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U‑survival for prognostic 
prediction of disease progression 
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with COVID‑19
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Hiroyuki Yoshida1*

The rapid increase of patients with coronavirus disease 2019 (COVID‑19) has introduced major 
challenges to healthcare services worldwide. Therefore, fast and accurate clinical assessment of 
COVID‑19 progression and mortality is vital for the management of COVID‑19 patients. We developed 
an automated image‑based survival prediction model, called U‑survival, which combines deep 
learning of chest CT images with the established survival analysis methodology of an elastic‑net Cox 
survival model. In an evaluation of 383 COVID‑19 positive patients from two hospitals, the prognostic 
bootstrap prediction performance of U‑survival was significantly higher (P < 0.0001) than those of 
existing laboratory and image‑based reference predictors both for COVID‑19 progression (maximum 
concordance index: 91.6% [95% confidence interval 91.5, 91.7]) and for mortality (88.7% [88.6, 88.9]), 
and the separation between the Kaplan–Meier survival curves of patients stratified into low‑ and high‑
risk groups was largest for U‑survival (P < 3 ×  10–14). The results indicate that U‑survival can be used to 
provide automated and objective prognostic predictions for the management of COVID‑19 patients.

The rapid increase in the number of patients who have the coronavirus disease 2019 (COVID-19) has introduced 
major challenges for healthcare services worldwide. According to the World Health Organization (WHO), the 
first nine months of 2020 saw more than 34 million COVID-19 infections and more than 1 million deaths 
 worldwide1, and these numbers are still increasing rapidly. Therefore, a fast and accurate clinical assessment of 
disease progression and mortality of patients with COVID-19 is vital for logistic planning and for management 
of the patients.

Recently, the WHO published specific recommendations about the use of chest imaging for the management 
of COVID-19  patients2. Chest imaging can help clinicians to decide whether to admit or discharge patients 
with mild COVID-19 symptoms, whether to admit patients with moderate-to-severe COVID-19 symptoms to 
a regular ward or an intensive care unit (ICU), and to provide information about therapeutic management of 
hospitalized patients with moderate-to-severe COVID-19  symptoms2.

Chest computed tomography (CT) is the most sensitive chest imaging method for COVID-193–5; therefore, 
several image-based prognostic predictors have been reported for chest CT. Some of these predictors are based on 
quantification of the radiologist’s visual assessment of CT  images6–8. A semi-quantitative total severity  score9,10, 
which characterizes the extent of lobar involvement based on the bilateral multiple lobular ground-glass opacity 
and consolidation of COVID-19 on chest CT, has been shown to be predictive of patients’  mortality7. The extent 
of lung parenchyma, which can be quantified visually or by the use of image processing software for determin-
ing the volumetric size of the well-aerated lung parenchyma, has been shown to be predictive of the admission 
to an ICU or  death8.

Several computer-assisted prognostic predictors have also been reported. The general approach is to extract 
features from CT images and to subject those features to prognostic prediction. For performing the feature 
extraction, deep  learning11–17 or semi-automated image processing  software6,8,18,19 is used for segmentation of the 
complete lung regions, or for segmentation of infected regions within the lungs such as ground-glass opacities, 
semi-consolidation, and consolidation. In studies in which complete lung regions are extracted, the segmented 
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regions were characterized by use of radiomics with a large number of  features12,20, whereas the segmented 
infected regions are typically characterized by use of a small number of well-understood manually defined 
features such as the relative size of a thresholded region within the complete segmented  region8,11,13–16,18,19. In a 
majority of studies, the subsequent prognostic prediction has been based on logistic regression, which is largely 
limited to binary  predictions8,18–22. In studies that made use of established survival analysis methodologies, the 
survival analysis was typically based on Cox proportional hazards regression and/or Kaplan–Meier survival 
 curves6,12,16.

These previous studies on prognostic predictors for COVID-19 on chest CT had various limitations. Visual 
or semi-automated quantification of CT images tends to be subjective, and it can have great inter- and intra-
observer variability. Only few of the automated image-based survival prediction models made use of established 
survival analysis methodologies, and in most studies, the analysis was limited to selected regions of interest rather 
than considering the complete lung region. Although some of these studies made use of deep learning, the role 
of deep learning has been limited to the segmentation of regions rather than using deep learning for generat-
ing new prognostic  predictors23. Yet another limitation has been the use of manually crafted or mathematically 
defined features that are not necessarily ideal for the construction of optimal image-based prognostic predictors.

In this study, we present an automated image-based survival prediction model, called U-survival, which 
integrates the image information extracted by deep learning (U-Net) directly into a Cox proportional hazards 
model with an elastic-net penalty (elastic-net Cox model) for performing the prognostic prediction of patients 
with COVID-19. After training the U-Net to perform semantic segmentation of the lung tissue patterns of chest 
CT images, we subject the bottleneck section of the U-Net to an elastic-net Cox model that automatically selects 
a sparse subset of features to build an optimal survival model for the input data. See the subsection of “The 
U-survival model” under Methods for details of the design of the model.

Our approach is inspired by radiomics in the sense that we use an elastic-net penalty to construct a deep 
radiomic signature for survival analysis from a large number of features that are extracted from the images 
internally by the U-Net. Thus, we use deep learning as an integral part of the survival model, rather than as a 
segmentation tool. We show that the prognostic performance of the resulting U-survival model can exceed that 
of existing  laboratory24 as well as  visual6,10,25 and  quantitative8 image-based prognostic predictors in predicting 
the disease progression and mortality for patients with COVID-19. We also demonstrate how the integration of 
an established traditional survival analysis methodology into the model makes it possible to obtain additional 
information, such as survival curves or risk stratification, which was not available with the previously proposed 
prediction models based on logistic regression. Thus, the U-survival model can be used for providing an auto-
mated and objective survival analysis with high accuracy for COVID-19 patients. Such a model could be used 
for logistic planning, clinical decision making, and management of COVID-19 patients.

Results
Summary of the dataset. We retrospectively identified 383 patients who had been confirmed as being 
COVID-19 positive between March 1 and June 28, 2020, at the Massachusetts General Hospital or the Brigham 
and Women’s Hospital (Boston, MA, USA); they were followed up until July 28, 2020. After the application of 
our exclusion criteria, 214 of these patients were included in the study. Table 1 shows the demographics, clinical 
characteristics, laboratory information, and three of the reference predictors for the 214 COVID-19 patients. 
Some of the information was available only for subcohorts, as indicated in Table 1.

Prognostic predictions. Bootstrap-based internal validation was performed on the U-survival model as 
well as on the existing prognostic predictors (hereafter called reference predictors) of (1) a combination of the 
laboratory tests of lactic dehydrogenase, lymphocyte, and C-reactive  protein24,26, (2) 4D-curvature features of 

Table 1.  Demographics, clinical characteristics, laboratory information, and reference predictors for the 
patient cohort. Continuous variables are expressed in terms of the median [interquartile range: Q1, Q3]. a For a 
sub-cohort of 175 patients. b For a sub-cohort of 209 patients.

Variables

Age (years) 67 [58.2, 78]

Gender, n (%)

Male 128 (59.8)

Female 86 (40.2)

ICU admissions, n (%) 109 (50.9)

Deaths, n (%) 46 (21.4)

Laboratory testsa

Lactic dehydrogenase (U/l) 324.0 [238.5, 438.0]

C-reactive protein (mg/l) 74.3 [35.4, 148.0]

Lymphocytes (%) 13.9 [8.6, 21.2]

Total severity score 8 [5, 13]

Percentage of well-aerated lung  parenchymab (%) 69.2 [55.6, 82.1]
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the CT images (abbreviated as 4DCurv)27, (3) the total severity score (TSS)10,28, and (4) the percentage of well-
aerated lung parenchyma (%S-WAL)8.

Figure 1 shows the performance of the prognostic prediction, as measured by the concordance index 
(C-index)29, of U-survival and the reference predictors in the prediction of COVID-19 (a) progression, where 
the outcome was defined as ICU admission or death, and (b) mortality, where the outcome was defined as death, 
for the subcohorts of patients for whom all of the predictors were available. The subcohort of the progression 
analysis in (a) included 108 patients, of whom 38 were admitted to the ICU (n = 26) or who expired (n = 12), 
whereas that of the mortality analysis in (b) included 173 patients, of whom 40 expired.

For the prediction of progression, U-survival yielded an estimated C-index value of 90.9% [95% confidence 
interval (CI) 90.8, 91.0], whereas those of the reference predictors of laboratory tests, 4DCurv, TSS, and %S-WAL 
were 69.8% [CI 69.5, 70.1], 66.6% [CI 66.4, 66.9], 61.8% [CI 61.5, 62.0], and 59.0% [CI 58.7, 59.3], respectively. 
For the prediction of mortality, U-survival showed a C-index value of 87.1% [CI 86.9, 87.3], whereas those of 
the reference predictors of laboratory tests, 4DCurv, TSS, and %S-WAL, were 62.5% [CI 62.3, 62.8], 65.5% [CI 
65.3, 65.7], 57.0% [CI 56.8, 57.2], and 53.3% [CI 53.1, 53.4], respectively. These results indicate that U-survival 
outperformed the reference predictors by a large margin. The prediction performance of U-survival was sta-
tistically significantly higher than those of the reference predictors both for COVID-19 progression and for 
mortality (P < 0.00001).

Table 2 shows the performance of U-survival and the reference predictors in the prediction of the COVID-
19 progression (left) and mortality (right) for the subcohorts of patients, in which all available patients (second 
and fourth columns) were used for each predictor. In each type of prediction and for each predictor, the C-index 
values were increased by 0.7–4.5% from those shown in Fig. 1. Similar to the trend shown in Fig. 1, U-survival 
yielded C-index value of 91.6% [CI: 91.5, 91.7] for progression and 88.7% [88.6, 88.9] for mortality, which sta-
tistically significantly (P < 0.00001) outperformed the other predictors by a large margin.

Risk stratification. Figure 2 shows the Kaplan–Meier survival curves of 173 patients stratified into low- and 
high-risk groups based on the mortality prediction results shown in Fig. 1b. Figure 2 indicates that the difference 
between the survival curves for the two groups was statistically significant for U-survival and the 4D-curvature, 
with log-rank P values of 3× 10−14 and 7× 10−4 , respectively. The difference between the survival curves was 
not statistically significant (P > 0.01) for the other predictors. Visually, it is evident that the difference between 
the two curves was largest with U-survival, indicating that U-survival is more effective than any of the other 
predictors for mortality risk stratification of COVID-19 patients.

Similarly, the survival curves of 108 patients stratified into low- and high-risk groups based on the progres-
sion prediction results in Fig. 1a show that the difference between the low- and high-risk groups was largest with 
U-survival (Supplementary Fig. S1).

Figure 1.  Performance of U-survival and the reference predictors in the prediction of COVID-19 progression 
and mortality for the subcohorts of patients for whom all the predictors were available. (a,b) Notched boxplots, 
in which the middle lines and the notches show the means and 95% confidence intervals, of the C-index values 
of U-survival and the reference predictors in the prediction of disease progression (a), where the outcome is 
defined as ICU admission or death, and in the prediction of mortality (b), where the outcome is defined as 
death. The C-index values were obtained by per-patient bootstrapping with 1000 replicates. The P values were 
obtained by use of a bootstrap hypothesis test. %S-WAL percentage of well-aerated lung parenchyma, TSS total 
severity score, 4DCurv 4D-curvature, Lab laboratory tests, U-surv U-survival.
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Discussion
Although a quantitative assessment of CT images has been reported to be a predictor of disease progression 
and mortality for COVID-19 patients, most of the studies were based on logistic regression that is limited to the 
observation of binary outcomes at a given time  point30. The use of traditional survival analysis methodologies 
enables the calculation of survival data as a function of time, which is desirable for the analysis of time-to-event 
information for applications such as the comparison of survival distributions among various risk  groups30,31. The 
automated image-based U-survival model that we developed in this study is based on Cox regression analysis; 
therefore, it provides a continuous image-based prognostic prediction that enables us to acquire the proportional 
hazard for predicting the survival probability at any time point and to estimate survival curves for individual 
COVID-19 patients.

Our approach uses deep learning and chest CT images as an integral part of the survival prediction. Our 
results that greatly expand upon our previously reported methods and preliminary  results32 show that the result-
ing U-survival model can substantially outperform existing laboratory tests and image-based quantitative scoring 
methods in the prediction of the disease progression and mortality of COVID-19 patients. An advantage of deep 
learning is that it is designed to learn optimal features for solving problems based on the available training data, 

Table 2.  Performance of U-survival and the reference predictors in the prediction of the outcomes of COVID-
19 for the subcohorts where all of the available patients were used for each predictor. The table shows C-index 
values and their 95% confidence intervals (CI) obtained by per-patient bootstrapping with 1000 replicates in the 
prediction of disease progression (left) and mortality (right). “Patients” columns show the number of patients 
used for each predictor. The P values were obtained by application of a bootstrap hypothesis test. %S-WAL 
percentage of well-aerated lung parenchyma.

Figure 2.  Kaplan–Meier survival curves of COVID-19 patients stratified into low- and high-risk groups based 
on the mortality predictions in Fig. 1b. The estimated survival curves for the low- and high-risk groups are 
shown in blue and red, respectively, with shaded areas representing the 95% confidence interval. The P values 
were obtained by application of the log-rank test to the two survival curves. %S-WAL percentage of well-aerated 
lung parenchyma.
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whereas traditional manually crafted or mathematically defined image-based features are not necessarily ideal, 
or they are highly challenging to design for solving complex clinical problems such as the prognostic prediction 
investigated in this study. It should be noted that, in previous image-based prediction models for COVID-19, 
deep learning has been used only for the segmentation of images rather than for the extraction of prognostic 
features from the CT images.

In this study, we performed a systematic performance validation including the use of established performance 
metrics and the bootstrap method to demonstrate the generalizability of our  results35,36. Our experiments were 
designed based on the international expert consensus guideline of “Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis (TRIPOD)”35, which provides specific recommendations 
regarding appropriate scientific reporting of studies involved with the development and validation of prediction 
models. In particular, the bootstrap method, which we used as a primary method for internal validation in this 
study, provides a mechanism that accounts for overfitting and uncertainty in the model development, thereby 
providing realistic optimism-corrected estimates of the generalization performance of the developed  models35,36. 
A further advantage of bootstrapping is that the effects of predictor selection strategies on the model building, 
and thus the extent of model overfitting and optimism, can be quantified by repeating the predictor selection 
process in each bootstrap  sample35. It has been demonstrated that the sample-based average of bootstrapping is a 
nearly unbiased estimate of the expected value of the optimism that would be observed in external  validation36–38.

Figure 3 shows two examples of the estimation of survival curves for individual COVID-19 patients by use of 
the prognostic predictors included in this study. For both patients, the median survival times obtained from the 
survival curves calculated by U-survival, as indicated by the red curve in each plot, are more accurate estimates 
of the observed survival time than are those of the reference predictors, demonstrating the potential usefulness 
of the U-survival model for the management of COVID-19 patients.

This was a retrospective study; therefore, our CT protocol was representative of routine clinical practice rather 
than being a carefully designed uniform study protocol. In particular, although non-contrast CT is considered 
sufficient for the evaluation of COVID-19  cases33, 57% of our cases originated from contrast-enhanced CT. In 
practice, contrast-enhanced CT may be used for the evaluation of COVID-19 patients who may have a clinically 

Figure 3.  Representative chest CT images (left) and the corresponding per-patient survival curves (right) 
estimated by use of the predictors included in this study. (a) A 71-year-old male who was admitted to the 
ICU nine days after chest CT examination. The laboratory test results were dehydrogenase (LDH) 192 U/l, 
C-reactive protein (CRP) 126 mg/l, and lymphocytes 11.1%. The total severity score was 8, and the percentage 
of well-aerated lung parenchyma (%S-WAL) was 81.2%. The median survival times estimated by U-survival 
and 4DCurv were 8 and 47 days, respectively, whereas no median survival time was estimated by the other 
predictors. (b) A 64-year old male who expired three days after a chest CT examination. The laboratory test 
results were LDH 276 U/l, CRP 157 mg/l, and lymphocytes 4.6%. The total severity score was 12, and %S-WAL 
was 64.4%. The median survival time estimated by the U-survival was 3 days, whereas no median survival time 
was estimated by the other predictors.
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worsening cardiorespiratory status or suspicion of a pulmonary embolism, or for avoiding redundant imaging 
 studies33. Regardless, our experiments indicated that the prognostic performance of U-survival did not vary 
meaningfully between non-contrast and contrast-enhanced CT (Supplementary Fig. S2).

The U-Net that we used in this study had been trained with an independent external training dataset of 
interstitial lung diseases for the segmentation of chest CT images into distinct lung tissue patterns. Previously, 
we had successfully used the pre-trained U-Net for the analysis of chest CT images of patients with idiopathic 
pulmonary  fibrosis34. The use of an independent external training dataset improved the generalizability of our 
results, and it enabled us to maximize the number of independent COVID-19 test cases available for this study. 
In the future, access to a large number of CT images of COVID-19 patients could enable us to construct an 
independent COVID-19 dataset for the training of the U-Net, and this could yield an even higher performance 
of U-survival than what was reported in this study.

Our imaging study included some unique clinical information such as laboratory test results for the patients. 
Although CT imaging databases of COVID-19 patients are currently being made available in public imaging 
repositories, it is not clear whether clinical information such as laboratory tests will be included in these reposi-
tories. Thus, it may not be possible to validate our study in a larger external patient cohort any time soon.

Our results are based on the use of a 2D U-Net. In the future, it may be beneficial to use a 3D U-Net instead. 
However, at present, effective use of 3D deep learning is constrained by the memory limitations of currently 
available graphics processing units (GPUs) and by the acquisition of clinical chest CT studies at an anisotropic 
image resolution. Because of the GPU memory limitations, it is not possible to fit a full high-resolution chest CT 
volume and a sophisticated 3D deep learning model into a same GPU without the use of countermeasures such 
as subsampling of the image volume, which can have a detrimental effect on the performance of deep  learning39. 
Because of the anisotropic image acquisition, many chest CT studies produce a stack of 2D image slices rather 
than a true 3D volume, and this makes volumetric analysis less meaningful than is an independent analysis of 
each image slice. Also, the use of 3D volumes would reduce the amount of training data in comparison to the 
use of 2D images. Nevertheless, in the long run, the use of a 3D U-Net with a high-capacity GPU and a large 
number of isotropic chest CT volumes could yield an even higher performance of U-survival than that reported 
in this study.

In summary, the limitations of this study as elaborated above include that this was a retrospective study and 
that we did not perform an external validation with an independent study population. Potential future direc-
tions include an external validation study with a large number of prospective cases and human observers from 
more than two institutions, an investigation of the potential benefit of a 3D U-Net in the U-survival model, and 
ultimately an introduction of the U-survival model to a clinical routine.

Conclusion
We showed that deep learning of chest CT images can be used as an integral part of an automated image-based 
survival prediction model based on traditional survival analysis methodology. This makes it possible to obtain 
complete survival information that was not available with previously proposed prediction models. In our evalu-
ation of 383 COVID-19 positive patients from two hospitals, the U-survival model significantly (P < 0.0001) 
outperformed existing laboratory tests and image-based visual and quantitative predictors in the prediction of 
the disease progression and mortality of COVID-19 patients and in the separation between the Kaplan–Meier 
survival curves of patients stratified into low- and high-risk groups (P < 3 ×  10–14). The results indicate that the 
U-survival model can be used to provide automated and objective prognostic predictions for the management 
of COVID-19 patients.

Methods
Figure 4 shows a flowchart of the key developments and evaluation steps described below.

Study cohort. The study was reviewed and approved by the Mass General Brigham (MGB) institutional 
review board (IRB). All procedures involving human participants were performed in accordance with the ethical 

Figure 4.  Flowchart of the key developments and evaluations. The U-survival model and the reference 
predictors are validated by use of bootstrapping with COVID-19 patients. The prognostic predictions are 
compared by use of the C-index and stratified survival curves. ILD Interstitial lung disease.
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standards of the IRB and with the 1964 Declaration of Helsinki and its later amendments. The informed consent 
of the patients was waived for this study by the MGB IRB.

We retrospectively identified 383 COVID-19 positive patients between March 1 and June 28, 2020, from the 
medical records of the Massachusetts General Hospital and the Brigham and Women’s Hospital; they were fol-
lowed up until July 28, 2020. The patients who were included in the study (1) were at least 18 years old, (2) had 
been diagnosed as COVID-19 positive based on a positive result for severe acute respiratory syndrome coronavi-
rus 2 (SARS-COV-2) by reverse transcriptase-polymerase chain reaction (RT-PCR) with samples obtained from 
the nasopharynx, oropharynx, or lower respiratory tract, and (3) had a high-resolution chest CT examination. 
The resulting cohort consisted of 302 patients. After excluding the patients whose CT examinations had been 
performed for diseases other than COVID-19, we established a cohort of a total of 214 COVID-19 patients.

The chest CT images were acquired by use of single-phase low-dose acquisition with a multi-channel CT scan-
ner (Canon/Toshiba Aquilion ONE, GE Discovery CT750 HD and Revolution CT/Frontier, Siemens SOMATOM 
Definition AS/AS + /Edge/Flash, SOMATOM Force, Biograph 64, or Sensation 64) by use of 80–140 kVp voltage, 
auto tube-current modulation, a pitch of 0.3–1.6, and a slice thickness of 0.625–2.0 mm. The CT images were 
reconstructed by use of a neutral or medium sharp reconstruction kernel.

For the patients included in this study, the mean and standard deviation of the number of days between the 
CT image acquisition and admission to ICU were 2.2 ± 4.1 (n = 36), whereas those between the CT image acquisi-
tion and death were 11.4 ± 10.9 (n = 46).

A subcohort of 141 patients who had a CT examination before ICU admission or who were not admitted to 
the ICU, was used for the prediction analysis of COVID-19 progression. For these patients, the survival time 
was defined as the number of days from the baseline CT image acquisition to ICU admission or death (for 
uncensored patients) or otherwise set to the most recent follow-up date (for censored patients). For the analysis 
of mortality, the entire cohort of 214 patients was used, where the survival time was defined as the number of 
days from the baseline CT image acquisition to death (for uncensored patients) or as the most recent follow-up 
date (for censored patients).

The U‑survival model. The U-survival model has two basic components: a convolutional neural network 
(U-Net) and an elastic-net Cox model (Fig. 5). The U-Net has three principal layer sections: contraction, bot-

Figure 5.  Schematic diagram of the U-survival model. The U-radiomics vector derived from the bottleneck 
section of the U-Net is subjected to an elastic-net Cox model for predicting the disease progression and 
mortality of a patient. Conv convolutional layer (kernel 4, stride: 2), ConvTrans transposed convolution (kernel 
4, stride: 2), LReLU leaky rectified linear unit, BatchNorm batch normalization.
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tleneck, and  expansion40. The output of the bottleneck section that is located between the contraction and expan-
sion sections is essentially a compressed low-dimensional representation of the input data to the U-Net.

The U-Net of this study was pre-trained, as described in our previous  study34, for performing semantic 
segmentation of the lung region of axial CT images into five distinct lung tissue patterns (ground-glass opacity, 
reticulation, consolidation, honeycombing, and a normal healthy lung pattern) by use of the chest CT images of 
72 patients who had interstitial lung diseases and corresponding tissue-pattern-labeled images (“label images” in 
Fig. 5). After such training, the output of the bottleneck section of the U-Net, called U-radiomics vector, contains 
information regarding the interpretation of the lung tissue patterns of chest CT  images41–43.

To use this information for survival analysis, we subject the U-radiomics vector to an elastic-net Cox  model44. 
This model automatically selects a sparse subset of the features of the U-radiomics vector to build an optimal 
survival model for the input data.

We can formulate the construction of the U-survival model as follows: Let {
(

yn, xn, δn
)

|n = 1, . . . ,N} denote 
time-to-event data for patient n , where xn =

(

xmn |m = 1, . . . ,M
)

 is the U-radiomics vector from the U-Net. If 
δn = 1 , yn is the observed survival time of an outcome such as disease progression or death for patient n . If δn = 0 , 
yn is a right-censoring time. Moreover, let {ti|i = 1, . . . ,K} be an ascending list of the event times, and let j(i) 
denote the mapping of the event time ti to the index of the patient at risk at that time. The construction of the 
Cox model involves the estimation of a hazard vector eβ =

(

eβm |m = 1, . . . ,M
)

 by maximization of the partial 
likelihood L(β) =

∏K
i=1

(

exj(i)·β/
∑

j∈Rj
exi ·β

)

 , where Rj is the set of indices for patients at risk at time ti45.
In cases where the number of features in the U-radiomics vector is much larger than the number of patients 

(M ≫ N), the above maximum-likelihood estimation can lead to a degeneration of β. The elastic-net Cox model 
obviates this problem by use of an elastic-net regularization term.

where β is estimated by β̂ = argmaxβ
(

log L(β)− Pα(β)
)

 . The first term of Eq. (1) is the L1 or Lasso regulariza-
tion that is known effectively to obviate the degeneration and to provide a sparse representation of β46. The second 
term of Eq. (1) is the L2 or ridge regularization, which shrinks all βm of the hazard vector to zero to obviate the 
degeneration, but also provides highly correlated predictors with an equal weight. When these two terms are 
mixed by use of the parameter α, the elastic-net Cox model allows the U-survival model to perform simultaneous 
feature selection and optimal estimation of the hazard vector eβ.

Application of U‑survival to CT images. To apply the U-survival model to prognostic prediction, we 
first apply the pre-trained U-Net to the axial CT images of a COVID-19 patient in our study cohort (see Supple-
mentary Fig. S3). For each image, we identify the corresponding U-radiomics vector as the expanded output of 
the bottleneck section of the U-Net. These per-image U-radiomics vectors of the patient are then combined into 
a single per-patient U-radiomics vector by use of the median value of each feature of the per-image U-radiomics 
vectors across the axial CT images of the patient. Finally, the per-patient U-radiomics vector is subjected to the 
elastic-net Cox model for building a survival model for predicting the prognosis of the patient.

Implementation and parameters of the U‑survival model. The CT images of this study and those of 
the external training dataset for the U-Net34 were pre-processed for the U-Net by clipping of the intensity values 
to a Hounsfield unit (HU) range of − 1024 to 1024 and by mapping of these values linearly to the range of − 1 
to + 1.

The free hyper-parameters of the U-survival model were optimized by use of a grid search algorithm. Specifi-
cally, the output of the bottleneck section of the U-Net was configured to be c × n × n = 128 × 4 × 4, where c and 
n represent the number of channels and the size of the output, respectively (Fig. 5). Each element of the output 
was post-processed by z-score normalization across the patients, and the resulting z-score normalized output 
was converted to a U-radiomics vector with a length of 2048. This configuration of the bottleneck section yielded 
1–9% higher performance than did other possible configurations of the bottleneck section (see Supplementary 
Fig. S4). Similarly, we set the mixing parameter α in Eq. (1) to take advantage of both lasso and ridge regulariza-
tion terms for optimizing the performance of the U-survival model (see Supplementary Fig. S5). For the training, 
we used Adam optimizer with β1 = 0.5 and β2 = 0.999 . The dropout ratio was set to 0.5, batch size was 64, and 
the learning rate was 2.0 ×  10–4.

Computational environment. The U-survival model was implemented by use of our custom-made 
Linux-based computational server that was equipped with 10 × V100S GPUs (NVIDIA Corporation, Santa 
Clara, CA, USA) with 32 GB memory and 12-core 3.6 GHz Xeon Gold 6256 CPUs (Intel Corporation, Santa 
Clara, CA, USA) with 512 GB memory. The U-Net was implemented by use of PyTorch 1.547. The elastic-net Cox 
model was implemented by use of glmnet 4.044.

Evaluation methods. The performance of the prognostic prediction of the U-survival model was assessed 
by use of the C-index29. The C-index is similar to the area under the receiver operating characteristic (ROC) 
curve (AUC) that evaluates the classification performance for binary outcomes, except that the C-index is used 
for estimating the concordance between predicted and observed outcomes in the presence of censoring. The 
C-index performs the estimation of concordance based on usable pairs, in which one patient is known to have 

(1)Pα(β) = α

M
∑

i=1

|βi| + (1− α)

M
∑

i=1

β2
i (0 ≤ α ≤ 1)
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an outcome before the other patient, who may have an outcome later or who may be censored. The C-index has 
a value range of 0–100%, where 50% indicates random prediction and 100% indicates perfect prediction.

To obtain optimism-corrected, generalizable estimates of the C-index values and their confidence intervals, 
we used per-patient bootstrapping with 1000  replications35,38 for the evaluation of the U-survival model. The 
bootstrap method enables the use of all of the available data, provides a mechanism for accounting for overfitting 
and uncertainty in the model development, and generates a nearly unbiased estimate of what would be observed 
in external  validation35,36.

The performance of the U-survival model in risk stratification was evaluated by use of the Kaplan–Meier 
 estimator48. We first calculated the optimism-corrected predictions by use of the above per-patient bootstrapping 
 process49. Then, we generated the Kaplan–Meier survival curves that show the survival probability estimates 
over time by use of the Kaplan–Meier estimator. The survival curves are stratified into low- and high-risk groups 
by use of the mean of the bootstrap predictions. The difference between the survival curves between the risk 
groups was evaluated by use of the log-rank test, where a P value of less than 0.01 was considered to indicate a 
statistically significant difference.

The statistical analyses of the evaluation results were conducted by use of the R 4.0.2 software  environment50.

Comparative reference predictors. For reference, we compared the prediction performance of the 
U-survival model with those of several previously reported COVID-19 predictors, including (1) a combination 
of the laboratory tests of lactic dehydrogenase, lymphocytes, and C-reactive  protein24,26, (2) a visual image-based 
CT assessment in terms of the total severity  score10,28, and (3) a quantitative image-based CT assessment in 
terms of the software-based percentage of well-aerated lung parenchyma (%S-WAL)8. In addition, we included 
(4) a quantitative image-based CT assessment based on the 4D-curvature features of the CT images (4DCurv)27, 
which we previously showed to be effective in the prognostic prediction of the mortality of patients with inter-
stitial lung  diseases51,52.

The total severity score was obtained by a pulmonologist with 20-year experience (C.W.) based on a protocol 
reported in previously published  studies9,10. Each of the five lung lobes was assessed for the degree of acute lung 
involvement, which was classified as none (0%) with a lobe score of 0, minimal (1–25%) with a lobe score of 1, 
mild (26–50%) with a lobe score of 2, moderate (51–75%) with a lobe score of 3, or severe (76–100%) with a lobe 
score of 4. An overall total severity score was calculated by summing of the five lobe scores (range of possible 
total score: 0–20). The distribution of the total severity score in the patient cohort is shown in Table 1.

The %S-WAL was calculated based on a previously published  study8 and image processing  software27. The 
software extracted the complete lung region automatically from the CT images, after which the %S-WAL was 
calculated as the relative volume of the well-aerated 3D lung region determined by the density interval of -950 
HU and -700 HU to the volumetric size of the complete segmented 3D lung region. The distribution of the 
%S-WAL in the study patient cohort is shown in Table 1.

The 4DCurv characterizes each point of the complete lung region by use of hyper-curvature features of 
the chest CT images, including the principal curvatures, curvedness, bright/dark sheets, cylinders, blobs, and 
curvature  scales51. The 4DCurv was calculated by use of previously published image processing  software27 that 
generated 363 hyper-curvature features per  patient51.

We calculated the prognostic predictions obtained from these predictors by subjecting them to the elastic-net 
Cox model and by applying per-patient bootstrapping with 1000 replications to the model. The C-index values 
obtained from the predictions were compared with those of U-survival by use of a bootstrap hypothesis  test38, 
and a P value of less than 0.01 was considered to indicate that the difference was statistically significant.

The performances of the reference predictors in risk stratification were evaluated by use of the Kaplan–Meier 
survival curves that were stratified into low- and high-risk groups by the mean of the bootstrap predictions of the 
predictors. The difference between the survival curves for the risk groups was evaluated by use of the log-rank 
test, and the P values obtained from the test were compared with that of the U-survival model.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
request.

Received: 9 October 2020; Accepted: 13 April 2021

References
 1. WHO. Coronavirus Disease (COVID-19). Weekly Epidemiological Update (2020). https:// doi. org/ 10. 1097/ jcn. 00000 00000 000710.
 2. Akl, E. A. et al. Use of chest imaging in the diagnosis and management of COVID-19: a WHO rapid advice guide. Radiology 298, 

E63–E69 (2021).
 3. Mei, X. et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat. Med. 26, 1224–1228 (2020).
 4. Harmon, S. A. et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. 

Nat. Commun. 11, 4080 (2020).
 5. Rubin, G. D. et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus 

statement from the Fleischner Society. Radiology 296, 172–180 (2020).
 6. Francone, M. et al. Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. Eur. Radiol. 

30, 6808–6817 (2020).
 7. Li, K. et al. Predictors of fatality including radiographic findings in adults with COVID-19. Respir. Res. 21, 146 (2020).
 8. Colombi, D. et al. Well-aerated lung on admitting Chest CT to predict adverse outcome in COVID-19 pneumonia. Radiology 296, 

E86–E96 (2020).

https://doi.org/10.1097/jcn.0000000000000710


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9263  | https://doi.org/10.1038/s41598-021-88591-z

www.nature.com/scientificreports/

 9. Bernheim, A. et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 295, 
200463 (2020).

 10. Lyu, P., Liu, X., Zhang, R., Shi, L. & Gao, J. The performance of chest CT in evaluating the clinical severity of COVID-19 pneumonia: 
identifying critical cases based on CT characteristics. Invest. Radiol. 55, 412–421 (2020).

 11. Liu, F. et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 
patients. Theranostics 10, 5613–5622 (2020).

 12. Wu, Q. et al. Radiomics analysis of computed tomography helps predict poor prognostic outcome in COVID-19. Theranostics 10, 
7231–7244 (2020).

 13. Huang, L. et al. Serial quantitative chest CT assessment of COVID-19: deep-learning approach. Radiol. Cardiothorac. Imaging 2, 
e200075 (2020).

 14. Wang, Y. et al. Quantitative analysis of chest CT imaging findings with the risk of ARDS in COVID-19 patients: A preliminary 
study. Ann. Transl. Med. 8, 594–594 (2020).

 15. Yu, Q. et al. Multicenter cohort study demonstrates more consolidation in upper lungs on initial CT increases the risk of adverse 
clinical outcome in COVID-19 patients. Theranostics 10, 5641–5648 (2020).

 16. Zhang, K. et al. Clinically applicable AI system for accurate diagnosis, quantitative measusrements, and prognosis of COVID-19 
pneumonia using computed tomography. Cell 181, 1423–1433 (2020).

 17. Bai, X. et al. Predicting COVID-19 malignant progression with AI techniques. medRxiv (2020). https:// doi. org/ 10. 1101/ 2020. 03. 20. 
20037 325.

 18. Lanza, E. et al. Quantitative chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. Eur. 
Radiol. 30, 6770–6778 (2020).

 19. Matos, J. et al. Evaluation of novel coronavirus disease (COVID-19) using quantitative lung CT and clinical data: Prediction of 
short-term outcome. Eur. Radiol. Exp. 4, 39 (2020).

 20. Homayounieh, F. et al. CT radiomics, radiologists and clinical information in predicting outcome of patients with COVID-19 
pneumonia. Radiol. Cardiothorac. Imaging 2, e200322 (2020).

 21. Li, M. D. et al. Automated assessment of COVID-19 pulmonary disease severity on chest radiographs using convolutional Siamese 
neural networks. medRxiv (2020). https:// doi. org/ 10. 1101/ 2020. 05. 20. 20108 159.

 22. Xiao, L. et al. Development and validation of a deep learning-based model using computed tomography imaging for predicting 
disease severity of coronavirus disease 2019. Front. Bioeng. Biotechnol. 8, 898 (2020).

 23. Kundu, S., Elhalawani, H., Gichoya, J. W. & Kahn, C. E. How might AI and chest imaging help unravel COVID-19’s mysteries?. 
Radiol. Artif. Intell. 2, e200053 (2020).

 24. Yan, L. et al. An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2, 283–288 (2020).
 25. Li, K. et al. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest. Radiol. 55, 327–331 

(2020).
 26. Ji, D. et al. Prediction for progression risk in patients with COVID-19 pneumonia: the CALL score. Clin. Infect. Dis. 71, 1393–1399 

(2020).
 27. Kawata, Y., Kubo, H., Niki, N., Ohmatsu, H. & Moriyama, N. A study of three-dimensional curvatures and curvatures of four-

dimensional hypersurface for analyzing pulmonary nodules on high-resolution CT images. Syst. Comput. Japan 36, 16–29 (2005).
 28. Li, K. et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur. Radiol. 30, 

4407–4416 (2020).
 29. Harrell, F. E., Lee, K. L. & Mark, D. B. Multivariable prognostic models: issues in developing models, evaluating assumptions and 

adequacy, and measuring and reducing errors. Stat. Med. 15, 361–387 (1996).
 30. George, B., Seals, S. & Aban, I. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694 (2014).
 31. Cui, L. et al. A deep learning-based framework for lung cancer survival analysis with biomarker interpretation. BMC Bioinformatics 

21, 112 (2020).
 32. Uemura, T., Näppi, J. J., Kamiya, T. & Yoshida, H. U-radiomics for predicting survival of patients with COVID-19. in Proc. SPIE 

Medical Imaging 1160110 (2021). https:// doi. org/ 10. 1117/ 12. 25819 07.
 33. Kalra, M. K., Homayounieh, F., Arru, C., Holmberg, O. & Vassileva, J. Chest CT practice and protocols for COVID-19 from radia-

tion dose management perspective. Eur. Radiol. 30, 6554–6560 (2020).
 34. Uemura, T. et al. U-radiomics for predicting survival of patients with idiopathic pulmonary fibrosis. in Proc. SPIE Medical Imaging 

113140T (2020). https:// doi. org/ 10. 1117/ 12. 25512 73.
 35. Moons, K. G. M. et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): 

Explanation and elaboration. Ann. Intern. Med. 162, W1–W73 (2015).
 36. Smith, G. C. S., Seaman, S. R., Wood, A. M., Royston, P. & White, I. R. Correcting for optimistic prediction in small data sets. Am. 

J. Epidemiol. 180, 318–324 (2014).
 37. Harrel, F. Jr., Lee, K. & Mark, D. Tutorial in biostatistics: multivariable prognostic models: issues in developing models, evaluating 

assumptions and adequacy, and measuring and reducing error. Stat. Med. 15, 361–387 (1996).
 38. Efron, B. & Tibshirani, R. J. An introduction to the bootstrap. Monographs on Statistics and Applied Probability vol. 57 (Chapman 

& Hall, 1993).
 39. Sabottke, C. F. & Spieler, B. M. The effect of image resolution on deep learning in radiography. Radiol. Artif. Intell. 2, (2020).
 40. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. 

Sci. 9351, 234–241 (2015).
 41. Shi, F. et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. 

IEEE Rev. Biomed. Eng. 14, 4–15 (2021).
 42. Ker, J., Wang, L., Rao, J. & Lim, T. Deep learning applications in medical image analysis. IEEE Access 6, 9375–9379 (2017).
 43. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
 44. Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate 

descent. J. Stat. Softw. 39, 1–13 (2011).
 45. Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. 34, 187–220 (1972).
 46. Tibshirani, R. Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc. Ser. B (Statistical Methodol. 73, 

273–282 (2011).
 47. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. in 33rd Conference on Neural Information 

Processing Systems (NeurIPS 2019) (2019).
 48. Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).
 49. Bello, G. A. et al. Deep learning cardiac motion analysis for human survival prediction. Nat. Mach. Intell. 1, 95–104 (2019).
 50. R Core Team. R: A Language and Environment for Statistical Computing. (2020).
 51. Watari, C. et al. Radiomic texture-curvature (RTC) features for precision medicine of patients with rheumatoid arthritis-associated 

interstitial lung disease. in Proc. SPIE Medical Imaging (eds. Zhang, J. & Chen, P.-H.) vol. 10579 105791N (SPIE, 2018).
 52. Uemura, T. et al. U-radiomics combined with hyper-curvature features for predicting survival of patients with idiopathic pulmonary 

fibrosis. Int. J. Comput. Assist. Radiol. Surg. 15, S119–S120 (2020).

https://doi.org/10.1101/2020.03.20.20037325
https://doi.org/10.1101/2020.03.20.20037325
https://doi.org/10.1101/2020.05.20.20108159
https://doi.org/10.1117/12.2581907
https://doi.org/10.1117/12.2551273


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9263  | https://doi.org/10.1038/s41598-021-88591-z

www.nature.com/scientificreports/

Acknowledgements
The authors acknowledge that this work did not receive any funding.

Author contributions
J.N. and T.U. contributed to methodology, software development, experiment, formal analysis, and writing the 
manuscript. C.W. contributed to clinical data collection and formal analysis. T.H. contributed to data collection 
and software developments. T.K. provided technical consultation. H.Y. conceptualized and supervised the study, 
carried out formal analyses, and reviewed and edited the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 88591-z.

Correspondence and requests for materials should be addressed to H.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-88591-z
https://doi.org/10.1038/s41598-021-88591-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19
	Results
	Summary of the dataset. 
	Prognostic predictions. 
	Risk stratification. 

	Discussion
	Conclusion
	Methods
	Study cohort. 
	The U-survival model. 
	Application of U-survival to CT images. 
	Implementation and parameters of the U-survival model. 
	Computational environment. 
	Evaluation methods. 
	Comparative reference predictors. 

	References
	Acknowledgements


