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ABSTRACT In this paper, we propose three-dimensional(3D) visualization of objects in heavy scattering
media by using peplography and wavelet transform. Conventional haze removal techniques can remove
the light haze in the image by using various image processing algorithms or machine learning techniques.
However, they may not provide a clear image under heavy scattering media. On the other hand, peplography
can visualize the object by detecting ballistic object photons from heavy scattering media. Then, 3D image
can be generated by integral imaging. However, it may not visualize 3D object information accurately
because of the noise photons from scattering media. Therefore, the image quality for 3D object visualization
may be degraded. To solve this problem, we use the discrete wavelet transform in peplography. It can detect
the object photon signals from the scattering media and enhance 3D image contrast ratio by using a specific
coefficient threshold technique. To prove our method, we carry out optical experiments and compare results
with the conventional haze removal method and peplography by using various image quality metrics such
as correlation, structural similarity, and peak signal-to-noise ratio.

INDEX TERMS 3D visualization, wavelet transform, scatter media removal, photon-starved conditions,
photon counting imaging, statistical optics.

I. INTRODUCTION
Recently, visualization under the high-density scattering
media is a consequential challenge in many industry fields.
Especially, the autonomous vehicle utilizes LiDAR [1], [2]
and a camera to recognize the object in front of the car.
However, LiDAR is difficult to visualize the object under
inclement weather conditions. Therefore, it can cause a crit-
ical recognition error for the autonomous vehicle. On the
other hand, the camera can visualize the object with proper
shape and color. Thus, image processing through the camera
is significant for accurate object recognition under scattering
media conditions. Many researchers have proposed single
image dehazing technique [3], [4], [5], [6], [7] and uti-
lized machine learning techniques such as convolution neural
network and generative adversarial network [8], [9], [10]
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to recover the image under these conditions. Their meth-
ods can recover the scene accurately in the light scattering
media or the specific haze image dataset. However, their
methods need much optical equipment, such as a polar-
izer, and composing the complicated scattering media filter-
ing optical systems is challenging. Therefore, utilizing the
systems in various industrial fields is difficult. Moreover,
it is difficult to visualize the object under heavy scatter-
ing media conditions. To visualize the scene under these
conditions using a conventional camera, peplography [11]
has been proposed. It can visualize the object under the
scattering media by photon counting integral imaging [21],
[22], [23], [24], [25], [26], [27], [28] and statistical estima-
tion. Peplography can estimate and remove the scattering
media components from the scene by central limit theorem
and maximum likelihood estimation. Then, using photon
counting imaging [12], [13], [14], [15], it can detect ballis-
tic photons from the scene. Therefore, it can visualize the
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object well even under heavy scattering media. Moreover, it
can utilize integral imaging [16], [17], [18], [19], [20] to
enhance the image quality and generate the 3D information
of the scene.

Integral imaging is the one of passive 3D image acquisition
and reconstruction technique that does not require a coherent
light source and special viewing devices. It uses the lens array
to obtain the different perspective information from the 3D
scene and can reconstruct the 3D image by volumetric com-
putational reconstruction (VCR) [18]. VCR uses elemental
images which have different perspectives of the 3D scene
and reconstructs 3D image on the reconstruction plane by
overlapping the elemental images through the virtual pinhole
array.

Peplography uses the photon counting image that contains
ballistic object photons from the heavy scattering media as
the elemental image and then it can reconstruct the 3D image
using VCR. However, it may not provide sufficient 3D object
information and image quality due to the lack of ballistic
photons from heavy scattering media, and the measured bal-
listic photon has intensity fluctuation. Moreover, since VCR
uses the averaging calculation, it may reduce the photon pixel
intensity. To solve these problems, in this paper, we propose
wavelet peplography which can enhance the visual quality of
the 3D image and reduce the noise photons from the scatter-
ing media by 2D discrete wavelet transform [29], [30], [31],
[32], [33], [34]. Our proposed method analyzes the informa-
tion of ballistic photons through the multi-level decomposi-
tion of the discrete wavelet transform to recognize the noise
photons in the scene. Then, it utilizes the novel threshold
technique to reduce the noise photons without object infor-
mation loss. Since noise photons are reduced in the scene,
it can enhance the image contrast ratio and visual quality.
Moreover, our proposed method can reduce the object photon
intensity fluctuation through the noise removal technique
and integral imaging computational reconstruction technique.
Finally, it can generate a more accurate 3D image compared
with conventional dehazing techniques and peplography even
under low luminance scattering media conditions.

This paper is organized as follows. We present the conven-
tional scattering media removal technique in Section 2. Then,
we depict our proposed method in Section 3. To prove our
proposed method, we compare it with conventional methods
through various optical experiments under different scattering
media conditions. In addition, we calculate the various image
metrics to prove the feasibility of our proposed method in
Section 4. Finally, we present the conclusion in Section 5.

II. CONVENTIONAL SCATTERING MEDIA
REMOVAL TECHNIQUES
3D visualization of objects under scattering media becomes
a significant problem in many research fields. Especially,
the autonomous vehicle requires an optimum decision
to avoid the accident under scattering media road con-
ditions. However, if the camera may not visualize the
scene sufficiently for the optimum decision, it may cause

a critical accident. To remove the scattering media effec-
tively, researchers have been proposed a lot of methods such
as polarization imaging [3], gamma correction, dark channel
prior [4], single-pixel imaging [7], and machine learning
which uses deep convolution neural network [10] through the
numerous scatteringmedia image data and so on. Fig. 1 shows
the result images by multi-scale boosted dehazing network
with dense feature fusion (MSBDN-DFF).

FIGURE 1. Scattering media removal by using deep convolution neural
network. (a) Reference image, (b) hazy image, and (c) processed image.

Conventional dehazing methods may recover the image
accurately under light scattering media conditions. However,
some of them may not provide accurate object informa-
tion under heavy scattering media conditions. Therefore,
it is still a challenge to recover the image under these con-
ditions. On the other hand, peplography may remove the
heavy scattering media from the image effectively [11]. The
origin of word ‘‘peplography’’ comes from greek πέπλo
(peplo; ‘‘veiled’’) and γραϕήζ (grafis; ‘‘writing’’). In addi-
tion, images captured under heavy scattering media are called
peplogram. Peplography can estimate and remove the scat-
tering media through the statistical method. After that, it can
detect the ballistic photons from the image for visualization
by photon counting imaging. Finally, it can enhance the visual
quality of the image and obtain the 3D information by VCR.
Fig. 2 shows the concept of peplography.

FIGURE 2. Concept of peplography.

To estimate the scattering media from the scene, maximum
likelihood estimation (MLE) can be used. Since scattering
media are composed of various local scattering media with
size of wx and wy respectively, they are assumed to be Gaus-
sian distribution with mean µij and a variance σ 2

ij by central
limit theorem, where i and j represent the index of each
scattering medium in x and y directions, respectively. Finally,
the local scattering medium can be defined as follows [11]:

Xij(m, n) = Ip(i+ m− 1, j+ n− 1),
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i = 1, 2, . . . ,Nx − wx + 1

j = 1, 2, . . . ,Ny − wy + 1,

for

m = 1, 2, . . . ,wx
n = 1, 2, . . . ,wy (1)

where Ip represents the pixel intensity of the peplogramwhich
is the image from the scattering media, Xij is the local scatter-
ing medium, and Nx , Ny refer the number of pixels of each
peplogram, respectively. To estimate the scattering media,
Gaussian distribution and MLE are used as follows [11]:

L(Xij(m, n)|µij, σ 2
ij )

=

wx∏
m=1

wy∏
n=1

1
√
2πσ 2

exp

[
−

{
xij(m, n)− µij

}2
2σ 2

ij

]

=
1

√
2πσ 2

exp

[
−

wx∑
m=1

wy∑
n=1

{
xij(m, n)− µij

}2
2σ 2

ij

]
. (2)

For calculation convenience, we take the logarithm of (2).
Then, the following equation can be obtained [11].

l
{
xij(m, n)|µij, σ 2

ij

}
= ln

(
1

√
2πσ 2

)
−

wx∑
m=1

wy∑
n=1

{
xij(m, n)− µij

}2
2σ 2

ij

. (3)

Finally, the scattering media can be estimated by MLE as
follows [11]:

µ̂ij = argmax
µij

l
{
xij(m, n)|µij, σ 2

ij

}
=

1
wxwy

wx∑
m=1

wy∑
n=1

xij(m, n). (4)

From (4), it is noticed that the estimated scattering media
is the mean of the local scattering medium. Finally, the esti-
mated scattering media can be removed from the peplogram
by the following [11]:

Ĩp(i, j) = Ip(i, j)− µ̂ij (5)

where Ip(i, j) represents the peplogram, µ̂ij is the estimated
scattering media, and Ĩp(i, j) is the peplogram without scat-
tering media. Now, the sparse ballistic object photons can be
detected from the peplogram without scattering media by the
computational photon counting imaging, which is modelled
by the Poisson random process by (6) and its concept is
illustrated in Fig. 3 [21].

Cij|Ĩp(i, j) ∼ Poisson[Np × Ĩp(i, j)] (6)

where Np is the number of ballistic photons from the peplo-
gram without scattering media and Cij is the reconstructed
peplogram.

However, photon counting imaging may detect the unde-
sired photons from scattering media and they may disturb the

FIGURE 3. Concept of computational photon counting model.

FIGURE 4. Integral imaging.

FIGURE 5. Volumetric computational reconstruction.

image quality of 3D visualization. Moreover, if the 3D object
is located under the dark smoke situation, it is difficult to
recognize the object accurately. To enhance the image quality
and acquire accurate 3D information, integral imaging can be
used. Fig. 4 illustrates the concept of integral imaging. It can
record 3D information from the scene and display 3D image
by lens array.

To reconstruct a 3D image by computational method, vol-
umetric computational reconstruction (VCR) can be used as
shown in Fig. 5. VCR is one of the computational integral
imaging reconstruction technique. It can generate 3D infor-
mation by overlapping multiple 2D images with different
perspectives on the reconstruction plane through the virtual
pinhole array, where these 2D images are referred to as ele-
mental images. In addition, it may enhance the image quality
of 3D images due to averaging calculation. VCR process can
be defined as follows [16] and [21].

1x =
Nxpf
cxzr

, 1y =
Nypf
cyzr

(7)

Rc(x, y, zr )

=
1

NpO(x, y, zr )

K−1∑
k=0

L−1∑
l=0

C(k,l)(x + k1x, y+ l1y) (8)

where 1x,1y represent the shifting pixel value of each ele-
mental image for 3D reconstruction,Nx ,Ny are the number of
the pixels of each elemental image, p is the distance between
virtual pinholes, f is the focal length, zr is the reconstruction
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depth, cx , cy are the sensor size, C(k,l) represents the recon-
structed peplogram, and Rc(x, zr ) is the reconstructed 3D
peplogram, respectively. 3D reconstructed peplogram may
have better image quality than the single 2D reconstructed
peplogram even under heavy scattering media conditions.
However, since the 2D reconstructed peplogram still contains
the scattering media photons (i.e., noise photons), it may
degrade the pixel intensity of 3D reconstructed peplogram
by average calculation. To overcome these problems, in this
paper, we propose wavelet peplography which can reduce
scattering media photons and enhance the contrast ratio of 2D
reconstructed peplogram by the discrete wavelet transform
filtering technique.

III. PROPOSED METHOD
A. WAVELET TRANSFORM
2D Fourier transform is generally used for the frequency
analysis of 2D signal. It decomposes 2D signal with infinite
sine waves in each axis, respectively. Therefore, It is useful to
analyze the main frequency components of 2D signal. How-
ever, 2D Fourier transform may not provide the signal infor-
mation in time domain. In addition, inverse Fourier transform
may compose a different signal compared with the input
signal. To overcome these problems, wavelet transform [29],
[30], [31], [32], [33] can be used. Wavelet transform utilizes
the wavelet function to analyze the signal in both time and
frequency domains. It shifts the wavelet function by using
manually defined shifting and scaling values. Therefore,
it may provide higher frequency resolution compared with
the Fourier transform. However, it has the high calculation
cost and takes time to analyze 2D signal. Thus, most image
processing researches use 2D discrete wavelet transform that
already defines the shifting and scaling values uniformly. 2D
discrete wavelet transform can be defined as follows [29],
[30], [31], and [32]:

φs,u,v(x, y) = 2
s
2φ(2sx − u, 2sy− v) (9)

ψd
s,u,v(x, y) = 2

s
2ψd (2sx − u, 2sy− v)(d = H ,V ,D) (10)

where s is the decomposition level, d is the decomposition
direction, and u, v represents the translation of each direction.
2D discrete wavelet transform uniformly changes the scaling
and shifting indexes to detect various frequency components
in the scene. φs,u,v(x, y) is a scaling function which is used
as the low-pass filter in wavelet transform and generates
the approximation term. ψd

s,u,v(x, y) is the wavelet function
which can analyze the frequency components with three
kinds of detail coefficients such as horizontal(H ), vertical(V ),
and diagonal(D), respectively.Moreover, approximation term
can be reused as the image and generate the other detail
coefficients. Therefore, it can represent the various fre-
quency components with multiple decomposition levels. It is
called multi-level decomposition analysis. It can be depicted
in Fig. 6.

Approximation term represents low-frequency compo-
nents in the image and three coefficients represent the

FIGURE 6. Multi-level decomposition analysis.

high-frequency components in the specific level of multi-
level decomposition. Through the decomposition, it can
remove the specific frequency noise, and it can also empha-
size the meaningful information in the scene. Our proposed
method uses 2D discrete wavelet transform and specific
coefficient threshold technique to remain meaningful pho-
tons according to the characteristics of 2D reconstructed
peplogram. Therefore, it can enhance the image quality of
2D reconstructed peplogram under heavy scattering media
conditions.

B. WAVELET PEPLOGRAPHY
The conventional peplography uses only photon counting
imaging to detect meaningful photons from the peplogram
without scattering media. Since photons are detected with
discrete shapes through the Poisson random process and this
process can detect not only the object photons but also the
scattering media photons, the visual quality of 2D recon-
structed peplogram may be reduced. Therefore, due to the
lack of object photons, sufficient information may not be pro-
vided under dark scattering media conditions. Our proposed
method utilizes 2D discrete wavelet transform to maintain the
meaningful photons and reduce the scattering media photons
through the multi-level decomposition using the adaptive
threshold value. Fig. 7 shows the concept of our proposed
method.

FIGURE 7. Concept of the proposed method.

Since photon counting image intensity is referred to as
the possibility of the photons occurrence, object photon
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represents higher pixel intensity than noise photons. More-
over, the coefficient of object photons shows the specific
characteristic when decomposed into various decomposition
levels. Therefore, it can distinguish the object photons and
noise photons in the scene. (11) and (12) represent the multi-
level decomposition of 2D reconstructed peplogram [29],
[30], [31], [32].

Aφ(s0, u, v) =
1
√
UV

6U−1
x=0 6

V−1
y=0 C(x, y)φs0,u,v(x, y) (11)

Edψ (s, u, v) =
1
√
UV

6U−1
x=0 6

V−1
y=0 C(x, y)ψ

d
s,u,v(x, y) (12)

Aφ(s0, u, v) is approximation term, and Edψ (s, u, v) is the
detail coefficients in each decomposition level and direction,
respectively. In the first level decomposition, wavelet trans-
form uses the first wavelet function that is appropriate to
detect high-frequency components in the scene. Since object
photons have high intensity values in the image, they can
be detected in the first decomposition. Fig. 8 shows the
coefficient values of 2D reconstructed peplogram according
to the various decomposition levels.

FIGURE 8. Coefficients of 2D reconstructed peplogram in
(a) decomposition level 1, (b) decomposition level 3, and
(c) decomposition level 5.

As the decomposition level increases, the approximation
term is compressed according to the scaling function. Since
the object photon has a relatively higher photon density
compared with the scattering media photon in the scene,
it becomes the low-frequency component as it merges with
adjacent object pixels through the scaling function. On the
other hand, the scattering media photons show a small
peak coefficient value as the decomposition level increases.
To classify and reduce the scattering media photon compo-
nents, our proposed method uses the multi-level decomposi-
tion as following equations.

Wt =
N̂p
Np

(13)

Ps =

Wt/ argmaxEdψ (s, u, v) (0 < Wt < 1) if s = 1
P1
2s−1

if s ≥ 2

(14)

Ts = argmax(Edψ (s, u, v)) ∗ Ps (15)

Wt is the photon ratio of the image. Our proposed method
uses the number of photons Np as much as the number of
image pixels. N̂p is the number of measured photons in the
image. Edψ (s, u, v) represents the coefficient value. Ps is the

threshold ratio and Ts is the coefficient threshold value in each
decomposition level. The coefficient threshold value can be
adjusted according to measured photons in the scene. If the
scene contains a lot of objects and scattering media, many
measured photons can be extracted. On the other hand, the
number of measured photons may be decreased when the
image has a few objects and scattering media in the scene.
In addition, the light condition also influences the number of
measured photons. If the scene contains a lot of measured
photons, both the noise and meaningful photons increase
simultaneously. Therefore, the high photon ratio is needed.
In contrast, if measured photons are insufficient, the low
photon ratio is adequate to visualize the scene. Thus, our
proposed method can remove the scattering media effectively
under various light conditions. Then, the enhanced recon-
structed peplogram can be generated by using inverse wavelet
transform as follows:

Edψ (s, u, v) =

{
0 Edψ (s, u, v) < Ts
Edψ (s, u, v) Edψ (s, u, v) ≥ Ts

(16)

Q(x, y) =
1
√
UV

6U−1
u=0 6

V−1
v=0 Aφ(s0, u, v)φs0,u,v(x, y)

+
1
√
UV

6U−1
u=0 6

V−1
v=0 E

d
ψ (s, u, v)ψ

d
s,u,v(x, y)

(17)

Edψ (s, u, v) represents the filtered coefficients in each
decomposition level. Scattering media coefficients are
removed in each decomposition level using our specific
threshold technique. Then, our proposed method gener-
ates the enhanced reconstructed peplograms through inverse
wavelet transform using the same scaling and wavelet
functions used for decomposition. Finally, visual quality
enhanced peplogram Q(x, y) can be generated. Fig. 9 shows
the coefficient difference between the conventional and pro-
posed method.

FIGURE 9. Coefficient difference. (a) conventional peplography and
(b) proposed method.

The reconstructed peplogram coefficient still contains the
haze components. However, our proposedmethod reduces the
scattering media coefficients without object photon coeffi-
cient loss to enhance the visual quality of the reconstructed
peplogram. Even if our proposed method occurs coeffi-
cient loss, it can recover the object information by utilizing
the other level decomposition coefficients. Since scattering
media photons are removed from the scene, the image con-
trast ratio and visualization can be enhanced. To generate the
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FIGURE 10. Optical experiment setup.

3D information of the object and enhance the visual quality,
integral imaging can be used as follows:

Rw(x, y, zr )

=
1

NpOw(x, y, zr )

K−1∑
k=0

L−1∑
l=0

Qkl(x + k1x, y+ l1y) (18)

where Qkl represents visual quality enhanced reconstructed
peplogram and Rw(x, y, zr ) is 3D reconstructed peplogram.
As a result, our proposed method can visualize 3D object
more accurately compared to conventional peplography even
under various scattering media situations.

Since conventional peplography may detect photons from
the scatteringmedia, it may not effectively generate 3D object
information. Moreover, the image quality may be degraded
due to the photon intensity fluctuations through the Poisson
random process. Therefore, it may not provide accurate 3D
information under the dark scattering media. In contrast, our
proposed method can reduce the noise photons by using 2D
wavelet transform multi-level decomposition. We can utilize
an adequate threshold value in each decomposition level
coefficient and distinguish the object photons while mini-
mizing information loss according to the scattering media
environment.

Finally, our proposed method can effectively visualize
the 3D object under various scattering media conditions.
To prove our proposed method, we implemented two optical
experiments under heavy scattering media with normal light
and dark situations. To represent the performance of our
proposed method, we evaluated the single 2D reconstructed
peplogram and 3D reconstructed peplogram, respectively.
We used various image quality metrics such as corre-
lation, peak signal-to-noise ratio (PSNR), and structural
similarity (SSIM).

IV. OPTICAL EXPERIMENTS AND SETUP
To capture the elemental images (i.e., peplograms) under
the scattering media situation, we used 9(H) × 9(V) cam-
era array. The camera focal length is 50mm and the pitch
between cameras is 2mm. Each elemental image resolution
is 3008(H) × 2000(V). Fig. 10 shows our optical experiment
setup.

We gradually added the milk to the water tank until the
scene seemed to be the heavy scattering media condition.
To assume the various light conditions under the scattering

media, we captured elemental images under different
light conditions. To reduce the noise photons in the pho-
ton counting image by using discrete wavelet transform,
Daubechies wavelet function [30] was used.

A. SCATTERING MEDIA UNDER NORMAL
LIGHT CONDITION
Since we assumed the heavy scattering media situation under
normal light condition, we irradiated sufficient light into the
turbid water tank. Therefore, it is hard to recognize 3D object
in the scene under the scattering media. Fig. 11 shows the
single 2D peplogram under normal light condition.

FIGURE 11. Scattering media under normal light condition. (a) reference
image and (b) 2D peplogram.

We implemented three different scattering media removal
methods to visualize the object in the scene. First, we uti-
lized a machine learning technique (MSBDN-DFF) that can
remove the scattering media. To train the network, we used
the RESIDE dataset [35] that contains hazy and clean image
pairs of indoor and outdoor scenes. To enhance the network
accuracy, mean square error (MSE) was used as a loss func-
tion, and the ADAMwas utilized as an optimizer. The number
of epochs was 100. Other methods are conventional peplog-
raphy and proposed wavelet peplography which measure
6,016,000 photonsNp in each elemental image. Fig. 12 shows
the single 2D reconstructed peplograms.

FIGURE 12. 2D reconstructed peplogram by (a) MSBDN-DFF,
(b) conventional peplography, and (c) proposed wavelet peplography.

MSBDN-DFF may remove scattering media accurately
under light scattering media situation. However, it cannot
visualize the object under heavy scattering media condi-
tion as shown in Fig. 12 (a). Conventional peplography can
extract the object photons from the peplogram as shown in
Fig. 12 (b). However, it contains scattering media photons
that may reduce the image quality. On the other hand, our
proposed method can recognize noise components using 2D
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discrete wavelet transform and filter the noise coefficients
according to the photon ratio Wt as shown in Fig. 12 (c).
Then, it can visualize the object more accurately and enhance
the image contrast ratio. To acquire 3D information through
VCR, we used 2D reconstructed peplograms by conventional
peplography and wavelet peplography as elemental images.
Fig. 13 shows 3D reconstructed peplograms.

FIGURE 13. 3D reconstructed peplogram by (a) conventional peplography
and (b) proposed wavelet peplography.

The computational reconstruction of integral imaging
(i.e., VCR) may reduce the noise through the averaging cal-
culation. Therefore, both results may provide object informa-
tion more accurately compared with single 2D reconstructed
peplogram as shown in Fig. 13. However, the conventional
peplography may degrade the pixel value due to the discrete
photon intensity fluctuations. However, our proposed method
can maintain the object photon intensity smoothly and reduce
the noise photons by using wavelet transform. Therefore,
it can be effective to visualize 3D object under heavy scat-
tering media condition by using VCR. To evaluate the image
quality via various reconstruction depths, we calculated sev-
eral image quality metrics, as shown in Fig. 14.

FIGURE 14. Image quality metrics via various reconstruction depths.
(a) correlation, (b) structural similarity, and (c) peak signal to noise ratio.

Our proposedmethod has better image quality metrics than
the conventional peplography overall, as shown in Fig. 14.
Especially, the correlation result of conventional peplography
as shown in Fig. 14 (a) rapidly decreases from 410mm to
500mm where the two objects are placed. Table 1 shows
the detailed image metrics value in specific depths between
430mm and 470mm.

Since our proposed method maintains the value of the
metrics even at increasing reconstruction depth, it proves
that our proposed method can visualize 3D object under the
heavy scattering media situation more accurately compared
to the conventional method. Moreover, to demonstrate the
performance of our proposed method under photon-starved
conditions, we adjusted the amount of light irradiation and
used the same heavy scattering media condition.

TABLE 1. Image metric differences in specific depths.

B. SCATTERING MEDIA UNDER THE DARK CONDITION
Visualizing the object under the photon-starved heavy scat-
tering media is also challenge. In this experiment, we tried
to extract the photons and visualize 3D object using our
proposed method. We irradiated a few amounts of light into
the turbid water tank to compose the low luminance scattering
media situation. Fig. 15 shows the reference image and dark
peplogram.

FIGURE 15. Scattering media under the dark condition. (a) reference
image and (b) peplogram.

When the light source is insufficient, it is hard to extract
meaningful photons from the scene. Thus, we measured
6,016,000 photons, Np from the scene. Since measured pho-
tons N̂p may be decreased compared with the previous optical
experiment, the low photon weight value Wt was used to
maintain the meaningful photons in the scene. Fig. 16 shows
2D reconstructed peplograms under the dark scattering media
situation.

The MSBDN-DFF as shown in Fig. 16 (a) may not visual-
ize the object under dark condition. The conventional peplog-
raphy as shown in Fig. 16 (b) removed the scattering media
better than MSBDN-DFF. However, the photons from scat-
tering media may veil the object under the photon-starved
heavy scattering media situation. On the other hand, our
proposed method as shown in Fig. 16 (c) segmented the
meaningful photons. It can remove the noise and empha-
size the object photons through the adaptive threshold value
in various wavelet decomposition levels. Finally, we used
VCR to generate 3D object depth information under the dark
situation. Since MSBDN may not visualize objects accu-
rately, we only compare the conventional peplography and
the proposed method results. Fig. 17 shows 3D reconstructed
peplograms, respectively.

Since the conventional peplography may decrease the pho-
ton intensity of 3D reconstructed peplogram by averaging cal-
culation of the reconstruction process as shown in Fig. 17 (a),
it is difficult to visualize 3D object. In contrast, our
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FIGURE 16. Reconstructed peplograms by (a) MSBDN-DFF,
(b) conventional peplography, and (c) proposed wavelet peplography.

FIGURE 17. 3D reconstructed peplograms by (a) conventional
peplography and (b) proposed wavelet peplography.

proposed method preserved the object photons and reduced
the noise photons in the 3D scene as shown in Fig. 17 (b). The
image contrast ratio can be enhanced as noise components are
removed in the scene. Therefore, it is possible to recognize the
word and visualize the shape of 3D objects more accurately
compared to conventional peplography. Fig. 18 shows the
image metric results to demonstrate the feasibility of our
proposed method.

FIGURE 18. Image quality metrics via various reconstruction depths.
(a) correlation, (b) structural similarity, and (c) peak signal-to-noise ratio.

Our proposed method has the best result through three
image quality metrics. Especially, the PSNR and correla-
tion values of our proposed method prove that our proposed
method can visualize 3D object more accurately compared
with conventional peplography. To compare the image qual-
ity metrics in detail, we arrange the value of the metrics
in Table 2.

In conventional peplography, since the photon intensity
may be decreased through the reconstruction process, it is
more challenging to visualize 3D object under the dark sit-
uation. On the other hand, our proposed method can main-
tain the object photons without information loss and remove
the noise photons only in the scene by using the adaptive
coefficient threshold value. It can enhance the image contrast
ratio and visualize 3D object under the dark scattering media
condition more effectively. In addition, since the photon ratio
is defined according to the light condition of the scene, our

TABLE 2. Image metric differences in specific depths.

proposed method can visualize the 3D object in various light
heavy scattering media conditions.

V. CONCLUSION
In this paper, we have proposed amethod that can enhance the
visual quality of 3D image under heavy scattering media con-
ditions. Conventional peplography utilizes photon counting
technique to detect the object photons through the peplogram.
Moreover, it can reconstruct 3D images to enhance the visual
quality through the reconstruction process of integral imag-
ing. However, it may not provide accurate 3D object infor-
mation, because Poisson random process causes the photon
intensity fluctuation andmay detect the scattering media pho-
tons. In addition, it may not deal with various light scattering
media conditions. In contrast, since our proposed method can
reduce the scattering media photons and remain the object
photons simultaneously by using multi-level decomposition,
it can enhance the visual quality of 3D reconstructed peplo-
gram. Moreover, it can adjust the photon ratio to visualize
3D object accurately even under the various light scattering
media situations.We believe that our proposed method can be
used for the autonomous vehicle camera system that requires
accurate 3D object information under heavy scattering media
situations with various light conditions. Moreover, if we can
compose a sufficient pair image dataset with heavy scattering
media and a clear situation, it can utilize machine learning
such as a generative adversarial network to enhance the image
visual quality. Therefore, we will use the machine learning
technique by using wavelet peplography in the future.
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