spaces (see [38–43]). In Stackel spaces, it is completely solved for
the Hamilton–Jacobi equation and partially solved for the Klein–Gordon–Fock equation
(see [14–16]).

Classification of all vacuum and electrovacuum solutions of the Einstein equations
with metrics of Stackel and homogeneous spaces in admissible electromagnetic fields. This
problem has been completely solved for the Stackel metric (see [17–20]). However, this
classification problem has not yet been studied for homogeneous spaces.

The solutions to these problems can be viewed as stages of the solution of a single
classification problem. In the first two stages, we find all relevant gravitational and elec-
tromagnetic fields that are not connected by field equations. In the third stage, using the
results of the first two stages, we find metrics and electromagnetic potentials that satisfy
the Einstein–Maxwell vacuum equations and have physical meaning.

Thus, for the complete solution to the problem of uniform classification, the Einstein–
Maxwell vacuum equations must be integrated using the previously found potentials
of admissible electromagnetic fields and the known metrics of homogeneous spaces in
privileged (canonical) coordinate systems. This problem can also be divided into two
stages. In the first stage, all solutions of Maxwell’s vacuum equations for the potentials
of admissible electromagnetic fields should be found. The present work is devoted to this
stage. In the next stage, the plan is to use the obtained results for the integration of the
Einstein–Maxwell equations. This will be the subject of further research. The present work
is organized as follows.

Section 2 contains information from the theory of homogeneous spaces, which will be
used later, and definitions and conditions for the potentials of admissible electromagnetic
fields, written in canonical frames associated with motion groups of a homogeneous space.

In the Section 3 Maxwell’s vacuum equations are written in canonical frames.
The Section 4 contains all solutions of Maxwell’s vacuum equations for homogeneous

spaces admitting groups of motions G3(I)− G3(VI).

2. Homogeneous Spaces

By the accepted definition, a spacetime manifold V4 is a homogeneous space—if a three-
parameter group of motions acts on it—whose transitivity hypersurface V3 is endowed
with the Euclidean space signature. Let us introduce a semi-geodesic coordinate system
[ui], in which the metric V4 has the form:

ds2 = gijduiduj = −du02
+ gαβduαduβ, det|gαβ| > 0. (1)

The coordinate indices of the variables of the semi-geodesic coordinate system are
denoted by the lower-case Latin letters: i, j, k, l = 0, 1, . . . , 3. The coordinate indices of the
variables of the local coordinate system on the hypersurface V3 are denoted by the lower-
case Greek letters: α, β, γ, σ = 1, . . . , 3. A 0 index denotes the temporary variable. Group
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indices and indices of nonholonomic frames are denoted by a, d, c = 1, . . . , 3. Summation is
performed over repeated upper and lower indices within the index range.

There is another (equivalent) definition of a homogeneous space, according to which
the spacetime V4 is homogeneous if its subspace V3, endowed with the Euclidean space
signature, admits a set of coordinate transformations (the group G3 of motions spaces V4)
that allow the connection of any two points in V3. (see, e.g., [44]). This definition directly
implies that the metric tensor of the V3 space can be represented as follows:

gαβ = ea
αeb

βηab, ||ηab|| = ||aab(u0)||, ea
α,0 = 0, det||aab|| = l02, (2)

while the form:
ωa = ea

αduα

is invariant under the transformation group G3. The vectors of the frame ea
α (we call them

canonical) define a nonholonomic coordinate system in V3, and their dual triplet of vectors:

eα
a , eα

a eb
α = δb

a , eα
a ea

β = δα
β

define the operators of the G3 algebra group:

Ŷa = eα
a ∂a, [Ŷa, Ŷb] = Cc

abŶc.

The Killing vector fields ξα
a and their dual vector fields ξa

α form another frame in the
space V3 (we will call it the Killing frame) and another representation of the algebra of
group G3. In the dual frame, the metric of the space V3 has the form:

gαβ = ξa
αξb

βGab, ξα
a ξb

α = δb
a , ξα

a ξa
β = δα

β, (3)

where Gab are the nonholonomic components of the gαβ tensor in this framework. The
vector fields ξα

a satisfy the Killing equations:

gαβ
,γ ξ

γ
a = gαγξ

β
a,γ + gβγξα

a,γ (4)

and form the infinitesimal group operators of the algebra G3:

X̂a = ξα
a ∂α, [X̂a, X̂b] = Cc

abX̂c. (5)

The Killing equation in the ξα
a frame has the following form:

Gab
|c = GadCb

dc + GbdCa
dc (|a = ξα

a ∂α). (6)

Indeed, substituting the expression:

gαβ = ξα
a ξ

β
b Gab

into Equation (4), we get

Gab((ξα
a|cξ

β
b − ξα

a ξ
β

c|b) + (ξα
a ξ

β

b|c − ξ
β
a ξα

c|b)) + ξα
a ξ

β
b Gab

|c = 0.

Substituting here the commutation relations (5), we get:

(Gab
|c − GadCb

dc − GbdCa
dc)ξ

α
a ξ

β
b = 0.

The Hamilton–Jacobi equation for a charged test-particle in an external electromagnetic
field with potential Ai is:

H = gijPiPj = m, Pi = pi + Ai, pi = ∂i ϕ. (7)

The integrals of motion of the free Hamilton–Jacobi equation are given using Killing
vector fields as follows:
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Xa = ξ i
a pi, (8)

Thus, the symmetry of the space given by the Killing vector fields is directly related
to the symmetry of the equations of the geodesics given by the integrals of motion. The
Hamilton–Jacobi method makes it possible to find these integrals and use them to integrate
the geodesic equations. Therefore, the study of the behavior of geodesics is necessary for
the study of the geometry of space.

The linear momentum integral of Equation (7) has the following form:

Xa = ξ i
aPi + γa, (9)

where γα are some functions of ui. Equation (7) admits a motion integral of the form (8) if
H and X̂a commute under Poisson brackets:

[H, X̂a]P =
∂H
∂pi

∂X̂a

∂xi −
∂H
∂xi

∂X̂a

∂pi
= 0 → giσ(ξ

j
aFji + γa,i)Pσ = 0. (10)

Hence:
γa,i = ξ

j
aFij, Fji = Ai,j − Aj,i. (11)

Thus, the admissible electromagnetic field is determined from Equation (11)
(see [41]). In [39,40] it was proved that in the case of a homogeneous space, the conditions
of (11) can be represented as follows:

Aa|b = Cc
baAc, (12)

at the same time:
γa = −Aa → X̂a = ξα

a ∂α.

Here, it is denoted that:
Aa = ξ i

a Ai,

It can be shown that Equation (12) forms a completely integrable system. This system
specifies the necessary and sufficient conditions for the existence of algebra of integrals of
motion that are linear in momenta for Equation (7). Note that in admissible electromagnetic
fields given by the conditions (12), the Klein–Gordon–Fock equation:

Ĥϕ = (gij P̂i P̂j)ϕ = m2 ϕ, P̂k = p̂k + Ak, p̂k = −ı∇̂k

also admits an algebra of symmetry operators of the form (see [39,41]):

X̂a = ξ i
a∇̂i

∇̂i is the covariant derivative operator corresponding to the partial derivative operator—
∂̂i = ı p̂i in the coordinate field ui. Function ϕ is a scalar field, m = const. All admissible
electromagnetic fields for the homogeneous spacetime are found in [39]. We will use the
results of A.Z. Petrov [37]. We follow the notation used in this book with minor exceptions.
For example, the nonignorable variable x4 will be denoted u0, etc.

3. Maxwell’s Equations for an Admissible Electromagnetic Field in
Homogeneous Spacetime

Consider Maxwell’s equations with zero electromagnetic field sources in homogeneous
spacetime in the presence of an admissible electromagnetic field:

1√−g
(
√
−gFij),j = 0, g = det|gαβ|. (13)

when i = 0 from the system (13), the equation follows:
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1√−g
(
√
−ggαβ Aβ,0),α = 0. (14)

Using the Killing Equations (4) and (5), we can obtain:
g|a
g

= 2ξα
a,α.

Indeed,

−
g|a
g

= gαβ

|a gαβ = Gbc
|a Gbc + 2ξα

a,α + 2Ca = 2ξα
a,α (Ca = Cb

ab).

Substituting this expression and the relation (12) into Equation (14), we get:

GabCbAa,0 = 0. (15)

In the case of spaces with groups G3(I), G3(I I), G3(VII I), G3(IX)Ca = 0. That is why
Equation (15) is satisfied. In the case of the groups G3(I I I),−G3(VII) Ca = constδa3, and
from (15) it follows:

η3aÃa,0 = 0, Ãa = Aαeα
a . (16)

For i = α we have:
1√
g
(
√

ggαβFβ0),0 +
1√
g
(
√

ggαβgγσFβσ),γ = 0. (17)

We transform Equation (17) using the (2) frame. The first term then has the form:
1√−g

(
√
−ggαβFβ0),0 = − 1

l0
(l0ηabÃa,0),0eα

b , (l0)2 = det|ηab|.

The second term using the (3) frame, the relations (12), and the commutation relations
between the operators of the group can be reduced to the following form:

1√
g
(
√

ggαβgγσFβσ),γ =
1
2

Ga2b1 Ca
a2b2

(2Cb1 Gbb2 + Cb
a1b1

Ga1b2)ξα
b ξ

β
a ec

βÃc.

So Equation (17) can be written as follows:
1
l0
(l0ηabÃb,0),0 = W̃baÃb, (18)

where:

W̃ab = (ea
βξ

β
a1)(e

a
αξα

b1
)Wa1b1 , Wab =

1
2

Ga2b1 Ca
a2b2

(2Cb1 Gbb2 + Cb
a1b1

Ga1b2). (19)

Then, Maxwell’s equations can be represented as follows:

βa
,0 = l0W̃baÃb, (20)

Ãa,0 =
1
l0

βbηab. (21)

4. Maxwell’s Equations for Spaces Type I–VI According to Bianchi Classification

The group operators in the canonical coordinate set of homogeneous spaces type I–VI
according to the Bianchi classification can be represented as follows (see [37]):

X1 = p1, X2 = p2, X3 = (ru1 + εu2)p1 + nu2 p2 − p3. (22)

The values k ε, n for each group take the following values.)
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G(I) : k = 0, ε = 0, n = 0.

G(I I) :k = 0, ε = 1, n = 0.

G(I I I) :k = 1, ε = 0, n = 0.

G(IV) :k = 1, ε = 1, n = 1.

G(V) : k = 1, ε = 0, n = 1.

G(VI) :k = 1, ε = 0, n = 2.

Structural constants can be represented as follows:

Cc
ab = kδc

1(δ
1
a δ3

b − δ3
a δ1

b) + (εδc
1 + nδc

2)(δ
2
a δ3

b − δ3
a δ2

b)→ Ca = −(k + n)δ3
a (23)

Find the frame vectors [ξα
a ], [eα

a ] and their dual vectors [ξa
α], [ea

α].

ξα
a ξb

α = eα
a eb

α = δb
a , ξα

a ξa
β = eα

a ea
β = δα

β.

For this, we use the metrics of homogeneous spaces and the group operators given in
[37].

ξα
a = δ1

a δα
1 + δ2

a δα
2 + δ3

a(δ
α
1 (ku1 + εu2) + δα

2 nu2 − δα
3 ), (24)

ξa
α = δa

1δ1
α + δa

2δ2
α + δa

3(δ
1
α(ku1 + εu2) + δ2

αnu2 − δ3
α),

eα
a = δ1

a δα
1 exp(−ku3) + δ2

a(−δα
1 εu3 exp(−ku3) + δα

2 exp(−nu2)) + δα
3 δ3

a , (25)

eα
a = δa

1δ1
α exp(ku3) + δ2

a(δ
α
1 εu3 exp nu3 + δα

2 exp nu2)) + δ3
αδ3

a .

With these expressions, we find the matrix W̃ab (19).

W̃ab =
1

l02 [δ
a
1δb

1(εg11 + ε(n− k)g12 − kng22) exp(−2nu3) (26)

−(δa
1εu3 + δa

2)(δ
b
1εu3 + δb

2)kng11 exp(−2ku3)+

[δb
1(δ

a
1εu3 + δa

2)n(g12 + εg11)) + δa
1(δ

b
1εu3 + δb

2)k(g12 − εg11)].

Here (see [37]):

g11 = a11 exp 2ku3, g12 = (εu3a11 + a12) exp(n + k)u3, g22 = (εu32
a11 + 2εa12 + a22) exp 2nu3,

Maxwell’s Equations (20) and (21) become:

β̇b =
1
l0
[δa

1δb
1(εg11 + ε(n− k)g12 − kng22) exp(−2nu3) (27)

{−(δa
1εu3 + δa

2)(δ
b
1εu3 + δb

2)kng11 exp(−2ku3)+

[δb
1(δ

a
1εu3 + δa

2)n(g12 + εg11)) + δa
1(δ

b
1εu3 + δb

2)k(g12 − εg11)]Ãa,

βa = l0ηabÃb,0. (28)
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The dots denote the time derivatives. The components Ãa are defined by the solutions
of the (12) Ab system of equations using the formulas:

Ãa = eα
a ξb

αAb (29)

Further solutions of the system of Equation (27) for homogeneous spaces with groups
of motions G3(I −VI) are given. Spatial metrics are given in the book [37]. Solutions for
the system (12) can be found in [38],

αa = αa(u0).

4.1. Group G3(I)

As the parameters k, n, ε and Ca
bc equal zero, G3(I) is an Abelian group. The compo-

nents of the vector electromagnetic potential have the form:

Aa = Ãa = Aa = αa,

Substituting these expressions into the system of Equations (27) and (28), we obtain
the following system of ordinary differential equations:

β̇a = 0 → βa = ca = const;

l0α̇a = abacb → αq =
∫ aabcb

l0
du0, l02 = det|aab|.

All components of aab are arbitrary functions of u0.

4.2. Group G3(I I)

For the group G3(I I) the parameters k, n, ε have the following values: k = n = 0, ε = 1.
The components of the vector electromagnetic potential in the frames [ξα

a ] and [eα
a ]

have the form:

A1 = α1, A2 = α2 + α1u3, A3 = α1u3 − α3; Ãa = αa.

Substituting these expressions into the system of Equations (27) and (28), we obtain
the following system of ordinary differential equations:

l0 β̇a = α1a11δ1a → l0 β̇1 = α1a11, β2 = c2, β3 = c3 (βa = δabβb); (30)

l0α̇a = a1aβ1 + a2ac2 + a3ac3, l02 = det|aab| (ca = const, ). (31)

Set of equations(30) and (31) contains five equations for 11 functions:

l0, aab, αa, β1.

We should consider separately the variants α1 = 0 and α1 �= 0.

1. α1 = 0 → β1 = c1 = const. Then the set of Equations (30) and (31) has a quadrature
solution:

αq =
∫ aqbcb1 δbb1

l0
du0 (q = 2, 3).

For a = 0, Equation (31) implies a linear dependence of the components a1q :

c1a11 + c2a12 + c3a13 = 0.

All independent components of aab are arbitrary functions of u0.
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2. α1 �= 0. Consider the following Equations (30) and (31) from the system:

l0α̇1 = (a11β1 + c2a12 + c3a13), l0 β̇1 = a11α1. (32)

Let us take the function a11 out of (32). As a result, we obtain:

(α1
2 − β1

2),0 =
2α1

l0
(c2a12 + c3a13).

Hence:

β1 = ξ

√
α1

2 − 2
∫

α1

l0
(c2a12 + c3a13)du0 (ξ2 = 1).

>From the remaining equations of the system, we get:

αq =
∫ (a1qβ1 + a2qc2 + a3qc3)

l0
du0 (q = 2, 3); a11 =

l0 β̇1

α1
.

The functions l0, α1, and all components of aab, except a11, a33, are arbitrary functions
of u0. The component a33 results from the equation l02 = det|aab|:

a33 =
l02 + a11a23

2 + a22a13
2 − 2a12a13a23

a11a22 − a12
2 (33)

4.3. Group G3(I I I)

For the group G3(I I I) the parameters k, n, ε have the following values: k = 1,
n = ε = 0.

The components of the vector electromagnetic potential in the frames [ξα
a ] and [eα

a ]
have the form:

A1 = α1 exp u3, A2 = α2, A3 = α1 exp u3 − α3.

Substituting these expressions into the system of Equations (27) and (28), we obtain
the following system of ordinary differential equations:

l0 β̇a = α1a12δ2a → l0 β̇2 = α1a12, β1 = c1, β3 = 0; (34)

l0α̇a = a2aβ2 + a1ac. (35)

Here and further, Equation (16) is used, according to which β3 = 0. The system of
Equations (30) and (31) contains five equations for 11 functions:

l0, aab, αa, β2.

We should separately consider the variants α1 = 0 and α1 �= 0.

1. α1 = 0 → β2 = c2 = const. In this case the
Then set of equations (30) and (31) has a solution in quadratures:

αq =
∫ aqbcb1 δbb1

l0
du0 (q = 2, 3).

>From (31) it follows a linear dependence of the components a1q :

c1a13 + c2a23 = 0 → a12 = ba11, β1 = b, β2 = 1.

l0 and all independent components of aab are arbitrary functions of u0. The component
a33 is found from Equation (33).

2. Let α1 �= 0. Consider the following equations from system (30) and (31):
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l0α̇1 = a12β2 + c1a11, l0 β̇2 = a12α1. (36)

from system (36), it follows:

(α1
2 − β2

2),0 =
2α1

l0
c1a11.

Hence:

β2 = ξ

√
α1

2 − 2
∫

α1

l0
(c1a11 + c3a13)du0(ξ2 = 1).

>From the remaining equations of the system, we get:

αq =
∫ (a2qβ2 + a1qc1 + a3qc3)

l0
du0 (q = 2, 3); a11 =

l0 β̇2

α1
.

The functions l0, α1 and all components of aab, except a11, a33, are arbitrary functions
of u0. The component a33 results from Equation (33).

4.4. Group G3(IV)

For the group G3(IV) the parameters k, n, ε have the values: k = n = ε = 1.
The components of the vector electromagnetic potential in the frames [ξα

a ] and [eα
a ]

have the form:

A1 = α1 exp u3, A2 = (α2 + α1u3) exp u3,

A3 = (α1(u1 + u2 + u2u3) + α2u2) exp u3 − α3;

Ãa = αa.

Maxwell’s Equations (20) and (21) reduce to the following system:

l0 β̇a = δ1a(a11(α1 + α2)− α1a22 + α2a12) + δ2a(α1a12 − a11(α1 + α2)). (37)

l0α̇a = β2aa2 + β1aa1, β3 = 0. (38)

from the system (38) it follows:

α̇3 =
∫

β2a32 + β1a31

l0
du0. (39)

Let us now consider the remaining equations.

(A) β1 �= 0.
>From the system (37) it follows:

a12 =
1
β1

(l0α̇2 − β2a22) a11 =
1

β1
2 (l0(α̇1β1 − α̇2β2) + β2

2a22), (40)

Using these relations, we obtain a consequence from the remaining equations of the
system (37) and (38):

β1 β̇2 − β2(β̇1 + β̇2) = α1α̇2 − (α1 + α2)α̇1. (41)

With Equation (41), the dependent functions αa, βa can be expressed in terms of the
independent functions. Let us write down the solutions.

1. (α1β1 + β2(α1 + α2))β2 �= 0.

β1 = β2(b− ln β2 −
∫

α1α̇2 − (α1 + α2)α̇1

β2
2 du0);
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a22 =
l0(α̇2(α1 + α2)− β1(β̇1 + β̇2))

α1β1 + β2(α1 + α2)
.

l0, a13, a23, ϕ are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (33)

2. α1β1 + β2(α1 + α2) = 0, a22, is an arbitrary function, depending on u0.

α1 = a exp ϕ + b exp ϕ, α2 = (1 + e)α1 β2 = a exp ϕ− b exp ϕ,

β1 = eβ2 (e = const).

l0, a13, a23, ϕ are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (33).

3. β2 = 0.

α2 = α1(a + ln α1), a12 =
l0α̇2

β1
, a11 =

l0α̇1

β1
, a22 =

l0(α̇2(α1 + α2)− β̇1β1)

α1β1

l0, a13, a23, α1, β1 are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (33).

(B) β1 = 0. Maxwell’s equations take the form:

l0 β̇2 = α1a12 − (α1 + α2)a11, l0 β̇2 = −α1a22 + (α1 + α2)a12;

l0α̇1 = β2a12, l0α̇2 = β2a22.

The set of equations has the following

(a) (α1 + α2) �= 0.

β2 = ξ

√
b + 2

∫ 1
l0
(α̇1(α1 + α2)− α1α̇2)du0. a12 =

l0α̇1

β2
, a22 =

l0α̇2

β2
.

a11 =
l0(α1α̇1 − β2 β̇2)

β2(α1 + α2)

l0, a13, a23, α1, α2 are arbitrary functions of time. The function a33 is expressed in
terms of these functions using relation (33).

(b) α2 = −α1 → α1 = a exp ϕ − b exp ϕ β2 = a exp ϕ + b exp ϕ, a12 = l0α̇1
β2

a22 = l0α̇2
β2

.
l0, a11, a13, a23, ϕ, β1 are arbitrary functions of time. The function a33 is expressed
in terms of these functions using the relation (33).

4.5. Group G3(V)

For the group G3(V) the parameters k, n, ε have the values: k = n = 1, ε = 0. The
components of the vector electromagnetic potential in the frames [ξα

a ] and [eα
a ] have the form:

A1 = α1 exp u3, A2 = α2 exp u3, A3 = (α1u1 + α2u2) exp u3 − α3;

Ãa = αa.

Maxwell’s Equation (18) reduces to the following system of equations:

l0α̇a = β2aa2 + β1aa1, β3 = 0. (42)

332



Universe 2022, 8, 245

l0 β̇a = δ1a(a12α2 − α1a22) + δ2a(a12α1 − a11α2), (43)

Hence:

α̇3 =
∫

β2a32 + β1a31

l0
du0,

l0α̇1 = (a11β1 + a12β2), l0α̇2 = (a12β1 + a22β2). (44)

1. α1 �= 0. From the set of equations (43) it follows:

a12 =
1
α1

(l0 β̇2 + α2a11), a22 =
1

α1
2 (l0(β̇2α2 − β̇1α1) + a11α2

2). (45)

Substituting (45) into (44) , we get the corollary:

β1 β̇2 − β2 β̇1 = α1α̇2 − α2α̇1. (46)

a11(α1β1 + α2β2) = l0(α̇1α1 − β̇2β2). (47)

>From (46), it follows:

α2 = α1(b +
∫

β1 β̇2 − β2 β̇1

α1
2 du0),

Let us consider (48).

(a) α1β1 + α2β2 �= 0. Then, we have:

a11 =
l0(α1α̇2 − α2α̇1)

α1β1 + α2β2
;

l0, a13, a23, α1, βa are arbitrary functions of time. The function a33 is expressed
in terms of these functions using the relation (33).

(b) α1β1 + α2β2 = 0 → α1α̇1 − β1 β̇1 = 0, α1α̇2 + β2 β̇1 = 0.
>From this, it follows:

α1 = a exp ϕ + b exp ϕ, β2 = a exp ϕ− b exp ϕ, α2 = −lα1, β1 = lβ2,

where a, b, l = const, ϕ = ϕ(u0).
l0, a11, a13, a23 are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (33).

2. α1 = 0. From the system (43), it follows:

a12 =
l0 β̇1

α2
, a11 = − l0 β̇2

α2
, a22 =

l0(α̇2α2 − β̇1β1)

α2β2
, β1 = aβ2,

here a = const, l0, a13, a23, α2, β2 are arbitrary functions of time. The function a33 is
expressed in terms of these functions using the relation (33).

4.6. Group G3(VI)

For the group G3(VI), the parameters k, n, ε have the following values: k = 1
n = 2, ε = 0. The components of the vector electromagnetic potential in the frames [ξα

a ] and
[eα

a ] have the form:

A1 = α1 exp u3, A2 = α2 exp 2u3, A3 = α1u1 exp u3 + 2α2u2 exp 2u3 − α3;

Ãa = αa.
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Maxwell’s Equation (18) has the form:

l0α̇a = β2aa2 + β1aa1. (48)

l0 β̇a = δ1a(a12α2 − 2α1a22) + δ2a(a12α1 − 2a11α2), β3 = 0, (49)

and from the system (48), it follows:

α̇3 =
∫

β2a32 + β1a31

l0
du0.

l0α̇1 = (a11β1 + a12β2), l0α̇2 = (a12β1 + a22β2). (50)

I β1 �= 0, from system (48), it follows:

a12 =
1
β1

(l0α̇2 − β2a22), a11 =
1

β1
2 (l0(α̇1β1 − α̇2β2) + a22β2

2). (51)

Substituting (51) into (48), we get:

a22(α1β1 + 2α2β2) = l0(α2α̇2 − β̇1β1), (52)

(2α1β1 + α2β2)(2α2α̇1 + β̇2β1) = (β̇1β2 + 2α̇2α1)(α1β1 + 2α2β2) = 0 (53)

Using this relation, we get the following solutions:

(1) α1β1 + 2α2β2 �= 0. From (52) it follows:

a22 =
l0(α̇2α2 − β̇1β1)

(α1β1 + 2α2β2)
.

Denote:

αq = aq exp ϕ. βq = bq exp ϕ (q = 1, 2),

where aq, bq, ϕ are functions of u0. From Equation (53), we get:

ϕ̇ =
(ḃ1b2 + 2ȧ2a1)(a1b1 + 2a2b2)− (2a1b1 + a2b2)(2a2 ȧ1 + ḃ2b1)

(2a1a2 + b1b2)(a1b1 − a2b2)
;

a12 =
l0(ϕ̇a2 + a2)− b2a22

b1
; a11 =

l0((a1b1 − a2b2)ϕ̇ + ȧ1b1 − ȧ2b2) + b2
2a22

b1
2 ;

a22 =
l0((a2

2 − b2
1)ϕ̇ + ȧ2a2 − ḃ1b1)

2a1b1 + a2b2
.

l0, a13, a23, aq, bq are arbitrary functions dependent on time. The function a33
is expressed by these functions using the relation (33)

(2) α̇2α2 − β̇1β1 = 0 → α1β1 + 2α2β2 = 0. a22—is an arbitrary function
from u0;

α2 = a exp ϕ− b exp(−ϕ), β1 = a exp ϕ + b exp(−ϕ).

>From this, it follows:

(a)

α1 = − β2

2
(

a exp ϕ− b exp(−ϕ)

a exp ϕ + b exp(−ϕ)
);

a12 = l0 ϕ̇− β2a22

β1
, a11 =

l0(α̇1β1 − α̇2β2) + β2
2a22

β2
1
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(b) ϕ̇ = 0

β1 = 1, α2 = −2b, α1 = −bβ2, a12 = −β2a22, a11 = −bl0 β̇2 + β2
2a22.

where l0, a.b = consta22, a13, a23, β2, ϕ are arbitrary functions depen-
dent on time.

II β1 = 0.
>From (48) and (49) it follows:

a12 =
2l0α̇2α2

β2
, a22 =

l0α̇2

β2
, a11 =

l0(2b2α̇2α2
3 − β2 β̇2)

2α2β2
, α1 = bα2

2. (54)

l0, a22, a13, a23, α2β2 depends arbitrarily on time functions. The function a33 is ex-
pressed in terms of these functions using the relation (33).

5. Conclusions

The performed classification of admissible electromagnetic fields will be used in the
search for electrovacuum solutions of the Einstein–Maxwell equations. As is already known,
the components of the Ricci tensor of a homogeneous space in the frame (2) depend only
on time. In order for Einstein’s equations with matter to be proven as an integrable system
of ordinary differential equations, the equations of motion of matter must be subordinated
to the conditions of space symmetry. These conditions were fulfilled first by the potentials
of the electromagnetic fields determined in this work.
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