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Abstract

Computer networks comprised of many hosts are vulnerable to cyber attacks. One attack

can take the form of the exploitation of multiple vulnerabilities in the network along with

lateral movement between hosts. In order to analyse the security of a network, it is common

practice to run a vulnerability scan to report the presence of vulnerabilities in the network

and prioritise them with an importance score. The scoring mechanism used primarily in the

literature and in industry ignores how multiple vulnerabilities could be used in conjunction

with one another to achieve a goal that previously was not possible. Attack graphs are a

common solution to this problem, where a scan along with the topology of the network is

turned into a graph that models how hosts and vulnerabilities can be connected. For a large

network these attack graphs can be thousands of nodes in size, so in order to gain insight

from them in an automated way, they can be turned into Bayesian attack graphs (BAGs) to

model the security of the network probabilistically. The aim of this thesis is to work towards

the automation of gathering insight from vulnerability scans of a network, primarily through

the generation of BAGs.

The main contributions of this thesis are as follows:

1. Creation of a unified formalism for the structure of BAGs and how other graphs can be

translated into this formalism.

2. Classification of vulnerabilities using neural networks.

3. Design and evaluation of a novel technique for approximation in the computation of

access probabilities in BAGs (referred to in the literature as the static analysis of BAGs)

with no requirement for the base graph to be acyclic.



x

4. Implementation and comparison of three stochastic simulation techniques for inference

on BAGs with evidence (referred to in the literature as the dynamic analysis of BAGs),

enabling security measure evaluation and sensitivity analysis.

5. Demonstration of a sensitivity analysis for BAG priors and a novel method for quick

computation of sensitivities that is more readily analysed than the traditional technique.

6. Development and demonstration of a fully containerised pipeline to automatically

process vulnerability scans and generate the corresponding attack graph.

With a single formalism for attack graphs, alongside an open-source attack graph gen-

eration pipeline, our work serves to enable future progress and collaboration in the field of

processing vulnerability scans using attack graphs by simplifying the process of generating

the graphs and having a mathematical basis for their evaluation. We design, implement, and

evaluate various techniques for calculations on BAGs. For the process of computation of

access probabilities we provide an algorithm that requires no processing or trimming of the

initial graph, and for inference on BAGs we recommend likelihood weighting as the best

performing sampling technique of the three we implement. We also show how inference

techniques can be applied to sensitivity analysis on BAGs, and provide a new method that

allows for more efficient and interpretable sensitivity analysis, enabling more productive

research into the area in future. This research was originally undertaken in collaboration with

XQ Cyber.
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TP True positive





Chapter 1

Introduction

As modern businesses, and society as a whole, become more dependent on technology for

their operation, the damage that can be caused by a cyber attack increases. An attack can

cause many unwanted outcomes, like the interruption of important services in a denial of

service attack, or the exfiltration of private user information from a database breach. These

occurrences can compromise the privacy and security of users, terminate small enterprises

and start-ups, and cost large business millions of pounds (for example: the Epsilon data

breach cost $4 billion, $252 million was stolen from credit cards in the Hannaford Bros

attack, and WannaCry cost the NHS £100 million [109, 3]). Cybercrime incurs an estimated

cost of $6 trillion USD globally in 2021, and is estimated to rise to an annual cost of $10.5

trillion by 2025 [76]. Discovering what problems are present in the security of the network is

thus extremely valuable as it enables remediation of the network and prevention of an attack.

A vulnerability scan of a given network is a scan of the network that provides information

on the topography of the network along with information as to the vulnerability of the hosts

on that network with respect to known attacks and exploits. A scan can report information

about a variety of circumstances that impact the security of a host or the network as a whole.

For example a scan might detect: out of date software running on a machine that needs to be

patched to have the latest security fixes applied, a host that allows the use of default login

credentials for access, or enabled protocols on the network that are not secure.
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Networks with many hosts currently have too many vulnerabilities to fix in a reasonable

time scale. At present, after a scan of a network, the vulnerabilities with the highest ‘score’

are prioritised, a metric defined arbitrarily by one of many organisations. The most common

example of this is using the common vulnerability scoring system, or CVSS, score to decide

on the importance of vulnerabilities [108]. The present methodology ignores the structure of

the network and the damage that can be done by moving through a network and engaging

multiple hosts. Ideally, this prioritisation should depend on the context of the network, and

should evaluate the scope that a vulnerability gives for continued intrusion on top of the

severity of the individual vulnerability.

An attack graph is a representation of a system and its vulnerabilities in the form of a

directed acyclic graph (DAG). It models how the system’s vulnerabilities can be leveraged

during a single attack to progress through a network. Many types of attack graphs and

similar models exist, but in general there are two main categories: state attack graphs, and

dependency attack graphs. State, or complete, attack graphs model entire network states

including all vulnerability and network information and look at transitions between the

states of the network through the use of model checking (sometimes called scenario graphs)

[100, 103]. Compact, or dependency, attack graphs use the causal dependencies of every

individual vulnerability to make a model [116, 86, 45]. We will use dependency attack graphs

as opposed to the state enumeration style of attack graphs in order to better understand the

importance of individual vulnerabilities [100].

One of the objectives of this thesis is to combine Bayesian statistics with attack graphs

to better automatically prioritise network vulnerabilities from a probabilistic view point.

This will allow attack graph analysis to be automated while also improving the actionable

insights taken from them. The combining of attack graphs with Bayesian networks creates

something called a Bayesian attack graph, or BAG. BAGs have been well formalised in

literature; Frigault et al. [26] demonstrate how a BAG can be constructed mathematically

using CVSS scores to create probabilities that are propagated through the attack graph, and

Xie et al. discuss important considerations and think more practically about how one might

overlay a Bayesian network onto an attack graph [120]. However, as Miehling, Rasouli and
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Teneket observe [75], constructing a BAG is a non-trivial process and thus a platform that

can automate their generation would be a significant contribution to the area.

The reasoning for using Bayesian networks as our method for introducing probabilities on

these attack graphs is multi-faceted. Primarily, the reason is that there is inherent uncertainty

in the analysis of the resilience of a network and as such a probabilistic viewpoint makes

the most sense. Bayesian networks already have a large body of research into efficient

computation for DAG structures as examined by Kordy et al. in their section on Bayesian

networks for security [60]. On top of this, the network can be re-evaluated to calculate a

posterior distribution given some new set of data, whether that be changes in the network or

a current attack threat, allowing for dynamic modelling of the system.

Once a BAG has been generated, various processes can be used to extract value in the

form of a quantitative evaluation of a network’s security or a prioritisation of vulnerability

patching. The BAG can be analysed from an exclusively static perspective in order to identify

the weakest areas of a network, as well as identify quantitatively the risk that a certain asset

will be compromised in the case of an attack. Further extensions to this kind of analysis

include the introduction of attack profiles to modify the probabilities; for example this could

be done using the attack complexity metric in the CVSS base vector to determine the ease

of an attack. One approach to this is detailed by Cheng et al. [115] along with a method

to include dependency relationships between vulnerabilities. Another application of the

BAG is as a dynamic risk assessment tool. This is a method where an administrator can

model new security controls and their effects on a network, as well as dynamically analyse a

deployed network’s most likely attack paths that can be updated dependent on information

from something like an intrusion detection system [91].

Some work on using stochastic modelling techniques has been done for BAGs too. The

automation of this process, however, is yet to be investigated, as is the performance of

different simulation techniques. The application of these stochastic modelling techniques for

the purpose of sensitivity analysis has also been performed to some extent in the literature

[84], but the process is inefficient and requires analysis by hand.
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The research in this thesis was originally undertaken in collaboration with XQ Cyber,

a cyber security enterprise, who developed a vulnerability scanner known as CyberScore.

As such, the examples used in most cases are generated using the CyberScore vulnerability

scanner. However, the formal methods and techniques are applicable to any vulnerability

scan, and indeed CyberScore is an improvement on the base open-source scanner OpenVAS

[35] and as such the technology can be readily used on widely available OpenVAS scans.

Scans from the popular vulnerability scanner Nessus [110] have also been processed and are

compatible with the full software pipeline.

1.1 Research Motivation and Problems

This research is undertaken with the objective of maximising the value of vulnerability scans

on networks. This can be approached from multiple angles, from increasing the ease of

comprehension of a scan to novel methods to analyse a scan. The outcome of a scan should

be an enterprise’s network administrator fixing important vulnerabilities in the network; we

research how to correctly prioritise vulnerabilities from a scan and present the information to

the administrator in such a way that the scan’s utility is maximised. This will involve investi-

gating how expert knowledge can be disseminated such that someone with little expertise can

understand a vulnerability scan and its discovery of problems on a network. Consideration

must also be given to the scalability of any solution due to the large and ever-growing size of

computer networks in industry. These concepts can be distilled into a single question:

Given a vulnerability scan, what should be done to most efficiently harden the network?

Efficient use of a vulnerability scan to harden a network involves both the speed and

simplicity of the processing of the scan and the resulting output, as well as identifying and

prioritising the biggest risks to the network. In order to achieve this goal we identify and

investigate the following research problems in the area of vulnerability scanning:
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Vulnerability dataset The largest freely available dataset for vulnerabilities and

the most commonly used, the National Vulnerability Database [80], is suffering

from missing entries, data duplication, erroneous chronology, as well as a lack of

documentation. There is a need to develop methods that can work with this database

and produce sufficiently accurate results while resolving the issues around these

negative aspects of the database.

Complex scan outputs The output of a vulnerability scan is a large and complex

list of vulnerabilities and hosts that can be difficult to translate into actionable steps

to remove the vulnerabilities. There is a requirement for a process of simplification

such that a scan for a large network can be efficiently used, and that the process for

remediation for a scan of any size can be understood without a security professional.

Barrier for entry to process scans and generate attack graphs In order to create

an attack graph, either proprietary software must be used, or complex setup and

installation procedures are required. Even if the installation is successful, the scans

themselves are likely to be required to have been generated by proprietary scanning

software. For more people to be able to perform research in the area there should be

a simple, widely compatible, and freely usable platform for the generation of attack

graphs.

We also investigate further research problems that exists in relation to the creation, use

and analysis of Bayesian attack graphs:

Bayesian attack graph formalisms Several formalisms exist to define attack

graphs. However these formalisms are generally not rigorously defined, and their

relation to each other is unknown. A single, well defined formalism that other

formalisms can be translated into would allow for a common ground for research



6 Introduction

discussions, without invalidating past research.

Cycles in attack graphs When an attack graph is generated, cycles naturally occur.

In order to understand an attack graph probabilistically it is transformed into a

Bayesian network, but Bayesian network techniques require that directed graphs are

acyclic. Methods should be developed that do not have the acyclicity constraint.

Belief updating for Bayesian attack graphs In the event of an attack on the

network, the probability that an attacker will reach a specific host will change de-

pending on the progress the attacker has made so far. The probabilities throughout

the Bayesian attack graph of the system should also change accordingly, given

information about the attack. Techniques for performing this inference process

should be implemented and compared.

Analysis of effect of prior assignment When creating and analysing attack graphs,

the original assignment of the probabilities on the nodes is imprecisely decided using

information about the vulnerability in question from a vulnerability database. The

effect of this assignment needs to be investigated. Currently, the only process for

investigating these assignments is computationally expensive and requires complex

analysis. As such, a new technique that improves the computation efficiency and

produces more readily usable results is necessary.

1.2 Goals and Original Contributions

The work presented in this thesis makes up a number of original contributions. The most

significant are:

1. Creation of a unified formalism for the structure of BAGs and how other graphs can

be translated into this formalism. This allows a formal and well defined basis from
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which current and future discussion of BAGs can be performed, while still allowing

past research to be used within the new framework.

2. Classification of vulnerabilities using neural networks. The vulnerabilities within the

NVD database are sorted using a machine learning model into families that share a

remediation process, simplifying the reporting of the discovery of vulnerabilities and

eliminating the problems that exist with the NVD data.

3. Design and evaluation of a novel technique for approximation in the computation

of access probabilities in BAGs (referred to in the literature as the static analysis of

BAGs) with no requirement for the base graph to be acyclic. The accuracy of this

technique has been evaluated against exact methods and on common examples, and

the performance has been tested on large graph sizes.

4. Implementation and comparison of three stochastic simulation techniques for infer-

ence on BAGs with evidence (referred to in the literature as the dynamic analysis of

BAGs), enabling security measure evaluation and sensitivity analysis. Using different

stochastic simulation techniques has not yet been investigated in the literature, and

these techniques allow for performing inference on BAGs so they can be used with an

intrusion detection system.

5. Demonstration of a sensitivity analysis for BAG priors and a novel method for quick

computation of sensitivities that is more readily analysed than the traditional technique.

This new technique allows future research into the effect of prior assignment of

vulnerabilities on the resulting attack graph. A similar process can also be used to

measure the effect of implementing new security measures on the network.

6. Development and demonstration of a fully containerised pipeline to automatically

process vulnerability scans and generate the corresponding attack graph. The pipeline

is open-source, and allows anyone to convert vulnerability scans into attack graphs,

as well as including a module for implementing custom visualisation techniques. The
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input scans can be generated by free open-source scanning tools, meaning the entire

process is available to all.

1.3 Publications

During the course of my PhD, I have authored the following publications:

[70] Matthews, I., Mace, J., Soudjani, S., van Moorsel, A. (2020). Cyclic Bayesian

Attack Graphs: A Systematic Computational Approach. 2020 IEEE 19th Inter-

national Conference on Trust, Security and Privacy in Computing and Commu-

nications (TrustCom), pp. 129-136

This work introduces the formalisms for Bayesian attack graphs as well as discussing

and demonstrating cycle evaluation. We calculate probabilities for attack graphs

regardless of the presence of cycles. We achieve this by using an algorithm that we go

on to evaluate. The formalisms discussed form part of Chapter 2. The discussion and

evaluation of cyclic attack graphs and the algorithm we use form the basis for Chapter

4.

[71] Matthews, I., Soudjani, S., van Moorsel, A. (2021). Stochastic Simulation Tech-

niques for Inference and Sensitivity Analysis of Bayesian Attack Graphs. 2021

International Conference on Science of Cyber Security (SciSec), pp.171-186 This

work is also published in Springer’s Lecture Notes on Computer Science book series.

This work discusses the use of stochastic simulation techniques to perform inference

on Bayesian attack graphs in the presence of evidence. Three techniques are described,

implemented, and then compared. The use of these techniques to perform sensitivity

analysis is then discussed and performed. This work forms the basis for Chapter 5.
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Papers not forming part of this thesis

[97] Ryder, T., Prangle, D., Golightly, A., Matthews, I. (2021). The Neural Moving

Average Model for Scalable Variational Inference of State Space Models . The

37th Conference on Uncertainty in Artificial Intelligence (UAI).

This work has been accepted for publication at the 2021 Conference on Uncertainty in

Artificial Intelligence. In this work, we extend mini-batch variational methods to state

space models of time series data. To do this we introduce a novel generative model

as our variational approximation, a local inverse autoregressive flow. This allows a

subsequence to be sampled without sampling the entire distribution allowing short

portions of the time series to be used in training iterations at low computational cost.

We illustrate this method on AR(1), Lotka-Volterra and FitzHugh-Nagumo models and

achieve accurate parameter estimation in a short time.

1.4 Thesis Structure

Figure 1.1 shows the thesis structure, as well as the prerequisites for each chapter and any

context. The thesis can be read from start to finish in order. Alternatively, if only one of

the contribution chapters is to be read, Chapters 3 to 6, the Background chapter should also

be read beforehand. Chapter 6 provides a technical context for Chapters 4 and 5, but is not

required for understanding. It also showcases a method for implementing Chapter 3 in a

visualisation technique. Chapter 7 discusses the links between each chapter and how they

can be used as a whole to achieve the goal of network hardening using vulnerability scans

and as such requires all other chapters to be read.

1.5 Chapter Summaries

2. Background and Related Work. This chapter introduces the concept of vul-

nerabilities and their importance to security and privacy for people and businesses

alike. Next, we explore how vulnerabilities are analysed and how the results of such
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1. Introduction

2. Background and Related Work

3. Classifying Vulnerabilities
with a Neural Network for

Simplified Remediation

4. Probability Propagation for Cyclic BAGs

5. Sampling Based Meth-
ods for BAG Inference

and Sensitivity Analysis

6. Attack Graph Generation

7. Discussion and Conclusion

Prerequisite

Gives context

Fig. 1.1 Structure of thesis contents.
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an analysis can be turned into a model. We then introduce two formalisms for such

models, including a unified formalism that other formalisms can be translated into,

fulfilling Contribution 1 in the Abstract. Finally we examine other related work

relevant to the models.

3. Classifying Vulnerabilities with a Neural Network for Simplified Remedia-

tion In this chapter we introduce a new application for machine learning with the

vulnerability dataset. We demonstrate that a neural network can be trained as a

classifier to automatically sort vulnerabilities into families. The aim of this work

is to simplify the understanding and remediation steps for users who perform a

vulnerability scan. We demonstrate the accuracy and efficacy of our model for the

task and so fulfil Contribution 2 in the Abstract. We then discuss and demonstrate

a technique that can further improve the accuracy of the classifier, and finally we

discuss any related and future work in the area.

4. Probability Propagation for Cyclic BAGs This chapter is adapted from our

paper "Cyclic Bayesian Attack Graphs: A Systematic Computational Approach".

We introduce the idea of cyclic attack graphs, and examine a process for under-

standing and evaluating the probabilities within them. We interpret the cycles using

combinational logic circuits with probabilistic inputs, as well as performing exact

calculations using variable elimination. We present an algorithm that approximates

probabilities throughout the attack graph without modifying it in any way, fulfilling

Contribution 3 in the Abstract, and develop an attack graph simulator to demon-

strate the performance of the algorithm. We also compare the algorithm to variable

elimination, and show its calculations for common attack graph examples in the

literature (both cyclic and acyclic).

5. Stochastic Simulation Techniques for Inference and Sensitivity Analysis of

Bayesian Attack Graphs This chapter is adapted from our paper "Stochastic Simu-
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lation Techniques for Inference and Sensitivity Analysis of Bayesian Attack Graphs".

We introduce the three objectives of the work: to compute access probabilities of

attack graphs using stochastic simulations, then to perform inference on the attack

graphs using a set of evidence values, and then to apply these techniques for the

sensitivity analysis of the prior access probabilities. We introduce and discuss three

techniques for performing stochastic simulation (probabilitistic logic sampling,

likelihood weighting, and backward simulation), fulfilling Contribution 4 in the

Abstract. We then implement and compare the three techniques and show that for

most applications likelihood weighting is superior. Then, we show how these tech-

niques for performing inference can be applied to sensitivity analysis, in fulfilment

of Contribution 5 in the Abstract. Finally, we discuss and compare with related work.

6. Attack Graph Generation Platform In this chapter we discuss the technical ba-

sis for our work throughout the thesis, in the form of a software pipeline that enables

the user to process and visualise a vulnerability scan using open-source software.

This fulfils Contribution 6 in the Abstract. We describe the overall requirements

and use cases for the platform. Next, we introduce all of the software used in the

creation of the pipeline, and discuss how we modify or use each of them. Then, we

describe the requirements for each step in the process of generating and visualising

an attack graph, and we show the final layout of the platform. We also show three

usage examples for the visualisation platform. This work allows any user to quickly

begin generating, investigating and visualising attack graphs without the need for

complex setup processes or long lists of prerequisite software.

7. Discussion and Conclusion Finally, we discuss how all of the work presented in

this thesis can be used to achieve the overall goal of efficiently using vulnerability

scans to improve network security. We examine the limitations of our work, and

suggest and discuss several future possibilities for the continuation of progress in
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our area of research.





Chapter 2

Background and Related Work

In this chapter we demonstrate that while dependence on computer net-

works is large and ever increasing, so is the vulnerability of these networks

and the importance of keeping them secure. We discuss vulnerabilities and

a vulnerability categorisation system, and methodology for discovering

vulnerabilities in networks. We then look at using vulnerabilities to build

graphical models and different tools for this process. We introduce two for-

malisms and demonstrate their equivalence, as mentioned in Contribution

1. Finally we discuss the body of work concerning attack graphs and their

computation.

2.1 The Danger of Vulnerability

Businesses are becoming more and more reliant on technology. Large businesses have

required technology for communication at the minimum, but a recent investigation by Deloitte

has shown that 99% of small businesses use digital tools in their day-to-day workflow [21].

There is also a correlation between being more reliant on digitalisation and being more

profitable and successful. In an ecosystem with such a dependence on technology there

is necessarily more opportunity for attackers; in 2019 Ipsos Mori surveyed over 2000

organisations in the UK and discovered that approximately one-third of small businesses
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knew they had been breached within the last twelve months, while two-thirds of medium

and large business knew of a breach [46]. The median number of breaches for a medium

business was 6, while large businesses had a median of 12 breaches with an average cost of

over £20,000 for each breach. As such, the security of the networks used is highly important

from both a pecuniary stand point, as well as for the protection of sensitive user data.

2.2 Vulnerabilities

A vulnerability in the context of the security of computers and computer networks is a

complex thing to define. Generally speaking in the context of computing a vulnerability

is a weakness or flaw in a system that can be exploited either intentionally or accidentally

with an outcome outside of the normal use of the system [106, 104]. The system within

which the vulnerability exists can be one of many things including operating systems, mis-

configurations, installed software, hardware, security policies and running protocols. As

new software is released, and other software becomes older and better understood, more

vulnerabilities are discovered. Using data from the data feeds produced by the National

Vulnerability Database (NVD) maintained by NIST [80], Figure 2.1 shows the increasing

number of vulnerabilities reported each year. In 2020 there was an average of just over 50

new vulnerabilities reported each day, and there a vulnerabilities present in every major

operating system available. Vulnerabilities are ubiquitous, and the list is constantly growing,

meaning that the process of securing a network is never complete and contributions that

increase this process’ ease or efficiency are valuable.

2.2.1 Common Vulnerabilities and Exposures System

When a vulnerability is discovered, it is disclosed using the Common Vulnerabilities and

Exposures (CVE) system, a system developed and maintained by the Mitre Corporation. It

is assigned a CVE identifier that has the prefix of ‘CVE’ and the year of disclosure, and is

followed by a series of digits to identify the vulnerability:‘CVE-YYYY-NNNN’. The CVE

is added to the NDV along with its Common Vulnerability Scoring System (CVSS) vector.
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Fig. 2.1 Vulnerabilities reported and subsequently added to database listings per year.

This is an open standard maintained by FIRST [25] that assigns a vector to a vulnerability

that encodes all the information available about the vulnerability, along with an overall 0 to

10 score generated from this vector that is used to estimate the severity of the vulnerability,

with a rating of ‘None’ at 0.0 or ‘Low’ at 0.1 to 3.9 up to ‘Critical’ severity at scores between

9.0 and 10.0. The score available from the NVD is generated exclusively from the Base

metric group, but can be modified using the Temporal and Environmental metric groups in

order to make the score specific to an implementation. This process is shown in Figure 2.2b.

All of the metrics available in the vector and their groupings are shown in Figure 2.2a. We

will discuss the metrics most relevant to attack graphs next.

2.2.2 CVSS Metrics

The vectors are comprised of three groups of metrics. The Base metric group is the rep-

resentation of information specific to the vulnerability that does not change over time or

with the location of the vulnerability. It is further divided into two groups: Exploitability
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(a) The metrics used in the CVSS [25]

(b) Calculating a CVSS score [25]

Fig. 2.2 The Common Vulnerability Scoring System

which consists of how readily the vulnerability can be exploited in terms of complexity,

pre-requisites and if it can be remotely performed, and Impact which measures the effect

of exploitation in confidentiality, integrity and availability. Next is the Temporal group,

which represents the components of a vulnerability that change over time, especially the

availability and quality of code to perform the exploit and any remediation efforts. Finally,

the Environmental group is used for specific instances of a vulnerability on a network to

evaluate a score while factoring specifics of a network that may modify any of the previous

information set in the Base metrics, and provides a way to set requirements for maximum

impact of a vulnerability on the network.

Base Group

Attack Vector The Attack Vector metric measures the distance from which an attack

can be performed, in terms of both the physical distance and the logical distance. It can take

any of the values shown in Table 2.1. This is an important vector as there is a large difference
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Table 2.1 Attack Vector metric values.

Value Score Description

Network 0.85 The vulnerability can be remotely exploited.
Adjacent 0.62 An attack must come from somewhere logically adjacent to the vulner-

able component. For example, local network access may be required,
or physical proximity may be required for a Bluetooth based attack.

Local 0.55 The attacker must have local access either physically using the key-
board or via protocols like SSH and RSH. Alternatively user interac-
tion may be required like the clicking of a compromised URL.

Physical 0.2 Physical access to the vulnerable device is required, for example any
USB based attack.

Table 2.2 Attack Complexity metric values.

Value Score Description

Low 0.77 An attack does not require a great deal of knowledge or special conditions
to succeed, it should be repeatable with a majority of success.

High 0.44 There are requirements for the success of an attack that may be outside
of the control of an attacker, or a reasonable amount of preparation is
required. For example certain configuration settings must be known to
the attacker, or the attack relies on an amount of social engineering.

in the number of potential attackers when comparing attacks that can be performed over the

internet versus an attack that requires physical disk access, and as such there is a sizeable

difference in scoring between the most and least problematic attack vectors.

Attack Complexity Table 2.2 shows the two values available for Attack Complexity.

This metric encodes the difficulty of exploiting the vulnerability, especially with regard to

conditions that the attacker can not control. Generally speaking if the attack is repeatable

with a high level of success and does not require a certain environment or user interaction it

is Low complexity, otherwise it is High.

Privileges Required The privileges that are required at the beginning of the exploit are

encoded in this metric. There are three possible value roughly equating to privilege levels of:
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Table 2.3 Privileges Required metric values.

Value Score Description

None 0.85 The attacker can begin the attack unauthorised.
Low 0.62 A privilege level similar to a basic user is required beforehand by the

attacker, or the attacker must have access to non-sensitive network com-
ponents.

High 0.27 The attacker must have acquired administrator-tier privileges before
launching the exploit, with control over an entire network component or
across many components.

Table 2.4 Exploit Code Maturity metric values.

Value Score Description

Not Defined 1 Not enough information.
High 1 No code required with readily available information, or fully

autonomous code is accessible. The code works for any
situation.

Functional 0.97 Working code is available for the exploitation of the vulnera-
bility and it works in the majority of situations.

Proof-of-Concept 0.94 The code available is proof-of-concept and may not work in
many situations or requires a large amount of input from the
attacker.

Unproven 0.91 The exploit is still theoretical.

none, normal user, and administrator. A full description and the values are shown in Table

2.3.

Temporal Group

Exploit Code Maturity This is a metric from the Temporal Group and as such will

change over time and must be re-evaluated whenever it is used. The metric quantifies the

availability and ease of use of any code that can be used to exploit the vulnerability.

2.2.3 Scanning for Vulnerabilities

Vulnerability scanning is an automated process that uses software to test an attack surface and

discover vulnerabilities and security flaws. A vulnerability scanner can be specific to a certain
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technology, for example a web application vulnerability scanner crawls through web pages

to discover incorrect configurations and authentication problems, and agent-based scanners

are installed on specific devices to deliver local reports on that system’s vulnerabilities.

Alternatively, vulnerability scans can be ‘agentless’ and instead are run across the entirety of

a computer network. This type of scan can incorporate the other types of scan, and in general

works by communicating with each host in a network and running a battery of tests against the

hosts, depending on the initial information discovered by the scan. For example, if a specific

port is discovered to be open on a host, all relevant tests to that port would be run against

that host to discover what vulnerabilities are present. There is a further distinction between

authenticated and unauthenticated scans. An unauthenticated scan performs the scan with

no credentials for the network and as such performs a more limited analysis of the available

routes for an attack. An authenticated scan is provided with the credentials for the network

and so can fully evaluate all running software, operating systems and available protocols in

the network. From here on we use vulnerability scan to mean agentless vulnerability scan

with full authentication.

Any vulnerability scan generated for this work was performed using the CyberScore

scanner developed by XQ Digital Resilience. The CyberScore scanner is built from the

OpenVAS [35] scanner tool with extra tests performed using the NASL scripting language to

test for more vulnerabilities. OpenVAS (Open Vulnerability Assessment System) is an open

source vulnerability platform that can be used to scan and manage vulnerabilities, and it can

be used in place of the CyberScore scanner as the two have identical output types. Another

popular scanner, the proprietary Nessus scanner, can also be used after it is translated using

the system described in Chapter 6.

2.3 Graphical Models for Security Analysis

Graphical models are used in many areas of security analysis due to their visual interpretabil-

ity and ability to represent many pieces of information in conjunction with each other, along

with their algorithms and formalisms for quantitative analysis. Attack trees were one of the
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first examples of the use of a graphical model for security in 1998 by Salter et al. [99] and

Schneier in 1999 [101]. An attack tree is a tree structure that has a specific goal as it’s root

node. The rest of the nodes in the graph are different attacks that can be achieved to reach

the goal node, with edges representing requirements between the nodes. A good description

of the notation and formalism of attack trees is by Mauw and Oostdijk [72]. They are, in

general, only used as a static analysis, although some work has been done to include defence

actions in the trees [61, 59]. Various permutations of attack trees also exist, like attack fault

trees [62] that include fault trees in the model to incorporate information on the safety of

the network, and ordered weighted average trees that introduce probabilities into operations

[122]. A description and comparison of attack tree variations is available in Hong et al. [40].

However, the constraint of only being able to represent one goal in a complex network is

a significant one given the size of modern enterprise networks that have many assets that

require protection. For this reason we look to attack graphs as the replacement for attack

trees, enabling more complex modelling and analysis that can evaluate many different goals

in a network while also preventing duplication in terms of similar routes between attack trees.

2.4 Attack Graphs

Attack graphs are graphical models of a network’s insecurities. They model how connections

between hosts and vulnerabilities present in the network can be leveraged to achieve states

of privilege in a network. There are two main types of attack graph. State, or complete,

attack graphs [107] model an entire network state, or macro-state, as a whole and use model

checking to discover state transitions. This form tends to be less common as it suffers

from the state explosion problem as more vulnerabilities are added meaning it can quickly

become cumbersome [117]. Compact attack graphs are the alternative, and function by

encoding individual vulnerabilities, actions and states and the causal dependency between

them. In these attack graphs, the nodes approximately represent an attackers location in an

attack situation, and the edges represent the dependencies between locations and states in

the network (a more precise definition is presented in Definition 2.4.4).This form is more
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popular due to its scalability and interpretability with regard to specific vulnerabilities, and

in general where the literature refers to attack graphs these are compact attack graphs. Other

less common attack graph models are attack scenario-based attack graphs which contain

nodes representing actions that an attacker can take, with edges representing the sequence of

attacks in the the attack scenario [41], and host-based attack graphs. In a host-based attack

graph each host is represented as a node on the graph and any exploit that allows an attacker

to move between hosts is a labelled edge on the graph [125].

These attack graphs can be further separated into two groups based on how the pathways

in the graph are determined. One technique is using a logic-based method to deduce attack

paths using knowledge of exploits and their relationship with network states under a set of

rules. MulVAL is an example of a system that uses this method, using XSB (an extension

to the logic engine and programming language Prolog) to query over the set of relations

made up of facts, which are the properties of the network like the hosts and exploits that

are present, and rules, which is a pre-defined ruleset that defines possible behaviour. The

other technique is using a graph traversal method to perform a search and generate the nodes

and edges in the graph. An example of this is in Ammann et al. [5] where the authors use a

breadth first search, starting at the initial nodes in the graph and creating layers according to

how many conditions must be satisfied to reach a node in that layer.

In order to create an attack graph, certain information needs to be collected regarding

the network. The output of an authenticated vulnerability scan should be sufficient to

create an attack graph, as it will contain: the vulnerabilities and their locations in the

network, a listing of all the services and programs running on each host, and a HACL or

host access control list. A HACL is a representation of the allowed connections within

the network. An entry into the list will contain the IP addresses or names of the client

and the server in a connection, the protocol or service being used, and the port used in the

connection, (client IP/name, server IP/name, protocol, port). For example, if

a user is allowed access to a MySQL database using the default port 3306 then one of the

entries on the HACL would be (workstation,MySQLDatabase,TCP,3306).
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This information is then supplied to an attack graph generator in order to construct

the attack graph. There are many options for attack graph generators, and several survey

papers have been compiled to compare these tools [123, 45, 7]. There are both open source

(MulVAL [86], TVA [47], NetSPA [45]) and proprietary (Cauldron, FireMon [24], Skybox

View) offerings. We have chosen to use MulVAL to generate our attack graphs for three

reasons: (1) its is open source and can be readily and freely used, (2) it scales well compared

to other techniques, using a polynomial algorithm O(n2) to O(n3) with regard to number of

hosts, (3) it is the tool used in the majority of the implementations of the literature.

An attack graph, or AG, can become a Bayesian attack graph, or BAG, when the elements

of the graph are associated with probabilities. These probabilities are often generated using

the scores mentioned in Section 2.2.2 (for a more detailed discussion refer to Chapter

3). Depending on the attack graph generator used, the resulting BAG will be in a certain

formalism. Next, we define the two formalisms and demonstrate that one is more general, as

well as demonstrating how to convert between the two formalisms.

2.4.1 Formalisms

In this section, we introduce two different attack graph formalisms widely used in the

literature for modeling a network from the security perspective. The first one is proposed in

[107] and used in [48, 47? ] and the second one in [85] and is used in much of the rest of the

literature. We will then show in Section 2.4.2 that the second formalism is more general than

the first one, and work with that representation after this section. Note that both formalisms

require the attack graph to be acyclic. We use these formalisms as a basis for generalising

them to cyclic graphs. We first define cycles and loops in directed graphs.

Definition 2.4.1 Given a directed graph G = (V,E) with the set of nodes V and the set of

edges E ⊂V ×V , a cycle is a sequence of nodes (v1,v2, . . . ,vn) such that (vi,vi+1) ∈ E for

all i and vn = v1. The graph is called acyclic if it does not have any cycles. A loop is a

sequence of nodes (v1,v2, . . . ,vn) such that vn = v1 and for any i, either (vi,vi+1) ∈ E or

(vi+1,vi) ∈ E.
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Loops can be seen as cycles in the undirected version of the graph, i.e., when the pair (v,v′)

is treated the same as (v′,v). According to Definition 2.4.1, any cycle is also a loop but in

the sequel, we use the word ‘loop’ to refer to those that are not cycles. Moreover, an acyclic

graph can still have loops. Most of the literature on BAGs is focused on acyclic graphs as

defined next.

Plain BAGs

Definition 2.4.2 An attack graph G is a directed graph G = (E ∪C,Rr ∪Ri) where E is a

set of exploits, C a set of conditions, and Rr ⊆C×E and Ri ⊆ E ×C.

Remark 1 According to Definition 2.4.2, the attack graph is bipartite, i.e., the set of nodes

of the graph is divided into two disjoint and independent sets E and C such that every edge

can only connect a node from one to another. That is why the set of nodes is partitioned into

a subset of C×E and a subset of E ×C.

The edges connecting conditions to exploits have a particular meaning: all the conditions

connected to an exploit must be satisfied in order to execute that exploit. This is the equivalent

of taking the conjunction of the incoming conditions to the exploit. Similarly, any of the

exploits connected to a condition can be used to satisfy that condition. This is equivalent to a

disjunction between multiple exploits that satisfy the same condition. Such an interpretation

together with individual scores assigned to the nodes fully characterises the attack model.

Definition 2.4.3 Given an acyclic attack graph G = (E∪C,Rr∪Ri), and an individual score

assignment function p : E ∪C → [0,1], the cumulative score function P : E ∪C → [0,1] is

defined as

P(e) = p(e) ·Πc∈Rr(e)P(c)

P(c) = p(c), if Ri(c) = /0 (2.1)

P(c) = p(c) ·⊕e∈Ri(c)P(e), if Ri(c) ̸= /0,
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Fig. 2.3 Plain BAG example[114]

where ⊕e∈Ri(c)P(e) is the probability of the union of exploits in Ri(c) and is computed

assuming the exploits are independent.

The acyclic attack graph G = (E ∪C,Rr ∪Ri) together with the individual scores defines

a plain BAG. An example of using this formalism for a BAG is shown in Figure 2.3; here

ovals are used to represent exploits, and the conditions are the plaintexts on the graph. The

numerical values inside the ovals are the individual score assignments, whereas the values

outside the ovals are the cumulative scores. An alternative example with a description of

nodes but with no calculation can be found in [7].

Note that attack graphs can in general have cycles but plain BAGs are defined with acyclic

attack graphs.

AND/OR BAGs

The second formalism of BAG is defined by Ou [85] and is used in MulVAL [86].



2.4 Attack Graphs 27

Definition 2.4.4 A Bayesian attack graph is defined as a directed acyclic graph G = (V ,E )

where nodes V are connected by edges E . The set of nodes is comprised of three types of

nodes, V =Vl ∪Va ∪Vo, and edges are defined as ei j ∈ E,ei j = e(vi,v j) where each edge e

defines a mapping from node vi to node v j.

The sets of nodes are defined as follows:

• Vl: the leaves in the graph, having no parents, and represent specific configurations

and conditions in the network; this includes information about programs running on a

host, network connection information in the form of HACLs (host access control lists),

and the existence of vulnerabilities.

• Va: the AND nodes, which have requisite conditions all of which have to be fulfilled

in order to be accessed. In other words there is a conjunctive relationship between

the parents of such a node. This set of nodes is used to represent specific actions that

can be taken when the conditions are fulfilled; this can be something like movement

between hosts when an attacker has fulfilled the prerequisite of access to one machine

and there exists a configuration node for access between the two nodes, or could be the

remote exploit of a specific vulnerability given remote access and the existence of the

vulnerability as prerequisites.

• Vo: the OR nodes, which have requisite conditions of which at least one must be

fulfilled in order to be accessed. There is a disjunction between the parents of such a

node. These are specific micro-states in the network that define something about an

attacker’s position in the system, for example: the ability to execute arbitrary code on a

specific host, or network access to a specific host. A macro-state for an attacker would

be an enumeration of these nodes demonstrating the privilege they have with respect to

every host on the network.

Vulnerabilities in the network have a chance to be exploited when their preconditions

are fulfilled, and by exploiting a vulnerability an attacker achieves a specific state. This

state, once reached, may then afford the attacker a privilege level on the network that is a



28 Background and Related Work

requirement for another exploit, or node. A chain of nodes in the network connected in this

way represents an attack path or route.

We define the access probability P(v) on the node v as the likelihood of the node being

reached in an attack situation.

Definition 2.4.5 For a given BAG G = (V ,E ) and a local probability function p : V → [0,1],

the access probability P : V → [0,1] is defined recursively using the access probabilities of

all parents to the node in conjunction with the local probability by

P(v) =



p(v) if v ∈Vl

p(v) ∏
v′∈pa(v)

P(v′) if v ∈Va

p(v)
[
1− ∏

v′∈pa(v)
(1−P(v′))

]
if v ∈Vo

(2.2)

where pa(v) represents the parent set of the node v ∈ V , pa(v) := {v′ ∈ V |(v′,v) ∈ E }.

The access probability has a slightly different interpretation depending on the specifics of

the node. For v ∈Vo, P(v) represents the probability that the attacker will achieve the state

described by node v. For v ∈Va, P(v) represents the probability that an attacker will travel

along that specific route to reach the goal state that follows. For v ∈Vl , P(v) represents the

probability of successful exploitation if the node defines a vulnerability, or is the probability

that a specific entry-route will be used.

Remark 2 Access probabilities P defined in (2.2) assume that probabilities P(vpa) are

independent from each other and takes the product of these probabilities to find the access

probability for their child node. This assumption is only true if the graph of the BAG does

not have loops. Otherwise, P(v) in (2.2) will only be an approximation of true access

probabilities that can be computed using joint distributions to reflect the dependencies

between the related events. One of these exact methods is Variable Elimination discussed in

Section 4.2.2.
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Fig. 2.6 OR probability

In Figures 2.4, 2.5 and 2.6 we demonstrate how this formalism works for simple examples.

The LEAF node naturally is calculated by setting the access probability as equal to its local

probability as it can have no dependencies. In Figure 2.4 this is simply 0.8.

AND nodes, drawn here as ellipses, are calculated using the above formula for conjunctive

probability. In the case of figure 2.5 there are two LEAF node requirements for the node to be

accessed, both with 0.8 as their probabilities. The access probability for this simple example

is calculated as follows (note that we set p(v1) = 1 for these examples, this is explained at

the end of the section);

P(v1) = p(v1)∏
pa

P(vpa)

= P(v2)×P(v3)

= p(v2)× p(v3) = 0.8×0.8

= 0.64

For OR nodes, drawn as diamonds on the graph, the disjunctive formula is used. This means

that if either of the leaf nodes are True then the requirements are fulfilled and the node is
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accessible. For figure 2.6 this is done practically as follows;

P(v1) = p(v1)(1−∏
pa

1−P(vpa))

= (1− (1−P(v2))× (1−P(v3)))

= 1− ((1− p(v2)× (1− p(v3))

= 1− ((1−0.8)× (1−0.8))

= 0.96

For clarity a more complex but realistic example is shown in Figure 2.7. This is describing

multiple attack routes to be able to execute code on a server; nodes 7 and 8 describe the

presence of a vulnerability on some other host on the network and a firewall rule that allows

access through a specific port from the internet respectively. These in conjunction permit net

access to the server represented by node 3. With net access and exploitation of one of the two

vulnerabilities on the server at node 10, remote exploitation of the server’s vulnerability can

occur at node 2, allowing code execution on the machine at node 1. Alternatively the presence

of a vulnerability that allows exploitation externally creates another path to achieving the

execution of arbitrary code via node 4, enabled by attacker access and vulnerability existence

at nodes 5 and 11.

For simplicity the local probability of non-LEAF nodes is set as 1; this makes sense as the

AND nodes represent an assessment as to the likelihood of fulfilling all the requirements to

perform an action and as such when these are fulfilled an attacker can access the node if they

desire, and similar reasoning can be applied to OR nodes. These local probabilities could be

set to values other than one to increase the fidelity of the model on an individual case basis,

for example to allow for attacker skill in the model. With these local probabilities set, the

access probability of node 1 can be decomposed into a calculation of LEAF probabilities:
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Fig. 2.7 A more complex BAG

P(v1) = (P(v2)∪P(v4))

= (P(v3)∩P(v9)∩P(v10))∪P(v4)

= ((P(v6))∩P(v9)∩P(v10))∪P(v4)

= ((P(v7)∩P(v8))∩P(v9)∩P(v10))

∪P(v4)

= ((P(v7)∩P(v8))∩P(v9)∩P(v10))

∪ (P(v5)∩P(v11))

= ((0.8×0.8)×0.8×0.71)∪ (0.61×0.8)

= 1− (1− (0.8×0.8)×0.8×0.71)× (1−

(0.61×0.8))

= 0.674
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2.4.2 Relation Between the Two Formalisms

In the following proposition, we show that the AND/OR definition of BAGs is more general

than plain BAGs, as it abstracts away the type of nodes being exploits or conditions. Instead,

it puts emphasis on their role in the computation of access probabilities.

Proposition 2.4.6 Any plain BAG modelled as in Definitions 2.4.2-2.4.3 can be transformed

into a BAG modelled as in Definitions 2.4.4-2.4.5.

Proof 2.4.7 Suppose we have a plain BAG with the acyclic attack graph G = (E∪C,Rr∪Ri).

Define the set of leaf nodes as Vl := {c ∈C |Ri(c) = /0}, the set of OR nodes Vo :=C\Vl , and

the set of AND nodes Va := E. Take V =Vl ∪Va ∪Vo and E = Rr ∪Ri. Then G = (V ,E ) is

an attack graph satisfying all the requirements of Definition 2.4.4. Note that attack graphs

of AND/OR BAGs are not necessarily bipartite, which makes them more general than plain

BAGs. �

2.5 Computation of Access Probabilities

The main approach for computing access probabilities of all nodes is to translate the model

into a Bayesian network (BN) and apply off-the-shelf techniques developed in the literature

for BNs. We first provide the translation of the BAG into a BN in Section 2.5.1 and then

discuss variable elimination as one of the techniques for performing probability computations

over BNs in Section 4.2.2.

2.5.1 BAG Translation to a Bayesian Network

Definition 2.5.1 A Bayesian network (BN) is a tuple B= (V ,E ,T ). The pair (V ,E ) is a

directed acyclic graph representing the structure of the network. The nodes in V are (discrete

or continuous) random variables and the arcs in E represent the dependence relationships

among the random variables. The set T contains conditional probability distributions

(CPD) in forms of tables or density functions for discrete and continuous random variables,

respectively.
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In a BN, knowledge is represented in two ways: qualitatively, as dependencies between

variables by means of a directed acyclic graph; and quantitatively, as conditional probability

distributions attached to the dependence relationships. Each random variable vi ∈ V is

associated with a conditional probability distribution Prob(vi|pa(vi)).

Proposition 2.5.2 Any BAG G = (V ,E ) as in Definition 2.4.4 with local probability function

p : V → [0,1] in Definition 2.4.5 can be translated into a BN B= (V ,E ,T ). The random

variables in V are all Boolean and the probability tables in T are constructed as follows.

For all v ∈Vl ,

Prob(v = 1) = p(v) and Prob(v = 0) = 1− p(v). (2.3)

For all v ∈ Va, let pa(v) = 1 indicate that all variables in pa(v) take value equal to one.

Then, 

Prob(v = 1|pa(v) = 1) = p(v),

Prob(v = 1|pa(v) ̸= 1) = 0,

Prob(v = 0|pa(v) = 1) = 1− p(v),

Prob(v = 0|pa(v) ̸= 1) = 1.

(2.4)

For all v ∈ Vo, let pa(v) = 0 indicate that all variables in pa(v) take value equal to zero.

Then, 

Prob(v = 1|pa(v) = 0) = 0,

Prob(v = 0|pa(v) = 0) = 1

Prob(v = 1|pa(v) ̸= 0) = p(v),

Prob(v = 0|pa(v) ̸= 0) = 1− p(v).

(2.5)

Then if the BAG G does not have any loops, we get P(v) = Prob(v = 1) for all v ∈ V with

access probabilities P defined in (2.2).
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Fig. 2.8 A simple BAG with the associated probability tables constructed according to
Proposition 2.5.2. Local probabilities are p(A) = 0.7, p(B) = 0.8, and p(C) = 0.6.

Figure 2.8 illustrates the construction of probability tables for an AND node. In this

figure, the local probabilities are p(A) = 0.7, p(B) = 0.8, and p(C) = 0.6. The probability

tables for A and B are constructed according to (2.3) and for C according to (2.4).

2.5.2 Visualisation

Several attempts have been made to use attack graphs to visualise network security. Xie et al.

[119] present a visualisation that results in a single greyscale image. First, they decompose

the attack graph into two layers, one representing the network connectivity between hosts

and the other detailing all the possible attack scenarios. With these two layers created, they

calculate the chances of the success for each attack, and from this the reachability of each

host from each of the other hosts can be calculated. An adjacency matrix is then produced to

visualise the accessibility of the hosts on the network.

Homer et al. [38] present several techniques for reducing attack graphs to improve

visibility. Extraneous portions of the graph that do not contribute to understanding are

trimmed and similar attack sequences and structures are identified and grouped together in

order to reduce clutter. Lee et al. [63] develop classes of attack that improve the readability
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Table 2.5 Complexity scores and their local probabilities.

Vector Score CVSS Version Local Probability

Low/L 2,3 0.71
Medium/M 2 0.61
Unknown - 0.61
High/H 2,3 0.35

of attack graphs for machines as an extension of the multiple prerequisite attack graphs by

Ingols, Lippmann and Piwowarski [45].

Chu et al. develop a tool for attack graph visualisation [19] called NAVIGATOR. This

can be used to investigate a variety of different attacks and the effects they have on networks.

It can also be used for the planning of network structures and defence mechanisms, and as a

way of displaying network topology.

2.5.3 Prior Generation

In order to calculate the access probabilities for nodes in a BAG, an initial set of local

probabilities must be provided. These local prior probabilities should be as accurate as

possible in order to improve the accuracy of the probabilities across the graph. For testing

and demonstration purposes we use a simple technique where we determine the ease of

access for a vulnerability. The CVSS vector [108, 73] for the vulnerability is collected from

NIST’s National Vulnerability Database (NVD) and the Access Complexity (CVSSv2) or

the Attack Complexity (CVSSv3) is used to define the probability of transitioning to a state.

This is on a scale of Low, Medium and High for version 2, and Low and High for version 3,

with High meaning there is a great deal of skill or timing required to exploit the vulnerability

and as such is associated with the lowest probability scoring. A demonstration of how these

values could inform the local probabilities is shown in Table 2.5. The local probability values

shown are based on expert opinion of the likelihood that an attacker would successfully

exploit a vulnerability with the corresponding complexity score and are given as examples.

These values could be modified to model an expert attacker using higher probabilities, or an

attacker with little expertise making use of published exploits.
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The local probabilities are taken from the contribution that the NVD gives to a vector

score when calculating the whole CVSS score. While this is a useful approximation, it

is very abstract and ignores a great deal of the information that can be gleaned from the

information available about the vulnerabilities. Doynikova and Kotenko [22] demonstrate

a more complex method for achieving more accurate results from CVSS data than simply

using the complexity score, while also modelling attacks that do not rely on vulnerability

exploitation through the use of the CAPEC list (Common Attack Pattern Enumeration and

Classification), a taxonomy of different attack patterns described using the MITRE schema

[8]. Cheng et al. model dependency relationships of the base metrics in the vectors and

attempt to combine them in such a way that a user can weigh specific aspects for their local

probability assignment [16].

Scoring with respect to time has also been demonstrated, for example Kaluarachchi et

al. propose use of the ‘Risk Factor Model’ [95] as a way of improving the accuracy of

their transition probabilities; rather than relying on CVSS scores alone they use an equation

involving the age of the vulnerability to predict the probability of exploitation. Bozorgi et

al. [11] also incorporate time into their model by training classifiers to predict if and when

an exploit will occur for an individual vulnerability. Machine learning is used instead of

the ‘magic numbers’ in CVSS. They use the Open Source Vulnerability Database (OSVDB)

and the MITRE Common Vulnerabilities and Exposures (CVE) database, from which they

extract high-dimensional feature vectors to be used in support vector machines (SVM). With

an offline analysis they showed that the vulnerability reports contained useful information

as to whether a vulnerability would be exploited, with an accuracy of around 90%. From

this they show the highest weighted features. They suggest using their classifier score as a

replacement for the exploit-ability metric in CVSS as it is grounded in a statistical model

rather than opinion.

2.5.4 Probability Propagation and Cycles

Once the prior probabilities have been assigned, they must be propagated across the graph

in order to calculate the access probabilities for every node, through the use of a Bayesian
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network or a Markovian process. Bayesian network based network analysis has been widely

studied in the context of attack graphs (e.g. [27, 66, 91, 102, 120]). In particular, Choi et al.

propose a method for deleting network edges from a Bayesian network in order to generate

models through approximate inference [17]. Muñoz-González et al. present an exact method

for inference in BAGs using the junction tree algorithm [78]. This method is attractive due to

its exact nature, but unfortunately is very limited in its application due to how it scales. This

is caused by the requirement for tables to be generated based on the cliques created to start

the calculations, and for large graphs these tables can become extremely large. It is better to

have a trade-off in the accuracy of the method to reduce the space required, in order to allow

scalability for the large graphs that are expected from enterprise networks. Furthermore, this

technique cannot be applied to graphs with cycles, meaning that in order to use it a graph

may first need to be altered. The authors go on to present an approximate technique in [77]

using loopy belief propagation. The results of this scale well, linearly with respect to the

number of nodes, while achieving a reasonable level of accuracy. The drawback to using

this method, unlike stochastic simulation, is that there is no guarantee of convergence to the

correct value.

A number of Markovian approaches have been taken to generate Bayesian attack graphs

and facilitate vulnerability analysis and the design of optimal defence strategies. Jha et al.

use a model checker to automatically generate attack graphs annotated with probabilities

and analyse their vulnerabilities using Markov Decision Process (MDP) algorithms [50].

Mace et al. used a similar approach to find the optimal data collection strategies for accurate

Bayesian attack graph input parameters (e.g. conditional probability tables) [68]. In [90]

Piètre-Cambacédès et al. model attack trees as Boolean logic Driven Markov Processes

(BDMP), suggesting they are dynamic and inherit readability and appropriation of attack

trees but with mathematical properties reducing combinatorial problems and processing.

Continuous Time Markov chains have been applied by Jhawar et al. to the Bayesian attack

graph approach in order to analyse attack defence graphs, that is, attack graphs which define

the modelling of defences in their specification. Wang et al. in [114], estimate attack states

and define a cost-benefit heuristic to automatically infer optimal defences for attack graphs
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integrated with Hidden Markov Models while Miehling et al. [75] and Zhisheng et al. [42]

assume the defender can only partially observe the attacker’s capabilities at any given time,

thereby modelling Bayesian Attack Graphs as partially observable Markov decision processes

(POMDPs). In this sense a resulting defence strategy is both reactive and anticipatory.

Dealing with cycles in Bayesian attack graphs has also been tackled (e.g. [121, 51]).

Kłopotek et al. who use Markov Chains, suggesting the state of a variable is not influenced

by itself but rather the future state is influenced by the past one [57]. Doynikova and Kotenko

consider the processing of three simple types of cycle in Bayesian attack graphs [22]. Two of

the three types contain cycles between nodes at the same level in the graph structure. These

are either removed once the probabilities to reach each node for the first time have been

calculated, or enumerated as separate paths. The third type contains cycles between nodes at

different levels of the graph structure. In this case, the cycle is simply removed under the

backtracking assumption, that is an attacker does not come back to a node already exploited.

This assumption that the attacker will not backtrack, also referred to as the monotonicity

principle is widely used in the literature as a way of removing cycles from graphs. While

the assumption can be used well for simple cycles, more complex cycles require a different

approach due to all nodes affecting the probabilities in the cycle (this is shown in Section

4.4.2). Furthermore, modifying the graph in order to perform calculations can introduce

other problems, for example re-computation of probabilities after a minor change to network

structure will be invalid as possible paths for the attacker may have been trimmed. Other work

also exists that attempts to remove this assumption, for example in [2], Aguessy et al. present

a Bayesian network-based extension to attack graphs, called a Bayesian Attack Model (BAM),

which is capable of handling cycles by breaking them. The authors argue that using the

backtracking assumption to break cycles suppresses possible attacker actions which cannot

be known a priori. To keep all possible paths, the only way to break cycles is to enumerate all

paths starting from every possible attack source. In other words, unfolding the cyclic graph

structure to an equivalent acyclic graph structure such that each node appears exactly once in

each path. This process causes a combinatorial explosion in the number of nodes whilst the

inference algorithm is shown to remain efficient only for networks of up to 70 hosts. Homer
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et al. suggest their approach correctly handles both cycles and shared dependencies in attack

graphs, that is the probabilities along multiple paths leading to a node are dependent on each

other [39]. The authors suggest enumerating all paths is unnecessary if data flow analysis is

applied to the cyclic nodes enabling the same probabilities to be evaluated as on the unfolded

graph. The data flow analysis process uses dynamic programming and other optimizations

to avoid increasing computational complexity. The algorithm is limited by the number of

nodes and paths within cycles which must be considered when calculating probability values

and which can cause evaluation time to be exponential in the worst case. The evaluation is

based on the number of nodes and vulnerabilities per node and does not consider how the

number of cycles impacts computation. Wang et al. made a number of crucial observations

about cyclic attack graphs and proposed a customized probabilistic reasoning method that

can handle cycles in the calculation [114]. However, when combining probabilities from

multiple attack paths, the method uses a formula that assumes the multiple probabilities are

independent. Such dependency needs to be accounted for to prevent a distortion of results.

There are some examples of stochastic simulation techniques for attack graphs as well.

One is by Noel and Jajodia [84]; they use probabilistic logic sampling to compare different

security fixes for a network. However, this is performed by hand and as such it cannot be

generally applied. Their use case compares several security controls that could be added to

the network. This is achieved by examining the resulting distributions estimated when the

changes are applied to the graph, in a manner similar to the sensitivity analysis we present in

Chapter 5. This requires excessive computation and also requires analysis of the resulting

distributions by hand. Baiardi and Sgandurra use Monte Carlo simulations in their Haruspex

tool [6]. This tool is a fully featured program that uses attack graphs and threat agents to

model security. It is an application for this type of graph, incorporating many different

elements, but does not analyse different methods for simulation.
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2.6 A Note on Terminology

Throughout the literature, two terms are frequently used to denote differences in analysis

techniques for attack graphs: statics and dynamic. Static analysis denotes the propagation of

probabilities through the attack graph in a one-off calculation that does not include evidence

and does not have any updating of beliefs [54, 67, 78]. This is analogous to the method we

introduce in Chapter 4, and we refer to the process as the calculation of access probabilities.

Dynamic analysis refers to the updating of probabilities with new beliefs, for example

incorporating evidence into the attack graph [90, 78, 91]. This dynamic approach is the

equivalent in Bayesian inference of forward and backward propagation resulting in new

posterior probabilities. We refer to this process as inference, and show sampling-based

techniques for probability propagation and inference in Chapter 5.



Chapter 3

Classifying Vulnerabilities with a Neural

Network for Simplified Remediation

This chapter is on the classification of vulnerabilities using machine learn-

ing and its application. First, we discuss the available data and problems

with the data and vulnerability reporting in general that we aim to solve.

Specifically, we aim to reduce the volume of the output of a vulnerability

scan by grouping all vulnerabilities into families that have the same re-

mediation process, to prevent the administrator from being overwhelmed

by unnecessarily complex lists of specific vulnerabilities. This enables an

efficient reporting process where once the important vulnerabilities have

been identified, a task we tackle in later chapters, the vulnerabilities can be

reported in a straightforward manner in terms of their remediation steps.

We also address all of the common criticisms of the National Vulnerability

Database (NVD) dataset with our approach, which are described in the

related work. We then look at our machine learning pipeline using a neural

network (NN) as a classifier and explain how this can be used as one of the

tools to simplify and understand complex vulnerability scans, in fulfilment

of Contribution 2 in the Abstract. We demonstrate the training and use of

the model, showing that it can achieve an accuracy of over 99% making it
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a good candidate for automating the process of labelling vulnerabilities.

Next, we discuss a filtering technique that we show can be used to improve

the accuracy of the process even further. We go on to examine the related

work in this area both in terms of using machine learning for vulnerability

data and relevant machine learning literature for text-based classification

problems. Finally, we discuss the usage of the classifier as well as other

work that remains to be done both to improve the classifier and to apply

machine learning techniques to vulnerability data for other purposes.

3.1 Problem Definition

The aim of this chapter is to show a method for simplifying the patching process for users of

vulnerability scanners, and to address the problems with the NVD dataset. Currently, after a

vulnerability scan is run on a network, the user receives a long report in the form of a list

of vulnerabilities present on the network. Even for networks with just a few hosts present

this list can be very long, and larger networks will report thousands of items. The length

of the list makes reasoning and prioritising actions very hard, and there is no meaningful

grouping of the vulnerabilities. The report will also only inform the user of the vulnerability

present rather than what is needed for remediation. The dataset used to populate these lists

is also criticised for having some known problems (see Section 3.4 for further discussion).

These problems are: the lack of good documentation for vulnerabilities, incorrect chronology,

multiple entries for one vulnerability, and missing entries. We describe and demonstrate

a machine learning approach to vulnerability labelling that addresses the problems of the

dataset and improves the reporting of vulnerabilities to users by instead reporting the required

action to fix the vulnerability.
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3.2 Building a Neural Network to Classify Vulnerabilities

The aim of our classifier is to group vulnerabilities into families such that the vulnerabilities

within the family share a common remediation process. The reason for this is that with a

large network with a variety of different technologies and active software, the results of a

vulnerability scan will be a large list of complex identifiers and vulnerability names. This list

can be simplified into actions required to fix the vulnerability, and if several vulnerabilities

share a method of fixing, the list will become much more concise as well as being simpler to

read and implement. This process can also be applied just to improve readability making it

applicable to small networks as well. These networks may also not have a dedicated system

administrator, or have one that is not confident with the vulnerability landscape. In this

situation it is much more valuable to instruct the reader that a certain software needs to have

a patch downloaded rather than list many complicated exposures that exist on their system.

The many problems with the dataset, discussed in the previous section, can also be

overlooked for this application. In fact, sorting the vulnerabilities in the way we propose acts

as a fix for some of the problems and a mitigation of the others. The problem of chronology

will be removed by ignoring the temporal component of individual vulnerabilities altogether,

and the lack of documentation is remedied by grouping many vulnerabilities into classes that

can be explained in terms of their remediation. The problem of multiple inclusion is also

removed as a vulnerability included multiple times should be moved into the same group,

removing the duplication. Finally, the incomplete inclusion problem is also partially rectified,

as long as a vulnerability from the same class as an excluded vulnerability is found by the

scanner then the reported vulnerability class will be the same. This is not unlikely as many

of the remediation processes are simply to apply patches to software, and so if any exposure

is found in the software the remediation will fix all vulnerabilities of that class.

The methodology for this process will be supervised learning with a NN architecture.

Supervised learning is a common way of applying machine learning principles to make the

process of putting items into categories automatic. It requires a labelled data-set that is split

with most being used to train the model and the rest used to test it. The training data is

input into the model, after feature extraction, and the model makes a prediction as to which
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category the input belongs to. This is compared with the ground-truth of the label for the

input data, and the model is adjusted accordingly. Once trained, the model can be evaluated

using the testing data not seen by the model in the training phase, but that is also labelled so

the model’s prediction can be compared with the truth and the accuracy of the model can be

calculated.

Our choice of using a NN as the predictive model for the process is due to the demon-

stration of impressive performance that requires only simple models on text classification

by Nam et al. and Jo et al. [79, 52]. Nam et al. compare a single layered NN against

several more complex state-of-the-art techniques (Backpropagation for Multi-Label Learning

and Binary Relevance using various architectures) on six different datasets and found the

best performance with their single layer NN. Gawron et el. and Huang et al. [29, 43] also

demonstrate their suitability to the NVD data, and so we use this model for the process.

3.2.1 Data Structures and Labelling

The data used in this process is downloaded from the NVD [80]. A large portion of the

data is not helpful for sorting the vulnerabilities into common families and so is removed

from the data frame. For example, categorical data and numerical data do not allow for the

deduction of the identity of the software or component that is vulnerable or any information

on remediation and so are removed from the data-set. The remaining columns of data are:

"Name", "Family", "Dependencies", "Description" and "Affected".

The data is labelled according to XQ’s vulnerability family system: 130,000 vulnerability

entries are labelled with one of 286 family identities. The NVD data is labelled by hand by

XQ’s security experts. The family identity values are largely comprised of patching pieces of

software and operating systems, with 199 of the labels involving patching and 87 not. The

three most common labels are "Fedora Linux Patching", "AIX Patching", and "Debian Linux

Patching", with 26,176 entries, 11,388 entries and 10,277 entries respectively. Examples of

vulnerability families that do not involve patching are "Malware/Backdoor Detected", "Weak

Encryption Ciphers Permitted" and "Users With Unchanged Passwords". These labels allow

for a much simpler interpretation of vulnerabilities when they are reported, for example if
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Table 3.1 Examples of vulnerabilities and their families.

Identity Vulnerability Family Label

CVE-2014-2441 Oracle VM VirtualBox Graphics
DriverWDDM

→ Oracle Virtualbox Patching

CVE-2016-3612 Oracle Virtualbox Information
Disclosure Vulnerability-010716

→ Oracle Virtualbox Patching

- Greenbone Security Manager
(GSM) / Greenbone OS (GOS)
Detection (HTTP)

→ Web Server Detected

CVE-2012-4964 Samsung Printer SNMP Hard-
coded Community String Authen-
tication Bypass Vulnerability

→ Insecure SNMP Configuration

your Virtualbox application is out of date then it becomes vulnerable to several vulnerabilities.

Instead of a list of the relevant vulnerabilities being reported, the user is informed that there

is a patch required for their Virtualbox if the vulnerabilities have been sorted into families.

Table 3.1 shows the labelling of some vulnerabilities along with the original CVE and

name entries. A full list of the vulnerability families used in the results of this chapter can be

found in Appendix C

3.2.2 Preprocessing

The labelled data first needs to be processed before it can be used as the input for a NN, as

shown in Figure 3.1. This is because the data we are using is comprised of textual descriptions

and terms, but the model requires numerical vectors as input. The first step to preprocessing

the data is to tokenize the sentences we have in the data columns remaining after we remove

all the unnecessary data. This splits the data into specific words, removing the punctuation.

After this, for every vulnerability in our data we have an associated list of words. For the

labels in the data, the unique entries for the labels are arranged in a list that is then associated

to a vector. We have a set of labels, L, that each element of our data must be associated

with. The label vector of a specific vulnerability entry, y, is then a vector with L dimensions:

y ∈ {0,1}L where ∑
i

yi ≡ 1. As such, where yi = 1 the vulnerability belongs to the class Li.

(Our objective, then, is finding a model m to act on a vector input x built from the textual data
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Fig. 3.1 Vulnerability data processed by tokenizers to create a vector that can be used in the
NN, including the labelled family.

in a vulnerability entry to achieve m : x → y.) This method for labelling the vulnerabilities

using a single positive class that is high, with all other classes being low, is called one-hot

encoding [37]. We use this encoding as the data is categorical but the NN requires numerical

data as input. If a simple integer encoding were to be used (Class A is labelled 1, Class B

is labelled 2 etc.) then the machine learning algorithm might infer that the categories are

related, and that Class B is worth double what Class A is worth [13]. As such we use one-hot

encoding to ensure that all the classes have the same numerical value.

After tokenizing we must stem the words that make up our data. Stemming is a process

performed by a stemming algorithm that reduces a derived, inflected or otherwise modified

word into its root form. The reasoning for this is that the same term used in different contexts

should count towards one word count, rather than having a word count for each form of the

word. An example would be if we were counting the number of times a description contains

the word exploit. A stemmer would change any occurrences of exploited, exploiting, exploits,

and any other variations back into the common root ‘exploit’ ensuring they all contribute

towards the same total. The algorithm we use for the stemming process is the Lancaster

stemmer, due to its speed for a large dataset as well as the fact that it is a very aggressive
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Fig. 3.2 Architecture of the NN.

stemmer that will significantly reduce the set of words used, a property which is desirable for

the very sparse data of vulnerability descriptions and names.

In order to further reduce the dimensionality of our inputs, any terms that are in 90% or

more of the documents are not included in our final dictionary, as they will not contribute

much or at all to distinguishing between entries. This is similar to a term frequency-inverse

document frequency (TF-IDF) approach where the frequency of a term is multiplied by the

inverse of how many times the term appears in all documents combined (Christian et al.

demonstrate the process in [18]). Our simpler process was originally meant to be replaced

by TF-IDF as Huang et al. [43] show it works well with NVD data, but using this simpler

technique produced very impressive accuracy and also remains very easy to interpret. With a

final dictionary, or bag-of-words (BoW), a database entry can be encoded as a vector using

the same tokenizers and stemmers, then occurrences of words that are present in the overall

BoW are identified and the corresponding entry in the vector is set as 1. This process is

shown in Figure 3.1.
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3.2.3 NN Architecture and Training

In order to have as much speed and scalability as possible, it is desirable to have fewer layers

in a NN. However, the fewer layers that are present the harder it becomes to model complex

relationships. Text-based preprocessing already has an amount of higher dimensionality

features [53] and so the network does not need to be as deep, and Nam et al. [79] perform

better than state-of-the-art deep learning approaches with just a single layer for large multi-

class text classification problems across six different sets of data. However, due to the

simplicity of our preprocessing, we will be using two layers.

The network structure is shown in Figure 3.2. The input layer is comprised of the BoW

representation of a vulnerability, a vector with a 1 at every point where the vulnerability

contains a word in the BoW (a one-hot encoding of the vulnerability text). This vector

feeds forwards into the next layer, hidden layer 1, that is originally set to have a randomly

sampled weight with mean 0, along with hidden layer 2. These fully connected layers take

the previous layer as well as the weightings of their neurons to calculate the layer’s activation.

The output vector is then compared with the ground-truth of the label vector and an error is

calculated. We measure the loss using the softmax cross-entropy loss function (for definitions

for both the softmax function and cross-entropy loss refer to Bishop [10] Chapters 2 and 4

respectively, or see Section 3.3.1 for the loss) and perform stochastic gradient descent using

the Adam (adaptive moment estimation) [55] optimizer to tune the weights of the hidden

layers. For a full description of the workings of NNs, along with a mathematical definition,

we refer to Goodfellow and Benigo [33].

In order to prevent overfitting we employ the regularization technique called dropout

[105]. Overfitting occurs when a model becomes too closely tuned to the training data-

set such that its predictions incorporate the noise of the data rather than modelling the

relationships in the data. When the model is presented with unseen data it may have a higher

error rate due to the new data having different noise. Dropout is the process of taking only

a subset of all the units for a training step. In other words, given a dropout probability, for

each training step a random sample from 0 to 1 is taken for every unit and if the sample is

lower than the dropout probability that unit is omitted from the training step. This means that
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each unit of the network will see a different subset of the training data. The speed of training

is also increased as a direct result of using dropout, as each step will require the training of

fewer units.

Hyperparameters are values used in the model that are not model parameters (parameters

that are modified by the training process). The dropout probability is an example of a

hyperparameter. In order to select the values for the hyperparameters in the model, as well as

compare different regularization techniques to choose the most effective, we use a process

called randomised grid search cross-validation [9]. A grid of values for each hyperparameter

is constructed and the performance of the model with random selections of those values

is evaluated using cross-validation. Using this process we compare values for dropout

probability alongside common regularization techniques L1 [111] and L2 [82] regularization.

L1 and L2 both add a term to the cost function of the model, with the difference between the

two methods being how the extra term is calculated. For this model, the dropout process was

the only method that had a positive effect on the cross-validated error, so L1 and L2 were not

used in the final model.

Imbalanced data. The data we are using has a very high variation in terms of the repre-

sentation of classes. Many classes have thousands of samples, but there are some classes

with 50 or fewer. In order to discourage the network from only making predictions from the

highly represented classes we resample from points in the minority. The points are chosen

randomly, and this process is known as random oversampling. We oversample the minority

classes rather than undersampling the larger ones as recommended by Japkowicz and Shaju

[49], who discover that random oversampling is much more useful. This could be extended

further by creating synthetic data as part of a more complex oversampling algorithm, like

SMOTE [15], but we use simple random oversampling as it has been shown to be effective

and robust [65].

Finally we also use early stopping as another form of regularization [92]. During training,

at regular intervals, the model is evaluated by running it on the validation set and measuring

the mean error. If this mean error is higher than the mean error the previous time the model
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Fig. 3.3 Accuracy of the model while training.

was evaluated, training should be stopped and the earlier model should be used. This reduces

the chance of overfitting.

3.3 Performance and Results

3.3.1 Initial Testing

In order to demonstrate the practicality and performance of our solution, we train the model

in the process described in the previous section. Training the network on an Apple MacBook

using the CPU takes 63 seconds, when using a split of 90% of the data for training and the

remaining 10% for validation, and so using a more powerful machine, especially one with a

GPU, would make the network very quick to train. After training, we achieve a prediction
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Table 3.2 Precision, recall and F-1 scores for the model as global metrics and as per-class
averages.

Metric Global Class average

Precision 0.9967 0.9914
Recall 0.9967 0.9979

F-1 0.9967 0.9935

accuracy of 99.90%, with a loss of 9.883×10−6. The accuracy is defined as

ACC =
T P+T N

T P+T N +FP+FN
(3.1)

with T P and T N being true positives and true negatives, and FP and FN being false positives

and false negatives respectively. The accuracy of the model is evaluated against the validation

dataset that the model has not seen before, and quickly reaches around 96% then slowly

trends upwards to 99.90% as seen in Figure 3.3. This accuracy, however, only corresponds

to a binary evaluation of the model in that it ignores the certainty of the model and instead

simply checks if the highest probability the model gives as output is in the correct class.

Ideally, we also want the model to give a very high probability when selecting the correct

class, or on the few occasions that an incorrect class is chosen a very low certainty should be

given. To analyse this we look at the loss of the model.

The loss we use is the categorical cross-entropy loss (CCE), calculated with

CCE =−log

(
esp

∑
C
j es j

)
(3.2)

where C is the set of classes in the data, sp is the score assigned to the positive class by the

network and s j is the score assigned to the jth class. Using this, we can evaluate how certain

the model is in selecting the correct classes. Figure 3.4 shows the loss reducing as the model

is trained.

As the model is a classification model, we also examine the precision, recall and F-1

scores of the model, shown in Table 3.2. The precision, or positive predictive value (PPV), is
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Fig. 3.4 Categorical cross-entropy loss of the model while training.
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calculated as

PPV =
T P

T P+FP
(3.3)

and is a measure of the ability of the model to not incorrectly label a negative sample as

positive. Recall, or the true positive rate (TPR), is calculated as

T PR =
T P

T P+FN
(3.4)

and can be understood as the amount of positives the model will correctly identify from the

total amount of positives. Finally, the F-1 score is calculated as

F1 = 2× PPV ×T PR
PPV +T PR

(3.5)

which is the same as the harmonic mean of the precision and the recall of the model. For this

multi-class classification problem we calculate the scores in two ways: globally where the

overall true positives, false positives and false negatives for the entirety of the data are used,

and a per-class average, where each metric (precision, recall, F-1) is calculated for each class

and the values are averaged.
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The normalised confusion matrices for four of the classes can be seen in Figure 3.5. A

confusion matrix is a graphical representation of the model’s ability to correctly assign a

class to a piece of new data. On the diagonal of the matrix are the correct assignments; in the

case of a two class classifier these are assigning true to new data that belongs to the class

and false to new data that does not correspond with that class (TP and TN respectively). The

other squares in the matrix are for incorrect predictions, separated into data that does belong

to the class but is incorrectly assigned to a different class (FN), and data that belongs to

a different class but is incorrectly assigned to the class we are looking at (FP). Due to the

quantity of classes in our classifier, the complete confusion matrix is too large to plot in a

way that is intelligible. Instead, we plot the boundary cases for each of the four conditions.

Figure 3.5a shows the normalised confusion matrix for the class with the highest support,

or the most commonly occurring class in the dataset. Impressively, although the class takes

up 27% of all the data (as shown in the True, True cell), none of the data points belonging

to other classes were assigned this class, demonstrating that our model does not ’cheat’ by

defaulting to assigning the most common class. On the other end of the spectrum, Figure

3.5d shows the confusion matrix for the class with the lowest support. Again, all instances

for this class were correctly identified and assigned even though the class had such a small

representation. Because of this result, our technique of random oversampling has enabled the

model to recognise a class that had very little presence in the training dataset.

Figures 3.5b and 3.5c show the classes that caused the classifier to produce the most

errors. Figure 3.5b is the confusion matrix for the class with the highest number of false

positives; in other words this class was the class that the classifier most commonly assigned

data points to when making a mistake. The class itself does not have a particularly high

support (1.835% of the data), so the errors do not arise from a problem with the balance of

the data. The quantity of data points incorrectly assigned to this class (0.1%) is also not an

especially high portion of the total error of the model and so we can conclude that there is no

specific problem with this class. In Figure 3.5c, the confusion matrix shows the assignments

for the class that is most frequently miscategorised. The class has a lower value for support

(1.3%), but it still has much higher representation than the class with the lowest support.
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Fig. 3.6 Using the tokenizers and NN to create a prediction vector and class from an input
vulnerability.

Even with this low representation, the classifier correctly assigns data to this class 92% of

the time

With these results achieved, the model is clearly a good candidate for automating the

classification of vulnerabilities into families.

3.3.2 Evaluation and Improvement

Due to the high importance of the accuracy of the model, once it was trained it was used in a

probationary fashion for three months, being used to classify the vulnerabilities but also with

the vulnerabilities checked by hand. Once the model has completed training and validation,

it is used to predict the classes of new vulnerabilities added to the vulnerability database as

shown in Figure 3.6. A vulnerability and all associated data is downloaded and passed into

the same tokenizers used to train the network, and a one-hot vector input is created. This is

put across the input of the neural network, which then outputs a label vector with the location

of the maximum value in the network corresponding to the label predicted. This vector can

then be processed in reverse by the label tokenizer to print the name of the class. Over this

period of time approximately 4,500 new vulnerabilities were added and the model continued

to perform well, with an accuracy of 99.6%. While this is still an impressive result, we would

like as close to 100% accuracy as possible so no vulnerabilities are incorrectly reported to

users. In order to boost the performance further, we apply a filter on the output that requires

a minimum amount of certainty for the vulnerability to be classified. If the certainty is too

low then instead the vulnerability is left and can be sorted by hand. In this way, the vast
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Table 3.3 Improving classifier accuracy by filtering output.

Minimum Certainty Accuracy Un-classified

0.5 0.9963 9
0.6 0.9965 32
0.7 0.9967 45
0.8 0.9969 88
0.9 0.9973 160

0.95 0.9975 220
0.98 0.9985 486
0.99 0.9989 1163

0.995 0.9994 2154

majority of vulnerabilities can be sorted automatically and so the time requirement for sorting

is significantly reduced. Table 3.3 shows the accuracy improving as stricter certainty filters

are used. The number of unclassified vulnerabilities is from the complete dataset as this

would then be the total number of vulnerabilities that required processing by hand were

the model to be used with that parameter. As such, if an accuracy of 99.94% was desired,

only outputs with a certainty of 0.995 would be used and thus 2,154 vulnerabilities of the

135,000 vulnerability database would be left to classify by hand. Even with this very strict

requirement for certainty there is a 98.5% reduction in workload for the vulnerabilities to be

classified.

Before this model, thousands of vulnerabilities needed to be assigned a class by hand in

order to simplify vulnerability scan reports. With the help of XQ, the model has been trained

and implemented, running alongside hand sorting the vulnerabilities for three months. The

assignments given by hand were compared to those given by the NN classifier. The classifier

achieved a prediction accuracy of 99.86% on the new data.

Overfitting. The very high level of accuracy of the model can be a cause for concern in

some cases as reaching an accuracy of 100% can be a sign of overfitting. We believe this is

not the case in this situation for several reasons. First, the performance of the model remains

at a similarly high level to the training accuracy when applied to the validation dataset and

when used over the probationary period. This suggests that the model is generalised and

performs well on new data. We also use filtering to boost the accuracy, but this does not
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change the workings of the model and so while the performance of the overall technique

is close to 100% accurate, the actual model is less so. Finally, the task of categorising the

vulnerabilities is not an especially complex one and so very high scores are more reasonable.

3.4 Machine Learning for Vulnerability Data and Related

Work

Machine learning tools have already been applied to vulnerability data in various ways.

Prediction of future vulnerabilities is a common use case for machine learning in the field.

Zhang et al. [124] use the Weka tool for GUI development of machine learning models

to test a variety of machine learning techniques on the vulnerability dataset in order to

predict the feature TTNV or time to next vulnerability. Edkrantz and Said [23] use support

vector machines in a similar way, but try to predict when an exploit will be available for

a vulnerability, as well as investigating the NVD and an exploit database for correlations.

Bozorgi et al. also use support vector machines to predict time to exploit, but go on to use

their predicted metrics to create a ranking of vulnerabilities based on their calculated statistics

[11]. For their preprocessing and feature generation, the majority of features they extract are

from a bag-of-words representation.

For investigation of the vulnerability data, as opposed to prediction, there is less work.

Lin et al. in 2017 use the Weka tool to try to discover associations between the vulnerabilities

in order to infer some underlying attributes of vulnerabilities. However, they ultimately

do not uncover a meaningful relationship [64]. Gawron et al. use both Naive Bayes and

NNs in order to map new vulnerabilities to parts of a CVSS vector (specifically availability,

integrity, confidentiality and attack range), and find that a reasonable level of accuracy can

be achieved using either, although the NN approach has an over-fitting problem [29]. The

authors use dropout to combat the over-fitting problem. Overall, the NN achieves slightly

better results with the final validation dataset. Huang et al. also use and recommend a deep

NN approach to vulnerability categorisation [43]. They claim that support vector machines

and Naive Bayes classifiers are less appropriate than an artificial NN approach due to the
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nature of the majority of the data in the NVD. The high dimensionality that occurs due to the

text based feature space, in conjunction with the sparsity of the resulting characteristics of a

vulnerability mean a NN approach will be more successful.

A large factor in the lack of investigation is likely due to the consensus that the NVD

is not always very accurate, being at best an ad-hoc measure [12], but at worst unsuitable

for statistical methods due to a lack of precision in the data [89, 124]. Ozment observes

that the NVD has four large drawbacks that make it unsuitable for use in statistical analysis:

"chronological inconsistency, incomplete inclusion, multiple entries for a single detection

event, and lack of documentation" [89]. This opinion is held by the experts at XQ Digital

Resilience and is shared among many security professionals [56].

Applying machine learning techniques like neural networks to text-based classification

problems has been demonstrated to be an effective technique by much of the literature. These

techniques have not yet been applied to grouping vulnerabilities by remediation process. We

have shown in this chapter that using a neural network based on the state-of-the-art [79],

vulnerabilities can be accurately classified and so this process can be used in place of hand

labelling vulnerability families.

3.5 Discussion and Further Work

With the impressive accuracy of this process, we recommend that a simple neural network can

be used to classify new vulnerabilities in a supervised learning environment. As discussed

earlier, there are many benefits to classifying vulnerabilities in this way including the

simplifying of vulnerabilities and remediation for ease of patching, fixing the problems of

multiple inclusion and incomplete inclusion, and mitigating the effects of the problems of

chronology and lack of documentation.

3.5.1 Achieving Perfection

While high accuracy is useful, ideally we want no vulnerabilities to be misclassified. Out of

the incorrect classifications that we did find, all belonged to under-represented classes. We
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demonstrate one method of improving the accuracy by only using categorisations that have a

high certainty. A future improvement to this work would be to further address this problem.

Due to all the incorrect classifications being under-represented classes, a more complex over-

sampling technique could be applied with synthetic data, using an algorithm like SMOTE as

discussed earlier. Alternatively, all under-represented classes could be grouped into a single

‘by-hand’ class, allowing the model to train to recognise vulnerabilities that are not from one

of the common classes. We speculate that using one of these methods, you could achieve

effectively 100% accuracy for the NN predictions while significantly reducing the man-hour

requirement of the labelling.

3.5.2 Unsupervised Learning

In terms of general application of machine learning to vulnerability data there is still much

to be done. We have demonstrated that supervised techniques are appropriate for labelling,

but unsupervised learning still remains a question. After the inconclusive results of Lin

et al.’s machine learning based data exploration [64], vulnerability data and any patterns

within it still have yet to be fully understood or analysed. An unsupervised classification

could demonstrate some unknown parallels between vulnerabilities, or the quantitative data

could be linked to the qualitative aspects of the definition of a vulnerability to discover a

predisposition of certain types of software or technologies to specific security problems, to

allow a more pro-active approach to building secure new technologies.



Chapter 4

Probability Propagation for Cyclic BAGs

In this chapter we investigate cycles in attack graphs, and propose a

general novel approximation technique for BAG calculation that can be

used on any graph without modification, in fulfilment of Contribution 3 in

the Abstract. This chapter is based on our paper "Cyclic Bayesian Attack

Graphs: A Systematic Computational Approach" published in IEEE 19th

International Conference on Trust, Security and Privacy in Computing

and Communications [70]. Attack graphs are commonly used to analyse

the security of medium-sized to large networks. Based on a scan of the

network and likelihood information of vulnerabilities, attack graphs can

be transformed into Bayesian Attack Graphs (BAGs). These BAGs are

used to evaluate how security controls affect a network and how changes

in topology affect security. A challenge with these automatically gener-

ated BAGs is that cycles arise naturally, which make it impossible to use

Bayesian network theory to calculate state probabilities. In this chapter we

provide a systematic approach to analyse and perform computations over

cyclic Bayesian attack graphs. Our approach first presents an interpreta-

tion of Bayesian attack graphs based on combinational logic circuits with

probabilistic inputs, which facilitates an intuitively attractive systematic

treatment of cycles. We prove properties of the associated logic circuit
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and go on to investigate the occurences of cycles, as well as using vari-

able elimination as an exact method for comparisons. We then present

an algorithm that computes state probabilities without altering the attack

graphs (e.g., remove an arc to remove a cycle). Moreover, our algorithm

deals seamlessly with all cycles without the need to identify their types. A

set of experiments using synthetically created networks demonstrates the

scalability of the algorithm on computer networks with hundreds of ma-

chines, each with multiple vulnerabilities. The algorithm is also evaluated

against variable elimination, and is then shown to calculate correct results

for examples in the literature.

4.1 Introduction

In this Chapter we exclusively consider compact attack graphs, as these are the most common

type of attack graph in the literature and are best suited for modelling how individual

vulnerabilities affect the security of the network, as discussed in Section 2.4. An attack graph

is a representation of a system and its vulnerabilities in the form of a directed acyclic graph.

It models how a system’s vulnerabilities can be leveraged during a single attack to progress

through a network. These attack graphs are very well suited for modelling network insecurity

due to vulnerabilities that exist in software and protocols, however there are limitations

for evaluating certain forms of attack, especially those that are not dependent on a specific

vulnerability. For example, attacks that do not rely on certain software being installed but

instead attack a system’s resources are not easily modelled, like in the case of denial-of-

service attacks that flood a server with legitimate requests. Another example is a password

attack, where an attacker manages to discover a password prior to attacking a network due to

a scam or carelessness by a user or administrator. With user account information an attacker

may be able to bypass certain access controls entirely, creating a new path of access not

found on the attack graph.
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In recent years, several authors have pursued to combine Bayesian statistics with attack

graphs to automatically prioritise network vulnerabilities from a probabilistic view point,

resulting in Bayesian Attack Graphs[2, 44, 77, 96, 102, 20, 22, 39]. The literature discusses

a variety of considerations when generating BAGs [75, 120], including using the Common

Vulnerability Scoring System (CVSS) to associate probabilities with vulnerabilities [26]. This

approach has received uptake in practical security analysis systems, in particular in MulVAL

[86], which automatically generate BAGs from network scans and CVSS information.

Once a BAG has been generated it can be analysed in various ways. One approach is

an exclusively static analysis, in order to identify the weakest areas of a network as well as

identify quantitatively the risk that a certain asset will be compromised in the case of an

attack. Further extensions to this kind of analysis include the introduction of attack profiles to

modify the probabilities; for example this could be done using the attack complexity metric

in the CVSS base vector to determine the ease of an attack. One approach to this is detailed

by Cheng et al. [115] along with a method to include dependency relationships between

vulnerabilities. Another application of the BAG is as a dynamic risk assessment tool where

an administrator can model new security controls and their effects on a network, as well

as dynamically analyse a deployed network’s most likely attack paths, that can be updated

dependent on information from an intrusion detection system [91].

The majority of the techniques used to calculate probabilities for BAGs require that they

do not contain ‘cycles’ but are allowed to have ‘loops’ [26, 66, 75]. Such acyclic BAGs follow

the monotonicity principle, that an attacker will never return to a previous state. However,

networks that arise in practice when using tools such as MulVAL routinely contain cycles.

These cycles arise naturally, as we will illustrate in Section 4.2.1 for a canonical example.

To deal with cycles in BAGs, the existing literature suggest to remove edges from the

graph to prevent the attacker backtracking [26, 98, 22]. There are a number of practical

drawbacks to this approach, especially when carried out outside the analysis algorithm, thus

altering the model. For instance, removing an edge can make reasoning about the graph for a

cyber security professional confusing, if the graph is examined by hand to identify specific

routes and there are edges missing for the calculations. In addition, avoiding cycles that occur
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when generating the BAG could be impractical and take a “substantial amount of time" [107]

to ensure an edge is not cycle-causing whenever a new edge is being added to the graph.

In this chapter we propose a systematic computational approach for analysing cyclic

BAGs, combining formalising models (attack graphs, BAGs and variants) and their properties

throughout. We integrate the resolution of cycles in the algorithm for computing state

probabilities of the BAG. The benefit of our approach is twofold. First, we establish a more

formal base for the discussion of attack graphs, (cyclic) BAGs and solution techniques for

BAGs, something that has not been strongly developed in the literature thus far. Secondly,

we provide a single unified solution algorithm for BAGs that resolves the problem of cycles

for any cyclic BAG, without altering the attack graph.

Our most significant contribution is a single unified solution to the static analysis of any

BAG that does not modify the graph in any way while being able to run on graphs containing

cycles. This can be used to properly analyse security threats to a network and correctly

prioritise remediation steps. Moreover, when applied to acyclic BAGs, our solution provides

exactly the same results identical with the outcome of approaches in the literature that deal

only with the acyclic case, thus is a generalisation of these approaches.

More specifically we first introduce a running example involving the attack graph for-

malisms developed in Section 2.4.1. We then introduce a novel interpretation and formaliza-

tion of attack graphs using combinational logic circuits that helps us reason about cycles more

effectively. Combinational circuits allows one to capture intuitively the notion of subsequent

visits to the same state, which we use to reason about cycles. We show that the types of

cycles studied in the literature correspond to different ways in which probabilities change as

a function of the visit count of a state.

Based on the formalization and the associated intuition, we derive an algorithm that

handles cycles in BAGs regardless of their type in a natural manner. Due to the reasons

mentioned above, the algorithm does not explicitly identify the edges in the attack graph

that should be removed. Instead, it integrates the identification of cycles with the solution

algorithm and then terminates the recursion. The algorithm is suitable for solving state
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probabilities in the BAG, and gives results for acyclic BAGs that are identical with the output

of traditional solvers for acyclic BAGs.

To study the scalability of our algorithm, we generate synthetic BAGs of various size, in a

manner similar to [77]. We conclude that the algorithm can be used with BAGs of size 15000

nodes with reasonable computation time, implying it can scale to be used with networks of at

least 750 hosts each with 5 vulnerabilities.

The rest of this chapter is organised as follows. Section 4.2 introduces the network

architecture that will be used as a running example throughout the chapter. It also provides

the motivation for our contributions. Section 2.5 introduces Bayesian networks and relates

the process of Variable Elimination for Bayesian networks to the calculation of probabilities

in acyclic BAGs. Section 4.3 shows how an attack graph can be interpreted as a deterministic

combinational circuit with probabilistic inputs. Section 4.5 presents our unified solution for

dealing with both cyclic and acyclic BAGs, and section 4.6 details the experiments run for

our solution on both common and simulated examples. Finally, our conclusions are presented

in Section 4.7.

4.2 Motivation and Problem Formulation

4.2.1 Running Example

As a motivating example for this work, we will consider a network architecture that could

be used in a small enterprise situation. It is an example that has been used in the literature

[88, 39]. The architecture is shown in Figure 4.1. The network comprises of a Database

server on the internal network. This can be accessed through an internal firewall by both

the user Workstations and the Webserver, that exists in the demilitarized zone subnet. This

Webserver connects to the Internet via an external firewall.

For this scenario, we suppose a vulnerability scan has been run on the network, revealing

three vulnerabilities that are present. There is a MySQL vulnerability on the Database server,

an Apache vulnerability on the Webserver, and an Internet Explorer vulnerability on the

Workstations. The workstations are modelled as a single host and imagined to be all similarly
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Fig. 4.1 Network architecture used as a running example.

Fig. 4.2 An excerpt of the BAG of the running example. Node colours correspond with the
components of the network presented in Figure 4.1.
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set up and patched. This is not necessarily the case however, and will depend on the specific

setup for the organisation. For this example we consider only an external attacker attempting

to gain access to hosts on the network, and as such include an origin node representing

external connections for hosts that are accessible from outside the network. Internal threats

may also be evaluated by including origin nodes connecting to hosts that an internal threat

may have access to. For example if an employee were to attempt to access confidential

information on the Database server, a node indicating access of that employees privilege

level (user, administrator, root) could be added to the corresponding Workstation node. We

consider root access to the Database server to be the goal of an attacker in this scenario, but

probabilities calculated for other nodes, for example user level access to a Workstation, can

also be considered when evaluating network security.

Figure 4.2 is the corresponding BAG for this situation, with the corresponding MulVAL

node labels listed in Listing 4.1. It is comprised of two node types; diamonds (OR nodes)

represent a state that an attacker can be in, such as a certain level of privilege with respect to

a host, and ellipses (AND nodes) are actions, such as exploiting a vulnerability or connecting

to a host. Section 2.4.1 gives a formal definition of these nodes. For clarity, all Leaf nodes are

removed so that the different routes to the Database server are easier to see, and the remaining

nodes have been numbered so they may be referred to (a description of each node on the full

graph can be found in Appendix A along with a technical explanation for the existence of

the cycle and information about the vulnerabilities in the scenario). The directed edges are

dependencies, an OR node can be reached if any of the parents are reached, whereas an AND

node can only be reached if every parent has been reached. The colours correspond to the

colours in Figure 4.1; blue is a node that relates to the Workstations, green to the Webserver,

and red to the Database server. Node 0 in white represents an attacker from the Internet, to

model an external attacker attempting to infiltrate the network. This node is assigned the

probability 1 in any calculations as we assume that an attack is taking place and want to

know the likelihood of an attacker reaching an important host in the network. Note that when

using MulVAL, we do not specify any goal nodes and as such can explore the probability an

attacker will reach any node in the graph. For larger graphs with a known goal node, the -g
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option can be invoked in MulVAL to generate an attack graph with only paths relevant to

that node.

Listing 4.1 MulVAL labels for Figure 4.2

0, "attackerLocated(internet)"

1, "execCode(dbServer,root)"

2, "RULE 2 (remote exploit of a server program)"

3, "netAccess(dbServer,tcp,’3306’)"

4, "RULE 5 (multi-hop access)"

6, "execCode(webServer,apache)"

7, "RULE 2"

8, "netAccess(webServer,tcp,’80’)"

9, "RULE 5"

11, "execCode(workStation,userAccount)"

12, "RULE 2"

14, "accessMaliciousInput(workStation,user, IE)"

15, "malicious website"

21, "compromise of website"

22, "RULE 6 (direct network access)"

23, "RULE 5"

The using the graph as an overview, it is clear there are two options available to an

attacker to begin an attack. They can either attempt to compromise the Web Server (travelling

through node 22 in green) or attempt to exploit a User Workstation (node 15 in blue).If the

attacker were to compromise the Web Server, once obtaining privileges on the machine they

can then progress to the Database Server within the internal network by continuing through

node 4, or they could connect to the Workstation and exploit the vulnerability there. In a

similar manner the attacker, having achieved a certain privilege level on a Workstation, can

attack the Database Server by moving from node 11 to node 23, or can move from node

11 to node 9 and attempt to compromise the Web Server. As such, the logic shown in the
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attack graph agrees with the reality of the network situation. While in this simple example

there is seemingly little reason to attack either the Workstations or the Web Server from the

other, if another goal were to be added that, for example, required credentials stored on the

Workstations but was only accessible from the Web Server, it would be important that these

paths are represented in the graph to fully understand all possible attacker paths.

A feature of this graph is the presence of loops that has been already studied in the

literature. For instance, the sequence of nodes (11,9,8,7,6,4,3,23,11) forms a loop (cf.

Definition 2.4.1). Another important aspect of the graph is the presence of cycles. For

instance, the sequence of nodes (14,12,11,9,8,7,6,21,14) forms a cycle due to node 21

joining back to node 14. This cycle represents the fact that there are two different ways to

gain access to a Workstation, and that once access is achieved a future state also allows a

Workstation to be compromised. A user can simply access a malicious website, shown on

the route along nodes 15 and 14, or alternatively an attacker could exploit the vulnerability

on the Webserver (nodes 22, 8, 7, 6) and then compromise a website from there using the

Webserver to gain access to the workstation.

Because this cycle can be entered into from multiple nodes (either 14 or 8), calculating

the probability of an attacker reaching node 14, or indeed any other node in the cycle, cannot

be done using basic approaches to solving BAGs. The monotonicity principle, which states

that an attacker will always increase their privilege [5], cannot be used to remove the edge

(between 21 and 14) either. This is because it is possible for an attacker to reach node 14

for the first time using the edge (21 to 14) that needs to be removed, if they enter the cycle

travelling from node 22 to node 8. As such there is no loss of privilege and the graph cannot

be simplified. Our approach performs the computation on the graph without the need for any

simplification.

A more complete discussion of the scenario and attack graph, including the specific

vulnerabilities, can be found in Appendix A.
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Fig. 4.3 A subgraph of the running example indicating a loop.

4.2.2 Variable Elimination

Based on the results of Section 2.5.1, the computation of access probabilities is equivalent

to the computation of marginal probabilities Prob(v = 1) in the associated BN. Variable

elimination (VE) is a simple and general algorithm developed in the literature that computes

exact values of these marginal probabilities (e.g., [58]). Given that the structure of the graph

(V ,E ) models the independence between random variables associated with the nodes, we

can obtain the joint distribution of the variables as the product of the conditional probability

tables ∏v′∈V Prob(v′|pa(v′)). Then the marginal probabilities are computed by taking the

sum over the unwanted variables:

Prob(v) = ∑
v′ ̸=v,v′∈{0,1}

∏
v′∈V

Prob(v′|pa(v′)). (4.1)

VE provides a procedure for the computation of the sum-product in (4.1). The main goal

of the algorithm is to specify at each iteration which tables to multiply and which variable

to sum over. The reader may refer to Koller and Friedman [58, Chapter 9] for a detailed

discussion on VE.

Proposition 4.2.1 The access probabilities of Definition 2.4.5 are equal to the marginal

probabilities of the BN of Definition 2.5.1 obtained by variable elimination in the case that

the BAG does not have any loops.

In the case that the BAG does have loops, the access probabilities will not necessarily

be equal to the marginal probabilities calculated using VE. This can be shown by taking

the first loop from Figure 4.2 and using the local probabilities shown in Figure 4.3, then
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Fig. 4.4 Logic gate representation of AND and OR nodes.

marginalizing node 8 with VE and calculating the access probability for the same node using

(2.2) of Definition 2.4.5. The former gives a probability of 0.7104 for node 8 being True;

the latter gives 0.7795. This discrepancy is due to nodes 15 and 22 being assumed to be

independent while having a common ancestor (cf. Remark 2). In other words the probability

at node 0 is being allowed to contribute more than it should to the final result, hence the

higher calculated probability. This level of discrepancy is already studied in the literature:

VE is known to give the exact values while other computational approaches give approximate

values for BAGs with loops [78].

4.3 Combinational Circuits with Probabilistic Inputs

As one of the main contributions of this chapter, we look at the attack graph from a different

perspective and model it as a deterministic combinational circuit with probabilistic inputs.

This interpretation paves the way towards including and analysing cycles directly in the

computation of access probabilities over attack graphs. Combinational circuits are mainly

studied in the literature [94, 93] from the perspective of constructing a certain distribution on

the output of the circuit by applying random inputs.

Let us enlarge the attack graph (V ,E ) with the set of nodes V = {v1,v2, . . . ,vn} to an

augmented attack graph (V̄ , Ē ) with nodes V̄ := {v1,v2, . . . ,vn,v′1,v
′
2, . . . ,v

′
n} and edges

Ē := E ∪ {(v′1,v1), . . . ,(v′n,vn)}. The augmented graph is obtained by adding one node

v′ for each node v ∈ V and connecting it directly to v. The added node v′ has the role of

modeling local probabilities at node v and renders the behaviour of this node non-probabilistic.

Assuming a delay in the computation of the value of the node, we get one of the following
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F F 1 0
F T 1-p(v) p(v)
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Fig. 4.5 A graph using definitions 2.4.4-2.4.5, with local probability in OR node C.
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Fig. 4.6 The graph of Figure 4.5 transformed into a graph with probabilities only on leaves.
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two equations for each node:

v(k+1) = ga(pa(v)(k),v′)

or

v(k+1) = go(pa(v)(k),v′),

where v(k+1) and pa(v)(k) indicate respectively the value of node v at k+1st iteration and

the values of the parent nodes of V at kth iteration. The two functions ga and go correspond to

the AND node or the OR node respectively, and are depicted in Figure 4.4 using logic gates.

Note that the Leaf nodes can be treated as either AND nodes or OR nodes.

A demonstration of enlarging an attack graph to make internal nodes behave in a non-

probabilistic way can be seen in Figures 4.5 and 4.6. Figure 4.5 is an AND/OR BAG, with

the probability table for the OR node shown to the right. We can move the local probability

to a Leaf node, and as such all the internal probability tables simply become logical AND

and OR tables. This is shown in Figure 4.6, where the equivalent BAG is shown, and the

left and central probability tables can be recognised as logical OR and AND truth tables

respectively, with the rightmost probability table containing the local probability on a leaf of

the graph.

Theorem 4.3.1 The behaviour of an attack network can be modelled as a combinational

circuit with probabilistic inputs. The value of the variables are changing according to the

equation 

v1(k+1) = g1(pa(v1)(k),v′1)

v2(k+1) = g2(pa(v2)(k),v′2)
...

vn(k+1) = gn(pa(vn)(k),v′n),

(4.2)

where k = 0,1,2, . . . models the progression of an attacker in gaining access to the nodes or

satisfying conditions along the time axis, gi ∈ {ga,go} for all i, with ga,go defined according

to Figure 4.4. The nodes v′i take values {0,1} according to the local probabilities. The

notation (k) is used for the kth iteration.
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Access probabilities are equivalent to the computation of reachability probabilities over

the augmented graph:

Prob(v = 1) = Prob{v(k) = 1 for some k}, (4.3)

where the probability is computed over all combination of values of {v′1,v
′
2, . . . ,v

′
n} ∈ {0,1}n.

Unlike previous formalisms that are not able to handle cycles, our new interpretation can

easily encode cycles without the need for any modification.

Next we prove a property of this interpretation that helps in developing our algorithm for

the computation of reachability probabilities in (4.3).

Proposition 4.3.2 The system of equations (4.2) is monotonically increasing, i.e., vi(k+1)≥

vi(k) for any k and i and any instantiation of {v′1,v
′
2, . . . ,v

′
n}.

Proof 4.3.3 Fix an instantiation of {v′1,v
′
2, . . . ,v

′
n}. First we show that the function ga is

monotonically increasing, which is the property that ga(w,v′)≥ ga(w′,v′) for any w,w′ with

w ≥ w′ element-wise. Note that ga(w′,v′) = 0 if an element of w′ or v′ is zero, which means

the inequality holds. If all elements of w′ and v′ are one, then all elements of w is also one,

which means ga(w,v′) = ga(w′,v′) = 1 and the inequality holds.

Next we show that the function go is monotonically increasing, which is the property that

go(w,v′)≥ go(w′,v′) for any w,w′ with w ≥ w′ element-wise. This holds due to the identity

go(w,v′) = 1−ga(1−w,1− v′) that the OR gate is the complement of the AND gate:

w ≥ w′ ⇒ 1−w ≤ 1−w′

⇒ ga(1−w,1− v′)≤ ga(1−w′,1− v′)

⇒ 1−ga(1−w,1− v′)≥ 1−ga(1−w′,1− v′)

⇒ go(w,v′)≥ go(w′,v′).

Now the claim follows inductively from the fact that initially v(k) = 0 for k = 0, and functions

ga and gb are non-negative and monotonically increasing. �

Theorem 4.3.4 The solution of (4.2) converges to a unique steady state in finite time, i.e.,

there is a time instance k∗ such that vi(k∗+ 1) = vi(k∗) for any i and any instantiation of

{v′1,v
′
2, . . . ,v

′
n}.



4.3 Combinational Circuits with Probabilistic Inputs 75

Proof 4.3.5 According to Proposition 4.3.2, the system of equations (4.2) is monotonically

increasing. Moreover, the space of variables in this equation is finite; each variable belongs

to {0,1} and the set of possible values for the vector with elements vi(k), i = 1,2, . . . ,n is

0,1n. In total there are 2n possibilities for such a vector. Since the system of equations

(4.2) is monotonically increasing, the system starts at some vector vi(0), i = 1,2, . . . ,n

and increases at each time step (according to the order defined on the space of vectors).

Therefore, there is a finite number of indices k such that (v1(k+ 1),v2(k+ 1), . . . ,vn(k+

1)) ̸= (v1(k),v2(k), . . . ,vn(k)). The first index k where (v1(k+1),v2(k+1), . . . ,vn(k+1)) =

(v1(k),v2(k), . . . ,vn(k)) gives the converged index of the system (after this index, the values

of vi do not change anymore). Note that this index is a function of values of (v′1,v
′
2, . . . ,v

′
n).

By taking the maximum of such indices for different values of (v′1,v
′
2, . . . ,v

′
n), we get the index

k∗ in the statement of Theorem 4.3.4. �

Theorem 4.3.6 For an acyclic BAG with the time instance k∗ defined in the previous theorem,

Prob(v(k∗) = 1) is the same as the probability computed via Variable Elimination on the

BAG. Furthermore, if the BAG does not have loops, this quantity is the same as access

probabilities in (2.2).

Proof 4.3.7 According to Equality 4.3, access probabilities are equivalent to the computa-

tion of reachability probabilities over the augmented graph; Prob(v = 1) = Prob{v(k) =

1 for some k}. Based on Theorem 4.3.4, we get that Prob(v(k)= 1 for some k)=Prob(v(k∗)=

1). Therefore, Prob(v = 1) = Prob(v(k∗) = 1), which means Prob(v(k∗) = 1) is the same as

the probability computed via Variable Elimination on the BAG. If the BAG does not have

loops, the result of variable elimination is the same as access probabilities in (2.2). �

Reachability probabilities Prob(v(k∗) = 1) are well-defined on combinational circuits

regardless of the existence of cycles. Therefore, the above theorem gives a nice direction for

generalizing computations to cyclic BAGs. In the next section, we provide an algorithmic

computation of probabilities while replacing the joint distributions with product of marginal

distributions, similar to (2.2).
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Fig. 4.8 Cycle of
type 2.
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4.4 Attack Graphs with Cycles

As we discussed in Section 4.2, most of the literature on BAG probability computations

have focused on acyclic attack graphs. This constraint ensures the probabilities on the nodes

become the chance that an attacker reaches the node at all. In other words, paths that are

enabled by access to a node should not increase the probability that that same node is reached.

We presented a running example and showed that cycles can occur in a number of situations.

Thus, this property should be extended for each node on the pathway calculations.

In the following, we first discuss types of cycles mentioned in the literature and the

methods currently used to deal with these cycles. Next we put these types of cycles into the

perspective of our computational algorithm and show how they can be interpreted over the

associated combinational circuit. We emphasise that our solution does not modify the graph

in any way while being able to run on graphs containing cycles. Our solution deals directly

with the cycles and integrate cycle resolution with the computation of state probabilities

without the need for identifying or differentiating the cycle types.

4.4.1 Handling Cycles

There are three main types of cycles in an attack graph [26, 22], and Figures 4.7 to 4.9 shows

an example of what each type of cycle could look like based on Definition 2.4.4. Cycles are
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assigned a type according to the required process for calculating probabilities on the graph

with that cycle. The first two types of cycle can be trivially dealt with by ignoring the cycle

or removing an edge. However, as discussed in [26], there is no trivial edge removal solution

for dealing with cycles of type 3. We now discuss each type of cycle in detail.

The first cycle type, Figure 4.7, can be demonstrated as removable. This is because node

2 has two prerequisites and one of them, node 5, is only fulfilled given that node 2 has been

accessed. As such node 2 can never be true and the cycle will never occur and does not aid

our understanding or modelling of the graph.

Figure 4.8 shows the second type of cycle, one that cannot be trivially removed like the

first. Node 3 can be fulfilled by either 2 or 6 meaning that node 7 is reachable. Since node 6

can only be accessed after node 3 has been accessed, it should not contribute to the likelihood

of reaching nodes 3, 4, 5 or 7. In essence the edge from node 6 to 3 could be removed from

the graph, and this is the necessary step in current acyclic BAG techniques.

An important addition to this discussion is that while edge removal does work for the

second type of cycle, it is perhaps not the preferred solution. Firstly removing the edge can

make the graph less understandable from an engineering perspective, as logically if reaching

a state allows access to another element that was a prerequisite to a previous state then that

route is possible. Also, more importantly, removing an edge, the edge from node 6 to node 3

in our example, removes information that could be important in future. If it was desired that

a new vulnerability be added to the graph, for example in such a way that it would transform

Figure 4.8 into Figure 4.9, then a legitimate route would now be missing from the graph and

from any new calculations. As such, preserving the structure of the graph is important for

both future analysis and understanding.

The third type of cycle, Figure 4.9, shows a cycle that cannot be ignored or fixed through

edge removal. It is the same in structure as the Type 2 cycle but a node in the cycle has an

extra way of being accessed, meaning there are now multiple routes to reach node 3. This

type of cycle should be dealt with by imagining probabilities are populations of attackers and

as such the quantities on the nodes should represent unique attacker numbers ensuring we do

not double count attackers moving through the graph. Practically for this simplistic example
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this will mean the probability at node 6 is the disjunction of attackers coming from node 7

and the attackers reaching node 4 for the first time, i.e. the initial population at node 1 minus

any attackers lost moving through nodes 2 and 3.

It is also possible for nested cycles to exist; for large cycles involving many nodes, a

subset of these nodes may comprise a different cycle. In general nested cycles are also

complex to deal with. If a cycle of Type 3 contained a subset of nodes that also formed a

Type 3 cycle then naturally neither the subset nor the larger cycle could be removed from

the graph. However, if a Type 3 cycle were to contain a Type 1 or 2 cycle in a subset of it’s

nodes, the smaller cycle could no longer be removed in the usual way due to the nodes in

the cycle having an effect on the other nodes in the larger cycle. As such the complexity for

dealing with a graph can increase with nested cycles.

4.4.2 Cycles in Combinational Circuits

Using the combinational circuit paradigm introduced in Section 4, we can formally describe

the different types of cycle. The finiteness of k∗ mentioned in Theorem 4.3.4 enables us to

unfold the logic circuit k∗ number of times. Let us denote

pa(vi) = {vi1,vi2, . . . ,vi,mi}.

The unfolding is done sequentially by replacing each vi j(k) in the right-hand side of (4.2)

with function gz(pa(vz)(k− 1),v′z) where vz is the node associated with vi j. Starting this

process from k∗ and repeating it k∗ times gives us a full circuit as

v1(k∗) = f1(v′1,v
′
2, . . . ,v

′
n)

v2(k∗) = f2(v′1,v
′
2, . . . ,v

′
n)

...

vn(k∗) = fn(v′1,v
′
2, . . . ,v

′
n),

(4.4)

where fi’s are associated to the unfolded circuit with a directed graph that does not have any

cycles. Unfortunately, the procedure of unfolding and probability computation over (4.4) is
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computationally intense but it is very helpful in giving an automatic characterisation of cycle

types in BAGs discussed in the literature [26, 22].

Cycles of Type 1 are seen when the steady-state value of a node is zero: vi(k∗) = 0

for some i and for any instantiation of {v′1,v
′
2, . . . ,v

′
n}. This means that the node cannot be

reached and can be safely eliminated from the analysis. Any incoming edges or outgoing

edges to this node can also be eliminated. If this elimination results in breaking a specific

cycle, that cycle is of Type 1.

Cycles of Type 2 need more elaboration and are defined with respect to nodes that

vi(k∗) = 1. Let k∗i be the earliest time that the value of node vi becomes one:

k∗i = mink{k,vi(k) = 1} for i with vi(k∗) = 1. (4.5)

It is obvious that k∗i depends on the instantiation of {v′1,v
′
2, . . . ,v

′
n} and is upper bounded by

k∗. The computation of prob(vi(k∗) = 1) requires unfolding (4.4) for k∗i times. Nodes with

the property that v j(k∗i ) = 0 can safely be removed together with their outgoing and incoming

edges. These are the nodes that do not have any influence on node vi. If such elimination

results in breaking a cycle, that cycle is of Type 2. Note that the elimination is valid when we

only need to compute access probabilities of vi (the definition is with respect to a particular

node).

The previous two types of cycles require properties that should hold for any instantiation

of {v′1,v
′
2, . . . ,v

′
n}. Cycles of Type 3 are the ones that do not fit in the definition of cycles of

Type 2. Formally, for a given node vi, a cycle is of Type 3 if there exists a node v j on the

cycle and an instantiation of {v′1,v
′
2, . . . ,v

′
n} such that v j(k∗i −1) = 1. This means node v j on

the cycle can influence the access probability of node vi, thus cannot be removed.

As discussed above, cycles of Type 3 cannot be removed and requires a particular attention

when performing the probability computations. In the next subsection, we demonstrate the

computation on the running example and provide the full algorithm in Section 4.5.
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Fig. 4.10 The cycle of the BAG presented in Figure 4.2.

Fig. 4.11 The cycle of the BAG presented in Figure 4.2 with computed access probabilities.

4.4.3 Calculating Probabilities for the Running Example

Here we discuss how a cycle’s probabilities should be calculated, as is implemented in the

algorithm in the following section. Figure 4.10 is an excerpt from the larger attack graph of

the running example presented in Section 4.2.1. It is a simple example of how a Type 3 cycle

(see Figure 4.9) can exist in a real attack graph. This excerpt is a trivial demonstration of the

simplest occurrences of cycles in real attack graphs. The cycle occurs because of the multiple

routes that can be taken to reach node 14, where an Internet Explorer vulnerability on the

Workstations can be exploited using an HTML document. A user may visit a malicious

website, represented by the route from node 15 to 14, or alternatively the Webserver could

be targeted first, and used to provide the HTML document once it has been compromised,

shown in the route through nodes 8, 7, 6, 21 and then 14.

The cycle is further complicated by the fact that the Webserver can be accessed directly

without going through the Workstations, in the route from node 22 to 8. Without the edge

e22,8, the edge causing the cycle (e21,14) could be safely trimmed as the probability of the

attacker reaching node 14 does not increase due to node 21 as node 14 is a prerequisite for

node 21 to be reached. Node 22 entering the cycle part way through, however, will increase

the probability of reaching node 14 at some point in an attack as node 15 being accessed is

no longer a requirement.

The result of calculating the probability of reaching each node, performed by disregarding

nodes that have already contributed, can be seen in Figure 4.11. In order to calculate proba-

bilities within the cycle, all the parent nodes are collected exhaustively. Their contribution
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to the probability of the node in question is then performed according to the relationships

defined by the graph, as in Definition 2.4.5, with the caveat that any node in the parent set

may only contribute once to the calculation. In this way, calculating the probability of node

12 on Figure 4.10 will involve the likelihood of any attacker reaching node 14 from node 15,

and also the likelihood of an attacker reaching node 14 from node 21, but with the removal

of node 15’s contribution to the probability of reaching node 21 as node 15 has already been

included. In this way each nodes probability can be calculated without the removal of any

edge, as a node causing a loop in one place may contribute to probabilities elsewhere on the

graph and as such should only be disregarded in specific calculations where it’s effects have

already been calculated. The ability for a node to be present in multiple paths but contribute

differing amounts demonstrates the idea that a recursive algorithm that identifies each node’s

contribution to a path would be a correct solution to this problem, preventing any node from

contributing multiple times to the same path.

4.5 Calculation on Cyclic BAGs

4.5.1 Algorithmic Inference

We have created an algorithm to propagate probabilities through an attack graph and thus

generate a BAG based on the probabilities assigned at the leaves of the graph. The algorithm,

shown in Algorithm 1, works by detecting all attack paths that lead to a node. It moves

through each step in each attack path collapsing cycles by the method previously discussed

(prevention of multiple instances of the same node from contributing to the probability

multiple times) and calculating probabilities using the recursive conjunction and disjunction

functions. Probabilities on a path are calculated fully for each node as the chance of a node

being reached, but will not necessarily reflect its contribution to the proceeding nodes. In

essence this means that when a node is being calculated, all the nodes that contribute to this

probability are identified and only allowed to contribute to the final calculation once, thus

ensuring that no nodes in a loop inflate the final probability by being counted multiple times.
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The order of calculation for the nodes does not matter and can be performed in a random

order as contributions to a probability are explicitly calculated for each node every time.

The input to the algorithm is the graph with local probabilities. The pop(int) function

used in the Disjunction and Conjunction functions in Algorithm 1 is a list function that

returns the item, in this case a probability, at the given list index then removes it from the list.

This algorithm achieves a calculation for node probabilities that makes sense given

the context of network security without the normal requirement for removing edges from

the graphs. This means that attack routes on graphs can be better understood while also

improving the versatility of graphs as extra portions can be added and the new nodes can be

calculated correctly as no edges have been removed.

4.5.2 Complexity of the Algorithm

The complexity of Algorithm 1 can be calculated as O(n×maxv |Pre(v)|) where n is the

number of nodes in the attack graph. In the worst case, when every added node is required to

be present in the calculation of every other node, the complexity of the algorithm is O(n2). If

the cyclicity of the graph is known, then the complexity becomes O(n(cn+maxv |Pre(v)|))

where 0 ≤ c ≤ 1 and c is the portion of nodes that are in at least one cycle.

4.5.3 Selection of Local Probabilities

In order to infer the access probabilities for the nodes passed to the algorithm, an initial set

of local probabilities must be provided. These were originally generated from a simplistic

evaluation of the ease to exploit a vulnerability (with non leaf local probabilities set to 1 as

discussed earlier in Section 3.2). In order to determine the ease of access, the CVSS vector

[108, 73] for the vulnerability is collected from NIST’s National Vulnerability Database

(NVD). Currently the Access Complexity (CVSSv2) or the Attack Complexity (CVSSv3) is

used to define the probability of transitioning to a state. This is on a scale of Low, Medium

and High for version 2 and Low and High for version 3, with High meaning there is a great

deal of skill or timing required to exploit the vulnerability and as such is associated with
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Input: Attack Graph; nodes v in V with local probability p(v)
Output: Bayesian Attack Graph; nodes v in V with access probability P(v)
for v ∈V :

P(v) = RecursiveProbability(v,v)
def RecursiveProbability(node v, origin node vorigin):

if v ∈Vl :
return p(v)

else:
for vpa ∈Vparents :

if vpa is vorigin :
append 0 to p_list

elif vpa has been visited already :
if vpa ∈Vl :

append p(vpa) to p_list
else:

append 0 to p_list
else:

append RecursiveProbability(vpa, vorigin) to p_list
if v ∈Va :

return Conjunction(p_list)
if v ∈Vo :

return Disjunction(p_list)

Disjunction(Probability List P) /* Calculating the disjunctive
probabilities for OR nodes */

Input: List of probabilities
Output: Disjunction of the probabilities
p = P.pop(0)
if length of P is larger than 1 :

recursive_p = Disjunction(P)
p = p + recursive_p - recursive_p × p

elif length of P is equal to 1 :
return p + P[0] - p×P[0]

else:
return p

return p

Conjunction(Probability List P) /* Calculating the conjunctive
probabilities for AND nodes */

Input: List of probabilities
Output: Conjunction of the probabilities
p= P.pop(0)
if length of P is larger than 1 :

recursive_p = Conjunction(P)
p = recursive_p × p

elif length of P is equal to 1 :
return p × P[0]

else:
return p

return p
Algorithm 1: Propagating probabilities through the attack graph. The conjunctive and
disjunctive functions correspond to calculating probabilities on OR and AND nodes,
respectively.
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Table 4.1 Complexity scores and their local probabilities.

Vector Score CVSS Version Local Probability

Low/L 2,3 0.71
Medium/M 2 0.61
Unknown - 0.61
High/H 2,3 0.35

the lowest probability scoring. A demonstration of how these values could inform the local

probabilities is shown in Table 4.1.

The local probabilities are taken from the contribution that the NVD gives to a vector

score when calculating the whole CVSS score. While this is a useful approximation, it is very

abstract and ignores a great deal of the information that can be gleaned from the information

available about the vulnerabilities. A discussion of this can be found in Section 2.5.3.

4.6 Experimental Results

4.6.1 Simulating Networks

In order to test this algorithm and other procedures on data, we simulate a variety of networks

by producing attack graphs with a range of adjustable variables using our own simulator,

which can also generate attack graphs with cycles. The graph is built out of nodes generated

with a Leaf:AND:OR ratio of 50:40:10 in order to model the fact that approximately half

a common attack graph comprises of configuration Leaf nodes, and there are fewer nodes

representing states than there are representing attack steps (this is due to the fact that multiple

different AND nodes can lead to the same OR node i.e. many actions can lead to the same

state). The specific numbers are derived from the average ratios on our attack graphs built

from real networks, but with the OR node count rounded up to increase the model complexity

to represent more of a worst-case scenario in terms of computation.

The simulator then builds a random attack graph using these nodes with a specifiable

quantity of cycles; it is given a percentage of cycles to artificially add, and ensures that the

given percentage of OR nodes are involved in cycles (as this is where cycles originate, from



4.6 Experimental Results 85

the state of privileged access that allows potential future access to a vulnerability that has

already been exploited). Finally the probabilities for the vulnerabilities are sampled randomly

from the Low/Medium/High levels shown in Table 4.1. A real attack graph can be seen in

Figure 4.12a alongside a simulated attack graph of the same size, in Figure 4.12b. In general

we find that the simulated graphs resemble actual attack graphs with very high consistency.

Using the same value for cyclicity and copying the size of a real graph, a virtual graph created

using our process will have only up to a ±5% difference in the number of edges. This fact,

alongside comparison by eye and the similar run times given when running Algorithm 1 on

real and simulated graphs, indicates that the graph simulator is a good approximation for

running on real attack graphs, while having the benefit of being able to produce graphs of

any size without requiring a time consuming vulnerability scan or a network being set up.

Simulation Algorithm and Design

The simulator can generate a graph with the numbers of each node type explicitly declared

and an exact quantity of cycles, however in general it is only provided with a graph size

and a value for cyclicity. The full process is described in Algorithm 2. The function

RandomProb() returns a randomly sampled probability for a node, RandomSelect() makes

a random selection of one node from a list, and CollectParents() collates all of a node’s

predecessors. The algorithm generates numbered nodes for each node type up to the specified

graph size. The AND nodes are then assigned to a randomly selected OR node, as an OR

node will always lead to at least one state, and a random amount of Leaf nodes, between two

and four as in general AND nodes have two requirements but may have up to four. The OR

nodes are then randomly assigned to be parents of AND nodes, as some exploits require a

specific state of privilege in order to be executed. For each edge added it is first evaluated to

check if it causes a cycle, and if it does it is only added if there are cycles left in the cycle

counter. Once all of the edges of the base graph have been added, cycles are then randomly

included and the cycle counter decremented until the counter reaches 0. The attack graph is

then written to a file.
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4.6.2 Application to Simulated Networks

In order to test the practicality of the algorithm, it is implemented in Python in order to run it

on a variety of simulated graphs, along with like-real networks and common examples in

literature. Attack graphs were simulated in increasing sizes, from 500 to 15000 in step sizes

of 500, and in four different groupings; ‘0% cyclic’ where there are no cycles in the graph,

‘5% cyclic’ where five percent of OR nodes are involved in cycles, ‘25% cyclic’, and ‘100%

cyclic’ where every node, excluding Leaf nodes, is included in a cycle. Every situation was
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Fig. 4.12 Real (top) and simulated (bottom) attack graphs with 200 nodes
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Input: Number of nodes N, cyclicity C
Output: Attack graph of size N and cyclicity C
leaves = max(2,(N*0.5))
ands = max(1,(N*0.4))
ors = max(1,(N*0.1))
cycles = ors×C/100
n = 1
for i ∈ leaves :

lea f Dict[n] = Node(n,LEAF,RandomProb())
n += 1

for j ∈ ands :
andDict[i] = Node(n,AND,1)
n += 1

for k ∈ ors :
orDict[i] = Node(n,OR,1)
n += 1

nodes = ors∪ands∪ leaves
edges = []
l = 1
for node ∈ ands :

orNode = RandomSelect(ors)
append edge (node,orNode) to edges
for i in range(RandomInt(2,4)) :

if l < leaves :
append edge (l,node) to edges

else:
append edge (RandomInt(1,leaves),node) to edges

for node ∈ ors :
for i in range(RandomInt(3)) :

andNode = RandomSelect(ands)
if (node,andNode) /∈ edges ∧ andNode /∈ node.Parents :

if node /∈ collectParents(andNode) :
append edge (node,andNode) to edges

elif cycles > 0 :
append edge (node,andNode) to edges
cycles -= 1

while cycles > 0 :
orNode = RandomSelect(ors)
parentList = CollectParents(orNode)
remove Leaf nodes from parentList
cycleNode = RandomSelect(parentList)
if (orNode,cycleNode) /∈ edges :

append edge (orNode,cycleNode) to edges
cycles -= 1

return AttackGraph(nodes,edges)
Algorithm 2: Process to generate attack graphs of specifiable size and cyclicity. The
function CollectParents() is a recursive function that populates and returns a list of
all the predecessors of the given node.
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Fig. 4.13 Time performance of Algorithm 1.

simulated five times, and the computation time required to complete the algorithm was timed.

These results are shown in Figure 4.13. Plotted are the average values for each amount of

nodes, as well as range bars for the minimum and maximum values. The reasoning for the

choices of groupings is as follows. The ‘0% cyclic’ group, or acyclic group, allows direct

comparison to standard literature methods for acyclic graphs. ‘5% cyclic’ aligns with the

average cyclicity across our real networks, while ‘25% cyclic’ is the maximum cyclicity we

have found in real graphs, rounded up to the nearest 5, so these groups represent how well

we expect the algorithm to perform in general along with an approximate realistic worst

case. Finally ‘100% cyclic’ shows the largest possible penalisation for including cycles in

computation.

As can be seen, the algorithm can generate probabilities for graph sizes of at least 15000

nodes in the worst possible case in a moderate time frame, around 155 minutes. Thus

the algorithm is suitable for use on medium-large sized networks, especially if modeling

techniques like consolidating similar work stations into singles nodes is used. By way of
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Fig. 4.14 Impact of cyclicity on the computation time.

comparison, an enterprise with 300 machines, each with an average of 5 vulnerabilities,

would create a graph of around 6000 nodes. In a worst case situation regarding cycles, the

probabilities could be calculated in approximately 600 seconds.

The effect of increasing the percentage of cycles at fixed node quantities was also

examined, with results displayed in Figure 4.14. Graphs were simulated with 1000, 3000

and 6000 nodes, with the percentage cycles being part of cycles is increased from 0 to 100

in steps of 10. The contribution of the cycles to the computation time increases with the

quantity of cycles on the graph, up to an approximate 75% increase in computation time in

the worst case in the ranges of nodes that we experimented with. This can be seen in both

Figures 4.13-4.14 by comparing the results for 0% cyclicity with 100%. Including cycles

seems like a somewhat expensive addition to graphs; however when any changes are to be

modelled there will be no requirement to recompute the graph and as such the upfront cost

will mean that only small portions of the graph will have to be computed after changes are
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made as the structure of the graph will be correct. In other words the upfront increase in time

significantly reduces the cost of future adaptations and analyses of the graph.

4.6.3 Application to Realistic Networks

To confirm the applicabality of the results to realistic scenarios, we have implemented the

algorithm on a collection of realistic networks. These are networks designed to replicate

common real-life networking implementations for testing and modelling purposes. They are

set up as a combination of virtual and real assets that function as an enterprise network, with

different numbers of hosts and different vulnerabilities on each machine. These network

scenarios return the same scan results that one would expect from running a vulnerability

scan on the real network equivalent of the scenario.

We have considered three networks with respectively 10, 15, and 18 hosts; the first net-

work comprises of a Linux database and workstation, an iOS device, a peripheral device that

uses SMB and a Windows server, with all the remaining hosts being Windows workstations.

The workstations have various commonly used applications installed (Chrome, iTunes, JDK)

and are in various patching states. The other networks have similar enterprise topologies,

see Appendix B for more details. Each network is scanned using a modified version of the

OpenVAS vulnerability scanner [35], and then an attack graph is generated for each using

MulVAL [86]. The number of nodes in the attack graphs generated from these networks

is 1053, 2234 and 2342; all have naturally occurring cycles. This gives us attack graphs

that are roughly 5% cyclic. The mean runtime of our algorithm is 3, 11, and 12 seconds,

respectively. This runtime confirms the quantities reported in Figure 4.13: the simulations

for attack graphs with 5% cyclicity and 1000 and 2000 nodes have mean runtimes of 2 and

18 seconds respectively when run on the same machine used for the realistic networks.

4.6.4 Evaluation on Examples from Literature

To demonstrate the validity of our method we have applied Algorithm 1 on two common

attack graphs from the literature; an acyclic graph generated from a scenario presented by



4.6 Experimental Results 91

Wang et al. [114], and the cyclic example in Figure 4.2 that was created by Ou et al. [85]

and had probabilities calculated by Homer et al. by creating a larger equivalent graph that is

acyclic [39]. Once the acyclic example was converted from a plain BAG into an AND/OR

BAG, our algorithm was run on both examples. The results were identical to the expected

results in the other papers, demonstrating that this algorithm gives correct results for common

network scenarios and generalises them to the larger class of cyclic BAGs.

4.6.5 Acyclic Example

The network scenario, in Figure 4.15, is moving from a Workstation to root access on a

Database server through a Firewall and possibly via a File server depending on the attack

path. There are three services running on Machine 1, the file server, and two services running

on Machine 2, the target Database server. An attack graph has already been generated for

this scenario but using a different schema, shown in Figure 4.16. Here it can be seen that

there are three possible paths for achieving the goal of root access to Machine 2; the attacker

can either edit the trusted host list on Machine 2 to gain enough access to the host in order

to run the buffer overflow attack, or the attacker can attempt to reach the same privilege

by changing the relationship between Machine 1 and Machine 2, either by initially editing

Machine 1’s trusted host list or by attempting a buffer overflow attack against Machine 1.

First, an AND/OR BAG was generated from the plain BAG in Figure 4.16 using the

principles discussed in the Section 2.4.2. This involves moving all less than one local

probabilities to the leaf nodes allowing easy logical calculation of the marginal probabilities

at each node. The algorithm was then run on the new attack graph with the same probabilities

associated with the vulnerabilities as allocated in the original example to generate a new

Bayesian attack graph. This new graph, Figure 4.17, shows the same probabilities for each

part of the graph. This demonstrates that the algorithm is correct for this common acyclic

graph example.
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Fig. 4.15 Example of a network taken from [114].

4.6.6 Cyclic Example

The probabilities are calculated and shown in Figure 4.18 by applying Algorithm 1 to the

running example presented in Section 4.2.1 and described in Appendix A. This graph has all

the nodes displayed, including the leaf nodes that were trimmed for clarity earlier.

4.6.7 Comparison with Exact Methods

In order to verify and compare our results on acyclic graphs, we implemented the Variable

Elimination algorithm of Section 4.2.2 on the simulated graphs that are acyclic. Due to the

limitations of Variable Elimination, we implemented it on a series of small simulated graphs

from 2 to 26 nodes, and compared the results with our algorithm. The average error of the

quantities computed by our algorithm is ±0.011.

As can be seen in Figure 4.19, Variable Elimination despite being exact scales very poorly

with one run on a 24 node graph taking approximately the same amount of time as a 11500
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Fig. 4.16 BAG of the network of Figure 4.15 which is acyclic [114].
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Fig. 4.17 Converted graph from Figure 4.16 using the equivalence shown in Section 2.4.2
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Fig. 4.18 Results of Algorithm 1 applied to the cyclic running example.
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Fig. 4.19 Comparing computational time of our algorithm with Variable Elimination on
acyclic graphs.
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node run with our algorithm. Due to this poor scaling, the fact that Variable Elimination

cannot run on cyclic graphs, and the low average error from our algorithm, our approach is a

much better choice for all practical applications.

4.7 Conclusion

In this chapter we have created and demonstrated a systematic approach to analyse Bayesian

attack graphs, including those with cycles. Since cycles naturally arise in BAGs that are

generated from scanning software (e.g., using MulVAL), it is imperative to establish practical

approaches to handle cyclic BAGs. We presented a formal treatment of the problem domain

and introduced a solution algorithm that can be applied to any BAG, cyclic or acyclic. This

results in a method by which Bayesian attack graphs can be automatically evaluated with

respect to what states are available to an attacker and how easily they are reached. Our

solution deals directly with the cycles and integrate cycle resolution with the computation

of state probabilities without the need for identifying or differentiating the cycle types. Our

approach does not alter the attack graph by removing edges to make it acyclic. Instead, we

preserve all the information in the graph, and no potential attack routes are lost when new

data is added to the graph.

Our computational approach is currently restricted to single state probabilities and cannot

compute joint probabilities for multiple nodes. A solution that allows the computation of joint

probabilities is a next step to further advance the presented approach to cyclic BAGs. Future

work will also involve extending the local probability assignment to have a more meaningful

value; a temporal metric can be included given that the longer a vulnerability is known about

the more likely an exploit has been published for it, increasing the ease of an attack. Scaleable

solution algorithms then need to be identified to automate the analysis of these graphs to

prioritise fixing of vulnerabilities and identifying most vulnerable network hosts, with regard

to their criticality to an enterprise. Finally, although the proposed algorithm can handle large

models, for yet larger networks more approximate solutions could be considered.





Chapter 5

Stochastic Simulation Techniques for

Inference and Sensitivity Analysis of

Bayesian Attack Graphs

A vulnerability scan combined with information about a computer network

can be used to create an attack graph, a model of how the elements of a

network could be used in an attack to reach specific states or goals in the

network. These graphs can be understood probabilistically by turning them

into Bayesian attack graphs, making it possible to quantitatively analyse

the security of large networks. In the event of an attack, probabilities

on the graph change depending on the evidence discovered (e.g., by an

intrusion detection system or knowledge of a host’s activity). Since such

scenarios are difficult to solve through direct computation, we discuss and

compare three stochastic simulation techniques for updating the proba-

bilities dynamically based on the evidence and compare their speed and

accuracy. From our experiments we conclude that likelihood weighting is

most efficient for most uses. We also consider sensitivity analysis of BAGs,

to identify the most critical nodes for protection of the network and solve

the uncertainty problem in the assignment of priors to nodes. Since sensi-
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tivity analysis can easily become computationally expensive, we present

and demonstrate an efficient sensitivity analysis approach that exploits a

quantitative relation with stochastic inference. These processes enable us

to quantitatively determine the vulnerabilities that have the largest effect

on the security of important hosts in a network, and so allow for the rec-

ommendation of a prioritisation of which vulnerabilities to fix, improving

the efficiency of the vulnerability remediation process.

5.1 Introduction

Attack graphs are models of how vulnerabilities can be exploited to attack a network. They

are directed graphs that demonstrate how multiple vulnerabilities and system configurations

can be leveraged during a single attack in order to reach states in the network that were

previously inaccessible to the attacker. An example of such a state would be root privilege

on a database that contains sensitive information.

BAGs are particularly promising as a dynamic risk assessment tool where an administrator

models new security controls and their effects on a network. A network’s most likely attack

paths and most vulnerable hosts can be dynamically analysed, and this can be updated

dependent on information from an intrusion detection system [91].

Well-defined (that is, acyclic) BAGs can be solved using computational techniques

that are well-known from the theory of Bayesian Networks [81]. In recent work systematic

approaches have also been proposed for BAGs that have loops and cycles, e.g., [70]. However,

direct computational approaches become prohibitively slow if the number of nodes in the

BAG is large, and can have large space requirements due to an increase in the size of the

cliques in the graphs and their probability tables. Therefore, it becomes important to consider

stochastic simulation (Monte-Carlo) techniques.

In this chapter we focus on performing inference and sensitivity analysis on BAGs using

stochastic simulation. We do this for dynamic scenarios that do not lend themselves for exact

computation, namely scenarios that include observed evidence in the BAGs. We discuss
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how any evidence or alterations to the network can be included in the BAG analysis. That

is, we create a dynamic model of the security of the network that can be used to deduce an

attacker’s most likely next move and their route thus far, as well as quantitatively evaluate

and compare the effectiveness of different security controls and changes to the network.

While inference for BAGs using stochastic simulation has been performed by others

to investigate potential uses [84, 6], there has to date not been a comparison of different

techniques’ performances on BAGs. In this chapter we employ three stochastic simulations

techniques, probabilistic logic sampling (PLS), likelihood weighting (LW), and backward

simulation (BS). We evaluate the performance of these techniques in their speed and accuracy

as well as how they perform with different quantities of evidence to be included in the graph

and different sizes of graph.

The primary outcome of our work is a recommendation of the most efficient simulation

technique to use for inference in attack graphs. The recommendation is to use likelihood

weighting, which performs well for both low and high evidence scenarios. Moreover, we

establish a quantitative relation between stochastic inference and sensitivity analysis of

BAGs. We discuss how the methods for including evidence in the graphs can also be used

to measure the graphs sensitivity to each vulnerability in the network, and develop a fast

approach to calculate these sensitivities without requiring many simulations or any analysis

of distributions.

The rest of this chapter is organised as follows. Section 5.2 introduces the running

example and lists the problem statements that is the motivation for the work. Section 5.3

introduces and discusses the three sampling techniques that are implemented and their

accuracy. Section 5.4 then evaluates the performances of these techniques with regard to

accuracy, amount of evidence and size of graph. Section 5.5 introduces our measure of

sensitivity and its importance. Finally Section 5.6 compares this work with the current

literature available and Section 5.7 presents our conclusions.
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Fig. 5.1 The complete BAG of the small enterprise network presented in Figure 4.1.

5.2 Motivation and Problem Statement

We consider a small enterprise network as a standard example used in the literature [88, 39,

70] to motivate and demonstrate the use of the sampling techniques discussed in this chapter.

A full description of the example network, as well as the creation of the corresponding attack

graph and the definitions of each of the nodes in the graph can be found in Section 4.2.1. The

complete attack graph, including the LEAF nodes, is shown in Figure 5.1.

The following problem statements describe the three main goals that are to be achieved

through use of inference on attack graphs.

Problem 1 (Access Probabilities) Consider an attack graph (V ,E ) with local probability

function p : V → [0,1]. Compute Prob(Xk = 1) for any k ∈ V . This quantity is called the

access probability of the node k and is simply denoted by P(Xk). It will give the likelihood

that an attacker will reach node k in an attack and will depend on the local probability

function p and the structure of the attack graph.

Problem 2 (Inference) Suppose some evidence of an attack is known in the form of Z = z,

where Z ⊂ V is the set of random variables associated to the nodes for which we have the

respective evidence values z. Compute the likelihood that the attacker gain access to node

k ∈ V given such an evidence: P(Xk|Z = z).

Problem 3 (Sensitivity Analysis) The local probability function p : V → [0,1] is often

estimated based on prior knowledge or data on the network. Compute the sensitivity of

access probabilities P(Xk) and conditional probabilities P(Xk|Z = z) to the values p(v)
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Fig. 5.2 A small attack graph, with local probability in OR node C.

for any v ∈ V . If p(v) has a distribution, compute an interval for these quantities with a

confidence bound.

We provide stochastic simulation techniques to answer Problems 1 and 2 in Section 5.3,

and present a novel solution to Problem 3 in Section 5.5.

5.3 Sampling Techniques

5.3.1 Graph Decomposition

In order to simplify the process of simulation for attack graphs, we can move all stochastic

behaviour to LEAF nodes and in doing so make the rest of the graph purely deterministic.

This can be achieved by enlarging the attack graph and moving local probabilities of non-

LEAF nodes onto a new LEAF node with the same local probability. This process can be

seen in Figures 5.2-5.3, where the node C will have the same behaviour in both figures. This

is only required when non-LEAF nodes have local probabilities which is not the case for

graphs we create but is found in the literature. Full demonstration of the equivalence is in our

previous work [70].

5.3.2 Generating Samples

Using this formalism of BAGs a single attack can be modelled as the array of LEAF nodes

being allocated values corresponding to ‘achieving’ something in an attack such that if the
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Fig. 5.3 The equivalent graph of Figure 5.2 with probabilities only on leaves.

node is given the value 1 then the exploit has worked or a condition has been met, and if the

value is 0 then an exploit or condition has failed. With these values the reach of the attack

can be calculated, as the internal (non-LEAF nodes) in the graph are all deterministically

dependent on the LEAF nodes. In this way, with a specific distribution of LEAF nodes a

state on the graph is either accessible or inaccessible. With the example of Figure 5.1, a

single attack configuration would equate to all the rectangular LEAF nodes being set as y or

n, determining the states of the rest of the nodes in the graph. The attackers ability to reach

an important state, like the ability to execute code on the database server at node 1, becomes

either y or n.

We prepare the graph by assigning the LEAF nodes a series of prior distributions based

upon factors like the ease of exploitation of a vulnerability. We then sample from these to

create a single attack simulation with the LEAF nodes being 1 or 0 according to a random

sample of their distribution, and all other nodes being assigned values deterministically from

their tables.
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5.3.3 Probabilistic Logic Sampling

For our attack graphs, probabilistic logic sampling (PLS) is performed by first sampling

a configuration of LEAF nodes. A random number is generated between 0 and 1, if the

number generated is less than the prior probability assigned to the LEAF node then the node

is assigned a 1 (or y), if it is greater then the node is set at 0 (n). This is repeated for all LEAF

nodes to create the configuration. When the configuration has been generated it can be used

to prescribe states to the rest of the nodes in the graph. These states are then recorded as an

array of 1s and 0s. This process is then repeated until Ns configurations have been generated

and evaluated. The recorded arrays can be used to estimate the probability distributions of

the nodes in the graph, with N(X=1)
Ns

being the estimated probability that an attacker will gain

access to a particular node:

P(X)≈
(

N(X = 1)
Ns

,
N(X = 0)

Ns

)
(5.1)

The simplest way to include evidence with this technique is by discarding any samples that

do not conform to the evidence provided. As such one is left with a subset of the original Ns

simulations and can calculate the new probabilities in a similar way to equation (5.1).

In order to estimate the probability distribution of the kth variable with regard to the new

evidence, P(Xk|Z = z), using Ns samples with PLS we use algorithm 3 modified from [81].

Here Z is the variables or nodes that we have evidence for, sp(Xk) is the state space of

variable Xk, and z is the evidence that has been provided for these nodes. This would be in

the form of a list of nodes that we know have been accessed created by an intrusion detection

system, or a list of nodes that we are modelling as not accessed if we are comparing different

security controls and their affect on the network.

5.3.4 Likelihood Weighting

Likelihood weighting (LW) is a method to deal with the problems of PLS for dealing with

evidence, namely the inefficiency of generating samples that will be discarded if they conflict

with evidence. Instead, for LW, only non-evidence variables are sampled from and as such
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Input: Set of nodes V = {1,2, . . . ,n}, local probabilities p : V → [0,1], number of
simulations Ns, evidence Z = z

Output: Conditional likelihoods P(Xk|Z = z) for all k ∈ V
1. Let (X1, ...,Xn) be the associated Boolean random variables.
2. Initialise N(Xk = xk) = 0 for all xk ∈ {0,1} and all k ∈ V .
3. for j = 1 to Ns :

a) for i = 1 to n :
Sample a state xi for Xi using P(Xi|pa(Xi) = π), where π is the configuration
sampled for pa(Xi)

b) If x = (x1, ...,xn) is consistent with z, then N(Xk = xk) := N(Xk = xk)+1 for all
k ∈ V , where xk is the sampled state for Xk

return Prob(Xk = xk|z)≈
N(Xk = xk)

∑x∈sp(Xk)N(Xk = x)
Algorithm 3: Performing PLS to approximate a distribution given some evidence.

no simulations are discarded. However this approach causes sampled variables to ignore

evidence that is not present in their ancestors, and so an extra weighting has to be introduced.

This weighting is equivalent to the probability a certain state will arise given the evidence

provided.

Essentially we want to sample from the following distribution,

P(V ,z) = ∏
X∈V \Z

P(X |pa(X)′, pa(X)′′ = z)

× ∏
X∈Z

P(X = e|pa(X)′, pa(X)′′ = z)
(5.2)

where pa(X)′′ are parent nodes that have been instantiated by evidence, and pa(X)′ have not.

By fixing the evidence variables then taking the sample, we instead are using

Ps(V ,z) = ∏
X∈V \Z

P(X |pa(X)′, pa(X)′′ = z) (5.3)

So to rectify this we weigh each sample taken using

w(x,z) = ∏
Z∈Z

P(Z = z|pa(X) = π) (5.4)
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where π is the configuration of the parents specified by x and z. In order to estimate

P(Xk|Z = z) using Ns samples, we use Algorithm 4 as defined in [81].

Input: Set of nodes V = {1,2, . . . ,n}, local probabilities p : V → [0,1], number of
simulations Ns, evidence Z = z

Output: Conditional likelihoods P(Xk|Z = z) for all k ∈ V
1. Let (X1, ...,Xn) be the associated Boolean random variables.
2. for j = 1 to Ns :

a) w := 1
b) for i = 1 to n :

- Let x’ be the configuration of (X1, ...,Xi−1) specified by e and previous
samples

- if Xi ̸∈ Z :
Sample a state xi for Xi using P(Xi|pa(Xi) = π), where pa(Xi) = π is
consistent with x’

else:
w := w ·P(Xi = zi|pa(Xi) = π), where pa(Xi) = π is consistent with x’

c) N(Xk = xk) := N(Xk = xk)+w, where xk is the sampled state for Xk

return P(Xk = xk|z)≈ N(Xk=xk)
∑x∈sp(Xk)

N(Xk=x)

Algorithm 4: Performing likelihood weighting to approximate a distribution given
some evidence

This is an improvement on PLS as it removes the inefficiency of discarding evidence,

instead requiring the calculation of a weight for each simulation. A large number of samples

may still be required, however, if the evidence provided is unlikely and therefore the differ-

ence between equations 5.2 and 5.3 is large. This means the weighting would in general be

very small and as such reaching an amount of error that is not too large may require a large

computational time.

5.3.5 Backward Simulation

The final technique is based on the Backward Simulation (BS) method devised by Fung and

Del Favero [28]. The primary difference between this and other techniques is that simulation

runs originate at the known evidence and the simulation is run backwards. Once this process

has terminated the remaining nodes are forward sampled in the standard way. The reason for

this is to rectify the slow convergence caused by unlikely evidence.
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The backward sampling procedure begins at an evidence node and samples for the parents

of the node using the distribution

Ps(pa(Xi)
′) =

P(Xi|pa(Xi)
′pa(Xi)

′′)

Norm(i)
, i ∈ Vb, (5.5)

where pa(Xi)
′ are the uninstantiated parents of Xi and pa(Xi)

′′ are the instantiated parents.

The normalising constant Norm(i) is calculated as

Norm(i) = ∑
y∈XP(pa(Xi)′)

P(Xi|y,Xpa(Xi)′′). (5.6)

with XP(pa(Xi)
′) as the set of all possible cases for the uninstantiated parents of node Xi.

For our case of n uninstantiated parents with binary values, this set has size 2n. Once all the

ancestors of evidence nodes have been sampled, the forward sweep samples the remaining

nodes as

Ps(Xi) = P(Xi|pa(Xi)), for all i ∈ V f . (5.7)

The weight for the simulation can be computed as the product of the normalisation constants

along with the likelihood of nodes that were set by backwards sampling but were not sampled

from themselves

w(x,z) = ∏
i∈V \VS

P(Xi|pa(Xi)) ∏
j∈Vb

Norm( j). (5.8)

As a form of likelihood weighting, BS is designed to cope better with very low-likelihood

evidence. A large part of the computational cost of the algorithm comes from the calculation

of the normalisation constants, which grows exponentially with the number of predecessor

nodes. We would expect this technique to perform similarly to likelihood weighting for few

evidence nodes but be an improvement when there are many nodes, as is demonstrated in the

paper presenting the technique [28]. However the structure of the graph is of great importance

and as such it is difficult to know beforehand which of the techniques will perform better for

the application of BAGs.
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5.3.6 Confidence Bounds and Convergence

Since all these techniques are sampling from the same distribution once the corrective factors

are applied, the standard error can be calculated in a similar way for each. As each trial is

random and independent from the last, using the central limit theorem it can be shown that

σp(x) =

√
P{x}(1−P{x})

N
(5.9)

Fig. 5.4 Time against average node error for all techniques for one and three evidence nodes.

All three of the methods also have a guarantee of convergence as shown by Jensen and

Nielsen [81] for PLS and LW, and Fung and Del Favero [28] for BS. As all three techniques

are forms of importance sampling they inherit the convergence properties of importance

sampling, formally proven by Geweke [32].
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5.4 Comparison

For the comparison of these techniques, each is first run on a 200 node attack graph from a

small enterprise network with varying amounts of evidence. Figure 5.4 shows the increase

in time (in wall clock seconds) required for improving the accuracy of results for situations

when one and three evidence nodes have been included (the average time over thirty runs has

been plotted; the error bars are too small to be drawn for this graph). As can be seen even

with just one piece of evidence PLS performed poorly compared to the other methods, with

three evidence nodes taking considerable amounts of time and runs with more than three

evidence nodes timing out. The other two methods are run with five and ten evidence nodes

provided, and the results for this can be seen in Figure 5.5, again with the average result over

thirty runs plotted. The minimum and maximum values are shown by the transparent ribbon.

While these results are close, interestingly LW does outperform BS at higher quantities of

evidence.

Figure 5.6 shows the convergence of each technique on a probability for one of the goals

in the network, with the ribbon showing the error of the estimate. LW and BS converge

equally quickly with three pieces of evidence but BS does converge faster when only one

evidence is used. The techniques are also run across graph sizes of 100 nodes to 1500, again

with 30 runs per graph size, with 1, 5 and 10 evidence nodes used. The same technique for

generating realistic attack graphs is described in Section 4.6.1, with the full algorithm that

is used listed in Algorithm 2. The results of these runs are shown in Figure 5.7 with the

points showing the average run time and the ribbon showing the maximum and minimum of

the runs. PLS runs slightly worse than the other two techniques for one evidence node but

performs very poorly for the other evidence levels so is omitted from the graphs for clarity.

The stopping criteria for a run is an error of ±0.02 per node.

BS performs best with one evidence node, and gives similar results for both 5 and 10

pieces of evidence. LW performs about as well at all evidence levels for graphs below 1000

nodes, but performs best with 10 evidence nodes for graphs larger than 1000.

The methods were also run on graphs of sizes 100 to 5000, with a stopping criteria of

an error of ±0.04 per node. The results for these runs are displayed in Figure 5.8. Figure
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Fig. 5.5 Time against average node error for BS and LW for different numbers of evidence
nodes.

5.7 shows that time does not increase by much with an increase in graph size in a few

circumstances, and Figure 5.8 even shows an improvement in the time taken for an increase

in graph size (for example, ‘Backward Simulation, 1’ drops below the value for the previous

simulation size at 3,650 Nodes in Graph).This variability is due to a method performing

better or worse depending on the evidence nodes selected and the shape of the network that

was generated.

Given these results, likelihood weighting is the best technique for belief updating in

Bayesian attack graphs as it not only performs slightly better overall across different evidence

levels and graph sizes but also is easier to implement than backward simulation. Probabilistic

logic sampling should only be used if no evidence is expected most of the time.
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Fig. 5.6 Convergence of goal node probability for all three techniques with one evidence
node (top) and three evidence nodes (bottom)
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Fig. 5.7 Time required for increasing graph sizes for LW and BS for different amounts of
evidence.

5.5 Sensitivity Analysis

The prior probabilities for the vulnerabilities on the LEAF nodes can be generated via

different methods of varying complexity. For example Doynikova and Kotenko [22] use

various parts of the CVSS vector and Cheng et al. [16] model the relationships of parts of

the metrics to give them different weights and improve the accuracy of the probabilities. All

these techniques however draw from the data available for a vulnerability which is often

incomplete and quickly becomes outdated. Sensitivity analysis is important for the overall

analysis of BAGs as it considers the impact of the original assignment of the probability.

To evaluate the sensitivity of the graph to the LEAF nodes, each node can be assigned

a uniform probability distribution in turn rather than a single probability. A distribution

can be generated for one or several goal nodes in the network with respect to each LEAF

node; this is done by sampling from the LEAF nodes’ uniform distribution, then generating a
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Fig. 5.8 Time required for larger graph sizes for LW and BS for different amounts of evidence.

sample of the entire network as before. The change in the probability density of the access

probability of the goal node in the network from Figure 5.1 is shown in Figure 5.9. The wider

the distribution the more sensitive the goal node is to the probability applied at the LEAF

node, if the LEAF node probability does not affect the goal node at all the probability density

would be entirely concentrated at the goal probability value that is calculated when there are

only single values for all LEAF nodes.

As such, the network is more sensitive to changes at node 17 or 16, whereas nodes 5 and

10 do not have much of an effect on the goal probability as shown by their narrow probability

densities. This type of sensitivity analysis has been performed by others, as discussed in

Section 5.6, however, in what follows we propose an alternative technique that requires much

less computation and gives more usable results.

Theorem 5.5.1 In any BAG, access probability of any node P(Xk = xk) is a polynomial

function of the local probabilities p(v), v ∈ V . Moreover, for any v ∈ V , P(Xk = xk) is
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Fig. 5.9 Probability density of goal node when a uniform distribution is used for various leaf
nodes, demonstrating their sensitivity.

a linear function of p(v) if p(v′) is fixed for all v′ ̸= v. The sensitivity of P(Xk = xk) with

respect to any local probability p(v) is∣∣∣∣ ∂

∂ p(v)
P(Xk = xk)

∣∣∣∣= |P(Xk = xk|v = 1)−P(Xk = xk|v = 0)| , (5.10)

which is always in the interval [0,1]. More generally, for any evidence Z = z,∣∣∣∣ ∂

∂ p(v)
P(Xk = xk|Z = z)

∣∣∣∣
= |P(Xk = xk|Z = z,v = 1)−P(Xk = xk|Z = z,v = 0)| . (5.11)

Both sensitivities in (5.10)-(5.11) can be estimated using the efficient simulation techniques

presented in this chapter.
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Proof 5.5.2 The proof is inductive by sequentially conditioning the access probability to the

LEAF nodes in the BAG. The access probability P(Xk = xk) can be written as

P(Xk = xk) = P(Xk = xk|v = 0)P(v = 0)+P(Xk = xk|v = 1)P(v = 1)

= P(Xk = xk|v = 0)(1− p(v))+P(Xk = xk|v = 1)p(v). (5.12)

Note that P(Xk = xk|v= 0) and P(Xk = xk|v= 0) are independent from p(v). This gives linear

dependency to p(v) and makes P(Xk = xk) a polynomial function of all local probabilities.

Moreover, the sensitivity with respect to p(v) is: Sensitivity = |P(Xk = xk|v = 1)−P(Xk =

xk|v = 0)|.

The sensitivities calculated in this manner are shown in Table 5.1, and using this sensi-

tivity value allows quick evaluation of the importance of each node without the extensive

computation or the required analysis of the probability distribution that is necessary to gener-

ate and interpret Figure 5.9. The information remains the same, however, with node 17 being

the most important followed by 16 then 24, while nodes 5 and 10 have very little impact

on the goal node probability. Both techniques for investigating sensitivity are also timed,

with a ±0.02 node error, and the ’on/off’ technique took 59s while the original method took

1581s. With this result significantly reducing computational cost for sensitivity analysis,

future work should examine the process of using this information to improve the accuracy of

attack graphs even with imprecise CVSS scores.

Table 5.1 Sensitivities calculated using ‘on/off’ evidence.

Leaf Node Sensitivity

17 0.7780

16 0.4388

24 0.3526

5 0.0225

10 0.0081
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5.5.1 Sensitivity Analysis for Network Security

This process for evaluating the sensitivity of the Bayesian network to the LEAF nodes on

the network can also be used to improve network security. Firstly, if the goal nodes on the

network are known and sensible prior probabilities have been assigned to the graph, the

process can be used as a tool for prioritisation of network vulnerabilities, as the LEAF nodes

with the highest sensitivities will be the vulnerabilities that have the largest effect on the

insecurity of the goal nodes in the network. With multiple goal nodes, this process will

incorporate the fact that one vulnerability can allow routes to multiple different goal nodes

and so may be a higher priority vulnerability.

The sensitivity analysis process can also be applied to modelling network topologies

and controls and quantifying a change’s effect on security. For example, any node in the

attack graph that represents a connection between two of the hosts or an open port could be

turned on or off with sensitivity analysis to investigate the effect that blocking various types

of network traffic would have on network security. In order to fully understand the benefit,

the cost of making the restriction should also be evaluated and so an appropriate cost model

should be included in the analysis. An example of using a sensitivity analysis with a risk

and cost analysis can be found in [84], where the authors investigate the cost and benefit of

blocking ssh and rsh traffic between two hosts, compared to not changing the network.

5.6 Related Work

Baiardi and Sgandurra use Monte Carlo simulations in their Haruspex tool [6]. This tool is a

fully featured program that uses attack graphs and threat agents to model security. It is an

application for this type of graph, incorporating many different elements, but does not analyse

different methods for simulation. Another example of stochastic simulation techniques for

attack graphs is by Noel and Jajodia [84]. They use PLS to compare different security fixes

for a network. However this is performed by hand and as such it cannot be generally applied.

Their use case compares several security controls that could be added to the network. This is

achieved by examining the resulting distributions estimated when the changes are applied
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to the graph, in a manner similar to that shown in Figure 5.9 as a sensitivity analysis. As

discussed in Section 5.5, this requires more computation and also requires analysis of the

resulting distributions.

Muñoz-González et al. present an exact method for inference in BAGs using the junction

tree algorithm [78]. This method is attractive due to its exact nature, but unfortunately is very

limited in its application due to how it scales. This is caused by the requirement for tables

to be generated based on the cliques created to start the calculations, and for large graphs

these tables can become extremely large. It is better to have a trade-off in the accuracy of

the method to reduce the space required, to allow scalability for the large graphs that are

expected from enterprise networks. They go on to present an approximate technique in [77]

using loopy belief propagation. The results of this scale well, linearly with respect to the

number of nodes, while achieving a reasonable level of accuracy. The drawback to using

this method, unlike stochastic simulation, is that there is no guarantee of convergence to the

correct value.

5.7 Conclusion

In this chapter we have presented and compared three techniques that can be generally

applied to inference of any Bayesian attack graph. We make the recommendation that for

most purposes the likelihood weighting process is a good choice to analyse an attack graph

when any amount of evidence is presented, in a timely fashion. We also demonstrate a test of

sensitivity for the graph that can be very quickly calculated and does not require any complex

analysis of distributions or prior sampling of node distributions. This can be used both as

remediation for the high uncertainty in LEAF node prior probabilities, as well as an easy

prioritisation of vulnerabilities in light of their importance to a series of goal nodes.



Chapter 6

Attack Graph Generation Platform

In this chapter we discuss the process of building attack graphs from

vulnerability scans. We first introduce the tools and technologies used

in this process and then introduce and explain our fully containerised

automated pipeline for the automatic generation of attack graphs from

vulnerability scans, in fulfilment of Contribution 6 in the Abstract. While

attack graph generators are available, the most commonly used generator,

MulVAL [86], has many prerequisites and does not run out of the box.

Furthermore the scans that can be processed need to be generated by

proprietary software. We incorporate the generator in a complete platform

that can be run on any system, and include a scan translator to allow for

the use of open-source vulnerability scans, making attack graph generation

accessible to anyone. The graphs can also optionally be rendered using the

graphing container, allowing for a customisable visual output alongside the

normal attack graph files. A readily deployed software pipeline that enables

users to generate attack graphs and visualise their network security from a

vulnerability scan is a fast and effective route to understand a network’s

security, and enables a full computational analysis of the vulnerabilities in

the network by making the attack graph available for processing using the

methods described in Chapters 4 and 5.
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6.1 Introduction

In order to replicate any of the literature on attack graphs, the first requirement is the ability

to generate an attack graph. While there are several attack graph generators available online,

there is currently only one non-commercial generator that is open-source [1], which is

MulVAL. MulVAL, or "Multi-host, multi-stage Vulnerability Analysis Language", is an

open-source application used for the generation of dependency attack graphs. It is also the

generator that is used predominantly in the attack graph literature, and is praised in Yi et

al.’s overview of attack graph generation software [123]. As such it is the natural choice of

engine for an attack graph generation platform.

MulVAL, however, has many prerequisites and dependencies for installation, and also

requires some specific changes to the operating system in order to run. These can clash with

existing settings, and prevent users from being able to run the generator, as can be seen from

the many requests for technical help online. It also only accepts specific scan types that do

not come from an open-source scanner. As such, it is a contribution to the field to build a

platform that easily and automatically processes scans, converting them where necessary,

and that runs on any operating system without difficulty.

6.2 Design of the Platform

6.2.1 Requirements

In order to enable further research for attack graphs and their visualisation, as well as provide

a simple and consistent method for network vulnerability analysis using attack graphs, the

platform must fulfil various requirements.

Functional Requirements

1. The platform must be able to process a variety of vulnerability scan formats as input,

including at least one open source format.
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2. The platform should be able to be deployed on all major operating systems

3. Generated attack graphs should be rendered to allow visual inspection of results.

4. The resulting attack graph should be output in an easily used format for further analysis

and research.

5. The visualisation process should be modifiable to allow custom visualisations and the

incorporation of other data.

Nonfunctional Requirements

1. The platform should be easily run by anyone.

2. The platform should be able to be run and stopped using a single command.

3. The databases used in the platform and the software packaged with it should be

automatically updated.

4. Once a vulnerability scan is provided, processing should be performed automatically

and no further user input should be required.

6.2.2 Use Cases

The platform is designed with three primary use cases in mind, shown in Figure 6.1. A

system administrator using the platform should be able to generate an attack graph for their

network after using one of a variety of vulnerability scanners. This attack graph should be

visualised to allow them to examine it, as well as output in a format that allows them to use

analysis techniques to determine high priority vulnerabilities. An attack graph researcher has

a similar use case, but instead of using a visualisation will want to export the attack graph

to then run their proposed form of attack graph analysis (for example by transforming it

into a Bayesian network). Finally the visualisation researcher would use the customisable

visualisation module to design and implement their own visualisation techniques, whether
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Fig. 6.1 Use cases of the platform

that involves bringing in a custom data source to add information to the graphs or designing

a new visualisation module to examine specific properties of the graph more closely.

6.2.3 Layout

The overall layout of the workflow for the platform to enable each use case is shown in Figure

6.2. A vulnerability scan from either an open source scanner or a proprietary scanner is taken

as input. From this input, an attack graph is generated, and is then rendered into an image

using the default settings or by incorporating custom processes and optional supplementary

information. The rendered attack graph is then given as output, along with files that describe

the attack graph.
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Fig. 6.2 Layout of the platform’s workflow

6.3 Software

6.3.1 Docker

In order to achieve both the goal of making attack graph generation available to as many

people as possible, and making the installation and use simple, some form of virtualisation

should be used. Virtualisation is the process of running an isolated user space within a

real machine that behaves as if it were a real machine itself. As such, if a program can be

installed, set up and run in a virtual environment then any machine that can install the virtual

environment can use it to run the program. Therefore, by creating an environment with our

desired attack generator pre-installed and runnable, anyone that is able to install the virtual

environment software can generate attack graphs.

To achieve this goal we use the tool Docker [74], due to its ability to run on all major

operating systems (Windows, macOS, and Linux) as well as its popularity. Docker is a

virtualisation tool that allows any requisites for an application to be included in a single
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package called a container. All the necessary aspects of an operating system needed to run

an application can be included in a container, thus removing the need to run and maintain

multiple virtual machines to allow interaction between applications. Because many of the

programs we are using require specific set-ups in order to run, Docker is a useful tool to

allow us to run these programs with minimal overheads. In order to correctly install and set

up our software we can also make changes to system paths and files without needing to alter

the host machine.

A Docker application is constructed by executing a series of instructions on an image.

The image of an operating system is taken and virtualised, and then a Dockerfile is written

to modify the image from its starting point. As such, no matter what the host operating

system or setup is, anyone installing the application will have the same image downloaded

and the same instructions and modifications performed to create the final container, and so

the application will run identically no matter the environment.

We use an installation of Ubuntu version 16.04, available from [112] as the basis of the

Docker container.

6.3.2 Docker Compose

Docker Compose is a tool that allows the creation of applications built from otherwise

separate Docker containers. This means that all the containers can be controlled through a

single command, and the containers can communicate on a Docker network. This is how we

build and control the platform, and allows the installation and setup of each of the Docker

containers to be completely automated. Every part of the platform can therefore be built and

controlled from one interface, and any output from a container can be processed by another

container.

6.3.3 MulVAL

MulVAL [86][85], or "Multi-host, multi-stage Vulnerability Analysis Language", is an open-

source application for the generation of dependency attack graphs. There are many solutions
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available but MulVAL is one of the most popular for use in research, is open-source, and is

praised in Yi et al.’s overview of attack graph generation software [123].

MulVAL takes in network scans, only Nessus and OVAL adapters are available to convert

into the necessary Datalog format, and generates an attack graph from the vulnerabilities and

network information contained in the scans. In order to make the whole process open-sources,

as well as widen the number of scans that can be processed, we construct our own adaptor

for OpenVAS reports. It can also generate a PDF of the complete attack graph but for most

non-trivial cases this PDF will be much too large to be useful. These graphs can then be

analysed using the Bayesian network based techniques discussed in Chapters 4 and 5 of this

thesis for a probabilistic interpretation, and can also be visualised in order to gain some basic

insights into the overall structure and security of the network the scan comes from. We build

this visualisation process into the platform.

The code for MulVAL is freely available online. However there are numerous software

prerequisites and setups that are required in order to run MulvVAL, as well as several

required operating system settings. Listing 6.1 is the dockerfile that the reader can use to

build a container in order to have a working version of MulVAL. Once the container is

running, the user can run docker ps to discover the name of the container, and then execute

docker exec -it <container_name> in order to enter the container in interactive mode

with a pseudo terminal. Once the container has been entered, the standard MulVAL usage

instructions [87] can be used to generate attack graphs - first by running the adapters on an

input file and then by running the graph generation script graph_gen.sh with any desired

options on the output of the adapters.

Listing 6.1 Docker container set up enabling MulVAL to run on any operating system
FROM ubuntu:16.04

# Set MySQL credentials
RUN echo mysql-server mysql-server/root_password password root |

debconf-set-selections && \
echo mysql-server mysql-server/root_password_again password root |

debconf-set-selections

# Install dependencies
RUN apt-get update && apt-get install -y \
autoconf \
bison \
flex \
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g++ \
graphviz \
libpcre3 \
libpcre3-dev \
libcurl3 \
libcurl4-openssl-dev \
make \
mysql-server \
openjdk-8-jdk \
texlive-font-utils \
vim \
wget \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*

# Use XSB workarounds, install XSB, add keywords
WORKDIR /usr/lib/jvm/java-8-openjdk-amd64/include
RUN cp linux/jni_md.h .
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64
WORKDIR /root
RUN wget http://xsb.sourceforge.net/downloads/XSB360.tar.gz && \
tar -xzf XSB360.tar.gz && \
rm XSB360.tar.gz
WORKDIR /root/XSB/build
RUN ./configure && ./makexsb
ENV PATH ${PATH}:/root/XSB/bin/
ENV XSBHOME=’~/XSB/’

# Install MulVAL
WORKDIR /root
RUN mkdir mulval && \
mkdir mulval/bin && \
mkdir mulval/bin/adapter && \
mkdir mulval/bin/metrics
ADD mulval.tar.gz /root/mulval/
WORKDIR /root/mulval
ENV MULVALROOT /root/mulval/
ENV PATH ${PATH}:${MULVALROOT}/bin:${MULVALROOT}/utils
RUN make

# Create input directory
RUN mkdir /input && cp /root/config.txt /input/
WORKDIR /input
VOLUME ["/input"]

# Populate MySQL with NVD data and change file permissions
WORKDIR /root
RUN echo "jdbc:mysql://localhost:3306/nvd\nroot\nroot" > \
config.txt
RUN echo "#!/usr/bin/env␣bash" > \
createDatabase.bash && \
echo ’service mysql restart\nsleep 5\nmysql -uroot -proot -e "create␣

database␣nvd"’ >> \
createDatabase.bash && \
echo "nvd_sync.sh\nexit␣0" >> \
createDatabase.bash && \
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chmod +x createDatabase.bash && \
./createDatabase.bash
RUN rm -rf nvd_xml_files
RUN echo "#!/usr/bin/env␣bash" > \
startSql.bash && \
echo "service␣mysql␣start\nexit␣0" >> \
startSql.bash && \
chmod +x startSql.bash

# Prepare container for the compose network and set entrypoint
ENV SCPT=’./mulval/utils/nessus_translate.sh’
RUN echo $SCPT
RUN tail -n +2 "$SCPT" > "$SCPT.tmp" && mv "$SCPT.tmp" "$SCPT"
RUN sed -i ’1s/^/#!\/bin\/sh\ncp ~\/config.txt .\/config.txt\n/’ "

$SCPT"
RUN chmod 775 $SCPT
ADD scripts.tar.gz /root/
RUN chmod 775 /root/scripts/openvas_translate.py
RUN chmod 775 /root/scripts/process_dot.py
ENV PATH /root/scripts:${PATH}
RUN python /root/scripts/get-pip.py
RUN pip install mysql-connector-python mysql-connector-python
RUN pip install pydot
RUN pip install graphviz
RUN chmod 775 /root/scripts/compose.sh
RUN chmod 775 /root/scripts/compose-generate.sh
WORKDIR /input
ENTRYPOINT /root/createDatabase.bash && /root/startSql.bash && compose.

sh

6.3.4 OpenVAS and CyberScore

Open Vulnerability Assessment System [35] (OpenVAS) is a software package that is used

for vulnerability discovery and management. It is developed by Greenbone Networks

and is freely available and open-source. It functions as a complete agentless vulnerability

scanner with the ability to run both authenticated and unauthenticated scans, test protocols

implemented in the network, and run custom vulnerability tests using user-written scripts

sing the NASL language (cf. Section 2.2.3 for an explanation and discussion of these

terms). While we do not install OpenVAS in our platform for attack graph generation and

inspection, it is relevant to the building of the pipeline as it is an open-source method for

performing vulnerability scanning, and it is not currently supported by the MulVAL attack

graph generation engine. As such, by modifying MulVAL to include an adaptor for OpenVAS
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scans we enable an entirely open-source path for attack graph generation - from scanning to

generation, processing and inspection.

Figure 6.3 shows the architecture of OpenVAS. The OpenVAS scanner, as shown in

the figure, is fed by a library of Network Vulnerability Tests, or NVTs, that are updated

daily. There are currently over 93,000 network vulnerability tests [36] (updated May 2021)

available for use automatically within OpenVAS’s built-in repository. These NVTs are

scripts written in NASL, or Nessus Attack Scripting Language, that automatically attempt to

exploit a vulnerability in order to detect if it is present. They are executed against each scan

target by the scanner when a network vulnerability scan is started, and can also detect what

software, services and policies are available on a machine. We also use XQ’s CyberScore

vulnerability scanner, which is built from OpenVAS and has a custom library of NVTs

developed by XQ (as well as having different reporting mechanisms and a different front-end

and installation procedure). We have successfully tested our platform against OpenVAS and

CyberScore scan reports, as well as reports from Nessus [110] and reports written in the

Open Vulnerability Assessment Language (OVAL). OVAL is an open-source community

effort to create a standard language and formatting for the reporting of machine states and

information [14]. This means we have a breadth of input options including two open-source

options.

6.3.5 Gephi

Gephi [31] is primarily a network visualisation tool that is open-source. It is written in Java,

has a Java API, and can be run in a docker container. It is therefore a good choice for us to

use for generating easily digestible images to explain the attack graphs that are the output

of the MulVAL graph generator container, as it is open-source and well documented, as

well as running on all common operating systems. We include Gephi in our platform to

enable visualisation of the attack graphs that are generated, but only implement a few simple

processing techniques to demonstrate simple use-cases of the Gephi container with attack

graphs (cf. Section 6.4.3). Gephi comes with a parser for the DOT [34] graph description
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Fig. 6.3 Structure of the OpenVAS scanner software, using Network Vulnerability Tests
(NVTs) that are updated daily [113]

language, and so we can use the MulVAL container to process the attack graphs into DOT

files and then import them into Gephi.

We demonstrate three usage examples for visualisation of the information that is produced

by MulVAL, that we package with the platform. The platform can be used to implement

and test other visualisation techniques in an automated open-source pipeline. By way of an

example, Homer et al. [38] discuss two visualisation techniques that could be implemented

within the Gephi platform in order to improve the readability of attack graphs. They discuss

identifying less important areas of large graphs that can be trimmed for user clarity, and

the concept of finding instances of similar attacks and grouping them into single virtual

nodes. Gephi can also be used interactively, and so a process like that described by Noel and

Jajoda [83], where attack graph complexity is reduced through the use of a visual aggregation

hierarchy, could be implemented to simplify user interaction with the attack graph.

6.3.6 CVEs

CVEs (common vulnerabilities and exposures) are collected in many different databases.

One of the most popular, the NVD or National Vulnerability Database, is maintained by

NIST (the National Institute for Standards and Technology). The database stores metadata
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concerning each vulnerability including it’s CVSS (Common Vulnerability Scoring System)

score. CVSS scores are a way to label and sort vulnerabilities, as well as convey information

about them in the form of vectors that encode things like the ease of exploitation and severity

if exploited. Refer to Section 2.2 for a full discussion of vulnerabilities and an explanation of

their scoring.

6.4 Development and Architecture of the Platform

In order to demonstrate the construction and intended use of our platform, we consider the

case of the processing of an OpenVAS scan. There are two reasons for using this specific

case: it is the most complex of the cases as there is no native parser for OpenVAS scans

within MulVAL, and it is the use case that is completely open-source and so we anticipate

it being the most common one. Alternative use cases would be importing a scan from the

Nessus scanning suite or using a scan that uses OVAL notation, which are similar processes

but both have an adaptor included in MulVAL so do not require any preprocessing. Other

than the preprocessing step, the workflow for any scan will be identical.

The code for the platform is available from [69]. The only prerequisites for running the

platform are that Docker and Docker Compose must be installed. With these two programs

present, the platform can be setup and run by running the setup.sh script. Once installed,

the platform can be brought online by running run.sh. Once the platform is running, any

files placed into the input folder will be automatically processed. To take the platform offline

run the stop.sh script. Each script comes with several runtime options (verbose mode,

setup options, updating of databases) which can be explored by appending -h or –help when

running the script.

6.4.1 OpenVAS Translation

The first requirement of the platform to be able to process OpenVAS scans is to translate

them for MulVAL to be able to use them. In order to achieve this, MulVAL is put into a

Docker container that has a Python script that loads in each OpenVAS report and processes
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it into a form MulVAL can use. The script works by iterating through each host result in

the xml blob that is loaded into Python. From each result it takes the IP address of the host,

along with extra information like the vulnerability CVE IDs and the ports and protocols used.

With this information it creates a CVE dictionary. With the dictionary built, the script uses

the same MySQL database as MulVAL to correctly name and sort the vulnerabilities, as well

as removing vulnerabilities that have been incorrectly included by the scans, and then all the

information is rebuilt into a file with the correct format. By reusing the database, we ensure

that all of the vulnerabilities will be understood by MulVAL, and we can also package the

translator and MulVAL generator into a single container for more space efficiency and easier

setup.

6.4.2 Processing of Dot Files

After MulVAL has generated an attack graph in the form of a dot file, the files needs to be

processed before being imported to the graphing software. This is because the attack graph

contains a lot of extra nodes and information that is not necessary to plot the topographical

structure of the network or where the vulnerabilities are located. Note that this information is

needed for the future analysis of the attack graphs which means that the original dot is also

saved alongside a new processed dot. A python script was written to load in the dot file and

understand the graph, meaning that removing nodes does not leave trailing pathways on the

graph as the edges and nodes that are removed are replaced with edges between the nodes

that were either side of the unnecessary node.

6.4.3 Gephi Graph Processing

We now demonstrate three usage examples of the Gephi container. It is important to note that

this container is intended to be accessed by the user to run custom visualisation programs (cf.

Section 6.3.5) and that these examples are primarily meant as a non-exhaustive show case of

the possibilities of processing attack graphs within Gephi.
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Fig. 6.4 Plot of the host’s connections with scaled nodes

The processed dot file is loaded into Gephi to generate a graph. This is done automatically

using Gephi’s Java API. The Java application that was created runs analysis on the nodes

in the graph and uses this information to create different graphs. The first iteration is the

simplest interpretation of the data, and simply plots the connections between the hosts and

the external attacker, with the size of the node corresponding to the number of vulnerabilities

found on the host; this can be seen in Figure 6.4. Processing in this way allows the user to

identify the protocols and connections present in the network they have scanned, as a first

step to understanding any insecurity in their network that comes from its architecture. We

colour the edges that originate form an external source as red, to allow the user to identify

which hosts are immediately vulnerable to outside attacks.

The next iteration includes certain vulnerabilities as nodes to demonstrate one way of

incorporating vulnerability data into the visualisation. This can be customised, along with

the labelling of these vulnerabilities; for example Figure 6.5 shows a set up where any high

priority vulnerability is added as a vulnerability node, and a node with an exceptionally high

rating is labelled with its CVE to allow easy look-up of important vulnerabilities.
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Fig. 6.5 Plot with vulnerabilities included and high priorities labelled

The last thing we demonstrate is the ability to label vulnerabilities using a custom

database and dataset. This would be a way to include the output of the classifier described in

Chapter 3 into the visualisation, and in doing so the required actions for each host can be

labelled on the graph. For this implementation we use XQ’s labelling system, but in order to

use a custom dataset a different database should be included in the docker-compose.yml

file. In order to accomplish this a new container was added that downloads an SQL file, then

loads it into a MariaDB database in the container. Both this container and the Java container

are put on the same Docker network, to allow communication, and the Java application then

lists all the CVE’s present and requests any relevant information from the database. With

this information the vulnerabilities can be labelled and categorised using XQ’s tags and

information. This is shown in Figure 6.6.

6.4.4 Architecture
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Fig. 6.6 Plot using XQ’s categorisation



6.4 Development and Architecture of the Platform 135

Fi
g.

6.
7

A
rc

hi
te

ct
ur

e
of

th
e

Pl
at

fo
rm



136 Attack Graph Generation Platform

Listing 6.2 Docker Compose YAML configuration of the platform
version: ’2’
services:
mulval:
image: scimitar/mulmod:latest
volumes:
- ./input:/input

mulgen:
entrypoint: compose-generate.sh
image: scimitar/mulmod:latest
volumes:
- ./input:/input

xqdb:
image: scimitar/xq_db:latest
container_name: xqdb
restart: always
# expose:
# - "3306"
ports:
- "127.0.0.1:3306:3306"
environment:
MYSQL_ROOT_PASSWORD: root

graphbuild:
depends_on:
- xqdb
image: scimitar/graphbuild:latest
volumes:
- ./input:/input

Figure 6.7 shows the architecture of the platform with all the components combined. The

description of the containers in the Docker Compose YAML file is shown in Listing 6.2. Note

that the ’xqdb’ container is the container that connects to Gephi for the custom labelling of

graphs and can either be replaced by a custom database to use other labels for vulnerabilities,

or can be removed to use the standard NVD labelling system. This entire platform is fully

automated and can be setup, updated, run and stopped using single commands as described

earlier. Once the platform is running, the high level processing steps are shown in pseudocode

in Algorithm 5.
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Input: A vulnerability scan output from OpenVAS, Nessus, or written in OVAL
Output: Attack graph as xml, csv and dot files, PDF visualisation
if Docker not installed OR Docker Compose not installed :

return Error message
end procedure

start mulmod container
start mulgen container
start graphbuild container
start database container
Loop start

Wait for new file scan
Read scan
In mulmod:

if scan in OpenVAS format :
run openvas_translate
store in parsed_scan

else:
run MulVAL native translator
store in parsed_scan

run graph_gen script with parsed_scan as argument
process output with dot_processor

In mulgen:
use renderer on mulmod output
store attack graph csv files
store attack graph pdf file

In graphbuild:
run Gephi import controller
parse data
if database container running :

create dictionaries using labelling from database
else:

create dictionaries using name tags in input file
append data and dictionaries to GraphAPI
run graphing modules
store visualisation pdf files

Loop end
Algorithm 5: Pseudocode for the working of the pipeline, after it has been brought
online with run.sh
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The platform takes, as input, either OpenVAS XML files or Nessus files. These files

contain all the information required to generate an attack graph: the hosts on the network,

their vulnerabilities, the topography of the network, and the allowed protocols and open ports

inside it. The most common input type will be the OpenVAS style of report generated by

CyberScore, and for MulVAL to process these files they first need to be translated. This is

done by the OpenVAS translator which parses the files and generates new Datalog files that

MulVAL can use. Next MulVAL uses the Datalog files to generate an attack graph; this is in

the DOT format, which is a graph description language.

This DOT file is then processed by two different containers; the mulgen container takes

the file and generates MulVAL’s standard graph rendering outputs in the form of a PDF and

several CSVs that describe the attack graph, and the mulmod container processes the DOT

file to allow it to be plotted using Gephi’s API in the graphbuild container.

After the platform has processed and created the attack graph, it is ready to be further

analysed using more complex techniques, for example, by turning it into a probabilistic

Bayesian network model as we demonstrate in Chapters 4 and 5.

6.5 Demonstration of the Platform

In order to demonstrate the use of the platform with larger real network examples, we use

it to process vulnerability scans from several realistic network examples. Here we show

the largest network, with others shown in Appendix B. For this example we use a complex

enterprise network with several workstations, some servers, and a collection of heterogeneous

peripheral devices. The network includes a server running TWiki that all the workstations can

access for collaboration, an outdated Windows XP machine, a machine for web development

and a Red Hat MRG machine. The full host inventory can be seen in table 6.1.

The scan is placed inside the input folder for the platform, where it is automatically

translated by the OpenVAS translator. It is then put into MulVAL, which generates the dot

file for the attack graph of the network. This is then processed and can be plotted as an attack
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Table 6.1 Hosts and software for the 2342 node realistic network.

Type Amount Software

Old Windows Machine 1 Windows XP, Flash Player,
JavaFX, Adobe Air, Wireshark

Windows Workstation 4 Internet Explorer, JDK, Office,
DirectX, Edge

Windows Workstation 3 LiveMeeting, Edge
Windows Workstation 1 Internet Explorer, Office,

Chrome, ExpressionWeb, JScript
Windows Server 2008 1 -
SMB Device 2 -
Ubuntu Machine 2 Pidgin, Chrome, Firefox, Apport,

Python, Jasper, OpenSSL,
Red Hat Enterprise 1 Enterprise MRG, Evince
Machine Libxml2, Poppler
Linux Database Server 1 -
TWiki Web Server 1 TWiki, PCRE, PHP, Samba
Remote Login Machine 1 OpenSSH

graph. The attack graph is shown in Figure 6.9. Due to the size of the graph, Figure 6.8 is an

excerpt showing a privilege escalation on a host with many connections.

6.6 Conclusion

In this chapter we have described the development and structure of an attack graph platform

that is fully containerised and automated and allows for the processing of vulnerability scans

to be completely open-source and widely available on any platform. The pipeline enables

the construction of regular attack graphs using the MulVAL engine, as well as serving as a

platform to run and automate the visualisation of the resulting attack graphs. The visualisation

container in the platform can be used as a way of incorporating the classifier designed in

Chapter 3, and the output of the platform can be used with our Bayesian network techniques

described in Chapters 4 and 5.
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Fig. 6.8 Excerpt of 2342 node attack graph



6.6 Conclusion 141

Fig. 6.9 Attack graph of 2342 node example





Chapter 7

Discussion and Conclusion

In this chapter we summarise this thesis and the contributions within. We

examine some workflows that incorporate the methods and processes we

discuss. We then look at the limitations of the work and of the area as a

whole, and finally we discuss any open research problems in the field, as

well as motivating new avenues of research as a result of this work.

7.1 Thesis Summary

In this thesis we have examined vulnerability scans and the difficulties in using a vulnerability

scan to efficiently improve the security of a network. The overall objective of this work is to

maximise the efficiency by which vulnerability scans are used once they have been created,

and to enable further research with the same aim. We use a number of different approaches

for different parts of the process of applying a scan to a network. Each approach we use

improves the speed or simplicity for the use of analysing vulnerability scans to improve the

security of a network.

We introduce a single unified formalism for Bayesian attack graphs in Chapter 2, with the

aim of allowing future work to build from one shared set of definitions. We also demonstrate

how another common formalism can be transformed into this one, meaning that past work

that has been developed for that formalism can be used with our contributions and platform.



144 Discussion and Conclusion

In Chapter 3 we examine the step from results to remediation, where a user is presented

with the outcome of a scan and must then proceed to implement this result into the security

of their network. We design and demonstrate a classifier using a neural network that can auto-

matically assign vulnerabilities into classes with similar remediation processes, so that when

a report is being generated for a user, instead of a list of complex and unintuitive identifiers,

the user can be provided with a series of remediation steps. This process also significantly

reduces the verbosity of the output as many vulnerabilities share remediation processes. This

contribution improves the efficiency of directly applying scanning data to network security.

We address the common problems associated with the National Vulnerability Database and

enable use of the database to be simpler and sufficiently accurate.

Chapter 4 introduces the first of our contributions to the Bayesian attack graph space.

Bayesian attack graphs can be used to learn the probabilities of reaching and exploiting

security problems in a network, and so from this we can discover how we should prioritise

vulnerabilities to have a maximal effect of reducing the probability of success in an attack.

In this way, a scan can be used more efficiently by creating an attack graph model and fixing

the most important vulnerabilities that are found. This chapter shows our interpretation of

attack graphs with cycles, and we design an algorithm that can calculate access probabilities

for BAGs that can run on any graph without identifying or removing cycles.

Our work with BAGs continues in Chapter 5, where we investigate how new information,

like events triggered by an intrusion detection system, can be incorporated into an attack graph

to calculate the security risk as an attack occurs. We implement and compare three stochastic

simulation approaches to find the most efficient method for performing inference for BAGs.

We also show a method for sensitivity analysis that significantly reduces computation times,

and can be used to investigate the effects of prior assignment of BAGs, as well as enabling

the modelling of how introducing new security controls could effect a network.

We also develop an accessible open-source platform for the generation and visualisation

of attack graphs, in Chapter 6. The platform is modular and fully containerised, can run

on any operating system that can run Docker, and can be customised through the use of

alternative databases for labelling, and custom graphing files to perform different visualisation
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techniques. In developing the platform we significantly lower the barrier for entry to process

scans and generate attack graphs.

7.1.1 Combining Methods

The practical contributions and processes we discuss in this thesis (vulnerability classification

in Chapter 3, access probability calculation in Chapter 4, inference and sensitivity analysis in

Chapter 5 and attack graph generation and visualisation in Chapter 6) can be used separately,

but also may be combined in various ways to achieve different analyses of a vulnerability

scan. There are many ways to go about this, but we will discuss three potential routes that

we anticipate to be the most common.

Security audit An audit of an organisation’s security is something that is required

by many; it can be used by insurance companies to inform their premiums, it can

be requested by a company to ensure their supply-chain is secure, and it can be

used by the organisation itself to quantitatively measure security for a comparison

with past measurements and to improve the current security. Once a vulnerability

scan has been run, passing it through our attack graph platform will generate the

corresponding attack graph. This graph can then be evaluated using Algorithm 1 to

discover the most exposed hosts, the likelihood of a breach of data, or to prioritise

the vulnerabilities. This information can be reported as it is in the insurance and

supply-chain cases, or can then be processed using the visualisation container of the

platform and the data from the vulnerability classifier, so that the most impactful

vulnerabilities can be easily remedied.

Network monitoring Several of the methods can be combined to allow for an

online monitoring of a network and its risks using information gathering tools such

as intrusion detection systems or network monitoring systems. Again, after passing

a vulnerability scan of the network through the attack graph generation platform, the

Bayesian attack graph can be plotted using an interactive instance of Gephi using
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the visualisation container after it has been generated by the stochastic simulation

BAG calculation process. Then, when new evidence arrives, this evidence can be

incorporated into the model in real-time and the graph can be adjusted in the Gephi

instance to observe and react to an attack that is in progress. This same workflow

can be used to examine new security controls, by generating new evidence that

corresponds to the security control (for example holding a node at 0 if it corresponds

to a communication protocol that will be blocked by the security control) the effect

on the probabilities on the graph can be investigated.

Robust network design These techniques can also be used before a network is

even put in place. Using virtualisation, hosts can be simulated in various network

scenarios and then the networks can be scanned, and transformed into attack graphs.

Using a process for probability propagation the security of various designs of

the network can be analysed and used to inform the network design procedure.

Furthermore, use of the sensitivity analysis discussed in Section 5.5 can allow

different network controls to be directly compared in relation to their effect on the

security of any of the hosts on the network.

7.2 Limitations

One of the major limitations within this work, and within the Bayesian attack graph field as a

whole, is the limitation of graph size. We investigate graphs of up to 15,000 nodes in Chapter

4, which is adequate as a solution for even very large enterprises. However, with the advent

of new technologies, including 5G, fog computing, and distributed supply-chain networks,

the number of hosts and therefore nodes in an attack graph may become large enough such

that calculating the probabilities on the attack graph takes a prohibitively long amount of

time.

Another limitation of the BAG field is the imprecise nature of the prior assignment of

vulnerability probabilities. While more complex methods do exist that incorporate more

of the available data, the prior values for the likelihood of exploiting a vulnerability still
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remain based on arbitrary values assigned in the NVD. While we do demonstrate an improved

approach for investigating the effect of these assignments using the sensitivity analysis of

Section 5.5, the actual effect of these prior assignments of the goal node probabilities remains

unknown. Furthermore, there is no method currently available for generating these priors

from empirical data.

A limitation of the classifier is the requirement for hand-labelling. Ideally, the process of

discovering the labels would be automated as well, as this would mean the model could react

to new software and new vulnerability types that are not preexisting in the dataset. Currently,

if a new piece of software is developed and a vulnerability is found, a new family would

need to be created and added to the dataset manually, slowing the process and using more

resources.

7.3 Future Research Directions

As a result of the experience of conducting the research documented in this thesis, and as a

continuation to the work done, we motivate a number of potential areas of future research.

7.3.1 Data Collection

Originally, one of the aims of this thesis was to collect anonymised data from XQ Cyber-

Score security scans, in order to create a large and empirical dataset about the presence of

vulnerabilities and the frequency of their exploit. This dataset still does not exist, but could

be used to great effect within the attack graph field. Such a dataset could be combined with

attack vector datasets, like the way in which the Amazon web services’ honeypot database

has been used [4] to more quantitatively evaluate current attack probabilities for various

applications. For example, a new method for prior generation, based on empirical attack

evidence, could be developed. This would be a significant improvement to the validity and

accuracy of BAGs generated using these new prior values. The data could also be used to

identify specific architectures that are more prone to attack, and so based off a vulnerability

scan an alternative network architecture could be suggested to users.
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7.3.2 Data Driven Techniques

Building from our work in Chapter 5, other data driven techniques for inference on BAGs

should be investigated. A good starting point would be to investigate some of the variations

of Gibbs samplers for Bayesian inference, as originally proposed by Geman and Geman

[30]. Gibbs sampling is performed by sampling a configuration that is consistent with the

evidence that has been given, and then stochastically altering the states of the variables on

the graph before resampling. Implementing and testing various techniques could allow for

improved computational efficiency, and allow BAG generation to scale with the growing size

of networks.

7.3.3 Visualisations of Graphs

Another avenue of research is that of the visualisation aspect of reporting. We demonstrate a

method for improving the textual reporting of vulnerabilities using a classification system,

but have only implemented simple visualisations into our platform as a proof-of-concept.

Other visualisation techniques should be explored, for example the interactive visualisation

that displays the reachability of hosts within the network described by Williams et al. [118].

The possibilities for improving attack graph readability through visualisation techniques

remains relatively unexplored.

7.3.4 Unsupervised Classifier

The possibility of using unsupervised machine learning techniques to categorise vulnera-

bilities also remains unknown. If possible, an unsupervised online model could be used to

automatically classify vulnerabilities by remediation processes without the requirement for

human labelling of the training dataset, as well as allowing the model to automatically react

to and include new categories when they arise in the incoming data.
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Fig. A.1 The BAG of the running example including leaf nodes.

The complete attack graph for the running example scenario can be seen in Figure A.1,

with the labels for the nodes written out below. An important note is the reason the cycle

exists: the state at node 14, whereby a user on one of the Workstation machines access a

malicious website, can be reached via two means. Firstly the user can simply visit a malicious

website allowing the attacker to exploit CVE-2009-1918 that is in Internet Explorer on the

Workstation. Alternatively, an attacker that has achieved the ability to execute code on the

Web Server (node 6) can serve the user of a Workstation machine an HTML document that

exploits CVE-2009-1918 and thus also achieves the state on node 14.

This cycle is made more complex due to the ability to access the Webserver without

passing through the Workstations originally (visiting nodes 22 and 8). Because of this,

reaching node 14 via node 21 will not always mean that the attacker is travelling backwards,



160 Full Example

and as such the monotonicity principle does not apply and the probability of reaching node

14 becomes more challenging to calculate.

The vulnerabilities in this scenario are as follow:

• CVE-2009-19181 on the Workstations - Internet Explorer vulnerability that allows an

attacker to execute arbitrary code on the machine after the user accesses a website with

purposely malformed elements that trigger memory corruption

• CVE-2006-37472 on the Webserver - Apache vulnerability that can be exploited to

execute arbitrary code using crafted URLs and requires network access to exploit

• CVE-2009-24463 on the Database Server - MySQL vulnerability where an authenti-

cated user can cause a denial of service and possibly execute arbitrary code

Listing A.1 MulVAL labels for Figure A.1

0, "attackerLocated(internet)"

1, "execCode(dbServer,root)"

2, "RULE 2 (remote exploit of a server program)"

3, "netAccess(dbServer,tcp,’3306’)"

4, "RULE 5 (multi-hop access)"

5, "hacl(webServer,dbServer,tcp,’3306’)"

6, "execCode(webServer,apache)"

7, "RULE 2"

8, "netAccess(webServer,tcp,’80’)"

9, "RULE 5"

10, "hacl(workStation,webServer,tcp,’80’"

11, "execCode(workStation,userAccount)"

12, "RULE 2"

13, "vulExists(workStation,’CVE-2009-1918’,IE,remoteExploit,

1https://nvd.nist.gov/vuln/detail/CVE-2009-1918
2https://nvd.nist.gov/vuln/detail/CVE-2006-3747
3https://nvd.nist.gov/vuln/detail/CVE-2009-2446
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privEscalation)"

14, "accessMaliciousInput(workStation,user, IE)"

15, "malicious website"

16, "visit of malicious website"

17, "vulExists(dbServer,’CVE-2009-2446’,mySQL,remoteExploit,

privEscalation)"

18, "vulExists(webServer,’CVE-2006-3747’,apache,remoteExploit,

privEscalation)"

19, "visit of compromised website"

20, "hacl(internet, webServer, tcp, ’80’)"

21, "compromise of website"

22, "RULE 6 (direct network access"

23, "RULE 5"

24, "hacl(workStation,dbServer,tcp,’3306’)
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Realistic Network Examples

B.1 200 Nodes
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B.2 1053 Nodes

This network is a simple small enterprise setup, with several workstations, some servers, and

a collection of peripheral devices. The full host inventory can be seen in table B.1.

Table B.1 Hosts and software for the 1053 node realistic network.

Type Amount Software

Windows Workstation 4 Internet Explorer, JDK, iTunes,
Office

Windows Server 2008 1 -
SMB Device 1 -
Linux Machine 2 Pidgin, Chrome, Firefox, Samba
Linux Database Server 1 -
iOS Machine 1 Apple TV
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B.3 2234 Nodes

This network is a more complex enterprise example, and includes a server running TWiki

that all the workstations can access for collaboration. The full host inventory can be seen in

table B.2.

Table B.2 Hosts and software for the 2234 node realistic network.

Type Amount Software

Windows Workstation 4 Internet Explorer, JDK, Office,
DirectX, Edge

Windows Workstation 3 LiveMeeting, Edge
Windows Server 2008 1 -
SMB Device 2 -
Ubuntu Machine 2 Pidgin, Chrome, Firefox, Apport,

Python, Jasper, OpenSSL,
Libxml2, Poppler

Linux Database Server 1 -
TWiki Web Server 1 TWiki, PCRE, PHP, Samba
Remote Login Machine 1 OpenSSH
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Fig. B.3 Attack graph of 2234 node example



Appendix C

Classifier Families

Below is the listing of each of the possible families, or classes, that a vulnerability can be

sorted into.

Listing C.1 All family labels used by the vulnerability classifier

"7-Zip Patching"

"Adobe Acrobat Patching"

"Adobe AIR Patching"

"Adobe ColdFusion Patching"

"Adobe Creative Cloud Patching"

"Adobe Digital Editions Patching"

"Adobe Dreamweaver Patching"

"Adobe Flash Media Server"

"Adobe Flash Patching"

"Adobe Illustrator Patching"

"Adobe InDesign Patching"

"Adobe Photoshop Patching"

"Adobe Reader Patching"

"Adobe Shockwave Patching"

"AIX Patching"

"Amazon Linux Patching"



170 Classifier Families

"Anonymous Cipher Suites Permitted"

"Anonymous FTP Enabled"

"AOLserver"

"Apache ActiveMQ"

"Apache Ambari Patching"

"Apache Cassandra Patching"

"Apache CouchDB Patching"

"Apache Hadoop Patching"

"Apache Solr Patching"

"Apache Struts Patching"

"Apache Subversion Patching"

"Apache Tika Server Patching"

"Apache Tomcat"

"Apache Tomcat Patching"

"Apache Traffic Server Patching"

"Apache Web Server"

"Apache Web Server Patching"

"Apple iCloud Patching"

"Apple iOS Patching"

"Apple iTunes Patching"

"Apple OSX Patching"

"Apple Quicktime Patching"

"Apple Safari Patching"

"Asterisk Patching"

"ASUSTOR ADM"

"Avast AntiVirus Patching"

"Axis Web Camera Patching"

"BIND"

"Bugzilla Patching"
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"Cacti Patching"

"CentOS Linux Patching"

"Cipher Zero Authentication Bypass Permitted"

"Cisco AnyConnect Client Patching"

"Cisco Firepower"

"Cisco Patching"

"Cisco Prime Infrastructure Patching"

"Cisco UCS Patching"

"Cisco WebEx Patching"

"Citrix NetScaler Patching"

"Citrix XenServer Patching"

"ClamAV Patching"

"Comodo Internet Security Patching"

"CouchDB Patching"

"CUPS Patching"

"Debian Linux Patching"

"Dell NetVault Patching"

"Dell Remote Access Controller"

"Deprecated Versions Permitted"

"Discourse Patching"

"DistCC Patching"

"DNS Server Detected"

"DNS Zone Transfer Permitted"

"Dokuwiki"

"Dropbear SSH Patching"

"Drupal"

"Drupal Patching"

"Elasticsearch"

"Elasticsearch Patching"
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"Enhydra Multiserver"

"EPESI CRM Patching"

"Exim Patching"

"F5 Patching"

"Fedora Linux Patching"

"FileZilla Patching"

"Firefox Patching"

"Fortigate Patching"

"Foxit PhantomPDF Patching"

"Foxit Reader Patching"

"FreeBSD Patching"

"Gentoo Linux Patching"

"GeoVision IP Camera"

"GeoVision IP Camera Patching"

"Git Patching"

"Google Chrome Patching"

"Google Sketchup Patching"

"Grandstream VOIP Phone"

"Graylog"

"Host scanned"

"HP Onboard Administrator Patching"

"HP Systems Insight Manager Patching"

"HP Systems Management Homepage Patching"

"HP Version Control Agent Patching"

"HP Version Control Repository Manager Patching"

"HPUX Patching"

"HSTS Not Configured"

"HTTP Public Key Pinning Not Configured"

"Huawei Switch Patching"
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"IBM DB2 Patching"

"IBM WebSphere Patching"

"ICMP Timestamps Enabled"

"ImageMagick Patching"

"Insecure Encryption Protocols Supported"

"Insecure SNMP Configuration"

"Insecurely Configured Windows Service Path"

"Insecurely-Configured etcd Service"

"Insecurely-configured FTP Server"

"Insecurely-configured Windows Service"

"Internet Explorer"

"IPMI Management Service"

"IPMI2 Password Hash Accessible"

"ISC Bind Patching"

"JBoss Patching"

"Jenkins Patching"

"Joomla"

"Joomla Patching"

"Juniper Patching"

"JustSystems Ichitaro Patching"

"Kibana"

"Kibana Patching"

"LibreOffice Patching"

"Lighttpd Patching"

"LimeSurvey Patching"

"Logstash Patching"

"Lotus Notes Patching"

"Mageia Linux Patching"

"Malware / Backdoor Detected"



174 Classifier Families

"Mandrake Linux Patching"

"Mandriva Linux Patching"

"MariaDB"

"MariaDB Patching"

"McAfee ePolicy Orchestrator Patching"

"McAfee VirusScan Enterprise Patching"

"MD2 Authentication Enabled"

"MediaWiki"

"MediaWiki Patching"

"Memcached Patching"

"Microsoft Exchange"

"Microsoft Exchange Patching"

"Microsoft IIS Patching"

"Microsoft Office Patching"

"Microsoft SharePoint Server Patching"

"Microsoft SQL Server"

"Microsoft SQL Server Patching"

"Microsoft Visio Patching"

"Microsoft Visual Studio Patching"

"Microsoft Windows Patching"

"Mobotix Camera"

"MongoDB"

"MongoDB Patching"

"Mongoose Webserver Patching"

"Moodle Patching"

"Mozilla SeaMonkey Patching"

"Mozilla Thunderbird Patching"

"MS SQL Server"

"MySQL"
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"MySQL / MariaDB"

"MySQL Patching"

"Nagios Patching"

"Nextcloud Patching"

"NFS Exports Easily Accessible"

"Nginx Patching"

"No Authentication Mode Enabled"

"Node.js Patching"

"Null Usernames Permitted"

"Open Xchange Patching"

"OpenOffice Patching"

"OpenSSH Patching"

"OpenSSL"

"OpenSSL Detected"

"OpenSSL Patching"

"OpenSUSE Linux Patching"

"OpenVPN Access Server"

"Opera Patching"

"Operating System - End of Life"

"Oracle Database Patching"

"Oracle GlassFish Patching"

"Oracle Java Patching"

"Oracle Linux Patching"

"Oracle Virtualbox Patching"

"ownCloud"

"ownCloud Patching"

"Paessler PRTG Patching"

"Palo Alto Patching"

"Perfect Forward Secrecy Not Supported"
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"pfSense"

"pfSense Patching"

"PHP"

"PHP Patching"

"PHPMailer Patching"

"phpMyAdmin"

"phpMyAdmin Patching"

"PHPUnit Patching"

"Pidgin Patching"

"POP3 Mail Server Detected"

"Portainer Patching"

"Postgresql"

"PostgreSQL"

"PostgreSQL Patching"

"PrestaShop Patching"

"ProFTPD Patching"

"Puppet Patching"

"PuTTY Patching"

"QNAP Patching"

"RealNetworks RealPlayer Patching"

"RealVNC Patching"

"Red Hat Enterprise Linux Patching"

"Red Hat Linux Patching"

"Redis Patching"

"Redis Server"

"Ruby On Rails Patching"

"Ruby Patching"

"Samba"

"Samba Patching"
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"Scientific Linux Patching"

"Simple Machines Forum Patching"

"Skype Patching"

"Slackware Linux Patching"

"SLES Linux Patching"

"SMB"

"SMB Signing Not Enabled"

"Solaris Patching"

"Sophos Anti-Virus Patching"

"Splunk Patching"

"Squid Patching"

"SquirrelMail Patching"

"SSH"

"SSL Certificate Expired"

"SSL Certificate Signed With Weak Signature Algorithm"

"SSL Certificate With Expired Certificate In Chain"

"SSL Certificate With Small Public Key"

"SSLv2 and SSLv3 Deprecated"

"SuSE Linux Patching"

"Sybase ASA"

"Symantec BackupExec Patching"

"Symantec Endpoint Protection Client Patching"

"Symantec Endpoint Protection Manager Patching"

"Symantec MessagingGateway Patching"

"Symantec PGP Desktop Patching"

"Symantec WebGateway Patching"

"Symfony Patching"

"TeamViewer Patching"

"Telnet Service Detected"
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"TikiWiki Patching"

"Trend Micro Internet Security Patching"

"Trend Micro InterScan Patching"

"Trend Micro OfficeScan Patching"

"TWiki Patching"

"Twonky Media Server Patching"

"TYPO3"

"TYPO3 Patching"

"Ubuntu Linux Patching"

"Unencrypted Network Service"

"UPnP Service Detected"

"Users Never Logged On"

"Users With Unchanged Passwords"

"vBulletin Patching"

"VirtualBox Patching"

"VLC Patching"

"VMware ESXi Patching"

"VMWare Fusion Patching"

"VMware Player Patching"

"VMware vSphere Client Patching"

"VMware Workstation Patching"

"VNC Patching"

"VNC Server"

"vsftp Patching"

"Weak Encryption Algorithms"

"Weak Encryption Ciphers Permitted"

"Weak MAC Algorithms"

"Web Server Detected"

"Webmin Patching"
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"Winamp Patching"

"Windows Autorun Enabled"

"WinZip Patching"

"Wireshark Patching"

"WordPress"

"Wordpress Patching"

"WS FTP Patching"

"WU-FTPd Patching"

"Zimbra Patching"
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