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Abstract 
With the expansion of aquaculture production to meet the growing demand for food 

fish worldwide, there is an increasing need for its sustainable management not only to 

mitigate any threat to the aquatic environment but also to produce more high-quality 

fish that meet the market standards for seafood. Digital transformation (DX) holds an 

important role in achieving this need, enabling fish farmers make better decisions in 

using their resources as well as in reducing their costs of production through 

knowledge transfer and data. One such decision-making where DX can assist is in 

feeding, which generally has the largest share in production costs. 

Conventionally, farmers control the feeding from judging the fishes’ behavior. 

They learn this practice through their subjective experiences, leading to substantial 

differences in results between expert and novice farmers. The latter tends to feed the 

fishes inefficiently, producing uneaten feeds, which do not only increase financial 

burden in culture operations but also contribute to the pollution of the aquatic 

environment, which affect the growth and quality of the fish stocks and ultimately the 

sustainability of their operations. Applying DX to estimate the fish behavior therefore 

becomes important. 

While several intelligent feeding control methods using various technologies have 

been developed for applying such DX, many of are either easily affected by changes 

or noise from external sources or are technically difficult to implement in larger scales. 

An alternative approach is by measurement of outward flow from the cage, which has 

been observed to be fish induced. If we assume that fishes tend to swim upward when 

they sense feeds coming from the surface and swim back down when satiated, and that 
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they tend to move in circles, fish activity at different depths can be visualized with this 

measurement to help farmers make feeding decisions.  

An off-grid modular sensor network was thus designed and developed to collect 

flow speed measurements and underwater video recordings from at least two depths 

and from multiple sides of a fish cage. This was realized by organizing sensors into 

sensor modules, which are connected to each other and are organized into sensor units. 

The sensor units were designed wirelessly relay data from all modules to a hub unit. 

Flow sensors were modified to measure flow speeds underwater. The network’s 

operation was also designed to be scheduled to manage its offshore power supply to 

enable long-term observation by the system.  

To demonstrate its functionality, the sensor network was deployed in fish cages and 

collected data, especially during feeding. The flow measurements and underwater 

videos were analyzed together to estimate the fish activity. Although there were 

various patterns, it could be observed that surface flow increased significantly at the 

beginning of feeding and declined toward the end. Vigorous surface activity was 

observed at most cages, validating the observed flow speeds. Offset between speeds at 

opposite sides was also observed, suggesting cancellation of global currents. In some 

experiments, increase of flow below the surface was also observed at the beginning 

and towards the end of feeding, indicating fishes to climbing and descending.  

There are many factors that contribute to the speed of flow coming out of the cage. 

However, the fishes’ locomotion and depth distribution have a large contribution to 

the changes in flow speed. These parameters depend on their hunger level and on the 

availability of feeds in water, as fishes may tend to swim up fast when they sense feed 

in water and swim less vigorously when they start to become full. A simplified model 



vi 

 

of the fish activity as a response to feeding was developed for simulation. Its output 

could be compared with the collected flow data for the farmers to use in improving 

their feeding decisions. Some observed flow patterns such as the decline of surface 

flow and the increase of flow at lower depths could be used for deciding on when to 

stop feeding. With these insights, a DX system was envisioned to collect flow speed 

and other measurements from multiple fish cages, assisting fish farmers in feeding. 

This research contributes to the development of DX application in cage aquaculture 

by introducing a flexible self-correcting system that could help farmers visualize 

underwater fish activity to help them improve their feeding decisions. 

 

Keywords: Cage aquaculture; Feeding behavior; Sensor network; Flow speed; Fish 

activity  
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Chapter 1. Introduction 

1.1. The state of aquaculture worldwide 

In the last few decades, aquaculture has become one of the important industries for 

achieving sustainable food production. It is seen as a key contributor to the meeting 

the United Nations’ Sustainability Development Goals (SDGs) 2 and 14, which are 

attaining zero hunger and sustainable use of marine resources. It is thus considered a 

key component in building the Blue Economy. 

For the last 70 years, capture fishing has been the larger contributor to global fish 

production. But despite the growing demand for aquatic foods, its production has 

levelled off in the past two decades, as shown in Figure 1-1. This could be attributed 

to the decline of fish populations due to overfishing, pollution, and poor management 

among others. Fish stocks within biologically sustainable levels has decreased from 

90% to 65.8% from 1990 to 2017, which resulted to reduced catches [1].  

 

Figure 1-1 Global fisheries and aquaculture production (1950-2020) [1] 

Aquaculture production, on the other hand, has been expanding since the late 1980s, 

meeting the growing demand for aquatic food as capture fisheries production remains 
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stable. From a four percent share in 1950, aquaculture production doubled every 20 

years, accounting for 49% in the total fish production worldwide at 87.5 million tonnes 

in 2020 [1]. Of this amount, inland and marine aquaculture productions accounted for 

62% and 38%, respectively. Over 20 million people were engaged in aquaculture in 

2020, with most coming from Asia. It is then no surprise that the top five aquaculture 

producers of aquatic animals (finfishes, crustaceans, and mollusks) in the years 2005-

2020 are China, India, Indonesia, Vietnam, and Bangladesh. For the first time in 2020, 

the contribution of aquaculture to aquatic foods available for human consumption 

became greater than that of capture fisheries, estimated at 56%, as seen in Figure 1-2. 

This estimate is expected to rise to 59% in 10 years [1]. 

 

Figure 1-2 Relative contribution of aquaculture and capture fisheries to aquatic foods 

available for human consumption [1] 

This chapter also explores the state of aquaculture production in two countries – the 

Philippines and Japan. The Philippines is the home country of the author of this 

dissertation, while Japan is the country where this research was made. Both countries 

are archipelagic and lie in the Western Pacific Ocean. Surrounded by seas and oceans, 

fish and other aquatic products are major sources of food in both countries, making 
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aquaculture an important industry in both. And yet, their aquacultures are very much 

different, as influenced by different geography, climate, culture, and economy among 

others. 

1.1.1. Aquaculture in the Philippines 

Aquaculture is a major source of aquatic food in the Philippines. The country ranks 

11th in the largest aquaculture producers of aquatic animals in the world, with a 

production volume of around 854,000 tonnes in 2020. As an archipelagic country with 

a 36,289 km coastline, 246,063 ha of swamplands, 200,000 ha of lakes, 31,000 ha of 

rivers, 19,000 ha of reservoirs, and 253,323 ha of man-made fishponds, the Philippines 

is rich in aquatic resources suitable for fish culture. Fish production in the country is 

classified into three sub-sectors – commercial and municipal capture fisheries, and 

aquaculture. Aquaculture production contributes the smallest share, accounting to 

29.14% of the country’s production of aquatic animals in 2020. Of the two million 

registered fisherfolk engaged in fish production, 233,725 or 11% engage in 

aquaculture [2].  

Most aquaculture operations are done in brackish water and freshwater 

environments, producing 346,566 and 284,916 tonnes in 2020, respectively. Most 

fishes in these environments are raised in fishponds. Others are raised in fish cages 

and in fish pens, as shown in Figure 1-3. Marine aquaculture, excluding shellfish and 

seaweed, produced 150,507 tonnes in the same year. Fishes in this environment are 

grown in cages and pens, with more in the former. Aquaculture is also practiced in 

small reservoirs and rice paddies, although they only yield 114.38 and 5.20 tonnes, 

respectively. Milkfish (Chanos chanos) is the fish species cultured the most in the 

country, accounting for around 48.5% of the total production. This is followed by 
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tilapia (Oreochromis niloticus and mossambicus) and shrimps/prawns (mainly giant 

tiger prawn Penaeus monodon), accounting for 30.9% and 8.2%, respectively. Other 

species including mudcrabs, bivalves, carps, groupers, and siganids comprise 12.4% 

of total aquaculture production [2]. 

 

Figure 1-3 A fish farmer from the Philippines feeding tilapia in a bamboo cage 

Aquaculture in the Philippines encounter various challenges that have either been 

brought by human activities, including aquaculture itself, or by the effects of climate 

change [3].  Documented occurrences of algal blooms and fish kills in freshwater or 

brackish water farms have been attributed to decline in water quality due to large 

concentrations of organic matter in water [4]. This was mostly caused by increased 

aquaculture activities – overfeeding, overstocking, and occupation of fish farm 

structures exceeding the coverage limits imposed by law. Higher water temperatures 

attributed to climate change pose a threat to the egg survival of milkfish and Asian 

seabass as well as to the survival of rabbitfish larvae [5]. The Philippines also stands 

in the path of many typhoons, as it is situated along typhoon belt. Destructive typhoons 

of increasing frequency, which are also attributed to climate change, have been 
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bringing extensive damages to aquaculture farms, causing farmers to incur losses, and 

hindering their economic growth. 

1.1.2. Aquaculture in the Japan 

Fish production in Japan is classified into marine fisheries (subdivided into coastal, 

offshore, and pelagic/distant), marine aquaculture, and inland water fisheries and 

aquaculture. Marine aquaculture accounts for 96.7% of the country’s aquaculture 

production, with a volume of around 915,000 tonnes in 2019. Inland aquaculture on 

the other hand contributes 3.3% at a volume of around 31,000 tonnes in the same year 

[6]. Despite the rapid decrease in production by fisheries, production volume by 

aquaculture has not changed substantially throughout the years, as shown in Figure 1-

4 [7]. Out of the 202,430 jobs employed in the fisheries and aquaculture sector in 2018, 

the number of workers engaged in aquaculture was less than 50,000 [8]. 

Among the cultured species, yellowtail (Seriola quinqueradiata) is the most raised 

fish in marine environments, accounting for around 64% of the marine finfish 

aquaculture production in 2019 at around 136,000 tonnes. It is the first marine fish to 

be cultured in Japan in 1927 [9]. It is followed by red sea bream (Pargus major), coho 

salmon (Oncorhynchus kisutch), and Pacific bluefin tuna (Thunnus orientalis) at 

around 23%, 4% and 4% of the production, respectively. After 32 years, Japanese 

scientists were able to complete a full life cycle of cultured bluefin tuna in 2002 [10]. 

Their research was a milestone in achieving sustainable aquaculture of one of the most 

popular fishes in the country. Figure 1-5 shows newly harvested bluefin tunas. In 

freshwater environments, eel (Anguilla japonica) is the most raised, accounting for 

around 51% of the freshwater fish production in 2019 at around 17,000 tonnes. It is 

followed by ayu (Plecoglossus altivelis), rainbow trout (Oncorhynchus mykiss), carp 
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(Cyprinus rubrofuscus), and other trout species, accounting for around 15%, 15%, 9% 

and 9% of the production [7] [11]. 

 

Figure 1-4 Fish production in Japan by type of fishery (1980-2019) [12] 

 

Figure 1-5 Fish farmers in Japan weighing harvested bluefin tuna 

One of the main problems of the aquaculture in Japan is the decreasing number of 

workers engaged in the industry. This is related to the general problem of country 

about its population, with the increasing proportion of elderly persons and declining 
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birth rates [12]. Another problem in the sector is the decline in local catch for raw feed. 

Catch of sardines (Sardinops melanostictus), which was considered an important raw 

aquaculture feed, gradually declined to a very small amount from the late 1980s [13]. 

Catch of mackerel (Scomber japonicus) has also been decreasing in the recent years 

[6]. Both have been attributed to changes in marine environment and to more intensive 

operations by foreign fishing boats in waters surrounding the country [7]. 
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1.2. Research problems 

Although aquaculture has become an emerging industry, several problems arise 

with regards to its sustainability, as shown in Figure 1-6. While some of these are 

brought by natural phenomena, most result from poor aquaculture management 

practices. Unsustainable management of fish farms not only affect their surrounding 

aquatic environment but also the health of the cultured fishes, thus affecting their 

production [14].  

The expansion of the aquaculture production results to increase in demand for 

feeding materials. Ingredients such as fish meal and fish oil come from wild catches. 

With the production of capture fisheries already plateauing, aquaculture adds more 

pressure to the wild fisheries stocks and results to rise in their prices [15]. Some parts 

of the industry also still rely on seedstocks captured from the wild [15] [10]. This 

maintains the pressure on wild fisheries stocks. Aquaculture operations would also 

produce wastes from uneaten feeds and fish excrements. These wastes decompose in 

the water, reducing the quality of water in the cage [16] [17]. As a result, cultured 

fishes would become stressed and grow slower or may even die in large numbers, 

leading to production losses. This is further discussed in section 1.4.  

Fishes stocked in cages at high density are prone to diseases and parasites, which 

may also be transmitted to other species in the surrounding environment [18]. To 

prevent their spread, farmers would apply various drugs and chemicals, such as 

antibiotics, pesticides, and disinfectants [16]. Others such as hormones would also be 

used to improve their growth performance. If not administered properly, these 

substances would find their way to the environments surrounding the cages, which 

may harm wild populations [14]. 
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Figure 1-6 Environmental and economic problems in aquaculture 

Climate change is also seen to exacerbate problems brought by aquaculture. 

Resulting rising water temperatures are credited for the increasing frequency of 

harmful algal blooms, such as red tides. These blooms, which are also worsened by 

the effects of aquaculture wastes, are threat to the fishes either by asphyxiation or 

poisoning [19]. In addition, increasingly destructive typhoons worsened by climate 

change could cause damage to fish cages. Farmed fishes escaping from these cages 

could threaten local species by predation, competition, and spreading of diseases and 

parasites [20]. Typhoons also lead to stray plastic equipment from cages that could 

harm not only local wildlife but also farmed species by entanglement and ingestion 

among others [21]. 

These are some of the notable problems faced by the aquaculture industry. If not 

addressed properly, these issues could cause the industry to collapse and undo its 

contribution to meeting the growing demand for seafood worldwide. Therefore, 

various research efforts have been made on the different aspects of aquaculture 
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towards sustainable growth. Most research works are being done in the fields of 

biology to improve culture management and optimize fish welfare, with research in 

other fields assisting to achieve this goal. Main topics include fish growth performance, 

reproduction and breeding, and regulation of aquatic environment [22] [23]. 

Engineering topics mostly tackle the development of intelligent monitoring and 

control systems as well as of optimal design of cages [24] [25]. 
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1.3. Digital transformation (DX) in aquaculture 

Digital transformation (DX), defined as the adoption of disruptive digital 

technologies to increase productivity, value creation and social welfare, has been 

embraced by an increasing number of industries, governments, and various 

organizations around the world [26]. The increasing affordability and ubiquity of 

sensors, embedded systems, and mobile devices and the expanding network 

connectivity have paved the way to the emergence of the Internet of Things (IoT), big 

data analytics, cloud computing, and artificial intelligence. With the incentives in using 

these technologies increasing throughout the years, especially with the recent COVID-

19 pandemic, more of the said groups begin to make DX an integral part of their 

organizational structures, participating in Industry 4.0.  

In adopting digitization, many of them, especially industry associations, do not only 

aim to implement innovative business models and increase income generation, 

productivity and added value to the economy. They also aim to bring social 

transformations by fostering innovative and collaborative cultures and improve 

accessibility and quality of digital services to the general population. In businesses, 

DX adds another way of creating new value for customers and new markets while 

maintaining the traditional business operations. 

In the aquaculture industry, DX has been seen as a tool for remedying the 

environmental challenges faced by the industry and as an enabler of predictability, 

efficiency, and productivity [27]. With work in this industry considered as hazardous, 

introduction of DX is also seen to bring positive effects on the health and security of 

personnel. It is estimated that applying DX in aquaculture operations by reducing 

operation costs and personnel, as well as increasing feeding efficiency [28]. By 
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applying DX, long-term monitoring of fish cages can be done to collect considerable 

amounts of data on the fish biomass and health, environment, feeding, etc.  

Information from this data augments the knowledge of expert farmers, which would 

not only help them improve their feeding decisions, but also those of less experienced 

farmers. This in turn enables them to optimize their use of resources, such as feed and 

fuel, not only reducing their production and maintenance costs but also improve fish 

feed conversion ratio (FCR) and health, minimizing stressors, and preventing fish kills. 

DX not only leads to the increase in their income amount but ultimately, produce more 

high-quality fishes for the seafood market and reduce the pollution in the aquatic 

environment, moving the aquaculture towards becoming a sustainable industry. Figure 

1-7 maps the contribution of DX towards sustainable aquaculture. 

 

Figure 1-7 The impact of applying DX to achieving sustainable aquaculture 
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1.4. Optimization of fish feeding 

One crucial issue in aquaculture is the need for efficient decision making in fish 

feeding. In many aquaculture operations, feeds make up a large portion of the 

production costs, since growing fishes require feeding them and takes a few months to 

many years to achieve the desired fish weight, depending on the fish species. Although 

the proportion to the overall production costs in different countries vary due to 

differences in intensity and feeding practices, feeding costs account for as high as 

92.5%. Figure 1-8a shows the relative proportion of aquaculture costs by item in all 

farm categories (intensive, semi-intensive and traditional) in six countries – 

Bangladesh, China, Philippines, Thailand, Vietnam, and India, having an average 

relative proportion of 58% for feeding [29]. In Japan, the proportion of feeding costs 

for yellowtail and red sea bream, two major aquaculture species in the country, make 

up 67% and 64% of the production costs, respectively (Figure 1-8b). 

 

Figure 1-8 Share of production costs in six Asian countries [29] and in Japan [13] 

As mentioned in section 1.2, the expansion of aquaculture operations increases the 

demand for feeding materials. Fish meal, fish oil, and raw feed, important ingredients 

for feeds, are sourced from wild caught fishes. With the increasing pressures in wild 
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fish stocks, the increasing demand drive the rising prices in these ingredients, adding 

economic burden on aquaculture operations [13] [15]. Figure 1-9 shows increase in 

prices of raw feed and imported fish meal in Japan from 2005 to 2021. Plant-based 

ingredients such as soybean, wheat gluten, and corn meals are cheaper alternatives to 

fish-based ingredients but have nutritional drawbacks for cultured fishes [30]. Their 

prices also have been increasing in the recent years. Other sources such as animal by-

products, microalgae, and insect larva (e.g., black soldier fly) also have potential as 

alternatives but these also may have some nutritional drawbacks and still need to be 

developed for large scale commercialization [31] [32]. Therefore, to maximize the 

return of investment from the large costs incurred from feeds, farmers need to make 

sure every gram of feed gets eaten, not wasted to the surrounding environment. In other 

words, feeding needs to be optimized. 

 

Figure 1-9 Price of feed and imported fish meal in Japan (2005-2021) [6] 

The conventional farmers’ practice of fish feeding is deciding the timing and the 

amount based on their visual judgement of fishes’ appetite through their behavior as 

seen from the surface. At the start, a farmer would usually throw a few feeds on the 
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water gradually to lure the fishes to the surface. He would then check how many fishes 

are swimming actively at the surface and how much turbulence they are making at the 

surface (Figure 1-10). Upon assessing that many fishes are ready to eat, he would start 

giving them feeds continuously, either with hand or a feed ejecting machine. He would 

constantly look out for changes in the intensity of the turbulence, how it weakens over 

time. He would finally stop giving the feeds when he sees that they are no longer 

grabbing food at the surface, as indicated by almost calm water. 

 

Figure 1-10 Intense surface turbulence made by fishes while feeding 

Efficient feeding has usually been achieved with decisions made by expert farmers 

who, through years of acquiring much skill and experience, could assess of the fishes’ 

behavior and their appetite with high accuracy, and effectively control the feeding. 

This reduces the fishes’ feed conversion ratio (FCR) or the ratio between the amount 

of feed given to a population and its weight gain thus improving fish welfare and 

reducing costs [33]. However, this practice of feeding remains to be an “art,” where 

prediction of the appetite relies on the farmer’s intuition of the fishes’ behavior. The 

decision-making process is subjective, where the basis of each one’s judgement is 

based on his own experiences of feeding. Therefore, information of when to stop 
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giving feeds cannot be quantified by a unified standard [23] [33]. As a result, in the 

difference in quality of the harvest of expert and novice farmers are substantial. Fishes 

grown by the experts are consistent in size and shape and are heavy for their age. Those 

raised by novices, on the other hand, vary in shapes and size, indicating unequal 

distribution of feeding among the population. Novice farmers also have the tendency 

to feed the fishes inefficiently, either by underfeeding or by overfeeding, which could 

have serious effects on the aquaculture operations, as shown in Figure 1-11. 

 

Figure 1-11 Effects of inefficient feeding of cultured fishes 

Poorly timed and estimated feeding leads to poor cost-efficiency in raising fishes 

[34]. Underfeeding results to the slower growth and poorer quality of fishes. On the 

other hand, overfeeding results to uneaten feeds. Some researchers estimated that 

8.26% of the supplied feed get lost to the environment in a sea bream farm although it 

could be more in other cases [35]. This increases the FCR of the fishes i.e., excess 

feeds do not contribute to their nourishment and further growth. Therefore, costs 

expended on the uneaten feeds do not get into increase in their quality and 
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consequently value. This, in turn, reduces the potential income that farmers can earn 

from them.  

In addition, these feeds either sink to the bottom of the sea, river, lake, or pond, or 

become suspended in the water. Either way, these wastes decompose in water with the 

help of bacteria, producing organic compounds such ammonia, nitrite, nitrate, and 

phosphate, reducing the water quality [16]. Ammonia and nitrite are toxic to fishes and 

can disrupt normal functioning of their internal organs [36] [37]. These can also make 

them more vulnerable to diseases. When in large concentrations, nitrate and 

phosphorous cause eutrophication in the surrounding aquatic environment, 

accelerating growth of algal blooms [16] [17]. Decay of algal blooms as well as feeds 

consume dissolved oxygen (DO) and can deplete the supply for the fishes. The stress 

caused by this depletion result to less food intake, higher FCR, slower growth rates, 

and poorer health of fishes, reducing the quality of harvest [22] [38]. At worst, massive 

fish kills can occur in the cages, wiping entire populations [4].  

In the end, not only inefficient feeding could limit the profitability of the farm 

operation, but it could also cause fish farmers could even lose their investments as a 

result. Therefore, DX may prove useful to fish farmers in estimating fish activity so 

they can improve their feeding practices and optimize their use of feeds. Not only this 

enables them to increase their harvest of high-quality fishes and minimize economic 

losses but also reduce the pollution in the aquatic environment. 
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1.5. Literature review 

1.5.1. DX applications in aquaculture 

Although the application of digital technologies in fisheries and aquaculture began 

sometime in the 1990s, the practice of DX in the industry have only become prevalent 

for around the past 15 years [24] [39] [40]. Many research works focus on monitoring 

the environment or the fish activity and welfare and on the controlling of feeding. The 

following are a few research works applying DX in aquaculture.  

Garcia et al. proposed a sensor-based system to control feeding in fish cages [41]. 

As shown in Figure 1-12, a management system would collect various measurements 

from arrays of sensors in the cage and use data fusion to predict the suitable feeding 

decision. So far, they demonstrated their system through simulation using real-world 

measurements. Their placement of sensors also seemed limited, having each sensor 

array only at one side. 

 

Figure 1-12 sensor network made of different sensors placed at multiple depths [41] 

Føre et al. developed a real-time monitoring system for Atlantic salmon in sea cages 

using acoustic telemetry [42] [43]. As shown in Figure 1-13, they used two acoustic 

receivers at two depths to track fishes tagged with depth or activity sensors and 
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wirelessly transmit the data to a monitoring system in the feeding barge. While their 

system could track the fishes in real time, tagging a small sample may not represent 

the feeding behavior of a large feeding population. On the other hand, equipping more 

fishes with telemetry tags could cause interferences in data transmission, causing large 

data losses while monitoring. 

 

Figure 1-13 Acoustic-telemetry-based fish behavior monitoring system [43] 

Skøien et al. measured the attitude and direction of a feed spreader in a fish cage by 

using an attitude and heading reference system reading rotation data from a rotary 

encoder attached to the spreader pipe. At the same time, they characterized the spatial 

distribution of pellets from the feed spreader by imaging the surface with an unmanned 

aerial vehicle (UAV). They could use this system to assist fish farmers evaluate the 

performance of various feed spreaders and help feeding equipment producers make 

better designs [44]. 

Eichhorn, Karimanzira et al. developed a modular unmanned underwater vehicle 

(AUV) system that could carry various sensors for real-time monitoring of water 

quality in the surrounding environment of aqua farms [45] [46]. They conceptualized 

the AUV navigating through fish cages while avoid obstacles, collecting 

measurements at different depths near each cage before docking near a station to 
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upload data (Figure 1-14). They also deployed this system and measured nitrate 

discharge at different depths near aqua farms. 

Kim et al. developed a control system for submerging and surfacing a fish cage in 

the sea to make it withstand adverse weather conditions [47]. The system incorporates 

wind speed and wave height sensors and uses the data they collect to determine the 

weather conditions. After deciding, it automatically controls motors to pump air into 

or out of ballast tanks at the bottom of the cage to make it sink or float. 

 

Figure 1-14 AUV water quality measurement collection mission plan [45] 

1.5.2. Fish activity estimation 

Especially with the recent advancements in artificial intelligence, intelligent 

feeding control has become one of main topics of current research efforts in 

aquaculture. Researchers have developed various methods to recognize and analyze 

fish feeding in water [33] [48]. Applications vary from tracking fish movement to 

detecting feeds in water. Some of these methods feed the information collected into 



22 

 

machine learning models to generate feeding decisions [34] [49] [50]. Different 

information technologies developed fall into three broad categories: computer vision 

(CV), acoustic technologies, and sensors-based technologies. 

Recognizing fish activity with computer vision is the most widely used technology 

in aquaculture in recent years, as optical sensors and machine vision systems are 

becoming more power and sensitive, while becoming less expensive throughout the 

years [51]. Researchers take various approaches to recognizing fish activities from 

images.  

Zhou et al. developed two automatic feeding decision systems based on near-

infrared (NIR) imaging. The first system calculates the snatching intensity of the fishes 

in a tank from the texture features of the near-infrared images as well as their flocking 

behavior from their distances from each other, as shown in Figure 1-15 [49]. They feed 

these calculations to an adaptive network-based fuzzy inference system (ANFIS) to 

make a feeding decision. The second system used the images to train a convolutional 

neural network that classifies the feeding into four intensity levels – none, weak, 

medium, and strong [50].  

The method developed by Zhao et al. extracts foreground feature points from a 

RGB images of tilapia feeding in a tank using optical flow and obtains the school’s 

dispersion degree and the interactive force using covariance and social force models, 

respectively (Figure 1-16) [52]. It also estimated the water flow fields from the 

reflective areas extracted of the image and calculated their kinetic energy. The appetite 

is estimated from the combination of the three obtained values. 

Using the property of NIR to be absorbed by water, Pautsina et al. tracked the 3D 

position of the fishes through imaging the fish tank surface illuminated by NIR [53]. 
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From the image intensities, they obtain the fishes’ 3D coordinates as well as their 

relative speeds. In another research, Saberioon and Cisar developed a system for 

tracking multiple fishes in a fish tank using a structured light sensor [54]. They 

combined sensor’s RGB camera and NIR camera to obtain the fishes’ position in 2D 

space and their depth to ultimately track them in 3D space. Other researchers detect 

uneaten feeds from underwater images to indirectly estimate fish feeding activity [48]. 

 

Figure 1-15 Calculating flocking behavior from image of fishes in a fish tank [49] 

 

Figure 1-16 Measuring dispersion and interactive forces from a fish tank image [52] 

Although CV is a prevalent technology for fish activity estimation, a significant 

issue in its use is the complexity of the aquaculture environments causing various 

degradation to images [55]. Experiments most of the research works cited were made 

in indoor fish tanks where environment was controlled. While some methods use near 
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infrared to adapt to low lighting and turbid water, their resolution and accuracy need 

to be improved. 

Acoustic technologies overcome the problems of degradation brought by varying 

illumination and water turbidity conditions affecting the performance of CV, as sound 

propagates in water with much less attenuation. Acoustics-based activity recognition 

can be classified into imaging and non-imaging methods. Imaging uses sonar to 

generate images of fishes underwater. Tao et al. used a moving vertical and fixed 

horizontal echo sounders to observe spatial distribution and swimming speeds of fishes 

in a dam [56]. By attaching the sounders to a boat and to a ship lock, they found out 

that the fishes there follow a diel vertical migration pattern. Rakowitz et al. observed 

fishes entering and escaping a trawl by imaging with a multibeam acoustic camera 

[57]. They attached the camera to the trawl, extracted eight numeric track features from 

the imaged fishes and identified their behavior from eleven avoidance behavior 

categories. Zhang et al. used the same device to measure the length and observe the 

swimming patterns of Chinese sturgeons in a cage [58]. They placed the camera in one 

corner, pointed to the opposite corner. While acoustic imaging is intuitive and easy to 

use, imaging equipment is relatively expensive. 

Non-imaging acoustics are also applied in various ways. Mallekh et al. measured 

the intensity of feeding sounds of turbots in a fish farm using a hydrophone and 

evaluated the feeding intensity from the signal variance [59]. They also characterized 

the feeding characteristics of brown trout and rainbow trout using this method [60]. 

Polonschii et al. used an 3D array of ultrasound transducers to track the 3D position of 

sturgeons in a fish tank, as shown in Figure 1-17 [61]. Using their system, they 

observed normal and abnormal fish behavior at different conditions with parameters 
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adjusted to outside normal levels.  Each kind of method also face specific problems. 

Detecting feeding sounds with hydrophones may be affected by ambient noise from 

aquaculture equipment and weather. Using too many transducers in a culture 

environment may cause interference with each other, possibly leading to data losses. 

 

Figure 1-17 3D ultrasound transducers placed in a fish tank to track sturgeons [61] 

While various sensor-based activity recognition technologies are applied, those 

widely used usually fall into two groups – sensor tagging (inertia, depth, muscle 

activity, etc.) and water quality sensing (DO, temperature, pH, etc.). With tagging, data 

from sensors attached to fishes are usually logged internally or are transmitted in real 

time using acoustic or radio telemetry. Noda et al. attached inertial measurement unit 

(IMU) loggers on yellowtails to reconstruct their dynamic accelerations and angular 

velocities [62]. Together with a high-speed camera, they used the data to characterize 

the fishes’ fast-start behaviors (for feeding or escaping). Cubitt et al. attached 

electromyogram (EMG) transmitters on rainbow trout fishes to measure their muscle 

activity in real-time [63]. Using support vector machines (SVM), they were able to 

classify the fishes’ hunger states with high success. As already mentioned, Føre et al. 

tagged fishes with depth sensors or accelerometers with acoustic telemetry for real-

time activity monitoring [42] [43].  

While sensor tagging can measure fish activity with high accuracy, this method is 

invasive, which may affect the welfare of the fish. In addition, data from a small 
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sample group may not accurately represent the activity of a large fish population. 

However, tagging a larger sample becomes logistical more difficult and may cause 

technical problems such as transmission interference and data losses.  

On the other hand, measuring water quality using sensors for parameters such as 

dissolved oxygen and temperature are non-invasive methods for estimating fish 

activity. Soto-Zarazúa et al. implemented a fuzzy-logic-based system to control the 

feeding of tilapia by measuring the DO and temperature in the fish tank [64]. They get 

the fishes’ feeding demand as affected by their feeding rhythms. Wu et. al developed 

an ANFIS fuzzy-logic controller that uses DO measurements to make feeding 

decisions for silver perches in fish tanks [34]. They used changes in DO not only as an 

indicator of fish appetite but also as a transient effect of the fishes’ flocking and 

struggling behavior. Zhao et al. also developed an ANFIS controller that uses DO and 

temperature for feeding grass carps in ponds [65]. They obtained the percent values of 

feeding, which are indicators for the fish feeding activity. Although not a water quality 

sensor, Chang et al., developed an intelligent feeding controller that uses infrared a 

photoelectric sensor to observe the gathering behavior of eels [66]. While these 

methods generate feeding decisions with high success rates, effectively reducing feed 

wastes, their measurements are susceptible to changes in the external environment. 
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1.6. Flow measurement in aquaculture 

Offshore cage aquaculture environments, whether freshwater or marine, are 

complex, with many sources of noise and environmental changes that can affect the 

measurements made in water. We therefore need a flexible self-correcting system for 

estimating fish activity underwater in cage aquaculture to assist farmers in making 

feeding decisions. In addition, it must be able to make long-term observations to help 

farmers throughout the growth cycle of the fishes. 

A measurement that has been barely explored for estimating fish activity is of the 

water flow generated by fish movements. Most studies on fish-induced flow in 

aquaculture focused on its interaction with the effect of sea currents on net structures 

as well as on the water exchange for oxygen resupply [67]. Chacon-Torres et al. 

evaluated the effects of fish movements on the water exchange in small cages 

containing rainbow trout and observed faster dye dispersion at increased fish activity 

[68]. Findings from dye experiments and current measurements by Gansel et al. 

suggested that the circular motion of large group of fishes pushes water out of the cage, 

creating vertical water exchange [69]. Tang et al. also made similar observations 

through numerical simulations, with higher fish densities reducing drag force on the 

net cage [70].  

While Zhao et al. estimated the change in water flow magnitude to assess fish 

appetite, measurement was still based on CV as it extracted the reflective areas from 

the images taken by cameras [52]. Garcia et al. proposed the use of fish speed sensor 

that senses streams produced by fish movement to assess feeding behavior but did not 

elaborate on the sensor details as they only simulated their system using real-world 

measurements [41]. In addition, their system is not self-correcting since they proposed 
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a sensor array placed only on one side of the cage, having to rely on external current 

sensors for calibration. 

For designing a system that estimates the fish activity through the measurement of 

induced flow, we make some assumptions about the fish behavior inside and the flow 

around the cage, as shown in Figure 1-17. When held at high density, a shoal of fishes 

can adopt a polarized schooling as a response of each fish to minimize the risk of 

collision with others [71]. Therefore, we can first assume that fishes swim in a circular 

pattern within a highly stocked cage. Outside feeding times, we assume that the fishes 

tend to stay at the bottom of the cage. They only swim to the surface when they detect 

feeds in water and when they are hungry. Given these conditions, they swim actively 

at the surface. They swim back to lower depths when they become satisfied.  

 

Figure 1-18 Concept of fish-induced flow by outside of and during feeding 

We also assume that the circular motion of a school of fishes generates water flow 

moving radially out of the fish cage. We also assume that the instantaneous flow speed 

is uniform in all directions. This speed is mainly dependent on the fish school’s 
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swimming speed and on its depth distribution. This means that flow speeds at different 

depths may vary. Global current mainly caused by the tide and winds can be assumed 

to flow uniformly through a fish cage in a single direction. Fish-induced flow at a given 

point can either be reduced, increased, or cancelled by the global current, depending 

on the velocities of both. With these assumptions, we may be able to help farmers, 

especially the less-skilled ones, better visualize the underwater fish activity by 

measuring the flow at different depths from different directions. This visualization 

could also help them gain better understanding of the fishes’ feeding behavior and of 

the decision-making process of expert fish farmers and optimize their feeding.  
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1.7. Objectives 

We therefore propose in this thesis a system that estimates the fish activity through 

flow measurements for assisting in making feeding decisions in cage aquaculture. The 

objectives of this research are enumerated below: 

1. To introduce DX in fish cages by developing a sensor network. To meet this 

objective, we first need to construct a modular network that can collect sensor data 

– flow speeds and video recording of fish activity, at different depths from multiple 

sides of a fish cage. By doing this, we can realize observation of fish activity in 

cages of various configurations that can adapt to the changes in the environment. 

Second, we need to realize an offshore system to enable the sensor network to 

make long-term observations of the fish activity. This is an important aspect of 

introducing DX as estimation of fish behavior for making good feeding decisions 

is essential throughout the fishes’ growth cycle. 

2. To clarify the properties of fish activity in feeding. To achieve this, we must first 

observe the fish activity by recording flow speeds and videos in fish cages, 

especially during feeding. We then need to compare the collected flow speeds data 

with the recorded fish activity videos. By doing this, we can get a better 

understanding of their relationship as we find features in the flow data that 

correspond to the changes in the fishes’ movement and distribution throughout the 

cage.  

3. To propose a DX system for cage aquaculture, as shown in Figure 1-18. This needs 

to be done to set the direction of this research in the future. We can move towards 

the realization of DX in estimating fish behavior and in optimizing the use of 

resources in feeding cultured fishes. 
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Figure 1-19 The envisioned sensor system deployed in fish farms 
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Chapter 2. Flow speed sensor network 

2.1. Modular sensor network design and development 

2.1.1. System design requirements 

Flow speed is the primary measurement of this system, as proposed. This is usually 

measured in meters per second or centimeters per second, as specified in commercial 

current meters. Since it was anticipated that fish-induced flow speeds would not exceed 

those of ocean currents, it was decided to use the latter unit for measurement. In addition 

to flow, video recordings of fish activity can validate the measured flow speeds.  

While flow measurement is not affected by noise or by changes in ambient light or in 

the condition of water, is important to note that the flow measured at a single point could 

come not only that created by the fishes but also from currents outside the cage caused 

by various sources such as winds or tides. These external currents generally flow through 

cages in any single direction. Isolating the fish-induced flow could be done by measuring 

at different points of the cage, especially at opposing sides. Figure 2-1 shows the concept 

of cancelling the effects of external currents from the sensor measurements. 

Fish cages, whether square or circular, come in varied sizes – area and depth. 

Measuring flow at deeper and wider cages requires positioning more sensors between the 

surface and the bottom at more than one point on one side. In addition, fish farm operators 

might have specific requirements on the position of measurements. A modular design for 

the network could address these issues by as allowing flexibility with the positioning of 

the sensors as well with the number of sensors to be installed at target depths and 

directions.  

Cabling between sensors therefore needs to be minimized as installation of sensors in 

a fish cage is complex, especially without equipment, since space for movement is limited. 
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This is also needed to keep them as light as possible. This can be accomplished between 

sensors within a column in the cage by connecting them in a daisy-chain. Sensor arrays 

at different points in the cage are then connected wirelessly above surface, with their data 

being relayed to a central computer.  

 

Figure 2-1 Sensor network design based on the concept of fish-induced flow from cage 

Cages could be too far from cellular networks, so immediate access by the sensors to 

the cloud from the cage might not be possible. To address this, the central computer needs 

enough data storage that can temporarily hold three to seven days’ worth of flow speeds 

and videos. The capacity could depend on the frequency of feeding, with some farmers 

feeding their fishes once in at least two days. 

2.1.2. Sensor network structure 

In essence, the sensor network is implemented as a combination of star and daisy-chain 

networks. A sensor module serves as the basic unit of the sensor network, measuring flow 

and recording video at a given point in the fish cage. Multiple modules connect to each 

other in a daisy chain arrangement and form a sensor unit, collecting data at multiple 

depths from one side of the cage. Each sensor unit contains a top module to which the 
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daisy chain of sensors connects. The top module wirelessly connects the sensor modules 

to a hub unit, which collects the data from all sensor units and controls the operation of 

the sensor modules. The sensor network’s structure is illustrated in Figure 2-2. 

 

Figure 2-2 Network structure of the modular sensor system 

Multiple sensor units can be installed at any position in one cage. However, the sensor 

network can function most effectively if at least one unit is positioned on each of at least 

two opposing sides so that sensors on either side could measure the flow caused by 

external currents, cancelling their effects. Ideally, each sensor unit can consist of as many 

sensor modules as possible. However, the number of installable modules per unit is 

limited by the voltage supplied to the top module as well as the voltage drop from the top 

module to the nth sensor module, which depends on the resistance of the power cables. 

The network bandwidth is also a limiting factor as the hub unit router, having a given 

bandwidth, becomes a bottleneck for all the data coming from the sensors. The number 

of sensor modules is therefore limited to avoid any data loss. 
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2.1.3. Sensor modules 

To measure flow and record fish activity videos, each sensor module uses an 

underwater flow sensor and a network camera (Figure 2-3). A modified propeller-type 

flow sensor is mounted on the module frame to measure flow underwater. Development 

of this sensor is be discussed in the next subsection.  

 

Figure 2-3 Sensor modules and their main components 

The microcontroller reading the signals from the flow sensor outputs measurements 

by serial to a device server, which is connected to a LAN hub to transmit the data to the 

hub unit computer by TCP/IP. To access the flow server, the hub unit connects to the 

device server by Telnet. Another port of the LAN hub is designated for the network 

camera. Two other ports are for the LAN ports of the upper and lower sensor modules, so 

that sensor modules can form an Ethernet daisy chain. Isolated DC/DC converters are 

used so that the power supplied to the top module is converted to smaller voltages to 

properly operate the sensor microcontroller, the device server, and the LAN hub. 

The network camera runs on Power over Ethernet (PoE) – power line runs through the 

Ethernet cable for communications. Since it is the only PoE device in the module, it 

connects to a PoE injector, whose data line is connected to the LAN hub and power line 

to the supply. Depending on the standard, voltage supplied to PoE devices is in the range 
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of 48-57 V. Since voltages at the power supply are usually lower than the said range, each 

sensor module houses an isolated step-up DC/DC converter for the network camera to 

operate. 

Static IP addresses were assigned to each IP device of the sensor module for easier 

identification and access of the sensors. Both the device server and network camera of 

each module are assigned with addresses having the same end digit at the fourth dot 

decimal and designated tens digits to distinguish the kind of device. For example, the 

camera of a sensor module is assigned with 192.168.100.1X while the device server is 

assigned with 192.168.100.2X. This organization, however, will have to be changed when 

expanding the number of modules of the sensor network as it only assumes 9 modules in 

the system. 

All module electronics other than the flow sensor are housed inside a watertight 

enclosure. Together with the other sensor electronics except for the current sensors, the 

network camera is enclosed inside a cylindrical watertight enclosure, with one side 

attached with a transparent cap for the camera and the other for the watertight connectors 

that connect the module to others. The connector side has three connectors. One is for the 

flow sensor, which leads straight to the microcontroller’s pins. The other two connect to 

the sensor module or top module above and to the sensor module below (unless it is the 

bottom sensor). Both connect to the power converters and to the LAN hub ports. An 

aluminum mounting frame is made for each sensor module to fix the position of the 

electronics enclosure inside and of the flow sensor on top.  

Underwater cables for Ethernet and power were also constructed to connect all the 

sensor modules to each other and form a daisy chain with the top module. Although a 

sensor unit can theoretically be comprised of as many sensor modules as desired, the 
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actual number is limited by the voltage supplied and by the resistance of each cable. High 

resistance in cables due to length and wire gauge causes voltage to drop at the module 

connector. The sensor modules at the farthest end will not work if the dropped voltage is 

less than the minimum operating voltage for the component devices. More sensor 

modules could be added by using cables with lower wire gauges i.e., wires with larger 

diameter. While shortening the cable can also reduce the voltage drop, this limits the 

separation between the sensor modules. The trade-off between the two should be balanced. 

Each sensor module is mounted on a modular four-legged stainless-steel frame that 

can be attached to other frames to form a sensor unit (Figure 2-4). Each frame has a 

mounting plate that can be shifted along the legs. This allows the sensor module to be 

fixed at any desired position within the frame length. Some of these frames have a 

mounting plate for the top module and for the arms that are attached to the fish cage. 

These modular frames were fabricated by Belltechne Co., Ltd., an engineering company 

that we collaborated with in doing this research. 

To determine each sensor module’s position in the frame, we first decide the target 

depths from the surface for measurement. While we can set an arbitrary depth for the first 

module, it is advised to set a consistent separation between the modules. We also measure 

the height of the cage frame from the water surface. The position of the top sensor module 

from the top of the sensor module frame 𝑙 is calculated by the equation, 

 𝑙1 = ℎ1 − ℎ𝑐𝑎 (1) 

where ℎ1 is the target depth of the top sensor module below sea level and ℎ𝑐𝑎 is the height 

of the cage frame above sea level. It should not exceed the length of the frame 𝐿. The 

length of the subsequent sensor modules 𝑙𝑛 from each frame is calculated by the equation, 

 𝑙𝑛 = (ℎ𝑛 − ℎ𝑛−1) − (𝐿 − 𝑙𝑛−1) (2) 
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where ℎ𝑛 and ℎ𝑛−1 are the depths of sensor modules and 𝑙𝑛−1 is the position of the sensor 

module above. 

 

Figure 2-4 Sensor and top modules mounted on modular frames and assembled into a sensor 

unit (with depth ranges for each sensor module) 

2.1.4. Flow sensor development 

For the flow sensor to be used, one of its requirements is to be low cost since the 

system requires multiple sensors measuring at different depths and sides of the cage.  

Upon survey, many commercial current sensors do not meet this requirement. Some of 

them also have a proprietary interfacing that makes it difficult if not impossible to 

customize and interface them in another system. It was therefore decided to customize 

low-cost sensors to measure flow underwater.  

The sensor selected for customization was a propeller-type flow sensors originally 

intended for measuring water flow through water pipes. It operates on the principle of 

Hall-effect, producing voltage when two opposing magnetic blades of the propeller’s four 

blades are in proximity to the Hall sensor. One pass by the magnetic blade on the sensor 
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generates a pulse, thus making the number of pulses generated at a given time 

proportional to the propeller’s rotation speed and to the speed of water flow through the 

sensor (Figure 2-5). 

 

Figure 2-5 Propeller flow sensor design 

For a selected flow sensor sampling interval, a microcontroller board detects the falling 

edge of the pulses sent by the Hall sensor on its interrupt pin and increments its pulse 

counter for every pulse. At the end of the sampling time, it then obtains the average 

frequency of the propeller rotation and then converts it into flow speed by multiplying to 

a calibration coefficient. After printing the calculated output, the microcontroller resets 

the pulse counter to zero before measuring the flow speed for the next sampling time.  

To obtain the calibration coefficient, the flow sensor was cross-calibrated with a digital 

clamp-on type flow sensor (Keyence FD-Q32C). Both sensors were connected to an 

elevated water source where flow was partially controlled by a valve, as flow rate and 

speed were dependent on the height, and subsequently the volume, of the water in the 

container (Figure 2-6). Propeller sensor and digital sensor readings were collected at 

different flow rates by turning the valve. By the law of conservation of mass (through the 

continuity equation), the flow speeds at the propeller sensor were calculated from the area 

of its passageway and from the flow rate readings at the digital sensor. The frequency 
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readings and the calculated flow speeds were then correlated to get the calibration 

coefficient of the propeller flow sensor.  

To determine the sampling interval to be used by the sensor modules, we selected three 

candidate values for calibration: 1 s, 5 s, and 10 s. Figure 2-7 shows the results of 

calibration values for the three candidate times. It was decided to use set the flow sensor’s 

sampling time to five seconds as it produced better calibration results compared to when 

using one or ten seconds. This sampling time would be used in the following fish cage 

experiments. In retrospect, however, setting the sampling time to one second would have 

been better after finding out from experimental data that flow speeds could change 

significantly in less than five seconds. This should be considered for the next fish cage 

experiments provided that the propeller flow sensors will still be used. 

 

Figure 2-6 Flow sensor calibration experiment setup  

Because these sensors were not originally designed to operate underwater, 

modifications were made on them. We replaced their wires with waterproof cables with 

connectors compatible with the sensor module connectors. To waterproof the Hall-effect 

sensors, we sealed the housing with epoxy to prevent any leak inside. We then sealed the 
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remaining exposed parts of the cable with butyl rubber to complete the waterproofing. 

We also added extra PVC pipe connectors on the ends of the sensor so that they could be 

mounted on the sensor module frames. 

 

Figure 2-7 Comparison of propeller flow sensor calibration coefficients at three sampling 

intervals: 1 s, 5 s, and 10 s  

2.1.5. Top modules 

The top module is responsible for connecting the sensor modules wirelessly to the hub 

unit. As shown in Figure 2-8, it basically consists of a Wi-Fi router configured as a bridge 

to the router of the hub unit, so it does not broadcast its own network but serves as an 

extension of the hub router. Its LAN port is connected to the Ethernet component of the 

underwater cable connecting to the topmost module of the sensor module daisy chain. 

Through this configuration, the top modules connect all sensor modules to one network 

even when they are physically separated from each other, enabling them to transmit their 

data to the hub computer.  

The top module receives power from an external source. The sensor units are separated 

from the power supply, therefore requiring cables to power them. As a result, voltage 
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drops across the length of the cable. To make sure module regulates this with an isolated 

DC/DC converter before supplying it to the sensor modules to maintain their stable 

operation. Supplied voltage is also converted to power the module router. All electric and 

electronic components of the module are placed in a waterproof enclosure. They are wired 

to an underwater cable connecting to the top sensor module’s underwater connector. 

Plastic roofing was made for each box to block exposure to sunlight and prevent further 

heating to the electronics. The box’s prefabricated screw holes are screwed to the top 

frame of the sensor unit. 

 

Figure 2-8 An open top module with a Wi-Fi router and voltage regulator inside 

2.1.6. Hub unit module 

The hub unit is basically any computer connected to a regular Wi-Fi router. A terminal 

emulator software is used to access the sensor modules by Telnet and log the data with 

timestamps into a file, while a video management software is used to record videos from 

the cameras. While one day’s worth of flow speed data from one sensor module takes up 

only around 1 MB of storage, videos recorded by the module’s camera for the same 

duration consumes an estimated 30 GB of storage.  Depending on the number of sensor 

modules constructed and on number of recording hours per day, it is advised for the hub 
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unit computer to have a large data storage. For eight sensor modules tasked to collect data 

for 24 hours a day, it should have at least 500 GB available storage as backup for two 

days. 

Since it communicates wirelessly with the sensor units, it can be placed in a separate 

enclosure, possibly with the power supply (see next section 2.2). Alternatively, one of the 

top modules can be configured into a hub unit module, which basically assumes the 

function of a hub unit, as shown in Figure 2-9. The modules of one sensor unit connect 

directly to the LAN port of the hub unit router which replaces the bridge router. The hub 

computer can either be inside the top module box. For this case, a single-board computer 

(SBC) is used to run the programs for collecting all sensor data.  

 

Figure 2-9 A hub unit module with its components 

To automate data collection, the data recording programs used are configured to 

automatically start recording. After startup, the hub SBC automatically initializes the 

terminal emulator to execute scripts for connecting to and logging received data from 

each flow speed sensor at the preset schedules. It also initializes the video management 

software to start recording videos at the same time. It is configured to end both programs 

automatically by shutting down at the end of the recording periods to prevent data loss or 

errors in the operating system.  
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2.2. Offshore system for long-term observation 

2.2.1. System design requirements 

Improving the estimation of fish activity requires observation of fishes throughout 

their life cycle, from transferring from hatcheries to harvesting. This means collecting 

data on the fish activities for longer periods of time, with minimal human interference 

(apart from the fish farmers). Data collection is not only made during the feeding time 

but also at different times of the day, throughout the different seasons of the year. This 

allows observation of daily patterns in fish behavior and their changes as the season 

changes, which may indicate changes in fish appetite. Doing so requires not only 

sufficient daily power but also automation of recording.  

In most instances, there is no access to grid power at fish cages since they are 

positioned hundreds of meters from the shore. Tethering power from shore not only incurs 

losses in power transmission but also poses several risks such as electrocution and 

collision with fishing boats among others. An off-grid power system therefore needs to 

be installed in the fish cage. This system consists of an energy storage with a capacity to 

power the sensor network for more than two hours, and an energy harvesting system to 

recharge the batteries and extend the network operation. Among the various methods 

existing, solar energy harvesting is used for the system, as solar panels and controllers are 

the most widely available energy harvesting devices in the market and are the easiest to 

install in fish cages.  

Designing the sensor network’s power system requires determining the daily schedule 

for data collection and consequently the daily duration of operation. Ideally, the sensor 

network collects data continuously every day. However, power supply may be limited 

due to physical constraints in the fish cage. It is therefore advised to allot separate window 
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periods of interest for the sensor network’s operation throughout the day. The most 

important operation window is for the regular feeding routine, which is usually done 

during daytime. This may last from five minutes to more than one hour, depending on 

population size in the cage, on the fish farmer’s feeding practices and on the feeding rate. 

About three to five hours may be allotted for data collection, depending on the farmer’s 

daily schedule. In addition, collecting data outside the feeding schedule could provide 

additional insight on the fish activity at different times of the day, which could be affected 

by sunlight and temperature. One to two hours of observation each at daytime and at dusk 

could be allotted depending on the user’s preference. 

The time for manually operating the system on-site is limited, depending on the farmer 

as well as on the weather among others. For this reason, the sensor network needs to 

operate automatically. The power supply units need to have a system to switch on and off 

automatically according to the designated schedule. In response to switching on, the hub 

unit should also automatically start its data collection programs according to schedule. Its 

clock should therefore be synchronized with the actual time so that it adds an accurate 

timestamp to the collected data. Automatic operation requires the sensor units to be within 

the hub unit’s wireless range. Because Wi-Fi has a limited range of less than 20 meters, 

the hub unit also needs to be placed in the cage. This is where the hub unit module design 

becomes useful.  

2.2.2. System power management 

The power supply units developed is photovoltaic system, basically consisting of solar 

panels, batteries, and solar charge controllers. Since the network components are designed 

to be powered by direct current electricity, inverters are not used. To determine the 
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capacity of power supply, we first measure the power consumption of a sensor unit 𝑃𝑈 

with 𝑛 sensor modules. This is calculated by the equation, 

 𝑃𝑈 = 𝑉𝐼𝑈 = 𝑉(𝑁𝑚𝐼𝑚 + 𝐼𝑡) (3) 

where 𝑉 is the power supply voltage and 𝐼𝑈 is the measured current draw by the sensor 

unit. 𝐼𝑚 , and 𝐼𝑡  are the current draws of a single sensor module and the top module, 

respectively. The power consumption of the sensor network 𝑃𝑆𝑁 consisting of 𝑁 sensor 

units is given by the equation 

 𝑃𝑆𝑁 = 𝑁𝑈𝑃𝑈 + 𝑃𝐻 = 𝑁𝑈𝑃𝑈 + 𝑉𝐻𝐼𝐻 (4) 

where 𝑃𝐻  is the power consumption of the hub unit computer while 𝑉𝐻  and 𝐼𝐻  are its 

supplied voltage and current draw, respectively. The current draw by the entire sensor 

unit is usually measured to get the power. Therefore, the total daily energy requirement 

𝐸𝑆𝑁 of the sensor network with 𝑁 sensor units is given by the equation,  

 𝐸𝑆𝑁 = 𝑃𝑆𝑁𝑡𝑆𝑁 (5) 

where 𝑡𝑆𝑁 is the total daily duration of the sensor network’s operation. The unit used for 

𝐸𝑆𝑁 𝑖𝑠 seconds/day This serves as the minimum energy capacity of the battery to power 

the system.  

Once the daily energy requirement of the sensor network is obtained, we then calculate 

the total output power required from solar panel to replenish the recharge the power 

supply batteries every day. One of the most important factors to be considered for 

calculation is the location since the amount of solar energy received depends on the 

climate of the location. While orientation affects the yield of the panels, we assume them 

to be lying flat on the cage platform. We calculate the required daily panel output power 

𝑃𝑆 by using the equation, 

 𝑃𝑆𝑃 = 𝐸𝑆𝑁(𝑡�̅�𝑚𝑖𝑛)−1 (6) 
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where 𝑡�̅�𝑚𝑖𝑛 is the daily average of minimum monthly total sunshine duration, with the 

unit of seconds/day. The sunshine duration is defined as the as the sum of the time for 

which the direct solar irradiance exceeds 120 W m–2 [72]. This value depends on the 

location. Since it only takes account for the global solar radiation, the energy output of a 

solar panel of a given rating could be more than the calculated value due to diffused light. 

The minimum monthly sunshine duration is used for calculating its output power to 

ensure that the energy supplied by the panels to the batteries is sufficient for the sensor 

network to operate even in the cold months when the amount of sunshine is minimal. 

Depending on each sensor unit’s energy requirement and on the installation setup, the 

calculated battery capacity and solar panel output power is evenly distributed among the 

sensor units as multiple power supply units. This means that one power supply unit may 

be used to power one or more sensor units, as shown in Figure 2-10. Upon determining 

the distribution of power supply, the number of units as well as the battery and panel 

specifications is decided. 

 

Figure 2-10 A design of the offshore power system for two sensor units (one with hub) 
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Automation of operation is implemented in the electrical and software levels. At the 

electrical level, the power supply unit switches on and off according to schedule using a 

microcontroller switch, as seen in Figure 2-11. A microcontroller board, which is 

continuously powered by the solar charge controller’s USB port, sends signals to a relay 

circuit board, switching on and off the solar controller’s output, which gets split into two 

power lines for two sensor units. The microcontroller is programmed to switch the power 

on ten minutes before the start of scheduled data collection and switch it off five minutes 

after the end of collection. This is done to give time for the devices to initialize and shut 

down properly. The switching schedules are hard coded in the microcontroller, which has 

a real-time clock to keep track of the time as accurately as possible. In response to the 

power supply switching on, automation at the software level begins as the sensor network 

devices initialize to prepare for the data collection schedule, as discussed in section 2.1.6.  

 

Figure 2-11 The microcontroller switch inside the power supply unit 

For execution of data collection at the correct time and for accurate timestamping of 

data, the hub unit computer clock needs to be in sync with standard time. To keep track 

of the actual time even when without power, computers usually have a CMOS battery to 
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maintain their real-time clocks. However, some SBCs do not have such and rather rely 

on time servers for synchronization. Otherwise, they either retrieve the last time before 

shutdown or reset to Unix time, which is usually 00:00:00 UTC on 1 January 1970. 

Without any internet connection in fish cages, their clocks become lagged from the actual 

time. For such computers, a GPS time server can be installed in one of the sensor units 

(Figure 2-12), initializing after switching on. The hub unit can wirelessly communicate 

with this device and synchronize its time since both connect to the same network. 

 

Figure 2-12 A GPS time server installed in one of the sensor unit top modules 
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2.3. Summary 

A modular sensor network is designed and developed to observe flow and fish activity 

at different depths and from more than one side of a fish cage. Sensor modules, measuring 

flow speeds and recording videos at different depths, connect to each other and to a top 

module to form a sensor unit. The sensor module’s flow speed sensor was developed by 

modifying a propeller-type flow sensor for water pipes, calibrated to measure flow speeds. 

The sensor unit’s top module relays all sensor data to a hub unit and regulates the voltage 

it receives from the source to ensure stable operation. The hub unit receives data from all 

sensor modules and stores them in its computer. It can be alternately configured as a hub 

unit module by combined with one of the top modules. Its data collection programs are 

configured to automatically collect data after initialization. 

An offshore system is also developed for long-term observations by the sensor network 

by designing power supply units for the sensor units and by automating the sensor 

network operation. The power supply units consist of photovoltaic systems, whose battery 

capacity and panel output power are determined by determining the daily energy 

consumption of the network, which is obtained from its power consumption and its 

operating schedule. They are programmed to switch power according to the determined 

schedule. The hub unit module automatically starts recording data from sensors modules 

after booting. To collect data at the correct time and with correct time stamping, the hub 

may be synchronized with a GPS time server. 
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Chapter 3. Fish activity estimation 

3.1. Overview 

Clarification of the properties of the fish activity during feeding and of its relationship 

with the fish-induced flow requires its observation through the recording of flow speeds 

from and videos in the fish cage, and comparison of the collected data. Three fish cage 

experiments were performed throughout this research to achieve these objectives. In 

addition, the functionality a system component was demonstrated for every experiment, 

starting from the developed sensors to the modular sensor network performing long-term 

observations. 
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3.2. Flow sensor functionality experiment 

3.2.1. Setup 

The first fish cage experiment primarily aimed to detect fish-induced flow using the 

modified propeller flow speed sensors and to observe fish activity especially during 

feeding. This initial experiment was performed on March 18, 2021, at a fish farm owned 

by Hyōshoku Co., Ltd., located in Usuki City in Oita Prefecture. Measurements were 

collected at two 10 m x 10 m square cages with depths of 7.5 meters while feeding 

operations were done by the farmer. These cages contained around 3500 yellowtail 

amberjacks (Seriola aureovittata), locally known as Hiramasa. The fishes had been raised 

for a year, each with an average weight of 3 kilograms. They were fed with moist feed, 

which is a combination of raw fish and powdered meal (fish, soybean etc.). Feeds were 

given using a feed ejecting machine installed in the feeding boat, as shown in Figure 3-1. 

Although the amount of feed provided to each cage was not recorded, it is safe to say that 

the feed amount given to each cage was within the scale of hundred kilograms. Feeding 

in the first cage lasted around 80 minutes while feeding in the second lasted around 70 

minutes. Feeds were dispensed to the cages gradually for around 10 minutes to lure the 

fishes to the surface before continuously dispensing the feeds. Dispensing of feeds were 

stopped either when the ration for each cage was fully given or when the fish farmer 

assessed that the fishes became satiated. Table 1 summarizes the experiment details. 

At this stage, the sensor network and its components had not been developed yet. The 

sensors collected flow speed data from the cage as a suite of dataloggers, serving as 

prototypes of the sensor unit. Calculated measurements from the sensor’s microcontroller 

were written to the CSV file stored in an SD card, appended with timestamping from 

datalogger’s real-time clock. A Bluetooth module was used to remotely trigger the data 
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collection by the sensor. Sensor electronics and batteries apart from the were placed in a 

waterproof enclosure. Two flow speed loggers were constructed for this experiment and 

were mounted on a custom frame to measure at two different depths (Figure 3-2). 

Together with each flow logger is a GoPro camera for recording the fish activity 

underwater. 

 

Figure 3-1 Feeding machine giving feeds to fishes in the cage 

Fish cage no. Cage 1 Cage 2 

Location Usuki City, Ōita Prefecture (大分県臼杵市) 

Dimensions 10 m (length) x 10 m (width) x 7.5 m (depth) 

Sensor depths 0.4 and 3.4 m 

Fish; average 

weight 

Yellowtail amberjack/ヒラマサ 
(Seriola aureovittata); 3 kg 

Est.  population 3500 

Age 1 year old 

Feed type Moist feed 

Feeding duration ~80 minutes ~70 minutes 

Feed amount  unrecorded 

Feeding method Machine 

Table 1 Cage and feeding parameters of the initial fish cage experiment 

For each measurement, the sensor suite was mounted on the center of one side of the 

cage adjacent to the side where the feeding boat was docked at. To maintain the 

positioning of sensors, the senor frame was made as rigid as possible by attaching a 
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supporting bracket to its center was and binding its arms to the cage frame. The sensors 

were positioned 0.7 and 3.7 m from the top of the frame, as shown in Figure 3-3. But 

because the cage frame was elevated at 0.3 m above water, the sensors were positioned 

at depths of 0.4 m and 3.4 m, respectively. The sensors were powered on, closed, and 

triggered to record data before submerging them for measurement. Data files were 

retrieved from the sensor suite after it was retrieved and returned to shore. The flow speed 

measurements with timestamps were extracted from the CSV files and were processed 

for analysis. 

 

Figure 3-2 Prototype flow sensor logger suite used in the first experiment 

In analyzing the data, it was expected there would be fluctuations in the readings. The 

trends were therefore obtained by calculating their centered moving averages. This type 

of calculation was used to prevent the trend from lagging from the data points. Generally, 

each centered moving average �̂�𝑡 at time 𝑡 using odd or even 𝑚 data points is calculated 

by the respective equations, 

 �̂�𝑡 =
1

𝑚
(∑ 𝑢𝑡+𝑡𝑠𝑖

𝑘
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where 𝑢𝑡 is the measured flow speed at time 𝑡, 𝑡𝑠 is the sampling time, and 𝑘 =
𝑚−1

2
 or 

𝑘 =
𝑚

2
, respectively. Throughout all experiments, the 𝑚  used throughout all the 

experiments is six data points, therefore calculating each moving average within a 30-

second span of data. These were plotted together with the raw data. Noted observations 

were marked on the data plot according to the time they were recorded.  

The changes in measurements were also analyzed with the video recordings of fish 

activity at the time of the noted observations. Since the cameras used were not 

automatically synchronized with the sensor loggers, the timestamps of the videos were 

manually adjusted during post-processing comparing the noted observations with the 

events in the camera. For the video recordings, only the first half of the feeding at the first 

cage had underwater recordings since the camera batteries were exhausted and no extra 

batteries were prepared. For the second cage, a camcorder was used to record observations 

from the surface instead. It was noted in both measurements that the spikes at the 

beginning and the end of the data series indicated the time the sensors were deployed and 

recovered. 

 

Figure 3-3 Initial fish cage experiment setup using the prototype sensor suite 
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3.2.2. Results 

Figure 3-4 shows the measurements in the first cage. In the first fish cage, feed was 

started to be given in small amounts at around 11:34, seven minutes after the deployment 

of sensor, to attract the fishes to the surface. Before feeding began, video recordings 

showed no presence of fish at the surface (0.4 m). They were seen shoaling below, as seen 

from the second camera, as seen in Figure 3-4a. Throughout the gradual feeding, flow 

speed at the surface was close to zero, while speed at the lower depth (3.4 m) was slightly 

higher, by around 4 cm/s or less. At the start, surface flow did not increase right 

immediately. Fishes started schooling and few started swimming to the surface only at 

around 11:36, as seen in Figure 3-4b. The number of fish swimming to the surface 

continued increasing before the feeds started floating away from the cage, blurring the 

surface camera at around 11:42. Despite this observation, readings did not indicate 

significant increase in flow. 

Surface flow rose to around 12 cm/s at 11:43. It exceeded the flow speed below, which 

did not change significantly. At around this time, the fisherman also started dispensing 

feed to the cage continuously. It was also around this time that the fishes at 3.4 meters 

depth became significantly less visible. This could be attributed to the decrease in 

illumination due to the increased fish activity at the surface blocking more amount of 

light, as well as to dispersion of light from splashing. It was also observed from the 

surface that the feeds landed closer to the side opposite of the sensor suite. Fishes gathered 

closer to that side, therefore making them less visible from the camera. At around 11:47, 

vigorous fish feeding was observed from the surface. This was also observed from the 

turbulence at the surface, as captured by the underwater camera, as shown in Figure 3-4c. 

The fishes at surface appeared to swim faster of the although this was difficult to confirm 



59 

 

due to their distance from the camera and from the blurred water. They also appeared to 

swim slightly faster than the fishes at 3 meters below. For around seven minutes, surface 

flow speed was maintained at an average of 8 cm/s. This slightly decreased afterwards. 

From this point throughout the rest of the feeding, surface measurements were 

generally uniform, with peak values ranging within 4-10 cm/s. Flow at 3.4 m was also 

uniform, not exceeding 4 cm/s. Apparent swimming speeds of fishes at the two depths 

remained constant towards the end of the underwater videos, with fishes at the surface 

swimming slightly faster than those below. The visibility of fishes at both depths would 

vary, increasing and decreasing back-and-forth. These patterns could be attributed to the 

low feeding activity on that day, as noted by the farmer. Such observation could have 

been based on the previous observations of more vigorous swimming and splashing at the 

surface of the same cage at the start of feeding. The underwater cameras stopped 

recording at 12:09 (surface) and 12:04 (3.4 m depth), about halfway of the feeding. This 

was due to insufficient battery power, as they were previously used in a trial measurement 

in another fish cage.  

Flow speed reading was at 4.51 cm/s when the fisherman stopped dispensing feeds at 

12:56. It was noted that fishes were still swimming around the surface at that time. One 

minute later, measurements dropped to almost 0 cm/s, the same time it was noted that 

fishes were no longer visible from the surface, indicating that they swam back to the 

deeper part of the fish cage.  
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Figure 3-4 Flow speeds and their 30-second moving averages at the first fish cage 
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Figure 3-5 Snapshots of video recordings at the first fish cage 

In the second cage, only a video recording above surface was taken for comparison 

with flow speed measurements. The time gradual feeding started was not noted properly, 

as the sensor suite was being mounted on the cage at around the same time. It could have 

begun sometime after 13:03, when the sensor suite was deployed, as indicated by the 

sensor readings.  

Figure 3-6 shows the measurements in the second cage. At the start of the video at 

around 13:10, few fishes were swimming up during gradual feeding. Measurements at 

both depths remained low, up to 2.51 cm/s. At 13:17, while there was no increase in flow 

speed yet, feeds started to disperse from the cage, as observed in the video. Flow readings 

started increasing at 13:19, with some readings reaching over 4 cm/s. This corresponded 



62 

 

to more fishes started swimming at the surface as observed from increased splashing, as 

seen in Figure 3-7. The fisherman switched the feeding machine to dispense feeds 

continuously at 13:20. The fishes were observed to be actively swimming at the surface 

one minute later, corresponding with the flow speed exceeding 8 cm/s. 

In the next 15 minutes, surface flow speed reached an average of around 10 cm/s, 

reaching as high as 15.79 at around 13:32. During this period, fishes were swimming 

actively at the surface. Splashes at the surface would also disappear occasionally, 

corresponding to brief drops in flow speed. Towards 13:35, fish activity gradually 

decreased, with less fishes causing smaller splashes. 

From then towards 13:51, surface flow gradually increased, reaching speeds as high 

as 20 cm/s. Fish activity also increased. Although the intensity of splashes did not change 

much, more fishes were observed swimming around at the surface. Swirling water surface 

became more observable at around 13:45, indicating more fishes swimming around. The 

intensity of fish activity then decreased at 13:52 for around two minutes, which 

corresponded with the drop of flow speed to 4 cm/s. Fish activity increased again in the 

next six minutes before decreasing again at 14:00. This corresponded again with the flow 

readings averaging at around 11 cm/s before dropping again to 4 cm/s. 

Flow speed increased from then to around 14:12, reaching speeds close to 20 cm/s 

again. Video also showed steady increase in fish activity from 14:00, as seen from the 

swirling of water surface and increased splashing. From 14:12, flow speed gradually 

declined to around 6 cm/s. Although there were still many fishes swimming at the surface, 

they appeared to be swimming more slowly and making less splashes compared to 

previous observations, as seen in Figure 3-8. Feeding was ended at 14:20, at which 

measurement was at around 4 cm/s. Reading eventually dropped to almost zero after 
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around one minute, just a few moments away from sensor recovery. At around this time, 

surface of the cage became calm. 

 

Figure 3-6 Flow speeds and their 30-second moving averages at the second fish cage. 
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Figure 3-7 Fishes actively splashing as continuous feeding started 

 

Figure 3-8 Low splashing intensity at surface towards the end of feeding 

The flow speed at 3.4 m was consistently low throughout the feeding, although it 

would sometimes exceed 4 cm/s. There was a drastic increase in readings that occurred 

once at around 13:28, reaching 12 cm/s. Although the brief decrease in fish activity 

indicated fishes going down, the spike could also be attributed to waves causing the fish 

cage to oscillate more, affecting the sensor measurements. 

A similar observation on the feeding operations at both fish cages was that flow speed 

measurements were at around 4 cm/s when feeding was stopped by the fisherman. Both 

gradually dropped to almost zero after around one minute. Although flow speeds were 
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different at the start of the continuous feeding in the two cages, it was clear that increase 

in fish activity at the surface i.e., more fishes swimming and splashing at the surface, is 

followed by increase in flow speed. It was observed from this experiment that changes in 

flow speed, especially at the surface, correspond to changes in fish behavior as observed 

by the farmer. This also showed that the developed propeller flow speed sensors were 

able to detect flow induced by fishes, particularly at the surface, and could be used for 

collecting measurements at different depths. 
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3.3. Sensor network functionality experiment 

3.3.1. Setup 

The objective of the second fish cage experiment is to be able to collect flow speed 

measurements and underwater videos of the fish activity at different depths from more 

than one side of a fish cage using the modular sensor network. A two-day experiment was 

performed in November 2021 at a fish farm owned by Tokumaru Co., Ltd. in the town of 

Shin-Kamigotō in Nagasaki Prefecture. Three 11.7 m x 11.7 m square fish cages with 

depth of 7.5 m were selected for collecting sensor data during feeding routines. Each cage 

contained half year-old Japanese amberjacks or yellowtails (Seriola quinqueradiata), 

locally known as Buri. The first two cages contained around 11,000 and 8,000 fishes that 

were caught from the wild as fry (locally known as mojako), while the third cage 

contained 8,000 fishes that were transferred from an artificial hatchery. In this experiment, 

the average weight of each fish was not obtained from the farmers. Details of the 

experiment is summarized in Table 2. 

Cage no. 1 (Day 1) 2 (Day 1) 3 (Day 2) 

Location 
Shin-Kamigotō Town, Nagasaki Prefecture  

(長崎県新上五島町) 

Dimensions 11.7 m (length) x 11.7 m (width) x 5 m (depth) 

No. of sensor units 1 1 2 (1 per side) 

Sensor depths 0.5 and 2.5 m 0.5, 2.5 and 4.5 m 0.5 and 2.5 m 

Fish 
Yellowtail/Japanese Amberjack/ブリ 

(Seriola quinqueradiata) 

Population ~11,000 ~8,000 

Age ~0.5 years 

Fish seed Wild fry (mojako) Lab hatchling 

Feed type Extruded pellet (EP) 

Feeding duration ~9 min. ~7 min. ~9 min. 

Feed amount 240 kg 230 kg 240 kg 

Feeding method Machine Manual 

Table 2 Details of the second fish cage experiment 
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These fishes were fed with extruded pellets (EP), a combination of fish and powdered 

meal molded into pellets. Feeding in the first two cages was performed on the first day at 

around 8:00 AM. Like the first experiment, fishes were fed using a feed ejecting machine 

mounted on the feeding boat. The farmer would also stop the machine based on his 

assessment of their feeding behavior. Feeding was done for around nine minutes in the 

first cage, giving the fishes a total of 240 kg of feeds. On the other hand, the farmer 

decided to stop the feeding in the second cage after seven minutes, giving only a total of 

approximately 230 kg of feeds. 

Feeding in the third cage on the second day was performed at around 9:55 AM. Unlike 

on the first day, feeds were given to the fishes manually. The farmer would place all 12 

20 kg bags of feed on the platform in the middle of the cage and pour the feeds on the 

water at the south side of the cage, one bag at a time. At the start, he would pour them 

slowly until he assessed that most of the fishes were swimming actively at the surface. 

He would then pour the feeds continuously until all bags were emptied or until he would 

find the fishes no longer swimming vigorously to feed. All bags of feed were used up on 

that day, amounting to a total of 240 kg of feeds. 

For this experiment, we decided to construct four top modules and eight sensor 

modules. With these, one sensor unit can be installed at each side of a square cage, and 

each can at least have two sensor modules. We designed these modules to be powered by 

12-V sources as this is the most common voltage used for batteries. Throughout all the 

possible sensor unit combinations, a maximum of five underwater cables was needed and 

therefore constructed to connect all sensor modules to each other. Based on the experience 

from the previous experiment, each cable was made with a length of around three meters. 

However, these cables were made using large-gauged wire for the power line, therefore 
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having higher resistance per length. From a 12-V supply, the resulting dropped voltage at 

a fourth module was too large that it could not power that module sufficiently for proper 

operation. This limited the sensor unit to carry three sensor modules. 

Given the number of constructed modules, multiple sensor units with more than two 

sensor modules could not be installed in all the cages in the same day. To resolve this, we 

decided to deploy the sensor network with different configurations on separate days. This 

explains why feeding on the third cage was done on the second day. This also allowed us 

to meet the different objectives of the experiment at different cages and gain more insights 

from them. 

For the first two cages, we mounted one sensor unit on one side of each cage adjacent 

to where the feeding boat was docking (Figure 3-9a). The sensor units were supposed to 

be mounted on the center of cage frame. However, the unit in the first cage was placed 

one meter off the center to avoid the floating buoys that could have blocked the flow path 

and the view of the fish activity. This was done on the day before the experiments were 

performed. We decided to use three sensor modules for each unit and collect data at 

depths of 0.5, 2.5 and 4.5 meters, as shown in Figure 10. We first connected three modular 

steel mounting frames to each other. One these frames was made for attaching the top 

module to and for mounting on the fish cage frame. To make sure that the sensor modules 

would be positioned at the target depths, we measured the height of the fish cage frame 

from the water surface and adjusted the position of the sensor modules in the steel 

mounting frames by using that height. 

Once the sensor modules and the top module were fixed on the frame as desired, cables 

were connected to the modules and were tied to the frame to prevent them from dangling 

and causing any untoward incident while performing the experiments. The unconnected 
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ports at the bottom sensor modules were sealed by covering them with plastic caps filled 

silicone grease. Connections of all modules were tested before mounting the sensor units 

on the cages. Each sensor unit was then carried to the side the cage with the help of the 

crane of the feeding boat and was then fixed to the cage frame once submerged (Figure 

11). 

 

Figure 3-9 Top view of the experiment setups for both days 

 

Figure 3-10 Side view of experiment setup for the first two cages on the first day 

At this point of the research, the power system for long-term observations by the sensor 

units had not been developed yet. Each sensor unit was powered by three small LiFePO4 
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batteries with a total energy capacity of 132 Wh. With this capacity, a sensor unit with 

three sensor modules could operate for four hours, which was considered sufficient for 

the experiment at the two cages, which lasted for less than one hour in total. These 

batteries were placed inside each top module. Since long-term observations were not 

performed in this experiment, we used a laptop computer connected to the hub unit router 

and collected sensor data from the feeding boat. We used a portable power supply to 

power these devices. 

 

Figure 3-11 Installation of a sensor unit in one of the cages for the experiment 

On the day of the experiment, we started collecting data from each cage by switching 

on the sensor unit and then manually initiating the programs used for recording the flow 

sensor data and the camera videos. We collected data from five minutes before the farmer 

started giving feeds to the fish until five minutes after he stopped the feeding. We did this 

to observe the state of the fishes and of the fish cage outside feeding activities. This was 

also done to observe changes in flow speeds as fishes started swimming towards the 

surface as feeding started and back to the bottom of the fish cage after they finished 
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feeding. In addition to the collecting data from the sensor modules, action cameras were 

used to record videos of the fish activity at the surface from the feeding boat. 

To prepare for the experiment on the next day, the sensor units were then retrieved and 

brought back to shore for adjustments and repair. We decided to use four sensor units 

with two sensor modules each in the third fish cage. Since it was the only cage where the 

sensor units would be deployed on that day, we originally thought of placing one sensor 

unit on the center of each side, measuring at two depths (Figure 3-9b). However, the 

farmer said that they should not be installed on the east and west sides (docking sides for 

the boat) to avoid the risk of damaging the sensors and the boat by collision. Therefore, 

we decided to install two units on the center of the north and south sides, which were 

adjacent to the boat’s docking sides. Since the third cage was the same with the two 

previous cages, the sensor modules were still fixed at 0.5 and 2.5 meters below surface, 

as shown in Figure 3-12. Remaining battery charge after the previous measurements was 

sufficient for the third cage, so they did not need to be recharged onshore. 

On the day of the experiment, we performed the same procedure for collecting the data 

from all sensor modules. In this cage, two action cameras were used to record videos of 

the feeding operation from the feeding boat and from the feeding platform. In addition to 

noting observations from the feeding operation, these videos were used for estimating the 

accumulated amount of feed given to the fishes at a given time by noting the time each 

bag of feed (12 bags, 20 kg each) was used up. The data from the sensor modules were 

then retrieved from the hub unit computer after the experiment. 

While the underwater cameras were properly synchronized with the hub unit computer, 

the action cameras were out of sync by a few minutes, which was still a crucial difference. 

To adjust the timestamp of the latter’s videos as accurately as possible, noted events on 
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the water surface, such as splashes and waves, were compared with those in the videos 

recorded at 0.5 meters underwater. We used the timestamps from the underwater videos 

to estimate the time these events occurred in the videos from the action cameras and 

adjusted the latter’s timestamps accordingly. A video processing software was used to 

add the timestamp to the recorded videos from all cameras used in the experiment. 

 

Figure 3-12 Day 2 experiment setup for the third cage 

Like in the first experiment, we extracted the measurements with their respective 

timestamps from the CSV log files. We then calculated the moving averages from the raw 

data to obtain the trend and plotted both together and marked in the plot the noted 

observations from the feeding operations. For the experiment in the third cage, we used 

the synchronized action camera videos to obtain the times the farmer finished pouring 

each bag of feed. Since we knew the weight of each bag, we then plotted the accumulated 

weight of feeds given together with the flow sensor measurements. We then analyzed the 

relationship between the changes in flow speeds with the fish activity observations from 

the videos. 
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3.3.2. Results 

Although three sensor modules were used in the first cage, only the modules from 0.5 

and 2.5 meters were able to collect data, as shown in Figure 3-13. It was suspected that 

the sensor module at 4.5 meters had loose internal connections and was therefore unable 

to send data to the hub unit. The farmer immediately dispensed feeds continuously at the 

start of feeding in this cage. 

 

Figure 3-13 Flow measurement results from the first cage 

Before feeding started, almost all measurements at both 0.5 and 2.5 m were at 0 cm/s 

and no fishes were observed from both underwater cameras. This meant that the fishes 

were swimming at the bottom of the cage. Large splashes were immediately observed 

from the action cameras in the first four minutes of feeding. At the same time, underwater 

cameras showed the fishes swimming to the surface very fast. Their vigorous movements 

after a few seconds caused so much water turbulence that their activity was hardly visible 

throughout the feeding. Despite these observations, surface sensor readings in the first 
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four minutes remained very small, at around 2 cm/s. This could be attributed to the non-

alignment of the sensors to the center of the feeding activity, as observed from the action 

camera (Figure 3-14a). Fish activity was concentrated at the center of the cage while the 

sensor unit was a meter off the center. Most of the water flow at the surface must have 

been blocked by the flow sensor’s mounting pipes, resulting to smaller readings. 

 

Figure 3-14 Less splashing in front of sensor unit; more splashing 

The surface sensor started picking substantial readings at 8:14. A rising trend was 

observed for around 1.5 minutes, peaking at 25.4 cm/s. As seen from the splashes, fishes 

started moving towards the side opposite to the boat and closer to the sensor unit (Figure 

3-14b). The trend started decreasing at 8:16. Action camera video showed splashing at 

the surface gradually decreasing from then on. Video at 0.5 m also showed the view 

gradually becoming clearer. Flow speed rose again briefly at 8:18 before it started 

declining from peak. Feeding was finally stopped around a minute after the decline. Then 

flow speed finally dropped to 0 cm/s after a few seconds. Flow speed measurements at 

2.5 meters throughout the feeding were 0 cm/s even when fishes could be seen from the 

camera. It could possibly be attributed to the center of fish activity at that depth not 
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aligned with the flow sensor or to the fishes there swimming slower than those at the 

surface, among others. 

In the second cage, measurements from all three depths were collected, as shown in 

Figure 3-15. At the start of recording, underwater cameras at all depths showed fishes 

circling the cage. Most fishes were swimming at 4.5 m while few fishes could be seen 

from the 0.5 m camera. Readings from 0.5 meters were detected before feeding, peaking 

at around 11 cm/s. Although few fishes could be seen there, small particles were observed 

moving toward the camera, indicating water flow. Three minutes before feeding started, 

readings briefly dropped close to 0 cm/s. After then, they shortly peaked to around 10 

cm/s and dropped to zero for over a minute. At this time, the action camera captured a 

surf heading towards the cage, causing a small turbulence.  

 

Figure 3-15 Flow measurement results from the second cage 

As feeding continued from that point, flow speed gradually declined. It would still a 

reach series of peaks, although each succeeding peak was smaller than the previous. 
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Splashing observed from action camera gradually decreased while view from the 

underwater camera gradually cleared. Fishes could be seen swimming close to the surface 

but fishes reaching it gradually became fewer as time passed by. They were still 

swimming actively although slightly less than when feeding started (Figure 3-16a). 

Measurement reached the last peak at 20 cm/s before starting to decline and was at around 

10 cm/s when the feeding machine was stopped. Fishes started going down although some 

fishes could still be seen from the 0.5 m camera. Flow speed dropped to 0 cm/s after 30 

seconds and few fishes remained, eventually disappearing after around two minutes. 

 

Figure 3-16 View from the three underwater cameras towards the end of feeding 

Almost all measured flow speeds at 2.5 m before feeding started were at 0 cm/s, 

although fishes could be seen swimming at this depth. A possible reason for this could be 

the swimming speed not enough to induce outward flow, although this remains unclear. 

The first notable readings at 2.5 meters were observed briefly after continuous feeding 

started, peaking at around 8 cm/s. At that time, video showed that fishes that reached the 

surface first were going down while fishes at 4.5 m were going up. The number of fishes 
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at that depth must have reached a critical mass and reached a higher swimming speed to 

induce flow briefly. In the next three minutes, measurements were very small, most at 0 

cm/s. Fishes could hardly be seen, suggesting few fishes swimming at this depth.  

Flow speed then started to increase at 8:38 in the next three minutes, peaking at around 

11-12 cm/s, and briefly dropping to 0 cm/s in between. More fishes started to become 

visible again, suggesting more of them going down from the surface after feeding (Figure 

3-16b&c). Readings were at 0 cm/s when feeding was stopped. Fishes were still seen 

swimming down from the surface. Small amounts of flow, with speeds up to 3 cm/s, were 

detected in the next two minutes before dropping to 0 cm/s. At the end of the video, few 

fishes could be seen at 2.5 m, and they were swimming slower than even before feeding 

started. 

Most flow speed readings 4.5 m were at 0 cm/s, whether many fishes were swimming 

there before feeding or very few could be seen during feeding. Rise of less than 4 cm/s at 

around 8:32 could be attributed to external current, although this could not be verified. 

At this point, the relationship between the fish activity and flow at the bottom of the fish 

cage could not yet be clarified. 

All sensor modules from both sides of the third cage were able to collect data, as shown 

in Figure 3-17. Flow speed readings from all sensors at the beginning of measurement 

were at 0 cm/s. When the farmer started feeding gradually at 9:56, the fishes were seen 

accelerating towards the surface. However, flow speeds at 0.5 m from did not increase 

until around 90 seconds after. The number of fishes approaching the surface gradually 

increased, swimming fast. After then, surface readings on both sides rose drastically, with 

the rise at the north side lagging by around 10 seconds. Fishes started making large 

splashes at the surface. Flow speeds at the north and south sides were at around 18 cm/s 
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and 20 cm/s, respectively, when the farmer started giving feeds to the fishes continuously 

at 9:58.  

 

Figure 3-17 Flow speed results from the third cage, with the estimated feed amount 

Flow speed at the north side quickly peaked at around 31 cm/s in the same minute 

continuous feeding started. On the other hand, flow at the south side remained steady at 

an average of 23 cm/s for around 1.5 minutes. It then reached the peak of around 37 cm/s 

at 10:00. After reaching their peaks, readings from both sides declined slowly. Like in the 

second cage, these would still reach a series of peaks, with each succeeding peak slightly 

smaller than the previous. Underwater camera observations showed most of the fishes at 

0.5 m swimming close to the surface, with some reaching it to feed, as shown in Figure 

3-18a&b. Most of them were seen from the camera at the south side, where feeds were 

being poured. Fish activity remained the same throughout the feeding. Flow speeds at the 

north and south sides when feeding ended were at 12 cm/s and 16 cm/s, respectively. 



79 

 

They dropped drastically to 0 cm/s right after. Fishes could be seen swimming down 

quickly. 

 

Figure 3-18 View from the underwater cameras at both depths and sides of the cage 

For the whole feeding duration, surface flow speeds at both sides of the third cage 

exhibited a plateau-like trend. These were shown by the drastic rise and fall in speeds at 

the start and the end of feeding as well as by the slow decline from peak readings. The 

shape of the two trends almost looked similar. However, it could be observed the trend at 

the south side had a greater magnitude than the trend at the north side. The apparent 

movement of water surface outside the cage, as seen from the action camera video, 

seemed to indicate the presence of tidal currents moving southward. The offset between 

the trends could mean that the fish-induced flow heading north was reduced by the tidal 

current, resulting in smaller measurements by the north surface flow sensor. Results from 

this cage showed that measuring flow from opposite sides of the cage could cancel 

external currents from the measured flow induced by fishes. 

Like in the second cage, there was also a brief rise in flow speed at 2.5 meters on the 

north side, although the rest of the readings from the sensor there were 0 cm/s. Fishes 
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could be seen swimming around at this depth when the farmer started feeding gradually, 

although their number was small that they were hardly visible at the video. Most were 

still at the bottom of the cage. At 9:57, more fishes were thus becoming more visible as 

more started swimming at this depth and towards the surface. Many fishes could be briefly 

seen at the north side when continuous feeding started, more than at the south. They were 

more concentrated at the north side before they started swimming towards the surface at 

the south side, where the farmer was pouring the feeds, as shown in Figure 3-19. 

 

Figure 3-19 Fish farmer pouring bags of feed on the south side of the cage 

Although fishes could be seen at 2.5 m at the south side, most were still swimming 

close to the surface. What was seen at this point was the bottom of the fish school. This 

could explain why flow speed readings were mostly 0 cm/s at this point at the first half 

of the feeding. Flow speed started increasing at 10:01 towards the end of feeding. 

Readings were less than 1 cm/s in the first minute. Flow increased to around 4 cm/s in the 

next minute before briefly dropping to 0 cm/s for 30 seconds. It then started increasing 

consistently in the next two minutes. Ten seconds after the farmer finished the last bag of 

feeds, flow continued to reach its peak at almost 10 cm/s before quickly dropping to 0 

cm/s. Throughout this second half of the feeding, the number of fishes seen by the south 
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camera at 2.5 m gradually increased. Many fishes were seen swimming down to the 

bottom of the cage at the time flow peaked. In the next few minutes, many were still 

swimming at this depth although they were not as densely as during the feeding. 
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3.4. Long-term observation capability experiment 

3.4.1. Setup 

To demonstrate the sensor network’s capability to operate for long-term observations, 

a three-day experiment was performed in July 2022 at a field station of the Fisheries 

Research and Education Agency located in Gotō City, Nagasaki Prefecture. Among the 

fish cages of the facility located in Nunoura Bay, we decided to deploy the sensor network 

in the two fish cages marked 4C and 4D. These cages, each with an area of 5 m x 5m and 

a depth 5 m, are adjacent to each as they share some parts of the frame structure – floaters, 

cage frames and walking platforms. They are surrounded by five pairs of fish cages at all 

but one side, which is the main docking side for the boat. Each cage contained around 

200 two-and-a-half-year-old yellowtails, each with an average weight of 3 to 3.5 kg. 

Details of these cages are summarized in Table. 3. 

Normally, fishes are fed once in two days. For this experiment however, the facility’s 

coordinator decided to feed the fishes in both cages in all three days. The installation of 

sensor units and the power supply units was done in the morning of the first day, so we 

requested that the fishes be fed past 14:00, starting with cage 4C. For the next two days, 

feeding was done in the morning, although the exact time depended on arrival at the site 

to confirm data collection by the sensor network. Feeding was started at cage 4D at 9:21 

on the second day, while it was started at 4C at 10:08 on the third day.  

Throughout the experiments performed, the longest feeding duration observed was 

around 80 minutes and the earliest feeding was done at 8 AM. With these considerations, 

we decided to schedule the automatic data collection at 8 AM for three hours. The next 

scheduled operations for the day were at 2 PM and at 6 PM, collecting data for one hour 



83 

 

each. There were two three-hour gaps between the data collection periods. Figure 3-20 

shows the sensor network’s schedule of operation. 

Fish cage no. 4C 4D 

Location Gotō City, Nagasaki Prefecture (長崎県五島市) 

Dimensions 5 m (length) x 5 m (width) x 5 m (depth) 

No. of sensor units 2 (1 per side) 2 (1 per side) 

Sensor depths 0.9 and 2.9 m 0.9 and 2.9 m 

Fish; average weight Yellowtail/ブリ (Seriola quinqueradiata); 3-3.5 kg 

Population 219 201 

Age 2 years, 6 months 

Table 3 Characteristics of fish population in the third experiment 

 

Figure 3-20 Automatic operation schedule of the sensor network 

The feeder (a fish farmer in the first day; the coordinator in the second and third days) 

would bring two buckets, each containing 20 kg of EP feeds for each cage. He would 

scoop 10-20 pellets from the bucket every time and throw them to the fishes, as shown in 

Figure 3-21. He would pause to inspect how fishes were swimming in response to the 

feeds given. He would stop the feeding upon assessing that the fishes had been satiated. 

Total amount of feed given in each feeding for each cage was determined by measuring 

the amount of feed that remained after the feeder decided to stop and subtracting that 

amount from 20 kg. Feeding parameters are summarized in Table 4. 
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Figure 3-21 Fish farmer throwing feeds on the water using a scoop 

Day 1 (Jul-13) 2 (Jul-14) 3 (Jul-15) 

Cage no. 4C 4D 4C 4D 4C 4D 

Feed type Extruded pellet (EP) 

Feeding start time 14:26 14:58 9:35 9:21 10:03 10:09 

Feeding end time 14:48 15:29 9:51 9:31 10:08 10:15 

Duration (min.) 22 31 16 10 5 6 

Feed amount (kg) 17.79 15.29 9.15 8.35 ~8-9 10 

Feeding method Manual (hand-thrown) 

Table 4. Feeding parameters in the third experiment 

Like the setup in the third cage of the second experiment, we decided to install two 

sensor units with two sensor modules each on two opposing sides of both cages, as shown 

in Figure 3-22. Using the southwest and northeast sides of the cages meant that only one 

pair of sensor units could be used for each cage because there was no space for them on 

the side shared by the two cages. We therefore positioned each pair of sensor units to 

center of their northwest and southeast sides.  

For designing the power management, we first obtain the system’s daily energy 

requirement by estimating the power consumption of the sensor and top modules from 

the specifications of their components. Using Equation 3, the three sensor units have a 𝑃𝑈 

of around 24.3 W each. Because one sensor unit that contains the hub unit uses a more 
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powerful router, its estimated 𝑃𝑈 is at around 26.3 W and the 𝑃𝐻 of the hub unit computer 

is 10 W. We also add the power of the GPS time server, which is 2.2 W. From Equation 

4, the 𝑃𝑆𝑁 therefore is at around 111.4 W. With an operation time of five hours per day, 

the calculated 𝐸𝑆𝑁 of the system using Equation 5 was at around 557 Wh/day or 2.01 x 

106 J/day. 

 

Figure 3-22 Top view of the third experiment setup 

We decided to use the 𝑡�̅�𝑚𝑖𝑛 at Nagasaki in December 2021 obtained from the Japan 

Meteorological Agency, with a value of 3.48 hours/day or 1.25 x 104 s/day [73]. Therefore, 

the 𝑃𝑆𝑃 calculated from Equation 6 was at around 159.88 W. Given the limited space in 

the fish cage, we decided to construct two power supply units, each powering two sensor 

units. The required battery energy capacity and panel output power for each pair of sensor 

units were around 1.00 x 106 J/day (278.5 Wh/day) and 80 W, respectively. We therefore 

decided to equip each power supply unit with a 1.56 x 106-J (432-Wh; 12 V 36 Ah) PV 

battery and a 100-W solar panel. The units’ energy capacity is sufficient for the system’s 

daily requirement to operation for five hours. 

We mounted the power supply units and the solar panels on the middle platform, as 

shown in Figure 3-23. Each power supply unit provided power to the two sensor units of 
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each side of the cages. We placed the sensor/hub unit on the northwest side and the sensor 

unit with the GPS time server on the southeast side to balance the load distribution of the 

two power supply units. 

 

Figure 3-23 Two power supply units mounted on top of the fish cage platform 

The procedure for assembling the sensor units was same as that in the previous 

experiment. We first inspected the sensor unit components for issues in power and 

network connections onshore. We then joined the module frames, connected the modules 

to each other, waterproofed the open connectors, and fixed the cables on the frames. Since 

the boats used by the facility are smaller than the feeding boats from the previous 

experiments and have no cranes, two sensor units were installed on the cages at a time, 

requiring 4-5 persons to carry each unit. The power supply units and the solar panels were 

then mounted on the middle platform before connecting their cables to the sensor units. 

Originally, we intended to position the sensor modules in each unit at the depths of 0.5 m 

and 2.5 m like in the previous experiment, so we did not adjust their positions in the 

modular frames. However, it turned out that the height of frame of these cages from the 

water surface is 0.4 m lower than that of the cages in the previous experiment. This 
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resulted to positioning the sensor modules at 0.9 m and 2.9 m below surface, as shown in 

Figure 3-24. 

 

Figure 3-24 Side view of both cages the third experiment setup 

At this point, the hub SBC has not yet been fully configured to automatically initialize 

its video management software to record videos to its own storage, whose size was also 

too small for 15 hours’ worth of videos collected in three days. For this experiment, each 

network camera was configured to automatically record during the selected periods. 

Captured videos were then in each camera’s own memory card (128 GB each).  

Even though the sensor network was programmed to automatically start its data 

collection, we had to make sure that the hub unit computer was collecting data as 

scheduled. Because of the sensor network’s limited Wi-Fi range, we had to go to the cages 

to remote access it. We decided to do this only during the 8:00 and the 14:00 schedules 

as staying in the facility in the evening would cause logistic problems. If the hub unit 

computer would not automatically synchronize its clock with the GPS time server, we 

would connect to it and manually force it to update its clock. Once the time had been 

adjusted, the programs for collecting data would start automatically.  
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Since the feeding on the first day started at 14:21 and lasted around an hour to finish 

the feeding in both cages, the sensor units would not have been able to collect 

measurements at its latter part had the sensors been let to switch off automatically at 15:00. 

We therefore overrode the switching schedule of the sensor network by manually setting 

the input of the power supply unit’s relay to high and by manually running the terminal 

emulator software for logging the flow speed sensor data. We then reverted the system 

configuration back to collecting data automatically according to schedule. 

3.4.2. Results 

Among the eight sensor modules installed in the two cages, only the module positioned 

at 2.9 m of the southeast side of cage 4C was not able to collect any data throughout the 

experiment. We suspect a connection problem with the sensor module at 0.9 m, possibly 

due to loose contact between the connector pins or to excess application of waterproofing 

grease. Despite this, we were still able to observe flow speeds at 2.9 m through the sensor 

module from the opposite side of the cage. 

As seen from the yellow gaps in Figure 3-25, there were parts within the operation 

intervals without collected flow data. This was attributed to the failure of the hub 

computer to automatically synchronize its clock with the time server after booting, 

although this was supposed to be fixed by increasing the frequency of updating the time. 

Therefore, it did not starting collect measurements at the actual times as scheduled. This 

was temporarily addressed by manually synchronizing the computer clock. Once the time 

was adjusted, the terminal emulator for collecting flow speed data automatically started 

recording data from all sensors. This could be addressed by creating a task to force 

synchronize the clock with the time server on startup. The network cameras, on the other 



89 

 

hand, have their own internal clocks running, allowing them to record videos 

independently throughout all scheduled times. 

 

Figure 3-25 Flow measurement results from cages 4C and 4D in the third experiment 

Throughout the entire experiment, flow speed measurements at 0.9 m in both cages 

were very low, most at 0 cm/s. On the other hand, flow speeds at 2.9 m were generally 

higher than those at the surface (Figures 3-26 to 29). Recorded videos also showed most 
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of the fishes swimming near the bottom of the cage and no fishes at 0.9 meters show most 

of the time. These results corresponded to the typical behavior of fishes while not feeding, 

as observed from the previous fish cage experiments.  

On the first day of the experiment, the sensor network started its operation at 14:21 

after manually synchronizing the hub computer clock (Figure 3-26). Before feeding 

started at cage 4C, many fishes could be seen swimming slowly at 2.9 m. Flow speed at 

that depth peaked at almost 8 cm/s. When it started at 14:26, fishes could be seen 

swimming to the surface to grab food. Flow speed measurements at 0.9 m remained at 0 

cm/s throughout the feeding. Speeds at 2.9 m were at around 4 cm/s for around eight 

minutes before dropping to around 2 cm/s for around ten minutes. Fishes were less visible 

during those times compared to before feeding started. It increased again at 14:45 until 

the end of feeding at 14:50 and more fishes started to be seen at that depth. There was 

slight increase at 0.9 m after feeding ended to almost 4 cm/s, although there was no 

indication in fish activity at that depth. 

Because of the delay in the sensor network operation, we decided to override the 

scheduling of the power supply unit to operate the sensor units. Rebooting the hub unit 

computer and the sensor units took around four minutes before becoming operational. We 

also overrode the recording schedule for the flow sensors. Feeding at cage 4D started at 

around 14:58. Throughout the feeding, flow speeds at 0.9 m were very small, although 

readings at the northwest side were slightly larger. There were also no noticeable patterns 

in flow speed at 2.9 m. However, readings at both sides showed similar trends, with 

readings at the southeast side slightly larger, which was opposite with the readings at 0.9 

m. These offsets could still indicate cancellation of external currents.  
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Figure 3-26 Flow speed moving averages from cages 4C and 4D on Day 1 

Feeding at both cages on the second day were shorter compared to the first. It started 

at cage 4D at 9:21. Like in the previous day, flow speeds at 0.9 m were very small 

throughout the feeding, with those at the northwest side faster by 2 cm/s (Figure 3-27). 

Very few fishes could be seen grabbing food at the surface from the videos at this depth. 

Readings at 2.9 m were at 4-7 cm/s at the first half and increased to around 10 cm/s at the 
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second half. Video recordings showed few fishes visible at this depth, indicating most 

were at the bottom. More fishes began swimming at this depth at the start of feeding. 

Towards the end of feeding, they gradually went back at the bottom. Like the previous 

day’s results, flow speeds at both depths exhibited similar patterns on both sides, with 

one side slightly faster. 

 

Figure 3-27 Flow speed moving averages from cages 4C and 4D on the morning of Day 2 
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Feeding started in cage 4C at 9:35 and ended at 9:51, six minutes longer than in 4D. 

Throughout the feeding, readings from 0.9 and 2.9 m were averaged at around 2 and 4 

cm/s, respectively. At around 9:43, there was a spike in readings at both depths from the 

northeast side. At 0.9 m, fishes still exhibited the same feed grabbing behavior at that 

time. On the other hand, more fishes could be seen swimming from the bottom to 2.9 m. 

At this point, it is difficult to confirm whether this spike could be attributed to increase in 

fish activity or to external currents affecting the readings. 

The sensor units also measured flow speeds in the cages for about an hour at around 

14:05 of the same day (Figure 3-28). No feeding was made at this time, as these 

measurements were done to observe fish activity outside feeding schedules. A common 

trend in both cages was the gradual increase towards the end of data collection. Similar 

patterns were observed from both sides. No fishes were detected by the surface camera 

near the end of recording. On the other hand, few fishes could be seen at 2.9 m in the first 

few minutes of recording but gradually increased in number towards the end. Although 

the increase in readings could mainly be caused by the tidal currents, the fishes gradually 

swimming to 2.9 m from the bottom could also have contributed to this increase. 

Feeding on the third day started at around 10 AM, starting with cage 4C. It only took 

5-6 minutes at each cage, as shown in Figure 3-29. After synchronizing the hub computer 

clock, the sensor network started recording measurements at 8:41. However, the sensor 

unit at the southeast side of cage 4D stopped collecting data at 9:05, therefore losing one 

hour’s worth of data. We suspected this to be caused by a malfunction in the Wi-Fi router 

and was fixed by resetting the unit’s power.  

The flow sensors in cage 4C did not measure any significant changes at 0.9 m. All 

their readings throughout the feeding were mostly at 0 cm/s even though recorded videos 
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showed fishes swimming quickly to the surface to grab feed. Flow speed at 2.9 m was 

low at the start of feeding, with an average of readings at around 1 cm/s. Many fishes, on 

the other hand, were seen at this depth. Flow speed eventually increased to an average of 

around 3 cm/s throughout the feeding, peaking at around 8 cm/s. Towards the end, fishes 

were seen gradually swimming up closer to the surface. 

 

Figure 3-28 Flow speed moving averages from cages 4C and 4D on the afternoon of Day 2 
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Very small changes in surface flow speeds were also observed in cage 4D. Most 

readings measured from both sides were mostly at 0 cm/s, although a few moments were 

observed at the northwest side when flow speed briefly increased to 2-4 cm/s. Recorded 

fish activity was at the surface was like those in other video recordings. At 2.9 m, flow 

speed readings were at 2-4 cm/s when feeding started, although the flow sensors at both 

sides were already detecting flow speeds as high as 12 cm/s briefly. Average readings 

gradually declined to below 2 cm/s towards the end of feeding. 

Throughout the experiment, no substantial changes in flow speeds could be observed 

during feeding times. Readings at 0.9 m remained smaller than the readings at 2.9 m, as 

seen from Figures 3-26, 27, and 29. Although fishes did swim up to the surface when 

feeds were thrown to the water, as shown in Figure 3-30, they did not form a massive 

group swimming in a circular pattern close to the surface, compared to the observations 

in previous cage experiments. Instead, they would grab feeds at the surface in small 

numbers and then swim in circles at around below one meter depth. This could be 

attributed to feeds thrown on the water in small amounts. As a result, they did not push 

enough water out of the fish cage to create flow detectable by the flow sensors. 

Although it was difficult to establish a relationship between the flow speed readings 

and the recorded fish activities during feeding, we were able to partially demonstrate 

long-term observations of fish activity. The power supply units automatically switched 

on and provided power to the sensor units. Once we manually forced the hub unit to 

synchronize its clock on startup, the sensor units automatically started recording flow 

speed measurements and record videos of fish activity. The power supply unit was able 

to harvest solar energy to recharge the batteries that provided power to the sensor units, 

allowing them to collect hours’ worth of data in three days. 
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Figure 3-29 Flow speed moving averages from cage 4C and 4D on Day 3 
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Figure 3-30 Video record of fishes swimming to the surface to feed 
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3.5. Summary 

As we developed the sensor network throughout the duration of the research, we 

gained insights on the properties of the fish activity during feeding and of its relationship 

with the fish-induced flow by performing three separate experiments in fish cages, 

measuring flow speeds at different depths at different sides of the cages especially during 

feeding. We also demonstrated the functionality of the components of the system we 

developed. 

In the first experiment, we demonstrated the functionality of the flow sensors to 

measure the flow speeds induced by fishes underwater. We used two flow sensors as 

dataloggers that collected flow speeds at two depths. These dataloggers were deployed in 

two cages containing yellowtail amberjacks. We were able to use these sensors to clarify 

the difference in flow speeds at different depths, especially during feeding. We also 

observed the increase in fish activity at the surface i.e., more fishes swimming and 

splashing at the surface, corresponded to the increase in flow speeds and vice-versa. 

In the second experiment, we demonstrated that the sensor network could collect flow 

speed measurements and underwater videos not only from different depths but also from 

different sides of a fish cage. We deployed the sensor network with eight sensor modules 

configured as multiple sensor units in three cages containing yellowtails. Shown in Figure 

3-31 are the sensor units being brought to the fish cages to be installed. We observed in 

this experiment the drastic rise in flow speed as fishes went up to the surface rapidly and 

its gradual decline throughout the feeding, corresponding to the fishes gradually 

becoming satiated. We also found that increase in flow at lower depths could be useful 

indicator for the fishes returning to lower depths of the fish cage as a response to 

becoming satisfied with feeding.  
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In the third experiment, we were able to partially demonstrate long-term observations 

of fish activity by installing the sensor network in two cages containing yellowtails to 

collect flow speed data and videos for hours in three days. We found the lack of increase 

in flow speeds at the surface during feeding due to the fishes’ behavior of grabbing feeds 

and swimming down quickly instead of forming a large school that could create 

substantial flow speeds. 

 

Figure 3-31 Two sensor units loaded on the boat to be installed on the fish cages 
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Chapter 4. Discussion on feeding decision 

4.1. Modelling of fish feeding activity 

To be able to use flow speed measurements for assisting farmers in making feeding 

decisions, we first need to make a simplified model of the fish activity as a response to 

feeding, whose simulation output possesses some resemblance to the data we collected. 

We can then further develop it later and use the output of its simulation to predict the 

actual fish feeding behavior from the flow measurements from the sensor network. We 

can then use it later to optimize the feeding strategy for fishes in the cage. 

Recalling the assumption made in the first chapter, as shown in Figure 4-1, it can be 

said that the primary sources of flow in the fish cage are the external currents and the 

circular movement of fishes. The speed of flow from the latter mainly depends on school’s 

swimming speed and on its distribution throughout the depth of the cage. In turn, these 

parameters depend on the fishes’ hunger or satiation and on the amount of feeds available 

in water. By simulating a simple model of the fish activity, we can establish some basic 

relationships of these parameters with each other. We then compare this model with the 

measurement data collected from the experiments. 

 

Figure 4-1 The assumptions on the fish activity and on the fish-induced flow revisited 
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We first make a state-space model of an individual fish’s activity by identifying its 

state, input, and output variables, as shown in Figure 4-2. The model’s state variables 

include the following: the fish’s height from the bottom of the cage at time 𝑡, denoted by 

ℎ𝑓(𝑡) in m; the circling speed at time 𝑡, denoted by 𝑣𝑓(𝑡) in m/s; and the satiation level 

of the fish, denoted by 𝑆(𝑡), having a value range of [0-1] with 0 and 1 to indicate hunger 

and satiation, respectively. For this model, we separate the circling speed along the 

horizontal plane, from the vertical speed or change in depth. The variables ℎ𝑓(𝑡) and 

𝑣𝑓(𝑡) also serve as the output of this model since these comprise its feeding behavior. 

 

Figure 4-2 The input (𝑓0(𝑡), 𝐹(𝑡), and 𝑒𝑓(𝑡, ℎ𝑓 , 𝑆)), state (𝑆(𝑡), ℎ𝑓(𝑡) and 𝑣𝑓(𝑡)), and output 

variables (ℎ𝑓(𝑡) and 𝑣𝑓(𝑡)) of the fish feeding activity model 

While there are several factors that affect the behavior of fishes in response to feeding, 

we simplify the input used in this model into one quantity: the instantaneous amount of 

feed eaten by the fish at time 𝑡 as denoted by 𝑒𝑓(𝑡, ℎ𝑓 , 𝑆) in kg, which we shall also call 

the eating function. This is dependent on the amount of food in water, denoted by 𝐹(𝑡), 

as well as on the height of the fish ℎ𝑓(𝑡). The variable 𝐹(𝑡), in turn, changes upon the 

amount dispensed on water at time 𝑡, as denoted by 𝑓0(𝑡) in kg/s.  
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Not only the interaction of the fishes’ feeding behavior with the environment is 

complex but also its interaction between the feeds in the water. To simplify the model, 

we establish several assumptions on the fish activity, on the fish cage environment, and 

on the feeding: 

1. The induced flow speed at the average depth of the fishes is linearly proportional to 

their swimming speed. 

2. For all fishes, 𝑣𝑓(𝑡)  is constant throughout the feeding activity. In this simplified 

model, we establish that the ℎ𝑓(𝑡) determines the depth where most flow is induced.  

3. There is enough space for all fishes to swim around at a given depth without colliding 

with other fishes. 

4. Water quality parameters such as the dissolved oxygen concentration and temperature 

are within ranges optimal for fish feeding. 

5. Feeds exit the cage, due to dispersion by currents or to sinking, at a constant rate and 

is given by the constant coefficient 𝑘1. 

6. The fish either eats a constant amount of feed at time 𝑡, as denoted by 𝑐𝑓, or it does 

not. 

Given the fifth assumption, we can establish a differential equation for 𝐹(𝑡) as  

 �̇�(𝑡) = 𝑓0(𝑡) − 𝑘1 (∑ (
1−𝑆𝑖(𝑡)

𝑛
)𝑛

𝑖=0 ) 𝐹(𝑡) (8) 

In this equation, the decrease in 𝐹(𝑡) is caused by the dispersion of feeds, as represented 

by 𝑘1 , and by the average hunger of 𝑛  fishes in the cage, representing the amount 

consumed. The variable 𝑓0(𝑡), on the other hand, contributes to the increase in 𝐹(𝑡) since 

feeds are supplied to the cage. Given the sixth assumption, we shall establish the eating 

function to have a binary output. Aside from its hunger level, a fish eats depending on its 
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height as well as on the amount of food in water. Supposing a fish at a certain ℎ𝑓(𝑡) is 

hungry, it gets to eat when 𝐹(𝑡) is sufficient (more food sinking downwards with greater 

𝐹(𝑡)) and does not otherwise. We can illustrate this condition as a boundary line, as 

shown in Figure 4-3. The slope of this line at a given 𝑆(𝑡) is the coefficient for the fish’s 

eagerness to eat, which we denote here as 𝑘2. The value ℎ𝐶  is the cage depth (in meters) 

and represents the water surface in the ℎ𝑓(𝑡) axis. When a given ℎ𝑓(𝑡), 𝐹(𝑡) is above a 

line of a given 𝑘2, the fish eats and does not when is below the said line. 

 

Figure 4-3 Illustration of the condition boundary line determining the value of 𝑒𝑓(𝑡, ℎ𝑓 , 𝑆) with 

3 different values for 𝑘2, and showing a given (ℎ𝑓(𝑡), 𝐹(𝑡)) resulting to eating 

Therefore, the eating function of a single fish 𝑒𝑓(𝑡, ℎ𝑓 , 𝑆), is defined as 

 𝑒𝑓(𝑡, ℎ𝑓 , 𝑆) = {
𝑐𝑓 , 𝐹(𝑡) ≥ 𝑘2 (∑ (

1−𝑆𝑖(𝑡)

𝑛
)𝑛

𝑖=0 ) (ℎ𝑓(𝑡) − ℎ𝐶) + 𝑓0(𝑡)

0, 𝐹(𝑡) < 𝑘2 (∑ (
1−𝑆𝑖(𝑡)

𝑛
)𝑛

𝑖=0 ) (ℎ𝑓(𝑡) − ℎ𝐶) + 𝑓0(𝑡)
} (9) 

We then represent our model for an individual fish activity as the following state-space 

equations: 

 �̇� = 𝐴𝒙 + 𝐵𝒖, where  𝒙 = [
𝑥1

𝑥2
] = [

𝑆(𝑡)
ℎ𝑓(𝑡)

] and 𝒖 = [
𝑢1

𝑢2
] = [

𝐹(𝑡)
𝑒𝑓(𝑡, ℎ𝑓 , 𝑆)

] (10) 
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 𝒚 = 𝐶𝒙 + 𝐷𝒖, where  𝐶 = [
0 0
0 1

] and 𝐷 = [
0 0
0 0

 ] (11) 

To determine matrices 𝐴 and 𝐵, we need to explore how the states are affected by each 

other and by the input. Satiation of a fish naturally decreases over time and increases 

when it eats. However, the rate of increase slows down as satiation level approaches 1, 

following the law of diminishing returns. At the same time, the rate of decline in 𝑆(𝑡) 

decreases as it approaches 0. This can be written as the differential equation, 

 𝜏1
𝑑𝑆(𝑡)

𝑑𝑡
= −𝑆(𝑡) +

1

𝑐𝑓
𝑒𝑓(𝑡, ℎ𝑓 , 𝑆) (12) 

where 𝑐𝑓 is the constant amount of feed that a fish would consume at time 𝑡, which is 

used to normalize 𝑒𝑓, and 𝜏1 is the time constant for the change in the fish’s satiation. 

Without any food in water, a fish naturally tends to swim close to the bottom of the 

cage, regardless of hunger level. However, it tends to swim toward the surface when it is 

not full, and food is present in water. Then as it reaches satiation by eating, it swims back 

to the lower part of the cage. We therefore represent the change in ℎ𝑓(𝑡)  by the 

differential equation, 

 𝜏2
𝑑ℎ𝑓(𝑡)

𝑑𝑡
= (1 − 𝑆(𝑡)) (−𝑎

ℎ𝑓(𝑡)

ℎ𝐶
+ 𝑏

𝐹(𝑡)

𝐹𝑚𝑎𝑥
), where 𝑎 + 𝑏 = 1 (13) 

where 𝐹𝑚𝑎𝑥  is the maximum amount of feed in water, whose value usually is the 

maximum 𝑓0(𝑡) , 𝜏2  is the time constant for the change in the fish’s height, 𝑎  is the 

coefficient for its aversion to swim to the surface, and 𝑏 is the coefficient for its attraction 

to feeds dispensed on surface. The values of 𝑎 and 𝑏 may vary for each fish school in a 

cage depending on their species as well as on their rearing among other factors, but they 

always must add up to 1. Given the differential equations (12) and (13), the value of 

matrices 𝐴 and 𝐵 are therefore written as 
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 𝐴 = [

1

𝜏1
0

0
−𝑎

ℎ𝐶𝜏2
(1 − 𝑆(𝑡))

] and 𝐵 = [
0

1

𝑐𝑓𝜏1

−𝑏

𝐹𝑚𝑎𝑥𝜏2
(1 − 𝑆(𝑡) 0

 ] (11) 

This model is best simulated using numerical analysis. We can setup the duration of 

simulation to be around the same with those of the conducted fish cage experiments. We 

can also setup the values of 𝑓0(𝑡) across the decided duration to resemble the pattern of 

feeding made by the fish farmers during the experiments. Parameters such as 𝑛 and ℎ𝐶  

can also be approximated from the data provided by the farmers. As for the other 

parameters, we can adjust their values such that the output ℎ𝑓(𝑡) corresponds to the flow 

measurements. We can get the averages of ℎ𝑓(𝑡), 𝑒𝑓, and 𝑆(𝑡) for the 𝑛 fishes as well as, 

𝐹(𝑡) and check whether the observed changes correspond to observations in the fish 

cages. For this model to become useable in actual fish farms, this model needs to be 

further developed by considering the changes in 𝑣𝑓(𝑡) throughout the feeding activity as 

well as the changes in other parameters that have a significant impact on the fish feeding 

behavior. 

4.2. Potential of flow measurement in feeding 

Many patterns in flow could be observed from the results of the fish cage experiments. 

These could have been caused by various factors, such as the surrounding environment, 

the characteristics of the stocked fishes, and the nature of feeding among others. Going 

back to the hunger and food availability, the method the feeds were given could have 

affected the response of the fishes. However, there were notable points common in some 

of the cages, particularly towards the end of feeding. Surface flow in most of the cages 

increased to a certain speed and gradually declined as feeding progressed, as observed in 

the first two fish cage experiments.  
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There were also the observations of brief increase in flow below the surface at the start 

of and towards the end of feeding. These could suggest that fishes started swimming up 

and gathering at the surface to feed, as well as swimming back to the lower end of the 

cage, as observed in the second cage experiment. Flow values at the time feeding stopped 

in one cage can be different from the other. The advantage of installing two sensor units 

at two opposing sides of the cage was being able to detect these changes from at least one 

side of the cage. As was the case of the third cage, the rise of flow when feeding started 

was only detected at the north side while rise close to the end of feeding was only detected 

at the south side. These observed flow patterns could be used for deciding on when to 

stop feeding. 

We can compare the flow measurements from the sensor units to the developed fish 

feeding activity model and observe the patterns in flow that correspond to the output of 

the model simulation. As we obtain model parameters that characterize the fishes, the 

cage environment, and the feeding as accurately as possible, we can formulate a feeding 

strategy that maximizes the satisfaction of the fishes while minimizing the amount of 

uneaten food in water. With that said, the model needs to be developed further to take 

more parameters into account for more accurate comparison with the flow measurements. 

Since it is assumed that the fishes circle around and induce flow out of the cage, 

measurement of flow as to visualize fish behavior would be very much useful cages with 

fishes belonging to the carangiform and thunniform locomotion group, such as yellowtails 

and tunas. Such fish groups move mostly their rear body and tail fin to propel themselves 

and are fast swimmers and would therefore tend to circle around the cage. Feasibility of 

this system for fishes of other swimming groups still needs to be explored. 
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There was also a problem with near-zero flow speed readings at some depths of 

installation despite the substantial number of fishes swimming there. This could be 

attributed to the very small volume of water going through the flow sensor’s small cross 

section area. This could have resulted to insufficient momentum from the water flow to 

rotate the propeller, resulting to very small readings. For the experiments in the nearer 

future, this could be addressed by attaching a funnel to the inlet of the sensor. By doing 

so, more water flowing at the same speed would enter the funnel and go through the sensor 

pipe with more speed to conserve mass, giving it more momentum to rotate the propeller. 

This makes the sensor more sensitive to smaller changes in flow. The speed at the mouth 

of the funnel would then be calculated from the speed at the sensor pipe through the ratio 

between cross-section areas of the two places.  

Developing this system as a DX application on aquaculture remains in the process of 

using expert knowledge to assist farmers’ feeding decisions as this system still needs to 

be further developed, in terms of hardware, fish activity estimation and relationship of 

flow with feeding (Figure 4-4). 

 

Figure 4-4 Current state of the system as DX application for aquaculture  
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4.3. Future fish farm sensor system 

To set the direction of this research, given all the insights discussed, we envision a DX 

system for a fish farm with multiple cages. It is imagined collecting various sensor 

measurements aside from flow speeds not only to assist fish farmers with their feeding 

practices but also to gather various information on the fishes and the environment that 

could help them improve their overall culturing method. A network of sensor nodes 

(sensor units) would be installed around each fish cage of different shapes and sizes, 

containing various kinds of cultured fishes, as shown in Figure 4-5. 

 

Figure 4-5 Envisioned DX system applied to a fish farm with multiple cages 

Each node would consist of multiple flow speed sensors measuring flow velocities for 

every depth of choice, probably every meter below the surface to get a more detailed 

distribution of the fish school’s activity. The DX system will have to feature more robust 

sensors that can maintain accurate measurements for extended periods of time. Due to 

their moving parts, the developed propeller flow speed sensors are vulnerable to 

mechanical failure caused by long-term exposure to the likes of seawater corrosion and 
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biofouling. As a result, the sensor network would not be able to collect accurate flow 

measurements in the fish cages. These could be replaced by sensors with no moving parts, 

which could be more sensitive to changes in flow. 

A potential sensor that could be used include an underwater pitot-static-tube flow 

sensor similar to the one developed by Kishimoto et al. for tracking marine animals, as 

shown in Figure 4-6 [74]. It measures the flow speed using Bernoulli’s principle, 

calculating the difference between the ambient pressure and the ram pressure from the 

flowing water. Another sensor that could be used would be a modified version of a tilt-

current meter (TCM) that measures current speeds from the readings of an IMU tilted by 

the current [75]. Such sensor could measure flow velocity from different directions 

although it needs to be modified such that the TCM could transmit data to the sensor 

network in real-time. 

 

Figure 4-6 A pitot-static-tube-based flow speed sensor for monitoring marine animals [74]  

In addition to measuring flow, each node also has various water quality sensors at 

multiple depths. Interrelated parameters such as dissolved oxygen concentration, 

temperature, pH, salinity among others are essential factors must be within optimum 

levels to maximize the fishes’ overall welfare – metabolism, appetite, resistance against 
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diseases and parasites, and growth among others [76]. Measuring these parameters can 

help farmers monitor their health and growth to produce high quality meat.  

The sensor unit would have at least one underwater camera to observe the fish activity 

and their distribution at different depths, especially during feeding. In addition, these 

cameras could also be used to detect uneaten feeds that would either float on the surface 

or sink to the benthic zones and inform the farmers how much feeds are wasted. 

Hydrophones would also be featured in the nodes for recording sounds made by the fishes 

at the surface to estimate their feeding activities during feeding [60]. While this kind of 

sensing is most useful in environments with minimal noise, the sensor system could be 

trained to detect noise from various sources such as feed-ejecting machines, which could 

be cancelled out from the sounds collected during feeding. IMUs in sensor units could 

also be used to characterize the movement not only of the sensor nodes in the water but 

also of the cage they would be attached to, which could be caused by strong waves. 

As discussed in the previous chapters, the sensor network must have a power supply 

system with a capacity for energy-harvesting – solar, wind, tidal, or other sources – so 

that it could operate continuously off-grid and perform long-term observations of fish 

activity and water environment in fish cages. Although we presented a system with power 

supply units separate from the sensor units, installation of energy harvesting and storage 

components in each sensor unit could be an alternative design for the system. Design 

decisions on this would depend on the capacity of each component as well as on the 

limitations in the fish cage such as the amount of space for installation and how much 

energy could be harvested from the environment per day and on the required amount of 

energy set by daily operation schedule of the network. 
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Each sensor node could be designed to have its own computer above surface to perform 

simple corresponding calculations on the sensor readings to obtain the measurements 

before timestamping them. This computer could also possibly be used to automatically 

recalibrate the sensors whose readings would drift over time. In each cage, sensor nodes 

would communicate in a star Wi-Fi network, where one node would be designated as the 

hub unit which would collect sensor data from the rest of the nodes. Alternatively, a single 

hub unit could also be used to collect data from all nodes in the whole fish farm, given 

sufficient wireless range and available storage capacity. A hub unit could also be attached 

to a feeding boat and collect data from its own sensors or from other nodes in each fish 

cage upon arriving at the farm to perform feeding tasks. In whatever configuration, data 

gathered by the hub unit would be transmitted either directly to the onsite farmer’s device 

or to a super hub with a larger capacity, which could send the data to a cloud server 

through a 4G or 5G network. Alternatively, the hub unit of the feeding boat could also 

perform a store-and-forward transmission, uploading data to the cloud once it connects to 

the internet onshore. 

In addition to collecting sensor data, the cloud server could also collect various data 

from the farm – fish information, feeding history, among others, which could be accessed 

or be updated by the farmer onsite. Using all the data gathered, it could be trained to 

calculate the optimum timing and amount of feeding in each cage and remotely operate 

an automatic feeding machine in one of the cages that would also be connected to the hub 

unit or inform the farmer onsite of the target feeding parameters. This is where the fish 

activity model would play an important role for optimizing the feeding in each cage. It 

would also be able to get this machine’s status so the farmer could perform maintenance 

on it, such as refilling the feeds among. Ultimately, the fishing company office would 
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have access to all the data from the farm through its connection to the cloud server and 

can grant specific data access to the farmers and to other employees and stakeholders in 

the farm.  
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4.4. Summary 

To use flow speed measurements for assisting farmers in making feeding decisions, 

we developed a simplified model of the fish activity as a response to feeding. We 

established several assumptions to address the complex interaction of the fish with the 

environment and with the feeding and decided the height of the fish as the model’s 

primary output. We established the model input to be the instantaneous amount of feed 

eaten, which would depend on the amount of feed in water as well as on the amount 

dispensed at the surface. This model will have to be further developed by considering the 

changes in other outputs and other parameters that have a significant impact on the fish 

feeding behavior. We can then use it later to optimize the feeding strategy for fishes in 

the cage. 

While various patterns in measured flow were observed from the experiment, there 

were notable observations in flow at different depths that indicate the circling speed and 

depth distribution of the fishes throughout the feeding, such as drastic increase of surface 

at the start of feeding and its gradual decline as feeding progressed as well as the brief 

increase in flow at the lower depths. These could indicate the behavior of fishes when 

becoming satiated and be used to determine when to stop feeding. We can compare the 

flow measurements from the sensor units with the simulation of developed fish feeding 

activity model and determine an optimal feeding strategy. Developing this system as a 

DX application on aquaculture remains in the process of using expert knowledge to assist 

farmers’ feeding decisions as this system still needs to be further developed. 

We envisioned a DX system for a fish farm with multiple cages to map out the 

direction of this research in the future. Each cage would have multiple sensor nodes 

installed at the different sides of the cage, collecting various measurements at multiple 
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depths using improved flow speed sensors for estimating the fish activity throughout the 

cage and arrays of water quality sensors for monitoring the health of the fishes. The sensor 

network would have a power supply system with a capacity for harvesting and store 

energy to meet the requirements of the sensor units to operate throughout the duration of 

the daily schedule set by the user farmers. We proposed different configurations for the 

sensor network for collecting data from the sensor nodes, having one hub unit for each 

cage or for the whole farm which would upload data to the cloud server wirelessly. We 

also envisioned the cloud server’s various capabilities, remotely operating an automated 

feeding machine or informing the farmers of optimal parameters for fish feeding by 

training from collected sensor data. This thesis focused on the development of the sensor 

network up to data collection at the hub unit. 
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Chapter 5. Conclusion 

5.1. Summary 

Application of DX has become a need in aquaculture not only for producing more 

high-quality farmed fishes but also for improving the culture environment by reducing 

the pollutants it generates, making the industry more sustainable. This very much needed 

to optimize fish feeding in which appetite estimation has conventionally relied on the 

subjective experience of expert fish farmers, resulting in differences in the quality of 

harvests and in the inefficiency in feeding by novice farmers. This dissertation presented 

a system that estimates the fish activity through flow measurements for assisting in 

making feeding decisions in cage aquaculture. 

In this research, we developed a modular sensor network that measures fish-induced 

flow and observes underwater activity from multiple depths and from more than one side 

of a fish cage. We implemented this by constructing sensor modules, each with a 

customized flow speed sensor and a network camera. We designed them to be connectable 

to each other at different depths to form sensor units whose sensor data are relayed by top 

modules that connect to a hub unit onsite.  

To be able to make long-term observations of fish activity, we developed an offshore 

sensor system for the sensor network by programming the sensor and the hub units to 

automatically operate and gather data during certain periods throughout the day as desired 

the user. This supplies off-grid power to the sensor units through solar energy harvesting 

with a sufficient capacity to meet the daily energy demand of the sensor units. We 

designed the power supply to switch power according to the set daily schedule. 
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To visualize the relationship of flow speeds to the fish activity, especially during 

feeding, we performed three fish cage experiments, deploying the sensor network in fish 

cages and collected flow speeds and fish activity videos for days. For every experiment 

we performed, we demonstrated the functionality an added or upgraded system 

component, starting from the developed sensors to the modular sensor network 

performing long-term observations. We compared the flow measurements with the video 

recordings of the fish activity during feeding and observed patterns of increase and 

decrease of flow at different depths, which indicated changes in swimming speed and 

depths of fishes throughout the feeding tasks and would suggest satiation of the fishes.  

In addition, we developed a simplified fish feeding activity model that we can simulate 

to determine the height of the fishes in response to feeds dispensed on water. With further 

improvements, we can compare the output of this model with the flow measurements and 

optimize the feeding strategy by determining the fish-induced flow that would indicate 

satiation of the fishes. To map out the direction of this research in the future, we also 

envisioned a DX system for a fish farm with multiple cages and designed the flow of 

information on the fish feeding activity from the cage to the stakeholders of the farm. 

In the end, this research contributes to the development of DX application in cage 

aquaculture by introducing a flexible self-correcting system that could help farmers 

visualize underwater fish activity and help them improve their feeding decisions and 

achieve feeding optimization. 

5.2. Future work 

There are several tasks for developing this system further to observe the fish feeding 

behavior more reliably. This includes development of improved sensors resilient to 

mechanical faults. Further development of the fish feeding activity model to characterize 
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the activity of fishes as response to their feeding remains important for better visualization 

of flow they induce. This includes considering the changes circling speed in response to 

feeding as well as adding more inputs to the model to further resemble the actual fish 

behavior and their cage environment. This means adding more sensors to the developed 

sensor network. In addition, more data needs to be collected and analyzed in relation to 

the feeding decisions, so that we can further understand how to establish the model’s 

various parameters. 
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