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Abstract

We live in an ever increasing world of connectivity. The need for highly robust,
highly efficient wireless communication has never been greater. As we seek to squeeze
better and better performance from our systems, we must remember; even though
our computing devices are increasing in power and efficiency, our wireless spectrum
remains limited.

Recently there has been an increasing trend towards the implementation of machine
learning based systems in wireless communications. By taking advantage of a neural
networks powerful non-linear computational capability, communication systems have
been shown to achieve reliable error free transmission over even the most dispersive of
channels. Furthermore, in an attempt to make better use of the available spectrum,
more spectrally efficient physical layer waveforms are gathering attention that trade
increased interference for lower bandwidth requirements. In this thesis, the performance
of neural networks that utilise spectrally efficient waveforms within harsh transmission
environments are assessed.

Firstly, we investigate and generate a novel neural network for use within a stan-
dards compliant vehicular network for vehicle-to-vehicle communication, and assess its
performance practically in several of the harshest recorded empirical channel models us-
ing a hardware-in-the-loop testing methodology. The results demonstrate the strength
of the proposed receiver, achieving a bit-error rate below 10−3 at a signal-to-noise ratio
(SNR) of 6dB.

Secondly, this is then further extended to utilise spectrally efficient frequency
division multiplexing (SEFDM), where we note a break away from the 802.11p vehicular
communication standard in exchange for a more efficient use of the available spectrum
that can then be utilised to service more users or achieve a higher data throughput.
It is demonstrated that the proposed neural network system is able to act as a joint
channel equaliser and symbol receiver with bandwidth compression of up to 60%
when compared to orthogonal frequency division multiplexing (OFDM). The effect
of overfitting to the training environment is also tested, and the proposed system is
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shown to generalise well to unseen vehicular environments with no notable impact on
the bit-error rate performance.

Thirdly, methods for generating inputs and outputs of neural networks from complex
constellation points are investigated, and it is reasoned that creating ‘split complex’
neural networks should not be preferred over ‘contatenated complex’ neural networks
in most settings. A new and novel loss function, namely error vector magnitude (EVM)
loss, is then created for the purposes of training neural networks in a communications
setting that tightly couples the objective function of a neural network during training to
the performance metrics of transmission when deployed practically. This loss function
is used to train neural networks in complex environments and is then compared to
popular methods from the literature where it is demonstrated that EVM loss translates
better into practical applications. It achieved the lowest EVM error, thus bit-error
rate, across all experiments by a margin of 3dB when compared to its closest achieving
alternative. The results continue and show how in the experiment EVM loss was able
to improve spectral efficiency by 67% over the baseline without affecting performance.

Finally, neural networks combined with the new EVM loss function are further
tested in wider communication settings such as visible light communication (VLC) to
validate the efficacy and flexibility of the proposed system. The results show that neural
networks are capable of overcoming significant challenges in wireless environments, and
when paired with efficient physical layer waveforms like SEFDM and an appropriate
loss function such as EVM loss are able to make good use of a congested spectrum.
The authors demonstrated for the first time in practical experimentation with SEFDM
that spectral efficiency gains of up to 50% are achievable, and that previous SEFDM
limitations from the literature with regards to number of subcarriers and size of the
transmit constellation are alleviated via the use of neural networks.
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Chapter 1

Introduction

Autonomous vehicles are receiving a great deal of attention, with many automotive
companies expending time, money and resources to research and development in
this area. However, there are still many challenges that need to be addressed before
autonomous cars can be allowed on the public highway. With the anticipation of the
5G network to be in widespread deployment by 2022 [1] we are expecting a new wave
of connected devices; data sharing on a massive scale will become common place and
many new applications will appear that were not feasible with current technology.
Many manufacturers are getting closer to providing autonomous vehicles [2–4] and
some of the last hurdles they are facing are from legal and political issues rather
than technological. Besides other uses for improved wireless connectivity in vehicles
such as infotainment [5, 6] and traffic and congestion management [7, 8], over the
years we have seen more and more autonomous functionality being brought into the
individual vehicles to aid driver safety [9]. The next step in this evolution is to include
information from vehicles in the local vicinity into the autonomous decision making
processes. There have been many works that propose partial solutions such as the
automated braking proposal of [10] or ‘over the horizon awareness’ presented in [11]
(a review of more can be seen in [12]) however, ultimately what is a required is a
joint and concerted effort from academia, industry, and legislators. At the time of
writing, the government bodies responsible for allocating the frequency spectrum in
the United States, the FCC, and in the United Kingdom, Ofcom, have reserved the
frequency ranges 5.850 GHz–5.855 GHz [13] and 5.850 GHz–5.925 GHz [14] respectively
for intelligent transport systems (ITS) services. Furthermore, the IEEE working group
1609 have produced the wireless access in vehicular environments (WAVE) standard
for dedicated short range communication (DSRC) cooperatively with the society of
automotive engineers (SAE) [15] built on top of the 802.11 framework [14]. The key
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take-away being that society is being shaped to prepare for the arrival of ITS services,
therefore the research we do in this field has the potential for direct societal impact in
the immediate future.

1.1 Research Aims and Motivation

The impact we aim to impart through this research relates to the advancement of
spectrally efficient modulation schemes in highly mobile vehicular wireless environments
which suffer from severe signal degradation, ultimately leading to high error rates.
Futhermore, there is a direct need to increase driver safety, therefore in order to reduce
the human error either the autonomous controls or the information provided to the
driver needs to incorporate more data from the local surroundings and other vehicles
in the vicinity. This allows drivers to act accordingly and respond to events in good
time, taking a proactive rather than reactive approach to safety. This indicates a need
for highly robust, efficient communication in what is known to be a very harsh and
unforgiving wireless environment.

From this we can derive a few key aims that the research presented hereafter will
seek to explore. The first of which is the need for spectrally efficient communication
methodologies, the current United Kingdom radio frequency (RF) spectrum is highly
overcrowded, Fig. 1.1 shows the extent to which the available spectrum is subscribed.
This is compounded by the fact that the United Kingdom (at the time of writing) has
upwards of 38.4 million licensed vehicles on the road [16], thus any communication
standard that requires broadcasting of potentially safety critical information needs to be
able to handle large volumes of data exchange. We will approach this by investigating,
designing, and implementing novel physical layer waveforms. Second is the highlighted
need for highly robust communication. As mentioned previously, the environment for
vehicle-to-vehicle (V2V) communication can be very harsh and severely degrade the
reliability and performance. A secondary, but very serious added consequence of the
failure of communication of safety critical information is that there will be higher than
normal occurences of poor channel allocation and in some instances network flooding
of repeated failed messages [17]. This research will address this issue by investigating,
designing, and implementing novel wireless receivers via the use of artificial neural
networks.

The latest report (at time of writing) from the United Kingdom Department for
Transport [18] provides a lot of context to the motivation for this work. In 2019, there
were 1,752 reported deaths from road traffic accidents. One can see from Fig. 1.2 that
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Fig. 1.1 The UK radio frequency spectrum allocation

this number has not changed meaningfully in almost a decade. Whilst vehicle safety
improved in the period from 2004 to 2012, it has remained stagnant ever since. To
add to this, besides fatalities, in 2019 alone there was a total of 153,158 casualties
of road traffic accidents. A study performed in [19] examined the underlying causes
of UK road traffic accidents, where they state that the so-called ‘unholy trinity’ of
speed, alcohol, and lack of safety restraint were factors in around two thirds of fatal
incidents. In fact, the top 6 factors that account for almost all incidents share one
thing in common - human nature. Whilst non-human factors such as weather and road
conditions are certainly important, it is the human element that ultimately makes an
error that in many cases could have been avoided.

These two factors, namely the requirement for spectrally efficient communication
due to RF spectrum overcrowding, and the requirement for robust communication in
the face of adverse environments such as those seen in vehicular environments, are the
motivation for this work. As a result, the following main themes will occur throughout
this thesis:
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Fig. 1.2 Road traffic accidents in the UK from 2004 to 2019 (from [18])

• Artificial neural networks are proposed and investigated for use as joint channel
equalisers and symbol receivers in communications.

• The methodology for generating and training neural networks for communications
are investigated, and a new loss function for neural networks is proposed that
aligns the training objective with the metrics used in deployment.

• Spectrally efficient waveforms are investigated as a means of both easing the
congestion of the limited spectrum resource, and increasing the potential number
of serviceable users in densely populated vehicular networks.

• The combination of these methods will be tested in multiple scenarios, to ensure
the algorithms and techniques developed scale to other areas of communication,
for example, in visible light communications.

• Where possible all experimentation will be undertaken in a practical manner to
ensure that conditions are as close to real world deployment environments as
possible.
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1.2 Contribution

This thesis contributes to three main aspects that overcome significant obstacles and
improve the performance of communications in both wired and wireless formats.

• The design and implementation of a novel neural network capable of being
deployed in multiple harsh wireless vehicle-to-vehicle communication scenarios.
It was proved practically that the neural network could improve communication
throughput, achieving an acceptable bit-error rate at a higher spectral efficiency
when compared to the baseline IEEE 802.11p implementation. The challenge
of a change of environment for the neural network was investigated and it was
shown that the proposed neural network was able to perform with no significant
detriment to baseline performance.

• The design and implementation of a new loss function for machine learning in a
communication setting based on the error vector magnitude. It was reasoned that
more tightly coupling the objective function of the training process to the goal of
the resulting neural network leads to a significant performance improvement in
real world applications. This was demonstrated practically, where the proposed
system was able to outperform mean square error variants of the same networks
in all experiments by a minimum of 2dB.

• Investigation of the more widespread applicability of novel neural network architec-
tures and cost functions previously derived for vehicle-to-vehicle communication
in optical communications. It was shown practically that the benefits of the
proposed methods from this work tranferred to other domains of communication,
testing in a VLC network demonstrated spectral savings comparable to that of
the originally proposed wireless vehicular networks.

1.3 Publications

The following publications have been produced during the tenure of this research.
There are related works listed outside of communications included for completeness,
such as signal processing and machine learning, as the application of certain topics of
this research became applicable in other domains.

1. Stainton, S.A. and Haigh, P.A. “Doubling the Spectral Efficiency with EVM
as the Objective Function for Training Neural Networks in Non-Orthogonal
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Conference, 2021.
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(UCET), 2019, pp. 1-2.

5. Stainton, S.A., Tsimenidis, C., and Murray, A. “Characteristics of Phonocar-
diography Waveforms that Influence Automatic Feature Recognition” Computing
in Cardiology (CinC), 2016, pp. 1173-1176.

6. Stainton, S.A., Barney, S., Catt, M., and Dlay, S. “On the Application of Quan-
tization for Mobile Optimized Convolutional Neural Networks as a Predictor of
Realtime Ageing Biomarkers” 11th International Symposium on Communication
Systems, Networks and Digital Signal Processing (CSNDSP), 2018, pp. 1-5.

7. Barney, S., Stainton, S.A., Catt, M., and Dlay, S. “Feature Specific Analysis of a
Deep Convolutional Neural Network for Ageing Classification” 11th International
Symposium on Communication Systems, Networks and Digital Signal Processing
(CSNDSP), 2018, pp. 1-6.

8. Gulati, I., Li, H., Stainton, S.A., Johnston, M., and Dlay, S. “Investigation of
Ionospheric Phase Scintillation at Middle-Latitude Receiver Station” International
Symposium ELMAR, 2019, pp. 191-194.
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Mode Control for Vehicular Platoon based on V2V Communication” 32nd Inter-
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10. Sun, Y., Fu, Z., Stainton, S.A., Barney, S., Hogg, J., Innes, W., and Dlay, S.
“Automated Identification of Spontaneous Venous Pulsation from Infrared Video
of the Optic Nerve Head” 17th International SPECTRALIS® Symposium (ISS),
2019 [poster].

11. Sun, Y., Fu, Z., Stainton, S.A., Barney, S., Hogg, J., Innes, W., and Dlay, S.
“Automated Retinal Layer Segmentation of OCT Images Using Two-Stage FCN
and Decision Mask,” IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), 2019, pp. 1-6.

12. Sun, Y., Fu, Z., Xiangyu Z., Stainton, S.A., Barney, S., Hogg, J., Innes, W.,
and Dlay, S. “MPG-Net: Multi-Prediction Guided Network For Segmentation
Of Retinal Layers In OCT Images” 28th European Signal Processing Conference
(EUSIPCO), 2020, pp. 1299-1303.

1.4 Thesis Outline

This thesis is organised into six chapters.
Chapter 1 has provided a brief introduction to this research, its aims, objectives

and motivation, and the resultant output of publications.
Chapter 2 covers the technical background of wireless communication, visible light

communication, and artificial neural networks with relevant reviews of the state-of-the-
art in the respective areas.

Chapter 3 covers the design of the novel neural network and its practical implemen-
tation in a harsh V2V environment. It then explores the potential of further improving
the efficiency of communication by introducing spectrally efficient frequency division
multiplexing. An evaluation is then undertook to compare the receiver performance
of the proposed implementations against an 802.11p standard conformant baseline
implementation.

Chapter 4 covers the exploration of utilising the error vector magnitude as a cost
function for training neural networks in a communication scenario. A performance
comparison is made between three implementations of neural networks, starting from
common neural network architectures found in the literature.

Chapter 5 explores the wider application and advantages stemming from the novel
neural network with the proposed error vector magnitude objective loss. Its performance
boundaries are explored in a visible light communication setting, demonstrating the
widespread applicability of the solution.
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Chapter 6 begins the conclusion, where key findings are summarised and recom-
mendations are made on potential future research opportunities.



Chapter 2

Background Theory

2.1 Introduction

This chapter looks at the challenges faced by wireless communication in a vehicular
network and explains the background physics of the channel itself. The wireless
standards that were put in place for the environment are examined which in turn sets
the theme for areas of suggested possible improvement throughout this research. It
then delves into some required background theory for later discussions on machine
learning, and specifically challenges around artificial neural networks and their training.

The desire for highly robust and spectrally efficient signal processing methods
are stated as a driving factor in this research. These two aims work harmoneously
with one another, more robust signal processing leads to lower numbers of signal
re-transmissions, ergo more efficient use of the available spectrum. More spectrally
efficient waveforms mean higher numbers of users can communicate simultaneously
over the same available bandwidth. Together, these advantages allow for widescale
adoption of vehicular communication in a scalable manner.

Another factor that drives this research relates to the safety critical aspects of
vehicular communication. Vehicles today are already able to perform many tasks
autonomously, and as vehicles become more and more autonomous, some of this
autonomy will rely on information that is shared to and from other vehicles and
infrastructure. The potentially safety critical nature of these systems demand that
messages are able to be transmitted in even the worst conditions. This will be a critical
turning point in our transportation systems, allowing us to take a proactive approach
to safety rather than reactive.
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2.2 Vehicular Communication Standards

There exists a standard produced by the IEEE working group 1609 that is based on the
802.11p standard named WAVE that sets out the main protocols for vehicle-to-vehicle
and vehicle-to-infrastructure communication. Being a part of the 802.11 framework, it
shares many similarities with other standards in the same family - the most recognisable
of which being Wi-Fi. Table 2.1 below outlines key similarities and differences between
them while Table 2.2 gives the channel coding parameters.

Table 2.1 Wi-Fi and WAVE Comparison

Parameters Wi-Fi WAVE

Operating Frequency 2.4/5GHz 5.9GHz
Bandwidth 20MHz 10MHz

Supported Data Rates (Mbps) 6,9,12,18,24,36,48,54 3,4.5,6,9,12,18,24,27
Supported Modulation Schemes BPSK, QPSK, 16QAM, 64QAM Same as Wi-Fi

Channel coding Convolutional Code Same as Wi-Fi
No. Of Data Subcarriers 48 Same as Wi-Fi
No. Of Pilot Subcarriers 4 Same as Wi-Fi

No. Of Virtual Subcarriers 12 Same as Wi-Fi
FFT/IFFT Size 64 Same as Wi-Fi

FFT/IFFT Interval 6.4µs 3.2µs
Subcarrier Spacing 0.3125MHz 0.15625MHz

Cyclic Prefix Interval 0.8µs 1.6µs
OFDM Symbol Interval 4µs 8µs

Table 2.2 WAVE Channel Coding Parameters

Parameter Value

Generator Polynomial (133,171)8

Code Rates 1
2 , 2

3 , 3
4

Puncturing Vectors R = 2
3 → 1110, R = 3

4 → 110101

As one can see, through the expectation of a harsh channel, the data rates supported
have been halved. Interestingly however, the subcarrier spacing has also been halved
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meaning this scheme is more sensitive to Doppler spread and inter-carrier interference
(ICI). This will have the effect of decreasing the coherence bandwidth making the entire
system more frequency selective, although it has been partially addressed by doubling
the symbol and cyclic prefix intervals.

The range of messages that are communicated via this standard can vary, to learn
more one can investigate the IEEE 1609.3 WAVE Networking standard [20]:

“At minimum, a WAVE device implements at least the following features
specied in this standard (see Annex D).

- LLC sublayer

- IPv6 or WSMP, or both

- Transmit or receive, or both”

The second point from the excerpt above shows the types of packets that the
communicating entities have to be able to process. IPv6 is the newest iteration of the
Internet Protocol, with an address space of 2128 (up from the offering of 232 from IPv4).
WSMP stands for WAVE short message protocol, and was designed for the low latency
sending of safety messages within a vehicular ad-hoc network (VANET) and for WAVE
service advertisement messages. The need for low latency comes from the SAE J2735
protocol [21] which dictates that safety messages must be broadcast every 100-300ms. It
does this by reducing the overhead in both the packet design and the network structure.
From the network point of view, by being primarily built on the 802.11 framework, the
notion of service sets (SS) has been brought forward. An independent basic service set
(IBSS) is a set of stations without infrastructure, generally referred to as an ad-hoc
network, however in the standard every basic service set (BSS) requires an access point
that acts as the controller/master station, which will periodically broadcast a beacon
message containing the service set ID (SSID). It is this beacon that allows all stations
within the network to synchronise their time and frequency, hence only members of
the same service set can communicate with each other. This involves a lot of overhead,
and is one of the motivations behind the WSMP as it allows vehicles to skip the steps
of forming a BSS. As for reducing the overhead in the packet design, an IPv6 packet
has a header size of 40 bytes but must also carry either a UDP or TCP header on
top at a minimum, having sizes 8 bytes and 20 bytes respectively, making the entire
packet a minimum of 48 to 60 bytes without a payload. Compare this to WSMP which
has a header size of 11 bytes. One of the fundamental principles in WAVE is the
broadcasting of basic safety messages and road side alerts. As mentioned previously,
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basic safety messages must be sent periodically every 100–300ms and contain safety
critical information such as other vehicles location, speed, and heading whereas road
side alert messages are transmitted when particular events occur, such as poor road
conditions or an accident alert. It is therefore imperative that these messages reach
surrounding vehicles, however, the harsh channels found in the vehicular environment
[22] caused by factors such as severe Doppler effects, multipath fading, and shadowing,
can reduce the error free transmission probability significantly.

2.3 Physical Properties of Vehicular Radio Channels

Communication in a VANET poses many unique challenges due to its mobile nature. At
typical vehicle speeds of 30–70mph (13.4–31.3 m/s), Doppler effects are large (263.7–616
Hz, assuming stationary transmitter or receiver) and at 5.9 GHz the wavelength of the
carrier signal is small. This problem is exacerbated by the environment, where various
fading effects such as multipath attenuate this already degraded signal. There has been
much research attempting to quantify the effects of vehicular channels [23–25], however
the results vary depending on the particular scenario i.e. highways and rural areas
have a much stronger ratio of line-of-sight to multipath components than do inner city
environments where buildings and other scatterer objects can contribute to stronger
non-line-of-sight components. Due to the high variation in the channel depending on
the particular context, it is difficult to produce a general model that can be applied,
therefore it is not uncommon to see research use varying mixtures of more classic
channel fading such as Rayleigh, Ricean and Nakagami distributed models. These
distributions can be useful for modelling multipath fading which will be investigated
in a later section. Another distinguishing element of vehicular commuication is the
fact that both the transmitter and the receiver are at similar, low heights (1m - 2.5m)
[26] which results in lower coverage than traditional mobile systems.

One of the key differences between modelling a mobile communication system
and modelling vehicle-to-vehicle communication is that while mobile channels are
often modelled with stationary channel statistics, vehicle-to-vehicle channels exhibit
non-stationary statistics. This means that not only are the impulse responses time
varying, but other properties such as the power delay profile (PDP), Doppler spread
and small scale fading effects are also time varying. It is because of this that the wide
sense stationary with uncorrelated scattering assumption used by many mobile channel
descriptors cannot be used, as the region of stationarity for the vehicular channel is
small [27]. These characteristics depend upon the distance between the two antennas,
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the path(s) taken by the signal, and the environment (buildings and other objects)
around the path. To this end, the sections that follow will give some background to
the physical phenomena affecting the vehicular wireless channel.

2.3.1 Multipath Propagation And Inter Symbol Interference

The typical antenna radiates energy in an isotropic manner, meaning electromagnetic
energy is distributed evenly in all directions, this is demonstrated in Fig. 2.1. Because
of this, objects in the environment between the transmitter and the receiver have the
opportunity to reflect and scatter the wireless signal, leading to multiple attenuated
versions of the signal arriving at the receive antenna. As can be intuitively expected,
from the equation v = s/t (speed equals distance over time, where the speed v = c≈
299,792,458m/s is fixed) one can see that due to the extra distance the signal has
travelled at a fixed speed, the time at which the receiver receives the N reflected signals
is some τN > τLOS.

Fig. 2.1 Isotropic radiation pattern example



14 Background Theory

As mentioned previously, generalised statements about the type of wireless environ-
ment can be useful in channel modelling. Knowing whether or not the the wireless
environnment is likely to contain a dominant line of sight (LOS) component allows
baseline channel models to be created from theoretical parameters. If one observes the
reflected signals and their time delays and assumes that they are normally distributed
i.e. τ ∼ N

(
µ,σ2

)
then the absolute value of the impulse response is given by a Ricean

distribution if µ ̸= 0 indicating there is a LOS component or a Rayleigh distribution if
µ= 0 indicating no dominant LOS component. With a LOS component, one can begin
to model the channel using a Ricean distribution, as given by [28]:

p(r) = r

β2 e
− r2+A2

2β2 I0

(
rA

β2

)
(2.1)

where I0(x) is the modified Bessel function of the first kind with zero order [28]:

I0 (x) = 1
2π

∫ 2π

0
e−xcosθdθ (2.2)

When there is no dominant line of sight component, also known as a non line of
sight (NLOS) channel, the signal degradation can be very severe as reflected signals
arrive with phase differences, leading to the phenomena of fast fading. In this instance,
the Rayleigh model may be given by [29]:

p(x|β) = x

β2 e

(
−x2
2β2

)
(2.3)

One such simulation that shows the potential effects of Rayleigh fading on the
channel is shown in Fig. 2.2, note the characteristic deep fades.
There exists further generalisations of channels, for example in the case of Weibull.
The Weibull probability density function is a general fading model that allows for more
control over the extent of the fading (and can reduce to both Ricean and Rayleigh)
however at the cost of computational complexity. For completeness, this is given in
(2.4) [29].

p(x|k, l) = l

k

(
x

k

)l−1
e−(x

k )l

(2.4)

Due to the scattering and reflection, when these signals arrive at the receiver
they are superimposed which results in a combined signal that may have increased
or descreased in power depending on whether the superposition of the waves added
constructively or destructively. As the wavelength of radio signals in the GHz region
are very small, even small path differences can have a dramatic effect.
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x

Fig. 2.2 Power spectral density of an example Rayleigh channel

A useful metric for a given channel is the delay spread, typically either the maximum
τmax or the root mean squared (rms) τrms. The delay spread gives an indication of how
long after a signal is transmitted is the receiver likely to be receiving reflected copies. A
large value for τ indicates a highly dispersive channel, and presents a challenge for high
throughput, accurate communications. This is demonstrated graphically in Fig 2.3.

To investigate the channel impulse response, without loss of generality let the
arbitrary transmitted signal be [30]:

s(t) = Re
{
u(t)expj2πfct

}
= Re{u(t)}cos(j2πfct)− Im{u(t)}sin(j2πfct) (2.5)

where u(t) is the equivalent lowpass signal for s(t) at a carrier frequency of fc. The
corresponding received signal after transmission over a wireless channel is the sum of
the line of sight component and all resolvable multipath components (without a noise
term for clarity) is given by [30]:
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Fig. 2.3 Example power delay profile for a multipath channel

r (t) = Re

N(t)∑
n=0

αn (t)u(t− τn (t))expj(2πfc(t−τn(t))+ϕDn)

 (2.6)

where n= 0 is the line of sight path, N(t) is the number of resolvable multipath com-
ponents, τn(t) is the delay of nth multipath component, ϕDn is the doppler shift of the
nth multipath component, and αn(t) is the amplitude of the nth multipath component.
Two multipath components are resolvable if their delay difference significantly exceeds
the inverse of the signal bandwidth i.e. |τ1 − τ2| >> 1/B. If this relationship is not
satisfied, the two components are binned together at the receiver and appear as a
superposition of the pair, and are hence deemed non-resolvable.

This effect can be modelled by a tapped delay line, where each impulse of the
channel is characterised by a delay and an impulse coefficient. The channel is then
modelled by [30]:

h(t, τ) =
N(t)∑
n=0

αn (t)expj(2πfc(t−τn(t))+ϕDn) δ (τ − τn (t)) (2.7)

where h(t, τ) is the time varying channel impulse response at time t, δ [·] is the Kronecker
delta function.

In reality, when transmitting wirelessly from an isotropic antenna as described,
there is no escaping the effects of inter-symbol interference (ISI). To demonstrate this
effect, one can model a wireless communication channel as a linear time invariant (LTI)
filter [31] with additive noise, typically additive white Gaussian noise (AWGN). This
allows for the basic expression of the effect of a wireless communication channel as [31]:
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x[n] =
∞∑

k=−∞
h[k]s[n−k]+w[n] (2.8)

where h[·] is the channel impulse response, s[·] is the transmitted symbol, and w[·] is
the additive noise. This equation can be rearranged around k = 0 to emphasise the
effect for any given symbol s[n] [31]:

x[n] = h[0]s[n]+
∞∑

k=−∞,k ̸=0
h[k]s[n−k]+w[n] (2.9)

It is clearly outlined by (2.9) that the received symbol that is observed is now a
composition of the original transmitted symbol with additive noise, plus an extra term
that is a function of the delayed versions of the originally transmitted symbol. This
term is the ISI, and it is the job of downstream equalisation to attempt to eliminate or
reduce its effect so that the original symbol can be recovered correctly. The design
of these depend on the communication methods implemented, therefore, the specific
implementations of the receivers used in this work will be discussed in later sections as
the modulation schemes themselves are introduced.

2.3.2 Path Loss and Shadowing

Path loss and shadowing are the two main proponents of the wider group of channel
degradations classed as ‘large scale fading’. The most fundamental of losses that affects
a wireless signal is known as free space propagation path loss. This loss is caused by the
physical spreading of the RF energy as it moves through space-time. The theoretical
received power can be estimated as a function of the transmitted power, the net gain
of the antennas, the wavelength of the transmitted signal, and the distance between
the transmitter and the receiever. This is shown in Eq 2.10 [30].

Pr = Pt

(√
Glλ

4πd

)2
(2.10)

Where Pr is the received power
Pt is the transmitted power
Gl is the net antenna gain
λ is the wavelength of the signal
d is the distance between transmitter and receiever
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This is given for an unobstructed LOS signal path, thus in practice observed results
are often lower, and a general empirical formula for path loss is often used such as [30]:

Pr = PtK

(
d0
d

)γ
(2.11)

Where Pr is the received power
Pt is the transmitted power

K = Pr(d0)
Pt

is a constant factor at a reference distance d0

γ is the path loss exponent

This equation is known as the simplified path loss model, and whilst it theoreti-
cally estimates received power it requires empirical validation for the specific channel
environment one intends to use it in. Typically, one would use γ = 2 for estimating a
free space model or γ = 4 for estimating a two-ray model.

In reference to the second proponent of large scale fading, namely shadowing,
this is a phenomena that arises due to the presence of obstacles in the wireless path
between the transmitter and the receiver causing the attenuation of signal power
though reflection, scattering, absorption and diffraction. As one probably can intuit
from personal experience, when signal power is completely attenuated in areas it can
create what is commonly referred to as signal ‘dead spots’. In a mobile environment
like the vehicle-to-vehicle one, these obstructions may be present in the environment
anywhere on the order of seconds to minutes, which in comparison to the wavelength
of the signals in use means these effects occur at a much slower timescale compared to
fast fading, which will be discussed in the proceeding section.

It is often not possible to completely characterise a wireless environment and all
its obstacles and blockages ahead of time, especially in mobile environments. The
location, size, and dielectric properties of the blocking objects, as well as the changes
in the reflecting surfaces and scattering objects that cause the random attenuation, are
generally unknown. In these instances it is useful to model the obstructions in a more
statistically random manner. One common model for this is log-normal shadowing. In
log-normal shadowing, the ratio of transmit to receive power ψ = Pt/Pr is assumed to
be a random variable with a log-normal distribution that is given by [30]:
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p(ψ) = ξ√
2πσψdBψ

exp

−

(
10log10ψ−µψdB

)2

2σ2
ψdB

 ,ψ ≥ 0 (2.12)

where ξ = 10/ln10, µψdB is the mean of ψdB = 10log10ψ in decibels, and σψdB is the
standard deviation of ψdB in decibels. In this instance, since the mean µ of the
log-normal distribution is determined by ψ = Pt/Pr, it follows that the value for µψdB is
always greater than or equal to zero. Although the log-normal distribution accepts
values 0 ≤ ψ ≤ ∞, this implies a region where ψ < 1 meaning Pr > Pt which is not
possible.

One can independently justify that the normal distribution for the model of the mean
received signal power in dB is correct by considering the case where the shadowing
is dominated by blocking objects (as opposed to reflective and refractive etc, for
simplicity). The attenuation of a signal as it travels through an object of depth d is
approximately equal to [30]:

s(d) = exp−ηd (2.13)

where η is an attenuation constant that is dependent on the physical properties of
the attenuating object. If one assumes that η is approximately equal for all blocking
objects, using a random depth d for object k, the signal attenuation is then given as
[30]:

s(dt) = exp−η
∑K

k=0 dk

= exp−ηdt (2.14)

where dt =∑K
k=0 dk is the sum of the depths of all the random blocking objects through

which the signal has travelled. If there are many objects between the transmitter and
the receiver, say for instance lots of vehicles and infrastructure, then by the central
limit theorem dt can be approximated by a normally distributed random variable. Thus
from (2.13) one can easily see logs(dt) = ηdt will be normally distributed with a mean
µ and a standard deviation σ. The value σ will depend on the specific environment.

Models for both the path loss and the shadowing can be superimposed to give a
more rounded picture of the communication environment, in this view, one can take a
simpler view of the ratio of received to transmitted power which is given by [30]:
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Pr
Pt

dB = 10log10K−1−γ log10
d

d0
−ψdB (2.15)

where ψdB is a normally distributed random variable with zero mean and a variance
σ2
ψdB

. It can be seen from this that the path loss decreases linearly in relation to log10 d

with a gradient of 10γdB/decade, where γ is the path loss exponent. The overall
combination of path loss and shadowing, or more generally the large scale fading, has
large implications on the overall system design. There comes a point where if the
received power level drops any lower, the system performance is unacceptable. This
leads to the quantification of some power level Pmin which sets a target minimum
received power level to maintain adequate system performance. Since one has defined
the large scale fading effects statistically with a log-normal distribution, there exists a
statistical representation for the probability that the received power level will drop
below Pmin, thus causing an outage event. One can define this outage probability
Pout (Pmin,d) under large scale fading effects to be the probability that at a given
distance d, the received power Pr(d) falls below Pmin, i.e.

Pout (Pmin,d) = p(Pr(d)< Pmin) (2.16)

For the combined path loss and shadowing model from (2.15) this is given as [32]:

p(Pr(d) ≤ Pmin) = 1−Q

Pmin −
(
Pt+10log10K−10γ log10

(
d
d0

))
σψdB

 (2.17)

where the Q function is defined as the probability that some Gaussian random variable
X with mean 0 and variance 1 is greater than z [29]:

Q(z) ≜ p(X > z) =
∫ ∞

z

1√
2π

exp− y2
2 dy (2.18)

which can be defined in terms of the complimentary error function as [29]:

Q(z) = 1
2erfc

(
z√
2

)
(2.19)

2.3.3 Doppler Effect

When there is relative motion between a transmitter and a receiver (or any scattering
or reflecting surface between the two in the case of multipath), a Doppler shift can
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be induced in the transmitted signal. The degree of this shift is directly proportional
to the rate of motion between the transmitter and the receiver. Take for instance a
signal with a wavelength given by λ= c/fc where c is the speed of light and fc is the
carrier frequency of the signal. With a relative motion given by v, at an angle of ϕi
to the propoagation direction, one can calculate the phase change experienced by the
transmitted signal after some time ∆t. In the time ∆t, the receiver has travelled a
distance of v∆t, thus meaning it has experienced a change in propagation path length
of approximately ∆l = v∆tcos(ϕi). The phase change seen caused by this can then be
given as [33]:

∆Φ = 2πv cos(ϕi)
λ

∆t (2.20)

The rate of this phase variation is characterised by the Doppler frequency, often
denoted fD, and can be given by [33]:

fD = 1
2π lim

∆t→0

∆Φ
∆t = v cos(ϕi)

λ
(2.21)

The ultimate effect being that the instantaneous frequency of the receieved signal
over the propagation path becomes fc±fD. Due to this effect happening simultaneously
on all reflected and scattered propagation paths, the resultant signal will contain mutiple
signals of varying energies with varying Doppler shifts. The maximum of these shifts
however will occur when ϕi = 0 (when the incident wave and the relative direction
of motion are opposite to each other), simplifying (2.21) and giving a single value to
characterise the worst case scenario [33]:

fD = v

λ
(2.22)

Related to the Doppler shift is a metric known as the coherence time, Tc. While the
Doppler shift can be thought of as characterising the highest speed of phase variation in
the propagation channel, the coherence time is a measure of the time domain variation.
More specifically, it is a measure of the duration of time in which the impulse response
of the channel remains highly correlated. To derive this measure, if one was to begin by
investigating the frequency domain correlation of the channels impulse response [33]:

ρ(f,∆t) = E [H∗(f, t)H (f, t+∆t)] (2.23)
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where E [·] denotes the statistical expectation, and H(f, t) is the time varying frequency
response of the wireless channel, calculated from Fourier transform of the time domain
representation h(τ, t) with respect to τ . The values of Tc is derived such that it satisfies
ρ(f,∆t) ≈ 1 for all f and all ∆t < Tc. The value Tc is inversely proportional to the
maximum Doppler shift fD, and has been shown to hold the approximate relationship
of Tc ≈ 0.4/fD.

2.4 Application of VLC in Vehicular Networks

Whilst RF is the most prevalent method of communication in both everyday life and
vehicular communication, there is growing attention being paid to the use of visible
light communication (VLC). Whilst RF in vehicular communications is often heavily
degraded by multipath effects as we have covered, in VLC the lightwaves are highly
directional and do not pass through objects thus avoiding much of this multipath
problem. Whilst that is an advantage, being highly directional we move away from the
isotropic antenna radiation pattern discussed for RF and have to design systems with
asymetric radiation patterns in mind. One such example of this exploration can be
found in [34] where the authors investigate Lambertian, Gaussian and asymmetrical
radiation patterns to model headlights from different vehicle manufacturers. It was
found that path loss depends on the radiation patterns as well as the traffic conditions
including traffic flow and inter-vehicular spacing, and that the statistical distribution of
the path loss is a convolution of the radiation intensity distribution and the inter-vehicle
spacing distribution.

In keeping with RF vehicular communication however, it is also well understood
that vehicular VLC communication suffers from the same high level problem, namely,
the physical environment. There have been many studies undertaken to understand the
vehicular VLC channel, one of which is [35] which examines the temporal properties
of the channel taking into account dynamic traffic conditions, and the authors state
that received multipath components have higher amplitude and lower propagation
delay at high density traffic in comparison to the multipath components received at
low density traffic. They also state that in both high and low density traffic conditions
the vehicular VLC channel is flat and slow fading, making VLC an ideal candidate for
vehicular communication systems.

To this end, the following section will explain some brief background theory for im-
plementing VLC communication in practice, which provides the prerequisute knowledge
for practical experiments that will be undertaken in later chapters.
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2.4.1 Intensity Modulation and Direct Detection

The optical source for the VLC systems used in later experiments is a light emitting
diode (LED), with a luminous intensity R0 that follows Lambert’s cosine law [36]:

R0 (θ) = m+1
2π cos(θ)m (2.24)

Where θ is the angle of emission and m is the Lambertian order, given by [37]:

m= − ln(2)
ln
[
cos

(
θ1/2

)] (2.25)

Where θ1/2 is the transmitter semi-angle. The source is known as a Lambertian
transmitter when m= 1 (θ1/2 = 60◦). Beyond an optical source, one needs to be able to
modulate it in order to transmit data. Whilst it is possible to use modulation methods
such as a Mach-Zehnder modulator as seen in [38], it is more common to see VLC
communication implemented via intensity modulation and direct detection. As the
name suggests, in intensity modulation the signals electrical amplitude is represented
via the intensity of the optical power and direct detection performs the opposite, the
intensity of the optical power is represented by the output signals electrical amplitude.
An example of intensity modulation can be seen in Fig 2.4.

Firstly, a linear region on the LI curve of the optical source is identified. The
linearity region is important because any non-linear alterations to the signal need to be
accounted for at the receiver otherwise they will act as a source of noise for the system.
Having a large linear region for an optical device is desirable as it increases the number
of possible applications, making this an active area of research in the literature such as
[39]. Secondly, depending on the maximum voltage swing of the intensity modulation
signal source, a dc bias current is added such that the peak-to-peak swing can sit
optimally inside the linear region.

This optical power in the form of light then hits a photoreceiver after travelling
over a channel, with a frequency response H(f) given by [40]:

H (0) = Ar
d2 R0 (θ)cos(φ) (2.26)

Where Ar is the photoactive area of the photodetector, d is the distance to the
receiver, and φ is the angle of incidence to the photodetector. In an ideal setting, the
total received optical power Pr impinging on the photodetector is given by [37]:

Pr =H (0)Pt (2.27)
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Fig. 2.4 Example of an LI curve demonstrating Intensity Modulation

Where Pr is the received optical power and Pt is the transmitted optical power.
Using (2.26) to expand this one gets:

Pr = Ar
d2 R0 (θ)cos(φ)Pt (2.28)

This clearly shows that neither the wavelength nor the signal frequency has an
impact on the received optical power.

2.5 Physical Layer Waveforms

2.5.1 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM) is a well known and researched
topic, and forms the basis for many modern communications standards. The basic
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premise of OFDM is to take a given bandwith of spectrum W and use it to transmit
N independent and orthogonal streams, known as subcarriers. This can be seen
graphically in Fig 2.5. There are several benefits that arise from splitting the single
data stream up into these independent streams. Firstly, the data rate required on each
stream is lowered by a factor of N to achieve the same data rate of the original stream,
meaning that symbols on each subcarrier are further spaced in time. Secondly, as was
seen previously, many real world wideband wireless channels are not uniform over all
frequencies, i.e. they display frequency selectivity. Due to this, receiver performance
can be poorly detrimented. In the OFDM case, this frequency selective channel is
split up into N indepenent narrow band channels, which can be seen as uniform for an
appropriately selected value of N .

OFDM transmitter

frequency

subcarriers

1 Ts
/

Fig. 2.5 OFDM individual subarriers

For a symbol length of T seconds, which encompasses a time Tcp seconds for the
length of the cyclic prefix, the generation of an OFDM waveform can be viewed as [41]:

Ψk (t) =


1√

T−Tcp
expj2πW

N k(t−Tcp), if t ∈ [0,T ]

0, otherwise
(2.29)
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where T = N/W +Tcp. These waveforms Ψk(t) can then be used to modulate a data
stream to create a baseband signal s [41]:

sl(t) =
N−1∑
k=0

xk,lΨl (t− lT ) (2.30)

where xk,l complex numbers representing points from a reference constellation.

OFDM receivers

An OFDM receiver is typically made up of a bank of matched filters, matched to the
transmitted waveform Ψ from (2.29). These take the form [41]:

Φk (t) =
 Ψ∗

k (T − t), if t ∈ [0,T −Tcp]
0, otherwise

(2.31)

From this, one can see that the cyclic prefix is discarded and not needed for signal
recovery. Assuming an adequately long cyclic prefix, all the ISI from the previous
signal should be isolated within it, hence the sampled output from the receiver filter
bank should contain no ISI, thus increasing performance.

In a modern digital system however, the above is often replaced by its discrete
time equivalent, which replaces the continuous time modulation and demodulation
with the inverse discrete Fourier transform (IDFT) and the discrete Fourier transform,
respectively. Assuming that the cyclic prefix is longer than the channel impulse
response, the standard linear convolution operation with the transmission channel is
replaced by a circular convolution. This means that the end to end OFDM system can
be written as [42]:

yl = DFT
(
IDFT(xl)

⊗
hl+ n̂l

)
= DFT

(
IDFT(xl)

⊗
hl
)

+nl (2.32)

where

DFT(s) = 1√
N

N−1∑
n=0

sn exp−
(

j2πnk
N

)
(2.33)
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and

IDFT(s) = 1√
N

N−1∑
n=0

sn exp
(

j2πnk
N

)
(2.34)

where yl contains the N received data points, xl are the N originally transmitted data
points from the reference constellation C, hl is the zero padded impulse response of the
channel, and n̂l is the additive white Gaussian noise of the channel. In (2.32) above, it
can be written that nl = DFT(n̂l) as the Gaussian noise is assumed to be uncorrelated.
The assumption that the cyclic prefix is longer than the channel impulse response needs
to be taken into consideration by system designers as the typical channel responses
differ between environments. Having a cyclic prefix that is too long results in wasted
energy transmitting symbols that will be discarded at the receiver, however, if it is too
short then the circular convolution property that the receiver relies on for demodulation
is no longer valid, and performance will break down. It can be further noted that if
the circular convolution property does hold, one can take advantage of the fact that
the DFT of two circularly convolved signals is directly equivalent to the product of
their respective individual DFTs, i.e. [42]:

yl = xl ·DFT(hl)+nl

= xl ·Hl+nl (2.35)

where · represents element-wise multiplication, and Hl = DFT(hl) represents the
frequency response of the channel.

OFDM zero forcing receiver

A zero forcing equaliser is a simple form of linear equalisation that attempts to ‘undo’
the effects of the channel by applying its direct inverse to the received signal. The
name comes from the fact that, ignoring other sources of noise besides that of the
channel, it reduces the effect of the channel to net-zero.

As OFDM converts a potentially frequency selective, wideband channel into uniform,
narrowband subchannels, zero forcing for OFDM takes the same form as that of the
AWGN channel i.e. for a channel with frequency response H(f), the zero forcing
equaliser Z(f) is given by [42]:

Z (f) = 1
H (f) (2.36)



28 Background Theory

Thus producing the relationship Z(f)H(f) = 1, which gives a flat frequency response.
As we have seen previously however, this has the negative side effect of boosting the
noise power within the signal when the frequency response of the channel contains
deep nulls that tend toward zero.

OFDM minimum mean square error receiver

A minimum mean square error (MMSE) equaliser exploits a channels correlation in
both time and frequency. It typically involves inserting a set of pilot symbols P into
the data stream, these are symbols at known locations in a stream known to both the
transmitter and receiver. Each pilot symbol can be uniquely identified by its location in
time and frequency. These pilot symbols are used in MMSE to generate an estimated
channel transfer function, Ĥk,n of the kth subcarrier in the nth OFDM symbol.

One can denote the set of pilots P as [43]:

P = {(kP0,nP0) ,(kP1,nP1) , . . . ,(kPM ,nPM )} (2.37)

where kPi, i = 0,1 . . . ,M represents the pilot index in the frequency direction, and
nPi, i= 0,1 . . . ,M represents the pilot index in the time direction. For this given pilot
set, the least squares estimate of the channel can be given by [43]:

ĤkP,nP = YkP,nP
XkP,nP

=HkP,nP + NkP,nP
XkP,nP

(2.38)

where YkP,nP is the received pilot symbol on the kth subcarrier in the frequency domain,
XkP,nP is the transmitted pilot symbol on the kth subcarrier in the frequency domain,
and NkP,nP is the AWGN noise in the frequency domain. From this, the minimum
mean square error estimate of the channel response Ĥk,n can be obtained via Wiener
filtering as [43]:

Ĥk,n =
∑

kP,nP∈P
wk,nkP,nP ĤkP,nP (2.39)

OFDM summary

OFDM is currently the physical layer waveform of the WAVE protocol for vehicle-
to-vehicle communication, and whilst OFDM is a deservingly popular waveform for
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wireless communication, it is not without its drawbacks. The use of OFDM places strict
requirements on the synchronization process which is needed to keep the subcarriers
orthogonal, and with one cyclic prefix per symbol it presents a somewhat problematically
low spectral efficiency [44]. It is also known for having a high peak to average power
ratio, which effectively means the signals amplitude exhibits a high dynamic range.
This high range of values poses issues for RF amplifiers as they require a larger linear
region to uniformly amplify signals.

It would be beneficial to utilise a more flexible physical layer waveform that still
allows for multiple users and protection from multipath environments, but also allows
for better spectral management. For these reasons, non-orthogonal waveforms are
investigated in the proceeding sections.

2.5.2 Generalised Frequency Division Multiplexing

Generalised frequency division multiplexing (GFDM) is a (typically) non-orthogonal
multicarrier system that incorporates a flexible pulse shaping technique. GFDM was
first proposed by Fettweis et. al. in [45], and is a current prospect for the physical layer
waveform of 5G [46, 47]. At its core, it operates on blocks of data where each block
consists of a number of subcarriers and subsymbols. Firstly, binary data is modulated
onto a constellation C and split into sequences of length KM . Each of these sequences
d [ℓ], ℓ= 0,1, . . .KM −1 can be decomposed into blocks of K subcarriers and M time
slots for transmission. This can be represented as a matrix, i.e. [45]

D = [d0,d1, . . . ,dK−1]T

=


d0 [0] d0 [1] · · · d0 [M −1]
d1 [0] d1 [1] · · · d1 [M −1]

... ...
dK−1 [0] dK−1 [1] · · · dK−1 [M −1]


(2.40)

where dk [m] ∈ C is the data symbol transmitted on the kth subcarrier in the mth

timeslot.

GFDM transmitter

The block diagram for the GFDM transmitter is shown in Figure 2.6. Note that the K
subcarrier streams have independent J-QAM mappers, therefore allowing different con-
stellation orders on each stream relative to each subcarriers specific channel conditions.
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On the kth subcarrier of the transmitter, each data symbol dk [m] ,m= 0,1, . . . ,M −1
is upsampled by a factor of N , resulting in the sequence [48]:

dNk [n] =
M−1∑
m=0

dk [m]δ [n−mN ] , n= 0,1, . . . ,NM −1 (2.41)

where δ[·] is the Dirac delta function.

Fig. 2.6 GFDM transmitter block diagram

This sequence is then applied to a transmit filter g̃ [n] of length L = NM , with
N ≥K to avoid aliasing [45]. g [n] defines the pulse shape that is to be applied to the
subcarriers and is related to g̃ [n] as a circularly shifted version i.e [49].

g̃ [n] = g [⟨n+MN/2⟩MN −MN/2] (2.42)

where ⟨·⟩MN denotes a modulo MN operation. The relationship between g[n] and g̃[n]
can be seen in Figure 2.7. The design of the pulse shaping filter has an influence in the
overall performance of the system as it introduces ICI. By choosing g[n] to be a root
raised cosine (RRC) filter, the ICI introduced by each subcarrier can be limited to its
adjacent subcarriers, thus allowing for a relatively low complexity iterative interference
cancellation technique to be used, as will be introduced in a later subsection.

After pulse shaping, each subcarrier is up-converted and the resulting K modulated
subcarriers are summed to produce the transmit signal. Mathematically this can be
seen as [48]:

x[n] =
M−1∑
m=0

K−1∑
k=0

dNk [m]g̃ [n−mN ]e−j2π kn
N (2.43)

This can be re-expressed by gathering the filter and up-converting terms to produce
a complex valued modulation matrix A of order KM ×NM , thus allowing the GFDM
modulation process to be expressed as [50]:
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Fig. 2.7 Example GFDM pulse shape showing the relationship between g[n] and g̃[n]
for root raised cosine pulse with α = 0.5,M = 5, and N = 12

x = Ad (2.44)

This allows for easier descriptions of the chosen receivers, therefore this is the
notation that shall be used in later sections. The composition of this matrix is a
circularly shifted version of the pulse shaping filter in both time and frequency, which
can be seen in Figure 2.8

Finally, as with OFDM, a cyclic prefix can be added to prevent inter-frame inter-
ference (IFI), an important distinction however is that GFDM only requires one CP
per block as opposed to OFDM that requires one CP per timeslot. This is shown
graphically in Figure 2.9.

GFDM receivers

Given the channel with impulse response h[n], the received signal can be described as
[42]:

rCP [n] = xCP [n]∗h[n]+w[n] (2.45)
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Fig. 2.8 GFDM transmitter matrix with K = 10,M = 11, and α = 0.1

Fig. 2.9 Comparison of GFDM and OFDM block structures for M = 5 and K = 4

where xCP denotes the transmitted GFDM frame with added CP and w[n] are AWGN
samples with distribution N ∼ (0,σ2). We assume that synchronization is handled by
the receiver perfectly. The CP is then removed, which as previously mentioned has
prevented IFI between two successive GFDM frames assuming a CP of length greater
than the maximum channel delay spread. This gives the received signal, r as:
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r = ⌊rCP ⌉ (2.46)

where ⌊·⌉ denotes the slice operator. Assuming the channel can be estimated by
the receiver, a zero forcing channel equaliser can be employed to compensate for the
frequency response of the channel. Assuming a large enough K, the effect on each
subcarrier can be considered frequency flat fading and thus a single tap per subcarrier
equaliser can be used resulting in the equalised signal:

req[n] = IFFT
{

FFT{r[n]}
FFT{h[n]}

}
(2.47)

where FFT(·) is the fast Fourier transform and IFFT(·) is the inverse fast Fourier
transform respectively. The equalised signal can then be applied to the receiver. The
next subsection will introduce some of these receivers, in increasing order of complexity.

GFDM matched filter receiver

The matched filter receiver is given by [44]:

ŷMF = AHreq (2.48)

This operation maximises the signal-to-noise ratio (SNR) on each subcarrier, how-
ever, this has the effect of introducing ICI when a non-orthogonal pulse shape is used
[44]. The default pulse shape often considered is the root raised cosine pulse, and
is thus non-orthogonal, hence the bit-error rate (BER) performance is expected to
be negatively effected. In terms of complexity however, this receiver is simple to
implement.

GFDM zero forcing receiver

By formulating the GFDM transmitter operation as a matrix in a previous subsection,
the zero forcing operation can be seen as the inverse, thus following [42]:

ŷZF = A−1req (2.49)

However, as pointed out in [51], the transmitter matrix A may be non-square or
ill conditioned meaning the inverse does not exist. In such a case, the Moore-Penrose
psuedo-inverse can be used and is given by [52]:
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A+ = AH
(
AAH

)−1
(2.50)

where AH is the Hermitian matrix of A. The ZF receiver will completely remove
any ICI but at the cost of potential noise enhancement which can decrease BER
performance.

GFDM minimum mean square error receiver

The linear minimum mean square error receiver is given by [45]:

ŷMMSE =
((

R2
w +AHHHHA

)−1
AHHH

)
req (2.51)

where H is the circulant convolution matrix representation of the channel and R2
w

denotes the covariance matrix of the noise. This results in a receiver that reaches
a compromise between the matched filter and the zero forcing receivers in terms of
self-interference versus noise enhancement. Note in the case of the minimum mean
square error receiver the channel is jointly equalised in this process, thus eliminating
the need for the zero forcing precursor mentioned previously.

GFDM interference cancellation receiver

As mentioned previously, by choosing the pulse shaping filter to be a RRC filter the
ICI can be limited to adjacent subcarriers only as shown in Figure 2.10.

The transmitter matrix A is readily reproducible at the receiver, and can be used to
recreate an estimated interference signal and iteratively remove ICI from the received
signal. The process can be described as follows. To reduce the ICI on the kth subcarrier
caused by the (k− 1)th and (k+ 1)th subcarriers, first apply the matched filter to
req and estimate the symbols from the reference constellation being used, d̂k−1 and
d̂k+1. To recreate the estimated interference signal, create a dummy data frame c
that contains the estimated d̂k−1 and d̂k+1 and zeros elsewhere, then multiply by the
transmitter matrix A as [53]:

vk = Ac (2.52)

This interference signal is then be subtracted from the original signal req to clean
subcarrier k of ICI [53].

r′
eq = req −vk (2.53)
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Fig. 2.10 RRC interference pattern - α = 0.5,M = 13,N =K

The data symbols on subcarrier k are then re-estimated. This process continues for
all K subcarriers, and the most recent estimated symbols are used in the next iteration.
The entire process can be repeated I times until the desired level of ICI is reached.
The more iterations that are performed, the lower the resultant ICI, however at the
clear cost of computational complexity.

GFDM summary

GFDM can be seen as almost a superset of OFDM, but this flexibility often comes at the
expense of complexity. GFDM has several attractive qualities when compared to OFDM,
through an appropriate selection of pulse shape the peak to average power ratio of
GFDM is lower than that of OFDM, and less spectral leakage is achieved which reduces
the out of band emissions - ideal for flexible spectrum resource sharing. In GFDM,
each subcarrier can also be modulated individually with its own indepent constellation
mapper, allowing for a high degree of freedom for multi-user scheduling. This of course
comes at the cost of complexity and loss of orthogonality, which detriments the overall
bit-error rate performance.
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2.5.3 Spectrally Efficient Frequency Division Multiplexing

Spectrally efficient frequency division multiplexing (SEFDM) is another non-orthogonal
multicarrier system that was first proposed by Darwazeh et. al. in [54] that is a current
prospect for the physical layer waveform of 5G [55]. In SEFDM, the orthogonality
constraint of OFDM is purposefully broken for the purposes of utilising more subcarriers
per given bandwidth than in OFDM, however, ISI is introduced as a result. It does
this by compressing more subcarriers into a given bandwidth, placing them at locations
that are below the symbol rate. This compression factor is denoted by α, and is directly
linked to the bandwidth saving with respect to an equivalent OFDM signal i.e. a value
of α = 0.8 means the SEFDM system requires 0.8×100% of the bandwidth, or often it
will simply be denoted as (1−α)×100% bandwidth saving. An example of this can
be seen in Figure 2.11.

SEFDM transmitter

Fig. 2.11 Power spectrum of SEFDM signals with varying value of α and OFDM for
reference
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An SEFDM signal is created similarly to OFDM by modulating an input data
stream onto parallel subcarriers. Unlike in OFDM where subcarriers are spaced evenly
at intervals of the symbol period Ts to retain orthogonality, in SEFDM the carriers are
spaced in frequency by some fraction of the symbol time according to the value of α for
the system via ∆f = α/Ts. This results in the following mathematical representation
for the creation of a complex baseband SEFDM signal as [56]:

x(t) = 1√
T

∞∑
l=−∞

Nc−1∑
n=0

sl,n exp
(j2πα(t−lT ))

T (2.54)

where Nc is the total number of subcarriers and sl,n is the symbol that is modulated
on the nth subcarrier in the lth SEFDM frame. It is worth noting that for α= 1 this
reduces to the OFDM case. The representation above in (2.54) however does not lend
itself well to implementation using standard hardware for OFDM via the FFT and
IFFT as it requires a bank of modulators each set at the subcarriers frequencies. In
order to generate SEFDM signals via an IFFT approach, it helps to redefine (2.54) in
matrix form.

Considering only the first frame sampled at intervals of T/N where N ≥ Nc, one
can express a frame for k = 0,1, . . . ,N −1 as [56]:

X [k] = 1√
N

N−1∑
n=0

sn exp
(

j2πnkα
N

)
(2.55)

where X[k] is the kth time sample of the first frame of x(t), and sn is the nth symbol
in the frame. Noting the highlighted term α, one can see by comparing this is to
(2.34) that this is a minor modification to the FFT/IFFT method utilised by OFDM.
Furthermore, this allows for a direct expression in matrix form as [57]:

X = ΦS (2.56)

where X = [x0, . . . ,xN−1]T is a vector of the transmitted symbols of x(t) and S =
[s0, . . . , sNc−1]T is a vector of input symbols, and [·]T denotes the transpose operation.
This results in Φ forming an Nc ×N matrix whose elements contain the sampled
SEFDM subcarriers values [56]:

ϕn,k = 1√
N

exp
(

j2παnk
N

)
(2.57)

for 0 ≤ n≤Nc−1 and 0 ≤ k ≤N−1. This matrix form of SEFDM allows easy relation
to the IFFT implementation of OFDM. Referring back to (2.57), to retain equivalence
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after the IDFT operation, the SEFDM symbols within S must be of length M = N/α.
This can be achieved by zero-padding S by appending M −N zeros such that [58]:

Ŝ =
 Si, 0 ≤ i < N

0, N ≤ i <M
(2.58)

Assuming that N/α is an integer, the resulting SEFDM signal can be expressed as [58]:

X̂ = 1
α
QŜ (2.59)

such that X [k′] = X̂ [k′] for 1 < k′ < N , where Q is an M ×M IFFT matrix. The
resulting signal is shown in Fig 2.11 for different values of α.

SEFDM receivers

An SEFDM receiver is comprised of a demodulator and a detector. It is the job of the
demodulator to collect statistics R of the received signal by projecting it onto a set of
orthonormal bases bi(t), whilst it is the job of the detector to utilise those statistics by
applying algorithms to estimate the originally transmitted symbols. Using an ideal
AWGN channel, without loss of generality, a received signal can be given by [42]:

y(t) = x(t)+w(t) (2.60)

where w(t) is an additive white Gaussian noise term, the ith collected statistics ri is
obtained as [59]:

ri =
∫ T

0
y (t)b∗i (t)dt, i= 0,1, . . . ,N −1 (2.61)

where bi(t) is the ith base and [·]∗ is the Hermitian conjugate operation. Due to the lack
of orthogonality introduced by the modulation process and α, the collected statistics
contain contributions from non-orthogonal subcarriers. Referring back to (2.57), and
noting that the columns of ϕ represent the signals subcarriers, the correlation between
two arbitrary subcarriers ϕm and ϕn is given by [59]:
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cm,n = ⟨ϕm,ϕn⟩

= 1√
N

N−1∑
k=1

exp
j2παkm

N exp− j2παkn
N

= expjπα(m−n) exp
−jπα(m−n)

N

sinc(α (m−n))
sinc

(
α(m−n)

N

)
 (2.62)

The amplitude of which is given by the sinc term as [58]:

|cm,n| =

∣∣∣∣∣∣∣
sinc(α (m−n))
sinc

(
α(m−n)

N

)
∣∣∣∣∣∣∣ (2.63)

From (2.62), this allows for the expression of a correlation coefficient matrix C as [59]:

C =


1, m = n
1
N

[
1−expj2πα(m−n)

1−exp
j2πα(m−n)

N

]
, m ̸= n

(2.64)

where C is a Toeplitz and Hermitian N ×N matrix which characterises the energy
spillage between the N subcarriers. This is demonstrated graphically in Fig 2.12 for
two different values of α to show the increase in energy spillage as the bandwidth is
increasingly compressed.

SEFDM zero forcing receiver

Gathering up all the statistics and bases from (2.61) as the vecors r and b respec-
tively, one can describe the maximum likelihood detection problem as a least squares
minimisation problem as [58]:

min. ||r−bs| |2 (2.65)

where s are the originally transmitted symbols such that s is a symbol from some
reference constellation C. The zero forcing estimate, which is also known as the Babai
estimate [60], ŝ is given by [58]:

ŝ = ⌊s̃⌉ =
⌊
b−1r

⌉
(2.66)
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(a) (b)
Fig. 2.12 Correlation matrix for N = 64 and (a) α=0.9 and (b) α=0.3

where ⌊·⌉ denotes the slice operator. Much like other zero forcing algorithms investi-
gated, this too has the unwanted side effect of enhancing the noise power when the
determinant of b becomes small, and also has an algorithmic complexity of O(N3) due
to the required inversion of b.

SEFDM minimum mean square error receiver

The full derivation of the minimum mean square error receiver can be found in [58],
however, it is reported to be given by:

ŝ =
bH

(
bbH + σ2

σ2
s

I
)−1

r

 (2.67)

where bH
(
bbH

)−1
is the Moore-Penrose psuedoinverse [52] of the matrix b, I is the

identity matrix, and σ2/σ2
s represents the inverse of the signal to noise ratio following

[61].
Logically, one can infer that this is a more effective receiver than the zero forcing

receiver. The use of the Moore-Penrose psuedoinverse means that it will never be
singular, and therefore will not be limited by the singularity of the projection matrix
like in zero forcing. The regularisation term σ2/σ2

s dynamically adapts based on the
noise level, therefore experiences less noise enhancement issues, and in a noise-less
environment one can see that this solution converges to that of zero forcing.
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SEFDM interference cancellation receiver

If one was to write out the analytical expresion for (2.60) as [62]:

r1
...

rN−1
rN

=


b11 . . . b1,N−1 b1,N
... . . . ... ...
0 . . . bN−1,N−1 bN−1,N
0 . . . 0 bN,N




s11
...

sN−1
sN

+


w1
...

wN−1
wN

 (2.68)

one notices that b is triangular. Starting from the N th symbol, the estimate for ŝN is
[63]:

ŝN =
⌊
rN
bN,N

⌉
(2.69)

Estimating the next symbol ŝN−1 and subtracting the interference due to N gives [63]:

ŝN−1 =
⌊

1
bN−1,N−1

(
rN−1 − bN−1,N ŝN

)⌉
(2.70)

This process is then repeated until the first symbol is reached. This can be neatly
summed up by the following recursive equation for the estimate of the ith symbol as
[63]:

ŝi =
 1
bii

ri− N∑
j=i+1

bi,j ŝj

 (2.71)

2.6 Application of Neural Networks

Machine learning has had a profound impact on modern life. It powers much of the
digital world we interact with daily, from the relatively innocuous such as shopping
recommendations and email filtering, to the grandiose such as autonomous vehicles
and space exploration [64]. The aim of machine learning is to provide a system the
ability to automatically learn and improve based on experience without being explicitly
programmed. It explores the numerical relationships inherent in data and uses that to
arrive at conclusions. Broadly speaking, there are three main types of machine learning
algorithm; supervised learning, semi-supervised learning, and unsupervised learning.
At a basic level, in supervised learning the system is shown examples of inputs and
outputs and is tasked with learning the function that is capable of mapping those
inputs to the example outputs, i.e. given an input set x and example output set y
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the machine learning algorithm attempts to approximate some function λ such that
λ(x) = y. Unsupervised learning on the other hand does not make use of an example set
y, instead attempting to derive structure organically present within x however it can.
The final type, semi-supervised learning, as one can imagine from the name, is a hybrid
approach. As the volume of data collected worldwide is increasing exponentially year
on year [65], creating or maintaining an accurate supervised learning output set y can
become very costly in some instances, therefore the aim of semi-supervised learning is to
combine elements of both approaches, depending on the particular problem statement.

Supervised learning is the most common of the three, and will be the main focus
of this research. The nature of wireless communication research lends itself well to
this problem, since we control both the transmitter and the receiver - i.e. both the
producer of y and consumer of x.

2.6.1 Neural Network Training

A machine learning model, specifically the neural networks that this work will consider,
can be seen as a collection of composable functions connected via weights and biases,
a simple diagram is shown in Fig. 2.13. Each circle in the diagram is a neuron, which
are organised into layers where the data flows from the input(s) on the left to the
output(s) on the right. Each arrow is a connection inside the model, which has its
own weight and bias matrix, and a (usually non-linear) activation function. This can
be seen in Fig. 2.14. These weight and bias matrices are referred to as the models
parameters, and it is these parameters that need to be learned during the training
process to generate accurate outputs.

Input Layer Hidden Layer Hidden Layer Hidden Layer Output Layer

Fig. 2.13 An example neural network layout with three hidden layers; hidden layers
are highlighted in red
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Fig. 2.14 The input to output process of a neuron showing the weight, bias, and
activation function

As was discovered by works such as [66, 67], networks configured in this way can
be trained via an algorithm called gradient descent and backpropagation. The key
finding was that the derivative of the objective function with respect to the input of
a neuron can be calculated by working backwards from the gradient with respect to
the output of that neuron or the input of the following neuron. Backpropagation can
be repeatedly applied in this manner to propagate gradients through all neurons in
the model, starting from the output(s) and flowing through to the input(s). Once
all the gradients are computed, one can calculate the gradients with respect to the
neurons parameters for each neuron. The premise behind training a neural network in
this context is as follows; apply x to the input(s) of the neural network, the neural
network applies its internal functions via the weights, biases and activation functions
at each successive neuron and layer in the model, and a prediction, ŷ, is generated at
the output(s). The training algorithm then compares that output via a loss function
(sometimes called cost function) to the ground truth label, y, and creates a loss value
L = J (θ) where θ are the models trainable parameters. For a single layer neural
network, this process goes as follows [66]:

ŷk =
M∑
i=1

wk,ixi+ bk (2.72)

where ŷk is the output from neuron k, M is the total number of examples in the dataset,
xi is the input sample from the dataset in step i, and bk is the bias term for neuron k.
Or in matrix form [66]:

ŷ = Wx +b (2.73)
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t1

t3

t3

Fig. 2.15 Gradient descent visualised

For example purposes, let us utilise the mean square error as an example loss function
[42]:

En = 1
2 ||ŷ −y| |2

= 1
2

M∑
m=1

(ŷm−ym)2 (2.74)

It is this relationship between the learnable parameters of the neural network, θ
and the loss, L= J (θ), that gives rise to a high dimensional space where all possible
values of θ map to values of loss. It is the job of gradient descent to iterate over this
space to find values of θ that minimise L. It does this by moving iteratively in the
opposite direction to the gradient, which happens where L is decreasing most rapidly.
We first must decide what type of gradient descent we are using. When training a
neural network, there are three general methods of gradient descent that can be opted
for, namely batch gradient descent, minibatch gradient descent, and pure stochastic
gradient descent. The difference between these methodologies is the subtle difference
of how many data points from the dataset are used in each iteration of the training
process. Pure stochastic gradient descent takes a random point from the dataset and
uses this sample to perform a training update. This data point could take the gradient
in a direction that is completely off course from the wider dataset, however, this is
not a bad thing as it can aid in escaping from saddle points [68], which are points in
the loss space that have zero gradient but are not local minima. In batch gradient
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descent, the gradient is calculated over the entire dataset, meaning the resulting loss
vector is averaged over many points and those noise-like perturbations from single
data points are lost. This is the reason one can end up in a local minima of the loss
function or as mentioned previously a saddle point. Depending on the dataset, this
can also be very memory intensive too. Comparing these two approaches, one can see
there is a balance between computation and optimisation accuracy i.e. performing
an expensive parameter update after every single sample as in the pure stochastic
gradient descent approach, and potentially stalling the gradient descent process in
local-minima and saddle points as in the batch gradient descent case. It is for this
reason that the minibatch method is typically used, and will be the method discussed
from here on unless explicitly stated. As one can imagine, the minibatch approach
is a compromise of these two methods, using more than one sample at a time to
perform updates to speed up convergence yet not using too many samples as to retain
enough noise-like fluctuations from the dataset to escape local-minima and saddle
points. Mathematically, we can view the parameter update process from minibatch
gradient descent as [69]:

θk+1 = θk +η∆θk (2.75)

where

∆θk = − 1
m

m∑
i−1

∇θJi (θk) (2.76)

where η is the learning rate of the system i.e. how large a step to take in the gradient
descent process, m is the minibatch size, m≤M where M is the size of the training
dataset.

Whilst (2.75) forms the basis of most computationally feasible neural network
training algorithms, there are several optimisation algorithms in prevalent use that
look to address specific problems and speed up training convergence. For instance,
it was shown in [70] that increasing minibatch size m whilst retaining a constant η
allows for greater parallelisation but uses potentially stale gradients, and that a higher
η can be used with a smaller minibatch size m as each weight update contains lower
variance. The authors in [71] introduced an optimisation method called adagrad, short
for adaptive gradient. In adagrad, the learning rate η is not fixed for all parameters θ
but instead it adapts η and performs smaller updates on parameters that are associated
with frequently occuring features in the dataset and larger updates on parameters that
are associated with infrequently occuring features. This helps the neural network when
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dealing with sparse data, as the sparse features are usually those of interest and are
thus weighted higher when they occur. This means one has to adapt (2.75) to allow
for per-parameter updates at each time step t. For brevity, we define the gradient at
time step t as [71]:

gt,i = ∇θJ (θt,i) (2.77)

which subsequently allows us to write the update for each parameter θi as [71]:

θt+1,i = θt,i−ηgt,i (2.78)

For adagrad to modify the learning rate η at each time step per parameter based
on feature occurence, it utilises past historical gradients that have been calculated [71]:

θt+1,i = θt,i−
η√

Gt,ii+ ϵ
gt,i (2.79)

where Gt ∈ Rd×d is a diagonal matrix where each element on the diagonal i, i is the
sum of the squares of the gradients for θi for all previous time steps, ϵ is a smoothing
term (typically on the order of 10−8) that provides numerical stability by avoiding
cases where one might divide by zero.

As one can intuitively see however, whilst this does address some issues it is also
not without its drawbacks. The need to record gradient updates for all parameters
for all time can be memory intensive, and since the matrix Gt is always updated by
addition, the sum increases over the lifetime of the training period until it eventually
causes updates to → 0 and no more learning can take place.

2.6.2 Generalisability

A good machine learning model is one that has generalised well to the problem statement
one set out to solve. Whilst this statement may seem obvious, generalisation of machine
learning models has been a huge issue for a long time and likely always will be e.g.
[72–74]. The reason for lack of generalisability of a model could be a multitude of
things, however, the main issues normally crossed include; the dataset being used to
train the model, the model architecture implemented relative to the problem, and the
training process used to teach the model.

When the dataset used whilst training the model has different properties to that
of the data seen when the model is deployed, performance degradation is likely. This
result can often come as a surprise to many, who do not realise the properties between
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training and deployment have changed. Take for instance the work in [75], the
authors demonstrated a machine learning system for wireless communications that
provided large performance gains in training, however under-performed in reality.
The cause was deemed to be the dataset used to train the model, the ‘random
sequence’ used to generate the bit patterns was flawed, resulting in repeating patterns
in the dataset. The machine learning model had learned how to map this dataset
x to output y but the function it learned to do so was unintended, thus the model
failed to generalise in real-world deployment. There exists an interesting research
topic in this area, namely the so called ‘manifold learning’ hypothesis [76, 77]. The
premise of this hypothesis is that the high dimensionality of many datasets (thus high
complexity of learning its consequent mapping function λ) was artificial, and each
example could be described with fewer underlying parameters i.e. each example could
be seen as a sample from a lower dimension manifold. Worth mentioning are related
fields to this in the space of dimensionality reduction, with popular methods such as
principle component analysis (PCA) with its seminal paper in [78], and t-distributed
stochastic neighbour embedding (t-SNE) first introduced in [79]. The use of t-SNE
is prevalent in the exploration of high dimensional data, as it provides an intuitive
way of reasoning with complex internal relationships. The introduction of t-SNE was
brought about to make improvements to the standard stochastic neighbour embedding
(SNE) algorithm, namely the use of a symmetric cost function with simpler gradients
and a replacement of the Gaussian distribution with the Student-t distribution to
compute point similarity in low-dimensional space. The aim of t-SNE is to minimise the
divergence between two distributions, a distribution that measures pairwise similarities
of the input data points and a distribution that measures pairwise similarities of the
corresponding low dimensional points in the embedding. For instance, given an input
set of high dimensional data points D = {x1,x2, . . .N} and some function to compute a
distance between any pair of data points in the set d(xi,xj) (e.g. Euclidean distance
d(xi,xj) = ||xi −xj ||), the aim is to learn some s-dimensional embedding in which
each data point from D is represented by a point ε= {y1,y2, . . .N} with yi ∈ Rs. To do
this, t-SNE defines a set of joint probabilities pij that measure the pairwise similarity
between data points xi and xj by creating two conditional probabilities as [80]:

pj|i = exp−d(xi,xj)2
/2σ2

i∑
k ̸=i exp−d(xi,xk)2

/2σ2
i

(2.80)

and
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pij =
pj|i+pi|j

2N (2.81)

where σ2
i are Gaussian kernels that are set such that the perplexity of the conditional

distribution Pi is equal to a predefined perplexity value u. The optimal value for
which can be found via binary search [81]. The second distribution required finds
the similarities between two points, yi and yk in the s-dimensional embedding ε by
computing a normalised Student-t kernel with a single degree of freedom as [80]:

qij =

(
1+ ||yi−yj | |2

)−1

∑
k ̸=l (1+ ||yk −yl| |2)−1 (2.82)

The heavy tails of the normalised Student-t kernal ensure that dissimilar inputs xi
and xj can be modelled by low dimensional equivalents yi and yj that are far apart.
Finally, the embedding points yi are determined by minimising the Kullback-Leibler
divergence between the two joint distributions P and Q as [79]:

C (ε) =
∑
i ̸=j

pij
pij
qij

(2.83)

which can be optimised by gradient descent [79]:

δC

δyi
= 4

∑
j ̸=i

(pij − qij)qij (2.84)

where Z (yi−yj) is a normalisation term equal to [79]:

Z =
∑
k ̸=l

(
1+ ||yk −yl| |2

)−1
(2.85)

In the context of exploring dimensionality, we can describe the lack of generalisation
of a neural network in terms of higher dimensional overfitting i.e. the neural network
learned the high dimensional features with high variance that failed to transfer when
using new data. In any neural network, we can describe the total error as being a
combination of two terms; a constant error term, bias, and a varying error term that
depends on the dataset, variance. A neural network with high variance is likely to
generalise poorly, as it can mean that the neural network has focussed too much on
the particular structure within the training dataset rather than the underlying lower
dimensional features. A neural network that has a high bias is symptomatic of not
being powerful enough to capture the underlying complexities within the data using
the given features. This is often reffered to as the inherent bias-variance tradeoff [82].
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2.6.3 Conclusion

This chapter has presented the wireless standards that guide this work, provided a
theoretical background into the challenges of wireless communication in a vehicular
network, and introduced the part that machine learning has to play in this area of
research. The physical properties that govern wireless radio communication were
discussed, it was shown how multipath propagation, ISI, path loss, shadowing, and
Doppler effects are all natural phenomena that affect a wireless signal as it traverses
through an environment. Following the radio background, it was then investigated
how a VLC network operates for vehicular networks, which sets the scene for later
practical experiments. It was then discussed how the physical layer waveforms used
throughout this work are generated in a transmitter and subsequently received with
different methods. Finally, the technical background behind neural networks and their
training was discussed, highlighting their capability as teachable mathematical models
that can generalise relationships between sets of inputs and outputs in preparation for
implementation in later experiments.





Chapter 3

Neural Network Equalisation and
Symbol Detection

3.1 Introduction

Vehicular communication, specifically vehicle-to-vehicle communication, faces many
challenges that differentiate it from more classic communication systems. One of these
challenges is the harshness of the communication channel. Both the transmitter and
receiver are at a similar height, which causes multiple reflections from surroundings
that have slight path length differences, causing fast fading [22, 27]. This is exacerbated
by Doppler effects due to the relative motion between the vehicles and the fact that
the network topology is changing rapidly [83].

There have been several proposals to overcome these issues in the literature. In [84],
the authors propose the use of lasers to achieve high speed communication over several
hundred metres. One problem with this however is that line-of-sight is required between
devices which cannot be guaranteed in a vehicular setting due to the configuration of
roads and intersections and also the intermittent blockages caused by other road users.
Another proposal introduced in [85] attempts to predict Doppler changes to allow for
easier compensation of the channel effects, the results outperform a benchmark least
squares estimation, however only simulation results are presented. Thus, its ability to
perform under real world constraints are unknown and require further investigation.
Further proposals include the use of multiple input multiple output (MIMO) systems
[86], cooperative communication [87], and integration into existing long term evolution
(LTE) and future 5G systems [88]. There have also been several proposals to use
machine learning in the vehicular network, such as in [89] where they investigate the
use of artificial neural networks (ANNs) to increase throughput in a vehicular ad-hoc
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network by optimising the medium access control (MAC) layer of the 802.11p protocol.
Again, in [90], the use of an online machine learning algorithm is proposed for beam
selection in millimetre-wave (mmWave) vehicle-to-anything (V2X) communication to
allow network adaptation to traffic and line-of-sight blockages, and the authors in [91]
propose machine learning to predict channel state information (CSI). To the best of
the authors knowledge at time of writing, there are no attempts at the use of machine
learning to equalise and compensate for the vehicular channel.

Therefore in this chapter, the main focus is on the application of artificial neural
networks in the context of vehicular channel equalisation and symbol detection. Two
physical layer waveforms of interest will be focussed on, namely OFDM and SEFDM.

OFDM has long been the physical layer waveform of choice in the 802.11p vehicular
communication standard and is an algorithm commonly employed in many wireless
standards due to its robustness in the face of frequency selective fading and fairly simple
implementation via the fast Fourier transform. There is an abundance of literature
available on OFDM in the decades since its original conception.

SEFDM on the other hand is a more recent creation first described in [54]. SEFDM
utilises a modified, discrete fractional Fourier transform in order to compress a signal
in the frequency domain beyond the 1/T orthogonality limit, where T is the symbol
period. This compression in the frequency domain beyond the orthogonality limit
causes self-induced deterministic inter-carrier interference as one would expect, but it
comes at the benefit of higher spectral efficiency as more subcarriers can be transmitted
in a given bandwidth. Following some of its early success, there has been research
undertaken that has seen reasonable bit-error rates using 4-level quadrature amplitude
modulation (4-QAM) [57] using only 70% of the bandwidth of OFDM for a given data
rate. The sometimes crippling effects of the induced ICI means that complex receivers
are often required to recover the transmitted symbols, thus far sphere decoders (SDs)
are the most popular choice in the literature, and are being used to take advantage of
the newly improved spectral efficiency on offer from SEFDM.

When implemented practically, both OFDM and SEFDM have a requirement for
available channel state information, used in tandem with known pilot symbols inserted
into each transmitted frame to be used in estimating the instantaneous quality of the
wireless channel [92]. The resulting channel estimate can then be used to ‘undo’ the
effect of the channel on the wireless transmission before attempting to demodulate the
signal. In this chapter, it will be shown that one can move away from the standard
SD receiver architecture and how the author successfully designed and implemented
a bespoke neural network algorithm, to be used as a joint wireless channel equaliser
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and symbol detector. It has been shown previously that artificial neural networks have
the ability to outperform some methods of classic receivers such as decision feedback
equalisers and other transversal filters [93].

It is for this reason that the author proposes to marry the advantages of SEFDM,
namely its lower bandwidth usage i.e. higher spectral efficiency with a neural network
receiver to increase the performance of a vehicular network. The higher spectral
efficiency can be advantageously used to support more users within the same network
or to increase the networks data rates, whilst the neural network receiver should provide
robustness to the transmissions.

The proposed neural network receiver model does not require channel state informa-
tion, as a supervised learning approach to training has been taken. In this approach, the
neural network is trained on data that has been transmitted over a realistic vehicular
wireless channel so that the relationships and associations between transmitted and
received symbols can be done offline and embedded within the knowledge of the neural
network. The implementation is tested via hardware co-simulation, using National
Instruments universal software radio peripheral re-configurable input/outputs (NI
USRP-RIOs), and a Spirent VR5 channel emulator to generate realistic vehicular
channels defined in [94]. It is shown that the proposed neural network receiver achieved
an RMS error vector magnitude of 4.75 in the OFDM case over 52 data symbols whilst
still conforming to the 802.11p standard, and SEFDM under the same conditions
achieves a performance of 10.8 → 25 (RMS) error vector magnitude (EVM) as the
compression factor decreases from α = 0.8 → α = 0.4, a significant improvement. It
is then demonstrated that the proposed system is highly portable by changing the
vehicular environment that the neural network is deployed in without performing any
additional training. The results show no significant degradation of performance, thus
the proposed system demonstrates a strong generalisability that reinforces its suitability
to practical deployment.

3.2 Practical Implementation

3.2.1 Experimental Test Setup

The experimental test set-up that the author used in this work is illustrated in Fig. 3.1,
highlighting the end-to-end system implemented and a block diagram is shown in
Fig. 3.2. The author opted for a ‘hardware-in-the-loop’ approach in the generation
and transmission of both the OFDM and SEFDM signals under test. The OFDM
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Fig. 3.1 Image capture of the test setup
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Fig. 3.2 Block diagram of the test setup

signals were generated as described in (2.29), and the SEFDM signals were generated
as described in (2.55). For the transmitter, an NI USRP-RIO 2953R was deployed and
controlled using LabVIEW software. For the testing, 216 −1 bits were generated for
each physical frame, and these are mapped to a quadrature phase shift keying (QPSK)
constellation. In preparation for modulation, these frames are passed through a serial
to parallel converter. The signals generated follow the 802.11p standard, i.e. the
IDFT size is 64, the number of active subcarriers is N = 52 and the signal bandwidth
was 10 MHz. The particular specifics are documented further in Table 3.1. Also
worth noting is the fact the author test values of α from 1 (OFDM) down to 0.4 (60%
bandwidth compression) in steps of 0.2.
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Table 3.1 Transmission Parameters

Parameter Values

Carrier Frequency 5.9 GHz
Sampling Frequency 20 MSs
Signal Bandwidth 10 MHz

Values of α 1 (OFDM), 0.8 : 0.2 : 0.4
FFT/IFFT Size 64 samples

Cyclic Prefix Size 16 samples
Modulation Scheme QPSK

3.2.2 Vehicular Channel Model

This work uses two vehicular channel models that were empirically collected in [94],
namely the highway NLOS channel model and the urban crossing NLOS model. These
models were chosen for this work to test the proposed system in a worst case scenario.
The neural network will be built and evaluated on the highway NLOS channel, but
then further investigation will look at the effect of channel mismatch on a deployed
neural network, where it is used as a symbol receiver in an environment it has never
seen during the training process. To extend this and add some further degredation not
easily captured in simulation, such as physical wiring and processing imperfections, a
Spirent VR5 channel emulator was employed to generate the test signals at the desired
5.9 GHz.

The highway NLOS vehicular channel was chosen as a worst case as its characteristics
outline it as the most challenging of the five scenario channels presented by the authors.
It has the highest received delay spread, the highest delayed replica receive powers, and
the highest spread of non-uniform Doppler shifts. The urban crossing NLOS channel
was chosen as the ‘unseen’ channel for the neural network as it is the second most
challenging environment, thus testing the generalisability of the neural network. The
main parameters that outline the characteristics of these channels can be found in
Table 3.2. All the taps in the delay line have a channel bandwidth of 10 MHz and are
defined as Rayleigh distributed, with a mean received power η2, a receive delay τ , a
Doppler frequency fd, and a given power spectral density (PSD) that the authors had
uncovered empirically.

The interesting thing to note about the Doppler profile is that these channel models
do not conform to the standard ‘bathtub’ shape, instead they form a directional



56 Neural Network Equalisation and Symbol Detection

Table 3.2 Channel Parameters

Scenario Tap η2
i [dB] τi [ns] fi,d [Hz] Profile

Highway NLOS i=1 0 0 0 Static
i=2 -2 200 689 Half BT
i=3 -5 433 -492 Half BT
i=4 -7 700 886 Half BT

Urban Crossing NLOS i=1 0 0 0 Static
i=2 -3 267 295 Half BT
i=3 -4 400 -98 Half BT
i=4 -10 533 591 Half BT

‘half-bathtub’ (noted as Half BT in Table 3.2) shape which more accurately reflects
the real life application of multiple vehicles communicating in a highway scenario as
the dominant contributing scatterers are more densely located directly in front or
behind each node [95]. An example PSD from the implemented channel can be seen in
Fig. 3.3, along with an empirical cumulative distribution function (ECDF) of the tap
realisations in Fig. 3.4, validating their Rayleigh distributions.

The signals are generated as outlined previously, then they are transmitted via the
traversal through the Spirent VR5 emulator. On the other side to receive the signal
is a USRP-RIO 2953R. At this stage in the process the received signal, considering
the application of the vehicular channel H with an added contaminent of the AWGN
vector Z may be defined as follows, using (2.56) [57]:

R = ΦΦΦ∗HX+ΦΦΦ∗Z = ΦΦΦ∗HΦΦΦS+ΦΦΦ∗Z (3.1)

where R is the demodulated signal vector estimation of X and (.)∗ is the Hermitian
transpose operation. Aside from the usual considerations outside the scope of this work
and thus not listed mathematically here, such as potential power amplifier non-linearity,
it is clear that the main impediment to the goal of successfully demodulating the
signals can be identified as the channel, H, and the self induced interference, C.

3.2.3 Neural Network Receiver

The estimation and tracking of both the vehicular channel H and the interference
matrix C becomes highly complex when the channel is both non-static and fading as
is the case with the chosen channel model. From empirical use the author has gleaned
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that conventional information theory based equalisers, for example feedforward or
decision feedback equalisers, are inherently limited in their ability to counteract and
predict this extremely complex relationship.

For this reason, the author turned their attention to the potential application
of artificial neural networks to undertake this task as neural networks posess several
advantageous properties that the author believes make them well suited for the problem
at hand. One such property is the ability of a neural network with non-linear activation
functions, like those that are used herein and will be introduced later, are able to
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generalise to any arbitrary input-output relationship given there are sufficient neurons
in the hidden layers [96], a property also sometimes referred to as general or universal
approximation theorem [97].

The artificial neural network in this work can be seen in Fig. 2.13, and it was
designed with the intended use as described in Fig 3.5, acting as a symbol receiver for
QPSK symbols after being transmitted with either OFDM multiplexing or SEFDM
multiplexing for any of the given bandwidth compression factors. The main parameters
for its recreation can be found in Table 3.3. The 802.11p vehicular standard outlines
the communication protocol as having 64 subcarriers in total, however 12 of these are
reserved as virtual subcarriers which act as a guard band to reduce the out of band
radiation [98]. In a typical vehicular system, the communication protocol also defines
that 4 of the remaining 52 subcarriers are to be used as pilot symbols to assist with
channel estimation and prediction [99].

FFE Z-1
Z-1 Z-1

ANN Equalizer

Input Xk Xk-1 Xk-2 Xk-N+1

Yk-τ  

Fig. 3.5 Block diagram of the physical implementation of the neural network equalisation

In the work presented herein, the use of the 4 pilot symbols has been forgone as
the variable nature of the channel pertubations have been embedded into the memory
of the model during the training stage, thus the neural network implementation can be
viewed as being 4/52 ≈ 7.7% more spectrally efficient over the standard implementation.
In the design of the neural network, the author opts to split the channel observation
vector into its real and imaginary constituents. This is an important distinction, we
have utilised a ‘concatenated-complex’ neural network which means that a single neural
network is considered as a joint equaliser and symbol receiver. To understand why
this is a noteworthy distinction, it is first helpful to know that whilst there is ongoing
research in the area of neural networks that fundamentally use complex numbers e.g.
[100], this body of work is still in its infancy. In order to overcome this limitation, one
has several options.

First, one could use symbol constellations that only use in-phase components on the
purely real Cartesian plane, but this would severely limit the number of bits per symbol
and hence data throughput. Second, and a common occurence in machine learning
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for communications, is to take what the author calls a ‘split-complex’ approach. The
principle of this method is illustrated in Fig 3.6, the real and complex constituents of
a signal are separated and a neural network is created for both streams independently
- NNR and NNI in the figure, respectively. After the neural networks these signals are
then recombined, multiplying the output of the ‘imaginary’ neural network by i and
adding it to the output of the ‘real’ neural network. As one can reason from looking at
this approach, during the learning process the real and imaginary components have been
treat and optimised independently from one another. It is known in communications
that perturbations and degredations to the signal whilst in transmit are not isolated
in affecting the purely in-phase or quadrature component at once, but rather any
possible combination between the two. This phase relationship is broken and discarded
when using the ‘split-complex’ approach, which leads us to our third option - the
aforementioned ‘concatenated-complex’ neural network. This design of neural network
essentially merges the two neural networks of the ‘split-complex’ approach. Incoming
signals are still split into their real and complex components, however now they are
both fed into the same neural network as purely real signals. These key differences are
visually captured in Figures 3.6, 3.7, and 3.8.

Fig. 3.6 The ‘split-complex’ neural network approach using MSE as the objective loss
function

Fig. 3.7 The ‘concatenated-complex’ neural network approach using MSE as the
objective loss function
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Fig. 3.8 The ‘concatenated-complex’ neural network approach using EVM as the
objective loss function

Due to the design of our neural network, i.e. using full connected layers, meaning
each neuron in one layer is connected to every neuron in the immediately proceeding
layer, means that the information from the signals that belonged to the ‘complex’ parts
of the original signal are still available to their ‘real’ counterparts. In addition, as
these neurons are fully connected this information is also available to neighbouring
neurons. This ultimately means that the neural network, to account for the 52 data
subcarriers, has an input size of 2N = 104 neurons. Beyond this, the 3 hidden layers of
the neural network are organised into groups of 4N , 8N and 4N neurons respectively.
The reason 3 hidden layers were chosen with this neuron configuration were chosen
is multifold. Firstly, there is precedent for empirical reasons from the literature [17].
Secondly, the choice for the number of layers and neuron configuration in a neural
network has ramifications for the learning process.

Table 3.3 Model Summary

Layer Type Output Shape Notes
Input Layer Input 104 -

Dense Dense 208 -
Leaky ReLU Activation 208 β = 0.3

Dense Dense 416 -
Leaky ReLU Activation 416 β = 0.3

Dense Dense 208 -
Leaky ReLU Activation 208 β = 0.3

Dense Dense 104 No Bias
Output Later Output 104 -

The neural network has to contain enough processing power to capture the complex-
ities of the task, i.e. in this instance both the channel pertubations and the self-induced
interference in the case of SEFDM, but one cannot just keep increasing the complexity
of the neural network indefinitely and expect better and better performance. As is
discussed in [101], there is an optimal neural network size for a problem beyond which
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there is a risk of overfitting, that is to say the model will fail to generalise beyond what
it has observed in the training data.

Each of the layers in the network used herein are what are referred to as ‘dense’
layers, meaning that each neuron is directly connected to all neurons from the preceding
layer. Mathematically this can be described this as [66]:

Nout = ψ (Ninw)+ b (3.2)

where ψ is the activation function of the neuron, Nin is the input to the neuron,
w are the neurons weights i.e. it’s internal kernel, and b is the neurons bias vector.
The activation function used in this neural network was the LeakyReLU, which is
a divergence from the typical implementations seen in the literature which typically
employ the standard ReLU activation function. ReLU is a well founded choice for
an activation function and has been popular ever since its introduction in [102],
mathematically it is defined as:

ψ (x) =
 0, x < 0
x, otherwise

(3.3)

It has long been recognised as a useful activation function for learning complex
relationships in data as the zero-clamping effect makes the model sparser, therefore
only the most important features end up propagating throughout the network during
the learning process. As mentioned previously however, the author opted instead in
this work to use the LeakyReLU activation function. The author did this for one main
reason, ReLU is known to behave poorly when the input data has not been normalised
[103]. This can lead to neurons entering a state where its output is perpetually stuck at
zero, and becomes a ‘dead’ neuron which in turns diminishes the computational power
of the neural network. Whilst it is true that the transmit data has been normalised, it
is important not to forget that whilst in transit the vehicular channel has multiplicative
and additive effects. In this case, the signal can no longer be treat as ‘truly’ normalised
in the typical sense as it cannot be mathematically guaranteed that the upper and
lower bounds on the received power do not exceed ±1. LeakyReLU made a minor but
significant change to the formulation of ReLU by allowing linear but non-zero outputs
for x < 0, which the original authors in [104] state can help avoid the death of neurons
within the neural network. LeakyReLU can be defined mathematically as:
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ψ (x) =
 βx, x < 0
x, otherwise

(3.4)

Combining both the knowledge of the structure of the neural network and the chosen
loss function, it is possible to perform a baseline measure of computational complexity.
The number of multiplications and additions required to do a forward pass through the
neural network depend on the number of neurons in the preceeding layer and the number
of neurons in the current layer. For instance, the first hidden layer of the proposed
neural network has 4N = 208 neurons, and the input layer has 2N = 104 neurons. Each
of the 4N neurons in the first hidden layer have to perform one multiplication and one
addition for each input from the 2N input neurons according to (3.2). The bias is an
addition and is applied once per neuron, and to account for the activation function we
will take the worst case scenario for LeakyReLU where the output requires one further
multiplication to reach the neurons final output value. Following this, we can derive
the computational complexity of the proposed neural network in a worst case scenario
requiring (2N ×4N)+(4N ×8N)+(8N ×4N)+(4N ×2N) = 80N multiplications and
additions internally, then a further 4N +8N +4N = 16N bias additions (the output
layer contains no biasing), and 4N + 8N + 4N + 2N = 18N multiplications for the
activation function. This results in a total of 98N multiplications and 96N additions
for the proposed neural network. For completeness, the N used in this work was 52,
thus a total of 5096 multiplications and 4992 additions are required end to end.

Once the data has completed its traversal through the layers of the neural network,
the first 52 outputs are considered as the real constituent of the output symbol and
the following 52 outputs are considered as the imaginary constituent of the output
symbol. There is no particular reasoning as to the ordering of the output neurons,
they were arranged this way as to mirror the ordering of the input neurons, which
again followed no particular reasoning besides conceptually representing the order of
the subcarriers. The reason one does not have to worry about the mapping between
subcarriers and neurons in this particular instance is due to the use of the dense
layers throughout the entirety of the neural network since every neuron is connected
to every other neuron from the preceding layer. For the proposed neural network
that has 104 neurons in the output layer, we take the first output neuron to represent
the real component of the first subcarrier, and the 1+52 = 53rd neuron to represent
the imaginary component of the first subcarrier. By considering the subcarrier to
neuron mapping in this ‘split-complex form’, the outputs of the neural network are
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used to form an estimate of the transmitted complex QPSK symbol, this can be seen
in Fig. 3.9.

Fig. 3.9 Block diagram of the QPSK symbol estimation from the neural network

During the training process, neural networks learn through a process called gradient
descent and backpropagation which was explained previously in Chapter 2. Just using
gradient descent however is often far from optimal, whilst one can calculate a loss
and propagate its updates back through the neural network, this often leads to highly
erratic updates that move in the right direction. However, there is high variance
from epoch-to-epoch so it takes a long time to converge. It is at this point that one
introduces gradient descent optimisers. Optimisers take the loss values and instead
of applying the weight updates to the neurons in the neural network directly from it,
perform additional steps.

The additional steps are what distinguish optimisers from each other, however they
all share the common goal of updating the weights of the neurons in the neural network
to eventually reach the global minima of the loss function with respect to the target.
To explain how the author decided on their choice of optimiser, one must first take a
step back to the standard stochastic gradient descent (SGD) algorithm.

As mentioned previously, looking at the loss after each training sample to apply
the weights can lead to high variance in the backpropagation algorithm updates. It is
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known that SGD has performance issues when the surface of the loss landscape curves
much more steeply in one dimension than in others e.g. around a local minima, which
causes the behavior of the system to be equivalent to a set of coupled and damped
harmonic oscillators [105]. In these scenarios, SGD oscillates in this ‘ravine’ region and
converges slowly toward the minima. To alleviate some of these concerns, the concept
of momentum was introduced and can be used to amend the gradient descent algorithm
to include an extra term to help dampen the oscillations of SGD. The momentum term
improves the speed of convergence by bringing some eigen components of the system
closer to critical damping and then one can rework (2.75) to include this term as [105]:

vt = γvt−1 +η∇ϕJi (ϕk) (3.5)

where, vt is the resultant weight update vector at time t, ϕ are the parameters
i.e. weights and biases of the neural network, J (ϕ) is the loss function given the
parameters of the neural network, ∇ϕ is the derivative with respect to the neural
network parameters, and η is the current learning rate for the neural network in the
training process. The new momentum term, γvt−1, is a function of some numeric factor
γ and the weight update vector from the previous time step, vt−1. The γ term here
controls the amount of momentum to be used by the optimiser. This momentum term
increases for dimensions where the gradient points in the same direction as previously,
and reduces the size of weight updates for dimensions where the gradient has changed
direction. This ultimately leads to faster convergence and reduced oscillation during
the training process as can be seen in Fig. 3.10.

Fig. 3.10 Representation of weight update vectors during the training process without
momentum (left) and with momentum (right)

Besides momentum, other alterations to standard gradient descent have been
proposed, many of which focus on adaptive learning rates. One such example is
Adadelta [106], which adapts learning rates based on a moving window of gradient
updates. To demonstrate this with an example, one can denote the gradient at time
step t of the loss function with respect to the neural network parameter ϕi as [106]:
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gt,i = ∇ϕJ (ϕt,i) (3.6)

which in turn lets us express the SGD update for each parameter ϕi at a time step t as
[106]:

ϕt+1,i = ϕt,i−ηgt,i (3.7)

where as before η is the learning rate. With adadelta, the sum of gradients is recursively
defined as a decaying average of all past squared gradients [106]:

E
[
g2
]
t
= µE

[
g2
]
t−1

+(1−µ)g2
t (3.8)

The running average of E
[
g2
]
t

at a time t now depends on the previous average
and the current gradient with a numeric factor µ which acts similarly to the γ factor
in momentum whereby it controls the extent to which the previous previous average
has an influence in the current update. This leads us to the basis of the optimiser that
was used in this work. The author used the nadam optimiser which was first proposed
in [107], but first one needs to be familiar with the optimiser which nadam itself is
based on, the adam optimiser (adaptive moment estimation) from [108]. Much like
the adadelta optimiser that was just discussed, the adam optimiser computes adaptive
learning rates for each parameter of the neural network.

In addition to storing the exponentially decaying average of past squared gradients
as was the case for adadelta, adam also retains the exponentially decaying average of
the past gradients i.e. the aforementioned momentum addition, causing it to prefer flat
minima in the error landscape [109]. Mathematically, one can describe the decaying
averages of the past gradients, and the decaying average of the square of the past
gradients as [108]:

mt = β1mt−1 +(1−β1)gt (3.9)

and

vt = β2vt−1 +(1−β2)g2
t (3.10)

where mt and vt denote the average, and square of the average past gradients, respec-
tively. One would note that these can be seen as the estimate of the first and second
moment of the gradients respectively, hence why adam received its name. There is one
final step in the adam algorithm however, as the original authors note that since mt
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and vt are initialised as a zero vector they remain biased towards zero, especially with
smaller decay rates i.e. when β1 and β2 are close to 1. To prevent this zero bias, the
author suggests calculating the bias-corrected first and second moment estimates [108]:

m̂t = mt

1−βt1
(3.11)

and

v̂t = vt
1−βt2

(3.12)

The final leap from this adam optimiser to the nadam optimiser used in the authors
work requires a change to how one considers and formulates the momentum factor for
weight updates. In the original paper presented in [110], the author proposes altering
the momentum term to give it prescience. The method is called Nesterov accelerated
gradient (NAG) and uses a ‘look ahead’ method to more intelligently apply momentum
updates. From (3.5) it is apparent that there exists a momentum term γvt−1 and that
would normally be applied to the neural network parameters, ϕ. Instead of directly
applying this momentum term, in NAG one calculates an approximation of the next
iteration of the parameters as [110]:

ϕ̂t+1 = ϕt−γvt−1 (3.13)

This is only an approximation however, because as one can see from inspecting (3.5),
the gradient changes at this point are unknown with respect to the full update for all
parameters. It is also worth noting that for a small learning rate η, the approximation
is relatively accurate as parameters are updated in small steps. This ultimately means
one can now calculate the gradient with respect to the approximate future positions of
the neural network parameters ϕ, instead of the actual current network parameters. It
can then be said that [110]:

vt = γvt−1 +η∇ϕJ (ϕ−γvt−1) (3.14)

The anticipatory nature of this method reduces the ability of the momentum factor
to deviate too far from where the weight update and loss function originally intended
to travel, and increases the responsiveness of the updates as the momentum is more
easily disrupted in the case of a few erroneous steps [111]. It also has the advantage of
stronger theoretical convergence guarantees for convex functions [112].
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This gives us all the necessary components required to describe the nadam gradient
descent optimiser used in this work. The nadam optimiser, at a basic level, is the
combination of adam with Nesterov accelerated gradients. To do this, one must return
to (3.5) and modify the momentum term to include NAG [107]:

gt = ∇ϕtJ (ϕt−γmt−1) (3.15)

and

mt = γmt−1 +ηgt (3.16)

The authors also make one more subtle change, this current implementation requires
applying the momentum step twice, once for updating the gradient vector gt, and once
for updating the neural network parameters ϕt+1. The prescient momentum vector
must be directly used to update the current parameters [107]:

gt = ∇ϕtJ (ϕt) (3.17)

and

mt = γmt−1 +ηgt (3.18)

meaning one can arrive at new parameters for ϕt+1 as [107]:

ϕt+1 = ϕt− (γmt+ηgt) (3.19)

Note from (3.19) that the author now uses the current momentum vector mt to
‘look-ahead’ rather than the previous momentum vector mt−1. Now that the optimiser
is defined, the author will set up the rest of the training process. As was found to
be empirically best performing in [113], the author set an initial learning rate for
the neural network of 10−3. At the end of each training epoch the author examined
the validation loss, i.e. the neural networks current prediction capability on a set of
examples not included in the training data, as a gauge of whether the learning process
had stalled or plateaud. In the case of a plateau, it may be that the learning rate is
too high causing oscillations around a minima that it can’t escape from, thus after
monitoring for several epochs, if a plateau was detected the learning rate was reduced
by a factor of 10−1. As is often common in machine learning in communications [114],
in this work the author opted for the mean square error criterion to act as the objective
loss function [115]:



68 Neural Network Equalisation and Symbol Detection

L= 1
2N

2N∑
i=1

(yi− ŷi)2 (3.20)

where N represents the number of subcarriers, which in this case is 52, and the factor
of 2N as mentioned prevously allows for the separation of the real and imaginary
components of the signal to be input to a singular neural network.

3.2.4 Practical Results

The results hereafter outline the outcome of the authors practical implementation of
both OFDM and SEFDM transmission with increasing levels of bandwidth compression
factor, α. They are tested in a realistic vehicular communication environment, namely
the fast paced, dynamic, urban NLOS scenario that was previously introduced, in
a setting that conforms with the 802.11p vehicular communication standard. The
outcome of this work aids in the understanding and comparison of the effects that would
need to be understood should the proposal arrive for a more spectrally efficient waveform
to be considered as being included in the official 802.11p vehicular communication
standard.

The first result to inspect is that of the bit-error rate in Fig. 3.11. The bit error rate
is a standard measurement of performance in communications, and is defined as the
number of received bits of a data stream that have been received incorrectly, expressed
as a rate from the total number of bits in the data stream. Bit-error rate results often
require vast numbers of transmitted bits to accurately empirically converge to the
theoretical limit, thus the author notes that while statistically significant amounts
of data were indeed transmitted and the resulting bit-error rate plot looks to have
converged, for feasibility and time reasons inherent in practical demonstration the lesser
compressed SEFDM and OFDM cases did not produce any errors beyond 10−5. In
order to provide as fair a comparison as possible between all the experiments regardless
of convergence restraints, and to inform the reader with the full data, the author has
also measured the EVM of the received constellations in all experiments with reference
to the originally transmitted symbol constellations. Mathematically, one can calculate
the EVM as [116]:

EVM =

√√√√√√√√√
1
N

N∑
k=1

(
Ik − Îk

)2
+
(
Qk − Q̂k

)2

1
N

N∑
k=1

(
I2
k +Q2

k

) (3.21)
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(dB)

Fig. 3.11 Bit-error rate measurements for all values of α under test

where Ik and Qk are the kth original transmitted in-phase and quadrature components
respectively, Îk and Q̂k are the kth observed in-phase and quadrature components
respectively, and N is the number of subcarriers.

The next result demonstrated in Fig. 3.12 illustrates an example EVM plot at
a fixed high signal-to-noise ratio (30dB). Note that unlike bit-error rate, which is a
summary metric, EVM exists for each individual subcarrier. For a reader new to EVM
reporting, and to further aid interpretation, the author has included representative
received constellation plots after equalisation via the neural network in Fig. 3.13. As
one can see, following from the logic of the bit-error rate and EVM plots, the received
constellations are recognisable as to their structure but the inherent self-interference
from the increasing levels of bandwidth compression i.e. as α decreases is increasingly
apparent.

It is impractical to produce these plots for every value of SNR however, therefore to
give a complete picture of the comparisons of performance for this system the author
takes the mean value of the EVM per SNR in order to obtain a single ‘summary’ EVM
for that SNR (with a 95% confidence interval of < 0.1%). By doing so, one can observe
the trend that is displayed in Fig. 3.14. If one begins by observing OFDM, it can be
noted that the value of EVM sharply decreases until around 12dB, at which point it
begins to plateau. The neural network was quickly able to equalise the channel until
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Fig. 3.12 Error vector magnitude for varying values of α at high SNR

the non-deterministic AWGN noise became the limiting factor. If one was to now
observe the SEFDM trends, a very similar pattern to OFDM can be observed, which
is to logically be expected. In all cases, the neural network is not only able to again
equalise the channel, but it has also incorporated and tackled the self-interference
caused by the SEFDM process. The limiting factor this time is a combination of the
non-deterministic AWGN noise and the ICI. The author notes that with increasing
levels of bandwidth compression factor α, there is a performance penalty courtesy of
the larger interference contribution from each subcarriers neighbours.

To further investigate the practial feasibility of deploying a neural network in a
vehicular environment, the communication channel in the experiment was replaced
with the urban crossing NLOS vehicular channel. This is a channel that the neural
network has never seen before, as all of the training samples came from the highway
NLOS channel. It is discussed previously that generalisability is a desirable feature in
neural networks, as it means that the training process has accurately captured true
underlying relationships rather than overfit to the dataset. This is an often overlooked
aspect of neural network applications in communication, which prohibits practical
implementation in real world applications. The vehicle is not restricted to driving
in a highway NLOS environment, therefore the neural network has to work for all
vehicular environments to be a realistic proposal for practical uptake. Shown in Fig 3.15
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Fig. 3.13 Received constellations for the neural network trained on Highway NLOS data
deployed inside a matching Highway NLOS environment for (a) OFDM, (b) SEFDM
with α = 0.8, (c) SEFDM with α = 0.6 and (d) SEFDM with α = 0.4

are the received constellations for the neural network trained on the highway NLOS
environment but deployed in the urban crossing NLOS environment. One can observe
that they are very similar to the original constellations from the correct channel in
Fig. 3.13. Following the same process as before, the mean error vector magnitudes
over different SNR ranges in the experiment are plotted which are shown in Fig 3.16.
One can clearly see a very strong correlation to the results obtained previously for the
correct channel, which indicates that the neural network has a strong generalisability
to unseen vehicular environments.

3.3 Conclusion

It has been shown that a properly designed and implemented neural network has
adequate capability of acting as a joint channel equaliser and symbol detector in a
vehicular network to adapt to and overcome the inherent challenges of the rapidly
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(dB)

Fig. 3.14 Mean error vector magnitudes for the neural network trained on Highway
NLOS data deployed inside a matching Highway NLOS environment for varying values
of α at different SNRs

changing communication environment. Practical experiments were undertaken in which
the author used a hardware-in-the-loop approach to demonstrate the efficacy of the
proposed method. The experiment began by utilising a system that would conform to
the communication specification set out by the 802.11p protocol using OFDM. This
baseline implementation was then to demonstrate results with a more spectrally efficient
waveform, namely, SEFDM. SEFDM was tested with various bandwidth compression
factors ranging from 20% up to 60% bandwidth compression. The author would note
however that they do not recommend such high bandwidth compressions in practice,
but have done so to show that there is a trade-off to be decided upon between bit-error
rate performance and spectral efficiency. If one should deem that such a performance
trade-off be acceptable for their application, the benefits of the spectral savings could
be used to improve data rates or service more users. It was demonstrated that an
acceptable BER performance can be achieved even under the harsh conditions of the
highway NLOS vehicular channel. Further validation was obtained via measurements
of the error vector magnitude to ease the practical constraints of the implementation.
The resulting neural network was then tested in a vehicular environment it had never
seen before, namely the urban crossing NLOS environment where it was demonstrated
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Fig. 3.15 Received constellations using a neural network trained on Highway NLOS
data deployed inside the Urban Crossing NLOS environment for (a) SEFDM with
α = 0.8, (b) SEFDM with α = 0.6 and (c) SEFDM with α = 0.4

Fig. 3.16 Mean error vector magnitudes using a neural network trained on Highway
NLOS data deployed inside the Urban Crossing NLOS environment for varying values
of α at different SNRs. The dashed lines with hollow icons are the previous results
obtained in Fig. 3.14, showing the minimal reduction in performance.
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that the proposed system had the ability to transcend vehicular environments with
no significant detriment to performance. The work presented herein has validated
the feasibility and efficacy of the application of neural networks in harsh vehicular
communications.



Chapter 4

Error Vector Magnitude as a Loss
Function

4.1 Introduction

The use of machine learning and neural networks for communication systems is a topic
of ever increasing interest. One of the key aspects missing from the current state-of-the-
art are domain-related methods of training and evaluating these systems within the
communication system context [117]. Communication systems are typically evaluated
via their bit-error rate after forward error correction (FEC), however evaluation of
bit-error as an objective function for an optimisation target is not feasible, for example
when training models in machine learning. Due to this, in the literature for machine
learning in communications, authors typically use the mean square error (MSE) or
the related l2 norm as a loss function to train their models [17, 118]. This causes a
disconnect between the objective function of the model, and the eventual metrics that
will be reported when the model is deployed. In other words, the model is trained to
minimise a value that is not representative of the real deployed system.

It is clear that a performance gain would be obtained when the objective function
of the training process is aligned with the metrics that the communication system will
be evaluated against. To this end, in this paper we propose the exploitation of the
error vector magnitude in the training process as the objective loss function and show
how it can be effectively utilised to improve the performance of symbol receivers. EVM
is a common key performance indicator and has been used in many communication
systems since it was first proposed in [119], and is closely related to the bit-error rate
[120]. In a machine learning scenario, EVM is useful because it gives an error value in
relation to a known ideal value, and is available instantly for any batch size used in the
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system, unlike the unit-less bit-error rate metric that requires vast numbers of bits to
converge. The EVM requires knowledge of both the in-phase and quadrature parts of
a signal, therefore to aid this method, we will also be using the ‘concatenated-complex’
approach. Whilst not the main contribution of this work, there exists mixed literature
between this and the ‘split-complex’ approach [121, 122], i.e. splitting a complex signal
into it’s in-phase and quadrature components and training a separate, independent
model for each, this work will also demonstrate how including both can aid a models
learning ability due to indirect retention of the phase information.

The proposed system demonstrates a spectral efficiency improvement of up to 67%
at zero cost within the practical experiment, with a 40% reduced bandwidth shown to
be capable of communicating error free at the same data rate of the equivalent OFDM
system.

4.2 Practical Implementation

4.2.1 Error Vector Magnitude

EVM provides a convenient way of measuring the SNR for quadrature amplitude
modulated signals. It is a method that is used in many communications standards
such as; Wireless Local Area Network (WLAN) [123], LTE [124], Universal Mobile
Telecommunications System (UMTS) [125] and Enhanced Data rates for GSM Evolution
(EDGE) [126]. It encompasses the effects of both magnitude and phase distortions [127]
and is evaluated by comparing a measured signal with a reference signal, i.e. a received
signal and the transmitted signal. This is illustrated in Fig. 4.1. Mathematically, we
define EVM as [128]:

EVM =
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4.2 Practical Implementation 77

Fig. 4.1 Illustration of EVM

where Ik and Qk are the real and complex transmitted symbol on the kth subcarrier,
respectively, Îk and Q̂k are the real and complex received symbol on the kth subcarrier,
respectively, N0 is the noise spectral density, and Es is the symbol energy. EVM
provides a more rounded picture about the quality of the communication link than
both the bit-error rate and the symbol error rate as it is not merely a unitless aggregate
statistic, but contains actual magnitude and phase information. The authors in [128]
note that the error vector magnitude is available instantly, as opposed to the bit-error
rate which is normally calculated via error counting using a Monte-Carlo methodology,
and requires time to converge. Therein lies the key differentiator from the application
in the machine learning space. Having an error metric that is available, observable and
provides reliable feedback in real time means that the iterative process used during
gradient descent to train the neural network is fully in tune with the ultimate objective.
In other words, the training process of the neural network is more tightly coupled to
the real world scenario in which the neural network will be deployed.
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The probability of a bit-error occuring is an unescapable phenomena in communica-
tions that include at a minimum additive white Gaussian noise channel perturbations.
Furthermore, it is known that the bit-error performance for fading channels is always
worse and can be directly related to that of the additive white Gaussian noise channel
[129]. Considering M -ary modulation in an additive white Gaussian noise channel
under otherwise ideal conditions, it can be shown that [130]:

Pb =
2
(
1− 1

L

)
log2L

Q


√√√√[3log2L

L2 −1

]
2Eb
N0

 (4.2)

where Pb is the probability of a bit-error, L is the number of levels in the of the M -ary
modulation scheme, Eb is the energy of each individual bit, and N0/2 is the noise power
spectral density. Q [·] is the Gaussian error function and is given by [131]:

Q(x) =
∫ α

x

1
2π exp

−y2
2 dy (4.3)

One can also rewrite 4.2 in terms of signal to noise ratio for the symbol, which is
often more useful than describing at a bit level [130]:

Pb =
2
(
1− 1

L

)
log2L

Q


√√√√[3log2L

L2 −1

]
2Es

N0 log2M

 (4.4)

where Es is the energy of a symbol and log2M is the number of bits per symbol. This
is a simple modification that assumes each bit in the symbol receives equal share of
power, an assumption that is generally true for regular constellations unless using a
system that explicitly modifies otherwise.

With this well defined, closed form theoretical bit-error rate for M -ary modulation,
one can combine this with (4.1) to produce an approximate relationship between the
probability of a bit error Pb and the error vector magnitude. This is given as [128]:

Pb ≈
2
(
1− 1

L

)
log2L

Q


√√√√[3log2L

L2 −1

]
2

EVM2 log2M

 (4.5)

which when analysed via Monte-Carlo simulation correctly converges to the theoretical
bit-error rate curves for M -ary modulation as seen in Fig. 4.2.

4.2.2 Experimental Test Setup

The test setup can be found in Fig. 4.3. The decision for placing the neural network after
the FFT owes to the property of neural networks known as the ‘universal approximation



4.2 Practical Implementation 79

(theoretical)

(theoretical)

(theoretical)

(theoretical)

Fig. 4.2 BER vs SNR using the EVM approximation

theorem’ [132]. The theorem states that a neural network can learn to approximate
any function, however since the FFT/IFFT pairing is already exactly known and
computationally efficient, we do not incorporate this into the neural networks task.
We again opted for a hardware-in-the-loop approach to generate and transmit the
SEFDM and OFDM signals that are under test. The OFDM signals were generated
as described in (2.29), and the SEFDM signals were generated as described in (2.55).
The transmitter was an NI USRP-RIO 2953R that was operated via the accompanying
LabVIEW software. For each independent value of alpha tested, we generated an
independent pseudo-random binary sequence of length 216 − 1 which has been mapped
to a quadrature phase shift keying constellation scheme. After passing through a serial
to parallel converter, the Hermitian symmetry property of the DFT is utilised so that
the OFDM and SEFDM symbols that are generated by the inverse FrFT (IFrFT)
are purely real valued. The generated signals are then passed through a parallel to
serial converter before being digital to analog converted and passed to the transmitter
driving circuit to perform intensity modulation as described in Fig. 2.4. The LED
used was a Vishay Semiconductors VLMS1500-GS08, which features approximately
50 MHz of bandwidth [133]. The signal was modulated with 90 mA dc and 2 Vpp data
swing using a Mini-Circuits ZFBT-4R2GW+ bias-T, maximally occupying the linear
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region of the LED. The addition of the bias voltage results in dc biased optical OFDM
(DCO-OFDM), a form of OFDM suitable for transmission over an LED by biasing
the input signal such that it is contained within the linear region of the LED’s LIV
response. As SEFDM is generated via the same process as OFDM but with smaller
bandwidths however, the process of dc biasing SEFDM to produce an optical SEFDM
signal works the same way. The transmission distance was 0.5m and the receiver used
was a Thorlabs PDA10A2, featuring 150 MHz bandwidth and a receiver responsivity
of 0.38 A/W at a wavelength of 630nm output from the LED. The signal bandwidth
was set to be 1 MHz, centred around 10 MHz, much smaller than the link bandwidth,
to ensure flat-band response and that the experiment was explicitly testing the EVM
loss performance and avoiding any attenuation via out-of-band transmission. The aim
of this work was to evaluate the effectiveness of the proposed loss function for receiving
symbols after transmission, not to evaluate the transmission medium or transmission
channel. In this spirit, the experiment was performed inside an isolated anechoic
chamber and all experiment equipment was operated from a control station externally.
This results in a stable, repeatable configuration to isolate any external factors on the
systems’ performance.

Fig. 4.3 Block diagram of the physical system implemented used to test the proposed
methods

4.2.3 EVM as a Cost Function

The EVM that was defined above needs to be reworked to be directly implemented
in a practical machine learning setting. As was defined, there is no relation to the
neural network or the machine learning process, thus it needs to be in a form that the
gradient descent algorithm can aim to optimise the learning process as to minimise the
EVM at each subcarrier. We first introduce an error vector magnitude vector, Ek, as
[116]:
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Ek =
(
Ik − Îk

)2
+
(
Qk − Q̂k

)2
(4.6)

where Ik and Qk are the kth ideal in-phase and quadrature component respectively,
and Îk and Q̂k are the measured versions. This allows for the calculation of the rms
EVM as [116]:
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We incorporate this into the loss function when training the neural network receiver,
instead of the mean square error. As is clear from the above, this requires the loss
function to have knowledge of both the real and imaginary constituents of the input
signal, therefore the design of the neural network has to take this into consideration.
This is a simple modification that requires increasing the number of neurons of the input
layer by a factor of 2. Whilst this does increase the complexity of the individual network,
overall complexity is maintained by the fact only a single network is required, rather
than each one for in-phase and quadrature signal components. A second advantage of
doing this, is by enabling the neural network to observe both signal components, it
is better able to learn how to recover the signal. This is because there is additional
co-information embedded in the Cartesian form of the constellation without splitting,
such as combined phase information that can lead to more accurate joint recovery of
symbols. If two neural networks are trained separately for each signal component, this
information would remain unknown to the other and hence performance deteriorates
comparatively. This will be further discussed in the proceeding section.

4.2.4 Neural Network EVM Receiver

The estimation and tracking of both the transmission channel H and the interference
matrix C becomes highly complex when the channel is both non-static and fading as
is the case with vehicular channel models. From empirical use we have gleaned that
conventional information theory based equalisers, for example feedforward or decision
feedback equalisers, are inherently limited in their ability to counteract and predict
this extremely complex relationship. For this reason, we turned our attention to the
potential application of artificial neural networks to undertake this task as neural
networks posess several advantageous properties that we believe make them well suited
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for the problem at hand. One such property is the ability of a neural network with
non-linear activation functions, like those that are used herein and will be introduced
later, are able to generalise to any arbitrary input-output relationship given there are
sufficient neurons in the hidden layers [96], a property also sometimes referred to as
general or universal approximation theorem [97].

Neural networks are able to generalise any input-output sequence given sufficient
neurons in the hidden layers [96]. In principle, this means that given a sufficient
signal-to-noise ratio, the neural network should be able to estimate C, for any value
of α. In this work, we test α ≥ 0.6, meaning a bandwidth saving up to 40%. The
neural network is designed to be trained on sequences of received QPSK symbols after
transmission over a visible light link using SEFDM with a given bandwidth compression
factor, or OFDM where α= 1. The VLC link is characterised in [134] with a bandwidth
of > 50 MHz. We set our signal bandwidth to be 1 MHz to ensure flat-band response
since this work is not about improving data rates. The signal was dc biased at 90 mA
with an ac signal voltage of 2 Vpp, i.e. keeping within the linear operating region of
the LED. A generalised diagram of the model used in this work can be seen in Fig. 4.4.

L1,2N

L1,2

L1,1

L2,4N L3,8N L4,4N

L5,2NL2,4N-1 L3,8N-1 L4,4N-1

L2,1 L3,1 L4,1

L5,1L2,2

L2,3

L3,2

L3,3

L4,2

L4,3 L5,2

Fig. 4.4 Block diagram of the ‘concatenated-complex’ neural network
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The neural network input layer contains 2N neurons, which allows for separation
and concatenation of the real and imaginary components of N subcarriers, the reasoning
for which was given in the previous chapter. The network requires sufficient neurons
in its hidden layers to learn the complexities of the ICI and transmission channel,
thus, inspired from [17], we opt for 3 hidden layers with 4N , 8N and 4N neurons
respectively. Each hidden layer uses the LeakyReLU activation function with the final
output layer using a linear activation, and the model was trained with the Nadam
optimiser. The received symbols are fed through the network until they reach the
output layer, which also contains 2N neurons, mirroring the input. The estimate of
the originally transmitted QPSK symbols are then obtained by combining the real and
imaginary outputs. The typical mean square error which we are comparing against as
a baseline is given as [115]:

L= 1
2N

2N∑
i=1

(yi− ŷi)2 (4.8)

where N in is the number of subcarriers, yi is the ground truth value and ŷi is the
predicted value.

In the case of SEFDM there is known intercarrier interference, which is compounded
by frequency selective and frequency relativistic perturbations. These perturbations also
affect OFDM signals, however without the obvious preset intercarrier interference. If
one views the neurons of the neural network in the context of being the real and complex
data from neighbouring subcarriers, it can be seen that having this information available
within the network means that both the correlated interference between subcarriers
and the correlated frequency perturbations can be reasoned with internally. This in
turn should increase the performance of the neural network within a communication
setting, which will be demonstrated in the proceeding section.

4.3 Practical Results

We test the proposed method with three neural network architectures across several
different values of α= {1,0.9,0.8,0.7,0.6}, starting with an MSE loss on a split-complex
network as a baseline. We then extend this to show the gain from utilising concatenated-
complex networks, and then the further gain of implementing the proposed ‘EVM
loss’ system. Fig 4.5 to Fig 4.8 show the received constellations for these three tested
approaches for the different values of α. The results show notable reductions in variance
as one first converts from a split-complex network to a concatenated-complex network,
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owing to the extra indirect phase information being retained within the network. A
further notable gain is then seen when converting from MSE loss in the concatenated-
complex network to the proposed EVM loss, demonstrating the effectiveness of the
approach.
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Fig. 4.5 Received constellations for (a) MSE loss w/Split Complex, (b) MSE loss
w/Concatenated Complex, (c) EVM loss w/Concatenated Complex for SEFDM with
α = 0.9

−2−1 0 1 2
−2
−1
0
1
2

Inphase

Q
ua

dr
at

ur
e

−2−1 0 1 2

Inphase
−2−1 0 1 2

Inphase
(a) (b) (c)

Fig. 4.6 Received constellations for (a) MSE loss w/Split Complex, (b) MSE loss
w/Concatenated Complex, (c) EVM loss w/Concatenated Complex for SEFDM with
α = 0.8

The first test was performed for the OFDM data transmitted over the VLC link. It
should be noted that for all experiments, the subcarriers at the extremes display a worse
performance. This happens because the leftmost and rightmost subcarriers experience
less interference from neighbouring subcarriers as there are less of them, this leads to a
lower ratio of interference to noise at the extremes. As interference is not stochastic, a
neural network can attempt to learn to undo the effects. On the other hand, when there
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Fig. 4.7 Received constellations for (a) MSE loss w/Split Complex, (b) MSE loss
w/Concatenated Complex, (c) EVM loss w/Concatenated Complex for SEFDM with
α = 0.7
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Fig. 4.8 Received constellations for (a) MSE loss w/Split Complex, (b) MSE loss
w/Concatenated Complex, (c) EVM loss w/Concatenated Complex for SEFDM with
α = 0.6

is less interference the only pattern for the neural network to learn is the stochastic noise
element, which reduces the performance of these subcarriers as a stochastic process
cannot be learned. This also explains why this effect is most prelevent in the OFDM
experiment, being orthogonal OFDM has no other noise except interference from
neighbours which only arise due to channel effects, whereas with all SEFDM variants
there is an inherent built in interference so as we see more interference noise present
we see less differences in the performance at the extremes of the subcarriers. As can be
observed from Fig. 4.9, the highest EVM was reported by the split-complex approach
with the MSE error. The reason for this was eluded to previously, by creating a neural
network for both the real and imaginary constituents of the input signal individually,
one deprives the system of information that is embedded in the relationship between
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the two components of the input signal. Communication system channels that affect
the phase of the signal being transmitted alter this relationship, which when divided
into real and imaginary signals and trained separately is not taken into consideration.
This is rectified by modifying a single neural network to allow for both the real and
imaginary constituents as input. The result of this allows the neural network to exploit
the phase relationship during training, meaning a lower overall error vector magnitude.
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Fig. 4.9 Error vector magnitudes across the subcarriers for the 3 neural network receiver
approaches for OFDM

Finally, the lowest error vector magnitude calculated across all subcarriers is
achieved when the neural network uses the proposed EVM loss method as the objective
function rather than the typical mean square error. This demonstrates that the mean
square error is not an optimal objective function when training neural networks in a
communication systems context. Whilst the two other neural networks have minimised
their mean square error objective functions as optimally as possible, the fact still remains
that when being used in a communication system the training metric and the evaluation
metric no longer align, leading to a degradation of overall system performance. This
can be seen when considering the implication of the implementation of the EVM loss
function. The MSE loss function calculates a per neuron MSE loss, where the neuron
has implicit access to the available information from its real and imaginary counterpart



4.3 Practical Results 87

via the hidden layer neurons, thus the real and imaginary neurons are loosely coupled.
That is to say that the neurons have been made aware of the relationship at their
inputs, but have then had their outputs evaluated independently from one another.
The EVM loss function also calculates a per neuron loss, however, as well as the implicit
information from the network being available at their inputs, the loss function itself
explicitly examines the available information from its real and imaginary counterpart
at the output, forcing a tight coupling all the way through the training process.

These same trends can again be seen in Fig. 4.10 to Fig. 4.12, where SEFDM was
evaluated with α= {0.8,0.7,0.6} being used as the transmitted physical layer waveform
respectively. With the system parameters set to transmit QPSK over a 1MHz VLC
link, the data rate can be calculated at 2Mbps, or a spectral efficiency of 2b/s/Hz. At a
maximum bandwidth compression factor of α= 0.6 in these experiments, we have been
able to transmit error free the same 2Mbps over 600kHz. This results in a spectral
efficiency of 3.33̇, a 67% improvement over the OFDM baseline.
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Fig. 4.10 Error vector magnitudes across the subcarriers for the 3 neural network
receiver approaches for SEFDM with α = 0.8
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Fig. 4.11 Error vector magnitudes across the subcarriers for the 3 neural network
receiver approaches for SEFDM with α = 0.7

4.4 Conclusion

This work has demonstrated the shortcomings of two of the typical approaches used in
the implementation of neural networks in communication systems, namely; the split
complex approach, whereby transmitted signals are split into their real and imaginary
constituents and used to train two separate neural network models, and the use of
mean square error as an objective function.

It was shown that by splitting the signals into their real and imaginary components,
the system was being deprived of valuable information that can be exploited and
used to more accurately recover the originally transmitted symbols. Extending this,
it was also shown that there is a disconnect introduced between the training of a
neural network using the mean square error objective function when ultimately the
communication system will be deployed and evaluated via its bit-error rate performance.
This was rectified via the implementation of the proposed EVM loss method which
seeks to reconnect the disparity between the evaluation performed when training a
neural network and the evaluation of the overall end-to-end communication system.
The results validated the capabilities of the method, which consistently obtained the
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Fig. 4.12 Error vector magnitudes across the subcarriers for the 3 neural network
receiver approaches for SEFDM with α = 0.6

lowest overall EVM when deployed in a real experimental setup using OFDM and
SEFDM with varying bandwidth compression factors. It was also shown that a spectral
efficiency improvement of 67% was obtained at zero cost within the experiment, with a
40% reduced bandwidth being capable of communicating error free at the given data
rate.





Chapter 5

Doubling Spectral Efficiency with
SEFDM and EVM Loss

5.1 Introduction

A long-standing problem in visible light communication has been the low modulation
bandwidths exhibited by the light-emitting diodes used as transmitters [135]. Spectrally
efficient advanced modulation formats attempt to optimise bandwidth usage and as
such, non-orthogonal schemes such as faster-than-Nyquist and spectrally efficient
frequency division multiplexing have been gaining increasing attention over the last
decade.

The first SEFDM proposal was reported in 2006 by Rodrigues and Darwazeh [54]
as a variant of OFDM where subcarrier orthogonality is broken by reducing the space
between subcarriers beyond the 1/T orthogonality limit. This results in a reduced signal
bandwidth without compromising data rates, at the cost of self-induced inter-carrier
interference [54]. Obviously, ICI comes with a bit-error rate penalty but there have
been propositions to overcome this, including sphere decoding, iterative detection and
artificial neural networks [136], enabling compression rates up to 20% with low SNR
penalties.

Simultaneously, the use of artificial neural networks for compensation of pertur-
bations such as ICI in communication systems is an ever-increasing topic of interest.
One of the key aspects missing from the current state-of-the-art are domain-related
methods of training and evaluating these systems, as communication systems are
typically evaluated via bit-error rates. However, as demonstrated previously, evaluation
of bit-error rate as an objective function for an optimisation target is not feasible when
training neural network models, for this reason the mean square error is typically used
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as the objective loss function of the training optimiser [137]. This causes a disconnect
between the objective function of the model, and the eventual metrics that will be
reported when the model is deployed. Thus, a performance gain would be expected
to be obtained when the objective function of the training process is aligned with
the metrics that the communication system will be evaluated against. Therefore, it
was stipulated and shown that the deployment of the error vector magnitude, due
to its close relationship with bit-error rate [120], can be used as the objective loss
function. It will next be shown how one can utilise this method effectively to improve
the performance of symbol receivers outside of the vehicle-to-vehicle communication
scenario.

In a general neural network for communications setting, EVM is useful because it
gives an error value in relation to a known ideal value and is available instantly for any
batch size used in the system, unlike the unit-less bit-error rate metric that requires
vast numbers of bits to converge. Experimental investigation examines the performance
of the EVM objective loss function against that of a traditional MSE-based system
in split-complex and concatenated neural network architectures. SEFDM signals are
created in a software defined radio to generate increasingly severe ICI by introducing
bandwidth compressions of up to 70% in comparison to the nominal OFDM bandwidth.
The SEFDM signals are then transmitted via LED over free-space and captured via a
photodetector. The signals are then taken offline to test the proposed neural network
architectures via a Python environment. It is observed that optimal performance is
achieved when using EVM as the objective loss function in the neural network and up
to 50% bandwidth compression can be supported whilst maintaining the same data
rate as the OFDM case.

5.2 Practical Implementation

5.2.1 SEFDM Receivers

In this work SEFDM will be further examined with data that was obtained experi-
mentally using a wireless visible light communication link; what practical difficulties
has it faced, what is the real world impact on its spectral design, and why these make
SEFDM a good candidate for the target of a neural network symbol receiver.

It is stipulated that this technique is medium independent and was tested on a
VLC link due to availability, but also works for radio links.
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The reader is referred to the generation of an SEFDM signal as described in (2.55),
where upon generating the signal, it is noted that the resulting SEFDM signal contains
deterministic ICI, which can be modelled as a correlation matrix, Λ, between the
subcarriers as shown in (5.1) [138]:

Λm,n = exp(jπα (m−n))exp
(

−jπα (m−n)
Q

)sinc(α (m−n))
sinc

(
α(m−n)

Q

)
 (5.1)

which reduces to an identity matrix, I, for OFDM. A visual example of the change in
the correlation matrix can be seen in Fig 2.12.

As can be seen from the figure, the correlation i.e. the ICI for higher values of α is
more contained and isolated. This means data subcarriers are not leaking over their
boundary and contaminating neighbouring samples. On the other hand, as the value
of α decreases it can be noted that the correlation is not very well isolated, meaning
a subcarriers data stream is going to be impeding on subcarriers not localised to its
immediate vicinity. In the OFDM case, as by their orthogonal design, this correlation
matrix is perfectly localised hence the resulting identity matrix I.

In [139] it was proved that the ICI on its own can be modelled as a Gaussian process
for high N , characterised by its first and second moments i.e. the mean and variance,
respectively. Using a symmetric QAM constellation as we are in this work, results in a
mean µ= 0, thus the ICI can be completely modelled by its variance. We can then
infer that the ICI variance σ2

n on the nth subcarrier caused by all other subcarriers is
[139]:

σ2
I,n =

N−1∑
m=0,m̸=n

σ2
m,s |Λm,n|2 (5.2)

where σ2
m,s is the variance of the data symbols, s. This leads to an expression for total

variance due to ICI within a single SEFDM symbol as [139]:

σ2
I =

N−1∑
n=0

σ2
I,n (5.3)

which in a system with normalised transmit power P , the total interference can be
upper bounded by Pσ2

I .
The effect of this variance is ultimately to reduce the bit-error rate performance

by increasing the probability of a bit error Pe. From [140] we know the mathematical
probability of an error for a standard QPSK OFDM system is given by:
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Pe =Q

(√
2Eb
N0

)
(5.4)

where Eb and N0 are the bit energy and the noise power spectral density, respectively.
Q is the tail distribution function of the normal distribution. This equation however
no longer holds for SEFDM with an α < 1 due to the aforementioned extra variance
induced by the ICI. To account for this we modify the error probability equation as
[139]:

Pe =Q

√√√√ 2Eb
N0 +2Ebσ2

I

 (5.5)

From the above, it can easily be reasoned that this simplifies to (5.4) when α= 1
as the variance parameter σ2

I → 0. If one now turns their attention to the practicalities
of utilising SEFDM in an application, it will now be explored some of the difficulties
faced. The generation of SEFDM signals based on a simple fractional Fourier transform
is well covered herein, thus will not be discussed further. For more information on
practical generation the reader is referred to [141]. Of interest to this work are the
practical difficulties faced with the symbol receiver in an SEFDM system. One could
discuss multiple types of symbol receivers, but this work shall focus on two; the optimal
maximum likelihood detector and the state-of-the-art sphere decoder. For a more full
review of a broader range of receivers, the reader is directed to [142].

The maximum likelihood receiver is common throughout a lot of communications
systems, however is rarely used in practice. It states that given some received signal
y, determine the transmitted vector x with the highest a posteriori probability. This
results in the following inequality [131]:

argmin ||y−Hx||2 (5.6)

where y are the received symbols, H is the channel matrix, x are the originally
transmitted symbols, and ||·|| denotes the Euclidean norm.

One thing of importance to note is the reliance on H, the channel matrix. Whilst
a common requirement, it is worth pointing out that this is a large assumption. The
transitter nor the receiver can know about the channel conditions ahead of time,
therefore methods must be used to estimate the channel matrix such as pilot symbol
insertion. This however reduces the spectral efficiency of the communication, as
they utilise bandwidth that otherwise would contain data symbols. One way of
solving the maximum likelihood inequality as it is written is to perform an exhaustive
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search over the possible combinations and outcomes. As one can imagine this is very
computationally inefficient, infact, it is known to be of exponential complexity [143]
with the cardinality of the communication constellation and the number of subcarriers.

In an attempt to achieve near optimal symbol reception but with a more realistic
implementation from a practical standing, methods such as sphere decoding, a branch
of tree search detectors, have arisen and are currently considered state-of-the-art in
SEFDM symbol detection at time of writing. Sphere decoding is based on the premise
of the maximum likelihood operator, but uses techniques to reduce its complexity. It
performs a search over received signals that lie within a hypersphere of radius R. At
its heart, has a relatively simple objective; only search for points in a lattice that are
contained within some sphere of radius R around the given vector. By placing the
radius, one has restricted the search space and therefore the number of computations
that need to be performed. Via the transitative property, it is clear that the closest
lattice point within the sphere will also be the closest lattice point for the whole lattice,
therefore the point chosen is guaranteed to be correct. Whilst this explanation is
simple, it still poses some difficult questions. How does one choose a suitable value for
the search radius R? And how can one determine which lattice points lie within the
sphere? As for the question pertaining to selecting a suitable value for the radius R;
a value too small and one runs the risk of electing a radius that contains zero points
inside, a value too large and one is performing more exponentially more computation
than is required. The ideal candidate is known as the covering radius, which is the
smallest radius of spheres centered within the lattice that covers the entire space. This
guarantees that a point exists for any input vector, however determining the covering
radius for a given lattice is itself known to be an NP hard problem [144]. The second
question regarding the derivation of the lattice points that are inside the sphere is an
important question, as if one needs to test every single point to determine whether
it lies within the radius, then one might as well not have begun the process as an
exhaustive search of all points is already being carried out. It is important to note that
sphere decoding addresses this second question, it poses no solution to choosing the
value of radius R.

Mathematically, one can describe the inequality that sphere decoding is attempting
to solve as [145]:

argmin ||y−Hx||2 ≤R2 (5.7)

where y are the received symbols, H is the channel matrix, x are the originally
transmitted symbols, and ||·|| denotes the Euclidean norm. Note the similarity to the



96 Doubling Spectral Efficiency with SEFDM and EVM Loss

maximum likelihood inequality, and again the reliance on obtaining an accurate value
for the channel matrix H. Under this constraint, one only needs to examine lattice
points that exist within the hypersphere, calculate their distance metric under the
maximum likelihood assumption, and prune any paths that cannot give a minimum
solution. Following this principal, the distance metric can be viewed as the sum of
non-negative functions that take an increasing number of arguments the further from
the root node one gets, i.e.

d= f (x1, . . . ,xk) = h(xk)+h(xk,xk−1)+ · · ·+h(xk, . . . ,x1) (5.8)

This can be considered as a tree as illustrated in Fig 5.1. Each branch in the tree
corresponds to an intermediate distance value.

Level k=1

Level K

R
d4

d2

d1

Fig. 5.1 Graphical illustration of the sphere decoder process

The aim is to fully explore as few nodes in the tree as possible in order to keep the
computational cost low. Once a node is explored all the way until k = 1, the lowest
distance path is retained and all other candidate paths are pruned. If this candidate
path is lower than the previous lowest candidate path, this path becomes the new
solution. This continues until all paths have been pruned, and the remaining solution
is known to be the absolute minima.

Ultimately, it is well established that maximum likelihood is the optimal solution
to symbol detection, but as its computational complexity grows exponentially with the
number of subcarriers and the size of the communication constellation, it is not a suitable
candidate for real world applications. To combat this, sphere decoding was presented as
a more computationally efficient alternative, but it still has several serious limitations.
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Firstly, it still depends on the invertability of the ill-conditioned correlation matrix
which limits its practical efectiveness to systems with a small number of subcarriers
and a value of α≥ 0.8 [142]. Secondly, because complexity still increases significantly
with the number of subcarriers, and also increases significantly with lower α (due to
the fact that it introduces extra noise which causes uncertainty, so the search radius
needs to be altered to reflect this), this places a bound on the realistic performance
achievable in a real setting. For instance, in [62] the authors attempted to address this
limitation with a method known as generalised sphere decoding (GSD) which performs
regularisation on the correlation matrix based on Cholesky decomposition to improve
its ill-conditioning, and still concluded its applicability was restricted to N ≤ 32 and
α≥ 0.75.

5.2.2 Experimental Test Setup

To investigate the effectiveness of the proposed EVM loss approach, it is experimentally
verified using OFDM and SEFDM over a VLC link. The data was generated and
tested over two real time National Instruments software defined radios (NI 2943 and NI
2953). In the first device, an independent data stream of 216 −1 bits were generated
and mapped to a 4-ary quadrature amplitude modulation (4-QAM) constellation.

After serial-to-parallel conversion, an inverse FFT is used to generate the OFDM
and SEFDM frames. The number of subcarriers used are N = {4,8,16,32,64}, with 64
being at least four times more than any similar SEFDM-NN work [136] to the best
of the authors knowledge. The induced ICI is the basis for the requirement of the
neural network at the receiver, since the ICI generated is deterministic and correlated,
it is possible to remove it with advanced equalisation. The size of the IFFT(/FFT) is
dependent on the compression factor α, following [146].

The symbols are then serialised and converted to the analogue domain via an Ettus
Research LFTX (30 MHz bandwidth) before transmission over the VLC link. It was
decided not to use a cyclic prefix in this work and instead used zero-padding between
data frames, following [147]. The experimental setup for the VLC circuit is as described
previously and shown in Fig. 4.3

At the receiver, the signal was post-amplified by a factor of ten using a Texas
Instruments THS3202 amplifier before being fed to the second NI software defined
radio via analogue-to-digital conversion by an Ettus Research LFRX. Then, the data
is synchronised and converted to parallel and passed through the forward FFT before
being committed to storage.
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The data was then loaded into a Python environment (offline) where the neural
networks under test are deployed and the signals are applied to the neural network
as described in Fig 3.5. The calculation of EVM follows the form given in (4.1). As
mentioned, an advanced equalisation format is required to remove the ICI introduced
by carrier compression of the SEFDM system. It is well known that neural networks
can approximate any input-output sequence, given sufficient neurons in the hidden
layer(s) [148]. In principle, this means that given a sufficient SNR, number of neurons
and hidden layers, the neural network can estimate the ICI for any value of α. In this
work, we evaluate α= {1,0.9,0.8,0.7,0.6,0.5}, saving up to 50% of the nominal 1 MHz
signal bandwidth, doubling the spectral efficiency.

Two different neural network architectures are tested; the split-complex approach,
and the concatenated approach. In both architectures, there is an input layer, three
hidden layers and an output layer. Three hidden layers were selected as to enable
sufficient neurons and hidden layers to provide sufficient processing power to estimate
the complex ICI and channel characteristics, inspired by [137]. In the split-complex
approach, two neural networks are used, one each for the in-phase and quadrature
symbols. The number of neurons was set in the (a) input layer to N (4 − 64), (b)
hidden layer to 2N,4N,2N and (c) output layer to N . For the concatenated approach,
the neural network is widened by a factor of two, doubling the number of neurons in
each layer in order to allow the input of both the in-phase and quadrature symbols
into the same network. This maintains an equal number of neurons per input across
the two networks.

Each hidden layer uses the leaky rectified linear unit as its activation function,
while the final output layer uses a linear activation, and the model was trained with
the Nadam optimiser. The initial learning rate was set to 10−3 with a reduction of
factor 10−1 when the validation loss did not decrease over a period of five epochs.
The received symbols are fed through each neural network under test until they reach
the output layer, where the 4-QAM constellation is reconstructed. While training,
the optimiser requires a function to evaluate the training performance, and this is
an objective function which is normally assumed to be MSE (defined in [149]). In
general, using MSE loss as the objective function for the optimiser works well for one-
dimensional constellations such as pulse amplitude modulation, but the performance
of MSE loss in both split complex and concatenated networks suffers when considering
complex data. This is because MSE loss focuses explicitly on sample amplitudes and
does not consider any phase offset from the ideal constellation points. This forms
the basis of our motivation to replace it with the EVM which does, and allows the
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network to gain knowledge of the relationship between the in-phase and quadrature
components, unlike split-complex/MSE-activated networks. This is because there is
additional co-information embedded in the Cartesian form of the constellation without
splitting, such as combined phase information that can lead to more accurate joint
recovery of symbols. If two artificial neural networks are trained separately for each
signal component, this information would remain unknown to the other and hence
performance deteriorates comparatively. The proposal of using EVM as the objective
function in a concatenated network is thoroughly tested and compared with (a) MSE
in a split-complex network and (b) MSE in a concatenated network. The extent to
which the choice of subcarrier number N affects the output is also investigated.

5.3 Practical Results

Following on from the previous chapters, it raises the question - if one was to keep
compressing further, will this same pattern of spectral efficiency saving be observed?
The answer is yes to a point, for example, using the lowest compression ratios tested, i.e.
α = {0.5,0.6,0.7}, in Fig. 5.2 the measured EVM at the output of the neural network
is shown for the three architectures under test. It is apparent immediately that the
concatenated-complex neural network with EVM as the objective loss function achieves
the most optimal performance for all compression bandwidth ratios tested. The overall
highest performing scenario of the entire system was obtained when α= 0.6, where the
neural network reduced the EVM to approx. 3 dB, i.e. approximately error free. For
values of α < 0.5, the ICI becomes overwhelming and performance decreases, so these
will be discussed later in this section.

Evaluating the other neural network architectures, for the concatenated network
using MSE as the objective loss function the EVM value was measured to be of the order
of 6 dB, and for the split complex case again using MSE as the objective loss function
the measured EVM was approximately 9 dB, showing the performance penalty of
adding 3 dB of EVM between successive architectures under test. A similar relationship
is found when for α = 0.5, with slightly greater difference ratios between the different
architectures. This can be attributed to the hugely increased ICI, as at α = 0.5 one is
describing a scenario where subcarriers are 50% overlapped on both sides with their
neighbours. At this level, split-complex network has reached its performance limit,
shown by the further reduction in performance in comparison to the concatenated
network.
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Fig. 5.2 Error vector magnitude results for each of the networks under test for N = 64

It is also worth noting that, to the best of the authors knowledge at time of writing,
this is the highest value of α ever obtained in an SEFDM system which one does not
attribute solely to the proposed EVM architecture, but also attribute partially to the
high signal to noise ratio in our VLC link along with the fact that the linear, flat-band
response of the visible light system response was exploited.

In Fig. 5.3, the measured EVM values for the concatenated system with EVM as
the objective loss function for all compression ratios are shown. One unforeseen aspect
in this work was the predelection of the neural network to over-fitting when faced with
negligible amounts of ICI (i.e. high values of α). Whilst neural networks are powerful
tools for approximating complex input-output relationships, in the case of OFDM over
a high SNR stationary channel as was used here, the optimal receiver is simply the
inverse of the transmit side transform. In this scenario where the ICI is much less
(referring back to (5.1), C = I+Λ → I+0 for OFDM) than the noise of the channel
(AWGN in this case), the input-output relationship that is attempted to be modelled by
the neural network is that of AWGN, which is known to be uncorrelated and stochastic,
as opposed to learning meaningful relationships from ICI which has been shown to be
correlated. As a result, the worst performance shown in Fig. 5.3 is surprisingly the
OFDM system itself. The reason for this is as just preluded to, there is no ICI and no
channel perturbations or non-linearities except for power attenuation and small levels
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of noise that lead to the neural network estimating input-output patterns that do not
exist due to the purely stochastic nature of the channel perturbations it was observing.
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Fig. 5.3 The overall performance of the proposed system for all values of α tested for
N = 64

Finally, the effect of varying N was investigated due to its close relationship to
the ICI as was described in (5.2) and (5.3). Fig. 5.4 shows the measured EVM values
for the neural network receiver including the α values < 0.5. For all cases, it was
found that for α < 0.5, our neural network performance degraded and the EVM values
were increased, as is to be expected. Therefore, a maximum compression ratio of 50%
was obtained while maintaining the same data rate as in OFDM hence its dismissal
from previous results. It can be seen that the value of N has an impact on the neural
networks performance, with higher values of N being preferred for lower values of α.
This is likely due to the construction of the neural network, as more neurons are created
for a higher N , which provides additional computational power that can take advantage
of the increased levels of correlated self interference between subcarriers. This can be
demonstrated numerically by referring to the complexity analysis discussion in Chapter
3. With this form of neural network, we have 18N neurons, therefore using 4 subarriers
we have a total of 72 neurons versus the 288 neurons when using 16 subarriers and
versus the 1152 neurons when using 64 subcarriers. This is a vast difference in learning
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power between the networks which explains the disparity of the performance between
the systems.
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5.4 Conclusion

This chapter has extended upon the previous works to demonstrate the efficacy of the
use of neural networks in general communications outside of strictly vehicle-to-vehicle
communication. By performing analysis in VLC networks, one can clearly see the
spectral efficiency gains that extend beyond the initial scope. To the best of the authors
knowledge at time of writing, the 50% spectral saving at a value of α = 0.5 is the
highest ever presented in the literature with any degree of signal recoverability.

The use of EVM loss has proved to outperform MSE as an objective loss function for
the use of neural networks in communications, and further looked at the foundational
reasoning for its successful implementation for SEFDM. This is not to say that neural
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networks do not have their downside, it was also discussed and reasoned that under
certain conditions the neural network was prone to overfitting and thus adapted poorly
to the given task on new data. On the other hand, the difficulties SEFDM face in a
practical implementation have been reviewed, it was demonstrated that the optimal
maximum likelihood receiver is far too complex to be considered for practical use due
to the fact it grows exponentially in complexity with the number of subcarriers and
the constellation size. It was then shown that the current state-of-the-art, namely
sphere decoding, whilst attempting to address the complexity issue of the maximum
likelihood receiver only partially manages to do so and suffers limitations on its practial
implementation as a result, with literature showing a restriction of N ≤ 32 and α≥ 0.75.

It was clearly shown that our novel neural network approach provides a viable
alternative for practical implementations of SEFDM symbol receiving, whilst also
placing a tighter upper bound on the complexity as the neural network presented herein
does not grow in complexity with the size of the output constellation. The performance
analysis has shown that neural networks provide the flexibility and the ability to reduce
the impact of the combined channel and ICI in practial implementations, and that the
novel EVM loss function with a concatenated complex network achieved the highest
performance at the lowest measured EVM in all experiments undertaken, achieving
≈ 3 dB lower EVM than the common MSE loss.





Chapter 6

Conclusion and Future Work

Neural networks and non-orthogonal spectrally efficient waveforms have been regarded
as promising technologies for future wireless networks such as vehicular communications.
In this thesis, a thorough investigation has been undertaken into the practical efficacy
of the joint application of these areas, with practical implementations being conducted
in all experiments. In the following sections, a brief summary of this research and its
key findings are outlined, followed by a brief discussion on potential topics aligned
to areas related to the work of this thesis are presented as possible future research
directions.

6.1 Conclusion

In chapter three, a novel neural network acting as a joint channel equaliser and symbol
receiver was designed and implemented for use in a vehicular network for vehicle-to-
vehicle communication. The harshest empirical channel model from the literature was
emulated using a hardware-in-the-loop practical implementation. Experiments started
from the point of an 802.11p compliant transmitter using OFDM as the physical layer
waveform, then after setting a baseline, proceeded to break protocol and use SEFDM
as the physical layer waveform to investigate the potential spectral efficiency benefits
from the use of a non-orthogonal waveform. The proposed neural network receiver
achieved an RMS error vector magnitude of 4.75 in the 802.11p compliant OFDM case
over 52 data symbols, and SEFDM under the same conditions achieved a performance
of 10.8 → 25 (RMS) EVM as the compression factor decreased from α= 0.8 → α= 0.4,
demonstrating a significant improvement to spectral efficiency which could in turn be
used to service more users or achieve a higher total throughput.
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In chapter four, the shortcomings of two approaches of implementing neural net-
works for communications were demonstrated, and proposals were made for both
that improved the bit-error rate performance of the resulting network. Firstly, the
common methods of forming the input and output layers of neural networks were
investigated and the ‘concatenated complex’ neural network model was formalised
which predicated that creating ‘split complex’ neural networks should not be preferred
over ‘contatenated complex’ neural networks in most settings as to allow the neural
network to gain valuable information from the relationship that exists between the real
and complex components of a signal. Secondly, a new loss function was created for
the specific purpose of training neural networks in communication settings. The error
vector magnitude of a received signal when compared to the reference constellation
was used to tightly couple the objective function of the neural network whilst training
to the metrics of the wider communication system that the neural network was to be
deployed in. The results showed that both methods resulted in increases in performance
over the baseline, and the proposed EVM loss system was able to demonstrate a 40%
spectral efficiency improvement over the OFDM baseline with error free transmission.

In chapter five, the methodologies from the previous chapter were extended to
investigate the applicability of neural networks and EVM loss in a wider communications
setting, namely VLC networks, with a particular focus on SEFDM as a spectrally
efficient physical layer waveform. It was shown for the first time that a spectral efficiency
saving of 50% could be obtained, effectively halving the bandwidth requirement for
communication. It was also reasoned that compared to the state-of-the-art sphere
decoder for SEFDM which in literature has stated restrictions of N ≤ 32 and α≥ 0.75,
neural networks bound the complexity more reasonably as the size of the output
constellation has no effect on the neural network complexity, unlike the sphere decoder.

6.2 Future Work

The application of artificial neural networks, and more broadly machine learning, in
communication systems is a vast topic with many potential areas for research. In this
section, a brief proposal of some possible future research topics are presented.

1. Extending on the work of chapter 3, an investigation into the possible role of
including the transmitter in the learning process could be undertaken. The
transmitter could alter and transform the transmitted signal in ways it has jointly
learned with its counterpart neural network on the receiver to combat the link
between them. This is not dissimilar to existing works such as [150, 151], where
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autoencoders are deployed end-to-end and the wireless channel represents the
hidden internal states of the network. The difference being autoencoders are a
form of unsupervised learning, whereas the topic proposed herein would take
advantage of supervised learning methods.

2. To the best of the authors knowledge, chapter 4 is the first work that challenges
the foundations of the machine learning process for the specific context of neural
networks in communications. This opens a plethora of future research directions
that could be investigated to further improve the latency, performance, and
complexity constraints that currently prohibit widespread adoption. One such
example would be the investigation of non fully connected neural networks. By
only connecting k neighbouring neurons, one could still provide subcarriers with
inter-carrier information from those relevant within the vacinity, but reduce
the complexity of the neural network by not sharing information from distant
subcarriers with little impact on ICI. What value of k would be dependant on the
communication method and the channel that would be used for communication.
For example, high values of α in the SEFDM case would mean more neighbours
should be included, as would channels that have high frequency selectivity or
phase effects. Another potential example of future research would be into signal
carriers outside of frequency division transmission. For example in [152] the
authors use a neural network to schedule transmission slots at the MAC level
based on observations made of the wireless spectrum, which they claim reduced
the number of collisions by a factor of 15.

3. Extending on the work of chapter 5, future work could look to tackle the growing
complexity due to the number of subcarriers, while this work has lowered the
complexity resulting from increasing the cardinality of the output constellation
it has not tackled the growing complexity that arises from increasing the number
of subcarriers and matches the state-of-the-art sphere decoder in that regard. It
is known from the correlation of the ICI that the major contributors are from the
immediate neighbours of each subcarrier, therefore this limits the information gain
distant neurons within the neural network will have via their shared connections
due to the fully connected nature of the network. It is postulated that pruning
the neural network of connections beyond a tunable, integer valued region n of
each subcarrier would convert the exponential growth from increased subcarriers
into linear growth.
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