
STATISTICAL ANALYSIS OF

NETWORKS

KONSTANTIN AVRACHENKOV AND

MAXIMILIEN DREVETON

Published, sold and distributed by:

now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510

www.nowpublishers.com

sales@nowpublishers.com

Outside North America:

now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

ISBN: 978-1-63828-050-7

E-ISBN: 978-1-63828-051-4

DOI: 10.1561/9781638280514

Copyright © 2022 Konstantin Avrachenkov and Maximilien Dreveton

Suggested citation: Konstantin Avrachenkov and Maximilien Dreveton. (2022). Statistical Analysis of

Networks. Boston–Delft: Now Publishers

The work will be available online open access and governed by the Creative Commons

“Attribution-Non Commercial” License (CC BY-NC), according to https://creativecommons.or

g/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Dedicated to our mothers, Elena and Christine.

Table of Contents

Preface ix

Chapter 1 Introduction 1

1.1 Examples of Networks . 2
1.2 Unifying Properties of Complex Networks . 8

1.2.1 What are the Properties Commonly Shared by Networks? 8
1.2.2 How do these Properties Arise? . 11

1.3 What Are the Statistical Problems Related to Networks? 13
1.3.1 How to Cluster Network Nodes? . 13
1.3.2 Which Nodes are Most Important in a Network? 14
1.3.3 How to Infer Important Information in a Network? 14

Book Organisation . 15
Book Bibliographic Position . 15
Funding . 16

Chapter 2 Random Graph Models 17

2.1 Erdős-Rényi Random Graphs . 18
2.1.1 Definition . 18
2.1.2 Degree Distribution . 20
2.1.3 Phase Transition Phenomena . 20

2.2 Other Random Graph Models . 26
2.2.1 Configuration Model . 26
2.2.2 Preferential Attachment Model . 28
2.2.3 Spatial Networks: Random Geometric Graphs, etc 32
2.2.4 Summary . 34

iv

Table of Contents v

2.3 Clustered Random Graphs: Block Models . 34
2.3.1 Stochastic Block Model . 34
2.3.2 Degree-corrected Stochastic Block Model . 37
2.3.3 Popularity Adjusted Block Model . 39
2.3.4 Soft Geometric Block Model . 39

2.4 Exponential Random Graph Model . 40
2.4.1 Definition and First Examples . 40
2.4.2 The p1 Model . 41
2.4.3 Relationship Between θ and the log-odds . 43

Further Notes . 43

Chapter 3 Network Centrality Indices 45

3.1 Overview of Centrality Indices . 46
3.1.1 Distance Based Centrality Indices . 46
3.1.2 Spectral Centrality Indices . 47
3.1.3 Hitting Time Based Centrality Indices . 53
3.1.4 Betweenness Centrality Indices . 56
3.1.5 Game Theory Based Centrality Indices . 59

3.2 Axiomatic Comparison of Centrality Indices . 60
3.3 Applications of Centrality Indices . 61

3.3.1 Social, Bibliographic and Information Networks 61
3.3.2 Semi-supervised Learning. 63
3.3.3 Community Detection . 64
3.3.4 Further Applications . 64

Further Notes . 65

Chapter 4 Community Detection in Networks 66

4.1 Cut-based Methods . 68
4.1.1 Graph Bisection . 68
4.1.2 General Case: More Than Two Clusters . 71
4.1.3 Semi-definite Programming . 74
4.1.4 Discussion . 75

4.2 Modularity-based Methods . 80
4.2.1 Definition . 80
4.2.2 Greedy Algorithm . 83
4.2.3 Louvain Algorithm . 84
4.2.4 Discussion . 85

4.3 Bayesian Community Detection . 87
4.3.1 An Over-fitting Issue? . 87

vi Table of Contents

4.3.2 Principled Approach . 87
4.3.3 Markov Chain Monte Carlo Algorithm. 90
4.3.4 Numerical Results . 91

4.4 Theoretical Analysis . 92
4.4.1 Modularity and Maximum A Posteriori Estimator 92
4.4.2 Normalized Spectral Clustering as a Continuous Relaxation of

Modularity Maximisation . 95
4.4.3 Information-theoretic Results for Consistent Recovery in SBMs . . 97
4.4.4 Consistency of Spectral Methods in SBM . 101

Further Notes . 106

Chapter 5 Graph-based Semi-supervised Learning 108

5.1 Laplacian-based SSL Methods . 110
5.1.1 Label Propagation . 110
5.1.2 Label Spreading . 115
5.1.3 Generalized Laplacian . 116
5.1.4 Numerical Performance of the Laplacian-based Methods 117

5.2 Learning with Small Amount of Labelled Data 118
5.2.1 The Problem of Small Labelled Data . 118
5.2.2 Poisson Learning . 120
5.2.3 Numerical Experiments . 122

5.3 Other Methods . 123
5.3.1 Constrained Spectral Clustering . 123
5.3.2 Laplacian Regularization . 126
5.3.3 `1-based Methods: Sparse Label Propagation 127

5.4 Bayesian Approach to SSL and Its Theoretical Analysis 128
5.4.1 MAP Estimator for DC-SBM with a Noisy Oracle 129
5.4.2 Continuous Relaxation . 130
5.4.3 Upper Bound on the Number of Misclassified Nodes 132
5.4.4 Numerical Results . 136

Further Notes . 139

Chapter 6 Community Detection in Temporal Networks 140

6.1 A General Model of Temporal Networks with Communities 141
6.1.1 Membership and Interaction Structures . 141
6.1.2 Examples of Temporal Network Models . 141

6.2 Networks with Static Community Memberships 143
6.2.1 Recovery Thresholds in SBM with Markov Interaction 143
6.2.2 Online Likelihood-based Algorithms for Markov Dynamics 145

Table of Contents vii

6.2.3 Spectral Methods for Clustering Temporal Networks 150
6.2.4 Clustering for Long Time Horizon Using Empirical Transition

Rates . 158
6.3 Markovian Evolution of Community Memberships 160

6.3.1 Variational Expectation–Maximization Algorithm 161
6.3.2 Belief Propagation Using the Space-time Graph 163
6.3.3 Online Inference as a Semi-supervised Problem 165
6.3.4 Degree-corrected Temporal SBM with Markov Community

Memberships . 165
Further Notes . 170

Chapter 7 Sampling in Networks 171

7.1 Overview of Sampling Methods . 172
7.1.1 Independent Uniform Sampling . 172
7.1.2 Snowball Sampling . 172
7.1.3 Metropolis-Hastings Sampling . 173
7.1.4 Respondent-driven Sampling . 173
7.1.5 Respondent-driven Sampling with Uniform Jumps 174
7.1.6 Ratio with Tours Estimator . 176

7.2 Tour-based Estimators for Motif Counting . 177
7.3 Numerical Comparison of Sampling Methods 178

7.3.1 Synthetic Networks . 178
7.3.2 Real-world Network: DBLP . 179

Further Notes . 180

Appendix A Background Material from Probability, Linear Algebra
and Graph Theory 182

A.1 Probability . 182
A.1.1 Probability Toolbox . 182
A.1.2 Basic Probability Laws . 183
A.1.3 Concentration of Random Variables . 184

A.2 Graph Theory . 186
A.2.1 Definitions, Vocabulary . 186
A.2.2 Adjacency Matrix . 187
A.2.3 Graph Laplacians . 188

A.3 Linear Algebra . 191
A.3.1 Symmetric Matrices . 191
A.3.2 Norms . 191
A.3.3 Courant-Fisher Theorem . 193

viii Table of Contents

A.4 Calculus on Graphs . 194
A.4.1 Basic Reminders . 194
A.4.2 Extension on Graphs . 194

Appendix B Additional Lemmas Related to the Proof of
Theorem 5.5 198

B.1 Mean-field Solution of the Secular Equation (5.19) 198
B.1.1 Spectral Study of a Perturbed Rank-2 Matrix 198
B.1.2 Estimation of γ̄∗ . 200
B.1.3 Concentration of γ∗ . 201

B.2 Mean-field Solution of the Constrained Linear System (5.17) 204

References . 207

Index . 226

About the Authors . 228

Preface

This book is a general introduction to the statistical analysis of networks, and can
serve both as a research monograph and as a textbook. Many fundamental modern
tools and concepts needed for the analysis of networks are presented, such as net-
work modeling, community detection, graph-based semi-supervised learning and
sampling in networks. The description of these concepts is self-contained, with
both theoretical justifications and applications provided for the presented algo-
rithms.

Researchers, including postgraduate students, working in the area of network
science, complex network analysis, or social network analysis, will find up-to-date
statistical methods relevant to their research tasks. This book can also serve as text-
book material for courses related to the statistical approach to the analysis of com-
plex networks.

In general, the chapters are fairly independent and self-supporting, and the book
could be used for course composition “à la carte”. Nevertheless, Chapter 2 is needed
to a certain degree for all parts of the book. It is also useful to read Chapter 4 before
reading Chapters 5 and 6, but this is not absolutely necessary. Reading Chapter 3
can also be helpful before reading Chapters 5 and 7.

As prerequisites for reading our book, we expect basic knowledge in probability,
linear algebra and elementary notions of graph theory. We have also added appen-
dices describing some required notions from the above mentioned disciplines.

ix

DOI: 10.1561/9781638280514.ch1

Chapter 1

Introduction

A network is a collection of objects interacting with each other. Networks are
found in numerous scientific disciplines: atoms or interacting particles in statisti-
cal physics, protein interactions in molecular biology, social networks in sociology
and the Internet web-graph in computer science, just to name a few. Several types
of interactions exist. While binary interactions are the simplest (did Alice interact
with Bob today?), weighted interactions (the number of interactions between Alice
and Bob today) or temporal interactions (at what precise times did Alice and Bob
interact?) provide additional valuable information.

Networks with binary interactions are conveniently represented by a graph.
A graph G is a pair (V , E), where V is the set of objects (also called nodes or vertices),
and E is the set of interacting node pairs (also called edges or links). This standard
graph representation can be extended to weighted networks or temporal networks
by considering weighted edges or temporal sequences of edges. In the first and sec-
ond parts of the introductory section, we present several examples of real-world
networks and describe unifying properties.

1

http://dx.doi.org/10.1561/9781638280514.ch1

2 Introduction

1.1 Examples of Networks

Let us present several examples of real-world networks. Although, for clarity of
exposition, we categorise the networks by types, this classification is subjective, and
a network could belong to two or more types.

Social networks

One of the first examples of social networks is the Zachary karate club, representing
the friendships between the 74 members of a karate club (see Figure 1.1). Dur-
ing the two-year study (Zachary, 1977), the club members split into two groups
after a feud occurred between the main instructor and the club’s president. This
dispute makes the dataset extremely popular in the network science community.
We would like to answer the intriguing question: can one predict the resulting two
groups based only on the friendship graph? This lays the ground for the problem
of community detection, which we will discuss in detail in Chapter 4.

Data concerning social networks of real-life social relationships (acquaintances,
interactions) are notoriously hard to gather. Indeed, questionnaires are physical and
take time to analyse, making the collection from a large number of individuals dif-
ficult. Moreover, they are prone to human error and personal interpretation. For-
tunately, it is much easier to gather examples of datasets in online social networks.

Figure 1.1. Karate club.

Examples of Networks 3

Figure 1.2. Two largest communities of the LiveJournal network.

Figure 1.3. Political Blogs network.

Thus, it is not surprising that most examples of datasets of large social networks
come from online social networks or web-blogs.

One such example is the LiveJournal dataset. LiveJournal is an online blogging
community in which users can befriend each other. The users are also free to create
groups which other users can join. These groups can be considered as ground-truth
communities. Figure 1.2 shows the LiveJournal friendship network restricted to the
two largest communities.

Adamic and Glance, 2005 studied the linking patterns of political bloggers dur-
ing the U.S. Presidential Election of 2004. They considered 1494 blogs in total,
759 liberal and 735 conservative, and constructed the interactions by identifying
whether one blog references another blog. As shown in Figure 1.3, the difference

4 Introduction

Table 1.1. Dimensions of three data sets of interacting high school students: the number

of students n, the number of classes K , and the number of snapshots T .

Year n K T

2011 118 3 5609

2012 180 5 11273

2013 327 9 7375

Figure 1.4. Time-aggregated network obtained from the high-school interaction network

(year 2013).

between the liberal and conservative blogospheres is clear. Indeed, 90% of the inter-
actions occur between blogs belonging to the same political community.

Some other prominent online social networks are Twitter, Facebook and
LinkedIn.

Face-to-face interaction networks

The high-school datasets represent close proximity encounters between students in a
French high school. Student-to-student interactions are recorded every 20 seconds
through wearable sensors, and the experiments span several school days. The same
experiment was performed in three consecutive years (Fournet and Barrat, 2014;
Mastrandrea et al., 2015), and the dimensions of each dataset are given in Table 1.1.
We also plot in Figure 1.4 the weighted graph for the year 2013, where the weights
correspond to the number of interactions recorded between two students. Finally,
as each student belongs to one class, the question of recovering the classes based
on the temporal interactions arises. We will study this dataset in more detail in
Chapter 6.

We note that time aggregation can result in a loss of important information,
which could otherwise be inferred from the dataset’s temporal nature. For example,

Examples of Networks 5

Figure 1.5. The average degree (the average number of interactions per student) over the

course of a single day. The shaded regions correspond to the breaks between classes.

Figure 1.5 shows, per snapshot, the average number of interactions per student
over a given day. The observed peaks correspond to the starting and ending times
of the breaks between courses, since students leave and join the classrooms at these
moments.

Communication networks

Communication networks constitute an important class, which includes various
transportation networks (roads, airplane maps, etc.) as well as phone and messaging
communications between individuals.

The Enron email dataset1 contains approximately 500,000 emails from about
150 employees (mostly from the senior management team) of the Enron company
(now bankrupt). Emails were recovered by the Federal Energy Regulatory Com-
mission during the fraud investigation. This dataset was made public and has been
used by many researchers for various information processing tasks, such as docu-
ment classification or social network analysis (Carley and Skillicorn, 2005).

The Copenhagen networks study dataset (Sapiezynski et al., 2019) records the
interaction of 700 university students over 4 weeks, including close-proximity inter-
actions, phone calls and Facebook friendships.

Information and collaboration networks

Co-authorship networks are constructed by connecting two authors if they have
published a paper together. Since automated citation indexing is now common,
large datasets of co-authorship networks are now available. Examples include the
DBLP (Yang and Leskovec, 2015), Citeseer, Cora, WebKB (Getoor, 2005) and

1. Available at https://www.cs.cmu.edu/~enron/

https://www.cs.cmu.edu/~enron/

6 Introduction

Figure 1.6. Dolphin network (Lusseau et al., 2003). Colours show how the network split

when a dolphin left the group.

PubMed (Namata et al., 2012) datasets. This procedure can be extended to other
domains. For example, using IMDB data one can produce a network of movie
actors, where two actors are connected if they starred in a movie together.

Web-graph represents another example of information networks. It is con-
structed by linking webpage A to webpage B (usually with a directed link) if web-
page A cites webpage B. Several Web-graph and Wikipedia networks are available
from the NetSet database2 and the Laboratory for Web Algorithmics (LAW).3

Biological networks

The class of biological networks includes protein interaction networks, food webs
and animal social networks.

Let us present one example of an animal social network. The dolphin net-
work (Lusseau et al., 2003) is a social network of 62 dolphins, with edges represent-
ing social interactions. During the study, a dolphin left the group, which resulted
in a split of the network into two communities (see Figure 1.6). The group later
reunited when this mysterious dolphin returned home.

Geometrically defined network topologies

In machine learning tasks, data often come as a matrix

X =
(
x1, . . . , xn

)
∈ Rm×n,

where n is the number of data points and m is the dimension of each data point
(e.g., the number of features). To perform data analysis with the help of a network,

2. https://netset.telecom-paris.f r/index.html

3. https://law.di.unimi.it/datasets.php

https://netset.telecom-paris.fr/index.html
https://law.di.unimi.it/datasets.php

Examples of Networks 7

Figure 1.7. Network constructed from 300 pictures of digits 0, 1 and 2 taken from the

MNIST database.

the topology and weights of the graph must be built from the data. A common way
to define the weight of an edge connecting vertices i and j is by using a Gaussian
kernel with thresholding

wij =

exp
(
−
‖xi−xj‖

2

τ 2

)
, if ‖xi − xj‖

2
≤ κ ,

0, otherwise,

where τ and κ are tunable parameters and ‖ · ‖ is a distance between data points.
In particular, the cutoff parameter κ prevents having a too dense network with
many small-weight edges. Another common method is to connect each vertex to
its K -nearest neighbours. We refer to (Grady and Polimeni, 2010, Chapter 4) and
(Stankovic et al., 2020) for the description of other methods for data similarity
network construction.

The MNIST database (LeCun et al., 1998) is a database of 70,000 handwritten
digits commonly used as a benchmark in machine learning. Figure 1.7 presents
a network built from 300 pictures of digits 0, 1, 2 using the Gaussian kernel as
a weight function. More precisely, we first compute a K -nearest neighbour graph
(K = 8) with weights

wij =

exp
(
−

4‖xi−xj‖
2

τi

)
, if xj is among K nearest neighbours of xi,

0, otherwise,

where τi represents the distance between xi and its K th-nearest neighbour. The
weight matrix is finally symmetrised by replacing W with 1

2(W +W T).

8 Introduction

1.2 Unifying Properties of Complex Networks

1.2.1 What are the Properties Commonly Shared by Networks?

Many real-world complex networks share a number of basic properties.

Sparsity

The degree of node i, denoted di, is the number of edges incident to this node, or
in other words, the number of nodes that are interacting with node i. Even if the
number of nodes n in a network can be large, the average degree d̄ = 1

n

∑n
i=1 di is

often small. For example, in Table 1.2, we see that the DBLP co-authorship network
has 13,326 nodes, while the average degree d̄ is just 5.1. This effect is even more
evident in social networks such as Facebook. Even if the total number of users is
huge and still growing, the number of friends of each user remains small (maybe
even bounded). We say that a network is sparse if the average degree d̄ is several
orders of magnitude smaller than the number of nodes n.

Connectivity

A connected component of a binary undirected graph G = (V , E) is a set U of
nodes such that between two nodes i, j ∈ U there exists a path linking i to j.
Since two connected components are necessarily disjoint, the node set V can there-
fore be partitioned into a finite number of non-overlapping connected compo-
nents U1, . . . , Up. We say that the graph is connected if p = 1, and disconnected
otherwise. Even though real-world networks might be disconnected, typically the
relative size of the largest connected component is very large (for example, con-
taining about 90% of the nodes), while the other components are much smaller
(Newman, 2001a).

Small world

In a famous experiment, Milgram asked participants to mail a folder (contain-
ing several documents related to the study) to one of their acquaintances in an
attempt to eventually reach an assigned target individual (Milgram, 1967). While
in most cases the individuals failed (either by incapacity or lack of willingness),
about 20% of the participants managed to send the documents to the assigned
target.4 Moreover, the mean number of intermediaries between starters and the tar-
get was 5.2. While Milgram’s experiments were later criticized (Kleinfeld, 2002),

4. This is astonishing. Milgram’s experiment was repeated using e-mail. Dodds et al., 2003 asked 24,163 vol-
unteers to start e-mail chains, aiming to reach 18 target persons in 13 countries. Only 384 (less than 1.6%)
of those chains were completed!

Unifying Properties of Complex Networks 9

Table 1.2. Basic characteristics of a selection of networks. The quantities are: the number

of nodes n, the number of edges |E |, the average degree (the average number of neigh-

bour nodes) d̄ , the average distance between two nodes δ, clustering coefficient cc (in

parenthesis the clustering coefficient if the edges of the graph were drawn randomly),

the exponent of the degree distribution α.

Network n |E | d̄ δ cc α

Political blogs 1222 16717 27.4 2.7 0.32 (0.07) 1.5

citeseer 2110 3720 3.5 9.3 0.17 (0.005) 2.7

cora 2485 5069 4.0 6.3 0.24 (0.005) 2.9

LiveJournal 2766 24138 17.5 3.9 0.41 (0.02) 2.1

wikischools 4403 100382 46 2.5 0.28 (0.03) 2.3

DBLP 13326 34281 5.1 6.9 0.61 (0.001) 2.9

wikivitals 10008 629521 126 2.4 0.26 (0.04) 2.7

they transfused in popular culture as the six degree of separation phenomenon.
In fact, this phenomenon has since been empirically observed in many networks
(see Watts, 2000; Newman, 2001b and Table 1.2).

Edge transitivity

A popular saying tells us that “a friend of my friend is my friend”. Thus, one would
expect the interaction in a network to be transitive. This means that if Alice inter-
acts with Bob, and Bob interacts with Cecile, then Alice and Cecile have a high
probability of also being in interaction. The clustering coefficient measures this phe-
nomenon. We define a connected triple as a set of three nodes, where one node is
connected to two other nodes. We also define a triangle as a set of three nodes that
are connected to each other. Since each triangle of three nodes contributes three
connected triples (one centred on each of the three nodes), the clustering coeffi-
cient cc is given by

cc =
3× number of triangles

number of connected triples of nodes
.

Consider a graph in which the interactions among nodes are purely random (i.e.,
an interaction between two nodes occurs with a probability p). Since there are

(n
3

)
node sets of size three, the expected number of triangles is thus

(n
3

)
p3, and the

expected number of connected triples is
(n

3

)
p2. Hence, the clustering coefficient

of a random graph equals 3p. Finally, since there are
(n

2

)
node pairs each which

interact with probability p, then p can be estimated by the fraction |E |/
(n

2

)
. Hence,

the clustering coefficient of a random graph can be estimated by 6|E |
n(n−1) . We observe

10 Introduction

in Table 1.2 that the clustering coefficients of real-world social networks are several
orders of magnitude higher than those of random graphs of same size.

Heavy-tailed degree distribution

Let us denote by pk the probability for a uniformly sampled node to have degree k
and call {pk : k = 0, 1, 2, . . . } the degree distribution. In a random network, where
|E | edges are drawn uniformly at random among the

(n
2

)
node pairs, the degree

distribution is binomial with parameters n, p, with p̂ = |E |/
(n

2

)
being an estimate

for the edge probability. Nonetheless, in most networks the degree distribution is
highly right-skewed, in other words, has a heavy tail distribution for values that are
far above the mean. This highlights the fact that there are a small number of nodes
having very large degrees (for example influencers in a social network), whereas the
majority of nodes have very small degrees. Therefore, it is in general more accurate
to model the degree distribution of real networks by a power law.

A random variable X ∈ [xmin,+∞) is distributed according to a continuous
power law of exponent α, if it is drawn from a probability distribution whose den-
sity is f (x) = Cx−α . While α > 1 is required for the probability distribution to
be well-defined (and then C = (α − 1)xα−1

min from normalisation), typical values
of α often lie in the range 2 < α < 3. An important property of power laws is
that they are scale-free (or scale-invariant), namely f (cx) ∝ f (x) for any constant c.
As the degrees are integer values, we will consider the discrete variant of a power
law, namely the Zipfian distribution, where P(X = k) = Ck−α1(k ≥ xmin) with
C =

(∑
∞

k=0 (k + xmin)
−α
)−1

.
While fitting power laws is complex as large fluctuations occur in the tail of the

distribution (Newman, 2005b; Clauset et al., 2009), it is convenient to notice that
logP(X = k) = −α log k + log c for k ≥ xmin, and thus with a log-log scale the
probability distribution is a straight line. To reduce the effect of the aforementioned
tail fluctuations, it is better to use the Complementary Cumulative Distribution
Function (CCDF) for fitting instead of the density function. The Hill estimator
also accurately estimates the exponent of a power law, see e.g., (Clauset et al., 2009)
for details. Figure 1.8 shows the power law of the Citeseer network.

While the power-law paradigm has been widely accepted and is sometimes
referred to as a ‘universal law’, it has also been heavily criticized. In particular, a
linear regression on the log-log plot generates significant systematic errors under rel-
atively common conditions (see Clauset et al., 2009, Appendix A). Moreover, Lima-
Mendez and van Helden, 2009 showed that for biological networks the power-law
degree distribution is a myth. Similarly, by applying goodness-of-fit tests on more
than 1000 networks, Broido and Clauset, 2019 showed that networks with power-
law degree distributions are actually rare. Nonetheless, a vast majority of real-world
networks have heavy-tailed degree distributions.

Unifying Properties of Complex Networks 11

(a)

Figure 1.8. The degree distribution of the Citeseer network.

1.2.2 How do these Properties Arise?

In order to explain how the described properties arise in networks, we introduce
some random graph models with stochastic node interactions. The random graph
models will be studied in detail in Chapter 2. These models will also serve as refer-
ence for studying statistical problems related to networks.

Erdős-Rényi random graphs

The simplest random graph model is the Erdős-Rényi model. This model has n nodes
and each pair of nodes is connected with probability p.

This is a simple model, in particular since it assumes that interactions between
different node pairs are independent. Hence, the model will not allow any of the
edge transitivity. Morever, the degree distribution of an Erdős-Rényi random graph
is binomial, Bin(n, p),5 which is not heavy tailed.

Nevertheless, the Erdős-Rényi model allows us to illustrate the properties of con-
nectivity and sparsity in a beautiful manner. Indeed, since the degree distribution
is binomial, it follows that the average degree d̄ of the nodes is equal to np. If p is
constant, then it means that d̄ scales with the number of nodes n, and hence the
graph is not sparse in this scaling regime. It is thus common to scale p with n, such
that p = pn � 1. For example, by choosing p = a

n with a constant, we have d̄ = a,
and the average degree remains constant as n grows. We will see in Chapter 2 that

another interesting choice is pn = a log n
n , so that the average degree d̄ = a log n

grows logarithmically with n. In Figure 1.9, two examples of Erdős-Rényi graphs
are shown. We observe that when pn =

2
n in (a), the graph is disconnected, i.e.,

a significant number of nodes are grouped into one connected component, while

5. This is because a given node i has n potential neighbours (n − 1, if we exclude self-loops), and this node i
is connected to another node with probability p.

12 Introduction

Figure 1.9. Erdős-Rényi graphs with n = 100 and various interaction probabilities pn.

Figure 1.10. Example of RGG, when S = [0, 1]2 and r = 0.1, for different n.

some nodes remain isolated. On the contrary, when pn =
2 log n

n in (b), the graph
appears to be connected. We will see in Chapter 2 how rigourous statements con-
firm these observations.

Random geometric graphs

Edge transitivity can be modelled by introducing geometry. Let us consider n nodes,
and assume that each node has a random position on the Euclidean plane. Intu-
itively, nodes that are close to each other have more chance of being connected than
nodes placed further apart. An extreme choice is to assume that two nodes are con-
nected if and only if their Euclidean distance is less than a threshold r. This gives the
Random Geometric Graph model. We observe in Figure 1.10 that this model leads
to graphs with a large number of triangles (compared with Erdős-Rényi graphs).
Moreover, the graphs appear locally dense while remaining globally fairly sparse.

Preferential attachment models

While the Erdős-Rényi model explains sparsity and connectivity, and geometric
graphs explain transitivity, none of these models exhibit a power law degree distri-
bution. To model networks with scale-free degree distributions, Solla Price, 1965,

What Are the Statistical Problems Related to Networks? 13

Figure 1.11. Left: A realisation of the preferential attachment model with n = 500 nodes.

Right: Degree distribution in log-log scale of a preferential attachment graph with n = 104

nodes. The orange curve represents the linear regression fitting.

1976 (analysing citation networks) and Barabási and Albert, 1999 (analysing web-
graphs) proposed the preferential attachment model. It is a growing network model
in which a new node enters the network at each time step. The probability that the
new node interacts with an existing node i is proportional to the degree di of node
i. Therefore, nodes with large degree tend to attract new edges, hence increasing
even more their degree. We plot an example of a graph generated by the preferential
attachment model in Figure 1.11, as well as its degree distribution. We will give a
rigorous definition of this model in Chapter 2 and prove that this model indeed
has a power-law degree distribution in the limit.

1.3 What Are the Statistical Problems Related to
Networks?

1.3.1 How to Cluster Network Nodes?

Community detection (also referred to as community recovery or graph clustering) is a
very common problem in network analysis. It consists of grouping the nodes into
K communities (also called groups, blocks or clusters), such that nodes inside a
community have some similar properties. Intuitively, we shall assume that nodes in
the same community are more likely to interact than nodes belonging to different
communities.6

Again intuitively, a good partition should minimise the number of interactions
between different clusters. Consequently, a first class of graph clustering methods,
called cut-based methods, aim to find K clusters such that the number of interactions

6. This is sometimes referred to as associative communities. Nonetheless, some networks may be dissasociative.
That is, interactions are more likely to occur between nodes in different communities.

14 Introduction

between different clusters is minimised. It leads to several spectral methods that use
the information contained in the eigenvectors of a well-chosen matrix to retrieve
the communities. This beautifully links graph theory with linear algebra.

Other clustering methods assess the quality of a given partition via certain criteria
which they aim to optimise. One example of this class of methods is based on the
concept of modularity. In essence, modularity compares a graph with clusters to
some reference random graph model. The maximisation of modularity is usually
done via a greedy algorithm. One strength of such methods is that it is not necessary
to know the number of clusters in advance.

Unfortunately, we will see that the modularity-based methods are prone to over-
fitting. In particular, we will show that on random graphs with no community struc-
ture, such as Erdős-Rényi random graphs, it is possible to find partitions with a high
modularity! We will see how we can mitigate this problem by using Bayesian meth-
ods. Those methods assume that the graph data is generated from a random graph
model with a clustering structure and look for the best parameters via a Markov
Chain Monte Carlo algorithm.

1.3.2 Which Nodes are Most Important in a Network?

In large networks, many applications require the ranking of nodes in terms of
importance. Examples include the identification of the most influential nodes in
social networks, the study of super-spreaders of a disease, and the analysis of bot-
tlenecks in urban or technological networks (such as electric grids). While all these
problems are related to finding the most important, crucial nodes, the notion of
importance varies greatly. Indeed, the most influential nodes in a social network
may simply be the nodes with the largest degree. For example, when creating an
account on Twitter or Instagram, the online social networks suggest the new users
to follow popular users. On the contrary, bottlenecks in an electric grid are located
on nodes with small degree such that, if those nodes were not in the network, there
would be a great change in the network flow. Finally, other applications, such as
PageRank, rank the nodes based on a random walk on the network nodes, mim-
icking browsing or searching behaviour.

1.3.3 How to Infer Important Information in a Network?

Analysing a very large network is often easier done via summary statistics. Some
examples are: estimating the average age of users in a social network, finding the
proportion of drug users in a population, polling before an election, etc. A first pos-
sibility is to uniformly sample k nodes, and average over this sample. Unfortunately,

What Are the Statistical Problems Related to Networks? 15

in practice, it is often hard to sample the nodes uniformly. Typically, uniform sam-
pling in a huge social network like Facebook or Twitter cannot be done efficiently as
(a) the list of all accounts on these platforms is not publicly available; and (b) there
is a strict limitation on the API access rate. For instance, a standard Twitter account
can make no more than one request per minute. At that rate, we would need about
950 years to crawl the entire Twitter social network...

Moreover, a small bias in the sampling process may lead to a very large bias in the
estimator, as many famous examples involving polling before elections can attest. It
is important to note that a bias in the node sampling cannot be mitigated by simply
sampling more nodes. One infamous example involves The Literary Digest, who in
1936 had polled more than two million individuals and wrongly predicted a clear
victory of Landon over Roosevelt. The way of sampling created a bias, since the
newspaper simply polled over its own readers, who were wealthier than the average
citizen.7

Book Organisation

The book is organised as follows. We start by presenting various random graph
models in Chapter 2. Chapter 3 focuses on centrality indices in networks. Com-
munity detection problem is presented and analyzed in Chapter 4, and Chapter 5
is devoted to semi-supervised learning on networks, when some information about
the community structure is given. In Chapter 6, we extend the community detec-
tion problem to temporal networks. Finally, in Chapter 7 we present techniques
for sampling and performing questionaries in networks.

Book Bibliographic Position

Let us discuss the position of the book with respect to the other reference works.
Random graph models are thoroughly analysed in Bollobás, 2001; Chung and Lu,
2006; Janson et al., 2011; Hofstad, 2016. Graph formation processes (e.g., pref-
erential attachment processes) and dynamics on graphs (e.g., epidemic processes)
are studied in Durrett, 2007; Draief and Massoulié, 2010; Barabási, 2016; New-
man, 2018; Masuda and Lambiotte, 2021. Specific applications of random graph
and complex network models to social networks are discussed in Wasserman and
Faust, 1994; Doreian et al., 2005; Carrington et al., 2005; Scott and Carrington,
2011; Prell, 2012; Yang et al., 2016; Borgatti et al., 2018; Knoke and Yang, 2019.

7. See https://en.wikipedia.org/wiki/The_Literary_Digest.

https://en.wikipedia.org/wiki/The_Literary_Digest

16 Introduction

The fitting and visualization of random graphs and complex networks are presented
in Ellson et al., 2004; Hagberg et al., 2008; Bastian et al., 2009; Kolaczyk et al.,
2009; Goldenberg et al., 2010; Cherven, 2015; Mrvar and Batagelj, 2016; De Nooy
et al., 2018; Kolaczyk and Csárdi, 2020. We do not cover the above topics in detail.

Our emphasis is on fundamental statistical aspects of complex network analy-
sis (aka network science). Graph clustering and community detection, in partic-
ular clustering of stochastic block models, are studied in Newman, 2018; Abbe,
2018. This is still a very rapidly developing research area, with many interesting
new results continuing to appear. Here, we summarise the main results in the com-
munity detection problem, review important progress since 2018 and study cluster-
ing in temporal networks. Semi-supervised learning is presented in Chapelle et al.,
2006. In this book, we focus on graph-based semi-supervised learning methods and
their application to temporal networks.

To the best of our knowledge, there are no textbooks about the detailed analysis
of network centrality indices (especially about their comparative analysis and their
various applications beyond the scope of social networks). As is the case for the
community detection problem, new important results continue to emerge. We have
tried to do a state-of-the-art survey in this area. Also, we have not seen any textbook
about modern methods for sampling in networks.

Thus, we hope that this is the first comprehensive textbook-style exposition of
the statistical analysis of networks.

Funding

The work on this book was partly supported by Inria – Nokia Bell Labs Project
“Distributed Learning and Control for Network Analysis” and EU COST Action
“European Cooperation for Statistics of Network Data Science”.

DOI: 10.1561/9781638280514.ch2

Chapter 2

Random Graph Models

This chapter is devoted to basic models for complex networks. We introduce sev-
eral important classes of random graph models and we illustrate and study some
statistical properties of these models, such as degree distribution and connectivity.

Notations In the following, G = (V , E) denotes a graph, where V = {1, . . . , n}
is the set of vertices (nodes) and E is the set of edges (links). We say that a graph G
is a random graph if G was generated from a random graph model. A random graph
model refers to a probability distribution over the set of all graphs.

We will denote by di the degree of node i. The vector d = (d1, . . . , dn) is
called the degree sequence of the nodes. Given a random graph model, the degree di

of a node i is a random variable and is distributed according to some probability
distribution. When all the degrees are identically distributed (i.e., d1, · · · , dn are
all distributed according to the same probability distribution D), we say that the
degrees in the graph G are distributed according to the degree distribution D.

17

http://dx.doi.org/10.1561/9781638280514.ch2

18 Random Graph Models

2.1 Erdős-Rényi Random Graphs

2.1.1 Definition

Definition 2.1. Let n be an integer, and P = (pij)1≤i<j≤n ∈ [0; 1]n×n be a set of
probabilities. A Bernoulli random graph G = (V , E) is an undirected, unweighted
graph G such that:

• V = {1, . . . , n};
• P

(
(ij) ∈ E

)
= pij for all node-pair (i, j) with 1 ≤ i < j ≤ n.

We write G ∼ G(n, (pij)). In a Bernoulli random graph, every node pairs (i, j) is
connected by an edge with probability pij , independently of all other node pairs.

Remark 2.1. If G ∼ G(n, (pij)1≤i<j≤n), then the adjacency matrix A of G is a
symmetric random matrix, whose entries are independently distributed, with Aij =

Aji ∼ Ber(pij) and Aii = 0.

Proposition 2.1. Let G ∼ G(n, (pij)) and A be its associated adjacency matrix. We
have:

P (A) =
∏
i<j

p
Aij
ij (1− pij)

1−Aij .

Proof. The independence of the edge sampling process ensures that

P(A) =
∏

1≤i<j≤n

P
(
Aij
)

.

Moreover,

P
(
Aij
)
=

{
pij if Aij = 1
1− pij if Aij = 0

,

and this can conveniently be rewritten as P(Aij) = p
Aij
ij (1− pij)

1−Aij .

Example 2.1. Suppose that ∀i, j : pij = p. Then, G(n, (pij)) is called the Erdős-
Rényi model1, and traditionally denoted by G(n, p) or Gn,p.

1. This model was first introduced by Gilbert in 1959 (Gilbert, 1959), while the same year a paper from Erdős
and Rényi study a similar but different model (Erdős and Rényi, 1959), where all graphs on a fixed vertex
set with a fixed number of edges are equally likely. Asymptotically, these two models are equivalent.

Erdős-Rényi Random Graphs 19

Corollary 2.1. Let G ∼ Gn,p and A be its associated adjacency matrix. We have

P(A) = (1− p)
n(n−1)

2

(
p

1− p

)|E |
,

where |E | is the number of edges of G.

Proof. Using Proposition 2.1, we can write

P(A) =
∏
i<j

pAij (1− p)1−Aij =

∏
i<j

(1− p)
(

p
1− p

)Aij

.

The result follows by noticing that |E | =
∑

i<j Aij ,.

Algorithm 1 provides a simple way to generate an Erdős-Rényi random graph,
by looping over all possible node pairs (i, j), and adding (i, j) to the edge list with
probability p.

Algorithm 1: Simple generation of Erdős-Rényi graphs.

Input: number of nodes n, edge probability p ∈ [0, 1].
Output: list of edges E .
Process:
E ← ∅;
for i = 1 to n-1 do

for j = i+1 to n do
x← random number between 0 and 1;
if x < p then

add the edge (i, j) to E .

Return: E .

The space-complexity of Algorithm 1 is O (|E |) (corresponds to storing |E |
edges), while its time-complexity is O

(
n2
)
. In particular, it is very inefficient if

p is small: indeed, in that case, the majority of node pairs (i, j) will not be con-
nected, and we are wasting time by testing them. In other words, starting from
node i, the node pairs (i, i+1), . . . , (i, i+ k−1) will not be linked, while the pair
(i, i + k) will give an edge. This number k represents the number of failures in a
sequence of independent Bernoulli random variables before the first success occurs.
Hence, it is geometrically distributed with parameter p. Based on this observation,
Batagelj and Brandes, 2005 proposed Algorithm 2 for an efficient generation of a
sparse Erdős-Rényi graph. It has both space and time complexity of O (|E |).

20 Random Graph Models

Algorithm 2: Fast generation of sparse Erdős-Rényi graphs.

Input: number of nodes n, edge probability p ∈ [0, 1].
Output: list of edges E .
Process:
E ← ∅;
i← 0;
for i = 1 to n− 1 do

v← i
while v ≤ n do

k← realisation of a geometric r.v. with parameter p;
v← v + k;
if v ≤ n then

add the edge (i, j) to E .

Return: E .

2.1.2 Degree Distribution

Proposition 2.2. Let G ∼ G(n, p), and let di be the degree of node i. Then di is
distributed according to Bin(n, p). In particular, the average degree d̄ of the graph
equals np.

Proof. Indeed, the degree of i, denoted di, is equal to
∑n

j=1 Aij , where Aij are i.i.d.
Bernoulli random variable with parameter p.

Remark 2.2. It has been observed that many real graphs have a heavy-tailed degree
distribution (such as a power law), and not a binomial one (we refer to the dis-
cussion in Section 1.2). An intuitive argument is the following one: since bino-
mial distributions are well concentrated, an Erdős-Rényi graph does not allow
for many hubs (nodes with degrees much higher than the average degree), which
we tend to see in real networks (e.g., in a social network, some people will have
many more connections than others and will act as influencers or hubs). Thus,
the basic Erdős-Rényi random graph is not an appropriate model for many real
networks.

2.1.3 Phase Transition Phenomena

Heuristic

This section considers sequences of Erdős-Rényi graphs (G1, . . . , Gn, . . .), such
that Gn has n nodes, and the link-probability pn depends on n. In other words,

Erdős-Rényi Random Graphs 21

Figure 2.1. Erdős-Rényi graphs with n = 100 in the constant degree regime.

Figure 2.2. Erdős-Rényi graphs with n = 100 in the logarithmic degree regime.

Gn ∼ G(n, pn). We especially highlight two regimes:

• the regime pn =
a
n , where a is constant;

• the regime pn = a log n
n , where a is constant.

These two regimes are respectively called the constant degree regime and the log-
arithmic degree regime, as the expected degree d̄n = npn equals a in the first
case and a log n in the second case.2 Figures 2.1 and 2.2 show examples of Erdős-
Rényi graphs in the constant and logarithmic degree regime respectively, for a given
n = 100. We make the following observations in the constant degree regime:

• when d̄n < 1, most of the nodes are isolated, as expected since d̄n < 1 means
that on average, a node has less than one neighbor;

• when d̄n > 1, it seems that there is a connected component which contains
most of the nodes. We call this component the giant component.

On the other hand, in the logarithmic degree regime, we see that:

• if d̄n < log n, the graph appears to be not connected, as there remains some
isolated nodes or isolated edges;

• on the contrary, when d̄n > log n, the graph appears to be fully connected.

Those observations are further strengthened by Figure 2.3. In the constant degree
regime pn =

a
n , Figure 2.3(a) shows that when a < 1, the proportion of nodes in

2. More exactly, d̄n = (n−1)pn but if we allow self-loops, we can write d̄n = npn, and moreover the difference
is negligible for large n.

22 Random Graph Models

a b

Figure 2.3. Empirical evidence of a phase transition for the existence of a giant compo-

nent in the constant degree regime and a phase transition for connectivity in the loga-

rithmic degree regime of Erdős-Rényi graphs (here n = 5000).

the largest connected component is tiny. But, as soon as a > 1, this proportion
becomes non-negligible, and increases steadily with a. Similarly, in the logarithmic

degree regime pn = a log n
n , Figure 2.3(b) shows that the empirical probability that

the graph is connected goes from 0 to 1 as soon as a becomes larger that 1.

Main statements

Let us now present two main statements justifying our previous heuristic observa-
tions.

Theorem 2.1 (Phase transition for giant component – constant degree regime).
Let G ∼ G(n, pn) be an Erdős-Rényi graph, with pn =

a
n where a is a constant. Almost

surely, the following holds:

(a) if a < 1, then there is no connected component of size larger than O(log n);
(b) if a = 1, then there is one large component of size O(n2/3);
(c) if a > 1, then there is one and only one component of size O(n). This component

is called the giant component.

The proof of Theorem 2.1 is complex and will not be presented in this book.
We refer the interested reader to (Hofstad, 2016).

Theorem 2.2 (Phase transition for connectivity). Let Gn ∼ G(n, pn) be a sequence
of Erdős-Rényi random graphs. Let d̄n = npn. The following holds.

(a) If there exists a sequence (ωn)n with ωn → +∞ such that dn < log n − ωn,
then Gn is a.s. non connected. More precisely, the graph Gn contains a.s. at least
one isolated node;

(b) If there exists a sequence (ωn)n with ωn → +∞ such that d̄n > log n+ ωn,
then Gn is a.s. connected.

Erdős-Rényi Random Graphs 23

Example 2.2. Assume d̄n = log n + log log n, and let Gn ∼ G(n, pn). Then,
Theorem 2.2 states that asymptotically Gn will be a.s. connected (we can take ωn =

log log n).

Example 2.3. If d̄n = a log n, with a constant, then Theorem 2.2 applies with
ωn = (a−1) log n. Hence Gn will be connected if a > 1, and will be disconnected
if a < 1. In particular, this justifies the heuristic observation from Figure 2.3(b).

Proof of the connectivity phase transition

Before proving Theorem 2.2, let us start with the following lemma about the pres-
ence of isolated nodes in an Erdős-Rényi graph.
Lemma 2.4. The probability that an Erdős-Rényi graph Gn ∼ G(n, pn) contains at
least one isolated node satisfies

lim
n→∞

P
(
∃ isolated node

)
=

{
0 if pn ≥

log n+ωn
n for some ωn →+∞,

1 if pn ≤
log n−ωn

n for some ωn →+∞.

This lemma implies that if pn ≤
log n−ωn

n , then the graph contains a.s. an isolated
node, and hence the graph is a.s. not connected. This precisely corresponds to the
statement (a) of Theorem 2.2.

Proof of Lemma 2.4. Denote by Ai the event that “node i is isolated”, and let In =∑n
i=0 1(Ai) be the number of isolated nodes. Recall that d̄n = npn is the mean

degree. We have

P(Ai) = (1− pn)
n−1
=

(
1−

d̄n

n

)n−1

∼ exp
(
−d̄n

)
∼

1

n
exp(∓ωn),

and thus

E
(
In
)
=

n∑
i=0

P(Ai) = nP(A1) ∼ e∓ωn .

(i) If d̄n= log n+ωn, we have E
(
In
)
∼ e−ωn → 0. Since the expected number

of isolated nodes goes to 0, we can conclude the proof using the first moment
method. Indeed, recall that by Markov inequality (see Proposition A.6 and Corol-
lary A.2), we have:

P
(
∃ isolated node

)
= P(In ≥ 1

)
≤

EIn

1
−→ 0.

(ii) If d̄n = log n−ωn, we have E
(
In
)
∼ e+ωn →+∞, and hence the expected

number of isolated nodes goes to infinity. Unfortunately, this is not enough to
conclude anything about the probability of existence of an isolated node, and we

24 Random Graph Models

will need the second moment method. Indeed, we have to show that the random
variable In is well-concentrated around its mean. Since its mean diverges to infinity,
the result will follow. For that, we will use Chebyshev’s inequality (Proposition A.7).
We have

Var (In) = E
(
I2
n
)
− (EIn)

2 .

Note that

E
(
I2
n
)
= E

∑
i

∑
j

1(Ai)1(Aj)

=

∑
i

∑
j

P
(
Ai, Aj

)
= nP

(
A1
)
+ n(n− 1)P

(
A1 ∩ A2

)
.

Here we need to be careful, since A1 and A2 are not independent. Indeed, knowing
that node 1 is isolated means that there is no edge between node 1 and node 2, and
thus weakly increases the probability that node 2 is isolated. We have:

P
(
A1 ∩ A2

)
= P

(
A2 |A1

)
P
(
A1
)

= (1− pn)
n−2 P

(
A1
)

=
1

1− pn

(
P
(
A1
))2 ,

since P
(
A1
)
= (1− pn)

n−1. Lastly,

(EIn)
2
=

(∑
i

P (Ai)

)2

=

∑
i

∑
j

P(Ai)P(Aj)

=

∑
i

∑
j

P(A1)
2

= n2 P(A1)
2.

Putting all pieces together leads to

Var(In) = nP
(
A1
)
+ n(n− 1)P

(
A1 ∩ A2

)
− n2P(A1)

2

= nP
(
A1
)
+

n(n− 1)

1− pn
P
(
A1
)2
− n2P

(
A1
)2

≤ nP
(
A1
)
+

n2

1− pn
P
(
A1
)2
− n2P

(
A1
)2

Erdős-Rényi Random Graphs 25

= nP
(
A1
)
+ n2P

(
A1
)2(1

1− pn
− 1

)
= E (In)+ (EIn)

2 pn

1− pn
.

Thus, by the second moment method (see Corollary A.5)

P(In = 0) ≤
Var(In)(
E(In)

)2 ≤
1

E(In)
+

pn

1− pn
.

Since EIn → ∞ and pn → 0, this last quantity goes to zero when n goes to
infinity.

We can now prove the part (b) of Theorem 2.2.

Proof of Theorem 2.2(b). Suppose that dn ≥ log n + ωn. Then, Lemma 2.4 shows
that the number of isolated nodes In is zero. To show that Gn is indeed connected,
we need to show that

P (Gn is disconnected and In = 0)→ 0.

If Gn is disconnected and has no isolated nodes, then Gn contains a connected
component Ck of size 2 ≤ k ≤ bn/2c. Directly counting the expected number of
components of size k is difficult, as the probability of them depends on the exact
number of edges they contain (which can be as low as k − 1 if Ck is a tree, up to
k(k−1)

2 if Ck is complete). To avoid this issue, we will notice that the component Ck

contains spanning trees. By spanning tree of Ck, we mean sub-graph of Ck which is
a connected tree that contains all the vertices of Ck. Note that Ck can contain more
than one spanning tree.

Let us denote by Xk the number of spanning trees of size k. By the previous
observation, Xk is larger than the number of connected components of size k.
Moreover, if Gn is disconnected and has no isolated nodes, then there must be
a k ∈ {2, . . . , bn/2c} such that Xk ≥ 1. Hence by the union bound and the first
moment method,

P (Gn is disconnected and In = 0) ≤ P

bn/2c⋃
k=2

{Xk ≥ 1}

≤

bn/2c∑
k=2

P (Xk ≥ 1)

≤

bn/2c∑
k=2

EXk. (2.1)

26 Random Graph Models

We need to bound EXk. Firstly, there is
(n

k

)
ways of choosing k vertices (v1, . . . , vk)

among the n nodes. Once these k vertices chosen, then by Cayley’s theorem [see
Theorem 3.17 of Hofstad, 2016], there is possibly kk−2 trees containing those
vertices. Since those k vertices form a tree within Gn, they are linked by k − 1
edges, which has a probability pk−1

n of occurring. Lastly, the graph Gn should not
include any edge between the tree and the rest of the graph: this has a probability
(1− pn)

k(n−k). To summarize,

EXk =

(
n
k

)
kk−2pk−1

n (1− pn)
k(n−k).

Applying the Stirling bound k! ≥ kke−k, we have
(n

k

)
≤ (ne/k)k. Moreover (1 −

pn)
k(n−k)

≤ e−pnk(n−k)
≤ e−knpn/2 and npn ≥ 1. Thus

EXk ≤ n
e

k2

(
npne

)k−1 e−knpn/2 ≤ n
(
npne1−npn/2

)k
.

Note that the function f (x) = xe1−x/2 is decreasing for x ≥ 2. Since npn =

log n+ ωn, we have for n large enough npn ≥ log n. Hence

EXk ≤ n
(

log ne1−log n/2
)k
≤ n

(
e log n
2
√

n

)k

,

and for any m ≥ 1,

bn/2c∑
k=m

EXk ≤ n
(

e log n
2
√

n

)m
 1

1− e log n
2
√

n

 ≤ 2n
(

e log n
2
√

n

)m

using e log n
2
√

n
≤

1
2 for n large enough. The previous bounding is rough, but enough

to show that
∑bn/2c

k=2 EXk converges to zero. Showing thatEX1 goes to zero is imme-
diate, and going back to Equation (2.1) it follows that

P (Gn is disconnected and In = 0)→ 0.

This proves the statement (b) of Theorem 2.2.

2.2 Other Random Graph Models

2.2.1 Configuration Model

In this section, we aim to construct a random graph Gn fitting a given degree
sequence d = (d1, . . . , dn). This means that the graph Gn should have n nodes,

Other Random Graph Models 27

and the edges are drawn such that node i has degree di. Let us make a few
remarks.

• We can suppose di ≥ 1, as di = 0 means that node i is isolated.
• It is not obvious that there exists a graph verifying the degree requirement.

In fact, such a graph does not necessarily exist. For example, if we assume
that the graph is unweighted, then

∑n
i=1 di should be even (since this sum

corresponds to two times the number of edges).
• Even if we assume that

∑n
i=1 di is even, the construction of such a graph

might not always be possible. To avoid those issues, we will allow self-loops
and multi-edges.

Definition 2.2 (Configuration model). Let d = (d1, . . . , dn) be a sequence such
that

∑n
i=1 di is even. At each node i ∈ {1, . . . , n}, we attach di half-edges (also

called stubs). We then pair the stubs by pairs of two, uniformly at random. The
resulting graph is called configuration model with degree sequence d, abbreviated as
CMn(d).

This model allows multi-edges and self-loops. Moreover, by convention a self-
loop counts for two in the degree of a node, since it comes from two stubs.
Algorithm 3 generates a configuration model graph.

Algorithm 3: Generation of a configuration model graph.

Input: degree sequence (d1, . . . , dn).
Output: list of edges E .
Process:
if
∑n

i=1 di is odd then
return an error.

else
E ← ∅;
L← ∅;
for i = 1 to n do

for k = 1 to di do
add i to the list L.

shuffle the elements of L;
j← 0;
while j ≤ |L| do

add the edge
(
L[j], L[j + 1]

)
to E ;

j← j + 2.

Return: E .

28 Random Graph Models

Figure 2.4. (n, d)-random regular graphs for n = 100 and various d .

Figure 2.5. Configuration model with n = 100, where the degrees di are sampled indepen-

dently from a Zipfian distribution with exponent α.

Example 2.4. If d1 = · · · = dn = d , then we obtain a random (n, d)-regular graph
(i.e., a random graph with n nodes where all the nodes have the same degree d).
We plot some examples in Figure 2.4.

Example 2.5. A random variable X follows a Zipfian distribution with parameters
n and s if X ∈ {1, · · · , n} almost surely and P (X = k) = C−1k−s for k ∈ [n],
where C =

∑n
k=1 k−s is a normalisation constant. In Figure 2.5 we plot some

graphs drawn from the configuration model, where the di are sampled from Zipfian
distributions.

2.2.2 Preferential Attachment Model

Motivation

Previous models are static, in the sense that the number of nodes is fixed. More-
over, they do not explain how interesting properties (heavy-tailed degree distribu-
tion, etc.) arise in real graphs. This section provides an example of growing random
graphs, where nodes and edges are added over time.

A first possibility is to construct a graph sequence (Gn)n∈N such that each Gn is
an Erdős-Rényi graph G(n, p). The graph Gn+1 would be constructed from Gn as
follow. The edges in Gn are copied to Gn+1, while edges of the form (i, n+ 1) (for
i = 1, · · · , n) are added independently with probability p. The new graph Gn+1

is thus a Gn+1,p, and Gn is a sub-graph of Gn+1. The problem is that the degree
sequence is binomial, hence does not fit what we observe in most of real networks.

Other Random Graph Models 29

The preferential attachment paradigm offers an intuitive explanation behind the
power law degree distribution that we seem to observe in reality. In this paradigm,
a new node n + 1 will be connected to the n existing nodes by some additional
edges. Theses new edges (i, n + 1) are drawn independently with a probability
proportional to the degree of the vertex i at that time. Thus, the new node n+ 1 is
more likely to be connected to a node with a large degree.

Definition 2.3 (Preferential attachment – Informal definition). At time t, a new
node will be connected to an old node i with a probability proportional to the
degree di(t) of the old node (at time t).

With that definition, we can make the following remarks:

• the old nodes will tend to have higher degrees than the new ones;
• the rich gets richer phenomenon: new nodes tend to be attached to high degree

old nodes. In particular, we expect the formation of hubs.

The fact that the graph will have hubs tend to make us think that the degree distri-
bution will not be binomial, but may instead exhibit a power law. We will establish
this in Proposition 2.3, just after giving a careful definition of the model.

Remark 2.3. The term preferential attachment comes from Barabási and Albert,
1999, who proposed a similar model, albeit not rigorously defined. Their model
was actually close to the older works by Yule, 1925 and Solla Price, 1976. For a
fully rigorous treatment, we refer to Bollobás et al., 2001 and Hofstad, 2016.

Model definition

Definition 2.4. A sequence of graphs
{

Gt = (Vt , Et), t ∈ N
}

is said to be drawn

from the Preferential Attachment Model if:

• |V1| = 1 and |E1| = 1: at time step t = 1, we have one node v1 with a single
self-loop;

• at time step t+1, we add the node vt+1 to the graph. This node will be linked
to one (and only one) node. The probability that the new node is connected
to node vi is given by

P
(
(vt+1, vi) ∈ Et+1

∣∣Gt

)
=

1

2t+1 if vi = vt+1

di(t)
2t+1 otherwise,

(2.2)

where di(t) is the degree of node vi at time t (recall that by convention, a
self-loop increases the degree by 2).

We present in Figure 2.6 some graphs drawn from the preferential attachment
model.

30 Random Graph Models

Figure 2.6. Graphs drawn from the preferential attachment model, for various T .

(a) Normal scale (b) log-log scale.

Figure 2.7. Degree distribution of a graph drawn from the preferential attachment model,

with T = 104. Left: normal scale. Right: log-log scale. The orange slope represents the

curve y = −3x + 11.9 obtained by linear regression fitting.

Lemma 2.5. After t time-steps, the preferential attachment model results in a network
with |Vt | = t nodes and |Et | = t edges. In particular, Equation (2.2) defines a
probability distribution.

Proof. Indeed, at each time step, we add one node, so |Vt | = t. Moreover, we
add only one edge per time step. Last, since

∑t
i=1 di(t) = 2|Et | = 2t, then∑t+1

i=1 P
(
(vt+1, vi) ∈ Et+1

∣∣Gt

)
= 1.

Remark 2.4. A more general version of the preferential attachment model is
described in Hofstad, 2016. Definition 2.4 corresponds to the case m = 1 and
δ = 0 there.

Degree distribution of the preferential attachment model

Let us now investigate the degree distribution of a graph drawn from the preferential
attachment model. Figure 2.7 shows the histogram of the degrees. In particular, we
see that in a log-log scale the curve seems to be linear. Let Nk be the number of
nodes having degree k. Figure 2.7(b) seems to indicate that log Nk = −α log k+C
where α = −3 and C is a constant. This in turn implies Nk ∝ k−3, i.e., the
degree distribution follows a power law with exponent 3. This is indeed proved in
Proposition 2.3.

Other Random Graph Models 31

Proposition 2.3. When t →+∞, the preferential attachment model exhibits a power
law degree distribution with exponent 3.

Proof. Let s ∈ {1, . . . , t}, and denote by p(k, s, t) the probability that the vertex vs

has degree k at time t. The evolution of p(k, s, t) is described by the master equation

p(k, s, t + 1) =
k − 1

2t + 1
p(k − 1, s, t)+

(
1−

k
2t + 1

)
p(k, s, t), (2.3)

with the initial condition p(k, 1, 1) = δk,1 and the boundary condition p(k, t, t) =
δk,1. The term k−1

2t+1 represents the probability that the new node vt+1 is linked to

node vs at time t + 1 (thus increasing the degree of s by 1), and
(

1− k
2t+1

)
is the

probability that the new node vt+1 is not linked to node vs.
Let P(k, t) denote the total degree distribution of the entire network, that is the

average of p(k, s, t) over all nodes vs ∈ [t] present at time t. We have

P(k, t) =
1

t

t∑
s=1

p(k, s, t).

Using equation (2.3), yields

(t + 1)P(k, t + 1) =
k − 1

2t + 1
tP(k − 1, t)+

(
1−

k
2t + 1

)
tP(k, t).

Therefore, the time evolution of P(k, t) can be written as

(t + 1)P(k, t + 1)− tP(k, t) =
t

2t + 1

(
(k − 1)P(k − 1, t)− kP(k, t)

)
+ δk,1.

When t →+∞, this equation for the stationary distribution reduces to

P(k)+
1

2

(
kP(k)− (k − 1)P(k − 1)

)
= δk,1,

where P(k) stands for lim
t→+∞

P(k, t). This last equation is the discrete version of

the differential equation

P(k)+
1

2

dkP(k)
dk

= 0,

whose solution is

P(k) = Ck−3,

with a normalisation factor C such that
∑
k

P(k) = 1 (i.e., C =
∞∑

k=1
k−3).

32 Random Graph Models

Remark 2.5. The above proof is not totally rigorous, as it involved some approx-
imations that need rigorous justification. However, it explains well the essence of
the preferential attachment process. We refer to Hofstad, 2016 for a more mathe-
matically involved (but rigorous) proof, as well as some other deeper results on the
preferential attachment model. In particular, more involved models (with the new
nodes attached to several nodes or/and with several new nodes at each time step)
result in power laws with various exponents.

2.2.3 Spatial Networks: Random Geometric Graphs, etc

In many situations, nodes are positioned in a metric space (e.g., R2 or the sphere
S2), and an interaction between two nodes directly depends on how far away the
two nodes are in this space. Examples include base stations in wireless and sensors
networks, in which two devices will be connected if they are not too far from each
other. Moreover, in many networks, nodes possess attributes or features (e.g., gen-
der, age, a grade, a type, …) which can also be represented as a position in a metric
space, and influence link formation. For example in social networks, users of similar
age and/or gender are typically more connected.

Definition 2.5. The Spatially Embedded Random Network (SERN) model is
defined as follows. Let (S, d) be a metric space, and (X1, . . . , Xn) be a random
vector representing the locations of n nodes in S. Let γ : R+→ [0, 1] be a connec-
tivity function. Then, for every node pair (i, j), we draw an undirected edge between
i and j with probability γ

(
d(Xi, Xj)

)
, where d(Xi, Xj) denotes the distance between

nodes i and j.

Example 2.6. In the Random Geometric Graph model (RGG) it is assumed that
X1, . . . , Xn are i.i.d. and uniformly distributed in S, while γ (x) = 1(x ≤ r). In
other words, two nodes are connected if and only if the distance between them is
less than some threshold r.

We plot in Figure 2.8 some examples of RGG. We notice that when n is large,
the network is composed of a few densely connected parts, with empty regions
between them. Moreover, the graph is not small-world, as it takes a lot of edges to
join two nodes that are far away from each other.

Example 2.7. The Waxman model is a SERN where X is uniformly distributed in
S, and γ (x) = min

(
1, qe−αx

)
where q,α > 0 are some parameters.

Figure 2.9 shows some realisations of Waxman graphs, and we observe different
behaviour than that of RGG. In particular, Waxman graphs look like small-world
networks. Indeed, and in contrast to random geometric graphs, nodes that are far
away can still be connected with a small but non-zero probability.

Other Random Graph Models 33

Figure 2.8. Example of RGG, when S = [0, 1]2 and r = 0.1, for different n.

Figure 2.9. Examples of Waxman graphs, when S = [0, 1]2, q = 0.1 and α = 5, for different

n. Figure (c) shows the connectivity function γ (x) = min(1, qe−αx).

Figure 2.10. Examples of Waxman graphs, when S = [0, 1]2, α = 100 and q = 2200, for

different n. q is chosen to be approximately equals to eα∗0.1, hence making the graphs

look like RGG with cutoff r = 0.1. Figure (c) shows the connectivity function γ (x) = qe−αx ,

which indeed looks like x 7→ 1(x ≤ r).

Finally, a RGG with threshold r can be expressed as a limit of a Waxman model,
when α→∞ and q = eαr (see Figure 2.10).

In spatial networks as defined in Definition 2.5, while the random variables
(Aij)i<j are still pair-wise independent, they are in general no more mutually inde-
pendent. Indeed, the presence of an edge between i and j and between j and k
influences the probability of an edge between i and k. The simplest example is
to consider a random geometric graph. Knowing that Aij = Ajk = 1, implies
d(Xi, Xj) ≤ r and d(Xj , Xk) ≤ r, and therefore the triangular inequality implies
d(Xi, Xk) ≤ 2r, i.e., node k cannot be arbitrarily far away from node i, increasing
the likelihood of having an edge between i and k.

34 Random Graph Models

Table 2.1. Basic properties verified by the models presented in this chapter. Note that

many of those properties only hold under specific conditions (see e.g., Theorems 2.1

and 2.2), and this table is only for a rough summary purpose.

Erdős-Rényi CM PA RGG

Connectivity / Giant component X X X X

Small world X X X ×

Power law degree distribution × X X ×

Edge transitivity × × × X

2.2.4 Summary

We summarise in Table 2.1 the basic properties verified by the random graph mod-
els presented in this chapter.

2.3 Clustered Random Graphs: Block Models

This section is devoted to clustered random graph models. This refers to situations
in which each node has a community attribute, and these community attributes
influence the probability of interaction. The block model paradigm considers that
nodes are placed into communities (called blocks) and that the probability of a link
between i and j depends on the community labels of i and j (and eventually on
some extra features of i and j, such as their spatial position).

2.3.1 Stochastic Block Model

The Stochastic Block Model is the simplest and most studied clustered random graph.
It is a direct extension of the Erdős-Rényi model.

Definition 2.6. Let n be the number of nodes, K be the number of communities,
π = (π1, . . . ,πK) be a probability vector, and P be a K × K symmetric matrix
whose entries are in [0, 1]. The pair (z, G) is drawn under the Stochastic Block Model
(SBM) with parameters (n,π , P) if:

• z ∈ [K]n is a random vector whose entries are independent and identically
distributed such that P (zi = k) = πk;

• G is an undirected graph with n nodes, where the nodes i and j are connected
with probability Pzizj independently of other pairs of nodes.

We write (z, G) ∼ SBM(n,π , P).

Figure 2.11 gives some examples of graphs drawn from the SBM.

Clustered Random Graphs: Block Models 35

Figure 2.11. Different SBMs, with 200 nodes per community and connectivity probabilities

qkk = 0.05 and qk` = 0.005 for k 6= `.

Proposition 2.4. For z ∈ [K]n and k ∈ [K], we denote C z
k = {i ∈ [n] : zi = k}

the community sets given by the node-labelling z. Let (z, G) ∼ SBM(n,π , P). Then,

P(z) =
K∏

k=1

π
|C z

k |

k ,

P(G | z) =
∏

1≤i<j≤n

p
Aij
zizj (1− pzizj)

1−Aij (2.4)

=

∏
1≤k≤`≤K

(
pk`
)Nk`(1) (1− pk`

)Nk`(0) (2.5)

where Nk`(a) =
∑

1≤i<j≤n 1(Aij = a)1(zi = k)1(zj = `) is the number of edges (if
a = 1) or non-edge (if a = 0) between the communities k and `.

Proof. By independence of the node community labels, we have

P(z) =
n∏

i=1

πzi =

K∏
k=1

π
|C z

k |

k .

Then, equation (2.4) is a consequence of Proposition 2.1.

Remark 2.6. The adjacency matrix of SBM(n,π , P) can be seen as a block matrix,
whose blocks are Erdős-Rényi graphs. This is in particular useful to efficiently sim-
ulate sparse SBM (see Algorithm 2, or the networkX or iGraph implementations).

Definition 2.7. We call homogeneous (or symmetric) SBM an SBM such that

pzizj =

{
pin if zi = zj

pout otherwise.

36 Random Graph Models

Proposition 2.5. Let (z, G) be sampled from a homogeneous SBM. Then,

P (G | z) =
(

pin

1− pin

)|E | (
1− pin

) n(n−1)
2 ×

×

(
1− pout

1− pin

) ∑
1≤k<`≤n

∣∣C z
k

∣∣·|C z
` |
(

pout

1− pout

1− pin

pin

)N z
out

where N z
out =

∑
1≤i<j≤n 1(Aij = 1)1(zi 6= zj) is the number of inter-community

edges.

Proof. From equation (2.5) we have

P (G | z) =
∏

1≤k≤`≤K

(
pk`
)Nk`(1) (1− pk`

)Nk`(0) .

We notice that Nk`(0)+ Nk`(1) =
∑

i<j 1(zi = k)1(zj = `). Hence,

Nk`(0)+ Nk`(1) =

{∣∣C z
k

∣∣ · ∣∣C z
`

∣∣ if k 6= `,∣∣C z
k

∣∣·(∣∣C z
k

∣∣−1)
2 otherwise,

and

P (G | z) =
(
1− pin

) K∑
k=1

|Cz
k |·(|C

z
k |−1)

2 (
1− pout

) ∑
1≤k<`≤K

∣∣C z
k

∣∣·|C z
` |

×

×

(
pin

1− pin

)∑K
k=1 Nkk(1) (pout

1− pout

) ∑
1≤k<`≤K

Nk`(1)

.

Since
K∑

k=1
|C z

k | = n, then

(
K∑

k=1

∣∣CZ
k

∣∣)2

= n2
− 2

∑
1≤k<`≤n

∣∣C z
k

∣∣ · ∣∣C z
`

∣∣, and

P (G | z) =
(
1− pin

) n(n−1)
2

(
1− pout

1− pin

) ∑
1≤k<`≤n

∣∣C z
k

∣∣·|C z
` |

×

×

(
pin

1− pin

)∑K
k=1 Nkk(1) (pout

1− pout

) ∑
1≤k<`≤K

Nk`(1)

.

Finally, since N z
out =

∑
1≤k<`≤K Nk`(1) and |E | =

∑
1≤k≤`≤K Nk`(1) we have∑K

k=1 Nkk(1) = |E | − N z
out, and the proposition statement holds.

Clustered Random Graphs: Block Models 37

Proposition 2.6. Let (z, G) ∼ SBM(n,π , P) be a homogeneous SBM graph with
uniform node labels, i.e., π =

(1
K , . . . , 1

K

)
. Then, the expected degree d̄ of any node is

d̄ =
(n

K
− 1

)
pin + n

K − 1

K
pout.

Proof. It is similar to the proof of Proposition 2.2. A given node has n
K − 1 poten-

tial neighbors in its community, and n
K (K − 1) potential neighbors in the other

communities.

2.3.2 Degree-corrected Stochastic Block Model

The results established for Erdős-Rényi Model (giant component, connectivity,
etc.) are also valid for the Stochastic Block Model. Moreover, the limitations men-
tioned for the Erdős-Rényi graphs also apply for SBMs, and in particular the lim-
itation of the degree distribution. To introduce more heterogeneity in the degree
distribution, Karrer and Newman, 2011 proposed the degree-corrected SBM. In
this model, each node i has, in addition to its community label zi, a degree param-
eter θi modelling its popularity (i.e., the propensity of node i to make links). The
formal definition is as follows.

Definition 2.8. Let n be the number of nodes and K be the number of commu-
nities, π = (π1, . . . ,πK) be a probability vector, and P be a K × K symmetric
matrix. Furthermore, let θ = (θ1, . . . , θn) ∈ Rn

+ be the vector of degree-correction
parameters. The pair (z, G) is said to be drawn from the Degree-corrected Stochastic
Block Model (DC-SBM) with parameters (n,π , P, θ) if

• z = (z1, . . . , zn) ∈ [K]n is a random vector whose entries are independent
and distributed according to π ;

• conditionned on z, G is an undirected graph with n nodes, where nodes i
and j are connected with probability min(θiθjPzizj ; 1), independently of other
node pairs.

In the following, we will always suppose that θiθjPzizj < 1 for every (i, j). From
Definition 2.8, we notice that multiplying all the θi for i such that zi = k by
a constant c, and dividing Pk` by c if k 6= ` and Pkk by c2 leads to the same
model. Therefore, after sampling the community labelling z, we normalise the θi’s,
such that

∑
i θi1(zi = k) = nπk where nπk is the expected number of nodes in

block k. With this normalisation choice, we recover the SBM model if θi = 1
for all i. Moreover, the parameter θi can be interpreted as the relative importance
of node i in the graph. Another widely used normalisation consists in imposing∑

i θi1(zi = k) = 1.

38 Random Graph Models

Similarly to SBM, we define a homogeneous DC-SBM when the entries of
matrix P take only two values: Pkk = pin and Pk` = pout for k 6= `.

Proposition 2.7. Consider a pair (z, G) drawn under a homogeneous DC-SBM
(n,π , P, θ). Let i ∈ [n] be a node in community k. The expected degree of i is given by

E di = θin
K∑
`=1

πl Pk`.

Proof. Let A be the adjacency matrix of G. We have di =
∑n

j=1 Aij , where the

Aij (j = 1 · · · n) are independent random variables distributed as Ber
(
θiθjPzizj

)
.

Hence, conditioning on z, gives

E (di | z) =
n∑

j=1

n∑
j=1

θiθjPzizj = θi

K∑
`=1

 n∑
j=1

1(zj = `)θj

 Pk`.

The result follows using the normalisation E
∑n

j=1 1(zj = `)θj = nπ`.

To make some computations easier, it is sometimes convenient to define a Pois-
son Degree-Corrected Block Model. This refers to a random graph G with Poisson
distributed edges. More precisely, Aii = 0, and for i 6= j we have

Aij = Aji ∼ Poi(θiθjωzizj), (2.6)

where Poi(λ) denotes a Poisson random variable with parameter λ, whose proba-
bility mass function is given by

P(X = k) = e−λ
λk

k!
, k = 0, 1, 2,

The θi’s are the degree-correction parameters and wk` is the edge density between
blocks k and `. Note that Aij is then an integer-valued random variable. Similarly
to the DC-SBM, we assume that for all k ∈ [K],

∑
i θi1(zi = k) = nk. When all

θi’s are equal to one, we recover a Poisson version of the SBM, namely

Aij = Aji ∼ Poi
(

wzizj

)
. (2.7)

While these random graph models differ from the standard SBM and degree-
corrected SBM by allowing integer-valued edges, we notice that when nωk` � 1

Clustered Random Graphs: Block Models 39

the Poisson distribution is close to the Bernoulli distribution with the same param-
eter θiθj

ωk`
n , hence making the two models similar in practice. The Poisson frame-

work is interesting as it makes some computations easier. In particular, for the Pois-
son version we have

P (A | z, θ ,ω) =
∏
i<j

(
θiθjωzizj

)Aij

Aij !
e−θiθjωzizj (2.8)

=

∏
i θ

di
i∏

i<j Aij !

∏
1≤k≤K

ω
mkk
kk e−

n2
k
2 ωkk

∏
1≤k<`≤K

ω
mk`
k` e−nkn`ωk`

where nk =
∑

i 1(zi = k) is the number of nodes in block k and mk` =∑
i,j Aij1(zi = k)1(zj = `) denotes the number of edges going from community

k to community ` (or twice the number if k = `).

2.3.3 Popularity Adjusted Block Model

While the DC-SBM allows us to accurately fit the degree distribution by enforc-
ing the node degree parameters, it forces a popular node to be popular among
all communities. Indeed, if θi is large, then node i will be expected to have a lot
of friends in every communities. The Popularity Adjusted Block Model (PABM)
bypasses this restriction, by allowing node popularity to vary across both nodes
and communities.

Definition 2.9. Let n be the number of nodes, K be the number of communities,
and z ∈ [K]n be a node-labelling vector. Let 3 = (λik)i∈[n],k∈[K] ∈ [0, 1]n×K . A
graph G = (V , E) is drawn from the Popularity Adjusted Block Model if V = [n];
the edges are formed independently; and

P
(
(ij) ∈ E

)
= λizjλjzi .

In other words, λik is the propensity of node i to form links with a node in
community k.

Example 2.8. We recover the SBM by letting λik =
√

Pkl for every i ∈ [n] and
every k ∈ [K].

Example 2.9. We recover the DC-SBM by letting λik = θi
√

Pkl for every i ∈ [n]
and every k ∈ [K].

2.3.4 Soft Geometric Block Model

Similarly to how the SBM extends the Erdős-Rényi model, the Soft Geometric Block
Model (SGBM) extends the soft geometric random graphs or SERNs.

40 Random Graph Models

Definition 2.10. Let (S, d) be a metric space, and (γ)1≤k,`≤K : R+→ [0, 1] be
a set of connectivity functions, with γk` = γ`k. We assign to each node a position
Xi ∈ S, and a community labelling σi ∈ [K]. Then,

P (A |X , σ) =
∏
i<j

γσiσj

(
d
(
Xi, Xj

))Aij
(

1− γσiσj

(
d
(
Xi, Xj

)))1−Aij
.

This model supposes that two nodes i, j are connected with probability that
depends both on their position and their community assignment.

Example 2.10. We recover the SBM by further restraining γk`(x) = qk` to be
constants (for all k, `).

Example 2.11. The Geometric Block Model (GBM) restrains γk`(x) = 1(x ≤ rk`)

for some parameters rk` ≥ 0.

Finally, the model is homogeneous if

γk` =

{
γin if k = `,

γout otherwise.

2.4 Exponential Random Graph Model

2.4.1 Definition and First Examples

Exponential Random Graph Model (ERGM) provides a convenient framework to
explain the different network statistics observed in various networks. Examples of
network statistics include the degree heterogeneity, the transitivity of relationships
(friends of friends tend to be friends), the homophily (the propensity to link with
nodes sharing the same attribute), the reciprocity of ties (in directed networks), etc.

Definition 2.11. Let n be the number of nodes, θ = (θ1, . . . , θq) ∈ Rq be a vector
of parameters, and g =

(
g1, . . . , gq

)
be a vector of network statistics. The adjacency

matrix of an ERGM has the following probability distribution

P (A | θ) =
exp

(
θT g(A)

)
κ(θ)

,

where κ(θ) is a normalisation constant.

Exponential Random Graph Model 41

Example 2.12. Consider the Bernoulli random graph model, where Aij are inde-
pendent, with Aij = Aji ∼ Ber(pij). Then

P (A) =
∏
i<j

p
Aij
ij (1− pij)

1−Aij =

exp
(∑

i<j θijAij

)
κ(θ)

=
exp

(
θT g(A)

)
κ(θ)

,

where θi,j = log
pij

1−pij
, κ(θ) =

(∏
i<j

(
1− pij

))−1
, θ = (θij)1≤i<j≤N , and

g(A) = Aij (we have q =
(N

2

)
=

N (N−1)
2 network statistics).

We notice in this Example that θij = log
P(Aij=1)
P(Aij=0)

= logitP
(
Aij = 1

)
where

logit(x) = log x
1−x . We will observe several of such relationships in the latter

examples.
As the Erdős-Rényi graph, the SBM and DC-SBM are particular cases of the

Bernoulli random graph, they can also be expressed as ERGM. For example, for an
Erdős-Rényi random graph Gn,p, we have θij = logit(p) is independent of i and j,
and thus the previous example reduces to

P (A) =
exp

(
θg(A)

)
κ(θ)

,

where θ = log p
1−p , g(A) =

∑
i<j Aij = |E | is the number of edges and κ(θ) =

(1− p)−
n(n−1)

2 .

2.4.2 The p1 Model

Now consider a directed graph A and let Xij = (Aij , Aji). Assume that (Xij)i<j are
independent, and define

P
(
Xij = (1, 1)

)
= rij ,

P
(
Xij = (1, 0)

)
= sij ,

P
(
Xij = (0, 0)

)
= tij .

Note that rij = rji, tij = tji and rij + sij + sji + tij = 1. Moreover,

P (A) =
∏
i<j

r
AijAji
ij

∏
i 6=j

s
Aij(1−Aij)

ij

∏
i<j

t
(1−Aij)(1−Aji)

ij .

42 Random Graph Models

This can be re-expressed in an exponential form, as

P (A) = exp

∑
i<j

ρijAijAji +
∑
i 6=j

µijAij

∏
i<j

tij ,

where ρij = log
(

rij tij
sij sji

)
and µij = log

(
sij
tij

)
. We notice that

µij = log

(
P
(
Aij = 1 |Aji = 0

)
P
(
Aij = 0 |Aji = 0

)) = logit
(
P
(
Aij = 1 |Aji = 0

))
measures the probability of an asymmetric link between i and j. Similarly,

ρij = log

(
P
(
Aij = 1 |Aji = 1

)
P
(
Aij = 0 |Aji = 1

))− log

(
P
(
Aij = 1 |Aji = 0

)
P
(
Aij = 0 |Aji = 0

))
= logit

(
P
(
Aij = 1 |Aji = 1

))
− µij

is related to the probability that Aij = 1 given that Aji = 1, that is the force of
reciprocation between i and j.

The p1-model from (Holland and Leinhardt, 1981) further restricts ρij = ρ and
µij = µ+ αi + βj , so that

P (A) =
exp

(
ρR + µM +

∑
i αiAi+ +

∑
j βjA+j

)
κ(ρ,µ,α,β)

, (2.9)

where A+i =
∑

j Aji denotes the in-degree of node i, and Ai+ =
∑

j Aij the out-
degree of node i, M =

∑
i,j Aij is the number of edges, and R =

∑
i,j AijAji is the

number of reciprocated edges. We can interpret equation (2.9) as follows:

• the parameter µ governs the density of (directed) edges. In particular, if ρ =
αi = βj = 0 while µ 6= 0, then we recover a directed Erdős-Rényi random
graph, with link-probability p such that µ = logit p;

• if αi is large, then node i will tend to form an out-going edges. We can thus
call αi the productivity of node i;

• βi refers to the attractiveness of node i, since a large βi will push many nodes
to form in-coming edges towards i;

• finally, the parameter ρ is the force of reciprocation of ties.

Exponential Random Graph Model 43

2.4.3 Relationship Between θ and the log-odds

We noticed in Example 2.12 that θij = logitP
(
Aij = 1

)
, and similar relationships

were drawn from the p1-model. The following proposition generalizes it to any
ERGM.

Proposition 2.8. Consider an ERGM model as in Definition 2.11. Let A+ij =

{A with Aij = 1} be the graph with the edge (i, j) set to one, A−ij = {A with Aij = 0}
be the graph with the edge (i, j) set to zero, and Ac

ij = {Auv with (u, v) 6= (i, j)} be the
set of all the edges and non-edges except Aij . Then, we have

logitP
(

Aij = 1 |Ac
ij

)
= θT

(
g(A+ij)− g(A−ij)

)
.

Proof. Observe that

P
(

Aij = 1 |Ac
ij

)
=

P
(

A+ij
)

P
(

A+ij
)
+ P

(
A−ij
)

=

exp
(
θT g(A+ij)

)
exp

(
θT g(A+ij)

)
+ exp

(
θT g(A−ij)

) .

Similarly,

P
(

Aij = 0 |Ac
ij

)
=

exp
(
θT g(A−ij)

)
exp

(
θT g(A+ij)

)
+ exp

(
θT g(A−ij)

) ,

and therefore

logitP
(

Aij = 1 |Ac
ij

)
= θT

[
g(A+ij)− g(A−ij)

]
.

Further Notes

A nice additional reference for this chapter is Barabási, 2016 (an online and inter-
active version is available at: http://networksciencebook.com/), as well as (by order
of relevance): Hofstad, 2016; Durrett, 2007; Chung and Lu, 2006. Finally, other
classic books on random graphs (more focused on mathematical proofs) are Janson
et al., 2011; Bollobás, 2001.

http://networksciencebook.com/

44 Random Graph Models

Many random graph models exist. A model worth mentioning and not covered
in this chapter is the small-world model (Watts and Strogatz, 1998). A complete
review of the SBM is made in Abbe, 2018. For random geometric graphs, we refer
the reader to Penrose, 2003.

A useful modification of the random geometric graph model with scale-free
degree distribution is the hyperbolic geometric graph model (see e.g., Krioukov
et al., 2010).

DOI: 10.1561/9781638280514.ch3

Chapter 3

Network Centrality Indices

One natural question in network analysis is “which are the most important nodes in
a network?” A node can be important in several aspects. For instance, in a social net-
work, a node can be well-connected to many social groups or a node can facilitate
the information flow in a network. In an information network, a node can provide
links to important information sources or can be a reference node. In an infrastruc-
ture network, a node can be crucial for sustaining a good topological structure of a
network.

The importance of nodes can be characterized by a real-valued function defined
on network nodes. The values of the function indicate the degree of importance of
the nodes and can be used for ranking purposes. Such functions are called network
centrality indices or network centrality measures.1 From the previous paragraph, it
is already clear that different importance criteria potentially lead to very different
definitions of centrality indices. Therefore, we first review various existing centrality
indices and then discuss relations among them and several applications. Along with
centrality indices for nodes, there are also centrality indices for network edges. Even

1. Even though the term centrality measure is more common in the literature, we prefer to use the term centrality
indices to disambiguate from probability measure.

45

http://dx.doi.org/10.1561/9781638280514.ch3

46 Network Centrality Indices

though our main focus will be on centrality indices for nodes, we shall mention
some centrality indices for edges as well. Up to the present, many centrality indices
have already been proposed and the list continues to grow. We try to overview the
important distinctive cases.

3.1 Overview of Centrality Indices

In this section we divide the definitions of various centrality indices into groups. We
admit that the proposed categorization is not the only possible and some centrality
indices can be placed in more than one group. We shall try to mention possible
re-classifications.

3.1.1 Distance Based Centrality Indices

Here we describe network centrality indices based on geodesic (shortest path) dis-
tances between the nodes.

Node degree. The simplest distance-based centrality index is the node degree, the
number of immediate neighbours of a node. In the case of directed networks, we
actually have indegree d−v , corresponding to the number of incoming edges, and
outdegree d+v , corresponding to the number of outgoing edges. We note that the
nodes with large indegree can be interpreted as “authorities” and the nodes with
large outdegree can be interpreted as “hubs”. In the context of bibliometrics, the
indegree of an article is the number of the other articles citing this article, and the
outdegree is the number of references present in the article. Naturally, an established
authoritative article has many citations, and a survey article typically references
many sources.

Closeness. Denote by d(v, u) the length of a shortest path from node v to node
u. Bavelas, 1950 has introduced the notion of closeness centrality. The closeness
centrality index of node u can be defined by

n− 1∑
v d(v, u)

. (3.1)

The closeness centrality is just a reciprocal of the average distance from the given
node to all the other nodes. Originally, the closeness centrality was defined for undi-
rected, connected networks. If the formal extension to the case of directed networks
is quite straightforward, the absence of (strong) connectivity poses a problem.

Harmonic centrality. To overcome the problem of infinite path lengths in the case
of disconnected or weakly connected networks, the notion of harmonic centrality

Overview of Centrality Indices 47

(a) Node degree (b) Closeness (c) Harmonic

Figure 3.1. Three distance based centrality indices (dark blue means high centrality).

was proposed. The idea of harmonic centrality is to swap the inversion and sum-
mation operations (also changing the normalisation), which results in

1

n− 1

∑
v:v 6=u

1

d(v, u)
.

Thus, the harmonic centrality is the reciprocal of the harmonic mean distance.
Thanks to the convention ∞−1

= 0, the harmonic mean naturally applies to
disconnected or weakly connected networks. It appears that the notion of har-
monic centrality was first proposed by Marchiori and Latora, 2000, even though
several works independently proposed same notion or its variations, generalizations
(Dekker, 2005; Cohen and Kaplan, 2007; Rochat, 2009; Pan and Saramäki, 2011).

Comparison. We calculate the above described three centrality indices on the same
graph (see Figure 3.1). Of course, the node degree centrality is large only for high
degree nodes, which in the chosen graph are located in the bottom left. On the
contrary, closeness centrality gives importance to nodes at the junction of the two
clusters. The harmonic centrality appears to mix both since nodes with large degrees
as well as nodes located at the junction have large harmonic centrality values.

3.1.2 Spectral Centrality Indices

Spectral centrality indices are the indices that can be obtained as a solution of some
eigenvalue problem

xM = λx, (3.2)

where x is a row-vector. A reason to operate with row vectors will be clear from the
analysis that will follow.

Adjacency spectral centrality. This is one of the oldest centrality indices, whose
application to scoring chess tournaments goes back to the end of the 19-th century
(Landau, 1895). As the matrix M , we choose the graph adjacency matrix A and
take as centrality indices the elements of the eigenvector associated with the largest

48 Network Centrality Indices

positive eigenvalue. We note that such eigenvector is also called Perron-Frobenius
eigenvector in the theory of non-negative matrices.

Random walk centrality or Seeley’s index. Seeley, 1949 proposed to normalise
the rows of the adjacency matrix by their sums. This implies that the reputation of a
node is divided among the successors of that node. Thus, if we denote P = D−1A,
where D is the diagonal matrix of nodes’ degrees, the random walk centrality is given
as a solution of the following eigenvalue problem

σ = σP. (3.3)

There are two probabilistic interpretations of the elements of σ . The first interpreta-
tion says that σi is a long-term fraction of time a random walker on the graph spends
at node i. Also, from the theory of Markov chains, we know that Ei[Ti] = 1/σi,
where Ti is the return time to node i. Thus, by the second interpretation, the recip-
rocal of σi gives the expected return time to node i. Then, two further remarks are
in order. Firstly, if the graph is undirected, the reversibility of the random walk, in
this case, implies that Seeley’s index becomes proportional to the node degree. Sec-
ondly, the original Seeley’s index was defined only for strongly connected graphs.
If a graph is not strongly connected, one can make various regularizations. One
regularization will be described in the next paragraph.

PageRank. The creators of Google, Brin and Page, 1998 have proposed PageRank
centrality index to rank web pages. PageRank models a web surfer behaviour by
allowing a random walker to follow an out-going link with probability c and to
restart from a uniformly random web page with the complementary probability
1 − c. Thus, PageRank is the stationary distribution of the random walker, and
hence it is a solution of the following system:

π = cπP + (1− c)ν, (3.4)

where P = D−1A and ν is the uniform distribution. In fact, instead of the uniform
distribution one can choose a distribution concentrated on some particular set of
nodes. This results in Personalized PageRank, which allows one to measure centrality
with respect to a certain group of nodes. Then, ν is referred to as the personalization
distribution.

Note that using the normalisation condition π1 = 1, we can rewrite (3.4) as
follows:

π = π(cP + (1− c)1ν),

which explains why PageRank belongs to the family of spectral indices.

Overview of Centrality Indices 49

We can also rewrite equation (3.4) in the following way:

π [I − cP] = (1− c)ν,

which gives a useful explicit matrix expression for PageRank:

π = (1− c)ν[I − cP]−1. (3.5)

In particular, the above expression allows us to extend Seeley’s index to non strongly
connected networks. Consider first an intermediate situation when the network
consists of m strongly connected components and each component is described by
its own transition matrix P(i), i = 1, . . . , m. Then, using formula (3.5) we can
write

π = (1− c)
[

n1
n

1
n1

1T
· · ·

nm
n

1
nm

1T
][I − cP(1)]−1

. . .
[I − P(m)]−1

=
[n1

n π
(1)
· · ·

nm
n π

(m)
]

,

where the vectors 1 are of appropriate dimensions and

π (i) = (1− c)
1

ni
1T [I − cP(i)]−1

is PageRank of component i. Now we recall from the theory of Markov chains (see,
e.g., Avrachenkov et al., 2013a; Puterman, 2014) that the following asymptotic
expansion takes place

[I − cP]−1
=

1

1− c
5+ D+ o(1− c), (3.6)

where 5 is the ergodic projection and D is the deviation matrix, the quantities
given by

5 = lim
T→∞

1

T + 1

T∑
t=0

Pt ,

D = [I − P +5]−1
−5.

Now if a component is strongly connected, we have

5(i) = 1σ (i),

50 Network Centrality Indices

where σ (i) is the stationary distribution of the random walker on component i,
that is,

σ (i) = σ (i)P(i), σ (i)1 = 1.

Thus, it follows from (3.6) that

π (i)(c)→ σ (i) as c→ 1,

and a natural generalization of Seeley’s index to the case of several stronly connected
components is

σ =
[n1

n σ
(1)
· · ·

nm
n σ

(m)
]

, (3.7)

where σ (i) is the stationary distribution or Seeley’s index on component i. We see
that in such generalization the relative importance of a component is proportional
to its size, which appears to be quite fair. In particular, this generalization means
that it is better to have a large “local” centrality in a large component.

The case of weakly connected components is treated in Avrachenkov et al.,
2008b.

PageRank with node-dependent restart probability. One natural generalization
of PageRank is based on a random walk with restart that restarts with node-
dependent probabilities. Specifically, let the random walk restart with probability
c(i) from node i ∈ V with distribution ν. For convenience, define by C a diagonal
matrix with c(i) placed on its diagonal in the appropriate position. Then, the ran-
dom walk with node-dependent restart can be described by the following transition
probability matrix:

P̃ = CD−1A+ (I − C)1ν. (3.8)

Avrachenkov et al., 2014a proposed two generalizations of the Personalized
PageRank with node-dependent restart:

(i) The Occupation-Time Personalized PageRank (OT-PPR) is given by

πj(ν) = lim
t→∞

Pν[Xt = j]. (3.9)

By the fact that π(ν) is the stationary distribution of the Markov chain, we
can interpret πj(ν) as a long-run frequency of visits to node j, i.e.,

πj(ν) = lim
t→∞

1

t

t∑
s=1

1{Xs = j}.

Overview of Centrality Indices 51

(ii) The Location-of-Restart Personalized PageRank (LR-PPR) is given by

ρj(ν) = lim
t→∞

Pν[Xt = j just before restart]

= lim
t→∞

Pν[Xt = j | restart at time t + 1]. (3.10)

We can interpret ρj(ν) as a long-run frequency of visits to node j which are
followed immediately by a restart, i.e.,

ρj(ν) = lim
t→∞

1

Nt

t∑
s=1

1{Xt = j, Xt+1 restarts},

where Nt denotes the number of restarts up to time t.

In Avrachenkov et al., 2014a the following explicit matrix formulae were given
for the Occupation-Time Personalized PageRank

π(ν) =
1

ν[I − CP]−11
ν[I − CP]−1, (3.11)

with P = D−1A, and for the Location-of-Restart Personalized PageRank

ρ(ν) = ν[I − CP]−1[I − C]. (3.12)

We see that the formula (3.11) is indeed a generalization of (3.5).
Denote for brevity πj(i) = πj(eT

i), where ei is the ith vector of the standard
basis, so that πj(i) denotes the importance of node j from the perspective of i.
Similarly, πi(j) denotes the importance of node i from the perspective of j. There
is a very useful relation between these “direct” and “reverse” OT-PPRs in the case
of undirected graphs.

Theorem 3.1 (Avrachenkov et al., 2014a). When AT
= A and C > 0, the following

relation holds

di

ciKi(C)
πj(i) =

dj

cjKj(C)
πi(j), (3.13)

with

Ki(C) =
1

eT
i [I − CP]−11

. (3.14)

Note that Ki(A) can be interpreted as the reciprocal of the expected time between
two consecutive restarts if the restart distribution is concentrated on node i, i.e.,

Ki(A)−1
= Ei[# steps before restart]. (3.15)

52 Network Centrality Indices

Thus, given that [I − CP]−1 is the fundamental matrix of the absorbing Markov
chain, the expression (3.11) admits one more probabilistic interpretation of the
OT-PPR in the form of renewal equation

πj(ν) =
Eν[# visits to j before restart]

Eν[# steps before restart]
.

In particular, if ci = c,∀i (the case of standard PageRank), we obtain the following
simple relation between “direct” and “reverse” PPRs:

Corollary 3.1. When AT
= A and ci = c,∀i, the relation (3.13) reduces to

diπj(i) = djπi(j). (3.16)

Katz’s index. Katz, 1953 has proposed a centrality index, which is a clear prede-
cessor of PageRank. It is given by the formula

κ = 1T
∞∑

t=1

β tAt
= 1T ([I − βA]−1

− I). (3.17)

Note that the subtraction of the identity is not really needed and one often refers
to the following quantity as Katz index:

κ = 1T
∞∑

0=1

β tAt
= 1T [I − βA]−1. (3.18)

In order that the both versions will be well-defined the discounting parameter β
should not exceed the reciprocal of the Perron-Frobenius eigenvalue, λ−1(A).

The main difference with PageRank is that Katz centrality gives “full endorse-
ment” to each neighbour node pointed by an out-going link. It was observed that
this could be appropriate in some social networks where a reference from one social
network member to another member carries a lot of importance.

Vigna, 2016 has noticed that using the theorem of Brauer, 1952 on the displace-
ment of eigenvalues, Katz index can be expressed as a solution of the eigenvalue
problem:

κ = κ (βλ(A)A+ (1− βλ(A))r1T),

where r is the right dominant eigenvector of A such that 1T r = λ(A). This justifies
the classification of Katz index as a spectral centrality index.

HITS centrality index. HITS, introduced by Kleinberg, 1999, actually provides
two centrality indices. The first centrality index ranks nodes as authorities and the
second centrality index ranks nodes as hubs. Kleinberg, 1999 suggests that a good

Overview of Centrality Indices 53

“authoritative” node is pointed by many good “hubs”, and in turn, a good “hub”
points to good “authoritative” nodes. This verbal statement can be represented by
the following iterative process:

h(k+1)
= a(k)AT ,

a(k+1)
= h(k+1)A,

where A is the adjacency matrix. In the limit, the authority index is a solution of

a = aAT A.

Hence, the index a is the left dominant eigenvector of AT A. Or equivalently, a is
the left singular eigenvector associated with the largest singular eigenvalue of A.
Similarly, the index h is the right singular eigenvector associated with the largest
singular eigenvalue of A. Note that the above definition is only valid for strongly
connected graphs.

Comparison. Figure 3.2 presents four spectral centrality indices on the same graph.
We observe that the adjacency spectral centrality heavily weights the nodes in the
bottom left of the graph, which appears to be a region with several large degree
nodes. The random walk centrality gives more importance to other nodes as well,
with an emphasis on larger degree nodes and nodes in the bottom left, while
PageRank index diminishes even further the importance of nodes in the bottom left.
In fact, as expected for the undirected graphs, due to time-reversibility, the random
walk centrality gives the same ranking as the node degree (compare Figure 3.2b
with Figure 3.1a). Finally, Katz centrality index gives importance to only a few
nodes located in the middle of the left component.

3.1.3 Hitting Time Based Centrality Indices

It is often the case that not only the shortest paths but also longer paths matter
in the analysis of social networks. A typical example of such a case is rumour or
information propagation in social networks. In fact, this phenomenon was already
reflected in the definition of PageRank and Katz centrality indices where all the
paths are taken into account but longer paths are discounted. One more measure
of “proximity” in networks is given by mean first passage times (or mean hitting
times) of a random walker. The mean first passage time from node i to node j is
given by (see e.g., Aldous and Fill, 2002; Meyer, 2000):

Ei[Tj] = eT
i [I − P−j]

−11, (3.19)

54 Network Centrality Indices

(a) Adjacency (b) Random Walk

(c) PageRank, c = 0.85 (d) Katz

Figure 3.2. Spectral centrality indices.

where ei is the i-th vector of the standard basis and P−j is the Taboo transition
probability matrix obtained from P by deleting its j-th row and j-th column.

Now, in analogy with closeness centrality, see (3.1), we can define hitting time
centrality as

hj =
n∑

i eT
i [I − P−j]−11

=
n

1T [I − P−j]−11
. (3.20)

To the best of our knowledge, the expression (3.20) was proposed by White and
Smyth, 2003. Note that in general Ei[Tj] 6= Ej[Ti]. Thus, one can also use the
following alternative definition for hitting time centrality:

h̃j =
n

eT
j
∑

i[I − P−i]−11
. (3.21)

It is known (see Chandra et al., 1996; Aldous and Fill, 2002; Ellens et al., 2011)
that there is a connection between the effective resistance in a graph and hitting
times:

rij =
1

2m
(Ei[Tj]+ Ej[Ti]),

Overview of Centrality Indices 55

(a) h (3.1.20) (b) h̃ (3.1.21) (c) h̄ (3.1.22)

Figure 3.3. Hitting time centrality indices.

where m is the number (total weight) of edges. Thus, a natural, symmetric version
of hitting time centrality is given by

h̄j =
1∑
i rij
=

2m∑
i(Ei[Tj]+ Ej[Ti])

. (3.22)

One additional benefit of using effective resistances is that they actually define a
metric on a graph.

Comparison. Figure 3.3 presents different hitting time centralities on the same
graph. We observe that the centrality defined by (3.20) results in large weights on
nodes in the bottom left and medium weights on nodes in the right component.
On the contrary, the centrality defined by (3.21) gives small weights to nodes in
the left component and large weights to nodes in the right component. Finally, the
centrality defined by (3.22) results in large weights in nodes that are well connected,
and small weights to more isolated nodes.

Extension to disconnected graph. The three versions of hitting time centrality
(3.20), (3.21) and (3.22) are well-defined only for connected graphs. There are
at least two approaches for extending this notion of centrality to disconnected or
non strongly connected graphs. Firstly, one can just use the harmonic mean as was
done in the case of the standard closeness centrality. Secondly, as was suggested
in Hopcroft and Sheldon, 2008 and Avrachenkov et al., 2018d, one can use the
random walk with restart. Similarly to PageRank, let us consider the random walk
with restart probability c. Then, the expected hitting time with restart from node i
to node j is given by

Ei[T c
j] =

eT
i [I − cP−j]−11

1− (1− c)1
n1T [I − cP−j]−11

.

The numerator of the above expression provides a more significant contribution
than the denominator, especially when the parameter c is close to one. Thus, we

56 Network Centrality Indices

suggest to use as a hitting time with restart centrality the following quantity:

hc
j =

n

1T [I − cP−j]−11
. (3.23)

Note that even though the network is strongly connected, the matrix [I − P−j]
is often ill-conditioned and the introduction of the factor c helps to improve the
condition number of the problem.

3.1.4 Betweenness Centrality Indices

A node in a social network can be viewed as important if that node contributes
significantly to information flows or appears as a facilitator of communications.

Shortest path betweenness centrality. Freeman, 1977 introduced the betweenness
centrality index based on shortest paths. Let σst be the number of shortest paths
going from node s to node t, and let σst(v) be the number of such shortest paths
that pass through node v. Then, the shortest path betweenness centrality of node v
is defined as follows:

1

(n− 1)(n− 2)

∑
s,t:s,t 6=v

σst(v)
σst

.

As was already mentioned, the information in social networks does not flow neces-
sarily via shortest paths. Therefore, several researchers have extended the between-
ness centrality to take into account longer paths.

Network flow betweenness centrality. In Freeman et al., 1991, the authors suggest
to use the concept of max-flow. This concept also allows to deal with weighted
networks. Let wij be a weight of the link between nodes i and j (if there is no link,
the weight is zero). Then, a flow from node s to node t is a mapping on the set of
links such that the following two constraints are satisfied:

1. Capacity constraint: ∀(i, j) ∈ E , fij ≤ wij ;
2. Conservation of flow: ∀v such that v 6= s, t:∑

v:(u,v)∈E

fuv =
∑

v:(v,w)∈E

fvw.

Then, the value of the flow f is given by

|f | =
∑

v:(s,v)∈E

fs,v,

Overview of Centrality Indices 57

and the max-flow is the maximum flow which can go from s to t. Its value can be
found by linear programming and the celebrated max-flow min-cut theorem says
that the maximum flow is equal to the minimum capacity over all s − t cuts.

Now, the network flow betweenness centrality of node v by Freeman et al., 1991
is defined as follows: ∑

s,t:s,t 6=v mst(v)∑
s,t:s,t 6=v mst

, (3.24)

where mst is the value of max-flow from s to t and mst(v) is a part of such flow that
passes through node v.

Current flow betweenness centralities. One more variant of betweenness cen-
trality, which is based not only on shortest paths and uses the theory of electri-
cal networks, was proposed by Brandes and Fleischer, 2005 and Newman, 2005a.
Consider a weighted graph as an electrical network with conductances given by
link weights. Suppose that a unit of current enters at node s (source) and leaves the
network at node t (sink). Then, using Kirchhoff ’s current law and Ohm’s law, we
obtain the following linear system for the vector of potentials:

Lφ = b, bv =

1, v = s,
−1, v = t,
0, otherwise,

(3.25)

where L = D − A is the graph Laplacian. Since L1 = 0, the vector of potentials
are determined up to an additive constant. Thus, without loss of generality, we can
assume that the potential of the sink node is zero (this node is grounded). Then,
the other potential values can be uniquely determined by (3.25). The throughput
of node v is defined by

τst(v) =
1

2

−|bv| +
∑

w:(v,w)∈E

wvw|φv − φw|

 ,

and the current flow betweenness centrality is given by

1

(n− 1)(n− 2)

∑
s,t

τst(v). (3.26)

Note that both the network flow betwenness (3.24) and the current flow between-
ness (3.26) are well-defined only for strongly connected networks. In fact, the cur-
rent flow betweenness is defined only for undirected networks. Furthermore, the
system (3.25) is often ill-conditioned. To improve the conditioning of the system
and to allow the application to not strongly connected networks, we can consider

58 Network Centrality Indices

at least the following two regularizations. Firstly, as in the case of PageRank, we can
regularize the system (3.25) as follows (Avrachenkov et al., 2013b):

[D− αA]φ = b.

This modification has interpretations in terms of electrical network and random
walks on graphs. In particular, this modification means that we multiply all the
conductance by the factor α and ground each node with the conductance (1−α)dv.
The other equations of the current flow centrality stay unchanged. The second
regularization consists in adding a term to the Laplacian (Avrachenkov et al., 2015):

[D− A+ βI]φ = b.

This has an interpretation that we ground all the nodes with conductance β, inde-
pendent of node degree. Then, the above system has the following solution:

φ = [I − D2P]−1D1b,

with

D1 = diag
(

1

dv + β

)
, D2 = diag

(
dv

dv + β

)
.

Thus, the second regularization can be interpreted in terms of a random walk with
non-uniform restart (see the paragraph about PageRank with non-uniform restart
probabilities). Namely, the random walker restarts less frequently from high-degree
nodes. As was observed in Avrachenkov et al., 2013b and Avrachenkov et al., 2015,
both regularizations give similar rankings as the original current flow centrality but
are much easier to calculate and to approximate. An advantage of the first regulariza-
tion could be that the bias induced by high degree nodes is suppressed, whereas an
advantage of the second regularization is in the fact that all the nodes are grounded
in the same way and thus we need to perform averaging only over the source nodes.

We would like to mention that it is also very natural in the context of between-
ness centralities to define centrality indices for edges. Specifically, for the shortest
path edge betweenness centrality we count the number of shortest paths passing
through an edge; and for the flow based edge betweenness centralities we calculate
the flow passing through an edge under consideration. As we shall discuss later, the
edge betweenness centralities are very useful for graph clustering.

Comparison. Figure 3.4 presents the different betweenness centralities calculated
on the same graph. We observe that the shortest path betweenness centrality gives
importance solely to nodes at the junction of the left and right clusters. Indeed,
those nodes are of paramount importance in short paths since they are essential for
joining a node in the left cluster to a node in the right one. Network flow gives

Overview of Centrality Indices 59

(a) Shortest path betweenness (b) Network f low (c) Current f low

Figure 3.4. Betweenness centrality indices.

more importance to nodes that are well connected and less importance to nodes
that are more isolated. Finally, current flow enhances even further this, as nodes
with low current flows are nodes in the extremity (top right or bottom right) with
fewer connections to the rest of the graph.

3.1.5 Game Theory Based Centrality Indices

One more way to define a network centrality is based on cooperative game theory.
This is actually quite a natural way to define network centrality since cooperative
game theory provides means to estimate the importance of a node based on the
node’s contribution to network connectivity or network cohesiveness.

Let us recall that the basic quantity of cooperative game theory is a characteristic
function v(·), which is defined on the subsets of nodes and satisfies the property
v(∅) = 0. Myerson, 1977 extended the concept of Shapley value, Shapley, 1953,
to graph setting. Meyrson-Shapley value is a unique allocation, Yi(v, G), satisfying
the following two axioms:

1. if S is a connected component of graph G, then the members of the coalition
S ought to allocate to themselves the total value v(S) available to them, i.e.,∑

i∈S

Yi(v, G) = v(S);

2. ∀G, ∀i, j ∈ G, both nodes i and j obtain equal payoffs after adding or delet-
ing a link (i,j), i.e.,

Yi(v, G)− Yi(v, G − (i, j)) = Yj(v, G)− Yj(v, G − (i, j)).

The Myerson allocation can be computed by the Shapley formula

Yi(v, G) =
∑

S⊂V \{i}

(vG(S ∪ {i})− vG(S))
s!(n− s − 1)!

n!
,

where s = |S| and vG(·) is the characteristic function defined additively with
respect to connected components. However, in general, the computation by the

60 Network Centrality Indices

above formula is very cumbersome. It appears that there is one natural choice for
the characteristic function, which simplifies the computation of Myerson value.
Inspired by path-discounting characteristic functions of Jackson and Wolinsky,
1996; Jackson, 2010, in Mazalov and Trukhina, 2014; Mazalov et al., 2016 for
trees and in Avrachenkov et al., 2018a for general graphs, the following character-
istic function was proposed. Let δ ∈ [0, 1] be a discount factor. Each link (or direct
connection) gives to coalition S the value δ. Moreover, players obtain a value from
indirect connections. Namely, each simple path of length 2 belonging to coalition
S gives to this coalition the value δ2, a simple path of length 3 gives to the coali-
tion the value δ3, etc. Thus, the coalition value can be expressed by the following
formula

v(S) = a1(G, S)δ + a2(G, S)δ2
+ · · ·

where ak(G, S) is the number of simple paths of length k in coalition S. Recall that
a simple path is a path with no repeated nodes. The use of simple paths is crucial.
In Avrachenkov et al., 2018a it was shown that this characteristic function leads to
a manageable expression for the Myerson value:

Yi(v, G) =
a(i)1 (G)

2
δ +

a(i)2 (G)

3
δ2
+ · · ·

where a(i)k (G) is the number of simple paths of length k containing node i. The
quantity Yi(v, G) as a centrality index combines some features of betweenness cen-
trality with the path discounting as in PageRank and Katz centralities.

3.2 Axiomatic Comparison of Centrality Indices

As we have seen, there are many variants of centrality indices. Even inside the classes,
such as distance-based indices or betweenness indices, there is a good number of
variations. A big question (remaining largely open) is how to compare the centrality
indices?

Of course, one can compare the indices numerically on some benchmark exam-
ples, which is a practically valid approach and we have seen examples of such com-
parisons in the first part of this chapter. One promising analytical approach is to
propose a set of natural properties or axioms and test available centrality indices
against those axioms. Such an approach was initially proposed by Boldi and Vigna,
2014. Let us describe it here.

The first two axioms of Boldi and Vigna, 2014 test centrality indices with respect
to change of size and change of density. Two examples of strongly connected graphs

Applications of Centrality Indices 61

with extreme densities are a cycle composed of links with the same direction and a
clique with bi-directional links.

Size axiom. Consider the graph Gk,p composed of a k-clique and a directed p-cycle.
A centrality index satisfies the size axiom, if for every k there is p̄k such that for all
p ≥ p̄k, the centrality of a node in the p-cycle is strictly larger than the centrality
of a node in the k-clique. And, conversely, if for every p there is k̄p such that for all
k ≥ k̄p the centrality of a node in k-clique is strctly larger than the centrality of a
node in the p-cycle.

Intuitively, the above axiom says that a node belonging to a very large but sparse
community should be more important than a node belonging to a dense but small
community.

However, the next axiom states that if communities are equal in size, a node
belonging to a denser community should be more important.

Density axiom. Consider the graph Dk,p composed of a k-clique and a directed p-
cycle, which are connected by a bi-directional bridge, x ↔ y, with node x belonging
to the clique and node y belonging to the cycle. A centrality index satisfies the density
axiom, if for k = p the centrality of x is strictly larger than the centrality of y.

Then, the third axiom says that it is natural that an immediate direct link always
improves the index value of the node pointed by that link.

Score-monotonicity axiom. A centrality measure satisfies the score-monotonicity
axiom if for every graph G and every pair of nodes x and y such that there is no link
from x to y, when we add a link x→ y, the centrality of node y increases.

In the next Table 3.1, from Boldi and Vigna, 2014, we summarise the verification
of the above axioms for most common centrality indices.

It is interesting to observe that, for the given selection of centrality indices, only
harmonic centrality satisfies all the three axioms. This appears to be quite surpris-
ing taking into account how basic and simple are the requirements of the axioms.
However, as will be demonstrated by application examples, we should not imme-
diately discard the centrality indices that do not satisfy some axioms. They can be
useful for tasks that are not described by those axioms.

3.3 Applications of Centrality Indices

3.3.1 Social, Bibliographic and Information Networks

Most definitions of centrality indices are originated in the domains of sociology
and information networks. This is quite natural as centrality indices should indicate

62 Network Centrality Indices

Table 3.1. Axiom verification table, Boldi and Vigna, 2014.

Centrality Size Density Score-monotonicity

Degree only k yes yes

Closeness no no no

Harmonic yes yes yes

Betweenness only p no no

Seeley no yes no

Katz only k yes yes

PageRank no yes yes

HITS only k yes no

which members of a social network are more important or powerful. Let us mention
a few key contributions for centrality indices in sociology (the list is certainly not
exhaustive): Bavelas, 1950; Bonacich, 1987; Bonacich and Lloyd, 2001; Borgatti,
2005; Brandes, 2008; Everett and Borgatti, 1999; Freeman, 1977; Freeman et al.,
1991; Friedkin, 1991; Hubbell, 1965; Katz, 1953; Newman, 2005a.

In bibliometrics, the citation count is simply the indegree centrality index for the
citation network. (Citation networks have been introduced in the classical works by
Solla Price, 1965, 1976.) Clearly, the citation count has its limitations. For instance,
consider the case of an excellent original research article followed up by a com-
prehensive survey article. Over the years the survey article can accumulate more
citations than the original research article, which could even be forgotten.

Chen et al., 2007 have proposed to use PageRank to discover “scientific gems”.
They have ranked the publications in the Physical Review family of journals from
1893 to 2003 both by citation count and PageRank. Even though there appears to
be a strong positive correlation between these two indices, there are articles with
a very modest number of citations but with a very high PageRank score. These
are often “scientific gems”. For instance, a very important scientific technique or
concept can be introduced in an article and then such concept can be named in
honour of the inventors, and is used in many other articles but no specific reference
is given anymore.

In recent work by Mariani et al., 2016, the authors argue that PageRank identify
well the established “scientific gems” but may miss new milestones. They proposed
a rescaled PageRank, which takes into account the publication time.

The citation network is just one example of information networks. Other
notable examples of information networks are the world wide web (see e.g., Brin
and Page, 1998; Kleinberg, 1999; Hopcroft and Sheldon, 2008), the authorship
network (the authors are nodes and the citations among the authors are the links),

Applications of Centrality Indices 63

the co-authorship network (the articles are nodes and the links indicate if two papers
were written by the same author2), journal citation network, etc. For instance,
the authors of (Pinski and Narin, 1976; Bollen et al., 2006; Bergstrom, 2007;
Bergstrom et al., 2008; González-Pereira et al., 2010) use centrality indices, mostly
spectral, to rank journals and the authors of (Fiala et al., 2008; Ding et al., 2009;
Yan and Ding, 2009; Fiala, 2012; West et al., 2013) use centrality indices to rank
authors.

3.3.2 Semi-supervised Learning

Labelling data is a laborious and expensive process. Therefore, in many datasets the
amount of labelled data is small and standard supervised machine learning methods
either lead to a significant amount of errors or are not applicable at all. Fortunately, a
graph-based semi-supervised learning method can help in such situations (Chapelle
et al., 2006).

The main idea behind graph-based semi-supervised learning is first to construct
a graph on the data points, where a link between two data points indicate a strong
relationship between these points. And then, one can use a similarity measure on
the graph to assign unlabelled data points to the classes defined by the labelled data
points.

One example of a similarity measure is given by the Personalized PageRank, see
(Avrachenkov et al., 2012). Suppose that class k is defined by a set of labelled points
Lk. And let νk be some (e.g., uniform) distribution with the support over the set
Lk. Then, we can define the similarity of data point u to class k by

πu(k) = (1− c)νk[I − cP]−1eu,

with P = D−1A. Thus, we attribute point u to class k, if

k = arg max
k′
πu(k′).

An interested reader can find more examples of measures of node similarity in
(Avrachenkov et al., 2019). Many node similarity measures are related to cen-
trality indices. We shall discuss semi-supervised learning in much more detail in
Chapter 5.

2. Note that one can also consider a co-authorship network, where the authors are nodes and a link is present if
two authors have co-authored an article. Erdős number network is one famous example of a co-authorship
network.

64 Network Centrality Indices

3.3.3 Community Detection

The community detection problem is the problem of finding tight-knit groups of
nodes in a network. We dedicate to this important topic the whole Chapter 4,
but for now let us just point out some applications of centrality indices to the
community detection problem.

Betweenness centrality indices are very efficient in solving the community detec-
tion problem. Specifically, in (Newman and Girvan, 2004) and (Newman, 2005a)
the edges with the largest values of edge betweenness centrality are deleted and then
the betweenness centrality is recomputed and then again the edges with the largest
values of betweenness centrality are deleted, etc. This process will eventually lead
to components that are disconnected between themselves.

The authors of (Avrachenkov et al., 2008a) proposed first to find central nodes
representing well communities with the help of PageRank and then as in the
semi-supervised learning, to use Personalized PageRank to attribute nodes to
communities.

Personalized PageRank and other centrality indices have also been applied to
local graph clustering: Orponen and Schaeffer, 2005; Andersen et al., 2006; Zhu
et al., 2013; Orecchia and Zhu, 2014; Gleich and Mahoney, 2014. This is clearly
related to graph-based semi-supervised learning.

3.3.4 Further Applications

Historically, the first application of centrality indices was in sport and in particu-
lar in chess (Landau, 1895), which is followed by many other applications in this
domain, just to name a few (Wei, 1952; Kendall, 1955; Keener, 1993; Callaghan
et al., 2007; Langville and Meyer, 2012).

Centrality indices play an important role in the analysis of network robustness
(Albert et al., 2000; Holme et al., 2002; Ellens et al., 2011; Rueda et al., 2017;
Ofori-Boateng et al., 2021). In particular, Clemente and Cornaro, 2020 proposed
new centrality indices characterizing the node and edges with respect to their effect
on the vulnerability of a network.

Many recommender systems use centrality indices, in particular, centrality
indices based on random walks: Fouss et al., 2007; Gori et al., 2007; Boldi et al.,
2008; Mei et al., 2008; Fouss et al., 2012; Davoodi et al., 2013.

Centrality indices are also used in various NLP tasks such as semantic similarity
(Sinha and Mihalcea, 2007), word sense disambiguation (Agirre and Soroa, 2009)
and person name disambiguation (Smirnova et al., 2010).

Applications of Centrality Indices 65

Further Notes

In addition to the work by Boldi and Vigna, 2014, there is a number of other
works characterizing centrality indices by axiomatic approaches. Already Sabidussi,
1966 proposed several natural axioms to test centrality indices. In Altman and Ten-
nenholtz, 2005 and Was and Skibski, 2018, the authors proposed axiomatization
of Seeley’s and PageRank centralities. Then, in Skibski and Sosnowska, 2018 the
distance-based centralities were axiomatised.

In many applications, one needs to measure the centrality of a group of nodes
rather than that of a single node. For instance, it may be required to evaluate an
influence of a particular social group on the society or to evaluate the importance
of a department within an organization. Several works, starting from Everett and
Borgatti, 1999, proposed various variants of group centralities: Kolaczyk et al.,
2009; Veremyev et al., 2017; Akgün and Tural, 2020. Let us emphasize that in
the majority of cases it is not suitable to simply sum centrality values of individ-
ual nodes. It should come without surprise that the methods of cooperative game
theory are very natural to define group centrality indices, see e.g., Michalak et al.,
2013; Szczepański et al., 2016.

It is often important to find only Top-k central nodes of a network. This prob-
lem was investigated in Avrachenkov et al., 2011, 2014c; Ostuni et al., 2013;
Avrachenkov et al., 2014b; Yoshida, 2014; Borassi and Natale, 2019; Fan et al.,
2019; see also references therein.

We note that if in Katz centrality the geometric discounting is changed to the
Poisson, factorial discounting, this gives Estrada’s subgraph or communicability
centrality (Estrada and Rodriguez-Velazquez, 2005; Estrada and Hatano, 2008).
Furthermore, if now the adjacency matrix is replaced with the transition matrix of
the random walk, this results in the heat kernel PageRank (Chung, 2007).

In the survey (Gleich, 2015) one can find an excellent extensive overview of
various modifications and applications of PageRank.

DOI: 10.1561/9781638280514.ch4

Chapter 4

Community Detection in Networks

We saw in the introduction that the node set of many networks can be partitioned
into several groups based on the node attributes or on the node’s behaviour. For
example, the members of the karate-club network split into two groups (Zachary,
1977), while the blogs of the political blog network are labelled as being either liberal
or conservative. Community detection (also referred to as community recovery or graph
clustering) consists in inferring the latent community structure based on the node’s
interactions.

Community detection is a delicate problem, as the notion of community is
strictly speaking ill-defined. Indeed, although community structures are quite com-
mon in real networks, it is hard to properly define what is a community. Nonethe-
less, we can provide the following hints.

• Definitions based on node similarity. We can define as communities some
groups of nodes that behave similarly to each other. For example, we could
separate the nodes of a social network between influencers (people posting a
lot of content and being followed by numerous users) and followers (periph-
eral nodes interacting mostly with influencers). To assess the similarity of two
nodes, we can use a node similarity measure (such as Personalized PageRank
or hitting time based centrality indices, see Chapter 3).

66

http://dx.doi.org/10.1561/9781638280514.ch4

Community Detection in Networks 67

(a) Dolphin network. (b) Political blogs. (c) Live Journal.

Figure 4.1. Real networks with community structure.

• Local definitions. We can intuitively define a community as a set of nodes
interacting a lot with each other. In that case, communities are groups of
nodes that are densely connected within the groups but sparsely connected
to the rest of the network.

• Global definitions. We can also evaluate the quality of a graph partition
into disjoint communities using a quantity called modularity. This quantity
compares the number of edges inside the community to the expected number
of internal edges in a null model.

In addition to the above problem of choosing an appropriate definition of com-
munities, we will see that community detection is often computationally difficult,
and hence one needs to rely on approximation algorithms.

Real networks for which ground-truth communities are known are often used
to compare and evaluate various community detection algorithms. We give below
a non-exhaustive list of such networks. We plot some of them in Figure 4.1 and
summarise in Table 4.1 some statistics of those networks. We also refer to the intro-
duction, where these and some other networks were described in more detail.

• A selection of standard networks are available on Mark Newman personal
webpage: http://www-personal.umich.edu/~mejn/netdata/, including
the popular Zachary Karate Club (Zachary, 1977), an interaction network
between dolphins (Lusseau et al., 2003) and the political blog data set (Adamic
and Glance, 2005).

• The Linqs webpage https://linqs.soe.ucsc.edu/data hosts some data set,
including Cora, Citeseer, Pubmed, and WebKB (Lu and Getoor, 2003).

• The netset webpage https://netset.telecom-paris.f r/ hosts several data sets,
including graphs with links between wikipedia articles.

• Finally, the Stanford Large Network Dataset Collection (https://snap.stanford.
edu/data/) hosts a wide sample of larger networks.

Using synthetic networks is also common to assess the validity of commu-
nity detection algorithms. A widely used random graph model with community
structure is the Stochastic Block Model (SBM) and its degree-corrected variant (see
Section 2.3).

http://www-personal.umich.edu/~mejn/netdata/
https://linqs.soe.ucsc.edu/data
https://netset.telecom-paris.fr/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/

68 Community Detection in Networks

Table 4.1. Selection of real data sets for community detection with ground-truth.

Category Data Set n |E | K Features

Social networks

karate club 34 78 2 0

dolphins 62 159 2 0

LiveJournal top2 2766 24138 2

Citation networks

cora 2485 5069 7 1433

citeseer 2110 3668 6 3703

DBLP top2 13326 34281 2

Web networks

political blogs 1222 1671778 2 0

wikischools 4403 100382 17 0

wikivitals 10008 629521 11 0

Images

MNIST 70,000 – 10 784

fashionMNIST 70,000 – 10 784

CIFAR-10 60,000 – 10

CIFAR-100 60,000 – 100

This chapter is structured as follows. We firstly present in Section 4.1 some cut-
based methods, and their relaxation in the form of spectral clustering. Section 4.2
introduces modularity-based methods, and in particular the very efficient Louvain
algorithm for modularity maximisation. The Bayesian framework for community
detection is presented in Section 4.3. Moreover, in each section, we validate the pro-
posed methods by performing numerical experiments and we discuss each method’s
limitations. Finally, we end the chapter with a theoretical analysis of the community
detection problem in Section 4.4.

4.1 Cut-based Methods

In this section, we investigate the problem of separating the graph into K ≥ 2
groups, such that inside a group the edge density is higher than between two
different groups.

4.1.1 Graph Bisection

We consider a graph whose nodes are {1, . . . , n}, and the adjacency matrix is A =(
aij
)

1≤i,j≤n. The graph is undirected but possibly weighted, so that aij = aji ≥ 0.

The degree di of a node i ∈ V is defined as
∑n

j=1 aij .

Cut-based Methods 69

Our goal is to partition the node set V into two subsets V1, V2 such that V1 ∩

V2 = ∅ (non-overlapping communities) and V1 ∪ V2 = {1, . . . , n}. Note that
V2 = V c

1 , where V c
1 denotes {1, . . . , n}\V1, the complementary set of V1.

Definition 4.1. Given a set of nodes V1 and an undirected graph represented by
its adjacency matrix A, we denote by Cut(A, V1) the total weight of the edges going
from V1 to its complement V c

1 . That is,

Cut(A, V1) =
∑

i∈V1,j∈V c
1

aij .

At first glance, we might be tempted to solve

V̂1 = arg min
V1⊂[n]

Cut(A, V1). (4.1)

But, the trivial solutions of this minimisation problem are V̂1 = V and V̂1 = ∅,
which correspond to assigning every node to one cluster, and letting the second
cluster empty! Moreover, even if we impose V1 6= V and V1 6= ∅, we likely obtain
a solution where almost all the nodes are in one cluster and only a few nodes in the
other cluster.

Consequently, one can impose that the predicted sets V1 and V c
1 should be

roughly of the same size. To do so, one can penalize the imbalanced solutions.
Firstly, let us impose the set V1 and V c

1 to be exactly of the same size by restraining
the minimisation problem over sets V1 such that |V1| =

n
2 . The new minimisation

problem

arg min
V1⊂[n] : |V1| =

n
2

Cut(A, V1) (4.2)

is called the graph bisection problem. Of course, in practice the two clusters are often
of different size. This will be presented in the next section, along with a generaliza-
tion to K clusters (K ≥ 2).

But, even in this simple two cluster setting, another problem arises: the minimi-
sation problem (4.2) is NP-hard (Wagner and Wagner, 1993; Garey et al., 1974).
Therefore, we have to rely on approximate methods. In the following, we propose a
relaxation method based on the Laplacian. A similar method based on the adjacency
matrix and a different method based on Semi-Definite Programming are presented
in Section 4.1.3.

First relaxation method: Laplacian spectral clustering

Proposition 4.1. For V1 ⊂ [n] such that |V1| =
n
2 , define z ∈ {−1; 1}n the vector

associated with the partition (V1, V c
1), that is zi = 1 if i ∈ V1 and zi = −1 otherwise.

70 Community Detection in Networks

We have

arg min
V1⊂[n] : |V1| =

n
2

Cut(A, V1) = arg min
V1⊂[n] : |V1| =

n
2

zT Lz.

Moreover, z ⊥ 1n and ‖z‖22 = n.

Proof. The facts that z ⊥ 1n and ‖z‖22 = n are immediate from the constraint
|V1| = n/2. Moreover, we notice that

(
zi − zj

)2
=

{
1 if i ∈ V1, j ∈ V c

1 or i ∈ V c
1 , j ∈ V1

0 otherwise.

Therefore,

Cut(A, V1) =
∑

i∈V1,j∈V c
1

aij =
1

2

n∑
i,j=1

aij

(
zi − zj

)2
=

1

4
zT Lz,

where the latter equality holds by Proposition A.10 from the background
Section A.2. This ends the proof, as the factor 1

4 > 0 does not impact the minimi-
sation problem.

Minimisation problem (4.2) is therefore equivalent to

ẑ = arg min
z∈{−1;1}n

‖z‖22=n
z⊥1n

zT Lz, (4.3)

where the two associated clusters are simply V̂1 = {i ∈ [n] : ẑi = 1} and V̂ c
1 =

{i ∈ [n] : ẑi = −1}. A possible continuous relaxation of (4.3) is

x̂ = arg min
x∈Rn

‖x‖22=n
x⊥1n

xT Lx.

By relaxation, we mean that we went from z ∈ {−1; 1}n to a real value vector x ∈
Rn. This allows us to use standard calculus methods to solve the arg min problem
(cf. Lemma 4.1). Once x̂ is computed, we can cluster according to the sign of x̂i.
This leads to the standard spectral clustering method (Algorithm 4). Nonetheless,
there is in general no guarantee that the solution of the relaxed problem (4.3) should
be equal to the true solution of the original problem (4.2). We refer to Section 4.4
for a more careful discussion.

Cut-based Methods 71

Lemma 4.1. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L, and v1, . . . , vn

the corresponding basis of orthogonal eigenvectors, normalized so that ‖vi‖
2
2 = n. We

have

arg min
x∈Rn;
‖x‖22=n;

x⊥1n

xT Lx = v2.

Proof. Indeed, v1 = 1n, and we conclude the proof by the Courant-Fischer Theo-
rem (see Theorem A.13 in Appendix A.3.3).

Algorithm 4: Standard Spectral Clustering – 2 clusters.

Input: graph standard Laplacian L.
Output: clustering assignment ẑ ∈ {1; 2}n.
Spectral Step:

• let v2 be the eigenvector of L associated to second smallest eigenvalue;
• for i = 1 . . . n, let ẑi = 1 if (v2)i > 0, and ẑi = 2 otherwise.

Return: ẑ.

4.1.2 General Case: More Than Two Clusters

In this section, we extend the method of the preceding section to the general situ-
ation of K ≥ 2 clusters of possibly different sizes.

Let V1, . . . , VK be a partition of V into K non-overlapping clusters, that is
V1 ∪ · · · ∪ VK = V and Vk ∩ V` = ∅ for k 6= `. We highlighted in the preceding
section the importance of penalizing the partitions of unbalanced cluster sizes in
the Cut-minimisation problem. To measure the size of a cluster Vk, we define the
two following metrics:

|Vk| =

n∑
i=1

1(i ∈ Vk) and vol (Vk) =
∑
i∈Vk

di.

The quantity |Vk| corresponds to the number of nodes belonging to the set Vk,
while vol(Vk) is the volume of the set Vk, that is the sum of the degrees of nodes
belonging to Vk. Instead of minimising directly the Cut, we will minimise one of
these two quantities:

RatioCut(A, V1, . . . , VK) =

K∑
k=1

Cut(A, Vk)

|Vk|
, (4.4)

NCut(A, V1, . . . , VK) =

K∑
k=1

Cut(A, Vk)

vol(Vk)
. (4.5)

72 Community Detection in Networks

The Ratio-Cut (resp., Normalized-Cut or NCut) corresponds to a Cut penalized with
respect to the size (resp. volume) of the sets Vk: small sets bear a large penalty. Hence,
we can expect that the solutions minimising the Ratio-Cut or the Normalized-Cut
lead to clusters of balanced sizes.

As before, the minimisation of those quantities for all possible partitions
(V1, . . . , VK) is NP-hard, and we will instead solve a relaxed version of the problem.
Let us define the matrix H = (hik) ∈ Rn×K by:

∀ i ∈ [n], ∀ k ∈ [K] : hik =

1
√
|Vk|

, if vi ∈ Vk,

0, otherwise.

(4.6)

H is a matrix containing the K indicator vectors as columns, where the size of each
set Vk is used as a normalisation term. Similarly, let us define N = (nik) ∈ Rn×K as:

∀ i ∈ [n], ∀ k ∈ [K] : nik =

1

√
vol(Vk)

, if vi ∈ Vk,

0, otherwise.

(4.7)

Here we used the volume of each set Vk as a normalisation term. We have the
following lemma.

Lemma 4.2. The following holds:

(i) RatioCut(A, V1, . . . , VK) = Tr
(
HT LH

)
;

(ii) NCut(A, V1, . . . , VK) = Tr
(
N T LN

)
;

(iii) HT H = IK and N T DN = IK .

Proof. This lemma follows from the observations that

(HT LH)kk = HT
·k LH·k =

Cut(A, Vk)

|Vk|
,

where H·k denotes the column k of H , and

(N T LN)kk = N T
·k LN·k =

Cut(A, Vk)

vol(Vk)
.

Cut-based Methods 73

Indeed,

HT
·k LH·k =

1

2

∑
i,j

aij
(
hik − hjk

)2

=
1

2

 ∑
i∈Vk ,j 6∈Vk

aij +
∑

i 6∈Vk ,j∈Vk

aij

 1

|Vk|

=
1

2
2 Cut (A, Vk)

1

|Vk|
.

The second equality holds since hik = hjk if (i ∈ Vk, j ∈ Vk) or (i 6∈ Vk, j 6∈ Vk).
The computations for

(
N T LN

)
kk are similar.

Therefore, minimising the RatioCut can be rewritten as:

arg min
(V1,...,Vk)

Tr
(

HT LH
)

, (4.8)

where L = D−A, and H is defined in equation (4.6). Similarly, minimising NCut
can be rewritten as:

arg min
(V1,...,Vk)

Tr
(

U TLU
)

, (4.9)

where L = D−1/2LD−1/2, U := D1/2N , and N is defined in equation (4.7).
The next step is to relax minimisation problems (4.8) and (4.9), by keeping

only the constraints HT H = IK and U T U = IK . The solution of these relaxed
problems is given by the next proposition (we refer to the Proposition A.15 in
Appendix A.3.3 for the proof).

Proposition 4.2. Let M ∈ Rn×n be a symmetric matrix. A solution of
arg min Tr

(
X T MX

)
where X ∈ Rn×K is subject to X T X = IK is given by the

matrix V ∈ Rn×K whose columns are the first K orthonormal eigenvectors of M.

Once the relaxed problem is solved, we are left with a n-by-K matrix whose
columns correspond to the K first eigenvectors of L (or L). To reconvert this real-
valued matrix to a discrete partition, a standard way is to consider the n rows of K
(hence giving n data points in RK), and apply k-means algorithm on these n data
points. More precisely, k-means consists in the following minimisation problem(

Ẑ , X̂
)
= arg min

Z∈Zn,K

X∈RK×K

‖ZX − V ‖2F (4.10)

74 Community Detection in Networks

where Zn,K denotes the space of membership matrices, that is n× K matrices with
entries in {0, 1} for which each row i has only one non-zero element. While solving
the minimisation problem (4.10) is NP-hard, there exists (see Kumar et al., 2004)
a polynomial time procedure finding (

Ẑ , X̂
)
∈ Zn,K × RK×K

(4.11)
s.t.

∥∥Ẑ X̂ − V
∥∥2

F ≤ (1+ ε) min
Z∈Zn,K

X∈RK×K

‖ZX − V ‖2F .

Once Ẑ is found, we return the predicted clusters: node i is in cluster k if Ẑik = 1.
We summarize this in Algorithm 5.

Algorithm 5: (Normalized) spectral clustering.

Input: graph Laplacian L (resp. normalized Laplacian L), number of clusters
K .

Output: predicted node labelling vector ẑ ∈ [K]n.
Spectral Step:

• compute v1, . . . , vK the K orthonormal eigenvectors of L (resp. of L)
associated to the K smallest eigenvalues;

• let V ∈ Rn×K be the matrix whose column k is vk.

Clustering Step:

• let
(
Ẑ , X̂

)
be an (1+ ε) approximate solution to the k-means

problem (4.11);
• for every node i = 1 · · · n, let ẑi = k if Ẑik = 1.

Return: ẑ.

4.1.3 Semi-definite Programming

Similarly to the preceding section, we can also consider the problem of minimising

Cut(A, V1, . . . , VK) =

K∑
k=1

Cut(A, Vk) (4.12)

over the partitions (V1, . . . , VK) of V such that all the clusters Vk have equal size
|V |/K . Similarly to what was done in the preceding section, we can show that
minimising (4.12) is equivalent to maximise

Tr
(

X T AX
)

(4.13)

Cut-based Methods 75

such that X = (xik) is a n× K matrix with

xik =

{
1 if vi ∈ Vk,
0 otherwise.

Maximising expression (4.13) leads to another Spectral Clustering method based
on the adjacency matrix, where one look for the K eigenvectors associated to the K
largest eigenvalues of A. We can also propose a different relaxation method. Indeed,
from the relationship

Tr
(

X T AX
)
= Tr

(
AXX T

)
, (4.14)

it turns out that minimising (4.12) is equivalent to solving the following optimisa-
tion problem

arg max
Y∈{0,1}n×n

Y≥0

rank(Y)=K

Yii=1

Y 1n=
n
K 1n

< A, Y > (4.15)

where < A, Y >= Tr
(
A Y T

)
denotes the usual matrix scalar product. The first

four constraints in (4.15) force Y to be of the form XX T while the last constraint
forces the clusters to be of the same size.

A possible relaxation of optimisation problem (4.15) is the following semi-
definite programming

arg max
Y∈Rn×n

Y≥0

Yii≤1

Y 1n=
n
K 1n

< A, Y > . (4.16)

4.1.4 Discussion

Complexity of spectral clustering

Spectral methods require the computation of the eigenvectors, which has a worst-
case complexity of O

(
n3
)
. However, in practice when dealing with a sparse

matrix whose eigenvalues are well separated, the complexity can be close to
O(Kn), where K is the number of eigenvectors needed (see e.g., Demmel et al.,
2008).

76 Community Detection in Networks

Table 4.2. Performance of spectral clustering on real data sets.

Data Set n |E | K Accuracy

karate club 34 78 2 94%

dolphins 62 159 2 98%

political blogs 1,222 16,717 2 52%

DBLP-top2 13,326 34,281 2 55%

LiveJournal-top2 2766 24,138 2 99%

cora 2,485 5,069 7 37%

citeseer 2,110 3,668 6 59%

MNIST 70,000 784,186 10 63%

Performance of spectral clustering on real data sets

We first show in Table 4.2 the performance of spectral clustering, as it is imple-
mented in the scikit-learn Python library1. This implementation uses the normal-
ized Laplacian (and in practice, it has been observed that the normalized Laplacian
outperforms the standard Laplacian).

We also show in Figure 4.2 the performance of normalized spectral clustering
on the MNIST data set when we select two digits. We observe that most digit pairs
are well predicted, but digit pairs (4, 9), (5, 8) and (7, 9) are the hardest to distin-
guish, showing an accuracy of 0.53, 0.70 and 0.72, respectively. This highlights the
intuitive fact that in those pairs the digits look similar.

Spectral methods and dangling trees

Let us analyse the failure of spectral clustering on the political blogs data set.
Figure 4.3 shows the values of eigenvector components ofL associated to the second
and third smallest eigenvalues. We see that the entries of the second eigenvector are
localised over a few nodes. Moreover, those nodes are associated to a dangling tree,
and do not correspond to a meaningful community structure (see Figure 4.3c). On
the contrary, the entries of the third eigenvector correspond to the correct com-
munity structure. In fact, using this eigenvector for clustering would lead to an
accuracy of 95%.

Figure 4.3 shows that for this dataset, the good eigenvector for clustering is the
third one, while the second eigenvector is concentrated around low degree nodes,

1. sklearn.cluster.SpectralClustering

Cut-based Methods 77

Figure 4.2. Accuracy of normalized Spectral Clustering on the MNIST data set restricted

to two digits.

(a) k = 2. (b) k = 3.

(c) k = 2. (d) k = 3.

Figure 4.3. Analysis of the failure of spectral clustering on the political blogs data set.

Top: values of the eigenvector components of L associated to the k-th smallest eigen-

value, for k = 2 and k = 3. Bottom: graph where the node colors correspond to the pre-

diction made using the sign of the entries of the k-th eigenvector.

78 Community Detection in Networks

Table 4.3. Accuracy of regularized spectral clustering on real data sets, for different val-

ues of τ . Note that τ = 0 corresponds to non-regularized spectral clustering.

Regularized Spectral Clustering Accuracy

Data Set τ = 0 τ = 1 τ = d̄

political blogs 52% 95% 79% (d̄ = 27.4)

DBLP top2 55% 55% 55% (d̄ = 5.1)

cora 37% 51% 52% (d̄ = 4.1)

citeseer 59% 42% 32% (d̄ = 3.5)

forming a dangling tree.2 Since this behavior results in partition of the graph into
one large community with almost all the nodes and a small one with only a few
nodes, it is easy to spot in practice. To solve this issue, one simple solution would
be to look at higher order eigenvector. But, how to determine the correct eigenvec-
tor? Indeed, this might not always be an easy task. Firstly, it could happen that the
correct eigenvector is in a lower position, say 5th or 7th, and localising it among
noisy eigenvectors might be non trivial. Moreover, it is difficult to extend this rea-
soning for more than 2 clusters.

The regularization technique aims at solving this issue. It consists in performing
spectral clustering on Lτ := I−D−1/2

τ AτD−1/2
τ , where Aτ := A+ τ

n 1T
n 1n and Dτ

is the associated transformed degree matrix. The matrix Aτ is a perturbed version
of the initial adjacency matrix A, where we added an edge of weight τn between all
nodes’ pairs. This tends to bring back the dangling trees to the rest of the graph,
hence restoring order in the eigenvectors (Zhang and Rohe, 2018). Moreover, Le
et al., 2017 showed that the regularized Laplacian Lτ of Bernoulli random graphs
is better concentrated around its expectation than the normalized Laplacian L (we
develop further this point in Section 4.4.4, see in particular Theorem 4.9). The
perturbation parameter τ is typically taken as τ = 1 or τ = d̄ where d̄ is the
average degree of the graph. We compare in Table 4.3 the performance of standard
spectral clustering with the regularized version.

Spectral methods and geometric data In many situations, nodes can
have geometric attributes (for example a position in a metric space). As shown
in Avrachenkov et al., 2021a, this geometric structure handicaps cut-based cluster-
ing method. Indeed, in this case, the Fiedler vector might be associated to a geo-
metric configuration, hence bearing no information about the latent community
labelling. To avoid this pitfall, Avrachenkov et al., 2021a proposed to look at

2. Note that if one were to use the standard Laplacian, we would also observe an analogous phenomenon, with
noisy eigenvectors concentrated around high degree nodes.

Cut-based Methods 79

(a) True labels. (b) k = 2. (c) k = 4. (d) k = 10.

Figure 4.4. Analysis of the failure of spectral clustering on a Geometric Block Model, with

100 nodes and inter- and intra-distance cutoffs rin = 0.07, rout = 0.02.

Figure 4.5. Accuracy obtained on weighted graph build using a subset of the MNIST data

set (n = 1000 images representing digits 4 and 9) using the different eigenvectors of the

normalized laplacian matrix L. The eigenvector of index k corresponds to the eigenvector

associated with the k-th smallest eigenvalue of L.

higher order eigenvectors in order to recover the correct community memberships.
Figure 4.4 highlights this situation. While the second and fourth eigenvectors give
configurations based on the node location, recovering the node labels is better done
with the 10-th eigenvector. The exact rang of the ideal eigenvector is then depen-
dent on the model parameters, and we refer to Avrachenkov et al., 2021a for a
detailed analysis.

Let us also show that a higher order eigenvector can lead to a better clustering
in real data sets with geometric components. We select 1000 images from MNIST,
representing digits 4 and 9, and construct a k-nearest neighbors (k = 8) similarity
graph with Gausian weights. The digits 4 and 9 form the hardest digit pair to
distinguish. We plot in Figure 4.5 the accuracy obtained by spectral clustering as
a function of the eigenvector order. We emphasis the fact that, unlinke the politicl
blog data set, this is not an artifact due to dangling trees. We plot in Figure 4.6
the predicted clusters using the eigenvectors associated to the second and smallest
eigenvalues of the graph’s normalized Laplacian, and compare them with the true
clusters. We notice that the predicted clusters are of balanced sizes. We also note
that the NCut of the true labels is 3.8, while the NCut of the predicted labels

80 Community Detection in Networks

(a) True labels (b) Labels using v2 . (c) Labels using v3 .

Figure 4.6. Different clusterings on the same graph as in Figure 4.5. The colors on

Figure 4.6(a) shows the true labels, while the colors on Figures 4.6(b) and 4.6(c) cor-

responds to the predicted labels using respectively the eigenvector associated to the

second and third smallest eigenvalues of the normalized Laplacian.

associated with the prediction using the second (resp. third) eigenvector is 2.7 (resp.
3.7). Therefore for this graph, the correct labels do not correspond to the smallest
normalized cut.

4.2 Modularity-based Methods

In this section, we will first define a quality function, called modularity (first intro-
duced by Newman and Girvan, 2004), that aims to compare the density of links of
our cluster assignment with the one we would obtain if the graph were build from a
random null-model. By optimising the modularity over the space of all partitions,
we identify groups of nodes that are more densely connected to each other than
one would expect by random chance. As maximisation of modularity is NP-hard,
we describe two common methods to do it approximately.

4.2.1 Definition

Definition 4.2. Given a vector z ∈ [n]n such that zi denotes the community of
node i, the modularity of z is defined by

M(z) =
1

2|E |

∑
i,j

(
Aij − Pij

)
1
(
zi = zj

)
, (4.17)

where |E | is the number of edges and Pij =
didj

2|E |
.

Remark 4.1. A few remarks are in order:

• We let the community labelling z take values in [n], so that potentially we
have n communities (hence every node can be alone in its community). Also,
some communities can be empty.

Modularity-based Methods 81

(a) Optimal Partition: M = 0.41. (b) Sub-optimal partition: M = 0.17.

(c) Single partition: M = 0. (d) Negative modularity: M = − 0.11.

Figure 4.7. Modularity M defined in Equation (4.17) for several partitions of a network

with two obvious communities. The figure is inspired from Barabási, 2016.

• Figure 4.7 shows the modularity of several partitions on a toy graph. In par-
ticular, we observe that in this toy graph, the “obvious” community structure
corresponds to the largest modularity (Figure 4.7(a)), and variations from this
partitions lead to smaller modularity (Figure 4.7(b)). Moreover:

– if z = 1n (i.e., the partition z assign all the nodes are in a single group),
then M(z) = 0 (Figure 4.7(c));

– if the partition z assign all the nodes to be alone in their own community
(i.e., z = (1, 2, · · · , n)), then M(z) ≤ 0 (Figure 4.7(d)).

These two simple facts hold for any graph and are easy to establish.
• The factor 1/(2|E |) is a normalisation factor. In particular, showing that
−1 ≤M(z) ≤ 1 for any graph and any node labelling vector z is straight-
forward3.

• Pij is the expected number of edges between i and j if the graph was drawn
from a configuration model. Indeed, node i has di outgoing edges, and the
probability that one of this edge goes to node j is dj/(2|E |), where |E | is the

3. In fact, with some additional work, one can show that − 1
2 ≤M(z) ≤ 1 (Brandes et al., 2007).

82 Community Detection in Networks

total number of edges in the network. In Section 4.4.1, we will further justify
this choice by linking the modularity to the MAP estimator of a SBM.

• In practice, good values for modularity typically lie between 0.3 and 0.7. We
refer to Table 4.4 for the modularity value of several networks with ground-
truth community.

• Unfortunately, optimising the modularity is NP-complete (Brandes et al.,
2007).

Efficient computation of modularity

The following lemmas provide formulas to compute the modularity and to update
the modularity, that will be useful for the algorithms presented in the next section.
For a community labelling z ∈ [n]n, we define the fraction of edges going from
community k to community ` as

ek`(z) =
1

2|E |

∑
i,j

Aij1(zi = k)1(zj = `),

and the mass mk(C) of a community k as the sum of the degrees of the nodes in
community k normalized by the total sum of node degrees

mk(z) =
1

2|E |

n∑
i=1

di1 (zi = k) .

Lemma 4.3. The modularity of a community labelling is equal to

M(z) =
n∑

k=1

(
ekk(z)− (mk(z))

2) .

Proof. The proof is immediate, by writing

M(C) =
1

2|E |

n∑
k=1

∑
i,j

(
Aij − Pij

)
1(zi = zj = k)

and using the definitions of ekk(z) and mk(z).

Lemma 4.4. Let zold
∈ [n]n be a community labelling, and define znew as the labelling

obtained by merging two communities k1 and k2:

znew
i =

{
k1 if zold

i = k2

zold
i otherwise.

Modularity-based Methods 83

The resulting change of modularity is equal to

M
(
znew)

−M
(

zold
)
= 2

[
ek1k2

(
zold

)
− mk1

(
zold

)
mk2

(
zold

)]
.

Proof. For any k 6∈ {k1, k2}, ekk
(
zold

)
= ekk (znew) and mk (znew) = mk

(
zold

)
.

Moreover, since {i : znew
i = k2} = ∅, we have ek2k(znew) = 0 and mk2(z

new) = 0.
Therefore, using Lemma 4.3, the difference M (znew)−M

(
zold

)
is equal to

ek1k1

(
znew)

−
(
mk1

(
znew))2

−

 ∑
k∈{k1,k2}

ekk

(
zold

)
−

(
mk

(
zold

))2

 .

Since {i : znew
i = k1} = {i : zold

i = k1} ∪ {i : zold
i = k2}, we have

ek1k1

(
znew)

= ek1k1

(
zold

)
+ 2ek1k2

(
zold

)
+ ek2k2

(
zold

)
and

mk1

(
znew)

= mk1

(
zold

)
+ mk2

(
zold

)
,

which thus leads to the stated result.

Lemma 4.5. Let znew and zold be two community labellings that differ only for one
node i. Let zold

i = a and znew
i = b. Then the difference of modularity M (znew) −

M
(
zold

)
is equal to

[
ebb
(
znew)

− mb
(
znew)2]

−

[
eaa

(
zold

)
− ma

(
zold

)2
]

.

Proof. Since the only modified community are a and b, for any k 6∈ {a, b}, we
have ekk(znew) = ekk(zold) and mk(znew) = mk(zold). The result then holds by
Lemma 4.3.

4.2.2 Greedy Algorithm

The first modularity maximisation algorithm, proposed by Newman, 2004, and
reproduced here (Algorithm 6) iteratively joins pairs of communities if the move
increases the partition’s modularity. Some extension have been proposed (see for
example Clauset et al., 2004), but those have been outperformed by Louvain algo-
rithm (Subsection 4.2.3).

84 Community Detection in Networks

Algorithm 6: Greedy algorithm for modularity maximisation.

Input: adjacency matrix A.
Output: node labelling ẑ = (ẑ1, . . . , ẑn).
Initialize: assign each node to a community of its own, starting with n

communities of single nodes (in other words, set zi = i).
Update:

1 for each community pair connected by at least one edge do
2 (i) Compute the modularity difference 1M obtained if we were to merge

the two communities.
3 (ii) Identify the community pair for which 1M is the largest and merge

these two communities. (Modularity is always calculated for the full
network, and 1M can be negative.)

4 Repeat the Update step, recording M at each step.
5 Stop when all nodes are merged into a single community.

Return: the partition ẑ for which M is maximal.

Proposition 4.3. The time complexity of Algorithm 6 is O (n (|E | + n)).

Proof. By Lemma 4.4, the computation1M is done in constant time. At the initial
update step, we have |E | of such computations to do (and then at each update step,
we have less than |E |, since we merge the communities). Then, after identifying
the max 1M (which is done during the computations of all the 1M), we need
to recompute the adjacency matrix. This can take up to O(n) operations. Finally,
we need to do the update step n − 1 times. Hence, the overall time-complexity is
of the order n− 1 times |E | + n.

4.2.3 Louvain Algorithm

Algorithm 7 presents the Louvain algorithm invented by Blondel et al., 2008. This
method is called Louvain because the authors of the original paper were at that time
based in Louvain University in Belgium.

Remark 4.2. Algorithm 7 requires to compute the change of modularity when one
node is moved from one community to another. This can be done in constant time,
as Lemma 4.5 shows.

Remark 4.3. The most time consuming pass of Algorithm 7 is the first pass, where
we have |E | changes of modularity to compute. The ensuing passes are faster, as
they deal with much smaller graphs. Thus, a simple complexity estimate is O(|E |),
which is much better than the complexity of the greedy algorithm.

Modularity-based Methods 85

Algorithm 7: Louvain algorithm for fast modularity maximisation (Blondel
et al., 2008).

Input: adjacency matrix A.
Output: node labelling ẑ = (ẑ1, . . . , ẑn).
Step I:

• assign each node to a community of its own, starting with n communities of
single nodes (in other words, set zi = i);

• for each node i, evaluate the gain in modularity if we place node i in the
community of one of its neighbors j;

• move node i in the community for which the modularity gain is the largest, but
only if this gain is positive. If no positive gain is found, i stays in
its original community;

• apply this process to all nodes until no further improvement can be achieved.
In particular, a node can be moved several times.

Step II: construct a network whose nodes are the communities identified in
Step I, and where:

• the weight between two communities is the sum of the weights of the links
between the nodes in the corresponding communities;

• the link between nodes of the same community lead to weighted self-loops.

1 Step II being completed, repeat Step I and then Step II (we call it a pass).
Each pass decreases the number of communities. The passes are repeated until
there are no more changes and a local maximum of the modularity is attained.
Return: ẑ.

4.2.4 Discussion

Unlike spectral methods, modularity based methods do not require the a priori
knowledge of the number of blocks. Moreover, the speed difference observed in
practice makes the greedy method (Algorithm 6) out of the competition. Further-
more, it has also been empirically observed that Louvain returns partitions with
high modularity. Table 4.4 gives the performance of Louvain method on real data
sets. In particular, we see that Louvain has the tendency to predict a high number
of communities, but with a modularity higher than the ground truth partition.

We plot in Figures 4.8 and 4.9 the predicted communities by Louvain on the
karate club and the political blogs datasets, respectively. By comparing to the ground
truth, we observe that Louvain split the ground truth communities into smaller
communities. It results in configurations with larger modularity that the ground
truth ones (see Table 4.4), and the ground truth could be recovered almost perfectly
by merging the small community predicted by Louvain into larger ones.

86 Community Detection in Networks

Table 4.4. Performance of Louvain algorithm on real data sets. K and M refer to the

number of clusters and the modularity of the ground truth partition, while K̂ and M̂ refer

to the predicted number of cluster and the predicted modularity by Louvain algorithm.

Data Set Structure Ground Truth Louvain

Name n |E | K M K̂ M̂

karate club 34 78 2 0.36 4 0.42

dolphins 62 159 2 0.37 5 0.52

political blogs 1222 16717 2 0.41 11 0.43

DBLP top2 13326 34281 2 0.44 76 0.86

LiveJournal top2 2766 24138 2 0.38 21 0.59

cora 2485 5069 7 0.63 24 0.80

citeseer 2110 3668 6 0.52 37 0.85

wikivitals 10012 629527 11 0.31 8 0.44

(a) True labels. (b) Labels predicted by Louvain.

Figure 4.8. Comparison of the ground-truth communities and the communities predicted

by Louvain algorithm on the karate club dataset.

(a) True labels. (b) Labels predicted by Louvain.

Figure 4.9. Comparison of the ground-truth communities and the communities

predicted by Louvain algorithm on the political blogs dataset.

Bayesian Community Detection 87

(a) Modularity. (b) Number of blocks.

Figure 4.10. Boxplot of the modularity and number of clusters obtained by Louvain algo-

rithm on different random graphs without community structure. We computed 100 ran-

dom graphs with n = 1500 nodes. ER refers to Erdős-Rényi model with p = 4
n , CM to a

configuration model with a Zipf law of parameter 2 for the degree distribution, and PA is

the simple preferential attachment model as described in Section 2.2.2.

4.3 Bayesian Community Detection

4.3.1 An Over-fitting Issue?

Interpreting the result of any modularity maximisation algorithm should be done
carefully. Indeed, partitions with high modularity can be found in random graph
models without any community structure. Figure 4.10 shows the output (both
modularity of the predicted partition and predicted number of clusters) of Lou-
vain algorithm on Erdős-Rényi, configuration model and preferential attachment
random graphs. The modularity found is high, especially in Erdős-Rényi and pref-
erential attachment random graphs, albeit those graphs have by construction no
community structure! Furthermore, partitions with high modularity are also found
in configuration model, which is supposed to be the modularity’s null-model. We
emphasis that this is an intrinsic problem of modularity maximisation, and not a
side-effect of the Louvain algorithm.

Cut-based methods are also prone to overfit. Figure 4.11 shows that using nor-
malized spectral clustering on Erdős-Rényi random graphs leads to partitions whose
cut represents between 15% and 30% of the total number of edges (depending on
the number of clusters chosen). In other words, spectral clustering finds commu-
nities in the middle of pure randomness!

4.3.2 Principled Approach

To avoid the over-fitting issues and to find statistically significant communities in
networks, we now explore a Bayesian approach. Bayesian community detection aims
at determining which community labelling z ∈ [n]n is responsible of the network

88 Community Detection in Networks

Figure 4.11. Boxplot of the proportion of out-going edges obtained by normalized spec-

tral clustering for various K on Erdős-Rényi random graphs with p = 0.01.

A by maximising the posterior distribution P (z |A). Bayes’ law gives

P (z |A) =
P (A | z)P (z)

P (A)
.

The quantity P (A) in the denominator is the evidence, that is the probability of the
observed data, and does not depend on z.

The quantity P (A | z) is the marginal likelihood. We will make the assumption
that the network was generated according to the Poisson version of the homoge-
neous DC-SBM (see Section 2.3.2). Therefore, P (A | z) is equal to∫

P (A | z,ω, θ)P (ω | z)P (θ | z) dω dθ . (4.18)

In particular, P (A | z,ω, θ) is equal to4 (see Proposition 2.8)

∏
1≤k≤K

ω
mkk
kk e−

n2
k
2 ωkk

∏
1≤k<`≤K

ω
mk`
k` e−nkn`ωk`

∏
i

θdi
i ,

where mk` =
∑

i<j Aij1(zi = k)1(zj = `). We select a uniform prior for θ that
imposes the normalisation condition

∑
i θi1(zi = k) = nk for all k. Hence

P (θ | z) =
∏

k

(nk − 1)!δ

(∑
i

θi1(zi = k)− nk

)
.

Finally, we recall that for a continuous random variable X ∈ [0,∞) with con-
strained average x̄, the maximum entropy distribution is the exponential distribu-
tion whose density is f (x) = e−x/x̄/x̄. Thus, we chose an exponential prior for ωk`,

4. up to a term
∏

i<j Aij ! that does not depend on z.

Bayesian Community Detection 89

such that

P (ωk` | z) =
e−ωk`/ω̄

ω̄
,

where ω̄ = 2|E |/n2 corresponds to the average edge probability in the network.
Performing the integral over ω in Equation (4.18) leads to∫ ∏

k

mkk!

ω̄

(
1
ω̄ +

n2
k

2

)mrr+1

∏
k<`

mk`!

ω̄
(1
ω̄ + nkn`

)mk`+1

∏
i

θdi
i P (θ | z) dθ ,

where we used
∫
∞

0 e−axxbdx = b!
ab+1 for a, b > 0. To carry out the last integral over

θ , we notice that for all k,

∏
i∈Ck

∫
θdi

i δ

∑
i∈Ck

θi − nk

 dθi =

∏
i∈Ck

di !(∑
i∈Ck

di + 1
)

!

where Ck = {i : zi = k}. Therefore P (A | z) equals

∏
k

mkk!(
1+ ω̄

n2
k

2

)mrr+1

∏
k<`

mk`!

(1+ ω̄nkn`)mk`+1

∏
k

nvk+1
k

(nk − 1)!

(nk + vk − 1)!

ω̄|E |
∏

i di !∏
i<j Aij !

where vk =
∑

i di1(zi = k) is the sum of the degrees of nodes in block k.
Let us now study the prior distribution P (z). In particular, the choice of prior

should not make any a priori assumption on the number of (non-empty) groups
and on the number of nodes in each groups (allowing groups of different sizes). Let

P (z) = P (z | {nk})P ({nk} |K)P (K)

where K denotes the number of non-empty groups in σ , and nk denotes the num-
ber of nodes in community k. We firstly have P (K) = 1

n (the prior is agnostic
about the number of blocks). Then, recalling that

(n−1
K−1

)
counts the number of

ways to divide n nonzero counts into K nonempty bins, the probability that the
K blocks have sizes n1, . . . , nK is P ({nk} |K) =

1
(n−1

K−1)
. Finally, given the ran-

domly sampled block-sizes {nk}, the partition is sampled with a uniform probability

90 Community Detection in Networks

P (σ | {nk}) =
∏

r nr !
n!

1
n . Therefore,

P (z) =
∏

k nk!

n!
·

1(n−1
K−1

) · 1

n
.

Using the expressions of the marginal likelihood and the prior leads to the max-
imisation of

1(n−1
K−1

) ∏
k

mkk!(
1+ ω̄

n2
k

2

)mkk+1

nvk
k (nk!)2

(nk + vk − 1)!

∏
k<`

mk`!

(1+ ω̄nkn`)mk`+1

over all possible community labelling z ∈ [n]n.

4.3.3 Markov Chain Monte Carlo Algorithm

While the above likelihood-based maximisation problem is hard, we can employ
Markov Chain Monte Carlo (MCMC) importance sampling approach for find-
ing a good approximate solution (Robert and Casella, 2013). We start from some
initial labelling z(0). At each step, we propose a modification z′ of the labelling

z(t). This modification is accepted with probability min
{

1, P(z
′
|A)

P(z |A)
P(z | z′)
P(z′ | z)

}
. If

the move is accepted, then z(t+1)
= z′, otherwise z(t+1)

= z(t). This acceptance
probability is known as the Metropolis-Hastings criterion, and enforces the detailed

balance (Metropolis et al., 1953; Hastings, 1970a). Computing P(z′ |A)
P(z |A) has O(di)

time-complexity using the previous computations (in particular, we do not need to
compute the evidence P(A) as it cancels out).

The simplest move proposal consists to select a node uniformly at random and
choose its new community membership z′i between the K+1 choice (the K existing
groups plus the possibility to assign i to an empty group). This direct approach is
inefficient, as the mixing time of the Markov Chain might be enormous. A better
approach (Peixoto, 2014a, 2019) consists in choosing the new group membership z′i
according to

P
(
z′i = ` | z

)
=

∑
k

P(k | i)
ek` + ε

ek + ε(K + 1)

where P(k | i) =
∑

j
Aij1(zj=k)

di
is the fraction of neighbors of i belonging to group

k, and ε > 0 is a parameter enforcing ergodicity. We can interpret this probability
as firstly choosing a node i uniformly at random, and sampling a neighbor j of i,

Bayesian Community Detection 91

(a) Number of communities. (b) Community memberships. (c) Community memberships.

Figure 4.12. Marginal posterior probability of the number of groups (Figure 4.12(a)) for

the karate-club network, under the assumption that the network is a realization of a

degree-corrected SBM. Figures 4.12(b) and 4.12(c) show example of partitions obtained.

whose community label is z(t)j = k. Then,

(i) with probability ε
ek+ε(K+1) we choose a community label ` at random

among the K + 1 possibilities (it can be an empty group);
(ii) otherwise, we sample a group label ` with probability ek`

ek+ε(K+1) .

This procedure can be performed in O(di) time-complexity, provided that we
keep track of the edges incidents from each group, which incurs O(E) memory-
complexity.

4.3.4 Numerical Results

The MCMC algorithm described in this section is implemented in the graph-tool
library (Peixoto, 2014b), available at http://graph-tool.skewed.de.

We first analyze the performance of Bayesian clustering on synthetic networks.
We generate DC-SBM graphs.

The MCMC procedure for the Bayesian framework gives access to the poste-
rior distribution, instead of just finding its maximum. We can in particular obtain
the marginal probabilities of group memberships of the network as well as marginal
probability on the number of groups. In particular, we plot in Figure 4.12 the results
obtained on the karate-club network. In particular, we observe on Figure 4.12(a) a
large probability for the network to have one or two communities and the configu-
rations with larger numbers of communities are much less likely. Recalling that the
ground-truth corresponds to the situation after the feud between the main instruc-
tor and the club’s president, we can interpret the large posterior on the one commu-
nity case as the network before the feud, in which no communities were present at
that time. When Bayesian clustering predicts two communities, we observe differ-
ent configurations. Some predictions do align with the two communities observed
after the feud (see Figure 4.12(b)), while other configurations tend to group the
large degree nodes, ‘influencers’, together, and the low degree nodes, ‘followers’,
forming the second community (see Figure 4.12(c)).

http://graph-tool.skewed.de

92 Community Detection in Networks

Figure 4.13. Boxplot of the number of clusters obtained by the Bayesian framework on

different random graphs without community structure. The setting is the same as in

Figure 4.10. We computed 100 random graphs with n = 1500 nodes. ER refers to Erdős-

Rényi model with p = 4
n , CM to a configuration model with a Zipf law of parameter 2 for

degree distribution, and PA is the simple preferential attachment model as described in

Section 2.2.2.

To finish this section, we show in Figure 4.13 that Bayesian clustering applied
to random graph models with no community structure predicts in most situation
only one community: the over-fitting issue is now absent.

4.4 Theoretical Analysis

4.4.1 Modularity and Maximum A Posteriori Estimator

In this section, we consider the adjacency matrix A of a random graph G sampled
from a homogeneous degree-corrected block model, where the edges are Poisson
distributed (see Section 2.3.2). More precisely, Aii = 0 and for i 6= j

Aij = Aji ∼

{
P(θiθjωin), if z0

i = z0
j ,

P(θiθjωout), otherwise,
(4.19)

where P(ω) denotes a Poisson random variable of parameter ω and di is the
degree of node i. Similarly to the DC-SBM, we assume that for all k ∈ [K],∑

i θi1
(
z0

i = k
)
= 1. Proposition 4.4 shows that for such a block model, the

Maximum A Posteriori (MAP) estimator defined by

ẑMAP
= arg max

z∈[K]n
P(z |A) (4.20)

corresponds to maximising a quantity resembling the modularity.

Proposition 4.4. Let A be the adjacency matrix of a block model graph with K blocks,
n nodes, with uniform prior probability for the node labels and where the edges are

Theoretical Analysis 93

sampled independently according to (4.19). Then, the MAP estimator defined in (4.20)
verifies

ẑMAP
= arg max

z∈[K]n

∑
i,j

(
Aij −

ωin − ωout

log ωin
ωout

θiθj

)
1
(
zi = zj

)
.

Proof. The Bayes formula gives

P (z |A) ∝ P (A | z)P (z) ,

where the proportionality hides the term P(A) independent of z. Moreover,

P (z) =
n∏

i=1

P (zi) =
1

K n ,

and hence P(z) is also independent of z. Therefore,

arg max
z∈[K]n

P(z |A) = arg max
z∈[K]n

P(A | z),

and P(A | z) =
∏

i<j
(θiθjωij)

Aij

Aij !
e−θiθjωij , where

ωij =

{
ωin, if zi = zj ,

ωout, otherwise.

Thus,

logP(A | z) =
∑
i<j

(
Aij log

(
θiθjωij

)
− θiθjωij

)
−

∑
i<j

log(Aij !).

=
1

2

∑
i 6=j

(
Aij log

(
θiθjωij

)
− θiθjωij

)
−

∑
i<j

log
(
Aij !
)

.

The last term
∑

i<j log(Aij !) is independent of the model parameters and do not
affect the position of the maximum. Moreover, we note that

ωij = (ωin − ωout)1
(
zi = zj

)
+ ωout.

(To show this, simply notice that the left hand side equals (ωin − ωout) × 0 +
ωout = ωout when zi 6= zj , and equals (ωin − ωout) × 1 + ωout = ωin when
zi 6= zj , hence it corresponds to the definition of ωij .) Similarly,

log(θiθjωij) =
(
log(θiθjωin)− log(θiθjωout)

)
1
(
zi = zj

)
+ log(θiθjωout)

= log
ωin

ωout
1
(
zi = zj

)
+ log(θiθjωout).

94 Community Detection in Networks

Therefore,

logP (A | z) =
1

2

∑
i 6=j

(
Aij log

ωin

ωout
− (ωin − ωout) θiθj

)
1
(
zi = zj

)
+ C ,

where C = 1
2

∑
i 6=j

(
Aij log(θiθjωout)− θiθjωout

)
−
∑

i<j log(Aij !) is a constant
term independent of z. Hence, we obtain

logP (A | z) =
1

2
log

ωin

ωout

∑
i 6=j

(
Aij −

ωin − ωout

log ωin
ωout

θiθj

)
1
(
zi = zj

)
+ C

and this ends the proof.

Recall that the modularity was defined by equation (4.17) as

M(z) =
1

2|E |

∑
i,j

(
Aij − Pij

)
1(zi = zj),

where Pij is the probability of an edge between i and j under a null-model, and the
chosen null-model was the configuration model. Proposition 4.4 gives something
similar. Indeed, we can write

ẑMAP
= arg max

z

∑
i,j

(
Aij − γPij

)
1(zi = zj),

where γ = ωin−ωout
log ωin

ωout

K
ωin+(K−1)ωout

and Pij = θiθj
ωin+(K−1)ωout

K corresponds to the

expected probability of observing an edge between i and j under the null-model
(see Definition (4.19)). Moreover, the expected degree of a node i is equal to d̄ i =∑n

j=1 θiθjλij = θi
ωin+(K−1)ωout

K , while the expected number of edges is equal to

m̄ = 1
2
ωin+(K−1)ωout

K . Hence, Pij =
d̄ i d̄ j
2m̄ , and we recover

ẑMAP
= arg max

z∈[K]n

∑
i,j

(
Aij − γ

d̄ id̄ j

2m̄

)
1
(
zi = zj

)
.

The quantity inside the arg max resembles to the modularity as defined in (4.17),
with an extra parameter γ . One can define the regularised modularity (Reichardt
and Bornholdt, 2006; Arenas et al., 2008) as follows:

Mγ (z) =
∑

i,j

(
Aij − γPij

)
, (4.21)

with Pij usually taken equal to
didj
2m .

Theoretical Analysis 95

Hence, the MAP estimator is equivalent to the maximisation of the generalized

modularity, with Pij =
d̄ i d̄ j
2m̄ and γ as defined earlier. Unfortunately, the relevance of

this equivalence is rather limited, since the parameters ωin,ωout (and hence γ) are
usually unknown, albeit various strategies have been proposed for their estimation
(see more on this in (Newman, 2016)).

4.4.2 Normalized Spectral Clustering as a Continuous
Relaxation of Modularity Maximisation

The goal of this subsection is to link a particular relaxation of modularity max-
imisation to normalized spectral clustering. For simplicity of derivations, we will
restrict the consideration to the case of two clusters. Recall that the maximisation
of the generalised modularity is given by

ẑ = arg max
z∈{−1,1}n

∑
i,j

(
Aij − γ

didj

2|E |

)
1(zi = zj).

Noticing that 1(zi = zj) =
1
2

(
zizj + 1

)
, we can rewrite it as

ẑ = arg max
z∈{−1,1}n

∑
i,j

Bijzizj ,

where B is the matrix whose entries are Bij = Aij − γ
didj
2|E | . As done for the cut-

based methods (Section 4.1), we can simplify the problem by relaxing the discrete-
ness of z ∈ {−1, 1}n to a real-valued vector x ∈ Rn (Newman, 2013). However,
a constraint should be added to prevent xi from becoming arbitrarily large, i.e., to

prevent the term
(

Aij − γ
didj
2|E |

)
xixj to become large in a trivial way. A straightfor-

ward constraint consists in fixing x onto the hyper-sphere by imposing
∑

i x2
i = n.

This in particular sets the limit −
√

n ≤ xi ≤
√

n, while imposing the `2-norm
of x to be equal to n. More generally, we can fix x to a hyper-ellipsoid by letting∑

i κix2
i =

∑
i κi for a vector κ = (κ1, . . . , κn) of non-negative entries. In partic-

ular, for κi = di this leads to the following problem

x̂ = arg max
x∈Rn

xT Dx = 2|E |

xT Bx,

where we used xT Bx =
∑

i,j Bijxixj .
The Lagrangian associated to the above problem is

xT Bx − λ
(

xT Dx − 2|E |
)

,

96 Community Detection in Networks

and equating the derivative with respect to x to zero gives

Bx = λDx. (4.22)

Thus x is a solution of a generalized eigenvector equation corresponding to an
eigenvalue λ. To know which value of λ we should consider, we note that for a
generalized eigenvector x, we have xT Bx = λxT Dx = λ2|E |, and hence the mod-
ularity xT Bx is highest for the largest eigenvalue λ of the generalized eigenprob-
lem (4.22).

Since B1n = (1 − γ)D1n, λ = 1 − γ is an admissible solution of (4.22).
Therefore, if the maximum eigenvalue is 1 − γ , then the best partitioning corre-
sponds to not dividing the network at all. We rule out this case, and thus assume

λ > 1−γ . Noticing that Bx = Ax−γD1n
dT x
2|E | with d = (d1, . . . , dn), we rewrite

problem (4.22) as

Ax = D
(
λx + γ 1n

dT x
2|E |

)
.

Multiplying on the left by 1T leads to dT x = (λ + γ)dT x = 0 (we used 1T A =
1T D = dT and dT 1 = 2|E |). Since λ > 1 − γ , this in turn implies dT x = 0,
and problem (4.22) simplifies to

Ax = λDx.

We notice that the constant vector x = 1n is a solution, and according to the Perron-
Frobenius theorem it is associated to the largest eigenvalue since all its elements are
positive. Nonetheless, we rule out this solution since it does not verify dT x = 0,
and we consider the second largest eigenvalue λ. Rescaling by y = D1/2x leads to
the standard eigenvalue problem

D−1/2AD−1/2y = λy,

or, equivalently,

Ly = (1− λ)y

to use the normalized Laplacian L = In − D−1/2AD−1/2. Hence, y is an eigen-
vector of the normalized Laplacian. The link with normalized spectral clustering is
completed by noticing that λ should be the second largest eigenvalue, and hence
1− λ should be the second smallest eigenvalue of L.

Theoretical Analysis 97

4.4.3 Information-theoretic Results for Consistent Recovery in
SBMs

This section presents information-theoretic results about recovery consistency in
SBMs.

Non-binary SBMs

Let us first generalise SBMs to network with non-binary interactions. We denote
by S the space of interactions, and by fin and fout the interaction densities (with
respect to a measure µ). These parameters specify a probability measure on a space
of observations

A =
{

A =
(
aij
)
∈ Sn×n such that aij = aji, aii = 0 for all i, j

}
with probability density function

P(A | z) =
∏

1≤i<j≤n

fzizj

(
aij
)

(4.23)

with respect to the n(n− 1)/2-fold product of the reference measure µ.
In other words, for an observation A distributed according to (4.23), the entries

aij , 1 ≤ i < j ≤ n, are mutually independent, and aij is distributed according to
fin when zi = zj , and according to fout otherwise. In particular, when S = {0, 1}
and fin, fout are Bernoulli distributions, we recover the binary homogeneous SBM
as defined in Section 2.3.1. When S = Z and fin, fout are Poisson distributions, we
recover the Poisson SBM (see equation (2.7)).

The node labelling z representing the block membership structure is an
unknown parameter to be estimated. We consider the node labelling as a random
variable distributed according to the uniform distribution π(z) = K−n on the
parameter space Z =

{
z ∈ [K]n

}
. In this case the joint distribution of the node

labelling and the observed data is characterised by a probability density

P(σ , A) = πzP (A | z) (4.24)

on Z × X with respect to cardZ ×µ, where cardZ is the counting measure on Z .

Regime of asymptotic recovery

We recall that the Hamming distance between two sequences y, z ∈ [K]n is defined
as the number of positions at which the corresponding symbols are different, i.e.,

dHam(y, z) =
n∑

i=1

1(yi 6= zi).

98 Community Detection in Networks

For an estimator ẑ of node labelling z ∈ [K]n, we define the absolute classification
error as follows:

d∗Ham

(
ẑ, z
)
= min

τ∈SK

n∑
i=1

1
(
τ ◦

(
ẑi
)
6= zi

)
. (4.25)

This corresponds to the number of misclassified nodes by the estimator ẑ up to a
global permutation5 τ ∈ SK .

When analysing the average performance of an estimator, we can view ẑ : A ∈
A 7→ ẑ(A) ∈ [K]n as a [K]n-valued random variable defined on the set of obser-
vations A. Then, Ezd∗Ham(ẑ, z) is equal to the expected clustering error given true
node labeling z, and

Ed∗Ham(ẑ) =
∑

z∈[K]n

π(z)Ezd∗Ham

(
ẑ, z
)

is the average clustering error with respect to the node labelling distribution π on
the parameter space.

We say that the estimator ẑ asymptotically achieves exact recovery, or equivalently
that ẑ is a strongly consistent estimator of z, if

Ed∗Ham

(
ẑ
)
→ 0 as n→∞. (4.26)

Condition (4.26) means that asymptotically every node is correctly classified. This
demand is often excessive. A more reasonable setting is when only a vanishing frac-
tion of nodes is misclassified (that is, at most o(n) nodes are misclassified). We say
that estimator ẑ asymptotically achieves almost exact recovery (or that ẑ is a consistent
estimator) if

n−1Ed∗Ham

(
ẑ
)
→ 0 as n→∞.

Remark 4.4. Exact and almost exact recovery are two the most studied regimes
of cluster recovery. Another regime is called detection and is much weaker (it cor-
responds to the regime when there exists an estimator performing better than a
random guess). This condition is weaker and therefore holds even if the graph is
very sparse (for example, when the average degree is constant). We will not discuss
this regime here, since the proof techniques are very different. We refer the reader
to Moore, 2017.

5. The presence of the global permutation in this definition is justified by the observation that permuting all
the node labels do not change the overall clustering.

Theoretical Analysis 99

Information-theoretic conditions for consistent recovery

Definition 4.3 (Rényi divergence). The Rényi divergence between two probability
distributions f and g is defined as

D1/2(f , g) = −2 log
∫ (

df
dµ

)1/2 (dg
dµ

)1/2

dµ,

where µ is an arbitrary measure which dominates f and g . We use the following
conventions: log 0 = −∞, 0/0 = 0, and x/0 = ∞ for x > 0.

Remark 4.5. The Rényi divergence is linked to the Hellinger distance, Hel(f , g),

defined by Hel2(f , g) = 1
2

∫ (√ df
dµ −

√
dg
dµ

)2

dµ, via the formula D1/2(f , g) =

−2 log
(
1−Hel2(f , g)

)
.

In what follows, we assume that a sigma-finite reference measure µ on S is

fixed once and for all, and we write df
dµ , dg

dµ simply as f , g , and we omit dµ from

the integral signs, so that D1/2(f , g) = −2 log
∫ √

fg . When S is countable, µ
is always chosen as the counting measure, in which case we write D1/2(f , g) =
−2 log

∑
x∈S

√
f (x)g(x).

Theorem 4.6. Consider a homogeneous SBM with n� 1 nodes, K � 1 blocks, and
interaction distributions fin = f (n)in and fout = f (n)out over S = S(n). Let I = In be the
Rényi divergence between f and g. The following holds:

(i) a consistent estimator exists if I � n−1 and does not exist if I . n−1;
(ii) a strongly consistent estimator exists if I ≥ (1 + �(1))K log n

n , and does not

exist if I ≤ (1−�(1))K log n
n .

Theorem 4.6 shows that the Rényi divergence governs the possibility or impos-
sibility of (strongly) consistent recovery in non-binary SBMs. In fact, when interac-
tion distributions fin and fout are too similar (in the sense that their Rényi divergence
is smaller than n−1), then there is not enough information provided by the network
to recover the communities consistently.

Theorem 4.6 is proved in Avrachenkov et al., 2022. The literature on consistency
thresholds in SBMs is large, and one can refer to Zhang et al., 2016 for binary SBMs
(S = {0, 1}) and to Jog and Loh, 2015; Xu et al., 2020 for weighted (S = R) or
edge-labelled (S = {0, 1, · · · , L}) SBMs.

100 Community Detection in Networks

Application to binary SBMs

Let us see how we can apply Theorem 4.6 to sparse binary SBMs, for which fin =
Ber(pin) and fout = Ber(pout) with pin, pout � 1. A Taylor expansion gives

D1/2(fin, fout) = −2 log
(√
(1− pin)(1− pout)+

√
pinpout

)
= −2 log

(
1−

pin + pout

2
+
√

pinpout + O(pinpout)

)
= −2 log

(
1−

(√
pin −

√
pout

)2
2

+ O(pinpout)

)
=
(√

pin −
√

pout
)2
+ O(pinpout). (4.27)

This can be applied to the following two particular cases.

Example 4.1. In a regime when pin = aρn and pout = bρn for scale-independent
constants a 6= b and with ρn � 1. Theorem 4.6 and equation (4.27) tell that a
consistent estimator exists if nρn � 1, and does not exist if nρn . 1. We note that
the key quantity nρn is of the same order as the expected degree d̄n =

a+b
2 nρn.

Thus, for the possibility of consistent recovery we require that the expected degree
diverges with the size of the network.

Example 4.2. In a regime where pin = a log N
N and pout = b log N

N for scale-
independent constants a, b, Theorem 4.6 and equation (4.27) tell that a strongly
consistent estimator exists if (

√
a−
√

b)2 > K and does not exist if (
√

a−
√

b)2 <
K . This is the well-known threshold for strong consistency in binary SBMs (Abbe
et al., 2015; Mossel et al., 2015).

Remark 4.6. Considering the setting of Example 4.2, we see that for K = 2 strong

consistency requires

(
√

a−
√

b
)2

2 =
a+b

2 −
√

ab > 1. Since a+b
2 > 1 is the condition

for connectivity in this SBM (see Theorem 2.2), this means that exact recovery in
SBM is a strictly stronger requirement than connectivity.6

Other Particular Cases of Non-binary SBMs

Example 4.3 (Poisson interactions). The Rényi divergence between Poisson dis-
tributions with means λ and µ is exactly equal to I = (

√
λ −
√
µ)2. In a regime

when λ = a log n
n and µ = b log n

n with constants a, b > 0, Theorem 4.6 tells that

6. If the graph was not connected, then a.s. the graph would contain isolated nodes (see Lemma 2.4). Hence,
exact recovery would not be possible, as one could not correctly classify the isolated nodes better than a
random guess. Therefore exact recovery requires connectivity, but Example 4.2 shows that connectivity alone
is not enough.

Theoretical Analysis 101

a strongly consistent estimator exists if (
√

a −
√

b)2 > K and does not exist if
(
√

a−
√

b)2 < K . This condition is similar to the condition in Example 4.2, and
is due to the fact that Poisson distributions with small mean are well approximated
by Bernoulli distributions.

Example 4.4 (Censored block model). Let us consider a latent binary SBM
with fin = Ber(p0) and fout = Ber(q0) for which each interaction and non-

interaction are revealed independently with probability r = r0
log n

n , where we
assume that p0, q0 and r0 are constants. The resulting observed network is a non-
binary SBM with interaction space S = {present, absent, censored} (where cen-
sored denotes the unobserved interactions) and with intra-block and inter-block
probability distributions f̃out and f̃in. We have f̃out(present) = rp0, f̃out(absent) =
r(1− p0) and f̃out(censored) = 1− r, and similarly for f̃in. From D1/2(f̃out, f̃in) =

r
((√

p0 −
√

q0
)2
+
(√

1− p0 −
√

1− q0
)2)
+ O

(
r2
)

it follows that a strongly

consistent estimator exists if r0 > rcrit
0 and does not exist if r0 < rcrit

0 , where
rcrit
0 =

K(√
p0−
√

q0
)2
+

(√
1−p0−

√
1−q0

)2 . For K = 2, this coincides with the critical

threshold obtained in Dhara et al., 2022.

4.4.4 Consistency of Spectral Methods in SBM

In this section, we will prove that spectral clustering is consistent in the SBM. For
simplicity, we will consider spectral clustering using the graph adjacency matrix,
but a similar proof would hold if one were to use the normalized Laplacian.

Heuristic: mean-field model

We first consider the mean-field model of the SBM, that is the model where all the
random quantities are replaced by their expectations. In particular, the mean-field
graph becomes the weighted graph formed by the expected adjacency matrix of a
SBM graph. Therefore, if (z, G) is drawn from SBM(n,π , Q), then the adjacency
matrix of the corresponding mean-field is

EA = ZQZT ,

where Q ∈ [0, 1]K×K is the rate matrix (recall that element Qk` denotes the proba-
bility of edge appearance between a node in community k and a node in community
`), and Z ∈ {0, 1}n×K is the membership matrix defined by

Zik =

{
1, if zi = k,

0, otherwise.

The following lemma specifies the eigenstructure of EA.

102 Community Detection in Networks

Lemma 4.7. Assume Q is full-rank, and let UDU T be an eigendecomposition of

EA. Then U = ZX , where X ∈ RK×K and ‖Xk∗ − X`∗‖ =
√

n−1
k + n−1

` for all
1 ≤ k < ` ≤ K , and where Xk∗ denotes the row k of X .

Proof. Let 1 = diag(
√

n1, . . . ,
√

nK). Then, we can write

EA = ZQZT
=
(
Z1−1) (1Q1)

(
Z1−1)T .

The matrix Z1−1 is orthonormal. Indeed,(
Z1−1)T Z1−1

= 1−1ZT Z1−1
= In,

where we used the fact that ZT Z = diag(n1, . . . , nK) = 1
2.

Let RDRT be the eigendecomposition of 1Q1. Thus,

EA =
(
Z1−1R

)
D
(
Z1−1R

)T
is the eigendecomposition of EA. We finish the proof by letting U = Z1−1R and
X = 1−1R. We then have

XX T
= diag

(
n−1

1 , . . . , n−1
K

)
.

Hence,

‖Xk∗ − X`∗‖ = ‖Xk∗‖ + ‖X`∗‖ − 2Xk∗X
T
`∗

= n−1
k + n−1

` + 0,

and the claim follows.

In particular, Lemma 4.7 ensures that the community information is encoded
in the eigenstructure of EA. Indeed, the K eigenvectors associated with non-zero
eigenvalues of EA are given by the columns of U , which can be written as ZX . The
k-means step (see equation (4.10)) then aims to recover Z (and X) from U .

Consistency of spectral clustering in SBM

We established that if one were to observe the mean-field graph, then recovery of
communities would be possible by looking at the K leading eigenvectors of the
mean-field adjacency matrix EA. The following theorem states that, under some
natural conditions, consistent recovery is possible by looking at the K leading eigen-
vectors of the random graph adjacency matrix A. We recall that the absolute clas-
sification error d∗Ham(ẑ, z) is defined in (4.25), and an estimator is consistent if
d∗Ham(ẑ,z)

n = o(1).

Theoretical Analysis 103

Theorem 4.8. Let (z, G) ∼ SBM(n,π , P), where P is of rank K with smallest
absolute nonzero eigenvalue larger than γn. Let d̄n be the expected degree and ẑ ∈ [K]n

be the output of spectral clustering applied to the adjacency matrix. Then, there exists a

constant c > 0 such that if (2+ ε)K d̄n
γ 2

n
< c, then with high probability

d∗Ham(ẑ, z)

n
≤ (2+ ε)2c

K d̄n

γ 2
n

.

Example 4.5. Consider a homogeneous SBM with Pk` = pin if k = ` and Pk` =

pout otherwise. Then, d̄n =
n
K

(
pin + (K − 1)pout

)
while γn =

n
K

(
pin − pout

)
.

Assume that pin = cinρn, pout = coutρn where cin, cout does not depend on n, and
suppose that the assumptions of Theorem 4.8 hold. Then, the error of spectral
clustering is bounded by

d∗Ham(ẑ, z)

n
≤ (2+ ε)2cK

(
cin + (K − 1)cout

cin − cout

)2 1

d̄n
.

This upper bound goes to zero when the average degree d̄n goes to infinity, ensuring
consistency of spectral methods in such a setting.

The intuition for the proof of Theorem 4.8 is as follows.

• Show that the K leading eigenvectors of the adjacency matrix A are not too
different from the K leading eigenvectors of the expected adjacency matrix
EA. This is done in two steps.

– First use a result from random matrix theory to show that A is concentrated
around EA. This is Theorem 4.9.

– Then use this concentration to show that the eigenvectors are also con-
centrated. This is usually done using Davis-Kahan theorem. We present a
variation of it in Lemma 4.10.

• Conclude by bounding the error made by the k-means step.

Theorem 4.9 (Theorem 1.2 of Le et al., 2017). Let A be the adjacency matrix of a
Bernoulli random graph G(n, (pij), and let dn = n maxij pij . For τ ∼ d, define Aτ =
A + τ1n1T

n the regularized adjacency matrix. Then, we have with high probability
when n goes to infinity

‖Aτ − EAτ‖2 = O
(√

dn

)
.

The proof of Theorem 4.9 is complex and out of reach for this book. We will
simply note that the regularization term τ1n1T

n is needed to ensure concentration
of the adjacency matrix when dn is small. Indeed, consider an Erdős-Rényi graph by

104 Community Detection in Networks

letting pij = p. If dn � log n, then the degree of some nodes are much larger than
the expected degree dn = np. This implies that some rows of the adjacency matrix
will have `2 norms much larger than dn, which in turn imply ‖A− EA‖ �

√
dn.

Lemma 4.10 (Principal subspace perturbation). Let M̄ ∈ Rn×n be a symmetric
matrix with smallest nonzero singular value γ , and let M be any symmetric matrix.
Denote by U and Ū ∈ Rn×K the matrices whose columns are composed of the K
leading eigenvectors of M and M̄. Then, there exists a K × K orthogonal matrix Q
such that

∥∥Ū Q − U
∥∥

F ≤
2
√

2K
γ

∥∥M − M̄
∥∥

2 .

Lemma 4.10 is a version of Davis-Kahan ’sin θ ’ theorem that bounds the distance
between two subspaces spanned by the leading eigenvectors of two matrices. We
refer to the Theorem 2 of Yu et al., 2015 for further explanations.

The last ingredient needed for the proof of Theorem 4.8 is a bound on the error
made by the k-means step. The next lemma gives such a bound.

Lemma 4.11 (Approximate k-means error bound, adapted from Lemma 5.3 of Lei
and Rinaldo, 2015). For ε > 0 and any matrices V̄ , V ∈ Rn×K such that V̄ = ZX
with Z ∈ Zn,K , and X ∈ RK×K , let

(
Ẑ , X̂

)
be a (1 + ε) approximation of the

k-means problem (4.10). We denote by z and ẑ the membership vectors associated to
the membership matrices Z and Ẑ . Let nmin be the size of the smallest community, and

δ = mink,` : k 6=` ‖Xk∗ − X`∗‖. If 4(2+ ε)‖V−V̄ ‖
2
F

δ2 ≤ nmin, then

d∗Ham(ẑ, z)

n
≤ 4(2+ ε)2

‖V − V̄ ‖
2
F

δ2n
.

Lemma 4.11 upper bounds the error made by the k-means step. The bound
involves the Frobenius distance between V̄ (the matrix with the eigenvectors of
EA, which we know from the mean-field study Lemma 4.7, can be written as ZX
and from which we can recover the community structure Z), and the matrix V (the
matrix with the eigenvectors of A).

Proof. Denote by V̂ = Ẑ X̂ . Intuitively, we want to show that if V is close to V̄ , then
V̂ is close to V̄ as well, where V̂ is the solution of the minimisation problem (4.10)
with the objective function V . Let Ck := {i : zi = k} be the set of nodes belonging
to community k, and Bk := {i ∈ Ck : ‖V̄i∗ − (Ẑ X̂)i∗‖2 ≥ δ/2}. The sets Bk

corresponds to nodes for which the k-means solution V̂ = Ẑ X̂ is far away from

Theoretical Analysis 105

the matrix V̄ . Let us first show that the sets Bk are of small sizes. We have

∥∥V̄ − Ẑ X̂
∥∥2

F =

n∑
i=1

 n∑
j=1

∣∣∣V̄ − (Ẑ X̂
)

ij

∣∣∣2

=

∑
i

∥∥V̄i∗ −
(
Ẑ X̂

)
i∗

∥∥2

=

K∑
k=1

∑
i∈Ck

∥∥V̄i∗ −
(
Ẑ X̂

)
i∗

∥∥2
,

and thus,

∥∥V̄ − Ẑ X̂
∥∥2

F ≥

K∑
k=1

∑
i∈Bk

∥∥V̄i∗ −
(
Ẑ X̂

)
i∗

∥∥2
≥
δ2

4

K∑
k=1

|Bk|.

Hence,

K∑
k=1

|Bk| ≤
4

δ2

∥∥V̄ − Ẑ X̂
∥∥2

F

≤
4

δ2

(∥∥V̄ − V
∥∥

F +
∥∥V − Ẑ X̂

∥∥
F

)2
≤

4

δ2

(
1+
√

1+ ε
)2 ∥∥V − V̄

∥∥2
F

≤
4

δ2 (2+ ε)
2
∥∥V − V̄

∥∥2
F , (4.28)

since
∥∥Ẑ X̂ − V

∥∥2
F ≤ (1+ ε)

∥∥Z ′X ′ − V
∥∥2 for all Z ′, X ′ ∈ Zn,K × RK×K .

Using the assumption of the lemma, we have
∑K

k=1 |Bk| < nmin. Hence, for
every k ∈ [K], the sets Ck\Bk are non-empty. We will now claim that:

(i) If i ∈ Ck\Bk and j ∈ C`\B` with k 6= `, then V̂i∗ 6= V̂j∗;
(ii) For i, j ∈ Ck\Bk, we have V̂i∗ = V̂j∗.

Therefore, every node i 6∈ ∪K
k=1Bk can be assigned to a class ẑi based on the value

of the row i of V̂ . Let σ ∗ ∈ SK be a permutation satisfying

σ ∗ ∈ arg min
σ∈SK

∑
i 6∈∪K

k=1Bk

1(σ (ẑi) 6= zi).

106 Community Detection in Networks

For such σ ∗, we have
∑n

i=1 1(σ (ẑi) 6= zi) ≤
∑K

k=1 |Bk|. Thus,

d∗Ham(ẑ, z) ≤
n∑

i=1

1(σ (ẑi) 6= zi) ≤

K∑
k=1

|Bk|,

and we conclude that the lemma’s claim is true using equation (4.28).
Let us now show claim (i). If we were to assume that V̂i∗ = V̂j∗, then this would

imply δ ≤ ‖V̄i∗ − V̄j∗‖2 ≤ ‖V̄i∗ − hVi∗‖2 + ‖V̂j∗ − V̄j∗‖2 < δ/2 + δ/2, which
is a contradiction.

Finally, let us show claim (ii). Since Ẑ ∈ Zn,K and X̂ ∈ RK×K , then V̂ has at
most K distinct rows. We also know from claim (i) that V̂ has at least K distinct
rows. Hence, V̂ has exactly K distinct rows, and this in turn implies that V̂i∗ = V̂j∗

for i, j ∈ Ck\Bk.

Proof of Theorem 4.8. Let V (resp. V̄) be a n-by-K matrix whose columns are com-
posed of the K leading eigenvectors of Aτ (resp. of EAτ). Combining Lemma 4.10
and Theorem 4.9, we have for some orthogonal matrix Q ∈ RK×K

∥∥V̄ Q − V
∥∥

F ≤
2
√

2K
γn
‖Aτ − EAτ‖2 ≤

2
√

2K
γn

C
√

d̄ , (4.29)

with high probability.
We will now directly apply Lemma 4.11 to V and V̄ Q. Lemma 4.7 shows that

V̄ Q = ZXQ = ZX ′ with X ′ = XQ , where ‖X ′k∗ − X`∗‖
2
2 =

√
1
nk
+

1
n`

. Therefore,

we can choose δ = 1/
√

nmax. Using equation (4.29), a sufficient condition for

4(2+ ε)‖V−V̄ ‖
2
F

δ2 ≤ nmin to hold is

4(2+ ε)8C2K
d̄
γ 2

n
≤ nminnmax.

Therefore, we can apply Lemma 4.11, which states that

d∗Ham(ẑ, z)

n
≤ 4(2+ ε)2

‖V − V̄ Q‖
2
F

δ2n
≤ 4(2+ ε)28C2K

d̄n

δ2nγ 2
n

,

and the statement of the theorem holds, since 1
δ2n ≤ 1.

Further Notes

Spectral clustering is well explained in the review by Von Luxburg, 2007. For more
details on Louvain algorithm, we refer the reader to Blondel et al., 2008; Good

Theoretical Analysis 107

et al., 2010. A nice application of Louvain algorithm (and more generally com-
munity detection methods) to content recommendations on Reddit is presented in
Jamonnak et al., 2015. Additional deficiencies of Louvain algorithm (such as badly
connected communities) were discovered by Traag et al., 2019, who also proposed a
refinement of Louvain algorithm (called Leiden algorithm). We also mention the res-
olution limit problem (Fortunato and Barthelemy, 2007), common to modularity
maximisation methods. We finally note that while modularity methods are popular,
thanks to the existence of fast algorithms and to the heuristic consideration link-
ing modularity maximisation with maximum likelihood approach, care is needed
since modularity maximisation is not strictly equivalent to likelihood maximisation
(Zhang and Peixoto, 2020) and modularity algorithms are prone to over-fitting.

Consistency of spectral methods in SBM were studied by Lei and Rinaldo, 2015,
and further developed in Abbe et al., 2020. For a recent overview of various appli-
cations of spectral methods, we refer to Chen et al., 2021. Spectral methods are
not the only ones to be consistent on SBM. For example, the consistency of SDP
methods has been demonstrated (Hajek et al., 2016a,b; Guédon and Vershynin,
2016; Amini et al., 2018; Fei and Chen, 2019). Moreover, community detection
in other block models such as the Geometric Block Model has been recently stud-
ied (Galhotra et al., 2018; Sankararaman and Baccelli, 2018; Avrachenkov et al.,
2021a).

Many other community detection methods exist, for example: belief propaga-
tion (Moore, 2017; Decelle et al., 2011), game-theoretic methods (Avrachenkov
et al., 2018a; Moscato et al., 2019), methods based on the map equation (Rosvall
and Bergstrom, 2008; Rosvall et al., 2009) and spectral methods based on other
matrices such as the non-backtracking matrix (Krzakala et al., 2013) or the Bethe-
Hessian (Saade et al., 2014). We also refer to the review by Fortunato, 2010 for
more insights about the community detection problem.

Finally, an important question not covered here is the estimation of the number
of communities. For this topic, we refer the reader to Le and Levina, 2015; Bickel
and Sarkar, 2016; Lei, 2016; Saldana et al., 2017; Hu et al., 2020.

DOI: 10.1561/9781638280514.ch5

Chapter 5

Graph-based Semi-supervised Learning

Semi-supervised learning (SSL) aims at achieving superior learning performance by
combining unlabelled and labelled data. Since typically the amount of unlabelled
data is large compared to the amount of labelled data, SSL methods are relevant
when the performance of unsupervised learning is low, or when the cost of getting
a large amount of labelled data for supervised learning is too high. Unfortunately,
many standard semi-supervised learning techniques have been shown to not effi-
ciently use the unlabelled data, leading to unsatisfactory or unstable performances
(Chapelle et al., 2006, Chapter 4; Ben-David et al., 2008; Cozman et al., 2002).
Moreover, the presence of noise in the labelled data may further degrade their per-
formance. In practice, the noise often comes from a tired or non-diligent expert
carrying out the labelling task.

In this chapter, we will review some standard methods for semi-supervised graph
clustering. In particular, we will study the performance of those methods in the case
when the amount of labelled data is low and we will propose robust solutions in
the presence of noisy labels.

108

http://dx.doi.org/10.1561/9781638280514.ch5

Graph-based Semi-supervised Learning 109

General idea We assume that the node set V = [n] of a graph G = (V , E) is
partitioned into K non-overlapping communities, represented by the latent com-
munity labelling vector z ∈ [K]n. It will be convenient to have a one-hot represen-
tation of z, by defining a n × K ground-truth membership matrix Z ∈ {0, 1}n×K ,
such that

Zik =

{
1, if zi = k,

0, otherwise.

As seen in Chapter 4, unsupervised community detection is the problem of
recovering Z from the observation of G (and sometimes with the knowledge of
K). We study here the noisy semi-supervised setting. More precisely, we assume
that, in addition to the observation of the graph, an oracle gives us extra informa-
tion about the cluster assignment of some nodes. We call those nodes the labelled
nodes, and we denote by ` the set of labelled nodes. Among those nodes, some are
correctly labelled by the oracle, while some are mislabelled by the oracle. We denote
by `0 the set of mislabelled nodes and `1 the set of correctly labelled nodes. In par-
ticular, ` = `0 t `1. The oracle can be represented by a matrix S of size n × K ,
whose rows Si. are given by

Si. =

Zi., if i ∈ `1,

Z̃i., if i ∈ `0,

01×K , if i 6∈ `,

(5.1)

where Z̃i. is chosen in {z ∈ {0, 1}K : ‖z‖1 = 1 and z 6= Zi.}, and 01×K denotes
the row of K zeros.

In other words, the oracle (5.1) reveals the correct cluster assignment of |`1|

nodes, and a false cluster assignment for |`0| nodes. It reveals nothing for n − |`|
nodes. The quantity |`0|/|`| is the rate of mistakes of the oracle (i.e., the probability
that the oracle reveals a false information given that it reveals something). The oracle
is informative if this quantity is less than 1/2, which is equivalent to the intuitive
condition |`1| > |`0|. In the following, we will always assume that the oracle is
informative.

Assumption 5.1. The oracle is informative, that is |`1| > |`0|.
Given the oracle S and the graph G, our strategy is to find a matrix X̂ ∈ Rn×K

from which we could predict the nodes’ labels. We will refer to the rows X.k as
classification functions, and a node i will be classified in cluster ẑi if

ẑi = arg max
k∈{1,...,K }

Xik. (5.2)

110 Graph-based Semi-supervised Learning

A standard framework is to define X̂ as the solution of an optimisation problem of
the type

X̂ = arg min
X∈X

C(X , S),

where C(X , S) is a cost function, and X is a subset of Rn×K .

Notations Throughout this chapter, ` denotes the set of nodes labelled by the
oracle, while u = [n]\` denotes the set of unlabelled nodes. The oracle is repre-
sented by a matrix S ∈ {0, 1}n×K , defined as in equation (5.1), and the goal is to
infer Z ∈ {0, 1}n×K after the observation of the graph G and the oracle S.

We can assume, up to a reordering of the nodes, that the first |`| nodes are
labelled by the oracle, while the remaining |u| ones are not. Accordingly, any matrix
M ∈ Rn×n can be displayed in the block form

M =
(

M`` M`u

Mu` Muu

)
.

Moreover, for any matrix X = (Xik) ∈ Rn×K , Xi· stands for the row i of X , while

X·k stands for the column k of X , and we write X =
(

X`·
Xu·

)
.

Finally, I` denotes the diagonal matrix whose element (i, i) equals 1 if i ∈ ` and
0 otherwise.

5.1 Laplacian-based SSL Methods

5.1.1 Label Propagation

Presentation of the method Spectral methods for unsupervised community
detection are based on the minimisation of quadratic functions, such as Tr

(
X T LX

)
or Tr

(
X TLX

)
(see Section 4.1). Label Propagation extends this to the semi-

supervised setting. In particular, the foundational papers (Zhu and Ghahramani;
Zhu et al., 2003) considered the following optimisation problem

X̂ LP
= arg min

X ∈ Rn×K

X`· = S`·

Tr
(

X T LX
)

. (5.3)

The constraint X`· = S`· forces the solution X̂ LP to be equal to the oracle prediction
on the labelled nodes. We first note that this hard constraint may not be suitable if
the oracle is noisy, as it pushes the solution on the wrongly labelled nodes towards
a wrong classification. Moreover, the constraints X T X = IK or X T DX = IK

Laplacian-based SSL Methods 111

(see again Section 4.1) of spectral clustering, which prevent obtaining flat solu-
tions in unsupervised spectral methods, are absent here. Hence, the optimisation
problem (5.3) relies only on the hard constraint X`· = S`· to prevent degenerate
solutions. We will see later that this is a problem when the amount of labelled data is
small. On the positive side, the following lemma provides a closed-form expression
for X̂ LP .

Lemma 5.2 The solution X̂ LP of the optimisation problem (5.3) is given by{
X̂ LP
`· = S`·,

X̂ LP
u· =

(
I|u| −

(
D−1A

)
uu

)−1 (D−1A
)

u` S`·,
(5.4)

where I|u| is the identity matrix of size |u| × |u|.

Proof. The constraint X`· = S`· can be rewritten as follows:

X`· = S`· ⇐⇒ ∀k ∈ [K] ∀i ∈ ` : (Xik − Sik)
2
= 0

⇐⇒

K∑
k=1

n∑
i=1

(1(i ∈ `)Xik − Sik)
2
= 0

⇐⇒ Tr
(
(I`X − S)T (I`X − S)

)
= 0.

Thus, a Lagrangian associated to the minimisation problem (5.3) is

H = Tr
(

X T LX + µ(I`X − S)T (I`X − S)
)

,

where µ is a Lagrange multiplier. For every k ∈ [K], the derivative with respect to
X·k gives

∂H
∂X·k

= 2 (LX + µ(I`X − S)) .

Equating this derivative to zero leads to

(L+ µI`) X̂ LP
= µS,

while the derivative with respect to µ leads to the constraint I`X̂ LP
= S. Using

block notation, we can write

LX =
(

L`` L`u
Lu` Luu

)(
X`·
Xu·

)
=

(
L``X`· + L`uXu·

Lu`X`· + LuuXu·

)
,

112 Graph-based Semi-supervised Learning

and therefore {
L``X̂ LP

`· + L`uX̂ LP
u· + µX̂ LP

`· = µS`·,

Lu`X̂ LP
`· + LuuX̂ LP

u· = 0.

The constraint X̂ LP
`· = S`· leads to the solution{

X̂ LP
`· = S`·,

X̂ LP
u· = (Luu)

−1 Lu`X̂ LP
`· .

We end the proof by noticing that since L = D − A and D is a diago-
nal matrix, we have Lu` = −Au` and (Luu)

−1
=
(
(D(In − D−1A))uu

)−1
=(

I|u| − (D−1A)uu
)−1

(Duu)
−1. Finally, (Duu)

−1Au` = (D−1A)u`, since D is diag-
onal, and this ends the proof.

We note from the proof of Lemma 5.2 that

LXik =

{
Sik, if i ∈ `,

0, otherwise.
(5.5)

Finally, we present the following Algorithm 8. The computation of X̂ from equa-
tion (5.4) requires to solve a |u|-by-|u| linear system, which has in general a
time-complexity of O

(
|u|3

)
(less if the network is sparse). The ensuing paragraph

presents a method to compute X̂ in a decentralized and iterative manner.

Algorithm 8: Label Propagation (Zhu and Ghahramani; Zhu et al., 2003).

Input: graph G, oracle S.
Output: node labelling ẑ = (ẑ1, . . . , ẑn) ∈ [K]n.
Process:

• let X̂ as in equation (5.4);
• for i = 1, . . . , n let ẑi be defined by classification rule (5.2).

Return: ẑ.

Interpretation as a propagation of the oracle labels We start by assigning
to each node i a 1-by-K vector X (0)i· ∈ R1×K , which is equal to the oracle prediction
Si· for node i. Then, at each time step t, the update of X is done as follows:

• if i ∈ `, then X (t+1)
i· = X (t)i· (no update is done);

Laplacian-based SSL Methods 113

• if i 6∈ `, then X (t+1)
i· is the taken to be the average of X (t)j· over the neighbours

of node i, that is, Xi· =
1
di

∑n
j=1 AijX

(t)
j· .

This can be interpreted as a propagation of the oracle’s information through the
graph or as a consensus algorithm with the states of some agents fixed. The labelled
nodes’ value remains equal to the oracle information, while an unlabelled node will
sample the value of its neighbours and perform local averaging. In matrix form, we
can write this procedure as follows:

X (t+1)
i· =

X (t)i· , if i ∈ `,(
D−1AX (t)

)
i· , otherwise.

The use of block notation leads toX (t+1)
u· =

(
D−1A

)
uu X (t)u· +

(
D−1A

)
u` X (t)`· ,

X (t+1)
`· = X (t)`· ,

with the initial condition X (1) = S. Since the matrix
(
D−1A

)
uu is substochastic,

X (t) converges to X∞ satisfying the following system of equationsX∞u· =
(
D−1A

)
uu X∞u· +

(
D−1A

)
u` X∞`· ,

X∞`· = S`·,

whose solutions areX∞u· =
(
I|u| −

(
D−1A

)
uu

)−1 (D−1A
)

u` S`·,

X∞`· = S`·,

which is the same expression as the Label Propagation solution (5.4).

Random walk interpretation Let y1, y2, . . . be a random walk on the graph,
where the walker jumps from node i to a node j, where j is a neighbour of i chosen
uniformly at random. The transition probabilities are given by

pij = P
(
yt+1 = j | yt = i

)
=

Aij

di
,

where di is the degree of node i. In particular, pij =
(
D−1A

)
ij and we note that

P = D−1A is the matrix of transition probabilities.
Suppose that the walk starts from node i, and that we end the walk as soon as we

hit a labelled node. We denote yend the final node. We denote by X̂ik the probability

114 Graph-based Semi-supervised Learning

that Syend,k = 1, that is the oracle assigned yend to community k by the oracle. Thus,
we have

X̂ik = P
(
Syend,k = 1 | y1 = i

)
.

In particular, if i ∈ `, then yend = i and

X̂ik =

1, if Sik = 1,

0, otherwise,

which is equivalent to X̂`· = S`·. By Markov property, we also have for any node i

P
(
Syend,k = 1 | y1 = i

)
=

n∑
j=1

P
(
Syend,k = 1 | y1 = j

)
pij ,

and therefore

X̂ = PX̂ .

Writing this equation in the block form and combining it with the constraint X̂`· =
S`· obtained before, leads to

X̂u· =
(
I|u| −

(
D−1A

)
uu

)−1 (
D−1A

)
u` S`·.

Hence, we again recover the same expression as the solution of Label Propaga-
tion (5.4).

Interpretation as a heat equation Let us now interpret the Label Propagation
as a solution of a heat equation. The evolution of temperature T of an isotropic
material is governed by the heat equation

∂T
∂t
= α1T ,

where 1 is the Laplacian and α is the thermal conductivity of the material. At
equilibrium, we simply have 1T = 0.

The oracle S plays the role of a heat bath. More precisely, we first fix a k ∈ [K].
The labelled nodes i ∈ ` behave as heat sources, whose temperature Tik remains
constant and equal to Sik ∈ {0, 1}. The temperatures of the unlabelled nodes
vary, as heat exchange takes place along the graph edges and is proportional to

Laplacian-based SSL Methods 115

the temperature difference between the edges’ endpoints. Therefore,

∀i ∈ ` : Tik = Sik,

∀i ∈ u :
∂Tik

∂t
=

n∑
j=1

Aij(Tjk − Tik).

Since
∑n

j=1 Aij(Tjk − Tik) = (AT·k)i − diTik = − (LT·k)i, the temperature T·k
verifies at equilibrium

∀i ∈ u : LTik = 0,

while Tik = Sik for any labelled node i. This can be rewritten as(LT)u· = 0,

T`· = S`·.

The above system is equivalent to equation (5.5), whose solution is equal to the
solution of Label Propagation (5.4) (see Lemma 5.2).

5.1.2 Label Spreading

The SSL method of Label Spreading (Zhou et al., 2004) is based on the optimisation
problem

X̂ LS
= arg min

X∈Rn×K
CLS(X),

where the cost function CLS is defined by

CLS(X) = Tr
(

X TLX + λ (X − S)T (X − S)
)

.

After simple linear algebra transformation, we have

CLS(X) =
K∑

k=1

1

2

∑
i,j

aij

(
xik
√

di
−

xjk√
dj

)2

+ λ

n∑
i=1

(xik − sik)
2

 ,

where di denotes the degree of node i.
The parameter λ enforces a trade-off between the smoothness of the solution

X̂LS over the graph and the closeness of the solution to the oracle information S.
The difference with the Label Propagation method is that the smoothness of the
solution is imposed by the term Tr(X TLX), which now includes the normalization
by the node degrees.

116 Graph-based Semi-supervised Learning

As in the case of Label Propagation, X̂ LS can also be expressed in a closed form.
Namely, for each k ∈ [K], we have

1

2

∂CLS

∂X·k
= LX·k + λ (X·k − S·k),

and hence

X̂ LS
·k = (λI + L) λS·k

=
(
(1+ λ)I − D−1/2AD−1/2)−1

λS·k

=
λ

1+ λ

(
I −

1

1+ λ
D−1/2AD−1/2

)−1

S·k.

Therefore,

X̂ LS
= (1− α)

(
I − αD−1/2AD−1/2)−1

S,

where α = λ
1+λ ∈ (0, 1). This gives Algorithm 9.

Algorithm 9: Label Spreading (Zhou et al., 2004).

Input: graph G, oracle S, parameter α ∈ (0, 1).
Output: node labelling ẑ = (ẑ1, . . . , ẑn) ∈ [K]n.
Process:

• compute the normalized adjacency matrix A = D−1/2AD−1/2;
• let X̂ LS be the solution of (I − αA) X̂ LS

= (1− α)S;
• for i ∈ [n], let ẑi be defined by classification rule (5.2).

Return: ẑ

5.1.3 Generalized Laplacian

As a follow-up to Label Propagation and Label Spreading methods, Avrachenkov
et al., 2012 proposed a general class of cost functions

CGL(X) = Tr
(

X T Dσ−1LDσ−1X + λ (X − S)T D2σ−1 (X − S)
)

,

where λ > 0 and 0 ≤ σ ≤ 1 are two hyper-parameters. The solution of the
minimisation problem

X̂ GL
= arg min

X∈Rn×K
CGL(X)

Laplacian-based SSL Methods 117

is given by

X̂ GL
= (1− α)

(
In − αD−σADσ−1)−1

S,

where α = λ/(1 + λ). Since the computations are similar to the computations
in the previous sections, we omit them and refer the reader to (Avrachenkov et al.,
2012, Proposition 2) for details. Different normalizations are obtained by different
choices of σ . In particular,

• σ = 1 corresponds to Label Propagation;
• σ = 1/2 corresponds to Label Spreading;
• σ = 0 corresponds to the PageRank-based method.

5.1.4 Numerical Performance of the Laplacian-based Methods

Choice of hyper-parameter α for Label Spreading We first investigate the
effect of α on the classification performances. We choose two datasets for which
we saw that unsupervised spectral clustering failed: DBLP and Cora. We let 2%
of the nodes be labelled by the oracle, and we plot in Figure 5.1 (blue curve) the
accuracy as a function of α. We see that the accuracy increased when α increases,
but suddenly dropped if α becomes too close to one. We also notice that the best
choice of α can be made by looking at the modularity of the predicted partition
(red curve in Figure 5.1), as the modularity closely follows the accuracy.

Noisy oracle We now study the effect of noise on classification performance. We
keep the same two datasets, now with 5% labelled nodes. We define the noise as
being the proportion of mistakes made by the oracle. The results are plotted in
Figure 5.2. As expected, the noise deteriorates the classification performance.

(a) DBLP dataset. (b) Cora dataset.

Figure 5.1. Effect of the choice of parameter α on the performance of Label Spreading on

two data sets. The blue curve gives the accuracy (computed with respect to the ground

truth labels) and the red curve the modularity (computed using only the observed graph

and the predicted labels). Results are averaged over 100 realisations. In each realisation,

we randomly chose 2% of the nodes to serve as labelled nodes.

118 Graph-based Semi-supervised Learning

(a) DBLP dataset. (b) Cora dataset.

Figure 5.2. Effect of a noisy oracle on the classification performances of Laplacian-based

methods. Results are averaged over 100 realisations, with 5% of the nodes being labelled.

(We choose α = 0.8 for Label Spreading and Generalized Laplacian, and σ = 0 for Gener-

alized Laplacian, which corresponds to the PageRank-based method.)

(a) DBLP dataset. (b) Cora dataset.

Figure 5.3. Effect of small labelled data on the classification performance of Laplacian-

based methods. Results are averaged over 100 realisations.

Small amount of labelled data We finish this section by emphasizing the
importance of the problem of small amount of labelled data. Figure 5.3 shows that
the classification accuracy heavily degrades when the number of labelled nodes per
class becomes too low.

5.2 Learning with Small Amount of Labelled Data

5.2.1 The Problem of Small Labelled Data

Numerical experiments showed that at very low labelling rates, the performance
of the SSL methods becomes poor. We will explain this phenomenon using the
random walk interpretation of Label Propagation algorithm (see Section 5.1.1 for
more details on Label Propagation).

Let y1, . . . , yt , . . . be a random walk on the graph starting at node i. Let τ =
inf t≥1{yt ∈ `} be the first time that the walk hits a labelled node, and we recall that

Learning with Small Amount of Labelled Data 119

X̂ LP
ik = P

(
Syτ ,k = 1 | y1 = i

)
. In other words, X̂ik is the probability that the first

labelled node reached by the walk (started from node i) has a label k.
If the number of labelled nodes is small and the graph is large, then the time τ

will be large. In particular, if τ is larger than the mixing time of the walk, then the
distribution of yτ is very close to the invariant distribution π of the random walk,
given by

πj =
dj∑n
s=1 ds

.

This means that the chain has forgotten its starting point i, and thus X̂ LP
ik is a

constant independent of i, which defeats the goal of classification.
Let us formalize this intuition and try to mitigate the problem. We first note

that, for k ≤ τ ,

E
[
Xyk − Xyk−1 | yk−1

]
=

1

d(yk−1)
LXyk−1 = 0,

since LX = 0 on the unlabelled nodes (see equation (5.5)). Thus, Xy1 , · · · , Xyk , · · ·
is a martingale. Since τ is an almost surely bounded stopping time, Doob’s optimal
stopping theorem then implies that

E
[
Xy0

]
= E

[
Xyτ
]

.

Since y0 = i and yτ ∈ `, we have E
[
Xy0

]
= Xi and Xyτ = Syτ , and thus

Xik ≈
∑
j∈`

πjSjk =

∑
j∈` djSjk∑n

j=1 dj
. (5.6)

Hence, the first order approximation of X̂ LP
ik is the same for all unlabelled node i,

and potential differences only come from second-order terms. A first improvement
of Label Propagation is thus to replace the classification rule (5.2) by

ẑi = arg max
k∈{1,...,k}

(
X̂ik − ck

)
,

where ck =

∑
j∈` djSjk∑

j∈` dj
. Equivalently, one could “shift” equation (5.5) and solve

LXik =

Sik − ck, if i ∈ `,

0, otherwise.

120 Graph-based Semi-supervised Learning

Rewriting the above equation as

LXik =
∑
j∈`

dj
(
Sjk − ck

)
δij ,

we can interpret it as a heat equation, where heat sources and sinks are placed at
the labelled nodes.

5.2.2 Poisson Learning

Let s̄k =
∑

i∈` Sik
|`| . Following the previous remarks, Calder et al., 2020 proposed to

consider the equation

LXik =
∑
j∈`

(
Sjk − s̄k

)
δij , (5.7)

such that
∑n

i=1 diXik = 0. Equivalently, this accounts to solve the following opti-
misation problem (Calder et al., 2020, Theorem 2.3)

arg min
X∈Rn×K∑n
i=1 diXik=0

Tr
(

X T LX
)
−
(
S − S̄

)T
X ,

where

S̄ik, =

{
s̄k ifi ∈ `,

0, otherwise.

In particular, while Label Propagation handles labelled data by placing hard con-
straints, Poisson learning adds a loss term to the energy function.

Random walk interpretation As the labelled nodes are now source and sinks
of the heat equation, the random walk interpretation differs. Let us denote by
y

j
1 , . . . , y

j
t , . . . a random walk on the graph starting from node j ∈ `. Each time

the random walk hits node i, we record the shifted label Sj· − S̄j·. This defines the
quantity

X (T)ik = E

 T∑
t=0

1

di

∑
j∈`

(
Sjk − S̄jk

)
1
(

y
j
t = i

) .

The following lemma gives an iterative expression for X (T).

Learning with Small Amount of Labelled Data 121

Lemma 5.3. We have

X (T+1)
ik = X (T)ik +

1

di

∑
j∈`

(
Sjk − S̄jk

)
δij −

(
LX (T)

)
ik

 .

Furthermore, assume G is connected and the Markov chain induced by the random
walk is aperiodic. Then limT→∞ X (T) = X , where X is the unique solution of the
Poisson equation (5.7).

Proof. We first write

X (T+1)
ik =

∑
j∈`

(
Sjk − S̄jk

)
GT (i, j), (5.8)

where GT (i, j) = 1
di
E
[∑T

t=0 1
(

y
j

t = i
)]
=

1
di

∑T
t=0 P

(
y

j
t = i

)
is the normal-

ized Green function. Using

P
(

y
j

t = i
)
=

n∑
u=1

P
(

y
j

t = i | y
j

t−1 = u
)
P
(

y
j

t−1 = u
)

,

we have

diGT (i, j) = δij +

T∑
t=1

n∑
u=1

wui

du
P
(

y
j

t−1 = u
)

= δij

n∑
u=1

wui

du

T−1∑
t=0

P
(

y
j

t = u
)

= δij +

n∑
u=1

wuiGT−1(u, j),

and therefore

di
(
GT (i, j)− GT−1(i, j)

)
+ LGT−1(i, j) = δij .

Combined with equation (5.8), this establishes

di

(
X (T)ik − X (T−1)

ik

)
=

∑
j∈`

(
Sjk − S̄jk

)
δij −

(
LX (T)

)
ik

.

Then, summing both sides of this equation over i = 1, · · · , n, leads to

n∑
i=1

diX
(T)
ik =

n∑
i=1

diX
(T−1)
ik ,

122 Graph-based Semi-supervised Learning

and therefore
∑n

i=1 diX
(T)
ik =

∑n
i=1 diX

(0)
ik for all T . Since

diX
(0)
ik =

∑
j∈`

(
Sjk − S̄jk

)
δij ,

we obtain
∑

i diX
(T)
ik = 0. Finally, let V (T)

ik = di(X
(T)
ik − Xik). We have

V (T)
ik =

n∑
j=1

wij

dj
V (T−1)

jk ,

and
∑n

j=1 V (T)
jk = 0 for all T . Since the random walk is aperiodic and the graph

is connected,

lim
T→∞

V (T)
ik = πi

n∑
j=1

V (0)
jk = 0,

where πi =
di∑n

j=1 dj
is the chain’s stationary distribution.

In fact, Lemma 5.3 also provides an iterative numerical procedure for computing
the solution. The precedure is formally described in Algorithm 10.

Algorithm 10: Poisson learning (Calder et al., 2020).

Input: graph G, oracle S ∈ {0, 1}n×K , number of iterations T .
Output: node labelling ẑ ∈ [K]n.
Process:

• let L be the graph’s standard Laplacian and D the graph’s degree matrix;
• let ` be the set of labelled nodes, and let S̄ = S diag (s̄) where

s̄ = (s̄1, . . . , s̄K) with s̄k =
1
|`|

∑
i∈` Si`;

• for t = 1, · · · , T do: X ← X + D−1
(
S − S̄ − LX

)
;

• for i = 1, . . . , n let ẑi be defined by classification rule (5.2).

Return: ẑ

5.2.3 Numerical Experiments

To assess the performance of Poisson learning in a regime with extremely low
amount of labelled nodes, we reproduce the results of Calder et al., 2020. They
consider MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al., 2017)
datasets, on which they trained auto-encoders to extract important features from

Other Methods 123

(a) MNIST dataset. (b) Fashion-MNIST dataset.

Figure 5.4. Performance of Poisson learning on MNIST and fashion-MNIST datasets,

when the number of labelled nodes per class is extremely small. Results are averaged

over 10 realisations, and error bars show the standard error.

the data. More precisely, they used variational auto-encoders with 3 fully con-
nected layers of sizes (784,400,20) and (784,400,30), respectively, followed by a
symmetrically defined decoder (Kingma and Welling, 2014). The auto-encoder
was trained for 100 epochs on each data set. Then, a 10-nearest neighbours graph
is build with Gaussian weights wij = exp

(
−4‖xi − xj‖

2/σ 2
i

)
, where xi is the

latent variables for image i and σi is the distance between xi and its 10-nearest
neighbour. The results are shown in Figure 5.4. In particular, even with only one
labelled node per class, the performance of Poisson learning remains extremely
high.

5.3 Other Methods

5.3.1 Constrained Spectral Clustering

The goal of this method is to directly incorporate semi-supervised information into
spectral methods. Specifically, from the oracle information S, we can construct the
must-link/cannot-link matrix Q as follows:

Qij = Qji =

1, if i, j ∈ ` and Si· = Sj·,

−1, if i, j ∈ ` and Si· 6= Sj·,

0, otherwise.

We note that must-link/cannot-link information can also be given to us directly. In
fact, for experts it is often easier to conclude if two items are similar or not, rather
than to attribute items to classes.

124 Graph-based Semi-supervised Learning

For a membership matrix Z ∈ ZN ,K , the quantity

Tr
(

ZT QZ
)
=

K∑
k=1

∑
i,j

QijZikZjk

measures how well the membership matrix Z respects the oracle information.
Indeed, this quantity increases by 1 if Qij = 1 and Z assign nodes i, j in the same
cluster, and decreases by 1 if Qij = −1 but i and j are assigned to the same cluster.
Therefore, Tr

(
ZT QZ

)
equals the number of satisfied must-link/cannot-link con-

straints minus the number of violated constraints. Rather than asking for all the
constraints in Q to be verified, we can impose the lower bound

Tr
(

ZT QZ
)
≥ α

for some α ≥ 0. Such constraint can be incorporated directly into the normalized
spectral clustering minimisation problem, and it leads to the following optimisation
problem

arg min
U∈Rn×K

U T DU=IK
Tr
(
U T QU

)
≥α

Tr
(

U T LU
)

,

which after the change of variable X = D1/2U can be rewritten as

arg min
X∈Rn×K

X T X=IK
Tr
(
X T Q̄X

)
≥α

Tr
(

X TLX
)

, (5.9)

with Q̄ = D−1/2QD−1/2.

Lemma 5.4. Let X be solution of (5.9). The rows of X are solutions of a generalized
eigenvalue problem LX·k = λ

(
Q̄ − β

)
X·k for some β.

Proof. The Lagrangian of the minimisation problem (5.9) is

Tr
(

X TLX
)
− λ

(
Tr
(

X T Q̄X
)
− α

)
− Tr

(
0T

(
X T X − IK

))
,

where λ ∈ R is the Lagrange multiplier associated to the constraint Tr
(
X T Q̄X

)
≥

α and 0 ∈ RK×K is a symmetric matrix whose elements are the multipliers associ-
ated to the constraint X T X = IK . Note that up to a change of basis, we can choose
0 to be diagonal. Then, according to the KKT Theorem (Kuhn, 1982), any feasible

Other Methods 125

optimal solution of problem (5.9) must verify

stationarity: LX − λQ̄X − X0 = 0,

primal feasibility: Tr
(

X T Q̄X
)
≥ α and X T X = IK ,

dual feasibility: λ ≥ 0,

complementary slackness: λ
(

Tr
(

X T Q̄X
)
− α

)
= 0.

The complementary slackness requirement either implies λ = 0 or Tr
(
X T Q̄X

)
=

α. If λ = 0, then the stationarity requirement would reduce the problem to the
standard (unconstrained) spectral clustering. Thus λ 6= 0, and Tr

(
X T Q̄X

)
= α,

and the KKT conditions become

LX − λQ̄X − X0 = 0,

Tr
(

X T Q̄X
)
= α,

X T X = IK ,

λ > 0.

Since 0 is diagonal, the first equation is equivalent to

(L− 0kk)X·k = λQ̄X·k,

which is a generalised eigenvalue problem for a given 0kk. We end the proof by
letting β = −0kk

λ .

Based on Lemma 5.4, and following Wang and Davidson, 2010 and Wang et al.,
2014, we propose the following procedure:

(i) find the vectors v1, · · · , vp solutions of Lvk = λk
(
Q̄ − βIn

)
vk associated

to λk > 0;
(ii) given all the feasible eigenvectors v1, · · · , vp, pick the top K − 1 in terms

of minimising vTLv, and let those K − 1 vectors form the columns of X .

Since β < λK , there is at least K−1 solutions of the generalised eigenvalue problem
associated with positive eigenvalues. Furthermore, the solutions are real vectors,
sinceL and Q̄−βIn are Hermitian matrices. Finally, this procedure is justified, since
X verifies the KKT conditions derived in the proof of Lemma 5.4 if (K −1)β < α.
Indeed, since L is positive semi-definite, we have vTLv ≥ 0 with equality only
for v ∝ 1n. Hence Tr

(
X TLX

)
> 0. Moreover, Tr

(
X TLX

)
=
∑K

k=0 X T
·k LX·k =∑

k λkX·k
(
Q̄ − βIn

)
X·k ≥ Tr

(
X T Q̄X

)
−(K−1)β, and Tr B < α. We summarise

the procedure in Algorithm 11.

126 Graph-based Semi-supervised Learning

Algorithm 11: Constrained spectral clustering (Wang and Davidson, 2010;
Wang et al., 2014).

Input: graph G, must-link/cannot-link matrix Q , number of clusters K ,
parameter β.

Output: node labelling ẑ ∈ [K]n.
Process: let L be the normalised Laplacian of G, and let

Q̄ = D−1/2QD−1/2.
if β ≥ λK−1

(
Q̄
)

then
Return: ∅.

else
• let v1, · · · , vp be solution of the generalised eigenvalue problem

Lv = λ
(
Q̄ − β

)
v associated with eigenvalues λ > 0;

• let V ∗ = arg minV∈Rn×K−1 Tr
(
V TLV

)
where the columns of V are a

subset of the feasible eigenvectors computed previously.

Return: ẑ = k-means(D−1/2V ∗, K)

5.3.2 Laplacian Regularization

Previous methods minimise a cost function, which involves a smoothness term
Tr(X T MX), where M is typically the graph (standard or normalised) Laplacian,
a penalty term penalising any differences between X`· and S`·, and eventually a
regularisation term.

In contrast, Laplacian regularization (Belkin and Niyogi, 2002) enforces the
smoothness by constraining the vector X to belong to the eigenspace of the graph
Laplacian L spanned by the eigenvectors associated to the p smallest eigenvalues. It
then finds the linear combination of these eigenvectors that minimises the mean-
squared error between X and S on the labelled nodes.

Let v1, . . . , vp be the eigenvectors of L associated to the p smallest eigenvalues,
normalized so that ‖vi‖

2
2 = 1. The solution X = (xik)i∈[n],k∈[K] is written as

xik =
∑p

q=1 bqkvq(i) where vq(i) stands for the i-th entry of the eigenvector vq.

In matrix form, this gives X = VB where V = (v1, . . . , vp) and B ∈ Rp×K .
The mean-squared error between the labelled nodes and their corresponding oracle
value is then

MSE (X`·, S`·) =
K∑

k=1

∑
i∈`

(xik − sik)
2
=

K∑
k=1

∑
i∈`

 p∑
q=1

bqkvqi − sik

2

.

Other Methods 127

Let b̃ = b·k and s̃ = S·k be the k-th columns of B and S, respectively. The solution
to the least square problem

arg min
b̃∈Rp

∑
i∈`

 p∑
q=1

b̃qvqi − s̃i

2

tis given by b̃ =
(
V T
`· V`·

)−1
V`· s̃`. Therefore, the solution X̂ LR minimising the

mean-squared error is

X̂ LR
=

(
V T
`· V`·

)−1
V`· s̃`.

This is summarised in Algorithm 12.

Algorithm 12: Laplacian regularization (Belkin and Niyogi, 2002).

Input: graph G, oracle S, number of eigenvectors p.
Output: node labelling ẑ ∈ [K]n.
Process:

• compute v1, . . . , vp the orthonormal eigenvectors associated to the p small-
est eigenvalues of the graph Laplacian L = D− A;

• let V = (v1 . . . , vp) ∈ Rn×p;
• let X̂ LR

= V B̂LR where B̂LR is the solution of (I`V) B̂LR
= S;

• for i = 1, . . . , n let ẑi be defined using the classification rule (5.2) on X̂ LR.

Return: ẑ.

5.3.3 `1-based Methods: Sparse Label Propagation

Previous methods consist in minimising a cost function based on the `2-norm.
Instead, Jung et al., 2019 proposed to measure the smoothness of a signal x ∈ Rn

on a graph via its total variation

‖x‖TV =
∑

i,j

aij
∣∣xi − xj

∣∣ .

If we let z0
∈ [K]n be the community labels, and ` be the set of labelled nodes,

then one can state the following optimisation problem

x̂ = arg min
x∈Rn

∀i∈` : xi=z0
i

∑
i,j

aij
∣∣xi − xj

∣∣ . (5.10)

128 Graph-based Semi-supervised Learning

We can recover the predicted communities ẑ by truncating x̂ ∈ Rn to ẑ ∈ [K]n.
We recall that the standard Label Propagation (5.3) consists in minimising

xT Lx =
∑

i,j aij
(
xi − xj

)2 under the oracle constraints. Hence, problem (5.10)

resembles Label Propagation, except that it involves the `1-norm of signal differ-
ences along the graph edges. Therefore, we expect it to accurately learn signals
which abruptly vary over few edges (which is indeed the case of community labels).
In contrast, an `2-norm based methods like Label Propagation might smooth out
such abrupt variations.

Finally, since the optimisation problem (5.10) involves nondifferentiable func-
tion, it makes the theoretical analysis harder and rules out some popular methods
like gradient-based ones. We refer the reader to Jung et al., 2019 for the theoreti-
cal analysis and for the details of algorithmic implementation, and we simply state
Algorithm 13.

Algorithm 13: Sparse Label Propagation (Jung et al., 2019).

Input: graph G = (V , E), labelled set `, initial labels
(
z0

i

)
i∈` and number of

iterations niterations.
Output: predicted node labelling ẑ ∈ [K]n.
Initialize: let k = 0, z(0) = z`, ẑ(0) = 0n, ŷ(0) = 0n, γi =

1∑
j∈Ni

Aij
for

i ∈ [n] and λ(ij) = 1
2Aij

for (ij) ∈ E . Define 0 = diag(γ),

3 = diag
(
λ(ij)

)
(ij)∈E and I ∈ {0, 1}|E |×n the incidence matrix of

G.
Update: while k < niterations do

z(k+1)
= z(k) − 0Iy;

z(k+1)
i = z0

i for all i ∈ `;
y = y +3IT

(
2z(k+1)

− z(k)
)
;

y(ij) =
y(ij)

max{1,yij}
for all edge (ij) ∈ E ;

ẑ =
(

1− 1
k+1

)
ẑ + 1

k+1z(k+1);

k = k + 1.
Return: ẑ.

5.4 Bayesian Approach to SSL and Its Theoretical
Analysis

This section studies theoretical properties of Bayesian estimators for DC-SBM
graphs in the SSL setting. For the simplicity of exposition, we mostly consider the

Bayesian Approach to SSL and Its Theoretical Analysis 129

case of K = 2 clusters. The prior latent block structure is given by a random vector
z0
=
(
z0

1 , . . . , z0
n
)

with z0
i ∼ Uni ({−1, 1}). The oracle is then represented as a

vector s ∈ {0,−1, 1}n, whose entries si are independent and distributed as follows:

si =

z0

i , with probability η1,

−z0
i , with probability η0,

0, otherwise.

(5.11)

5.4.1 MAP Estimator for DC-SBM with a Noisy Oracle

Proposition 5.1 (Adapted from Avrachenkov and Dreveton, 2020). Let A be the
adjacency matrix of a homogeneous Poisson SBM as in (2.7), with ωin > ωout and
s be an oracle information, defined by (5.11). The Maximum A Posteriori (MAP)
estimator of the true class labelling is given by

ẑMAP = arg max
z∈[K]n

P (z |A, s) ,

which is equal to

arg min
z∈[K]n

Cut(A, z)− τn1(z)n2(z)+ λ |i ∈ ` : zi 6= si| , (5.12)

where τ = ωin−ωout
log ωin

ωout

, λ =
log η1

η0
log ωin

ωout

and nk(z) =
∑n

i=1 1(zi = k) is the number of

nodes assigned to class k by labelling z.

The term n1(z)n2(z) = n1(z)(n − n1(z)) is maximal when n1(z) = n
2 , i.e.,

when z predicts two clusters of same size. Therefore, the MAP estimator in the SSL
context shows a trade-off between two unsupervised terms (minimising the graph’s
cut and having balanced community sizes) and a semi-supervised term (minimising
the number of disagreements between the oracle and the prediction).

Proof. First, we have from Bayes formula

P (z |A, s) ∝ P (A | s, z)P (z | s) ,

where the proportionality hides a term P (A | s) independent of z. We established
at the end of the proof of Proposition 4.4 that

logP (A | z) =
1

2
log

ωin

ωout

∑
i 6=j

(
Aij −

ωin − ωout

log ωin
ωout

θiθj

)
1
(
zi = zj

)
+ C ,

130 Graph-based Semi-supervised Learning

where C is a constant independent of z. Finally, the oracle information, given by
the term P(z | s), is equal to

P(z | s) =
n∏

i=1

P(si | zi)

P(si)
P(zi)

=

(
η1

η1 + η0

)∣∣{i∈` : zi=si}
∣∣ (

η0

η1 + η0

)∣∣{i∈` : zi 6=si}
∣∣ (

1

2

)n

=

(
η0

η1

)∣∣{i∈` : zi 6=si}
∣∣ (

η1

η1 + η0

)∣∣`∣∣ (1

2

)n

, (5.13)

where we used
∣∣{i ∈ ` : zi = si}

∣∣+ ∣∣{i ∈ ` : zi 6= si}
∣∣ = ∣∣`∣∣ in the last line.

5.4.2 Continuous Relaxation

The MAP estimator derived in Proposition 5.1 can be rewritten as

ẑMAP
= arg min

z∈{−1,1}n
−zT

(
A− τ1T

n 1n

)
z + λ (s − Pz)T (s − Pz) ,

where P is the diagonal matrix whose element (i, i) is equal to 1, if i ∈ `, and it is
equal to 0, otherwise. First, we simply notice that

|i ∈ ` : zi 6= si| =
1

4

∑
i∈`

(si − zi)
2
=

1

4
(s − Pz)T (s − Pz) .

We then perform a continuous relaxation mirroring what is commonly done for
unsupervised spectral methods (Newman, 2013) and discussed in Section 4.4.2,
namely, we consider the following optimisation problem

X̂ = arg min
x∈Rn∑

i κix2
i =
∑

i κi

(
−xT Aτ x + λ(s − Px)T (s − Px)

)
, (5.14)

where Aτ = A − τ1n1T
n and κ = (κ1, . . . , κn) is a vector of positive entries.

For the simplicity of the derivations, we choose to constrain x to the hyper-sphere
‖x‖2 = n by letting κi = 1, but other choices would lead to a similar analysis.
In particular, in the numerical Section 5.4.4 we will compare this choice with a
degree-normalization approach (κi = di).

We further note that for the perfect oracle the corresponding relaxation is

X̂ = arg min
x∈Rn

x`=s`
‖x‖2=n

(
−xT Aτ x

)
. (5.15)

Bayesian Approach to SSL and Its Theoretical Analysis 131

Given the classification vector X̂ ∈ Rn, node i is classified into cluster ẑi ∈ {−1, 1}
such that

ẑi =

{
1 if X̂i > 0,

−1 otherwise.
(5.16)

Let us solve the minimisation problem (5.14). By letting γ ∈ R be the Lagrange
multiplier associated with the constraint ‖x‖2 = n, the Lagrangian of the optimi-
sation problem (5.14) is then

−xT Aτ x + λ(s − Px)T (s − Px)− γ
(

xT x − n
)

.

This leads to the constrained linear system{
(−Aτ + λP − γ In) x = λs,

xT x = n,
(5.17)

whose unknowns are γ and x.
The exact optimal value of γ can be found explicitly following Gander et al.,

1989. Firstly, we note that if (γ1, x1) and (γ2, x2) are solutions of the sys-
tem (5.17), then

C(x1)− C(x2) =
γ1 − γ2

2
‖x1 − x2‖

2 ,

where C(x) = −xT Aτ x + λ(s − Px)T (s − Px) is the cost function minimised
in (5.14). Hence, among the solution pairs (γ , x) of the system (5.17), the solution
of the minimisation problem (5.14) is the vector x associated with the smallest γ .

Secondly, the eigenvalue decomposition of −Aτ + λP reads as

−Aτ + λP = Q1QT ,

where 1 = diag(δ1, . . . , δn) with δ1 ≤ · · · ≤ δn and QT Q = In. Therefore,
after the change of variables u = QT x and b = λQT s, the system (5.17) is trans-
formed to {

1u = γ u+ b,
uT u = n.

Thus, the solution X̂ of the optimisation problem (5.14) verifies

(−Aτ + λP − γ∗In) X̂ = λs, (5.18)

132 Graph-based Semi-supervised Learning

where γ∗ is the smallest solution of the explicit secular equation (Gander et al., 1989)

n∑
i=1

(
bi

δi − γ

)2

− n = 0. (5.19)

We summarise this in Algorithm 14. Note that for the sake of generality, we let λ
and τ be hyper-parameters of the algorithm. If the model parameters are known,
we can use the expressions of λ and τ derived in Proposition 5.1. The choice of λ
and τ is further discussed in Section 5.4.4.

Algorithm 14: Semi-supervised learning by a MAP relaxation.

Input: adjacency matrix A, oracle information s, parameters τ and λ.
Output: node labelling ẑ ∈ [K]n

= (ẑ1, . . . , ẑn).
Process:

• let γ ∗ be the smallest solution of equation (5.19);
• compute X̂ as the solution of equation (5.18);
• for i = 1, . . . , n let ẑi be defined using (5.16) on X̂ .

Return: ẑ.

5.4.3 Upper Bound on the Number of Misclassified Nodes

In this section, we derive an upper bound on the number of unlabelled nodes mis-
classified by Algorithm 14 on a DC-SBM. We then specialise the results for some
particular cases. We will assume that given (pin, pout, θ , z), the graph adjacency
matrix A = (aij) is generated as

aij = aji ∼

{
Ber

(
θiθjpin

)
, if zi = zj ,

Ber
(
θiθjpout

)
, otherwise,

(5.20)

for i < j, and Aii = 0. Furthermore, we suppose that zi ∼ Uni ({−1, 1}), and that
the entries of θ are independent random variables satisfying θi ∈ [θmin, θmax] with
Eθi = 1, θmin > 0, and θ2

max max(pin, pout) ≤ 1.
For an estimator ẑ ∈ {−1, 1}n of z, the number of mis-clustered nodes is simply

the Hamming distance between the two sequences ẑ and z, defined as

dHam(ẑ, z) =
n∑

i=1

1
(
ẑi 6= zi

)
,

and the proportion of mis-clustered nodes is dHam(ẑ,z)
n . Note that, unlike in the

unsupervised clustering, we do not take a minimum over the permutations of the

Bayesian Approach to SSL and Its Theoretical Analysis 133

predicted labels since we should be able to learn the correct community labels from
the informative oracle.

Theorem 5.5 (Avrachenkov and Dreveton, 2020). Consider a DC-SBM with a noisy
oracle as defined in (5.20),(5.11). Let d̄ = n

2(pin + pout) and ᾱ = n
2(pin − pout).

Suppose that τ > pout, and let ẑ be the output of Algorithm 14. Then, the proportion
of misclassified unlabelled nodes verifies

dHam(ẑu, zu)

n
≤ C

(
pin + pout

pin − pout

)2 (ᾱ + λ
λ

)2 1

(η1 + η0) (η1 − η0)
2 d̄

.

In the following, the mean-field graph refers to the weighted graph formed by
the expected adjacency matrix of a DC-SBM graph. Moreover, we assume without
loss of generality that the first n

2 nodes are in the first cluster and the last n
2 are in

the second cluster. Therefore, EA = ZBZT with B =
(

pin pout

pout pin

)
and Z =(

1n/2 0n/2

0n/2 1n/2

)
. In particular, the coefficients θi disappear because Eθi = 1. We

consider the setting where diagonal elements of EA are not zeros. This accounts for
modifying the definition of DC-SBM, where we can have self-loops with proba-
bility pin. Nonetheless, we could set the diagonal elements of EA to zeros and our
results would still hold at the expense of cumbersome expressions. Note that the
matrix EA has two non-zero eigenvalues: d̄ = n pin+pout

2 and ᾱ = n pin−pout
2 .

Proof of Theorem 5.5. We prove the statement in three steps. We first show that
the solution X̂ of the constrained linear system (5.17) is concentrated around the
solution x̄ of the same system for the mean-field model. Then, we compute x̄ and
show that we can retrieve the correct cluster assignment from it. We finally conclude
with the derivation of the bound.

(i) Similarly to (Avrachenkov et al., 2018c) and (Avrachenkov and Dreveton,
2019), let us rewrite equation (5.18) as a perturbation of a system of linear equations
corresponding to the mean-field solution. We thus have(

EL̃+1L̃
)(

x̄ +1x
)
= λs,

where L̃ = −Aτ + λP − γ∗In, 1x := X̂ − x̄ and 1L̃ := L̃− EL̃.
A perturbation of a system of linear equations (A+1A)(x +1x) = b leads to

the following sensitivity inequality (Horn and Johnson, 2012, Section 5.8):

‖1x‖
‖x‖

≤ κ(A)
‖1A‖
‖A‖

,

134 Graph-based Semi-supervised Learning

where ‖.‖ is the operator norm associated to a vector norm ‖.‖ (we use the same
notations for simplicity) and κ(A) := ‖A−1

‖·‖A‖ is the condition number. In our
case, the above inequality can be rewritten as follows:∥∥X̂ − x̄

∥∥
‖x̄‖

≤

∥∥∥∥(E L̃
)−1

∥∥∥∥ · ∥∥∥1 L̃
∥∥∥ , (5.21)

employing the Euclidean vector norm and the spectral operator norm. The spectral
study of E L̃ (see Corollary B.2 in Appendix B.1.1) gives:∥∥∥∥(E L̃

)−1
∥∥∥∥ = 1

min
{
|λ| : λ ∈ Sp

(
E L̃

)} = 1

−t+2 − γ̄∗
,

where t+2 is defined in Corollary B.2 in Appendix B.1.1 and γ̄∗ is the solution of
equation (5.19) for the mean-field model. Lemma B.3 in Appendix B.1.2 leads to∥∥∥∥(E L̃

)−1
∥∥∥∥ ≤ 1

λ+ ᾱ
. (5.22)

The last ingredient needed is the concentration of the adjacency matrix around
its expectation. We have∥∥∥L̃− EL̃

∥∥∥ ≤ ‖(γ∗ − γ̄∗) In‖ + ‖A− E A‖ ≤ | γ∗ − γ̄∗ | + ‖A− E A‖.

Proposition B.2 in Appendix B.1.3 shows that

| γ∗ − γ̄∗ | ≤

(
1+

27 (ᾱ + λ)3
√

2
√
η1 + η0(η1 − η0)ᾱ2λ

)√
d̄ .

Moreover, when d = �(log n), we have ‖A− E A‖ = O
(√

d̄
)

(Feige and Ofek,

2005). If d̄ = o(log n), the same result holds with a proper pre-processing on A,
and we refer the reader to (Le et al., 2017) for more details. To keep notations short,
we will omit this extra step in the proof. Using this concentration bound, we have

∥∥∥L̃− EL̃
∥∥∥ ≤ (

C ′ +
27 (ᾱ + λ)3

√
2
√
η1 + η0(η1 − η0)ᾱ2λ

)√
d̄

≤

(
C ′ +

27
√

2

)
(λ+ ᾱ)3

ᾱ2λ

√
d̄

√
η1 + η0 (η1 − η0)

Bayesian Approach to SSL and Its Theoretical Analysis 135

for some constant C ′. Let C = C ′ + 27
√

2
. By combining the above with inequal-

ity (5.22), the inequality (5.21) becomes∥∥X̂ − x̄
∥∥

‖x̄‖
≤ C

(λ+ ᾱ)2

ᾱ2λ

√
d̄

√
η1 + η0 (η1 − η0)

. (5.23)

(ii) Node i in the mean-field model is correctly classified by decision rule (5.16)
if the sign of x̄i equals the sign of zi. Corollary B.5 in Appendix B.2 shows that this
is indeed the case for the unlabelled nodes.

(iii) Finally, for an unlabelled node i to be correctly classified, the node’s value X̂i

should be close enough to its mean-field value x̄i. In particular, the part (ii) shows
that if |X̂i − x̄i| is smaller than some non-vanishing constant β, then an unla-
belled node i will be correctly classified. An unlabelled node i is said to be β-
bad if

∣∣X̂i − x̄i
∣∣ > β. We denote by Sβ the set of β-bad nodes. The nodes

that are not β-bad are a.s. correctly classified, and thus dHam(ẑu, zu) ≤ |Sβ |.

From
∥∥X̂ − x̄

∥∥2
≥
∑

i∈Sβ

∣∣X̂i − x̄i
∣∣2, it follows that

∥∥X̂ − x̄
∥∥2
≥ β2
|Sβ |. Thus,

using (5.23) and the norm constraint ‖x̄‖2 = n, we have

∣∣Sβ ∣∣ ≤ 1

β2

(
C

η1 − η0

ᾱ + λ

ᾱλ

√
d̄
)2

n,

for some constant C . We end the proof by noticing that d̄
ᾱ =

pin+pout
pin−pout

.

Corollary 5.6 (Almost exact recovery in the diverging degree regime). Consider a
DC-SBM such that d̄ � 1, pin+pout

pin−pout
= O(1), and

√
η0 + η1(η1 − η0) �

1√
d̄

.

Suppose that τ > pout and λ & ᾱ. Then, Algorithm 14 correctly classifies almost all
the unlabelled nodes.

Proof. With the corollary’s assumptions (η1 − η0)
2d̄ → +∞ and ᾱ+λ

λ = O(1).
Thus, by Theorem 5.5 the fraction of misclassified nodes is o(1).

The quantity (η1−η0)n is the expected difference between the number of nodes
correctly labelled and the number of nodes wrongly labelled by the oracle. In par-
ticular, Corollary 5.6 allows for a sub-linear number of labelled nodes since η0 and
η1 can go to zero.

Corollary 5.7 (Detection in the constant degree regime). Consider a DC-SBM
such that pin =

cin
n and pout =

cout
n where cin, cout are constants. Suppose that

√
η0 + η1(η1 − η0) is a non-zero constant, and let τ > 2pout and λ & 1. Then,

for (cin−cout)
2

cin+cout
bigger than some constant, w.h.p. Algorithm 14 performs better than a

random guess.

136 Graph-based Semi-supervised Learning

Proof. According to Theorem 5.5, the fraction of misclustered nodes is smaller than
1
2 when (cin−cout)

2

cin+cout
is larger than 2C

(η1−η0)2

(
ᾱ+λ
λ

)2
, which is lower bounded by a

constant.

The quantity (cin−cout)
2

cin+cout
can be interpreted as the signal-to-noise ratio. It is unfor-

tunate that Corollary 5.7 does not allow us to control the constant in the statement
of the corollary. This constant comes from concentration of the adjacency matrix.
Similar remarks were made in (Le et al., 2017) for the analysis of unsupervised
spectral clustering in the constant degree regime for SBM graphs.

5.4.4 Numerical Results

This section presents numerical experiments both on synthetic data sets generated
from DC-SBMs and on real networks. In particular, we discuss the impact of the
oracle mistakes (defined by the ratio η0

η0+η1
) on the performance of the algorithms.

Choice of λ and τ Let us denote by σ1 and σ2 the largest and second largest

eigenvalues of A. We choose τ = 4
n(σ1+σ2) and λ =

log η1
η0

log σ1+σ2
σ1−σ2

if η0 6= 0, and λ =

log(nη1)

log σ1+σ2
σ1−σ2

otherwise. The heuristic for this choice is as follows. For a SBM graph, we

have σ1 ≈
n
2

(
pin + pout

)
and σ2 ≈

n
2(pin−pout), hence 4

n(σ1+σ2) = 2pin > pout,

and τ verifies the condition of Theorem 5.5. For λ, we have
log η1

η0

log σ1+σ2
σ1−σ2

≈
log η1

η0

log pin
pout

,

which is indeed close to the expression of λ derived in Proposition 5.1 if pin, pout =

o(1).

Choice of relaxation We first compare the choice of the constraint in the con-
tinuous relaxation (5.14). Specifically, we compare the choice

∑
i x2

i = n (refered
to as standard relaxation) versus

∑
i dix2

i = 2|E | (refered to as degree-normalized
relaxation). This leads to two versions of Algorithm 14, whose cost obtained on
SBM graph with a noisy oracle is presented in Figure 5.5. In particular, we observe
that the normalized choice leads to a smaller cost. Therefore, in the following we
will only consider the version of Algorithm 14 solving the relaxed problem (5.14)
with constraint

∑
i dix2

i = 2|E | instead of
∑

i x2
i = n, as it gives better numerical

results.

Experiments on synthetic graphs We first consider clustering on DC-SBM.
We set n = 2000, pin = 0.04 and pout = 0.02. We consider three scenarios:

• In Figure 5.6(a) we consider a standard SBM (θi = 1 for all i).

Bayesian Approach to SSL and Its Theoretical Analysis 137

Figure 5.5. Cost in Algorithm 14 with the standard and degree-normalized versions of

the constraint, on 50 realizations of SBM with n = 500, pout = 0.03 and 50 labelled nodes

with 10% noise.

(a) SBM (b) Normal Degree (c) Pareto Degree

Figure 5.6. Average accuracy obtained by different semi-supervised clustering methods

on DC-SBM graphs, with n = 1000, pin = 0.04 and pout = 0.02 with different distributions for θ .

The number of labelled nodes is equal to 40. Accuracies are computed on the unlabelled

nodes and are averaged over 50 realisations; the error bars show the standard error.

• In Figure 5.6(b) we generate θi according to |N (0, σ 2)|+1−σ
√

2/π where
|N (0, σ 2)| denotes the absolute value of a normal random variable with mean
0 and variance σ 2. We take σ = 0.25. Note that this definition enforces
Eθi = 1.

• In Figure 5.6(c) we generate θi from Pareto distribution with density function
f (x) = ama

xa+1 1(x ≥ m) with a = 3 and m = 2/3 (chosen such that Eθi = 1).

We compare the performance of Algorithm 14 (called map-relaxed in the fig-
ures) with Poisson learning (Algorithm 10) and constrained spectral clustering (Algo-
rithm 11, abbreviated as csc). Results are shown in Figure 5.6. While map-relaxed
and csc limit the decrease of accuracy when the noise increase, the performance of
csc is quite poor on those synthetic data sets. Furthermore, we notice that Poisson
learning also gives poor result on the synthetic data sets, and its performance further
deteriorates with noise.

Experiments on MNIST data set As a real-life example, we perform simu-
lations on the standard MNIST data set (LeCun et al., 1998). As preprocessing,

138 Graph-based Semi-supervised Learning

(a) Digits (2,4). (b) Digits (7,8).

Figure 5.7. Average accuracy obtained on a subset of the MNIST data set by different

semi-supervised algorithms as a function of the oracle-misclassification ratio, when the

number of labelled nodes is equal to 10. Accuracy is averaged over 50 random realizations,

and the error bars show the standard error.

(a) Algorithm 14. (b) Poisson learning.

Figure 5.8. Average accuracy obtained on the unlabeled, correctly labeled, and wrongly

labelled nodes by the oracle. Simulations are done on 1000 digits (2,4). The noisy oracle

correctly classifies 24 nodes and misclassifies 16 nodes, and the boxplots show 100 real-

izations.

we select 1000 images corresponding to two digits and compute the k-nearest-
neighbors graph (we take k = 8) with gaussian weights wij = exp

(
−‖xi − xj‖

2/s2i
)

where xi represents the data for image i and si is the average distance between xi and
its K -nearest neighbors. Accuracy for different digit pairs is given in Figure 5.7. We
notice that the performance of the three algorithms are excellent. But, under large
oracle noise, the accuracy of Poisson learning decreases more than the accuracy of
Algorithm 14 or constrained spectral clustering.

To further highlight the influence of the noise, we plot in Figure 5.8 the accuracy
obtained by the three algorithms on the unlabelled nodes, the correctly labelled
nodes, and the wrongly labelled nodes. While the accuracy of Poisson learning
is excellent on the unlabelled nodes, it fails at correctly classifying the wrongly
labelled nodes. On the contrary, Algorithm 14 allows for a smoother recovery: the
unlabeled, correctly labeled, and wrongly labelled nodes have roughly the same

Bayesian Approach to SSL and Its Theoretical Analysis 139

classification accuracy. While some correctly labelled nodes are misclassified, many
wrongly labelled nodes become correctly classified, and the unlabelled nodes are
better recovered.

Further Notes

In many networks, such as social networks, citation networks and knowledge
graphs, the nodes have features. Thus, it is very natural to try to take into account
both the graph structure and the features. This idea has been implemented in Graph
Neural Networks (GNNs). Scarselli et al., 2008 were probably the first to propose
a framework for the design of GNNs. Then, Defferrard et al., 2016 elaborated
an efficient implementation of GNN using graph Fourier transform, and Kipf
and Welling, 2017 have developed GNN in the semi-supervised learning context.
Several works made nice connections between Personalized PageRank and GNNs:
Klicpera et al., 2019, Bojchevski et al., 2020, Chien et al., 2020. Recently, many
works have been published on this topic and an interested reader can find compre-
hensive reviews in (Wu et al., 2020; Zhou et al., 2020).

In addition to the analysis presented in Section 5.4, the methods of random
matrix theory have also been applied to semi-supervised learning in (Mai and Couil-
let, 2018, 2021).

With the advance of high-performance computing and cloud computing, one
needs to consider parallel computation approaches to graph-based semi-supervised
learning. A few examples of such approaches are presented in (Avrachenkov et al.,
2016a; Ravi and Diao, 2016; Chen et al., 2020).

DOI: 10.1561/9781638280514.ch6

Chapter 6

Community Detection in Temporal
Networks

Previous chapters focus on the study of static interactions, represented by a binary
number or a positive weight. Nevertheless, in many application domains, interac-
tions vary over time. The longitudinal nature of such datasets calls for replacing
classical graph-based models with temporal network models represented by tensors
(Holme and Saramäki, 2012; Kivelä et al., 2014). We note that taking into account
the temporal aspects not carefully, e.g., by aggregating or smoothing the temporal
data along the time axis, can lead to a loss of valuable information.

The problem of community detection in temporal networks has recently
attracted a considerable amount of attention from the scientific community. While
it led to many interesting results, it also led to an explosion of disparate terminolo-
gies and algorithms.

In this chapter, we will first unify existing models of temporal networks with
communities into a single framework. Then, we will show that the existing works
can be grouped into two large categories: models with fixed community member-
ships and models with time-varying community memberships. We will then study
each of these cases separately.

140

http://dx.doi.org/10.1561/9781638280514.ch6

A General Model of Temporal Networks with Communities 141

6.1 A General Model of Temporal Networks with
Communities

6.1.1 Membership and Interaction Structures

We consider a block model for temporal networks with n nodes, K blocks and T
temporal snapshots. The observed data consists of a list of T adjacency matrices(
A1, . . . , AT

)
, where each matrix At

∈ {0, 1}n×n describes a snapshot of the net-
work at a particular time instant. Furthermore, at time t the node set is partitioned
into K latent communities, and we denote by Zit the label of node i at time t.

The matrix Z ∈ [K]n×T represents the membership structure. Each column Z·t ∈
[K]n consists of the community labels of the nodes at a given time t, while the row
Zi· ∈ [K]T represents the membership pattern of node i (i.e., the evolution of the
community label for node i).

We assume that the node membership patterns are independent and distributed
according to a probability distribution p over [K]T . Therefore,

P(Z) =
n∏

i=1

p (Zi·) . (6.1)

Conditionally on the block membership structure Z , we want to generate a ran-

dom tensor A =
(

At
ij

)
∈ {0, 1}n×n×T , indexed by node pairs {i, j} and time

t, and verifying At
ij = At

ji, such that the pattern interactions between node pairs

are independent. We denote by Bk1:T ,`1:T
(
x1:T

)
the probability of observing an

interaction pattern x1:T
∈ {0, 1}T between a pair of nodes with block patterns

k1:T
= (k1, . . . , kT) ∈ [K]T and `1:T

= (`1, . . . , `T) ∈ [K]T . The interaction
structure B is thus a collection of probability measures B =

(
Bk1:T ,`1:T

)
. Condition-

ally on B and Z , the law of the random tensor A is defined as

P(A |Z , B) =
∏

1≤i<j≤n

BZi·,Zj·

(
A1:T

ij

)
. (6.2)

The model (6.1)–(6.2) is the most general expression of a block model with
n nodes and K clusters for a temporal network with T snapshots. Since the size

of the block membership structure is K × T , there is (KT)2

2 choices of probability
measures Bk1:T ,`1:T . Keeping this full generality leads to an over-complicated model.
The following section details some particular cases of interest.

6.1.2 Examples of Temporal Network Models

Static memberships, dynamic interactions The block membership struc-
ture Z is static if the columns of the matrix Z are equal. Equivalently, the

142 Community Detection in Temporal Networks

community labelling of each node does not vary over time. In that case, we can
simply denote the static community labelling by a vector z ∈ [K]n. Furthermore,
the block interaction structure B reduces to an interaction kernel f = (fk`)k,`∈[K]

which is a collection of probability distributions onS = {0, 1}T such that fk` = f`k.
This defines the probability distribution

P (A | z) =
∏

1≤i<j≤n

fzizj

(
Aij
)

(6.3)

of a symmetric interaction tensor A ∈ Sn×n representing a temporal block model
with static community structure. The model is homogeneous if the interaction kernel
takes the form

fk` =

{
fin, if k = `,

fout, otherwise.

Here fin represents the distribution of the interactions within a block while the
interactions across blocks are distributed according to fout.

Example 6.1. Let x = (x1, . . . , xT) ∈ {0, 1}T . A temporal SBM with static mem-
bership structure has temporally independent interactions, if for all k, ` ∈ [K], we
have fk`(x) =

∏T
t=1 µk` (xt), where µk` is a probability distribution over {0, 1}. A

temporal block model with static membership structure and temporally indepen-
dent interactions corresponds to T independent observations of a binary SBM.

Example 6.2. Let x = (x1, . . . , xT) ∈ {0, 1}T . A temporal SBM with static
memberships has Markov interactions, if for all k, ` ∈ [K], we have fk` =
µk` (x1)

∏T
t=2 Pk` (xt−1, xt), where µk` is a probability distribution over {0, 1}

and Pk` is a 2-by-2 stochastic matrix representing the probability of transitions
between two consecutive snapshots. If Pk`(a, b) = µk`(b) for all k, ` ∈ [K] and
a, b ∈ {0, 1}, then we recover the model described in Example 6.1.

Temporally independent interactions The block interaction structure is tem-
porally independent, if at any time step t the binary interaction between nodes i
and j is re-sampled according to the community labelling of i and j at time t. The
law of the random tensor A is then given by

P(A |Z , B) =
∏

1≤i<j≤n

QZit ,Zjt

(
At

ij

)
(6.4)

where Q = (Qk`)k,`∈[K] is a set of distributions on {0, 1}.

Networks with Static Community Memberships 143

Markov membership structure Let z1:T
= (z1, . . . , zT) ∈ [K]T denote a

membership pattern and recall that p is the distribution of the nodes community
assignment (see equation (6.1)). The model has a Markov membership structure, if

p(z) = αz1

T∏
t=2

πzt−1,zt ,

where α is the initial probability distribution on [K] and π is a K -by-K matrix of
transitions probabilities.

Example 6.3. Let 1K = (1, . . . , 1)T be the K×1 vector of all ones. The model with
a Markov membership structure, defined by α = 1

K 1K and π = rIK +
1−r
K 1T

K 1K ,
corresponds to a model, where:

• at initial time t = 1, the community labelling of all nodes are chosen inde-
pendently and uniformly at random;

• at time t ≥ 2, with a probability r a given node i remains in the community
it was at time t − 1, while with probability 1 − r the node is assigned to a
new community chosen uniformly at random.

6.2 Networks with Static Community Memberships

6.2.1 Recovery Thresholds in SBM with Markov Interaction

The model is called Markov Stochastic Block Model, if the community memberships
are static and the temporal interactions are Markovian (see also Example 6.2). In a
homogeneous Markov SBM, the interaction kernels take the form

fin = µx1Px1,x2 · · · PxT−1,xT ,

fout = νx1Qx1,x2 · · ·QxT−1,xT ,
(6.5)

where µ, ν are the initial probability distributions on {0, 1} and P, Q are the tran-
sition probability matrices on {0, 1}.

In the sparse regime, the probability of observing a non-zero interaction between
any particular pair of nodes is small, i.e.,

max{µ1, ν1, P01, Q01} ≤ ρ. (6.6)

One particular case is to assume that for some constants u, v, p01, q01 ∈ (0,∞), we
have

µ1 = uρ, ν1 = vρ, P01 = p01ρ, Q01 = q01ρ. (6.7)

144 Community Detection in Temporal Networks

Under this assumption, the expected number of 1’s in a f -distributed signal is
E
∑T

t=1 Xt ≤ µ1 + (T − 1)P01 = O(ρT). Hence, when ρT = o(1), the proba-
bility of observing an interaction in any particular node pair is small.

The following proposition, whose proof can be found in (Avrachenkov et al.,
2022), states recovery conditions for a sparse Markov SBM when n � 1 and
T � 1. The notions of consistent and strongly consistent estimators were defined
in Section 4.4.3.

Proposition 6.1. Consider a homogeneous Markov SBM composed of n � 1 nodes,
K � 1 blocks, T � 1 snapshots, where fin and fout are Markov chain distributions
defined by (6.5) and satisfying (6.7) with a sparsity parameter ρ such that ρT � 1.
Suppose that P11 and Q11 are constants, such that (P11, Q11) 6= (1, 1), and that
(p01, P11) 6= (q01, Q11). Let

Ĩ =
(√

p01 −
√

q01
)2
+ 2
√

p01q01H2
11,

where H2
11 = 1 −

√
(1−P11)(1−Q11)

1−
√

P11Q11
is the squared Hellinger divergence between two

geometric distributions with parameters P11 and Q11. Then:

(i) a consistent estimator does not exist for ρT . 1
n and does exist for ρT � 1

n ;

(ii) a strongly consistent estimator does not exist for ρT � log n
n and does exist for

ρT � log n
n ;

(iii) in a critical regime with ρT = (1+o(1))τ log n
n for some constant τ , a strongly

consistent estimator does not exist for τ Ĩ < K and does exist for τ Ĩ > K .

The quantity ρT Ĩ corresponds to the main term in the Taylor expansion of the
Rényi divergence between two Markov chain distributions fin and fout. We refer to
(Avrachenkov et al., 2022) for more details and proofs.

Remark 6.1. We recall from Example 4.1 that consistent recovery in binary SBM
requires ρ � n−1. In particular, Proposition 6.1 shows that consistent recovery is
possible even in a very sparse regime, as long as the number of snapshots is large
enough. For example, if ρ = 1

n , then T has to be at least of the order ω(1) for
consistent recovery to be possible.

Remark 6.2. The regime with signal strength ρT = (1+ o(1))τ log n
n is an inter-

esting critical regime. Indeed, in this regime, the phase transition for strong con-
sistency occurs at τ

(√
p01 −

√
q01
)2
+ 2τ
√

p01q01H2
11 > K . By comparison, the

interesting regime for strong consistency in static SBM is ρ = (1+ o(1)) log n
n (see

Example 4.2).

Networks with Static Community Memberships 145

6.2.2 Online Likelihood-based Algorithms for Markov
Dynamics

In this section, we derive an algorithm for clustering temporal networks with static
community memberships. We consider situations in which data arrives snapshot
per snapshot and an online estimate of the community memberships is updated at
each time step.

Model parameters are known Given A1:t
=
(
A1, · · · , At

)
, we define a log-

likelihood ratio matrix by

M t
ij = log

fin
(

A1:t
ij

)
fout

(
A1:t

ij

) , (6.8)

where fin and fout are the intra- and inter-block interaction probabilities. In par-
ticular, the log of the probability of observing a graph sequence A1:t given node
labelling z equals

logP (A | z) =
1

2

∑
i

∑
j 6=i

M t
ij1(zj = zi)+

1

2

∑
i

∑
j 6=i

fout(A1:t
ij).

Therefore, given an assignment ẑt−1 computed from the observation of the t − 1
first snapshots, one can compute a new assignment ẑt such that node i is assigned
to any block k which maximises

Lt
i,k =

∑
j 6=i

M t
ijδẑt−1

j k. (6.9)

This formula is interesting only if the computation of M t can be easily done
from M t−1. This is in particular the case for the Markovian evolution. Indeed,
if fin and fout are given by (6.5), then the cumulative log-likelihood matrices
defined in equation (6.8) can be computed recursively by M t

= M t−1
+ 1t ,

where

M1
ij = log

µ

ν

(
A1

ij

)
and 1t

ij = log
P
Q

(
At−1

ij , At
ij

)
.

We summarises this in Algorithm 15. Let us emphasise that this algorithm works
in an online adaptive fashion.

The time complexity (worst case complexity) of Algorithm 15 is O(Kn2T)
plus the time complexity of the initial clustering. The space complexity is O(n2).

146 Community Detection in Temporal Networks

Algorithm 15: Online clustering for homogeneous Markov dynamics when
the block interaction parameters are known.

Input: Interaction tensor (At
ij); block interaction parameters µ, ν, P, Q ;

number of communities K ; static graph clustering algorithm algo.
Output: Node labelling ẑ =

(
ẑ1, . . . , ẑn

)
∈ [n]K .

1

Initialize: compute ẑ← algo(A1), and Mij ← log µν

(
A1

ij

)
for

i, j = 1, . . . , n.
2 for t = 2, …, T do

3 compute 1ij ← log P
Q

(
At−1

ij , At
ij

)
for i, j = 1, . . . , n;

4 update M ← M +1.
5 for i = 1, . . . , n do
6 set Lik ←

∑
j 6=i Mij δẑjk for k = 1, . . . , K ;

7 set ẑi ← arg max1≤k≤K Lik.

Return: ẑ.

In addition, we note that:

• since at each time step, 1ij can take only one of four values, these four dif-
ferent values of1ij can be precomputed and stored to avoid computing n2T
logarithms;

• the n-by-K matrix (Lik) can be computed as a matrix product L = M0Z ,
where M0 is the matrix obtained by zeroing out the diagonal of M , and Z
is the one-hot representation of ẑ such that Zik = 1, if ẑi = k, and zero,
otherwise;

• for sparse networks the time and space complexity (average complexity) can
be reduced by a factor of d/n where d is the average node degree in a single
snapshot, by neglecting the 0 → 0 transitions and only storing nonzero
entries.

Extension when the parameters are unknown Algorithm 15 requires the
a priori knowledge of the interaction parameters. This is often not the case in prac-
tice and one has to learn the parameters during the process of recovering communi-
ties. In this section, we adapt Algorithm 15 by estimating the parameters on the fly.

Let nab(i, j) be the observed number of transitions a → b in the interaction
pattern between nodes i and j, and let na(i, j) =

∑
b nab(i, j). Let P(i, j) be the 2-

by-2 matrix transition probabilities for the evolution of the pattern interaction for
a node pair (i, j). By the law of large numbers (for stationary and ergodic random

Networks with Static Community Memberships 147

processes), the empirical transition probabilities

P̂ab(i, j) =
nab(i, j)
na(i, j)

(6.10)

are with high probability close to P(i, j) for T � 1.
An estimator of P is obtained by averaging those probabilities over the pairs of

nodes predicted to belong to the same community. More precisely, after t observed
snapshots (t ≥ 2), given a predicted community assignment ẑt , we define for
a, b ∈ {0, 1},

P̂t
ab =

1∣∣∣{(i, j) : ẑt
i = ẑ(t)j

}∣∣∣
∑

(i,j) : ẑt
i=ẑ(t)j

nt
ab(i, j)

nt
a(i, j)

, (6.11)

where

nt
ab(i, j) =

t−1∑
t ′=1

1
(
At ′

ij = a
)
1
(
At ′+1

ij = b
)

is the number of a→ b transitions in the interaction pattern between nodes i and
j (with a, b ∈ {0, 1}) seen during the t first snapshots and

nt
a(i, j) =

1∑
b=0

nt
ab(i, j).

Similarly,

Q̂(t)
ab =

1∣∣∣{(i, j) : ẑt
i 6= ẑt

j

}∣∣∣
∑

(i,j) : ẑt
i 6=ẑt

j

n(t)ab (i, j)

n(t)a (i, j)
, (6.12)

is an estimator of Qab. Moreover, the quantities n(t)a,b(i, j) can be updated inductively.
Indeed,

nt+1
ab (i, j) = n(t)ab (i, j)+ 1

(
At

ij = a
)

1
(
At+1

ij = b
)
. (6.13)

Finally, the initial distribution can also be estimated by averaging:

µ̂t
=

1∣∣∣{(i, j) : ẑ(t)i = ẑt
j

}∣∣∣
∑

(i,j) : ẑ(t)i =ẑt
j

At
ij

and similarly for ν̂t . This leads to Algorithm 16, for clustering Markov SBM when
only the number of communities K is known. Note that to save computation time,
we can choose not to update the parameters at each time step.

148 Community Detection in Temporal Networks

Algorithm 16: Online clustering for homogeneous Markov dynamics when
the block interaction parameters are unknown.

Input: Observed graph sequence X 1:T
=
(
X 1, . . . , X T

)
; number of

communities K ; static graph clustering algorithm algo.
Output: Node labelling ẑ =

(
ẑ1, . . . , ẑn

)
.

1

Initialize:
• Compute ẑ← algo

(
X 1
)
;

• Let nab(i, j)← 0 for i, j ∈ [N] and a, b ∈ {0, 1}.

Update:
2 for t = 2, · · · , T do
3 For every node pair (ij), update nab(i, j) using (6.13);
4 Compute P̂, Q̂ using (6.11) and (6.12);

5 Compute M such that Mij =
∑

a,b nab(i, j) log P̂ab
Q̂ab

.

6 for i = 1, · · · , n do
7 Set Li,k ←

∑
j 6=i Mij1

(
ẑj = k

)
for all k = 1, . . . , K

8 Set ẑi ← arg max1≤k≤K Li,k

Numerical results

Evolution of accuracy with the number of snapshots Let us first study
numerically the effect of the initialization step. We plot in Figure 6.1 the evolution
of the averaged accuracy obtained when we run Algorithm 15 on 50 realizations
of a Markov SBM, where the initialization is done either using spectral cluster-
ing or by random guessing. Obviously, when spectral clustering works well (see
Figure 6.1(a)), it is preferable to use it rather than a random guess. Nonetheless,
it is striking to see that when the initial spectral clustering gives a bad accuracy,
then the likelihood method can overcome it. For example, in Figure 6.1(b), the
initial clustering with spectral clustering on the first snapshot is really bad (accu-
racy ≈ 50%, hence not much better than random guessing), Algorithm 15 does
overcome this and reaches perfect clustering after a few snapshots. In that partic-
ular setting, there is no advantage in using spectral clustering instead of random
guessing. Additionally, random guessing is faster than spectral clustering.

Unknown interaction parameters We next show in Figure 6.2 the compar-
ison of accuracy obtained by Algorithm 15 (with known interaction parameters)
and by Algorithm 16 (with unknown interaction parameters). We note that in all

Networks with Static Community Memberships 149

Figure 6.1. Evolution of the averaged accuracy given by Algorithm 15 when the initial-

isation is done via spectral clustering or random guessing. The synthetic graphs are

Markov SBM with n = 500 nodes (equally divided into two clusters), and with parame-

ters ν1 = 1.5 log n
n , P11 = 0.7 and Q11 = 0.3. Accuracy is averaged over 50 realisations, and

the error bars represent the standard error. T ∗theo is the theoretical minimum number of

time steps needed to get above the strong consistency threshold.

Figure 6.2. Comparison of accuracy obtained by online Algorithms 15 and 16 on Markov

SBMs with N = 400, K = 2 and ν1 = 0.004. Results are averaged over 25 Markov SBMs and

error bars show the standard errors.

the following numerical experiments, we will chose sparse settings in which spec-
tral clustering on a single snapshot do not provide more information than a blind
random guess. While Algorithm 15 provides better performance (as expected as it
does not have to estimate the Markov chain transition probabilities), Algorithm 16
also provides an excellent accuracy using more snapshots.

Let us finally study the performance of Algorithm 16 in Markov SBMs for which
the expected degree in a given temporal layer is less than 1. This corresponds to an
extremely sparse regime. Nontheless, as we see in Figure 6.3, Algorithm 15 performs
well, even when µ1 = ν1, as long as P11 6= Q11 (see Figure 6.3(a)). This shows
that Algorithm 16 recovers the communities very well, even in the most challenging
regimes.

150 Community Detection in Temporal Networks

Figure 6.3. Evolution of the accuracy with the number of snapshots obtained by

Algorithm 16 in an extremely sparse setting. We draw Markov SBM with N = 300 nodes,

two communities of same size and parameters ν1 =
0.1
N and P11 = 0.6. The different curves

show the average on 25 Markov SBMs and the errors bars correspond to the empirical

standard errors.

6.2.3 Spectral Methods for Clustering Temporal Networks

We introduced in Section 4.1 spectral methods for static graphs as relaxations of
various combinatorial minimisation problems. The simplest of those problems is
the min Cut, i.e.,

arg min
z∈[K]n

Cut(A, z),

where the arg min runs over all possible node labellings z ∈ [K]n of the node set
[n], and where

Cut(A, z) =
∑

i<j : zi 6=zj

Aij .

Let us now consider a temporal network represented by its list of adjacency
matrices

(
A1, . . . , AT

)
. If we assume that the temporal snapshots At are indepen-

dent of each others, one could simply generalize the classical min Cut problem by
considering

arg min
z∈[K]n

T∑
t=1

Cut
(
At , z

)
.

Since
∑T

t=1 Cut
(
At , z

)
= Cut

(∑T
t=1 At , z

)
, we would then apply a spectral

method on the time-aggregated graph (that is, the weighted graph represented by
the adjacency matrix

∑T
t=1 At).

Unfortunately, this fails at taking into account the time-correlation in the inter-
action patterns between nodes. As an example, consider a network in which

Networks with Static Community Memberships 151

the inter-community interactions are sparse and temporally independent (hence
forming spikes), while the intra-community interactions are strongly correlated
in time. Consider two node pairs whose interaction patterns are given by x1 =

(0, 1, 0, 0, 0, 0, 1, 0, 0, 1) and x2 = (0, 0, 1, 1, 1, 0, 0, 0, 0, 0). Since ‖x1‖1 =

‖x2‖1 = 3, we see that simple time-aggregation is agnostic to the different time-
patterns between time series x1 and x2 and the important information is lost.

A possible correction is to account for the persistent links. Indeed, in the above
example, since x1 (resp., x2) has zero (resp., two) transitions 1→ 1, we might guess
than x2 comes from an interaction between nodes belonging to same community.
Formally, this can be done by considering

arg min
z

T∑
t=1

Cut
(
At , z

)
+ α

T∑
t=2

PerCut
(
At−1, At , z

)
,

where

PerCut
(
At−1, At , z

)
=

∑
i,j : zi 6=zj

At−1
ij At

ij

counts the number of persistent links in the cut from time t − 1 to time t. We
further notice that

PerCut
(
At−1, At , z

)
= Cut

(
At−1
� At , z

)
where � denotes the matrix element-wise product. The following section justifies
the intuition of considering persistent edges for clustering temporal networks.

Degree-corrected temporal SBM with Markov edge dynamics Let us
firstly present a degree-corrected version of the Markov SBM. A degree-corrected
temporal stochastic block model with n nodes, K blocks and T snapshots can be
described by the probability distribution

P(A |Z , F , θ) =
∏

1≤i<j≤n

F
θiθj
zizj

(
A1

ij , . . . , AT
ij

)
(6.14)

of a symmetric adjacency tensor A ∈ {0, 1}n×n×T with zero diagonal entries, where
z = (z1, . . . , zn) is a community assignment with zi ∈ [K] indicating the commu-
nity of node i, F =

(
F

xy
k`

)
is a collection of probability distributions over {0, 1}T ,

and θ = (θ1, . . . , θn) is a vector of node-specific degree correction parameters, with
0 ≤ θi <∞.

In the following, we will restrict ourselves to homogeneous inter-block interac-
tions with Markov edge dynamics, for which the nodes’ static community labellings

152 Community Detection in Temporal Networks

are sampled uniformly at random from the set [K] of all node labellings, and

F
θiθj
zizj (x) =

µ
θiθj
x1

∏T
t=2 P

θiθj
xt−1,xt if zi = zj ,

ν
θiθj
x1

∏T
t=2 Q

θiθj
xt−1,xt otherwise,

(6.15)

with initial distributions

µθiθj =

(
1− θiθjµ1

θiθjµ1

)
, νθiθj =

(
1− θiθjν1

θiθjν1

)
,

and transition probability matrices

Pθiθj =

(
1− θiθjP01 θiθjP01

1− P11 P11

)
, Qθiθj =

(
1− θiθjQ01 θiθjQ01

1− Q11 Q11

)
.

The parameters θi, i = 1, . . . , n account for the fact that some nodes can be more
prone than others to start new connections, similarly to the degree-corrected block
model (Karrer and Newman, 2011). To keep the model simple, we do not add
degree correction parameters in front of P11; hence once a connection started,
the probability to keep it active is simply P11 or Q11. Moreover, we assume that
mini,j{θiθjδ} ≤ 1, where δ = max{µ1, ν1, P01, Q01}. Finally, we normalise the
degree correction parameters so that

∑
i 1(zi = k)θi =

∑
i 1(zi = k) for all k.

Maximum likelihood estimator

Proposition 6.2 (Avrachenkov et al., 2021b). Let ρ
θiθj
a = log µ

θiθj
a

ν
θiθj
a

and `
θiθj

ab =

log
P
θiθj
ab

Q
θiθj
ab

−log
P
θiθj
00

Q
θiθj
00

. A maximum likelihood estimator for the Degree Corrected Markov

SBM defined by (6.14)–(6.15) is any community assignment ẑ that maximises

∑
i,j

zi=zj

{
A1

ij

(
ρ
θiθj
1 − ρ

θiθj
0

)
+ ρ

θiθj
0 +

(
A1

ij − AT
ij

)
`
θiθj
10

}
+

∑
i,j

zi=zj

T∑
t=2

{(
`
θiθj
01 + `

θiθj
10

) (
At

ij − At−1
ij At

ij

)
+ `

θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}

over all community assignments z ∈ [K]n.

Networks with Static Community Memberships 153

Proof. By the temporal Markov property, the log-likelihood of the model can be
written as logP(A | z, θ) = logP(A1

| z, θ)+
∑T

t=2 P(At
|At−1, z, θ). By denoting

ρ
θiθj
a = log µ

θiθj
a

ν
θiθj
a

, we find that

logP(A1
| z, θ) =

1

2

∑
i,j

∑
a

δ(A1
ij , a)

(
δ(zi, zj)ρ

θiθj
a + log ν

θiθj
a

)

=
1

2

∑
i,j

δ(zi, zj)
∑

a

δ(A1
ij , a)ρ

θiθj
a + c1(A),

where c1(A) = 1
2

∑
i,j
∑

a δ(A
1
ij , a) log ν

θiθj
a does not depend on the com-

munity structure. Similarly, by denoting R
θiθj

ab = log
P
θiθj
ab

Q
θiθj
ab

, we find that

logP(At
|At−1, z, θ) is equal to

1

2

∑
i,j

∑
a,b

δ(At−1
ij , a)δ(At

ij , b)
(
δ(zi, zj)R

θiθj

ab + log Q
θiθj

ab

)

=
1

2

∑
i,j

δ(zi, zj)
∑
a,b

δ(At−1
ij , a)δ(At

ij , b)R
θiθj

ab + ct(A),

where ct(A) = 1
2

∑
i,j
∑

a,b δ(A
t−1
ij , a)δ(At

ij , b) log Q
θiθj

ab does not depend on the
community structure. Simple calculations show that∑

a

δ(A1
ij , a)ρ

θiθj
a = A1

ij(ρ
θiθj
1 − ρ

θiθj
0)+ ρ

θiθj
0 ,

and that
∑

a,b δ(A
t−1
ij , a)δ(At

ij , b)R
θiθj

ab is equal to

R
θiθj
00 + At−1

ij

(
R
θiθj
10 − R

θiθj
00

)
+ At

ij
(
R
θiθj
01 − R

θiθj
00

)
+ At−1

ij At
ij
(
R
θiθj
11 − R

θiθj
01 − R

θiθj
10 + R

θiθj
00

)
R
θiθj
00 + At−1

ij `
θiθj
10 + At

ij`
θiθj
01

+ At−1
ij At

ij
(
`
θiθj
11 − `

θiθj
01 − `

θiθj
10

)
.

154 Community Detection in Temporal Networks

By collecting the above observations, we find that logP(A | z, θ) is equal to

c(A)+
1

2

∑
i,j

zi=zj

{
A1

ij(ρ
θiθj
1 − ρ

θiθj
0)+ ρ

θiθj
0 + (A1

ij − AT
ij)`

θiθj
10

}

+
1

2

∑
i,j

zi=zj

T∑
t=2{

(`
θiθj
01 + `

θiθj
10)

(
At

ij − At−1
ij At

ij

)
+ `

θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
,

where c(A) =
∑

t ct(A) does not depend on z. Hence the claim follows.

The MLE derived in Proposition 6.2 is more complex than that obtained by
summing all snapshots independently. In particular, the terms At−1

ij At
ij account for

persistent edges over two consecutive snapshots. Denote by At
pers = At−1

� At the
entrywise product of adjacency matrices At−1 and At . Then At

pers is the adjacency
matrix of the graph containing the persistent edges between t−1 and t, and At

new =

At
− At

pers corresponds to the graph containing the freshly appearing edges between
time t − 1 and time t.

Assuming that the number of snapshots T is large, we can ignore the boundary
terms, and the MLE expressed in Proposition 6.2 reduces to maximising

T∑
t=2

∑
i,j

zi=zj

((
`
θiθj
01 + `

θiθj
10

) (
At

ij − At−1
ij At

ij

)
+ `

θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

)
.

This expression can be further simplify to be expressed as a regularized modu-
larity. Recall given a weighted graph W , a partition z and a resolution parameter
γ , the regularised modularity is defined as (see Section 4.2 and equation (4.21))

M (W , z, γ) =
∑

i,j

δ(zi, zj)

(
Wij − γ

didj

2m

)
,

where di =
∑

j Wij and m = 1
2

∑
i di.

Lemma 6.1. Suppose that Pθiθj and Qθiθj are non-degenerate, and µθiθj (resp., νθiθj)
is the stationary distribution of Pθiθj (resp., Qθiθj). In a sparse setting, where P01 and
Q01 are small, the MLE approximately maximises M(W , z, γ), where W is defined

Networks with Static Community Memberships 155

by

W =

T∑
t=2

(
αAt

new + βAt
pers

)
, (6.16)

with

α = log
P01

Q01
+ log

1− P11

1− Q11
, and β = log

P11

Q11
, (6.17)

and γ = (P01 − Q01)
α(µ1+(K−1)ν1)+(β−α)(µ1P11+(K−1)ν1Q11)

K .

Proof. Because P01, Q01 = o(1), a first-order Taylor expansion yields

log
1− θiθjQ01

1− θiθjP01
= θiθj (P01 − Q01)+ o

(
P2

01 + Q2
01

)
,

as well as `
θiθj
01 ≈ log P01

Q01
, `

θiθj
10 ≈ log 1−P11

1−Q11
and `

θiθj
11 ≈ log P11

Q11
. Using these

approximations in the MLE expression leads to maximising

T∑
t=2

∑
i,j

δ(zi, zj)
(

ãt
ij − θiθj (P01 − Q01)

)
(6.18)

where ãt
ij = α

(
At

new

)
ij + β

(
At

pers

)
ij
. Since µ and ν are stationary distributions,

E
(
At

new

)
ij =

θiθjµ1(1− P11) if zi = zj ,

θiθjν1(1− Q11) otherwise,

E
(

At
pers

)
ij
=

θiθjµ1P11 if zi = zj ,

θiθjν1Q11 otherwise.

Therefore, using Wij =
∑T

t=2 ãij , we obrain

EWij =

(T − 1)θiθjµ1 (α(1− P11)+ βP11) if zi = zj ,

(T − 1)θiθjν1 (α(1− Q11)+ βQ11) otherwise.

Since the community labelling is sampled uniformly at random, and θi’s are prop-
erly normalised, the expected degree d̄ i is equal to

(T − 1)θin
µ1 (α(1− P11)+ βP11)+ (K − 1)ν1 (α(1− Q11)+ βQ11)

K
,

156 Community Detection in Temporal Networks

together with m̄ =
n2

2
µ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)

K . Hence, we

observe that θiθj(P01 − Q01) = γ
d̄ i d̄ j
2m̄ where γ = (P01 − Q01)(T − 1)

µ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)
K . We end the proof using

equation (6.18).

Temporal spectral clustering combining new and persistent edges Fol-
lowing our analysis of the previous section, the MLE is approximately given by the
solution of

arg max
z∈[K]n

M(W , z, γ),

where W is defined in Equation (6.16) and γ is an appropriate resolution param-
eter. This optimisation problem is NP-complete in general (Brandes et al., 2007),
but can be approximately solved by continuous relaxation. We can choose the relax-
ation so that the optimisation problem reduces to normalised spectral clustering
algorithm on the weighted graph W (see Section 4.4.2). We note that in order to
compute the normalized Laplacian of W , we should restrict α,β ≥ 0, which is not
necessarily guaranteed by formula (6.17). We summarize this in Algorithm 17.

Algorithm 17: Spectral clustering for temporal networks with Markov edge
dynamics and static node labelling.

Input: adjacency matrices A1, · · · , AT , number of clusters K ,
parameters α,β.

Output: predicted community labels ẑ ∈ [K]N .
Process:

• let W =
∑T

t=2(αAt
new + βAt

pers), where At
new = At

− At−1
� At

and At
pers = At−1

� At ;

• compute L = In − D−1/2WD−1/2 where D = diag(W 1n);
• compute X̂ ∈ RN×K whose columns consist of the K orthonormal

eigenvectors of L associated to the K smallest eigenvalues.

Return: ẑ← k-means
(
D−1/2X̂ , K

)
.

Numerical results

Synthetic data We first examine the effect of the choice of the parameters α and
β in Algorithm 17. For this, we let α = 1 and we plot in Figure 6.4 the averaged
accuracy obtained on 25 realizations of stochastic block models with Markov edge
dynamics for various β. While spectral clustering on the time-aggregated graph

Networks with Static Community Memberships 157

Figure 6.4. Accuracy of Algorithm 17 on a temporal SBM with 300 nodes, K = 3 blocks,

and a stationary Markov edge evolution µ1 = 0.04, ν1 = 0.02 and Q11 = 0.3. The results are

averaged over 25 synthetic graph realizations, and error bars show the standard deviation.

(corresponding to β = 1) works well, it is striking to notice that other values of
β give even better results. The choice of β depends on the probabilities of per-
sistent interactions. For example, if P11 > Q11 (Figure 6.4(a)), then β > 1 is
preferred, while if P11 < Q11 (Figure 6.4(b)), the choices of large β are penal-
ized. This is in accordance with the recommended values of α and β derived in
formula (6.17).

Social networks of high school students We investigate three data sets col-
lected during three consecutive years from a high school Lycée Thiers in Marseilles,
France (Fournet and Barrat, 2014; Mastrandrea et al., 2015). We presented these
data sets in the introduction. In particular, nodes correspond to students, interac-
tions to close-proximity encounters, and communities to classes, with dimensions
given in Table 1.1.

We make a hypothesis that the temporal characteristics of the interactions are
similar each year. We then use the 2011 data set to estimate the transition probabil-
ity matrices P and Q , and use these for clustering the 2012 and 2013 data sets. We
assume that θi = 1 (no degree correction). A standard estimator of Markov chain
transition probability matrices (Billingsley, 1961) gives

P̂ =
(

0.9992 0.0008
0.37 0.63

)
and Q̂ =

(
0.999967 3.3× 10−5

0.48 0.52

)
.

Using (6.17), leads to α̂ = 2.9 and β̂ = 0.18. We observe in Figure 6.5(b) that
this choice of parameters gives a better accuracy on the 2013 data set than simply
applying spectral clustering on the time-aggregated graph (α = β = 1). For the
2012 data set (Figure 6.5(a)), this improvement is not so clearly visible.

To understand why Algorithm 17 performs better for 2013 than for 2012, we
have listed in Table 6.1 temporal transition probabilities and clustering weights
α̂, β̂ estimated separately for each data set. For year 2012, the difference between

158 Community Detection in Temporal Networks

Figure 6.5. Accuracy of Algorithm 17 on the 2012 and 2013 high school data sets, using

uniform α = β = 1 (blue) and adjusted α,β, whose values are predicted using 2011 data

(orange).

Table 6.1. Markov chain transition probabilities and adjusted clustering weights estimated

separately for each data set.

Dataset P̂01 Q̂01 P̂11 Q̂11 α̂ β̂ β̂/α̂

2011 0.00080 0.000033 0.63 0.52 2.9 0.58 0.060

2012 0.00050 0.000011 0.57 0.56 3.8 0.01 0.003

2013 0.00150 0.000014 0.64 0.40 4.5 0.07 0.015

intra-community edge persistence P̂11 and inter-community edge persistence Q̂11

is small, implying that persistent edges do not add much extra information for
distinguishing communities (β̂ ≈ 0). For years 2011 and 2013, this difference is
larger, manifesting that edge persistence contains information that can be employed
to recover communities with a higher accuracy.

6.2.4 Clustering for Long Time Horizon Using Empirical
Transition Rates

We continue to study the temporal SBM with static memberships and homoge-
neous Markov interaction kernels, as defined in Example 6.2. We denote by P, Q
the transition probability matrices. Let us consider the situation when the number
of snapshots T goes to infinity while N remains bounded. The main idea is to use
the ergodicity of the Markov chains to estimate the parameters using standard tech-
niques, and then perform inference. For now, we will assume that the interaction
parameters P, Q are known, but K is unknown. We refer to Remark 6.3 when P, Q
are unknown as well.

Recall that formula (6.10) gave consistent estimators for P(i, j), the matrix of
transition probabilities for the evolution of the pattern interaction between a node
pair (i, j). Then, once all P(i, j) are known with a good precision, we can use our
knowledge of P, Q to distinguish whether nodes i and j are in the same block or

Networks with Static Community Memberships 159

not, and use this data to construct a similarity graph on the set of nodes. This leads
to Algorithm 18 which does not require a priori knowledge about the number of
blocks, but instead estimates it as a by-product. Note that this algorithm is tailor-
made for homogeneous interaction arrays.

Algorithm 18: Clustering by empirical transition rates.

Input: observed interaction tensor
(

At
ij

)
; transition probability matrices

P, Q .
1 .Output: estimated node labelling ẑ = (ẑ1, . . . , ẑn); estimated number of

communities K̂ .
2

3 V ← {1, . . . , n} and E ← ∅.
4 for all unordered node pairs ij do
5 compute P̂ab(i, j) for a, b = 0, 1 using (6.10).
6 if |̂Pab(i, j)− Pab| ≤

1
2 |Pab − Qab| for some a, b then

7 set E ← E ∪ {ij}.

8 Compute C ← set of connected components in G = (V , E) and set K̂ ←
|C| and (C1, . . . , CK̂)← members of C listed in arbitrary order.

9 for i = 1, . . . , n do
10 ẑi ← unique k for which Ck 3 i.

Theorem 6.2. Consider a homogeneous Markov SBM with n nodes, K communities
and T snapshots. Assume that n is fixed, and the transition probability matrices P, Q
are known. Then with high probability Algorithm 18 correctly classify every node when
T goes to infinity, as long as the evolution is not static and P 6= Q.

Proof. For a, b ∈ {0, 1}, let na(i, j) =
∑

b nab(i, j) where nab(i, j) counts the
observed number of transitions a → b between a node pair (i, j). The distri-

bution of the random variable ξab(i, j) = nab(i,j)−na(i,j)Pab(i,j)√
na(i,j)

tends to a nor-

mal distribution with the zero mean and finite variance given by λ(ab),(cd) =

δac
(
δbd Pab(i, j) − Pab(i, j)Pa,d (i, j)

)
(see Billingsley, 1961, Theorem 3.1 and for-

mula (3.13)). Therefore, for any α > 0,

P
(
|̂Pab(i, j)− Pab(i, j)| ≥ α

)
= P

(
|ξab(i, j)| ≥ α

√
na(i, j)

)
, (6.19)

and this quantity goes to zero as T goes to infinity.
From model identifiability, P 6= Q . Therefore, without loss of generality, we

can assume P01 6= Q01, and choose α such that 0 < α < P01−Q01
2 . The nodes i

160 Community Detection in Temporal Networks

and j are predicted to be in the same community if P̂01(i, j) > P01+Q01
2 , and the

probability of making an error is

P
(∣∣̂P01(i, j)− P01(i, j)

∣∣ ≥ α) .

By the union bound, the probability that all nodes are correctly classified is
bounded by

n(n− 1)

2
max

ij
P
(∣∣̂P01(i, j)− P01(i, j)

∣∣ ≥ α) ,

where the maximum is taken over all nodes pair ij. By equation (6.19), for all node

pairs ij, we have P
(
|̂P01(i, j)− P01(i, j)| ≥ α

)
→ 0. Therefore, all nodes are a.s.

correctly classified as T →∞.

Remark 6.3. If P and Q are unknown, we can add a step, where the estimated tran-
sition matrices, P̂(i, j), are clustered into two classes (for example using k-means).

6.3 Markovian Evolution of Community
Memberships

This section focuses on clustering temporal networks, whose membership structure
follows a Markov chain, but the interaction structure is time independent. Specif-
ically, we denote by zit ∈ [K] the group membership of node i at time t. Then,
across nodes, the random variables (zit)1≤t≤T are independent and identically dis-
tributed. For each node i, the group membership zi· = (zi1, · · · , ziT) follows an
irreducible and aperiodic Markov chain, given by

P (zi·) = αzi1

T∏
t=2

πzi,t−1,zit , (6.20)

where α is the initial distribution and π is the transition probability matrix. Con-
ditioned on the node labels, the edges are independent, and for all i < j and all t,
we have

At
ij | zit , zjt ∼ Ber

(
pzit zjt

)
.

Markovian Evolution of Community Memberships 161

The likelihood of the sequence of adjacency matrices A1:T
=
(
A1, · · · , AT

)
is

therefore

P
(

A1:T
|Z
)
=

n∏
i=1

α (zi1)

T∏
t=2

πzi,t−1,zit

T∏
t=1

∏
i<j

p
At

ij
zit zjt (1− pzit zjt)

1−At
ij .

6.3.1 Variational Expectation–Maximization Algorithm

Let us first assume that K is known, and that α is the stationary distribution of π .
We aim at estimating the group memberships Z = (zit)1≤i≤n,1≤t≤T as well as the
model parameters θ = (π , P) where P =

(
pk`
)

k,`∈[K].
While the global maximisation of the likelihood is intractable when n or T are

large, the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) pro-
vides a way to find local maxima. EM algorithm computes the conditional distri-
bution of Z given the observation A1:T . However, in our case this distribution does
not factor into a product over the n nodes because of dependencies. Indeed, we have

P
(

Z |A1:T
)
= P

(
z·1 |A1) T∏

t=2

P
(
z·t | z·t−1, At) ,

where z·t = (z1t , · · · , znt) denotes the community labels at time t. Unfortu-
nately, the distribution P

(
Z t
|Z t−1, At

)
cannot be further factored as the random

variables zit |At
ij and zjt |At

ij are not independent. Indeed, by observing an edge
between i and j at time t the likelihood that zit = zjt increases. The variational
approximation introduces a class of probability distributions Q such that

Qτ (Z) =
n∏

i=1

Qτ (zi·) =

n∏
i=1

Qτ (zi1)

T∏
t=2

Qτ (zit | zit−1) .

We introduce τ(i, k) = Q (zi1 = k) and τ(t, i, k, `) = Q (zit = ` | zit−1 = k).
Thus, under Q, the distribution of (zi1, . . . , ziT) is a time-inhomogeneous Markov
chain with transitions τ(t, i, k, `) and initial distribution τ(i, k). In particular,∑K

k=1 τ(i, k) = 1 and
∑K
`=1 τ(t, i, k, `) = 1 and

Q(Z) =
n∏

i=1

K∏
k=1

τ(i, k)1(zit=k)
T∏

t=2

∏
1≤k,`,K

τ(t, i, k, `)1(zit−1=k)1(zit=`).

162 Community Detection in Temporal Networks

The marginal distribution τmarg(t, i, k) = Q (zit = k) are computed recursively by

τmarg(t, i, k) = τ(i, k),

τmarg(t, i, k) =
K∑
`=1

τmarg(t − 1, i, `)τ (t, i, `, k).

Variational Expectation-Maximization (VEM) algorithm (Matias and Miele,
2017) then seeks to maximise

J (θ , τ) = EQ
(

logP
(

A1:T , Z
))
+H (Q) ,

where H (Q) denotes the entropy of Q. Hence, J (θ , τ) is equal to

n∑
i=1

K∑
k=1

τ(i, k)
[
log αk − log τ(i, k)

]

+

T∑
t=2

n∑
i=1

∑
1≤k,`≤K

τmarg(t − 1, i, k)τ (t, i, k, `)

×
[
logπk` − log τ(t, i, k, `)

]
+

T∑
t=1

∑
1≤i<j≤n

∑
1≤k,`≤K

τmarg(t, i, k)τmarg(t, j, `)

× log
(

Ber
(

pzit zjt

) (
At

ij

))
,

with

Ber
(

pzit zjt

) (
At

ij

)
=

{
pzit zjt if At

ij = 1,

1− pzit zjt otherwise.

The optimisation is done iteratively. At step k, with current estimates
(
τ k, θk

)
, we

perform the two following sub-steps:

1. VE-step: compute τ k+1
= arg maxτ J

(
θk, τ

)
;

2. M-step: compute θk+1
= arg maxθ J

(
θ , τ k+1

)
.

The following lemma provides the value of the updates τ k+1 and θk+1.

Lemma 6.3. The value τ̂ = arg max
τ

J (θ , τ) verifies

τ̂ (t, i, k, `) ∝ πk`

n∏
j=1

K∏
k′=1

(
Ber

(
pzit zjt

) (
At

ij

))τ̂marg(t,j,k′)
,

Markovian Evolution of Community Memberships 163

where the proportionality insures the normalisation constraints on τ . Similarly, θ̂ =
arg max

θ

J (τ , θ) is given by θ̂ =
(
π̂ , P̂

)
such that

π̂k` ∝

T∑
t=2

n∑
i=1

τmarg(t − 1, i, k)τ (t, i, k, `),

p̂k` =

∑T
t=1

∑
1≤i,j≤n τmarg(t, i, k)τmarg(t, i, `)1

(
At

ij 6= 0
)

∑T
t=1

∑
1≤i,j≤n τmarg(t, i, k)τmarg(t, i, `)

.

Proof. The proof follows from a direct derivation of J (τ , θ). For example, we have

∂J
∂τ(t, i, k, `)

= τmarg(t − 1, i, k)
[
logπk` − log τ(t, i, k, `)+ 1

]
+ τ(t, i, k, `)τmarg(t − 1, i, k) log

(
Ber

(
pzit zjt

) (
At

ij

))
and equating this derivative to zero leads to the stated expression for τ̂ (t, i, k, `).

Finally, α is obtained by computing the empirical mean of the distribution τ̂marg

over all data points, i.e.,

∀k ∈ [K] : αk =
1

nT

T∑
t=1

n∑
i=1

τ̂marg(t, i, k).

6.3.2 Belief Propagation Using the Space-time Graph

While the maximum likelihood estimator finds the membership structure that max-
imises the likelihood by solving arg maxZ P

(
A1:T
|Z
)
, we will here instead try to

find, for every node, the block assignment that maximises its marginal likelihood.
More precisely, the marginal likelihood ψ i

k(t) is the probability that node i belongs
at time t to block k according to the posterior distribution, and is given by

ψ i
k(t) = P

(
zit = k |A1:T

)
.

Then, for every time t we will assign node i to be in block ẑit such that

ẑit = arg max
k∈[K]

ψ i
k(t).

To compute the marginals, we model as if every neighbors j of a given node i at

time t sends a message ψ
i→j
k (t), which is an estimate of the probability that i is in

community k if node j was not here.

164 Community Detection in Temporal Networks

Since the graph is temporal, we also have to take into account the temporal
evolution. More precisely, at time t each node i receives a message from its past and
future copies, denoted by ψ i(t−1)→i(t) and ψ i(t)→i(t+1).

The update equation for the spatial messages is

ψ
i→j
k (t) ∝

(∑
`

πk`ψ
i(t−1)→i(t)
`

)(∑
`

π`kψ
i(t+1)→i(t)
`

)
×

∏
j : At

ij=1
j 6=i

∑
`

pk`ψ
j→i
` (t)

where the proportionality hides a factor imposing the normalisation condition∑
k ψ

i→j
k = 1. The update equation omits the non-edges, as in sparse networks

they can be approximated as a global interaction. Moreover, the update equation

for ψ
i→j
k (t) does not involve the message that j sends to i, to avoid any “echo

chamber” effect, where information would be amplified between i and j in a noisy
fashion (for more details see Moore, 2017). In the similar fashion, the update equa-
tion for temporal messages is given by

ψ
i(t)→i(t+1)
k ∝

(∑
`

πk`ψ
i(t−1)→i(t)
`

) ∏
j : At

ij=1

∑
`

pk`ψ
j→i
` (t)

and a similar expression also holds for ψ i(t−1)→i(t)
k .

Belief propagation consists of initializing the messages randomly and then repeat-
edly updating them with the update equations. This is typically done asyn-
chronously, by first choosing a node i and a time t uniformly at random and updat-

ing ψ
i→j
k (t) for all j and k, as well as ψ i(t)→i(t+1)

k and ψ i(t−1)→i(t)
k . When conver-

gence occurs, we compute the marginal of each vertex using

ψ i
k(t) ∝

(∑
`

πk`ψ
i(t−1)→i(t)
`

)(∑
`

πk`ψ
i(t+1)→i(t)
`

)
×

∏
j : At

ij=1

∑
`

pk`ψ
j→i
` (t).

We finish this section by noticing that when π = rIK +
1−r
K 1T

K 1K , we have∑
`

πk`ψ
i(t−1)→i(t)
` = rψ i(t−1)→i(t)

k +
1− r

K
,

∑
`

πk`ψ
i(t+1)→i(t)
` = rψ i(t+1)→i(t)

k +
1− r

K
,

Markovian Evolution of Community Memberships 165

which further simplifies the update equations. Furthermore, in a homogeneous
model (pk` = pin if k = ` and pout otherwise), we have∑

`

pk`ψ
j→i
` (t) = λψ

j→i
k (t)+

1− λ

K
.

6.3.3 Online Inference as a Semi-supervised Problem

The lagging problem

In a framework where community membserhips vary with time, clustering by
applying directly the time-aggregated spectral methods derived in Section 6.2.3
would fail. Indeed, time-varying community memberships lead to a contamination
of the information given by the past interactions. For example, if node i changes
its community assignment at time t1, then one should not use the interactions of
node i during the first t1 snapshots to find its community membership at time
t > t1. This lagging problem especially complicates the situation when the layers
are temporally correlated. To avoid this issue, we propose an online recovery of the
node labels. More specifically:

• at time t = 1, we use a static community detection algorithm to output ẑ·1 =
(ẑ11, · · · , ẑn1), a prediction of the initial node labels z·1 = (z11, · · · , zn1)

from the observation of the first snapshot A1;
• at time t > 1, we will use the observation of the first t snapshots A1, . . . , At

as well as the previous predictions ẑ·1, · · · ẑ·t−1. This will be treated as a semi-
supervised learning problem, where the prediction ẑ·t−1 done at the previous
time step is seen as a noisy oracle for the true node labelling z·t at time t.

From the Markov structure, the prediction at time t > 1 reduces to predicting z·t
using only the network at time t − 1 and t and the previous prediction ẑ·t−1. This
can be interpreted as a noisy semi-supervised problem with oracle (see Section 5.4),
where the previous prediction ẑ·t−1 plays the role of the oracle information for the
node labels at time t. This oracle is noisy, as it bears two kinds of potential mistakes.
Firstly, ẑ·t−1 is not necessarily exactly equal to the perfect community labelling
z·t−1. Secondly, since the node labels vary through time, z·t−1 does not precisely
correspond to z·t .

6.3.4 Degree-corrected Temporal SBM with Markov
Community Memberships

In addition to the Markov community structure described in (6.20), we will assume
for simplicity that the initial labels and the transitions are uniform, that is

α =
1

K
1K and π = ηIK +

1− η

K
1K 1T

K .

166 Community Detection in Temporal Networks

In other words, a node keeps its label with probability η ∈ [0, 1], and choose a
label uniformly at random with probability 1− η.

We then assume that the pair interaction between two nodes i and j is a Markov
process depending only on the community labelling and on some degree correction
parameters θ = (θ1, · · · , θN). In particular,

P(A | z, θ) =
∏

1≤i<j≤N

P
(

A1
ij | zi1, zj1, θi, θj

)
T∏

t=2

P
(

At
ij |A

t−1
ij , zit , zjt , θi, θj

)
.

We further consider a homogeneous model in which the initial distribution is
given by

P
(

A1
ij | zi1, zj1, θi, θj

)
=

µ
θiθj
(

A1
ij

)
, if zi1 = zj1,

νθiθj
(

A1
ij

)
, otherwise,

and the transition probabilities are given by

P
(

At
ij = b |At−1

ij = a, zit , zjt , θi, θj

)
=

{
P
θiθj

ab , if zit = zjt ,

Q
θiθj

ab , otherwise.

Similarly to Section 6.2.3, the degree-corrected initial distributions are defined by

µθiθj =

(
1− θiθjµ1

θiθjµ1

)
, νθiθj =

(
1− θiθjν1

θiθjν1

)
,

and the transition probability matrices are given by

Pθiθj =

(
1− θiθjP01 θiθjP01

1− P11 P11

)
, Qθiθj =

(
1− θiθjQ01 θiθjQ01

1− Q11 Q11

)
,

with the assumption mini,j{θiθjδ} ≤ 1, where δ = max{µ1, ν1, P01, Q01}. We
normalise the degree correction parameters so that for all k it holds that

∑
i 1(zi1 =

k)θi =
∑

i 1(zi1 = k). Finally, we suppose that the transition probabilities and
the degree-correction parameters do not vary with time, to avoid any parameter
identifiability issues (Matias and Miele, 2017).

Online Maximum A Posteriori estimator

The following proposition gives the expression of the MAP estimator for the pre-
sented online learning problem.

Markovian Evolution of Community Memberships 167

Proposition 6.3. Let s ∈ [K]n be a noisy oracle on the node labels at time t, which
is supposed to be independent of the observed interactions A. Define the rate of mistake
of s as ρ = P

(
si 6= ẑit

)
and assume this rate is the same for all nodes. A Maximum A

Posteriori estimator for the online learning problem described above is defined by

ẑ·t = arg max
z∈[K]n

P
(
z |At , At−1, s

)
and is any labelling z ∈ [K]n that maximises∑

i,j
zi=zj

{
`
θiθj
01

(
At

ij − At−1
ij At

ij

)
+ `

θiθj
10

(
At−1

ij − At−1
ij At

ij

)
+ `

θiθj
11 At−1

ij At
ij

− log
Q
θiθj
00

P
θiθj
00

}
+ 2λ

n∑
i=1

1 (zi = si) ,

where `
θiθj

ab = log
P
θiθj
ab

P
θiθj
ab

− log
P
θiθj
00

P
θiθj
00

and λ = log 1−ρ
ρ .

Proof. By Bayes’ rule,

P
(
z |At , At−1, s, θ

)
∝ P

(
At
|At−1, z, s, θ

)
P
(
z |At−1, s, θ

)
,

where the proportionality symbol hides a term P
(
At
|At−1, s, θ

)
independent of z.

Since P
(
At
|At−1, z, s, θ

)
= P

(
At
|At−1, z, θ

)
, then proceeding similarly to the

proof of Proposition 6.2, the log-likelihood term logP
(
At
|At−1, z, θ

)
can be

rewritten as

1

2

∑
i,j

zi=zj

{
`
θiθj
01

(
At

ij − At−1
ij At

ij

)
+ `

θiθj
10

(
At−1

ij − At−1
ij At

ij

)

+ `
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
.

The oracle information is equal to

P (z | s) =
n∏

i=1

P (si | zi)

P (si)
P (zi)

= (1− ρ)|{i∈[n] : zi=si}| ρ|{i∈[n] : zi 6=si}|
(

1

K

)n

=

(
ρ

1− ρ

)|{i∈[n] : zi 6=si}|

(1− ρ)n
(

1

K

)n

where we used the uniformity of the node labels.

168 Community Detection in Temporal Networks

Continuous relaxation of the MAP

For simplicity of the derivations to come, in this section we restrict the study to
K = 2.

Denote by At
pers = At−1

� At the adjacency matrix corresponding to persistent
edges, by Anew = At

− At
pers the adjacency matrix corresponding to freshly formed

edges, and by Aold = At−1
− Apers the adjacency matrix corresponding to disap-

pearing edges between time t − 1 and t. Then, using the Taylor expansion as in
Section 6.2.3, we can approximate the MAP estimator by

arg min
z∈{−1,1}n

−zT
(

W − τ
ddT

2m

)
z + λ(s − z)T (s − z) (6.21)

where W t
= α01At

new + α10At
old + α11At

pers with αab = log Pab
Qab

, τ is a resolution

parameter, di =
∑n

j=1 W t
ij , and m = 1

2

∑n
i=1 di.

This minimisation problem is analogous to the one studied in Section 5.4 for
noisy semi-supervised clustering in the DC-SBM. We can also propose the follow-
ing continuous relaxation

x̂ = arg min
x∈Rn

xT Dx=2m

−xT Mx + λ (s − x)T (s − x) ,

where D = diag(d1, · · · , dn) and M = W−τ ddT

2m . The solution of this relaxation is
determined by mimicking the reasoning of Section 5.4.2. In particular, by denoting
the eigendecomposition of D−1/2 (−M + λIn)D−1/2 by

D−1/2 (−M + λIn)D−1/2
= Q1QT

with 1 = diag(δ1, . . . , δn) and QQT
= In and letting b = λQ t s, we obtain that

x̂ verifies

(−M + λIn − γ∗D) x̂ = λs, (6.22)

where γ∗ is the smallest solution of the explicit secular equation (Gander et al., 1989)

n∑
i=1

(
bi

δi − γ

)2

− 2m = 0. (6.23)

This leads to Algorithm 19.

Markovian Evolution of Community Memberships 169

Algorithm 19: Online clustering of time-varying communities.

Input: Observed graph sequence A1:T
=
(
A1, . . . , AT

)
; number of

communities K ; static graph clustering algorithm algo; parameters
α01,α10,α11 and λ1, . . . , λT .

Output: Node labelling Z = (zit).
Initialize: Compute ẑ·t ← algo

(
A1
)
.

1 for t = 2, . . . , T do
2 Compute W = α01At

new + α10At
old + α11At

pers.

3 Compute M = W − ddT

2m where di =
∑n

j=1 Wij and m = 1
2

∑n
i=1 di.

4 Let γ ∗ be the smallest solution of Equation (6.23).
5 Compute x̂ as the solution of Equation (6.22).
6 Let ẑ·t = sign(x̂).

Numerical experiments

We compare in Figure 6.6 the averaged accuracy obtained by Algorithm 19 with
Algorithm 17 (spectral clustering with persistent edges) and an algorithm perform-
ing spectral clustering on each snapshot individually. In particular, we observe that
when η = 1 (i.e., static community structure), Algorithm 17 is extremely efficient,
as expected. Since it takes into account all previous snapshots, it in particular out-
performs Algorithm 19. On the contrary, when η 6= 1, the lagging problem arises,
and Algorithm 17 ends up with a very poor accuracy after a few snapshots. On the
contrary, Algorithm 19 keeps a very high accuracy over all snapshots.

Figure 6.6. Accuracy of Algorithm 19 (online-ssl) with α01 = 1,α10 = 0 and α11 = 2, on

time-varying Markov Block Models with 300 nodes and K = 2 blocks (with uniform prior),

and a stationary Markov edge evolution µ1 = 0.05, ν1 = 0.02, P11 = 0.7 and Q11 = 0.3. The

results are averaged over 25 synthetic graphs, and error bars show the standard error. We

compare with Algorithm 17 (weighted SC with α = 1,β = 2) and an algorithm performing

Spectral Clustering on each snapshot individually.

170 Community Detection in Temporal Networks

Figure 6.7. Accuracy of Algorithm 19 with α01 = 1, α10 = 0 and α22 = 2 and various values

of λ. Simulations are performed on time-varying Markov Block Models with n = 300, K = 2,

µ1 = 0.05, µ2 = 0.02, P11 = 0.7, Q11 = 0.3 and η = 0.9. The results are averaged over 25

synthetic graphs, and error bars show the standard error.

In Figure 6.6, we choose λt to be constant and equal to 0.5, while Figure 6.7
explores other possible values. We observe that when λt is equal to a constant in the
interval [0.1, 1], Algorithm 19 outputs similar performances. On the other hand,
when λ becomes too large, Algorithm 19 gives too much importance to the oracle,
and the accuracy becomes worse. In practice, the choice of the parameters λt could
be optimised from the data, e.g., based on η or on the transition matrices P and Q .
Moreover, it would be intuitive to increase λt with t, as the confidence in the oracle
is higher when more temporal data is available. We leave this as a topic for future
work.

Further Notes

We refer to Decelle et al., 2011; Moore, 2017 for an extended description of the
belief propagation techniques. Belief propagation was introduced for dynamic net-
works in Ghasemian et al., 2016, and the extension for models incorporating link
persistence is considered in Ghasemian, 2019. Similarly, Barucca et al., 2018 stud-
ied a model with a Markov evolution of the community memberships and link
persistence. While their interaction setting is restrictive, they showed that edge per-
sistence increases the difficulty of community recovery.

Finally, some models also allow for an evolution of the interaction parameters
over time (Xu and Hero, 2014; Bhattacharyya and Chatterjee, 2020). Nonethe-
less, it is important to note that identifiability issues often occur when both the
memberships and the interaction kernels vary over time (Matias and Miele, 2017).

DOI: 10.1561/9781638280514.ch7

Chapter 7

Sampling in Networks

Many networks, including online and offline social networks, exist for which it
is impossible to obtain a complete picture of the network. This leaves researchers
with the need to develop sampling techniques for characterizing and studying large
networks.

The general problem of sampling in a network can be formalised as follows. Let
G = (V , E) be an undirected network with n = |V | nodes and m = |E | links. We
would like to design an efficient estimator of the average of a network function

f̄ =
1

n

∑
v∈V

f (v). (7.1)

Despite the simplicity of the problem formulation, this can be used to describe
many real-world statistical questions. Let us give just a few examples.

• How young is a social network? – Take as f (v) the age of node v;
• How many friends on average has a social network member? – Take as f (v)

the degree (the number of friends) of node v;
• What is a proportion of a certain sub-population in a network? – Take f (v) =

1 if v belongs to that sub-population and otherwise f (v) = 0.

171

http://dx.doi.org/10.1561/9781638280514.ch7

172 Sampling in Networks

7.1 Overview of Sampling Methods

7.1.1 Independent Uniform Sampling

Clearly, the simplest unbiased estimator is the independent uniform sampling estima-
tor. That is, obtain a set of samples vi1 , . . . , vik , sampling each node independently
with some probability p. Then,

f̂ (k) =
1

k

k∑
s=1

f (vis). (7.2)

Strictly speaking, here we consider sampling with replacement. However, in large
networks hitting the same node twice occurs with a very small probability. This
approach is widely attempted in practice but has at least the following two draw-
backs: (i) in most cases, it is not easy at all to perform a uniform sampling. Take for
example a questionary over the phone. If the phone numbers of stationary phones
are mostly used, this can give an age-based bias. (ii) If one is interested in the study
of a very small sub-population, it can be extremely difficult to collect enough sam-
ples from that sub-population. The latter concern has given motivation for the
development of a number of methods based on the chain-referral approach, see
e.g., Goodman, 1961.

7.1.2 Snowball Sampling

Snowball sampling is the first “naive” chain-referral approach. In a chain-referral
approach, the sampling process starts from an initial subject (node), who provides
one or several contacts of his/her friends (neighbours). Then, each new contact
subject is approached for a questionary and then, after the questionary is completed,
is asked to provide his/her contact list. This process continues until a sufficient
number of samples is collected. The naive snowball estimator is very similar in its
form to the estimator (7.2), namely

f̂ (k) =
1

k

k∑
s=1

f (vis), (7.3)

where vi1 , . . . , vik are contacted subjects, who gave answers.
Note that if at each stage we query just one neighbour from a contact list, this

will correspond to a random walk on a social network.
One important problem with the naive snowball sampling is that the nodes with

many neighbours are over-sampled (Erickson, 1979) because the random walk is
more likely to come to such nodes.

Overview of Sampling Methods 173

7.1.3 Metropolis-Hastings Sampling

One natural way to mitigate the over-sampling of large degree nodes is to use the
classical Markov chain techniques of Metropolis et al., 1953–Hastings, 1970b.

To avoid the bias with respect to node degrees, we would like that the target
distribution of the random walk will be uniform, i.e., π(v) = 1/n. Then, according
to the Metropolis-Hastings (MH) approach, we should change the probability of
neighbour node selection to

p̃vu =
1

d(v)
min

{
1,
π(u)puv

π(v)pvu

}
=

1

d(v)
min

{
1,

d(v)
d(u)

}
=

1

max{d(v), d(u)}

if (v, u) ∈ E and v 6= u, whereas p̃vu = 0 if (v, u) 6∈ E and v 6= u, and finally
p̃vu = 1−

∑
s 6=v

1
max{d(v),d(u)} if u = v. To summarise, we have

p̃vu =

0, if (u, v) 6∈ E ,

1
max{d(v),d(u)} , if (u, v) ∈ E and v 6= u,

1−
∑

s 6=v
1

max{d(v),d(u)} , if u = v.

(7.4)

Using the central limit theorem for Markov chains (see e.g., Brémaud, 1999),
Avrachenkov et al., 2018b established the asymptotic consistency for the estimator
(7.3), where the samples vi1 , . . . , vik are generated according to (7.4). Specifically,
we can state the following theorem.

Theorem 7.1 (Central Limit Theorem for MH-estimator). For MH-estimator, it
holds that

√

k
(

f̂ (k) − f̄
)

D
−→ N (0, σ 2

MH), as k→∞,

where σ 2
MH =

2
n f T Zf − 1

n f T f −
(1

n f T 1
)2

, f T
= (f (1), . . . , f (n)) and where

Z = [I − P̃ + 1
n11T]−1 is the fundamental matrix.

In the context of online social networks, the use of MH-estimator was first pro-
posed by Gjoka et al., 2010.

7.1.4 Respondent-driven Sampling

One important problem with MH-estimator is that it resamples many nodes and
thus it is not very efficient. This problem can be corrected by the Respondent-Driven
Sampling (RDS) proposed in a series of works by Heckathorn, 1997; Salganik and

174 Sampling in Networks

Heckathorn, 2004; Volz and Heckathorn, 2008. In RDS the underlying sampling
process is carried out with a standard random walk but the estimator is modified
as follows:

f̂ (k) =
2m
k

k∑
s=1

f (vis)

d(vis)
, (7.5)

where d(vis) is the degree (the number of neighbours) of node vis and m is the
number of links in the network. Of course, the value of m may be not available or
difficult to estimate. This is mitigated in the following modification of the RDS-
estimator

f̂ (k) =

∑k
s=1 f (vis)/d(vis)∑k

s=1 1/d(vis)
. (7.6)

The RDS-estimators (7.5) and (7.6) are asymptotically consistent and the corre-
sponding CLTs can be found in Avrachenkov et al., 2018b.

7.1.5 Respondent-driven Sampling with Uniform Jumps

The RDS-estimator still has the following problem: the random walk can be
trapped in a sub-network with few connections to the other parts of the network.
To overcome this problem, Avrachenkov et al., 2010 suggested to combine the ran-
dom walk with uniform jumps. Specifically, let us modify the network adjacency
matrix A in the following way:

Ã = A+
α

n
11T .

Namely, we add an artificial link with the weight α between any two nodes. One
interpretation of this modification is that we combine the random walk based sam-
pling with the uniform sampling.

Typically, the weight α is small, as one sample of the uniform sampling is more
costly than one sample of the random walk based sampling. For example, in an
online social network, where users are associated with unique numeric IDs, uni-
form node sampling is performed by querying randomly generated IDs. In practice,
however, these samples are expensive (resource-wise) operations as the ID space in
an OSN, such as Facebook and Myspace, is large and sparse. For instance, in Mys-
pace only 10% of the IDs belong to valid users (Gauvin et al., 2010), i.e., only one
in every ten queries successfully finds a valid Myspace account. In this example, a
natural choice for the parameter α is 1/10.

Note that the random walk on the weighted graph defined by Ã is still a random
walk on an undirected graph and hence its stationary distribution is proportional

Overview of Sampling Methods 175

to the weighted degree, i.e.,

π̃(v) =
d(v)+ α
2m+ αn

=
1

n
d(v)+ α

d̄ + α
,

where d̄ is the average degree of the network. Thus, we can modify the RDS-
estimator as follows:

f̂ (k) =
1

k

k∑
s=1

f (vis)

π̃(vis)
=

n(d̄ + α)
k

k∑
s=1

f (vis)

d(vis)+ α
. (7.7)

If the average degree and the total number of nodes are unknown, one can use a
modification, similar to (7.6), i.e.,

f̂ (k) =

∑k
s=1 f (vis)/(d(vis)+ α)∑k

s=1 1/(d(vis)+ α)
. (7.8)

One more natural candidate for the combination of a random walk with uniform
restart is the modification in PageRank style. That is, one can change the transition
probability matrix of the random walk as follows:

P̃ = (1− ε)P + ε
1

n
11T . (7.9)

One big disadvantage of this approach is that even in the case of an undirected graph
the stationary distribution of P̃, PageRank, does not have an explicit expression,
which could be used in (7.7). Of course, one can then use Metropolis-Hastings
modification of the transition probabilities. However, as we noted before, such
modification leads to frequent resampling.

Interestingly, the random walk with uniform jumps defined by the modified
adjacency matrix Ã can be viewed as PageRank with node-dependent restart proba-
bility. To see this, we can transform the transition probability matrix of the random
walk with jumps as follows:

P̃ = (D+ αI)−1(A+
α

n
11T)

= (D+ αI)−1DD−1A+ (D+ αI)−1αI
1

n
11T ,

which is the expression (3.8) with the restart probability matrix

C = (D+ αI)−1D = diag

(
d(i)

d(i)+ α

)

176 Sampling in Networks

and the personalization distribution ν = 1
n1T . Thus, π̃(v) is the Occupation-

Time Personalized PageRank (OT-PPR) of node i, defined in (3.9). In particular,
the expression for C means that the random walk with jumps restarts with higher
probability from large degree nodes.

Finally, the expressions (3.14) and (3.15) give us a useful formula for the expected
time between consecutive restarts

E[time between consecutive restarts] =

(∑
i∈V

(
1−

d(i)
d(i)+ α

)
d(i)+ α
2m+ αn

)−1

=
2m+ αn

nα

=
d̄ + α
α

.

This formula allows us to tune the frequency of jumps by varying the parameter α.

7.1.6 Ratio with Tours Estimator

It may be difficult to do uniform sampling even from time to time. Therefore,
instead of creating artificial links between all nodes, we can create artificial links
between some nodes. Intuitively, it is beneficial to create artificial links between
nodes from very different parts of the network. This should significantly increase
the mixing time of the random walk. We can also consider the artificially linked
nodes as one super-node. Let us denote the set of such nodes by S. Figure 7.1 illus-
trates the idea of the super-node. Note that now the graph can have multiple links
and the transition probability for the random walk needs to be modified in propor-
tion to the multiple links.

Figure 7.1. Construction of a super-node. This figure has appeared first in Avrachenkov

et al., 2016c.

Tour-based Estimators for Motif Counting 177

Once the super-node is created, we can run the random walk in tours which
start and end at the super-node, and use the following Ratio with Tours estimator
(RT-estimator):

f̂ (k) =

∑m(B)
k=1

∑ξk−1
t=1 f (vit)/d(vit)+ 1/dS

∑
v∈S f (v)∑m(B)

k=1

∑ξk−1
t=1 1/d(vit)+ n/dS

, (7.10)

where ξk is the length of the k-th tour, B is the sampling budget, m(B) is the number
of tours until the budget is exhausted, i.e.

m(B) =

k :
k∑

j=1

ξj ≤ B

, (7.11)

dS is the degree of the super-node, and

f̃ (v) =

{
f (v), if v 6∈ S,

0, if v ∈ S.

7.2 Tour-based Estimators for Motif Counting

Motif counting is an important task in network analysis. For instance, we need to
count triangles and wedges to calculate the (global) clustering coefficient.

Cooper et al., 2016 proposed tour based estimators for efficient estimation of
network motifs. We note that their approach can be combined with the idea of
super-node. To keep explanations transparent, let us consider tours of the random
walk, which start and end at a single node, say s. Then, as before, let ξj denote the
length of the j-th tour. Let πs be the stationary probability of the random walk to
be at node s. Then, we know that

Es[ξj] =
1

πs
=

2m
ds

.

Thus, we can use the following estimator for the number of links:

m̂ =
ds

2

1

m(B)

m(B)∑
k=1

ξk, (7.12)

where m(B) is defined in (7.11).
Next, if we want to estimate the number of triangles, we consider a random walk

on a weighted network, where for each link {v, u} we assign a weight 1+ t({v, u}),
with t({v, u}) being the number of triangles containing {v, u}.

178 Sampling in Networks

The stationary distribution of the random walk on such weighted network is
given by

πv =
d(v)+

∑
u∈N (v) t({v, u})

2m+ 6t(G)
,

where t(G) is the number of triangles in the network.
Thus, we can use the following estimator for the number of triangles:

t̂ = max

{
0,
(d(s)+

∑
u∈N (s) t({s, u}))

∑m(B)
k=1 ξk

6m(B)
−

m̂
3

}
,

where m̂ is an estimate of the number of edges, e.g., given by (7.12).
It is straightforward to apply this approach to counting any network motif.

7.3 Numerical Comparison of Sampling Methods

7.3.1 Synthetic Networks

We first consider a SBM with n = 20000 nodes clustered in two communities
of respective sizes 200 and 19800. We let p11 = 0.3, while p12 = p22 = 0.001.
This models a small sub-population in a large social network. As the function to
average, we first choose f (v) = 1, if node v is in the smallest cluster, and f (v) = 0,
otherwise. The results are plot in Figure 7.2. We observe that uniform sampling
provides excellent results, even using only k = 500 randomly chosen nodes, while
the “naive” snowball sampling yields an over-estimation. This is expected since the
standard random walk is biased towards large degree nodes, and in this situation

Figure 7.2. Different methods sampling the proportion of nodes in the smallest commu-

nity of a SBM for a sampling budget of k = 500 and k = 2000. The two communities are of

size 200 and 19800, and the probability of links are p11 = 0.3 while p12 = p22 = 0.001. The

correct proportion is thus 0.01, and the boxplots show the results of 100 sampling trials.

Numerical Comparison of Sampling Methods 179

Figure 7.3. The performance of RDS and uniform sampling for estimating the proportion

of nodes in Group-A in SBM for a sampling budget of k = 300 and k = 2000. The two

communities are of size 500 and 49500, and the probability of links are p11 = 0.8 and p12 =

p22 = 0.0005. Nodes in the largest community belong to Group-C, whereas the nodes in the

smallest community are equally split into Group-A and Group-B. The correct proportion

of node from Group-A with respect to nodes from both Group-A and Group-B is thus 0.5,

and the boxplots show the results of 100 sampling experiments.

the large degree nodes are located in the smallest community. On the other hand,
Metropolis-Hastings sampling and RDS successfully correct this bias.

To show why uniform sampling might not always perform best, we propose the
following scenario. As before, we take a SBM with a large and a small community
(sizes 49,500 and 500, respectively). We affect the nodes of the small community
into two groups of equal sizes (called Group-A and Group-B). The nodes in the
large community are all assigned to another Group-C. The goal is to recover the
proportion of nodes in Group-A among the nodes in the small community. A prac-
tical motivation for this scenario could be that the small cluster represents a hard-
to-reach sub-population, e.g., drug addicts. In this example the small community
is further divided into the heavy users and the light users. One could be interested
in the proportion of heavy users among the drug users. We assume that we know
10 nodes that belong to Group-A. We merge those nodes into a super-node, and
perform RDS on this modified graph, which we compare with uniform sampling.
The results are shown in Figure 7.3. We observe that RDS with super-node gives
estimation with much less variance.

7.3.2 Real-world Network: DBLP

We will now compare different sampling methods on the DBLP data set (n =
317, 080 nodes and m = 1, 049, 866 edges). In Figure 7.4, we estimate the aver-
age degree, i.e., f (v) = d(v). We also estimate the number of nodes with degree
larger than 50 by considering f (v) = 1(d(v) ≥ 50) in Figure 7.5. In both cases,
we observe that sampling using Metropolis-Hastings produces larger variance than
RDS or uniform sampling.

180 Sampling in Networks

Figure 7.4. Estimation of the average degree of the DBLP data set using different meth-

ods, with budgets k = 1000 and k = 10000. The boxplot show the results of 100 sampling

experiments. The correct value of the average degree is 6.6.

Figure 7.5. Estimation of the proportion of large degree nodes (defined as having a

degree larger than 50) in the DBLP data set using different methods, with budgets

k = 1000 and k = 10000. The boxplots show the results of 100 sampling experiments.

The correct proportion is 0.01.

Further Notes

An interesting approach proposed by Dasgupta et al., 2012, called social sampling,
can be viewed as an intermediary between uniform node sampling and random
walk based sampling. In this approach, once a node is sampled, the information
about its neighbours also becomes available. Clearly, such an approach, if feasible,
requires fewer samples than the uniform node sampling and avoids dependencies
created by the random walk based methods.

It can be beneficial to sample a network using multiple random walks run in
parallel, see Ribeiro and Towsley, 2010. To improve the efficiency, the multiple
random walks should be either dependent in a special way or independent but
timed as continuous random walks with transition rates proportional to the node
degree.

Numerical Comparison of Sampling Methods 181

As discussed by Avrachenkov et al., 2016b, in certain cases, it can be beneficial
to skip some samples in chain-referral methods. Intuitively, skipping some samples
reduces correlation in random-walk based methods.

Instead of network functions defined over the nodes, one can consider network
functions defined over the links or other motifs like triangles. For details on this,
see Avrachenkov et al., 2016c.

DOI: 10.1561/9781638280514.ch8

Appendix A

Background Material from Probability,
Linear Algebra and Graph Theory

A.1 Probability

A.1.1 Probability Toolbox

In all the following, X (or Xi) denotes a random variable (r.v.).

Proposition A.1

• For a, b constants, E(aX + b) = aE(X)+ b;
• E(X1 + · · · + Xm) = E(X1)+ · · · + E(Xm);
• Let X be a r.v., A be an event and 1A(X) be the indicator that event is realized

by X . Then:

E
(
1A(X)

)
= P(X ∈ A).

Definition A.1. The variance of a random variable X is given by

Var(X) = E
((

X − E(X)
)2).

182

http://dx.doi.org/10.1561/9781638280514.ch8

Probability 183

Proposition A.2. We have the following results:

• Var(X) = E(X 2)− (E(X))2;
• for a, b constants, Var(aX + b) = a2 Var(X);
• if X1, . . . , Xm are mutually independent, then Var(X1+· · ·+Xm) = Var(X1)+

· · · + Var(Xm);
• if we do not have this independence, then Var(X1+· · ·+Xm) = Var(X1)+· · ·+

Var(Xm)+
∑

i 6=j Cov(Xi, Xj), where Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj).

A.1.2 Basic Probability Laws

Definition A.2. A random variable X is generated by a Bernoulli law with param-
eter p ∈ [0; 1], denoted X ∼ Ber(p), if:

1. X takes values in {0; 1};
2. P(X = 1) = p and P(X = 0) = 1− p.

Example A.1. A r.v. Ber(p) models the result when we toss a biased coin (p is the
probability of winning the coin toss).

Proposition A.3. Let X ∼ Ber(p). We have EX = p and Var X = p(1− p).

Definition A.3. The binomial distribution with parameters n and p, denoted
Bin(n, p), is the discrete probability distribution of the number of successes in a
sequence of n independent Bernoulli trials with parameter p.

Proposition A.4. If (Xi)i=1,...,n is a sequence of n i.i.d. random variable distributed
according to Ber(p), then

∑
i Xi ∼ Bin(n, p).

Corollary A.1. Let X ∼ Bin(n, p). Then P(X = k) =
(

n
k

)
pk(1 − p)n−k. More-

over, EX = np and Var X = np(1− p).

Definition A.4. The geometric distribution with parameter p, denoted Geo(p),
is the probability of the number of Bernoulli trials (of parameter p) needed to get
one success. In particular, if X ∼ Geo(p), then X ∈ {1, 2, · · · } and P(X = k) =
(1− p)k−1p.

Proposition A.5. Let X ∼ Geo(p). Then EX = 1
p and Var p = 1−p

p2 .

184 Background Material from Probability, Linear Algebra

A.1.3 Concentration of Random Variables

First moment inequalities

Proposition A.6 (Markov’s inequality). Let X be a random variable with positive
values, and a ∈ R+. We have:

P
(
X ≥ a

)
≤

EX
a

.

Proof. EX ≥ E
(

X 1X≥a

)
≥ aE

(
1X≥a

)
= aP

(
X ≥ a

)
.

Remark A.1. By letting a = tEX , we obtain P(X ≥ tEX) ≤
1

t
. The con-

vergence speed 1
t is rather slow, and depending on the requirements may not be

strong enough.

Corollary A.2 (First moment method). Let X be a positive, integer-valued random
variable. We have:

P(X 6= 0) ≤ E(X).

The first moment is an upper bound on the probability that an integer random
variable is not equal to zero.

Proof. Since X is integer valued, we have P(X 6= 0) = P(X > 0) = P(X ≥ 1),
and from there we can use Markov’s inequality.

Application A.3 (Union bound). Let A1, · · · , Am be a collection of events. Then,

P(A1 ∪ · · · ∪ An) ≤

m∑
i=1

P(Ai).

This can be shown by using the first moment method on X =
∑m

i=1 1Ai and
observing that {X > 0} = A1 ∪ · · · ∪ Am.

Remark A.2. The first moment method is generally used when we have a sequence
of integer, positive r.v. Xn such that EXn → 0. In that case, Xn → 0 almost surely.

We could naively imagine that, if EXn → +∞, then P(Xn > 0)→ 1. Unfor-
tunately, this is not true, and the next example provides a counter-example.

Example A.2. Let us take Xn such that Xn = n2 with probability 1/n and Xn = 0
otherwise. Then,E(Xn) = n→+∞, but Xn → 0. Loosely speaking, this happens
because the variance of Xn is very large. Indeed, Var Xn = n2(n− 1).

Probability 185

Second moment inequalities

Proposition A.7 (Chebyshev’s inequality). Let X be a random variable, and a > 0.
We have:

P
(∣∣X − EX

∣∣ ≥ a
)
≤

Var X
a2 .

Proof. Apply Markov’s inequality to Y = (X − EX)2.

Example A.3. Let X be Gaussian N (0, σ 2). Then E|X | = σ
√

2

π
. Then Markov’s

inequality applied to |X | gives

P(X ≥ a) ≤

√
2

π

σ

a
,

while Chebyshev’s inequality leads to

P(X ≥ a) ≤
(σ

a

)2
.

Chebyshev’s inequality provides a stronger bound when a is large.

Application A.4 (Weak law of Large Numbers). Let X1, . . .Xn be independent r.v.
with mean µ and variance σ 2 < +∞. Then:

P
(∣∣∣∣X1 + · · · + Xn

n
− µ

∣∣∣∣ > ε

)
→ 0.

With some extra work, we can show that the condition σ 2 < +∞ is not needed.
Moreover, the strong law of large numbers states that the convergence holds in fact
almost surely (and not simply in probability, as we have here).

Proof. Applying Chebychev’s inequality for Un =
X1 + · · · + Xn

n
, which has a

mean µ and variance σ 2, leads to:

P
(
|Un| ≥ ε

)
≤

σ 2

nε2 → 0.

Corollary A.5 (Second moment method). Let X be a positive random variable. We
have:

P
(
X = 0

)
≤

Var X(
EX

)2 = E(X 2)

(EX)2
− 1.

186 Background Material from Probability, Linear Algebra

Proof. We apply Chebychev’s inequality with a = EX :

P
(
X = 0

)
≤ P

(∣∣X − EX
∣∣ ≥ EX

)
≤

Var X(
EX

)2 ,

where the first inequality holds since
∣∣X−EX

∣∣ ≥ EX ⇒ X ≤ 0 or X ≥ 2EX .

Remark A.3. From Cauchy-Schwarz inequality,

E(X) ≤ E(X 1X>0) ≤
√
E(X 2)

√
P(X > 0),

and thus P(X = 0) = 1 − P(X > 0) ≤
Var(X)
E(X 2)

, which provides a slightly

stronger inequality than Corollary A.5.

Concentration of sums of i.i.d. random variables

Proposition A.8 (Hoeffding’s inequality). Let Xi be some independent random vari-
ables, such that ai ≤ Xi ≤ bi, and Sn =

∑n
i=1 Xi. For t > 0, we have:

P
(

Sn ≥ ESn + t
)
≤ exp

(
−

2t2∑
i(bi − ai)2

)
,

P
(

Sn ≥ ESn − t
)
≤ exp

(
−

2t2∑
i(bi − ai)2

)
,

P
(
|Sn − ESn| ≥ t

)
≤ 2 exp

(
−

2t2∑
i(bi − ai)2

)
.

More details about concentration inequalities can be found for example in Ver-
shynin, 2018, Chapter 2.

A.2 Graph Theory

A.2.1 Definitions, Vocabulary

Definition A.5. A graph G is a pair (V , E), where V is a finite set, whose elements
are called nodes (or vertices, points) and E is a set of ordered node pairs called edges
(or links, lines, bonds). Moreover, we use the following vocabulary:

• if (ij) ∈ E ⇐⇒ (ji) ∈ E , then the graph is said to be undirected (this means
that if there is a link going from i to j, there exists the same link in opposite
direction);

• the edges (ii) are called self-loops. In particular, if for all nodes i, (ii) 6∈ E , we
say that there is no self-loops;

• the graph is weighted if every edge (ij) ∈ E has a weight wij > 0;

Graph Theory 187

• we call in-degree of node i, denoted d in
i , the number of (possibly weighted)

edges coming to i, that is d in
i =

∑
j∈V wji. Similarly, the out-degree of node i is

the number of edges going from i, that is dout
i =

∑
j∈V wij . For an undirected

graph, d in
i = dout

i = di and we simply call di the degree of node i.

Definition A.6.

• We call a path of G of length k a sequence e1, . . . , ek of edges ei = (vi−1, vi)

where the vi are vertices;
• A k-cycle is a path of legnth k that starts and ends at the same vertex;
• Suppose G is undirected. We say that two nodes u, v are connected if there

exists a path going from u to v. We denote this as u↔ v.

Proposition A.9. The relation ↔ is an equivalence relationship for the undirected
graphs. In particular, we can partition the nodes into equivalent classes, called the con-
nected components.

Proof. We have u↔ u (path of length 0). Moreover, if u↔ v and v↔ z, then u↔
z (by combining the two paths); this ensures transitivity. Finally, u ↔ v implies
v↔ u (the same path, on the opposite direction): this ensures symmetry.

Remark A.4. In particular, this means that there exists a path between two nodes in
a same connected component. Reciprocally, no path connects two nodes belonging
to two different connected components.

Definition A.7. We say that G is connected if G has only one equivalent class under
the relation↔. We say G is disconnected otherwise.

In particular, in a connected graph, for every node i and j, there exists a path
going from i to j.

Definition A.8. Let i, j be two nodes. We call the distance between i and j, and
denote d(i, j) the length of the shortest path between i and j. If i 6↔ j, then d(i, j) =
+∞.

Definition A.9 (Diameter). We call diameter of a graph the largest distance
between any pair of connected vertices.

A.2.2 Adjacency Matrix

Definition A.10. Let G = (V , E) be an unweighted graph with n nodes. The
adjacency matrix of G (denoted by A) is the binary matrix A ∈ {0, 1}n×n such that
Aij = 1 if (ij) ∈ E .

188 Background Material from Probability, Linear Algebra

We can easily extend this definition to a weighted graph: the element Aij is then
equal to the weight wij of the edge between nodes i and j.

Remark A.5. A is symmetric if and only if the graph is undirected. Moreover, the
diagonal elements of A are zeros if and only if the graph does not have any self-loops.

Definition A.11. We call the degree matrix, denoted D, of a graph G the diagonal
matrix whose diagonal element Dii is the degree of node i.

A.2.3 Graph Laplacians

In the following, we will consider G as an undirected, weighted graph, on vertex
set V = {1, . . . , n}. We denote by A the adjacency matrix of G, and by D its degree
matrix.

Definition A.12 (Graph Laplacian). We define:

• the (standard or combinatorial) Laplacian L = D− A;
• the normalized Laplacian L = D−1/2LD−1/2

= I − D−1/2AD−1/2;
• the PageRank Laplacian LPR = I − D−1A.

Remark A.6. Note that D−1/2 and D−1 are not well defined if there is an isolated
node (a node of degree 0). We can either assume there is no such node in our graph,
or by convention we let D−1/2

ii = D−1
ii = 0 if i isolated.

Lemma A.6. If i and j are two neighboring nodes, we express this as i ∼ j. Further-
more, assume the graph does not have self-loops. Then, we have:

Lij =

di if i = j,

−1 if i ∼ j,

0 otherwise

and Lij =

1 if i = j,

−
1√
didj

if i ∼ j,

0 otherwise.

Proof. This is direct from the definitions of L and L.

Graph Theory 189

Basic properties of the Laplacians

Proposition A.10. The standard Laplacian L = D−A has the following properties:

1. For any vector x ∈ Rn we have xT Lx =
1

2

n∑
i=1

n∑
j=1

aij
(
xi − xj

)2. More generally,

for any matrix X ∈ Rn×K we have

Tr
(

X T LX
)
=

1

2

K∑
k=1

∑
i,j

aij
(
Xik − Xjk

)2 ;

2. L is symmetric and positive semi-definite;
3. L has n non-negative, real valued eigenvalues 0 = λ1 ≤ · · · ≤ λn. Moreover,

L1n = 0n.

Proof. 1. Recall that di =
∑n

j=1 aij . We can write

1

2

n∑
i,j=1

aij
(
xi − xj

)2
=

1

2

∑
i,j

aijx2
i − 2

∑
i,j

aijxixj +
∑

i,j

aijx2
j

=

1

2

 n∑
i=1

dix2
i − 2

n∑
i,j=1

xixjaij +

n∑
j=1

djx2
j

=

n∑
i=1

dix2
i −

n∑
i,j=1

xixjaij

= xT Dx − xT Ax

= xT Lx.

More generally, for X ∈ Rn×K we notice that

Tr
(

X T LX
)
=

K∑
k=1

X T
·k LX·k

where X·k denotes the column k of X , and hence this result then holds by
applying the previous result.

2. L is symmetric because D and A are. From point 1, we have X T LX ≥ 0, so
L is positive semi-definite.

3. L is symmetric, so its eigenvalues are real. It is positive semi-definite, so its
eigenvalues are non-negative. Finally, L1n = 0n is straightforward using the
formula derived in point 1.

190 Background Material from Probability, Linear Algebra

Proposition A.11. The normalized Laplacian L satisfies the following properties:

1. For any vector x ∈ Rn we have xTLx =
1

2

n∑
i=1

n∑
j=1

aij

(
xi√
di
−

xj
√

dj

)2

. More

generally, for any matrix X ∈ Rn×K we have

Tr
(

X TLX
)
=

1

2

K∑
k=1

∑
i,j

aij

(
Xik
√

di
−

Xjk√
dj

)2

;

2. L is symmetric and positive semi-definite;
3. L has n non-negative, real valued eigenvalues 0 = λ1 ≤ · · · ≤ λn ≤ 2. More,

D1/21n is an eigenvector of L associated to the eigenvalue 0.

The proof of Proposition A.11 is similar to that of Proposition A.10.

Standard Laplacian and the number of connected components

Definition A.13 (Indicator vector of a set). Let U be a subset of the node set V .
We define 1U as the n × 1 vector such that (1U)i = 1 if i ∈ U , and 0 if i 6∈ U .
We let 1n be the n-by-1 vector of all ones.

Lemma A.7. LX = 0⇔ X is constant on each connected component of G.

Proof. Let V1, . . . , VK be the connected components of G. Assume LX = 0. Then
X T LX = 0, and from the formula of the previous proposition it follows that
∀i, j ∈ Vk : xi = xj . We conclude that LX = 0 implies that X is constant on
each connected component of G.

Reciprocally, we can see from the direct computation that if X is constant on
each Vk, then LX = 0.

Proposition A.12 (Number of connected components). Let G be an undirected
graph with non-negative weights. Then, the multiplicity k of the eigenvalue 0 of L is
equal to the number of connected components V1, . . . , Vk. Moreover, the eigenspace of
eigenvalue 0 (Ker L) is spanned by the indicator vectors 1V1 , . . . , 1Vk .

Proof. If k = 1, it means the only eigenvector of 0 is X = 1n, and the graph is
connected.

Now suppose k > 1. We can assume that the vertices are ordered according to
the connected components they belong to. Thus, L = diag(L1, . . . , Lk), where Li

is the Laplacian of the i− th connected component. Each Li has eigenvalue 0 with
multiplicity 1, and the corresponding eigenvector is the constant vector of ones.
Thus, L1Ai = Li1n = 0, and each 11i is eigenvector of L associated to 0.

Linear Algebra 191

Example A.4. Suppose that the graph is connected. Then there is only one con-
nected component (k = 1), so dim Ker L = 1, and the corresponding eigenspace
is spanned by 1n.

A.3 Linear Algebra

A.3.1 Symmetric Matrices

Theorem A.8 (Spectral theorem). If M is symmetric and real valued, then there exists
an orthonormal basis consisting of eigenvectors of M. Moreover, the eigenvalues of M
are real.

Counterexample A.9 (if M has complex entries). M =

(
1 i
i −1

)
is symmet-

ric but not diagonalizable. Indeed, from a direct computation of its characteristic
polynomial, we can see that the only eigenvalue is 0.

Definition A.14. A symmetric matrix M is said to be positive semidefinite (PSD)
(resp., positive definite PD) if ∀x ∈ Rn : xT Mx ≥ 0 (resp., xT Mx > 0).

Example A.5. For all M ∈ Rn×n, the matrix MT M is symmetric definite positive.

Lemma A.10. Let M be a symmetric matrix, and λ1, . . . , λn its (real) eigenvalues.
M is positive semidefinite (resp., positive definite) iff λi ≥ 0 (resp., λi > 0).

A.3.2 Norms

Definition A.15. Let E be a vector space. A function N : E → R is a norm if it
satisfies the following properties:

1. (positivity) ∀x ∈ E : N (x) ≥ 0;
2. (definiteness) N (x) = 0⇒ x = 0E ;
3. (homogeneity) ∀x ∈ E , t ∈ R : N (tx) ≤ |t|N (x);
4. (triangle inequality) ∀x, y ∈ E : N (x + y) ≤ N (x)+ N (y).

Vector norms

Proposition A.13. Let E = Rn and p ≥ 1, we define the `p-norms as follows:

‖x‖p =

(
n∑

i=1

|xi|
p

)1/p

.

Proof. It is straightforward to show that ‖.‖p verify the first three conditions. The
triangle inequality holds thanks to Minkowski inequality.

192 Background Material from Probability, Linear Algebra

Example A.6. Let x = (x1, . . . , xn)
T
∈ Rn. We have the following particular cases

of `p-norms:

1. for p = 1, ‖x‖1 =
n∑

i=1
|xi|;

2. for p = 2, ‖x‖2 =

√
n∑

i=1
|xi|

2 is the Euclidian norm;

3. for p = ∞, we define ‖x‖∞ = lim
p→+∞

‖x‖p = max{|x1|, . . . , |xn|}.

Moreover, if we introduce the scalar product < x, y >= xT y between two vectors
x, y ∈ Rn, then ‖x‖22 = xT x.

Matrix norms (Serre, 2010)

Definition A.16. Let ‖.‖ be a norm on Rn, we define the operator norm |||.||| on
Rn×n induced by ‖.‖ as

|||A||| = sup
x∈Rn : x 6=0n

‖Ax‖
‖x‖

.

By abuse of notation, we often denote by ‖.‖ the operator norm instead of |||.|||.

Lemma A.11. Let A ∈ Rn×n.

|||A||| = sup
‖x‖=1

‖Ax‖ = sup
‖x‖≤1

‖Ax‖ = max
‖x‖≤1

‖Ax‖.

Example A.7. Let A ∈ Rn×n. We have the followig induced norms:

1. |||A|||1 = sup
‖x‖1=1

‖Ax‖1 = max
j=1...n

n∑
i=1
|Aij| (max column-sum);

2. |||A|||∞ = sup
‖x‖∞=1

‖Ax‖∞ = max
i=1...n

n∑
j=1
|Aij| (max row-sum);

3. |||A|||2 = sup
xT x=1

√
xT AT Ax =

√
λmax(AT A), where λmax(AT A) denotes the

largest eigenvalue of the (symmetric) matrix AT A;

4. if A is invertible, then |||A−1
|||2 =

1

λmin
(
AT A

) , where λmin
(
AT A

)
is the

smallest eigenvalue of AT A (non-zero if A−1 is invertible).

Proposition A.14. Let |||·||| be an induced operator norm. Then ∀A, B ∈ Rn×n :
|||AB||| ≤ |||A||| × |||B|||.

Linear Algebra 193

Counterexample A.12. This inequality is false in general if the norm is not
induced from a vector norm. For example, let N (A) = maxi,j |aij| (not to be con-

fused with |||·|||∞), and A =
(

1 1
1 1

)
. Then, N (A2) = 2 > N (A)N (A) = 1.

Definition A.17. We denote ‖A‖F =

√
n∑

i=1

n∑
j=1
|Aij|

2 the Frobenius (or

Hilbert–Schmidt) norm of a matrix A ∈ Rn×n.

A.3.3 Courant-Fisher Theorem

Theorem A.13 (Courant-Fisher theorem). Let M ∈ Rn×n be a n-by-n symmetric
matrix, and λ1 ≤ · · · ≤ λn the eigenvalues of A, with associated normalized eigenvec-
tors v1, . . . , vn. We have

λ1 = min
x∈Rn : ‖x‖=1

xT Mx = min
x∈Rn : x 6=0n

xT Mx
xT x

, (A.1)

λ2 = min
x∈Rn

‖x‖=1
x⊥v1

xT Mx = min
x∈Rn

x 6=0n
x⊥v1

xT Mx
xT x

, (A.2)

λn = max
x∈Rn

‖x‖=1

xT Mx = max
x∈Rn

x 6=0n

xT Mx
xT x

. (A.3)

Moreover, the respective arg min are obtained by v1, v2 and vn, respectively.

Proof. Let us give two proofs, one by diagonalizing the matrix M , and one using
calculus (Lagrange minimisers).

(i) First proof. M being symmetric, we can write M = PT DP. Let y = Px.
Note that ‖y‖ = ‖x‖, thus the constraint ‖x‖ = 1 becomes

∑n
i=1 y2

i = 1. Since
xT Mx = yT Dy =

∑n
i=1 λiy2

i , this expression is minimised (given the constraint)
when all yi are zeros except for y1 = 1, and maximised when yn = 1 and all others
yi are 0. If x ⊥ v1, then y1 = 0 is further imposed, and yT Dy is minimised if y2 = 1
and other yi are null.

(ii) Second proof. The Lagrangian associated to the minimisation problem (A.1)

(or (A.3)) is L(x, λ) = xT Mx − λ
(

xT x − 1
)

. Note that letting ∂L
∂λ = 0 gives

back the constraint ‖x‖ = 1. Moreover, ∂L
∂x = 2Mx − 2λx, an hence ∂L

∂x = 0
leads to Mx = λx. Thus, x is an eigenvector of M and λ is the corresponding
eigenvalue. As Equation (A.1) is a minimisation problem, its solution is the smallest

194 Background Material from Probability, Linear Algebra

eigenvalue. Similarly, the solution of equation (A.3) is the largest eigenvalue. Finally,
the solution is the second smallest eigenvalue if we further impose that x ⊥ v1.

Proposition A.15. Let M ∈ Rn×n be a symmetric matrix with v1, . . . , vn being an
orthonormal basis of eigenvectors associated with λ1 ≤ λ2 ≤ · · · ≤ λn. The solution
of the optimisation problem

arg min
H∈Rn×K

HT H=IK

Tr
(
HT MH

)

is given by H = [v1, . . . , vK].

Proof. Consider the Lagrangian L(H ,3) = Tr
(
HT MH

)
− Tr

(
3T

(
HT H −

IK
))

, where3 ∈ RK×K is a diagonal matrix, whose entries are the Lagrange mul-

tipliers. Since ∂L
∂H = 2MH − 2H3, the condition ∂L

∂H = 0 leads to MH = H3.
Thus, the columns of H are indeed eigenvectors of M , and the diagonals elements
of 8 are the corresponding eigenvalues.

A.4 Calculus on Graphs

We refer the reader to (Hein et al., 2007) for additional details on the topic of
this section.

A.4.1 Basic Reminders

Consider a function f : Rn
→ R. The gradient of f at a point x ∈ Rn is the

vector∇f (x) = grad f (x) =
(
∂ f
∂x1
(x), · · · , ∂ f

∂xn
(x)
)T

. The divergence is defined for

every x ∈ Rn as div f (x) =
∑n

i=1
∂ f
∂xi
(x), and the Laplacian operator is 1f (x) =∑n

i=1
∂2f
∂x2

i
(x). In particular, we have div

(
grad f

)
(x) = 1f .

A.4.2 Extension on Graphs

In this section, we consider a directed and weighted graph G = (V , E) whose
weights are wij and node set is V = {1, . . . , n}.

Functions on graph

We denote by F(V) the set of node functions f : V → R. Since |V | = n, any node

function f can be represented as a n-by-1 vector
(
f (1), . . . , f (n)

)T and F(V) ∼=

Calculus on Graphs 195

Rn. In particular, F(V) is a n-dimensional Hilbert-space whose inner product is

< f , g >F(V) =
∑
vi∈V

f (i)g(i)

and associated norm ‖f ‖F(V) =
√
< f , f >F(V).

Similarly, the space of edge functions is F(E) = {F : E → R}. This space is
equivalent to R|E |, and we introduce the inner product

< F , G >F(E) =
∑
(i,j)∈E

F (i, j)G(i, j),

and the norm ‖F‖F(E) =
√
< F , F >F(E). Finally, we can trivially extend any

edge function F : E → R to a function F̃ : V × V → R by letting F̃ (vi, vj) = 0
if (vi, vj) 6∈ E . By a slight abuse of notation, we still denote by F the extended
function.

Differential graphs operators

Let γ : R+ → R+ such that γ (0) = 0. The choice of γ will be discussed later.
The graph derivative of f along a directed edge (i, j) ∈ E is

∂ f
∂ j
(i) = γ (wij)

(
f (j)− f (i)

)
,

and denoted ∂jf (i) for convenience. In particular, ∂if (i) = 0 and f (i) = f (j)
implies ∂jf (i) = 0.

The graph gradient of a node function f ∈ F(V) is denoted grad f , and is
defined by

∀(i, j) ∈ E : (grad f)(i, j) = ∂jf (i).

Hence grad : F(V) → F(E) is a linear operator. The graph divergence div is
defined to be the adjoint operator1 of grad, that is

< grad f , G >F(E) = < f , div G >F(V), ∀f ∈ F(V),∀G ∈ F(E).

Lemma A.14. The divergence div : F(E) → F(V) of the gradient operator is
given by:

(div G)(i) =
∑

j

γ (wji)G(j, i)− γ (wij)G(i, j).

1. The adjoint is well defined here since the considered Hilbert spaces have finite dimensions.

196 Background Material from Probability, Linear Algebra

Proof. We have

< grad f , G >F(E) =
∑

i,j

γ (wij)
(
f (j)− f (i)

)
G(i, j)

=

∑
i,j

γ (wij)f (j)G(i, j)−
∑

i,j

γ (wij)f (i)G(i, j)

=

∑
i,j

γ (wji)f (i)G(j, i)−
∑

i,j

γ (wij)f (i)G(i, j)

=

∑
i

f (i)
(
γ (wji)G(j, i)− γ (wij)G(i, j)

)
= < f , div G >F(V) .

For undirected graphs (wij = wji), the divergence reduces to

(div G)(i) =
∑

j

γ (wij)
(
G(j, i)− G(i, j)

)
.

Finally, we define the graph Laplacian 1γ : H(V)→ H(V) such that 1γ f =
div
(
grad f

)
for every f ∈ F(V).

Lemma A.15. Let f ∈ F(V) and i ∈ V . We have:(
1γ f

)
(i) =

∑
j

(
γ
(
wij
)2
+ γ

(
wji
)2) (f (i)− f (j)

)
.

Proof. Let γij = γ (wij). We have

div
(
grad f

)
(i) =

∑
j

γji grad f (j, i)− γij grad f (i, j)

=

∑
j

γ 2
ji
(
f (i)− f (j)

)
− γ 2

ij
(
f (j)− f (i)

)
=

∑
j

(
γ 2

ij + γ
2
ji

) (
f (i)− f (j)

)
.

For an undirected graph, the Laplacian operator reduces to

1γ f (i) = 2
∑

j

γ
(
wij
)2 (f (i)− f (j)

)
.

Calculus on Graphs 197

Recall the standard Laplacian L = D − A, and let f : V → R be a node function
represented by a n-by-1 vector. We have(

Lf
)

i = difi −
∑

j

wijfj =
∑

j

wij
(
fi − fj

)
.

Thus, L = 1γ if γ (x) =
√

x. Similarly, the random walk Laplacian Lrw = I −
D−1A verifies (

Lrwf
)

i = fi −
∑

j

wij

di
fj =

∑
j

wij

di

(
fi − fj

)
,

where the second equality holds since
∑

j
wij
di
= 1. Hence, Lrw = 1γ , if γ verifies

γ (wij) =
√

wij
di

for all i, j.

DOI: 10.1561/9781638280514.ch9

Appendix B

Additional Lemmas Related to the
Proof of Theorem 5.5

B.1 Mean-field Solution of the Secular Equation (5.19)

B.1.1 Spectral Study of a Perturbed Rank-2 Matrix

Lemma B.1 (Matrix determinant lemma). Suppose A ∈ Rn×n is invertible, and let
U , V be two n by m matrices. Then,

det(A+ UV T) = det A det(Im + V T A−1U).

Proof. We take the determinant of(
A −U

V T I

)
=

(
A 0

V T I

)(
I −A−1U
0 I + V T A−1U

)
,

and we note that det

(
A −U

V T I

)
= det I det

(
A+ UV T

)
by the Schur comple-

ment formula (Horn and Johnson, 2012, Section 0.8.5).

198

http://dx.doi.org/10.1561/9781638280514.ch9

Mean-field Solution of the Secular Equation (5.19) 199

Proposition B.1. Let M = ZBZT , where B =
(

a b
b a

)
is a 2 × 2 matrix, and

Z =
(

1n/2 0n/2

0n/2 1n/2

)
is an n× 2 matrix. Let m be an even number. We denote by PL

the n × n diagonal matrix, whose first m
2 and last m

2 diagonal elements are ones, all
other elements being zeros. Then,

det
(

tIn + λPL −M
)
= tn−m−2(t + λ)m−2(t − t+1)(t − t−1)(t − t+2)(t − t−2),

with

t±1 =
1

2

(
n
2
(a+ b)− λ±

√(
λ+

n
2
(a+ b)

)2
− 2(a+ b)λm

)
,

t±2 =
1

2

(
n
2
(a− b)− λ±

√(
λ+

n
2
(a− b)

)2
− 2(a− b)λm

)
.

Proof. For now, assume that t 6= −λ and t 6= 0. Then, tIn+λ PL is invertible, and
by Lemma B.1,

det
(

tIn + λPL −M
)
= det(tIn + λPL) det

(
I2 + ZT (tIn + λPL)

−1(−ZB)
)

= (t + λ)mtn−m det
(

I2 − ZT (tIn + λPL)
−1ZB

)
.

(B.1)

Moreover,(
tIn + λ PL

)−1
=

1

t
(In − PL)+

1

t + λ
PL =

1

t
In −

λ

t(t + λ)
PL.

Therefore, we can write

ZT (tIn + λ PL
)−1ZB =

1

t
ZT ZB −

λ

t(t + λ)
ZT PLZB

=
1

t
n
2

B −
λ

t(t + λ)
m
2

B = xB,

where x :=
n
2

1

t(t + λ)

(
t + λ

(
1−

m
n

))
. Thus, a direct computation of the deter-

minant gives

det
(

I2 − ZT (tIn + λ PL
)−1ZB

)
=

(
1− x(a+ b)

)(
1− x(a− b)

)
.

200 Additional Lemmas Related to the Proof of Theorem 5.5

Going back to equation (B.1), we can write

det
(

tIn + λPL −M
)
= (t + λ)m−2tn−m−2P1(t)P2(t), (B.2)

with P1(t) = t(t + λ)− n
2(a+ b)

(
t + λ(1− m

n)
)

and P2(t) = t(t + λ)− n
2(a−

b)
(
t + λ(1 − m

n)
)
. Since t ∈ R 7→ det(tIn + λPL − M) is continuous (even

analytic), expression (B.2) is also valid for t = 0 and t = −λ (Avrachenkov et al.,
2013a). We end the proof by observing that

P1(t) = (t − t+1)(t − t−1) and P2(t) = (t − t+2)(t − t−2),

where t±1 and t±2 are defined in the proposition’s statement.

Corollary B.2. Let A be the adjacency matrix of a DC-SBM with pin > pout > 0,
and s be the oracle information. Let λ, τ > 0, and d̄τ = n

2

(
pin + pout

)
− nτ , ᾱ =

n
2

(
pin − pout

)
. Let Aτ := A− τ1n1T

n and PL be the diagonal matrix whose element
(PL)ii is 1 if si 6= 0, and 0 otherwise. Then, the spectrum of EL̃ = −EAτ+λP−γ In

is
{
−γ − t±1 ;−γ − t±2 ;−γ ;−γ + λ; 0

}
, where

t±1 =
1

2

(
d̄τ − λ±

√(
λ+ d̄τ

)2
− 4d̄τλ (η1 + η0)

)
,

t±2 =
1

2

(
ᾱ − λ±

√(
λ+ ᾱ

)2
− 4ᾱλ (η1 + η0)

)
.

Proof. Let M =
(

pin − τ pout − τ

pout − τ pin − τ

)
and Z =

(
1n/2 0n/2

0n/2 1n/2

)
. Then, we notice

thatEAτ = ZMZT and we can apply Proposition B.1 to compute the characteristic

polynomial of EL̃. For x ∈ R, det
(
EL̃− xIn

)
= det

(
(−γ−x)In−EAτ+λP

)
,

whose roots are −γ − t±1 ,−γ − t±2 , −γ , and −γ + λ.

B.1.2 Estimation of γ̄∗

Lemma B.3. Let γ̄∗ be the solution of equation (5.19) for the mean-field model. Then,

−ᾱ(1− 2η0) ≤ γ̄∗ ≤ −ᾱ.

Proof. For λ ≥ 0, we denote by (x̄λ, γ̄∗(λ)) the solution of the system (5.17) on a
mean-field DC-SBM. The proof is in two steps. First, let us show that γ̄∗(0) = −ᾱ
and γ̄∗(∞) = −ᾱ(1 − 2η0). For λ = 0, the constrained linear system (5.17)
reduces to an eigenvector problem, and hence γ̄∗(0) equals−α, the smallest eigen-
value of −EAτ . Moreover, when λ = ∞, the hard constraint x` = s̄` is enforced,

Mean-field Solution of the Secular Equation (5.19) 201

and the system (5.17) becomes{
(−EAτ − γ̄∗(∞)In)uux̄u = (EAτ)u` s̄`

x̄T
u x̄u = n(1− η0 − η1)

and we verify by hand that γ̄∗(∞) = −ᾱ(1−2η0) together with x̄u = Zu is indeed
the solution.

Second, if we let Cλ(x) = −xTEAτ x + λ(s̄ − Px)T (s̄ − Px) be the cost func-
tion minimized in (5.14), then from equation (5.17) we have γ̄∗(λ1)− γ̄∗(λ2) =

Cλ1(x̄1) − Cλ2(x̄2) + λ1x̄T
1 s̄ − λ2x̄T

2 s̄. Since λ 7→ Cλ(x) is increasing, then
λ1 ≤ λ2 implies Cλ1(x̄1) ≤ Cλ2(x̄2). Since x̄T

λ s̄ ≥ 0 (if it was not the case, then
Cλ(−x̄λ) ≤ Cλ(x̄λ), and hence x̄λ 6= arg minx∈Rn Cλ(x)), we can conclude that
γ̄∗(0) ≤ γ̄∗(λ) and that γ̄∗(λ) ≤ γ̄∗(∞).

B.1.3 Concentration of γ∗

Proposition B.2. Let γ∗ and γ̄∗ be the solutions of equation (5.17) for a DC-SBM
and the mean-field DC-SBM, respectively. Then

|γ∗ − γ̄∗| ≤

(
1+

27 (ᾱ + λ)3
√

2
√
η1 + η0(η1 − η0)ᾱ2λ

)√
d̄ .

Proof. The gradient with respect to (δ̄1, ..., δ̄n, b̄1, ..., b̄n, γ) of the left-hand-side of
equation (5.19) is equal to

2
n∑

i=1

b̄i

δ̄i − γ̄

[
1bi

δ̄i − γ̄∗
−

b̄i1δi

(δ̄i − γ̄∗)2
+

b̄i1γ

(δ̄i − γ̄∗)2

]
.

Thus, we have

1γ

n∑
i=1

b̄2
i

(δ̄i − γ̄∗)3
=

n∑
i=1

b̄2
i

(δ̄i − γ̄∗)3
1δi −

n∑
i=1

b̄i

(δ̄i − γ̄∗)2
1bi + o (1δi,1bi) .

Firstly, we see that for all i ∈ [n], 1δi =
∣∣δi − δ̄i

∣∣ ≤ ‖A− EA‖ ≤ d̄ by the
concentration of the adjacency matrix of a DC-SBM graph. Therefore, using this
fact and γ̄∗ ≤ δ̄1 ≤ δ̄2 ≤ · · · ≤ δ̄n,

1γ = |γ∗ − γ̄∗| ≤ max
i

∣∣δi − δ̄i
∣∣+ maxi

1
(δ̄i−γ̄∗)2

mini
1

(δ̄i−γ̄∗)3

∑
i |b̄i| · |bi − b̄i|∑

i b̄2
i

≤

√
d̄ +

maxi
(
δ̄i − γ̄∗

)3
mini

(
δ̄i − γ̄∗

)2 ∑i |b̄i| · |bi − b̄i|∑
i b̄2

i

.

202 Additional Lemmas Related to the Proof of Theorem 5.5

We notice that mini |δ̄i − γ̄∗| = δ̄1 − γ̄∗. By using Lemma B.3 and the expression
of δ̄1 given in Corollary B.2, we have

min
i
|δ̄i − γ̄∗| ≥ ᾱ + λ.

Similarly, maxi |δ̄i − γ̄∗| = δ̄n − γ̄∗ = δ̄n − δ̄1 + δ̄1 − γ̄∗. Corollary B.2 implies

δ̄n = λ and δ̄1 =
1
2

(
λ− ᾱ −

√
(λ+ ᾱ)2 − 4ᾱλ(η0 + η1)

)
, thus δ̄n−δ̄1 ≤ ᾱ+λ.

Hence, using Lemma B.3,

max
i
|δ̄i − γ̄∗| ≤

3

2
(ᾱ + λ) .

Therefore, we have

|γ∗ − γ̄∗| ≤
√

d̄ +
27

8
(ᾱ + λ) ·

∑
i |b̄i| · |bi − b̄i|∑

i b̄2
i

. (B.3)

The term
∑

i |b̄i|·|bi−b̄i|∑
i b̄2

i
can be bounded as follow. Let I = {i ∈ [n] : b̄i 6= 0}. Then

∑
i

|b̄i| · |bi − b̄i| ≤ max
i∈I
|bi − b̄i| ·

∑
i∈I

∣∣b̄i
∣∣ .

Combining the Cauchy-Schwarz inequality

∣∣bi − b̄i
∣∣ = λ

∣∣∣(Q·i − Q̄·i)T s̄
∣∣∣ ≤ λ

∥∥Q·i − Q̄·i
∥∥

2 · ‖s̄‖,

with the Davis-Kahan theorem (Yu et al., 2015)

∥∥Q·i − Q̄·i
∥∥

2 ≤
23/2 ‖A− EA‖

min
{
δ̄i − δ̄i−1, δ̄i+1 − δ̄i

} ,

‖s̄‖ =
√
(η0 + η1)n, and the concentration of A towards EA, yields

max
i∈I
|bi − b̄i| ≤

λ
√
(η0 + η1)n

mini∈I
{
δ̄i − δ̄i−1, δ̄i+1 − δ̄i

} · 23/2
√

d̄ .

Mean-field Solution of the Secular Equation (5.19) 203

Using Lemma B.4, we see that I = {i ∈ [n] : δi 6∈ {0, t−1 }}. Combining it with
Corollary B.2, gives

min
i∈I

{
δ̄i − δ̄i−1, δ̄i+1 − δ̄i

}
= λ+ t+2

=
α + λ

2

(
1−

√
1− 4

αλ

(α + λ)2
(η0 + η1)

)

≥
αλ

α + λ
(η0 + η1),

where we used
√

1− x ≤ 1− x/2. Therefore,

∑
i

∣∣b̄i
∣∣ · ∣∣bi − b̄i

∣∣ ≤ 23/2

√
nd̄

η0 + η1
·
α + λ

α
·

∑
i

∣∣b̄i
∣∣ .

By noticing that
∑

i b̄2
i ≥

(∑
i

∣∣b̄i
∣∣)2 ≥ ∣∣b̄1

∣∣ ·∑i

∣∣b̄i
∣∣ ≥ √n η1−η0

2
ᾱλ
λ+ᾱ

∑
i

∣∣b̄i
∣∣

where we used b̄1 ≥
√

nη1−η0
2

ᾱλ
λ+ᾱ (Lemma B.4), we have∑

i

∣∣b̄i
∣∣ · ∣∣bi − b̄i

∣∣∑
i b̄2

i

≤
25/2

(η1 − η0)
√
η1 + η0)

(α + λ)2

α2λ

√
d̄ .

Going back to inequality (B.3), this implies that

|γ∗ − γ̄∗| ≤

(
1+

27 (ᾱ + λ)3
√

2
√
η1 + η0(η1 − η0)ᾱ2λ

)√
d̄ .

Lemma B.4. Let −EAτ + λP = Q̄1̄Q̄T , where 1̄ = diag
(
δ̄1, . . . , δ̄n

)
and

Q̄T Q̄ = In. Denote b̄ = λQ̄T s. We have b̄1 ≥
√

nλ(η1−η0)
2

ᾱ
λ+ᾱ . Moreover, b̄i = 0

if δ̄i = 0 or if δ̄i = −t−1 .

Proof. First, from Corollary B.2,

δ̄1 = −t+2 = −
1

2

(
ᾱ − λ+

√(
λ+ ᾱ

)2
− 4ᾱλ (η1 + η0)

)
.

By symmetry, the i-th component of the first eigenvector Q̄·1 (associated with δ̄1)
is equal to v1 Zi if i ∈ [`],

v0 Zi if i 6∈ [`],

204 Additional Lemmas Related to the Proof of Theorem 5.5

where v1 and v0 are to be determined. Thus, the equation (−EAτ + λP) Q̄·1 =
δ̄1Q̄·1 leads to{

ᾱ ((η1 + η0)v1 + (1− η1 − η0)v0) = −t+2 v0

ᾱ ((η1 + η0)v1 + (1− η1 − η0)v0)+ λv1 = −t+2 v1,

which, given the norm constraint ‖v‖2 = 1, yields
v1 =

1
√

n
t+2√

(η1+η0)
(
t+2
)2
+(1−η1−η0)

(
t+2 +λ

)2 ,

v0 =
1
√

n
+t+2 +λ√

(η1+η0)
(
t+2
)2
+(1−η1−η0)

(
t+2 +λ

)2 .

Since b̄1 = λvT s̄ = λ(η1 − η0)nv1, we have

b̄1
√

n
= λ(η1 − η0)

t+2√
(η1 + η0)

(
t+2
)2
+ (1− η1 − η0)

(
t+2 + λ

)2 .

The proof ends by noticing that t+2 ≥
ᾱ
2 and t+2 ≤ ᾱ. Indeed,

b̄1
√

n
≥ λ(η1 − η0)

ᾱ

2
√
(η1 + η0)ᾱ2 + (1− η1 − η0)(ᾱ + λ)2

≥
λ(η1 − η0)

2

ᾱ

(ᾱ + λ)

√
(η1 + η0)

(
ᾱ
ᾱ+λ

)2
+ 1− η1 − η0

≥
λ(η1 − η0)

2

ᾱ

λ+ ᾱ
.

This proves the first claim of the lemma.
Similarly, by symmetry the i-th component of the eigenvector v′ associated with
−t−1 equals v′` if i ∈ `, and v′u otherwise, and therefore (v′)T s = 0.

Finally, let I0 := {i ∈ [n] : δ̄i = 0}. By Corollary B.2, we have |I0| = n(1 −
η1−η0)−2. Since 0 is also eigenvalue of order n(1−η0−η1)−2 of the extracted
sub-matrix (−EAτ + λP)u,u = (−EAτ)u,u, we have for all k ∈ I0, Q̄ik = 0 for
every i ∈ [n]. Hence, for k ∈ I0, bk = λQ̄T

·k s = 0.

B.2 Mean-field Solution of the Constrained Linear
System (5.17)

In this section, we calculate the solution x̄ to the mean-field model and deduce
from it the conditions to recover the clusters.

Mean-field Solution of the Constrained Linear System (5.17) 205

Proposition B.3. Suppose that τ > pout. Then, the solution of equation (5.18) on
the mean-field DC-SBM is the vector x̄, whose element x̄i is given by

x̄i =

C (−1+ (η1 − η0)ᾱB)Zi, if i ∈ ` and si 6= Zi,

C (1+ (η1 − η0)ᾱB)Zi, if i ∈ ` and si = Zi,
−ᾱC

ᾱ(1−η1−η0)+γ̄∗
(η1 − η0) (1+ (η1 + η0)ᾱB)Zi, if i 6∈ `,

where ᾱ = n
2(pin − pout), B = ᾱγ̄∗

λᾱ(1−η1−η0)+γ̄∗(λ−ᾱ−γ̄∗)
and C = λ

λ−γ̄∗
.

Proof. Let x̄ be a solution of equation (5.18). By symmetry, we have

x̄i =

xt Zi, if i ∈ [`] and s̄i = Zi,

xf Zi, if i ∈ [`] and s̄i = −Zi,

x0 Zi, if i 6∈ [`],

where xt , xf and x0 are unknowns to be determined. Since for every i ∈ [n],

(EAτ x̄)i = ᾱ
(
x0(1− η1 − η0)+ xtη1 + xf η0

)
,

the linear system composed of the equations
(
(−EAτ + λP − γ̄∗In) x̄

)
i = λsi

for all i ∈ [n] leads to the system
−ᾱ

(
(1− η1 − η0)x0 + xtη1 + xf η0

)
− γ̄∗x0 = 0,

−ᾱ
(
(1− η1 − η0)x0 + xtη1 + xf η0

)
− γ̄∗xt + λxt = λ,

−ᾱ
(
(1− η1 − η0)x0 + xtη1 + xf η0

)
− γ̄∗xf + λxf = −λ.

The rows of the latter system correspond to a node unlabeled by the oracle, correctly
labeled and falsely labeled, respectively. This system can be rewritten as follows:

x0 =
−ᾱ

ᾱ(1−η1−η0)+γ̄∗

(
η1xt + η0xf

)
,

γ̄∗x0 + xt(λ− γ̄∗) = λ,

γ̄∗x0 + xf (λ− γ̄∗) = −λ.

In particular, we have xt − xf =
2λ
λ−γ̄∗

. By subsequently eliminating x0 and xt in
the equation γ̄∗x0 + xf (λ− γ̄∗) = −λ, we find

xf =
λ

λ− γ̄∗

(
−1+

ᾱγ̄∗ (η1 − η0)

λᾱ(1− η1 − η0)+ λγ̄∗ − γ̄∗(ᾱ + γ̄∗)

)
,

xt =
λ

λ− γ̄∗

(
1+

ᾱγ̄∗ (η1 − η0)

λᾱ(1− η1 − η0)+ λγ̄∗ − γ̄∗(ᾱ + γ̄∗)

)
,

206 Additional Lemmas Related to the Proof of Theorem 5.5

and finally

x0 =
−ᾱ

ᾱ(1− η1 − η0)+ γ̄∗

·
λ

λ− γ̄∗

(
1+

ᾱγ̄∗ (η1 + η0)

λᾱ(1− η1 − η0)+ λγ̄∗ − γ̄∗(ᾱ + γ̄∗)

)
.

Corollary B.5. Suppose that τ > pout. Then sign (x̄i) = sign (Zi) if

• node i is not labeled by the oracle;
• node i is correctly labeled by the oracle;
• node i is mislabeled by the oracle and λ < (1− 2η0)ᾱ

η1−η0
η1+η0

.

Proof. A node i is correctly classified by decision rule (5.16) if the sign of x̄i is equal
to the sign of Zi. Using Lemma B.3 in Appendix B.1.2, we have −ᾱ ≤ γ̄∗ ≤

−ᾱ(1− 2η0). Therefore, the quantities B and C in Proposition B.3 verify C ≥ 0
and 1−2η0

λ(η0+η1)
≤ B ≤ 1

λ(η0+η1)
. The statement then follows from the expression of

x̄i computed in Proposition B.3.

References

Abbe, E. 2018. “Community detection and stochastic block models”. Foundations
and Trends in Communications and Information Theory. 14(1–2), 1–162.

Abbe, E., A. S. Bandeira, and G. Hall. 2015. “Exact recovery in the stochastic block
model”. IEEE Transactions on Information Theory. 62(1): 471–487.

Abbe, E., J. Fan, K. Wang, Y. Zhong, et al. 2020. “Entrywise eigenvector anal-
ysis of random matrices with low expected rank”. Annals of Statistics. 48(3):
1452–1474.

Adamic, L. A. and N. Glance. 2005. “The political blogosphere and the 2004 US
election: Divided they blog”. In: Proceedings of the 3rd International Workshop
on Link Discovery. 36–43.

Agirre, E. and A. Soroa. 2009. “Personalizing pagerank for word sense disambigua-
tion”. In: Proceedings of the 12th Conference of the European Chapter of the ACL
(EACL 2009). 33–41.

Akgün, M. K. and M. K. Tural. 2020. “k-step betweenness centrality”. Computa-
tional and Mathematical Organization Theory. 26(1): 55–87.

Albert, R., H. Jeong, and A.-L. Barabási. 2000. “Error and attack tolerance of com-
plex networks”. Nature. 406(6794): 378–382.

Aldous, D. and J. Fill. 2002. Reversible Markov Chains and Random Walks on
Graphs. Berkeley. URL: http://www.stat.berkeley.edu/~aldous/RWG/bo
ok.html.

Altman, A. and M. Tennenholtz. 2005. “Ranking systems: The PageRank axioms”.
In: Proceedings of the 6th ACM Conference on Electronic Commerce. 1–8.

Amini, A. A., E. Levina, et al. 2018. “On semidefinite relaxations for the block
model”. Annals of Statistics. 46(1): 149–179.

Andersen, R., F. Chung, and K. Lang. 2006. “Local graph partitioning using pager-
ank vectors”. In: 2006 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06). IEEE. 475–486.

207

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html

208 References

Arenas, A., A. Fernandez, and S. Gomez. 2008. “Analysis of the structure of com-
plex networks at different resolution levels”. New Journal of Physics. 10(5):
053039.

Avrachenkov, K. E., J. A. Filar, and P. G. Howlett. 2013a. Analytic Perturbation
Theory and its Applications. SIAM.

Avrachenkov, K. E., A. Y. Kondratev, V. V. Mazalov, and D. G. Rubanov. 2018a.
“Network partitioning algorithms as cooperative games”. Computational Social
Networks. 5(1): 1–28.

Avrachenkov, K. E., V. V. Mazalov, and B. T. Tsynguev. 2015. “Beta current flow
centrality for weighted networks”. In: International Conference on Computa-
tional Social Networks. Springer. 216–227.

Avrachenkov, K., A. Bobu, and M. Dreveton. 2021a. “Higher-order spectral clus-
tering for geometric graphs”. Journal of Fourier Analysis and Applications. 27(2):
1–29.

Avrachenkov, K., V. S. Borkar, A. Kadavankandy, and J. K. Sreedharan. 2018b.
“Revisiting random walk based sampling in networks: Evasion of burn-in
period and frequent regenerations”. Computational Social Networks. 5(1): 1–19.

Avrachenkov, K., V. S. Borkar, and K. Saboo. 2016a. “Distributed and asyn-
chronous methods for semi-supervised learning”. In: International Workshop
on Algorithms and Models for the Web-Graph. 34–46.

Avrachenkov, K., P. Chebotarev, and D. Rubanov. 2019. “Similarities on graphs:
Kernels versus proximity measures”. European Journal of Combinatorics. 80:
47–56.

Avrachenkov, K., V. Dobrynin, D. Nemirovsky, S. K. Pham, and E. Smirnova.
2008a. “Pagerank based clustering of hypertext document collections”. In:
Proceedings of the 31st ACM SIGIR. 873–874.

Avrachenkov, K. and M. Dreveton. 2019. “Almost exact recovery in label spread-
ing”. In: International Workshop on Algorithms and Models for the Web-Graph.
30–43.

Avrachenkov, K. and M. Dreveton. 2020. “Almost exact recovery in noisy semi-
supervised learning”. arXiv preprint arXiv:2007.14717.

Avrachenkov, K., M. Dreveton, and L. Leskelä. 2021b. “Recovering communities
in temporal networks using persistent edges”. In: International Conference on
Computational Data and Social Networks. Springer. 243–254.

Avrachenkov, K., R. v. d. Hofstad, and M. Sokol. 2014a. “Personalized pagerank
with node-dependent restart”. In: International Workshop on Algorithms and
Models for the Web-Graph. 23–33.

Avrachenkov, K., A. Kadavankandy, and N. Litvak. 2018c. “Mean field analysis of
personalized PageRank with implications for local graph clustering”. Journal of
Statistical Physics. 173(3–4): 895–916.

References 209

Avrachenkov, K., L. Leskelä, and M. Dreveton. 2022. “Community recov-
ery in non-binary and temporal stochastic block models”. arXiv preprint
arXiv:2008.04790.

Avrachenkov, K., N. Litvak, V. Medyanikov, and M. Sokol. 2013b. “Alpha cur-
rent flow betweenness centrality”. In: International Workshop on Algorithms and
Models for the Web-Graph. Springer. 106–117.

Avrachenkov, K., N. Litvak, D. Nemirovsky, E. Smirnova, and M. Sokol. 2011.
“Quick detection of top-k personalized pagerank lists”. In: International Work-
shop on Algorithms and Models for the Web-Graph. Springer. 50–61.

Avrachenkov, K., N. Litvak, and K. S. Pham. 2008b. “A singular perturbation
approach for choosing the PageRank damping factor”. Internet Mathematics.
5(1–2): 47–69.

Avrachenkov, K., N. Litvak, L. O. Prokhorenkova, and E. Suyargulova. 2014b.
“Quick detection of high-degree entities in large directed networks”. In: 2014
IEEE International Conference on Data Mining. IEEE. 20–29.

Avrachenkov, K., N. Litvak, M. Sokol, and D. Towsley. 2014c. “Quick detection
of nodes with large degrees”. Internet Mathematics. 10(1–2): 1–19.

Avrachenkov, K., A. Mishenin, P. Gonçalves, and M. Sokol. 2012. “Generalized
optimization framework for graph-based semi-supervised learning”. In: Pro-
ceedings of the 2012 SIAM International Conference on Data Mining. SIAM.
966–974.

Avrachenkov, K., G. Neglia, and A. Tuholukova. 2016b. “Subsampling for chain-
referral methods”. In: International Conference on Analytical and Stochastic Mod-
eling Techniques and Applications. Springer. 17–31.

Avrachenkov, K., A. Piunovskiy, and Y. Zhang. 2018d. “Hitting times in Markov
chains with restart and their application to network centrality”. Methodology
and Computing in Applied Probability. 20(4): 1173–1188.

Avrachenkov, K., B. Ribeiro, and J. K. Sreedharan. 2016c. “Inference in OSNs
via lightweight partial crawls”. Proceedings of ACM SIGMETRICS. 44(1):
165–177.

Avrachenkov, K., B. Ribeiro, and D. Towsley. 2010. “Improving random walk
estimation accuracy with uniform restarts”. In: International Workshop on
Algorithms and Models for the Web-Graph (WAW). Springer. 98–109.

Barabási, A.-L. 2016. Network Science. Cambridge University Press.
Barabási, A.-L. and R. Albert. 1999. “Emergence of scaling in random networks”.

Science. 286(5439): 509–512.
Barucca, P., F. Lillo, P. Mazzarisi, and D. Tantari. 2018. “Disentangling group

and link persistence in dynamic stochastic block models”. Journal of Statisti-
cal Mechanics: Theory and Experiment. 2018(12): 123407.

210 References

Bastian, M., S. Heymann, and M. Jacomy. 2009. “Gephi: An open source software
for exploring and manipulating networks”. In: Proceedings of the International
AAAI Conference on Web and Social Media, Vol. 3. No. 1. 361–362.

Batagelj, V. and U. Brandes. 2005. “Efficient generation of large random networks”.
Physical Review E. 71(3): 036113.

Bavelas, A. 1950. “Communication patterns in task-oriented groups”. Journal of
the Acoustical Society of America. 22(6): 725–730.

Belkin, M. and P. Niyogi. 2002. “Using manifold structure for partially labelled
classification”. In: Proceedings of the 15th International Conference on Neural
Information Processing Systems. Cambridge, MA, USA: MIT Press. 953–960.

Ben-David, S., T. Lu, and D. Pál. 2008. “Does unlabeled data provably help?
Worst-case analysis of the sample complexity of semi-supervised learning”. In:
Proceedings of Conference on Learning Theory.

Bergstrom, C. 2007. “Eigenfactor: Measuring the value and prestige of scholarly
journals”. College & Research Libraries News. 68(5): 314–316.

Bergstrom, C. T., J. D. West, and M. A. Wiseman. 2008. “The EigenfactorTM
metrics”. Journal of Neuroscience. 28(45): 11433–11434.

Bhattacharyya, S. and S. Chatterjee. 2020. “General community detection with
optimal recovery conditions for multi-relational sparse networks with depen-
dent layers”. arXiv preprint arXiv:2004.03480.

Bickel, P. J. and P. Sarkar. 2016. “Hypothesis testing for automated community
detection in networks”. Journal of the Royal Statistical Society: Series B (Statistical
Methodology). 78(1): 253–273.

Billingsley, P. 1961. “Statistical methods in Markov chains”. Annals of Mathematical
Statistics. 32(1): 12–40.

Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. “Fast unfold-
ing of communities in large networks”. Journal of Statistical Mechanics: Theory
and Experiment. 2008(10): P10008.

Bojchevski, A., J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki,
M. Lukasik, and S. Günnemann. 2020. “Scaling Graph Neural Networks with
approximate PageRank”. In: Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2464–2473.

Boldi, P., F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna. 2008. “The
query-flow graph: model and applications”. In: Proceedings of the 17th ACM
Conference on Information and Knowledge Management. 609–618.

Boldi, P. and S. Vigna. 2014. “Axioms for centrality”. Internet Mathematics.
10(3–4): 222–262.

Bollen, J., M. A. Rodriquez, and H. Van de Sompel. 2006. “Journal status”. Scien-
tometrics. 69(3): 669–687.

Bollobás, B. 2001. Random Graphs. No. 73. Cambridge University Press.

References 211

Bollobás, B., O. Riordan, J. Spencer, and G. Tusnády. 2001. “The degree sequence
of a scale-free random graph process”. Random Structures & Algorithms. 18(3):
279–290.

Bonacich, P. 1987. “Power and centrality: A family of measures”. American Journal
of Sociology. 92(5): 1170–1182.

Bonacich, P. and P. Lloyd. 2001. “Eigenvector-like measures of centrality for asym-
metric relations”. Social Networks. 23(3): 191–201.

Borassi, M. and E. Natale. 2019. “KADABRA is an adaptive algorithm for between-
ness via random approximation”. Journal of Experimental Algorithmics (JEA).
24: 1–35.

Borgatti, S. P. 2005. “Centrality and network flow”. Social Networks. 27(1): 55–71.
Borgatti, S. P., M. G. Everett, and J. C. Johnson. 2018. Analyzing Social Networks.

2nd ed. SAGE.
Brandes, U. 2008. “On variants of shortest-path betweenness centrality and their

generic computation”. Social Networks. 30(2): 136–145.
Brandes, U., D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D.

Wagner. 2007. “On modularity clustering”. IEEE Transactions on Knowledge
and Data Engineering. 20(2): 172–188.

Brandes, U. and D. Fleischer. 2005. “Centrality measures based on current flow”.
In: Annual Symposium on Theoretical Aspects of Computer Science. Springer.
533–544.

Brauer, A. 1952. “Limits for the characteristic roots of a matrix. IV: Applications
to stochastic matrices”. Duke Mathematical Journal. 19(1): 75–91.

Brémaud, P. 1999. Markov chains: Gibbs fields, Monte Carlo simulation, and queues,
Vol. 31. Springer.

Brin, S. and L. Page. 1998. “The anatomy of a large-scale hypertextual web search
engine”. Computer Networks and ISDN Systems. 30(1–7): 107–117.

Broido, A. D. and A. Clauset. 2019. “Scale-free networks are rare”. Nature Com-
munications. 10(1): 1–10.

Calder, J., B. Cook, M. Thorpe, and D. Slepcev. 2020. “Poisson learning: Graph
based semi-supervised learning at very low label rates”. In: Proceedings of Inter-
national Conference on Machine Learning (ICML 2020). PMLR. 1306–1316.

Callaghan, T., P. J. Mucha, and M. A. Porter. 2007. “Random walker ranking for
NCAA division IA football”. The American Mathematical Monthly. 114(9):
761–777.

Carley, K. M. and D. Skillicorn. 2005. “Special issue on analyzing large scale
networks: The Enron corpus”. Computational & Mathematical Organization
Theory. 11(3): 179–181.

Carrington, P. J., J. Scott, and S. Wasserman. 2005. Models and Methods in Social
Network Analysis. Cambridge University Press.

212 References

Chandra, A. K., P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. 1996.
“The electrical resistance of a graph captures its commute and cover times”.
Computational Complexity. 6(4): 312–340.

Chapelle, O., B. Schölkopf, and A. Zien. 2006. Semi-Supervised Learning. Adaptive
Computation and Machine Learning. MIT Press.

Chen, M., Z. Wei, B. Ding, Y. Li, Y. Yuan, X. Du, and J.-R. Wen. 2020. “Scal-
able graph neural networks via bidirectional propagation”. Advances in Neural
Information Processing Systems. 33: 14556–14566.

Chen, P., H. Xie, S. Maslov, and S. Redner. 2007. “Finding scientific gems with
Google’s PageRank algorithm”. Journal of Informetrics. 1(1): 8–15.

Chen, Y., Y. Chi, J. Fan, C. Ma, et al. 2021. “Spectral methods for data science:
A statistical perspective”. Foundations and Trends in Machine Learning. 14(5):
566–806.

Cherven, K. 2015. Mastering Gephi Network Visualization. Packt Publishing.
Chien, E., J. Peng, P. Li, and O. Milenkovic. 2020. “Adaptive universal generalized

PageRank graph neural network”. arXiv preprint arXiv:2006.07988.
Chung, F. 2007. “The heat kernel as the pagerank of a graph”. Proceedings of the

National Academy of Sciences. 104(50): 19735–19740.
Chung, F. and L. Lu. 2006. Complex Graphs and Networks (CBMS Regional Confer-

ence Series in Mathematics). Boston, MA, USA: American Mathematical Soci-
ety. ISBN: 0821836579.

Clauset, A., M. E. Newman, and C. Moore. 2004. “Finding community structure
in very large networks”. Physical Review E. 70(6): 066111.

Clauset, A., C. R. Shalizi, and M. E. Newman. 2009. “Power-law distributions in
empirical data”. SIAM Review. 51(4): 661–703.

Clemente, G. P. and A. Cornaro. 2020. “A novel measure of edge and vertex cen-
trality for assessing robustness in complex networks”. Soft Computing. 24(18):
13687–13704.

Cohen, E. and H. Kaplan. 2007. “Spatially-decaying aggregation over a network”.
Journal of Computer and System Sciences. 73(3): 265–288.

Cooper, C., T. Radzik, and Y. Siantos. 2016. “Fast low-cost estimation of network
properties using random walks”. Internet Mathematics. 12(4): 221–238.

Cozman, F. G., I. Cohen, and M. Cirelo. 2002. “Unlabeled data can degrade clas-
sification performance of generative classifiers”. In: Proceedings of Flairs-02.
327–331.

Dasgupta, A., R. Kumar, and D. Sivakumar. 2012. “Social sampling”. In: Proceed-
ings of the 18th ACM SIGKDD. 235–243.

Davoodi, E., K. Kianmehr, and M. Afsharchi. 2013. “A semantic social network-
based expert recommender system”. Applied Intelligence. 39(1): 1–13.

References 213

De Nooy, W., A. Mrvar, and V. Batagelj. 2018. Exploratory Social Network Analysis
with Pajek: Revised and expanded edition for updated software. 3rd ed. Cam-
bridge University Press.

Decelle, A., F. Krzakala, C. Moore, and L. Zdeborová. 2011. “Asymptotic anal-
ysis of the stochastic block model for modular networks and its algorithmic
applications”. Physical Review E. 84(6): 066106.

Defferrard, M., X. Bresson, and P. Vandergheynst. 2016. “Convolutional neural
networks on graphs with fast localized spectral filtering”. Advances in Neural
Information Processing Systems. 29.

Dekker, A. 2005. “Conceptual distance in social network analysis”. Journal of Social
Structure. 6(3): 31.

Demmel, J. W., O. A. Marques, B. N. Parlett, and C. Vömel. 2008. “Performance
and accuracy of LAPACK’s symmetric tridiagonal eigensolvers”. SIAM Journal
on Scientific Computing. 30(3): 1508–1526.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum likelihood from
incomplete data via the EM algorithm”. Journal of the Royal Statistical Society:
Series B (Methodological). 39(1): 1–22.

Dhara, S., J. Gaudio, E. Mossel, and C. Sandon. 2022. “Spectral recovery of binary
censored block models”. In: Proceedings of the 2022 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). SIAM. 3389–3416.

Ding, Y., E. Yan, A. Frazho, and J. Caverlee. 2009. “PageRank for ranking authors
in co-citation networks”. Journal of the American Society for Information Science
and Technology. 60(11): 2229–2243.

Dodds, P. S., R. Muhamad, and D. J. Watts. 2003. “An experimental study of search
in global social networks”. Science. 301(5634): 827–829.

Doreian, P., V. Batagelj, and A. Ferligoj. 2005. Generalized Blockmodeling. Cam-
bridge University Press.

Draief, M. and L. Massoulié. 2010. Epidemics and Rumours in Complex Networks.
Cambridge University Press.

Durrett, R. 2007. Random Graph Dynamics, Vol. 200. Cambridge University Press.
Ellens, W., F. M. Spieksma, P. Van Mieghem, A. Jamakovic, and R. E. Kooij.

2011. “Effective graph resistance”. Linear Algebra and its Applications. 435(10):
2491–2506.

Ellson, J., E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull. 2004.
“Graphviz and dynagraph–static and dynamic graph drawing tools”. In: Graph
Drawing Software. Springer. 127–148.

Erdős, P. and A. Rényi. 1959. “On random graphs”. Publicationes Mathematicae,
Debrecen. 6: 290–297.

Erickson, B. H. 1979. “Some problems of inference from chain data”. Sociological
Methodology. 10: 276–302.

214 References

Estrada, E. and N. Hatano. 2008. “Communicability in complex networks”. Phys-
ical Review E. 77(3): 036111.

Estrada, E. and J. A. Rodriguez-Velazquez. 2005. “Subgraph centrality in complex
networks”. Physical Review E. 71(5): 056103.

Everett, M. G. and S. P. Borgatti. 1999. “The centrality of groups and classes”.
Journal of Mathematical Sociology. 23(3): 181–201.

Fan, C., L. Zeng, Y. Ding, M. Chen, Y. Sun, and Z. Liu. 2019. “Learning to identify
high betweenness centrality nodes from scratch: A novel graph neural network
approach”. In: Proceedings of the 28th ACM CIKM’19. 559–568.

Fei, Y. and Y. Chen. 2019. “Achieving the bayes error rate in stochastic block model
by sdp, robustly”. In: Conference on Learning Theory. PMLR. 1235–1269.

Feige, U. and E. Ofek. 2005. “Spectral techniques applied to sparse random
graphs”. Random Structures & Algorithms. 27(2): 251–275.

Fiala, D. 2012. “Time-aware PageRank for bibliographic networks”. Journal of
Informetrics. 6(3): 370–388.

Fiala, D., F. Rousselot, and K. Ježek. 2008. “PageRank for bibliographic networks”.
Scientometrics. 76(1): 135–158.

Fortunato, S. 2010. “Community detection in graphs”. Physics Reports. 486(3–5):
75–174.

Fortunato, S. and M. Barthelemy. 2007. “Resolution limit in community detec-
tion”. Proceedings of the National Academy of Sciences. 104(1): 36–41.

Fournet, J. and A. Barrat. 2014. “Contact patterns among high school students”.
PLOS ONE. 9(9): 1–17.

Fouss, F., K. Francoisse, L. Yen, A. Pirotte, and M. Saerens. 2012. “An experimen-
tal investigation of kernels on graphs for collaborative recommendation and
semisupervised classification”. Neural Networks. 31: 53–72.

Fouss, F., A. Pirotte, J.-M. Renders, and M. Saerens. 2007. “Random-walk compu-
tation of similarities between nodes of a graph with application to collaborative
recommendation”. IEEE Transactions on knowledge and data engineering. 19(3):
355–369.

Freeman, L. C. 1977. “A set of measures of centrality based on betweenness”.
Sociometry 35–41.

Freeman, L. C., S. P. Borgatti, and D. R. White. 1991. “Centrality in valued graphs:
A measure of betweenness based on network flow”. Social networks. 13(2):
141–154.

Friedkin, N. E. 1991. “Theoretical foundations for centrality measures”. American
Journal of Sociology. 96(6): 1478–1504.

Galhotra, S., A. Mazumdar, S. Pal, and B. Saha. 2018. “The geometric block
model”. In: Thirty-Second AAAI Conference on Artificial Intelligence.

References 215

Gander, W., G. H. Golub, and U. Von Matt. 1989. “A constrained eigenvalue
problem”. Linear Algebra and its Applications. 114: 815–839.

Garey, M. R., D. S. Johnson, and L. Stockmeyer. 1974. “Some simplified NP-
complete problems”. In: Proceedings of the 6-th ACM Symposium on Theory of
Computing. ACM. 47–63.

Gauvin, W., B. Ribeiro, D. Towsley, B. Liu, and J. Wang. 2010. “Measurement and
gender-specific analysis of user publishing characteristics on myspace”. IEEE
Network. 24(5): 38–43.

Getoor, L. 2005. “Link-based classification”. In: Advanced Methods for Knowledge
Discovery from Complex Data. Springer, 189–207.

Ghasemian, A. 2019. “Limits of model selection, link prediction, and community
detection”. PhD thesis. University of Colorado at Boulder.

Ghasemian, A., P. Zhang, A. Clauset, C. Moore, and L. Peel. 2016. “Detectability
thresholds and optimal algorithms for community structure in dynamic net-
works”. Physical Review X. 6(3): 031005.

Gilbert, E. N. 1959. “Random graphs”. Annals of Mathematical Statistics. 30(4):
1141–1144.

Gjoka, M., M. Kurant, C. T. Butts, and A. Markopoulou. 2010. “Walking in face-
book: A case study of unbiased sampling of OSNs”. In: Proceedings of IEEE
Infocom 2010. 1–9.

Gleich, D. F. 2015. “PageRank beyond the Web”. SIAM Review. 57(3): 321–363.
Gleich, D. and M. Mahoney. 2014. “Anti-differentiating approximation algo-

rithms: A case study with min-cuts, spectral, and flow”. In: International Con-
ference on Machine Learning. PMLR. 1018–1025.

Goldenberg, A., A. X. Zheng, S. E. Fienberg, E. M. Airoldi, et al. 2010. “A survey
of statistical network models”. Foundations and Trendsr in Machine Learning.
2(2): 129–233.

González-Pereira, B., V. P. Guerrero-Bote, and F. Moya-Anegón. 2010. “A new
approach to the metric of journals’ scientific prestige: The SJR indicator”. Jour-
nal of Informetrics. 4(3): 379–391.

Good, B. H., Y.-A. De Montjoye, and A. Clauset. 2010. “Performance of modu-
larity maximization in practical contexts”. Physical Review E. 81(4): 046106.

Goodman, L. A. 1961. “Snowball sampling”. Annals of Mathematical Statistics:
148–170.

Gori, M., A. Pucci, V. Roma, and I. Siena. 2007. “Itemrank: A random-walk based
scoring algorithm for recommender engines”. In: IJCAI. Vol. 7. 2766–2771.

Grady, L. J. and J. R. Polimeni. 2010. Discrete Calculus: Applied Analysis on Graphs
for Computational Science. Vol. 3. Springer.

216 References

Guédon, O. and R. Vershynin. 2016. “Community detection in sparse networks
via Grothendieck’s inequality”. Probability Theory and Related Fields. 165(3):
1025–1049.

Hagberg, A. A., D. A. Schult, and P. J. Swart. 2008. “Exploring Network Structure,
Dynamics, and Function using NetworkX”. In: G. Varoquaux, T. Vaught, and
J. Millman (eds.): Proceedings of the 7th Python in Science Conference. Pasadena,
Ed. by G. Varoquaux, T. Vaught, and J. Millman. CA USA, 11–15.

Hajek, B., Y. Wu, and J. Xu. 2016a. “Achieving exact cluster recovery threshold via
semidefinite programming”. IEEE Transactions on Information Theory. 62(5):
2788–2797.

Hajek, B., Y. Wu, and J. Xu. 2016b. “Achieving exact cluster recovery threshold
via semidefinite programming: Extensions”. IEEE Transactions on Information
Theory. 62(10): 5918–5937.

Hastings, W. K. 1970a. “Monte Carlo Sampling Methods using Markov Chains
and their Applications”.

Hastings, W. K. 1970b. “Monte Carlo sampling methods using Markov chains and
their applications”. Biometrika. 57: 97–109.

Heckathorn, D. D. 1997. “Respondent-driven sampling: A new approach to the
study of hidden populations”. Social Problems. 44(2): 174–199.

Hein, M., J.-Y. Audibert, and U. v. Luxburg. 2007. “Graph Laplacians and their
convergence on random neighborhood graphs”. Journal of Machine Learning
Research. 8(6).

Hofstad, R. van der. 2016. Random Graphs and Complex Networks. Vol. 1. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press.

Holland, P. W. and S. Leinhardt. 1981. “An exponential family of probability dis-
tributions for directed graphs”. Journal of the American Statistical Association.
76(373): 33–50.

Holme, P., B. J. Kim, C. N. Yoon, and S. K. Han. 2002. “Attack vulnerability of
complex networks”. Physical review E. 65(5): 056109.

Holme, P. and J. Saramäki. 2012. “Temporal networks”. Physics Reports. 519(3):
97–125.

Hopcroft, J. and D. Sheldon. 2008. “Manipulation-resistant reputations using hit-
ting time”. Internet Mathematics. 5(1–2): 71–90.

Horn, R. A. and C. R. Johnson. 2012. Matrix Analysis. Cambridge University Press.
Hu, J., H. Qin, T. Yan, and Y. Zhao. 2020. “Corrected Bayesian information crite-

rion for stochastic block models”. Journal of the American Statistical Association.
115(532): 1771–1783.

Hubbell, C. H. 1965. “An input-output approach to clique identification”. Sociom-
etry 377–399.

References 217

Jackson, M. O. 2010. Social and Economic Networks. Princeton University Press.
Jackson, M. O. and A. Wolinsky. 1996. “A strategic model of social and economic

networks”. Journal of Economic Theory. 71(1): 44–74.
Jamonnak, S., J. Kilgallin, C.-C. Chan, and E. Cheng. 2015. “Recommenddit:

A Recommendation Service for Reddit Communities”. In: 2015 International
Conference on Computational Science and Computational Intelligence (CSCI).
IEEE. 374–379.

Janson, S., T. Luczak, and A. Rucinski. 2011. Random Graphs. Vol. 45. John Wiley
& Sons.

Jog, V. and P.-L. Loh. 2015. “Recovering communities in weighted stochastic block
models”. In: 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton). 1308–1315.

Jung, A., A. O. Hero III, A. C. Mara, S. Jahromi, A. Heimowitz, and Y. C. Eldar.
2019. “Semi-supervised learning in network-structured data via total variation
minimization”. IEEE Transactions on Signal Processing. 67(24): 6256–6269.

Karrer, B. and M. E. Newman. 2011. “Stochastic blockmodels and community
structure in networks”. Physical Review E. 83(1): 016107.

Katz, L. 1953. “A new status index derived from sociometric analysis”. Psychome-
trika. 18(1): 39–43.

Keener, J. P. 1993. “The Perron–Frobenius theorem and the ranking of football
teams”. SIAM Review. 35(1): 80–93.

Kendall, M. G. 1955. “Further contributions to the theory of paired comparisons”.
Biometrics. 11(1): 43–62.

Kingma, D. P. and M. Welling. 2014. “Auto-Encoding Variational Bayes”. In: Pro-
ceedings of the 2nd International Conference on Learning Representations (ICLR).

Kipf, T. N. and M. Welling. 2017. “Semi-supervised classification with graph con-
volutional networks”. In: 5th International Conference on Learning Representa-
tions. ICLR.

Kivelä, M., A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter.
2014. “Multilayer networks”. Journal of Complex Networks. 2(3): 203–271.

Kleinberg, J. M. 1999. “Authoritative sources in a hyperlinked environment”. Jour-
nal of ACM. 46(5): 604–632.

Kleinfeld, J. S. 2002. “The small world problem”. Society. 39(2): 61–66.
Klicpera, J., A. Bojchevski, and S. Günnemann. 2019. “Predict then Propagate:

Graph Neural Networks meet Personalized PageRank”. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6–9, 2019.

Knoke, D. and S. Yang. 2019. Social Network Analysis. SAGE Publications.

218 References

Kolaczyk, E. D., D. B. Chua, and M. Barthélemy. 2009. “Group betweenness and
co-betweenness: Inter-related notions of coalition centrality”. Social Networks.
31(3): 190–203.

Kolaczyk, E. D. and G. Csárdi. 2020. Statistical Analysis of Network Data with R.
2nd ed. Springer.

Krioukov, D., F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá. 2010. “Hyper-
bolic geometry of complex networks”. Physical Review E. 82(3): 036106.

Krzakala, F., C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, and P. Zhang.
2013. “Spectral redemption in clustering sparse networks”. Proceedings of the
National Academy of Sciences. 110(52): 20935–20940.

Kuhn, H. W. 1982. “Nonlinear programming: A historical view”. ACM SIGMAP
Bulletin. (31): 6–18.

Kumar, A., Y. Sabharwal, and S. Sen. 2004. “A simple linear time (1+ε)-
approximation algorithm for k-means clustering in any dimensions”. In:
Proceedings of 45-th IEEE Symposium on Foundations of Computer Science. IEEE.
454–462.

Landau, E. 1895. “Zur relativen Wertbemessung der Turnierresultate”. Deutsches
Wochenschach. 11(366–369): 3.

Langville, A. N. and C. D. Meyer. 2012. Who’s# 1?: The Science of Rating and Rank-
ing. Princeton University Press.

Le, C. M. and E. Levina. 2015. “Estimating the number of communities in
networks by spectral methods”. arXiv preprint arXiv:1507.00827.

Le, C. M., E. Levina, and R. Vershynin. 2017. “Concentration and regularization
of random graphs”. Random Structures & Algorithms. 51(3): 538–561.

LeCun, Y., C. Cortes, and C. J. Burges. 1998. The mnist database of handwritten
digits. URL: http://yann.lecun.com/exdb/mnist/.

Lei, J. 2016. “A goodness-of-fit test for stochastic block models”. Annals of Statistics.
44(1): 401–424.

Lei, J. and A. Rinaldo. 2015. “Consistency of spectral clustering in stochastic block
models”. Annals of Statistics. 43(1): 215–237.

Lima-Mendez, G. and J. van Helden. 2009. “The powerful law of the power law
and other myths in network biology”. Molecular BioSystems. 5(12): 1482–1493.

Lu, Q. and L. Getoor. 2003. “Link-based classification”. In: Proceedings of the Twen-
tieth International Conference on International Conference on Machine Learning.
ICML’03. Washington, DC, USA: AAAI Press. 496–503.

Lusseau, D., K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson.
2003. “The bottlenose dolphin community of Doubtful Sound features a large
proportion of long-lasting associations”. Behavioral Ecology and Sociobiology.
54(4): 396–405.

http://yann.lecun.com/exdb/mnist/

References 219

Mai, X. and R. Couillet. 2018. “A random matrix analysis and improvement of
semi-supervised learning for large dimensional data”. Journal of Machine Learn-
ing Research. 19(1): 3074–3100.

Mai, X. and R. Couillet. 2021. “Consistent Semi-Supervised Graph Regularization
for High Dimensional Data”. Journal of Machine Learning Research. 22(94):
1–48.

Marchiori, M. and V. Latora. 2000. “Harmony in the small-world”. Physica A:
Statistical Mechanics and its Applications. 285(3–4): 539–546.

Mariani, M. S., M. Medo, and Y.-C. Zhang. 2016. “Identification of milestone
papers through time-balanced network centrality”. Journal of Informetrics.
10(4): 1207–1223.

Mastrandrea, R., J. Fournet, and A. Barrat. 2015. “Contact patterns in a high
school: A comparison between data collected using wearable sensors, contact
diaries and friendship surveys”. PLOS ONE. 10(9): 1–26.

Masuda, N. and R. Lambiotte. 2021. A Guide to Temporal Networks. 2nd ed. World
Scientific.

Matias, C. and V. Miele. 2017. “Statistical clustering of temporal networks through
a dynamic stochastic block model”. Journal of the Royal Statistical Society: Series
B (Statistical Methodology). 79(4): 1119–1141.

Mazalov, V. V., K. E. Avrachenkov, L. I. Trukhina, and B. T. Tsynguev. 2016.
“Game-theoretic centrality measures for weighted graphs”. Fundamenta Infor-
maticae. 145(3): 341–358.

Mazalov, V. V. and L. I. Trukhina. 2014. “Generating functions and the Myer-
son vector in communication networks”. Discrete Mathematics and Applications.
24(5): 295–303.

Mei, Q., D. Zhou, and K. Church. 2008. “Query suggestion using hitting time”.
In: Proceedings of the 17th ACM CIKM’08. 469–478.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller .
1953. “Equation of state calculations by fast computing machines”. Journal of
Chemical Physics. 21(6): 1087–1092.

Meyer, C. D. 2000. Matrix Analysis and Applied Linear Algebra. Vol. 71. SIAM.
Michalak, T. P., K. V. Aadithya, P. L. Szczepanski, B. Ravindran, and N. R.

Jennings. 2013. “Efficient computation of the Shapley value for game-theoretic
network centrality”. Journal of Artificial Intelligence Research. 46: 607–650.

Milgram, S. 1967. “The small world problem”. Psychology Today. 2(1): 60–67.
Moore, C. 2017. “The Computer Science and Physics of Community Detection:

Landscapes, Phase Transitions, and Hardness”. Bulletin of EATCS. 1(121).
Moscato, V., A. Picariello, and G. Sperli. 2019. “Community detection based on

game theory”. Engineering Applications of Artificial Intelligence. 85: 773–782.

220 References

Mossel, E., J. Neeman, and A. Sly. 2015. “Consistency thresholds for the planted
bisection model”. In: Proceedings of the 47-th ACM Symposium on Theory of
Computing. 69–75.

Mrvar, A. and V. Batagelj. 2016. “Analysis and visualization of large networks with
program package Pajek”. Complex Adaptive Systems Modeling. 4(1): 1–8.

Myerson, R. B. 1977. “Graphs and cooperation in games”. Mathematics of Opera-
tions Research. 2(3): 225–229.

Namata, G., B. London, L. Getoor, and B. Huang. 2012. “Query-driven active sur-
veying for collective classification”. In: 10th International Workshop on Mining
and Learning with Graphs. Vol. 8.

Newman, M. 2018. Networks. 2nd ed. Oxford University Press,
Newman, M. E. 2001a. “Scientific collaboration networks. I. Network construc-

tion and fundamental results”. Physical Review E. 64(1): 016131.
Newman, M. E. 2001b. “Scientific collaboration networks. II. Shortest paths,

weighted networks, and centrality”. Physical Review E. 64(1): 016132.
Newman, M. E. 2004. “Fast algorithm for detecting community structure in net-

works”. Physical Review E. 69(6): 066133.
Newman, M. E. 2005a. “A measure of betweenness centrality based on random

walks”. Social Networks. 27(1): 39–54.
Newman, M. E. 2005b. “Power laws, Pareto distributions and Zipf ’s law”. Con-

temporary Physics. 46(5): 323–351.
Newman, M. E. 2013. “Spectral methods for community detection and graph par-

titioning”. Physical Review E. 88(4): 042822.
Newman, M. E. 2016. “Equivalence between modularity optimization and maxi-

mum likelihood methods for community detection”. Physical Review E. 94(5):
052315.

Newman, M. E. and M. Girvan. 2004. “Finding and evaluating community struc-
ture in networks”. Physical Review E. 69(2): 026113.

Ofori-Boateng, D., A. K. Dey, Y. R. Gel, and H. V. Poor. 2021. “Graph-theoretic
analysis of power grid robustness”. Advanced Data Analytics for Power Systems:
175.

Orecchia, L. and Z. A. Zhu. 2014. “Flow-based algorithms for local graph cluster-
ing”. In: Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms.
1267–1286.

Orponen, P. and S. E. Schaeffer. 2005. “Local clustering of large graphs by approx-
imate Fiedler vectors”. In: International Workshop on Experimental and Efficient
Algorithms. Springer. 524–533.

Ostuni, V. C., T. Di Noia, E. Di Sciascio, and R. Mirizzi. 2013. “Top-N recommen-
dations from implicit feedback leveraging linked open data”. In: Proceedings of
the 7th ACM Conference on Recommender systems. 85–92.

References 221

Pan, R. K. and J. Saramäki. 2011. “Path lengths, correlations, and centrality in
temporal networks”. Physical Review E. 84(1): 016105.

Peixoto, T. P. 2014a. “Efficient Monte Carlo and greedy heuristic for the inference
of stochastic block models”. Physical Review E. 89(1): 012804.

Peixoto, T. P. 2014b. “The graph-tool Python library”. URL: https://graph-tool.s
kewed.de.

Peixoto, T. P. 2019. “Bayesian stochastic blockmodeling”. Advances in Network
Clustering and Blockmodeling 289–332.

Penrose, M. 2003. Random Geometric Graphs. Vol. 5. Oxford University Press.
Pinski, G. and F. Narin. 1976. “Citation influence for journal aggregates of scien-

tific publications: Theory, with application to the literature of physics”. Infor-
mation Processing & Management. 12(5): 297–312.

Prell, C. 2012. Social network analysis: History, theory and methodology. SAGE.
Puterman, M. L. 2014. Markov decision processes: Discrete stochastic dynamic pro-

gramming. John Wiley & Sons.
Ravi, S. and Q. Diao. 2016. “Large scale distributed semi-supervised learning

using streaming approximation”. In: Artificial intelligence and statistics. PMLR.
519–528.

Reichardt, J. and S. Bornholdt. 2006. “Statistical mechanics of community detec-
tion”. Physical Review E. 74(1): 016110.

Ribeiro, B. and D. Towsley. 2010. “Estimating and sampling graphs with mul-
tidimensional random walks”. In: Proceedings of the 10th ACM SIGCOMM.
390–403.

Robert, C. and G. Casella. 2013. Monte Carlo statistical methods. Springer.
Rochat, Y. 2009. “Closeness centrality extended to unconnected graphs: The har-

monic centrality index”. In: Applications of Social Network Analysis Conference
(ASNA).

Rosvall, M., D. Axelsson, and C. T. Bergstrom. 2009. “The map equation”. Euro-
pean Physical Journal, Special Topics. 178(1): 13–23.

Rosvall, M. and C. T. Bergstrom. 2008. “Maps of random walks on complex net-
works reveal community structure”. Proceedings of the National Academy of Sci-
ences. 105(4): 1118–1123.

Rueda, D. F., E. Calle, and J. L. Marzo. 2017. “Robustness comparison of 15 real
telecommunication networks: Structural and centrality measurements”. Jour-
nal of Network and Systems Management. 25(2): 269–289.

Saade, A., F. Krzakala, and L. Zdeborová. 2014. “Spectral clustering of graphs with
the Bethe Hessian”. Advances in Neural Information Processing Systems. 27.

Sabidussi, G. 1966. “The centrality index of a graph”. Psychometrika. 31(4):
581–603.

https://graph-tool.skewed.de
https://graph-tool.skewed.de

222 References

Saldana, D. F., Y. Yu, and Y. Feng. 2017. “How many communities are there?”.
Journal of Computational and Graphical Statistics. 26(1): 171–181.

Salganik, M. J. and D. D. Heckathorn. 2004. “Sampling and estimation in hid-
den populations using respondent-driven sampling”. Sociological Methodology.
34(1): 193–240.

Sankararaman, A. and F. Baccelli. 2018. “Community detection on euclidean ran-
dom graphs”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SIAM. 2181–2200.

Sapiezynski, P., A. Stopczynski, D. D. Lassen, and S. Lehmann. 2019. “Interaction
data from the Copenhagen networks study”. Scientific Data. 6(1): 1–10.

Scarselli, F., M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. 2008.
“The graph neural network model”. IEEE transactions on neural networks.
20(1): 61–80.

Scott, J. and P. J. Carrington. 2011. The SAGE handbook of social network analysis.
SAGE Publications.

Seeley, J. R. 1949. “The net of reciprocal influence: A problem in treating socio-
metric data”. Canadian Journal of Experimental Psychology. 3: 234.

Serre, D. 2010. Matrices. Springer-Verlag.
Shapley, L. S. 1953. “A Value for n-Person Games”. In: Contributions to the Theory

of Games (AM-28), Volume II. Ed. by H. W. Kuhn and A. W. Tucker. Princeton
University Press.

Sinha, R. and R. Mihalcea. 2007. “Unsupervised graph-based word sense disam-
biguation using measures of word semantic similarity”. In: International Con-
ference on Semantic Computing (ICSC 2007). IEEE. 363–369.

Skibski, O. and J. Sosnowska. 2018. “Axioms for distance-based centralities”. In:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. No. 1.

Smirnova, E., K. Avrachenkov, and B. Trousse. 2010. “Using web graph structure
for person name disambiguation.’. In: Proceedings of CLEF, Vol. 77. 80.

Solla Price, D. de. 1965. “Networks of Scientific Papers”. Science. 149: 510–515.
Solla Price, D. de. 1976. “A general theory of bibliometric and other cumulative

advantage processes”. Journal of the American society for Information science.
27(5): 292–306.

Stankovic, L., D. Mandic, M. Dakovic, M. Brajovic, B. Scalzo, S. Li, and A. G.
Constantinides. 2020. “Data Analytics on Graphs Part III: Machine Learning
on Graphs, from Graph Topology to Applications”. Foundations and Trends in
Machine Learning. 13: 332–530.

Szczepański, P. L., T. P. Michalak, and T. Rahwan. 2016. “Efficient algorithms for
game-theoretic betweenness centrality”. Artificial Intelligence. 231: 39–63.

Traag, V. A., L. Waltman, and N. J. Van Eck. 2019. “From Louvain to Leiden:
Guaranteeing well-connected communities”. Scientific Reports. 9(1): 1–12.

References 223

Veremyev, A., O. A. Prokopyev, and E. L. Pasiliao. 2017. “Finding groups with
maximum betweenness centrality”. Optimization Methods and Software. 32(2):
369–399.

Vershynin, R. 2018. High-dimensional Probability: An Introduction with Applica-
tions in Data Science, Vol. 47. Cambridge University Press.

Vigna, S. 2016. “Spectral ranking”. Network Science. 4(4): 433–445.
Volz, E. and D. D. Heckathorn. 2008. “Probability based estimation theory for

respondent driven sampling”. Journal of Official Statistics. 24(1): 79.
Von Luxburg, U. 2007. “A tutorial on spectral clustering”. Statistics and Computing.

17(4): 395–416.
Wagner, D. and F. Wagner. 1993. “Between min cut and graph bisection”. In:

International Symposium on Mathematical Foundations of Computer Science.
Springer. 744–750.

Wang, X. and I. Davidson. 2010. “Flexible constrained spectral clustering”. In:
Proceedings of the 16th ACM SIGKDD. 563–572.

Wang, X., B. Qian, and I. Davidson. 2014. “On constrained spectral clustering and
its applications”. Data Mining and Knowledge Discovery. 28(1): 1–30.

Was, T. and O. Skibski. 2018. “Axiomatization of the PageRank centrality”. In:
Proceedings of IJCAI. 3898–3904.

Wasserman, S. and K. Faust (1994. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press.

Watts, D. J. 2000. Small Worlds: The Dynamics of Networks between Order and Ran-
domness. Princeton University Press.

Watts, D. J. and S. H. Strogatz. 1998. “Collective dynamics of ‘small-world’ net-
works”. Nature. 393(6684): 440–442.

Wei, T.-H. 1952. “Algebraic Foundations of Ranking Theory”. PhD thesis. Univer-
sity of Cambridge.

West, J. D., M. C. Jensen, R. J. Dandrea, G. J. Gordon, and C. T. Bergstrom. 2013.
“Author-level Eigenfactor metrics: Evaluating the influence of authors, institu-
tions, and countries within the social science research network community”.
Journal of the American Society for Information Science and Technology. 64(4),
787–801.

White, S. and P. Smyth. 2003. “Algorithms for estimating relative importance in
networks”. In: Proceedings of the 9-th ACM SIGKDD. 266–275.

Wu, Z., S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. 2020. “A comprehen-
sive survey on graph neural networks”. IEEE Transactions on Neural Networks
and Learning Systems. 32(1): 4–24.

Xiao, H., K. Rasul, and R. Vollgraf. 2017. “Fashion-mnist: A novel image
dataset for benchmarking machine learning algorithms”. arXiv preprint
arXiv:1708.07747.

224 References

Xu, K. S. and A. O. Hero. 2014. “Dynamic stochastic blockmodels for time-
evolving social networks”. IEEE Journal of Selected Topics in Signal Processing.
8(4): 552–562.

Xu, M., V. Jog, and P.-L. Loh. 2020. “Optimal rates for community estimation in
the weighted stochastic block model”. Annals of Statistics. 48(1): 183–204.

Yan, E. and Y. Ding. 2009. “Applying centrality measures to impact analysis:
A coauthorship network analysis”. Journal of the American Society for Informa-
tion Science and Technology. 60(10), 2107–2118.

Yang, J. and J. Leskovec. 2015. “Defining and evaluating network communities
based on ground-truth”. Knowledge and Information Systems. 42(1): 181–213.

Yang, S., F. B. Keller, and L. Zheng. 2016. Social Network Analysis: Methods and
Examples. SAGE Publications.

Yoshida, Y. 2014. “Almost linear-time algorithms for adaptive betweenness cen-
trality using hypergraph sketches”. In: Proceedings of the 20th ACM SIGKDD.
1416–1425.

Yu, Y., T. Wang, and R. J. Samworth. 2015. “A useful variant of the Davis–Kahan
theorem for statisticians”. Biometrika. 102(2): 315–323.

Yule, G. U. 1925. “A mathematical theory of evolution, based on the conclusions
of Dr. JC Willis, FR S”. Philosophical Transactions of the Royal Society of London.
Series B. 213(402–410): 21–87.

Zachary, W. W. 1977. “An information flow model for conflict and fission in small
groups”. Journal of Anthropological Research. 33(4): 452–473.

Zhang, A. Y., H. H. Zhou, et al. 2016. “Minimax rates of community detection in
stochastic block models”. Annals of Statistics. 44(5): 2252–2280.

Zhang, L. and T. P. Peixoto. 2020. “Statistical inference of assortative community
structures”. Physical Review Research. 2(4): 043271.

Zhang, Y. and K. Rohe. 2018. “Understanding regularized spectral clustering via
graph conductance”. In: Advances in Neural Information Processing Systems.
10631–10640.

Zhou, D., O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. 2004. “Learning
with local and global consistency”. In: Advances in Neural Information Processing
Systems. 321–328.

Zhou, J., G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M.
Sun. 2020. “Graph neural networks: A review of methods and applications”.
AI Open. 1: 57–81.

Zhu, X. and Z. Ghahramani. 2002. ‘Learning from labeled and unlabeled data with
label propagation”. Technical Report CMU-CALD-02-107. Carnegie Mellon
University, Pittsburgh.

References 225

Zhu, X., Z. Ghahramani, and J. D. Lafferty. 2003. “Semi-supervised learning using
Gaussian fields and harmonic functions”. In: Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML-03). 912–919.

Zhu, Z. A., S. Lattanzi, and V. Mirrokni. 2013. “A local algorithm for finding well-
connected clusters”. In: International Conference on Machine Learning. PMLR.
396–404.

Index

belief propagation, 163
Bernoulli random graph, 18
block model, 34

degree-corrected stochastic, 37
geometric, 40
Poisson degree-corrected, 38
popularity adjusted, 39
soft geometric, 39
stochastic, 34, 97

centrality
adjacency spectral, 47
closeness, 46
harmonic, 46
HITS, 52
hitting time, 53
Katz’s index, 52
node degree, 46
Page Rank, 48
random walk, 48

clustering coefficient, 9
community detection, 13, 66

bayesian, 87
component

connected, 8, 187
giant, 21, 22

configuration model, 26

connectivity, 8
continuous relaxation, 70, 95, 130
dangling tree, 76
degree distribution, 10

heavy tailed, 10
distance

Hamming, 97
Hellinger, 99

edge, 1, 186
freshly appearing, 154
persistent, 154

Erdős-Rényi model, 11, 18
estimator

consistent, 98
maximum a posteriori, 92, 129
maximum likelihood, 152
strongly consistent, 98

Expectation-Maximization
Variational, 161

exponential random graph, 40
graph, 1, 186

normalized cut, 72
bisection problem, 68
clustering, 66
cut, 69
derivative, 195

226

Index 227

gradient, 195
Laplacian, 196
ratio-cut, 72

Graph Neural Networks, 139
heat equation, 114
inequality

Chebyshev’s, 185
Hoeffding’s, 186
Markov’s, 184

interaction kernel, 142
interaction structure, 141
k-means, 73
label propagation, 110, 112

sparse, 127, 128
label spreading, 115
Laplacian

generalized, 116
normalized, 188
Page-Rank, 188
standard, 188

Laplacian regularization, 126
Louvain algorithm, 84
Markov

interactions, 142
membership structure, 143

mean-field model, 101
membership structure, 141
modularity, 80

regularised, 94, 154
moment method

first, 184
second, 185

motif counting, 177
node, 1, 186
norm

matrix, 192
vector, 191

online likelihood, 145

oracle, 109
over-fitting, 87
p1 model, 41
phase transition, 20
Poisson learning, 120, 122
power-law, 10
preferential attachment, 28
random geometric graph, 32
random walk, 113, 120
recovery

almost exact, 98, 135
exact, 98

regularization technique, 78
Rényi divergence, 99
sampling

chain-referral, 172
Metropolis-Hastings, 173
ratio with tours, 176
RDS with jumps, 174
respondent-driven (RDS), 173
snowball, 172

semi definite programming, 74
semi-supervised learning, 108
small world, 8
sparsity, 8
spatially embedded random network,

32
spectral clustering

constrained, 123, 126
normalized, 74
standard, 69, 71
temporal, 150, 156

theorem
Courant-Fisher, 193
spectral, 191

transition rates, 158
Waxman model, 32
Zachary karate club, 2

About the Authors

Konstantin Avrachenkov received his Master degree in Control Theory from
St. Petersburg State Polytechnic University (1996), Ph.D. degree in Mathemat-
ics from University of South Australia (2000) and Habilitation from University
of Nice Sophia Antipolis (2010). Currently, he is a Director of Research at Inria
Sophia Antipolis, France. He is an associate editor of the International Journal
of Performance Evaluation, Probability in the Engineering and Informational Sci-
ences, ACM TOMPECS, Stochastic Models and IEEE Network Magazine. He has
won 5 best paper awards. His main theoretical research interests are Markov chains,
Markov decision processes, random graphs and singular perturbations. He applies
these methodological tools to the modeling and control of networks, and to design
data mining and machine learning algorithms.

Maximilien Dreveton received his Bachelor and Master degrees in the field of
Physics from Ecole Normale Supérieure de Lyon, France, in 2013 and 2015.
He obtained his Ph.D. in Computer Science from Inria Sophia Antipolis in
2022 and is currently a postdoctoral researcher at EPFL in Lausanne, Switzerland.
His research interests include statistical analysis of random graphs, and more
particularly community detection.

228

	Copyright
	Preface
	Chapter 1 Introduction
	1.1 Examples of Networks
	Social networks
	Face-to-face interaction networks
	Communication networks
	Information and collaboration networks
	Biological networks
	Geometrically defined network topologies

	1.2 Unifying Properties of Complex Networks
	1.2.1 What are the Properties Commonly Shared by Networks?
	Sparsity
	Connectivity
	Small world
	Edge transitivity
	Heavy-tailed degree distribution

	1.2.2 How do these Properties Arise?
	Erdős-Rényi random graphs
	Random geometric graphs
	Preferential attachment models

	1.3 What Are the Statistical Problems Related to Networks?
	1.3.1 How to Cluster Network Nodes?
	1.3.2 Which Nodes are Most Important in a Network?
	1.3.3 How to Infer Important Information in a Network?

	Book Organisation
	Book Bibliographic Position
	Funding

	Chapter 2 Random Graph Models
	2.1 Erdos-Renyi Random Graphs
	2.1.1 Definition
	2.1.2 Degree Distribution
	2.1.3 Phase Transition Phenomena
	Heuristic
	Main statements
	Proof of the connectivity phase transition

	2.2 Other Random Graph Models
	2.2.1 Configuration Model
	2.2.2 Preferential Attachment Model
	Motivation
	Model definition
	Degree distribution of the preferential attachment model

	2.2.3 Spatial Networks: Random Geometric Graphs, etc
	2.2.4 Summary

	2.3 Clustered Random Graphs: Block Models
	2.3.1 Stochastic Block Model
	2.3.2 Degree-corrected Stochastic Block Model
	2.3.3 Popularity Adjusted Block Model
	2.3.4 Soft Geometric Block Model

	2.4 Exponential Random Graph Model
	2.4.1 Definition and First Examples
	2.4.2 The p1 Model
	2.4.3 Relationship Between θ and the log-odds

	Further Notes

	Chapter 3 Network Centrality Indices
	3.1 Overview of Centrality Indices
	3.1.1 Distance Based Centrality Indices
	3.1.2 Spectral Centrality Indices
	3.1.3 Hitting Time Based Centrality Indices
	3.1.4 Betweenness Centrality Indices
	3.1.5 Game Theory Based Centrality Indices

	3.2 Axiomatic Comparison of Centrality Indices
	3.3 Applications of Centrality Indices
	3.3.1 Social, Bibliographic and Information Networks
	3.3.2 Semi-supervised Learning
	3.3.3 Community Detection
	3.3.4 Further Applications

	Further Notes

	Chapter 4 Community Detection in Networks
	4.1 Cut-based Methods
	4.1.1 Graph Bisection
	First relaxation method: Laplacian spectral clustering
	4.1.2 General Case: More Than Two Clusters
	4.1.3 Semi-definite Programming
	4.1.4 Discussion
	Complexity of spectral clustering
	Performance of spectral clustering on real data sets
	Spectral methods and dangling trees

	4.2 Modularity-based Methods
	4.2.1 Definition
	Efficient computation of modularity

	4.2.2 Greedy Algorithm
	4.2.3 Louvain Algorithm
	4.2.4 Discussion

	4.3 Bayesian Community Detection
	4.3.1 An Over-fitting Issue?
	4.3.2 Principled Approach
	4.3.3 Markov Chain Monte Carlo Algorithm
	4.3.4 Numerical Results

	4.4 Theoretical Analysis
	4.4.1 Modularity and Maximum A Posteriori Estimator
	4.4.2 Normalized Spectral Clustering as a Continuous Relaxation of Modularity Maximisation
	4.4.3 Information-theoretic Results for Consistent Recovery in SBMs
	Non-binary SBMs
	Regime of asymptotic recovery
	Information-theoretic conditions for consistent recovery
	Application to binary SBMs
	Other Particular Cases of Non-binary SBMs

	4.4.4 Consistency of Spectral Methods in SBM
	Heuristic: mean-field model
	Consistency of spectral clustering in SBM

	Further Notes

	Chapter 5 Graph-based Semi-supervised Learning
	5.1 Laplacian-based SSL Methods
	5.1.1 Label Propagation
	5.1.2 Label Spreading
	5.1.3 Generalized Laplacian
	5.1.4 Numerical Performance of the Laplacian-based Methods

	5.2 Learning with Small Amount of Labelled Data
	5.2.1 The Problem of Small Labelled Data
	5.2.2 Poisson Learning
	5.2.3 Numerical Experiments

	5.3 Other Methods
	5.3.1 Constrained Spectral Clustering
	5.3.2 Laplacian Regularization
	5.3.3 1-based Methods: Sparse Label Propagation

	5.4 Bayesian Approach to SSL and Its Theoretical Analysis
	5.4.1 MAP Estimator for DC-SBM with a Noisy Oracle
	5.4.2 Continuous Relaxation
	5.4.3 Upper Bound on the Number of Misclassified Nodes
	5.4.4 Numerical Results

	Further Notes

	Chapter 6 Community Detection in Temporal Networks
	6.1 A General Model of Temporal Networks with Communities
	6.1.1 Membership and Interaction Structures
	6.1.2 Examples of Temporal Network Models

	6.2 Networks with Static Community Memberships
	6.2.1 Recovery Thresholds in SBM with Markov Interaction
	6.2.2 Online Likelihood-based Algorithms for Markov Dynamics
	Numerical results

	6.2.3 Spectral Methods for Clustering Temporal Networks
	Maximum likelihood estimator
	Numerical results

	6.2.4 Clustering for Long Time Horizon Using Empirical Transition Rates

	6.3 Markovian Evolution of Community Memberships
	6.3.1 Variational Expectation–Maximization Algorithm
	6.3.2 Belief Propagation Using the Space-time Graph
	6.3.3 Online Inference as a Semi-supervised Problem
	The lagging problem

	6.3.4 Degree-corrected Temporal SBM with Markov Community Memberships
	Online Maximum A Posteriori estimator
	Continuous relaxation of the MAP
	Numerical experiments

	Further Notes

	Chapter 7 Sampling in Networks
	7.1 Overview of Sampling Methods
	7.1.1 Independent Uniform Sampling
	7.1.2 Snowball Sampling
	7.1.3 Metropolis-Hastings Sampling
	7.1.4 Respondent-driven Sampling
	7.1.5 Respondent-driven Sampling with Uniform Jumps
	7.1.6 Ratio with Tours Estimator

	7.2 Tour-based Estimators for Motif Counting
	7.3 Numerical Comparison of Sampling Methods
	7.3.1 Synthetic Networks
	7.3.2 Real-world Network: DBLP

	Further Notes

	Chapter A Background Material from Probability, Linear Algebra and Graph Theory
	A.1 Probability
	A.1.1 Probability Toolbox
	A.1.2 Basic Probability Laws
	A.1.3 Concentration of Random Variables
	First moment inequalities
	Second moment inequalities
	Concentration of sums of i.i.d. random variables

	A.2 Graph Theory
	A.2.1 Definitions, Vocabulary
	A.2.2 Adjacency Matrix
	A.2.3 Graph Laplacians
	Basic properties of the Laplacians
	Standard Laplacian and the number of connected components

	A.3 Linear Algebra
	A.3.1 Symmetric Matrices
	A.3.2 Norms
	Vector norms
	Matrix norms Serrematrix

	A.3.3 Courant-Fisher Theorem

	A.4 Calculus on Graphs
	A.4.1 Basic Reminders
	A.4.2 Extension on Graphs
	Functions on graph
	Differential graphs operators

	Chapter B Additional Lemmas Related to the Proof of Theorem 5.5
	B.1 Mean-field Solution of the Secular Equation (5.19)
	B.1.1 Spectral Study of a Perturbed Rank-2 Matrix
	B.1.2 Estimation of *
	B.1.3 Concentration of γ*

	B.2 Mean-field Solution of the Constrained Linear System (5.17)

	References
	Index
	About the Authors

