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Abstract

Many of the methods used for estimating population size from ecological
surveys have limitations on precision, cost, and/or applicability. The CountEm
method was proposed recently for estimating the number of individuals in
large groups from single images. It is simple and efficient, and can be applied
to any species. Here we present a case study by applying CountEm to a real
ecological survey with 278 images of Greater Snow Geese (Anser caerulescens
atlanticus) and Common Eiders (Somateria mollissima) flocks taken from
fixed-wing aircraft in Eastern Canada. First, we evaluated the precision and
counting time of CountEm on single images. Second, we developed and tested
a new multi-image version of the CountEm software. We show that flock sizes
of N > 35,000 can be estimated on single images in ~5 min, from counting a
sample of ~200 birds, yielding relative SEs in the 5%—10% range. Processing
times increased to 10-20 min when simultaneously processing large numbers
of images that contained over half a million birds with only modest increases
in relative SE (range: 10%—15%). Our results suggest that CountEm may be
used to save time and resources if incorporated into monitoring programs that
utilize imagery in the abundance estimates.

KEYWORDS
CountEm, ECA Flocks data set, flock size estimation, geometric sampling, population size
estimation, quadrats

INTRODUCTION methods discussed in this article are applicable to any
species, but the focus of this article is on birds.
Estimating population sizes is of great importance in Bird censuses are frequently based on visual estimation

ecology. Accurate estimates allow population trends to (Hagy et al., 2017; Sebastian-Gonzdlez & Green, 2016;
be detected (Seavy & Reynolds, 2007) and are useful in Zhao et al., 2016; Zimmerman et al., 2012), which often
wildlife management (Zimmerman et al.,, 2012). The become imprecise and biased for groups greater than
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~1000 birds. Several studies have recommended using
high-resolution photographs to achieve better estimates
(Chabot & Bird, 2015; Hodgson et al., 2018; Lyons et al.,
2019). However, for images with more than a few thou-
sand individuals, exhaustive manual counting is laborious
and slow (Hollings et al., 2018). Automated computer
vision algorithms can work in some particular cases on
regular patterns or non-overlapping birds with homoge-
neous backgrounds, see references in table 1 of Chabot
and Francis (2016); however, these algorithms may
perform poorly when these conditions are not met
(Chabot & Francis, 2016; Hollings et al., 2018). In addition,
automated approaches can be expensive and difficult to
develop, especially when different types of objects
(e.g., multiple species, sexes, and age classes) are being
counted simultaneously.

An unbiased method for estimating the number of
discrete objects in photographs (Cruz et al., 2015; hereafter
CountEm) and the corresponding software (countem.
unican.es; Gonzalez-Villa & Cruz, 2020) were recently
developed. The method 1is based on classical,
well-established principles of geometric sampling
(Gundersen, 1977) and has been previously applied in
quantitative microscopy (Cruz-Orive, 2017, Howard &
Reed, 2005). CountEm can be applied to any kind of
discrete object or “particle” of interest (e.g., animals,
humans, and trees) and only requires that all the
particles must be unambiguously identifiable for
manual counting in the specific image. To our knowledge,
CountEm has not been used in ecological studies,
and has only been tested in simulation studies and on
single images (Cruz & Gonzdlez-Villa, 2018; 2021;
Gonzalez-Villa & Cruz, 2020).

Our objectives were as follows: (1) to investigate the
precision and counting time of CountEm when working
with large sets of images (i.e., hundreds) from ecological
studies and (2) to implement and test a new functionality
(hereafter “multi-image” mode) in the CountEm
software, to efficiently estimate the number of birds on
multiple images (e.g., Figure 1a). We addressed both
objectives by applying CountEm to the Eastern Canada
(ECA) Flocks data set (Cruz et al., 2021).

METHODS
The ECA Flocks data set

To test the precision and efficiency of CountEm, we
assembled a data set with images of 278 flocks with over
half a million, manually annotated bird positions of
Greater Snow Geese (GSGO; Anser caerulescens
atlanticus) and Common Eiders (COEI; Somateria

mollissima). Publicly available annotated data sets are
rare, and this data set has been published separately to
provide opportunities to test other estimation approaches
(ECA Flocks data set; Cruz et al., 2021). The ECA Flocks
data set consists of aerial oblique images from 179
COEI and 99 GSGO flocks, which were photographed
from fixed-wing aircraft using different cameras in the
COEI (Bordage et al., 1998) and GSGO surveys (Bechet
et al., 2004). The link to access the full data set, together
with information on the images, such as camera model,
date, and geographic coordinates, can be found in the
metadata of Cruz et al. (2021).

All birds were counted manually with Cell Counter
plugins of ImageJ’s (Schneider et al., 2012), saving their
Cartesian coordinates in pixel units. A total of 630,485
birds (123,806 COEI and 506,098 GSGO) were annotated.
COEI and GSGO flock sizes ranged from 6 to 4154 and
from 43 to 36,241, respectively. The 99 GSGO images and
their corresponding point patterns are shown in
Figure 1a,b. Each black dot of Figure 1b represents what
is considered to be a bird by the observer that performed
the manual count. Note that in some cases, bird overlaps,
occlusions, or low resolution may make birds difficult to
be identified without ambiguity. However, these issues
are infrequent in the ECA Flocks data set. The data
set presents a high variability in the number and spatial
distribution of birds among images allowing us to test the
precision of CountEm in diverse conditions.

CountEm can be used to estimate flocks of any size,
although our early evaluations of the method suggested
there were little benefit to use CountEm for small flocks
(N > 700) as the CountEm and manual counting times
were similar. However, a large portion of the birds
captured in the imagery can occur in small flocks,
and counting all the small flocks manually requires a
significant effort. To apply CountEm to small flocks, we
developed a multi-image mode. To test the performance
of single and multi-image modes, we divided the ECA
Flocks data set into groups based on flock size:

« Large flock group: 106 individual images (47 COEI and
59 GSGO), with flock size N > 700;

« COEI small flock group (hereafter COEIsg): A composite
of 132 COEI images with flock sizes N < 700. The total
number of COEI in this set is N = 36,956;

« COEI group (hereafter COEIg): A composite of all
179 COEI images, with N = 123,806;

« GSGO small flocks group (hereafter GSGOsg): A
composite of 40 GSGO images with flock sizes
N < 700. The total number of Snow Geese in this set is
N = 11,700; and finally,

« GSGO group (hereafter GSGOg): A composite of all
99 GSGO images, with N = 506,098 (see Figure 1a).
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FIGURE 1 Group of the 99 Greater Snow Geese (GSGO) images of the Eastern Canada (ECA) Flocks data set (Cruz et al., 2021). The
images have been packed to minimize the total area with no overlap. A single multi-image CountEm estimation yields N = 527,790 birds in
~20 min. (b) Manually annotated positions of the 506,098 birds in (a). (c) Magnified version of the GSGO image marked in (a). N = 8109
GSGO were manually counted. A grid of quadrats of the type shown in (e), with T = 324 and t = 36 pixels (1, = 100, f = 0.0123), has been
superimposed with a tilt of 30°. (d) Magnified version of the quadrat marked in (c). Only the two marked birds should be counted, applying
the forbidden line counting rule (see text and Gundersen, 1977). (e) A portion of the grid of quadrats proposed in Cruz et al. (2015); Cruz
and Gonzalez-Villa (2018) for systematic sampling. The sampling fraction is ¢/T>.

The CountEm method sampling and manually counting between 100 and 300 parti-

cles. In the present context, we call the relevant group of
The CountEm method is designed to estimate the N particles a flock, where a particle is a planar projection of
number of individual features, elements, or units, generally  a bird or a clearly distinguishable fragment of it on an
called particles in an image (or group of images), N, by = image. The estimation of the entire population including
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birds that are not visible in the images will be addressed in
future work. Our study constitutes a prerequisite to develop
proper sample designs for population surveys.

Under the preceding mathematical definition of flock,
the flock size, N, can be estimated with systematic
sampling using a sampling grid (see Figure le). The grid
is an infinite union of congruent quadrats of side length
t, arranged as a square grid with a fixed distance, T,
between quadrat centers. In practice, the grid will not be
infinite but will encompass the whole flock in the image,
as in Figure 1c. The position of the grid has to be uniform
random with respect to the image.

The grid is determined by parameters {¢t, T}, or by the
alternative pair {f, n,}, where f = t*/T? is the sampling
fraction and n, = B,B,/ T? is the initial number of
quadrats, with B, and B, representing image width and
height, respectively (Cruz & Gonzélez-Villa, 2018). The
latter parameters are the more intuitive, and they
facilitate the choice of an adequate sampling grid that
captures between 100 and 300 birds. The protocol to
choose the parameters is described in Appendix S2.

With the preceding design, an unbiased flock size
estimator, N , is (Cruz et al., 2015):

N="-xQ==. (1)
The sample size, Q, is the number of particles captured
by the sampling grid and is counted manually by the
observer. The error of any estimator can be decomposed
into two sources, bias and variance. Flock size estimator
N has been proven to be unbiased (see appendix S1 in
Cruz et al., 2015). Generally, a different value of N is
obtained every time the estimation is performed, since
the grid position is random. Unbiasedness means that the
mean of all the potential values of N is the true value N.
Because unbiasedness is a mathematical property, it
holds for any image. Since the bias of the estimator is
equal to zero, the only source of error comes from
sampling variance, which is unknown and depends on
the spatial distribution of the birds in the image, and on
the chosen parameter values. However, the true sampling
variance of N for a given image with manually annotated
bird positions can be estimated empirically with
computer simulations (i.e., Monte Carlo resampling).

Therefore, two  different sampling frames
(i.e., sampling settings) (Gémez et al., 2019) were used in
the present paper:

» Real mode: This mode was used to estimate flock size
on single (Figure 1c) or grouped images (Figure 1a)
with the aid of the CountEm software. The sampling
unit (particle) is a projected bird, or a distinguishable

part of it. Sample size Q was counted manually, using
an unbiased counting rule, and we chose
Gundersen’s (1977) forbidden line rule to cope with
edge effects: A particle was counted in a quadrat only
if it has points in common with the quadrat but does
not hit the extended, forbidden line of the quadrat
(in red in Figure 1d). To aid observers, we developed
a guided protocol that has been implemented in the
CountEm software. The protocol provides a simple
procedure for setting the initial grid parameter
values and is described in Appendix S2. After com-
pleting all the steps of the guided protocol, the
CountEm software returns the estimated flock size,
N, obtained with Equation 1, and the predicted coef-
ficient of error CE(N) (C2 predictor described in
Gomez et al., 2019).

 Simulation mode: The goal of simulation mode is to
estimate the true sampling variance of N in order to
assess the precision of the method. This can be
achieved via Monte Carlo resampling on point pat-
terns (see Figure 1b) from manually annotated images
with known flock size. Each particle in the images
was replaced by an associated point, namely the one
given by the corresponding manually annotated posi-
tion, yielding a point pattern. The CountEm software
is not designed for simulation mode analyses, hence
we used the spatstat package (Baddeley et al., 2015) to
generate a sampling grid and to automatically com-
pute the number of point particles captured by the
grid, Q. This setup allowed us to compute M different
flock size estimations {Nl,Nz, N M} from M = 2000
different grid positions, for a given point pattern. The
empirical variance, Vare(N‘), is the variance among
the M values of N. The empirical coefficient of error
(namely the relative SE), CE.(N), is calculated by
dividing the square root of th irical variance by
true flock size, N: CEo(N) = 1/ Var(N)/N. The empir-
ical values should be close to their respective true
values if the number of replications, M, is large
enough. Grid parameter selection was performed by
simulating the guided protocol used in real mode. A
more precise description of these calculations is given
in Appendix S1.

To estimate the total number of birds in a large set of
images (sets of about 100 images), we stitched all images
together, resulting in just one big composite image,
which was estimated in a single CountEm run. This
approach should be more efficient than iteratively
analyzing each image individually. This multi-image
analysis required modifications to the CountEm
software, since the fraction of empty area increased due
to the gaps between images. We used the rectangle-packer
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1.1.0 Python library in order to minimize these gaps
(see Figure 1la). We empirically checked that the
number of non-empty quadrats should be n > 50 when
analyzing more than 10 images at the same time.
Therefore, we defined a multi-image CountEm mode,
modifying the software in Step 2 of the protocol, setting
no = 500, and increasing the required number of
non-empty quadrats to 50 in Step 6 (see Appendix S2).
We have implemented this multi-image mode in the
new CountEm 1.5.0 software. The protocol is a result
of our experience applying the CountEm method to
the ECA Flocks data set.

RESULTS

Real mode precision and counting time
assessment

We compared the CountEm real mode counting time,
H(N)countem, With the exhaustive manual counting time
(i.e., annotating flocks with ImageJ), {N)manua, for a
subset of 18 GSGO images with flocks ranging in
size from 200 to 20,000, which is a representative
range. Counting time varied between the two methods,
with the time for the manual counting method
significantly increasing with N: t(N)manuar ~ 0.042N%%,
while the CountEm method was independent of
N: {N)countEm ~ 5.1 min (Figure 2). The central proce-
ssing unit (CPU) time (i.e., the time needed by the soft-
ware to generate the grid and process the images) was
negligible for single images.

We used CountEm to perform a real mode flock size
estimation of the five subsets described in the Methods,
namely four multi-image subsets (COElsg, COEIg,
GSGOsg, and GSGOg) and 106 single images with
N > 700. The single-image root mean squared error was
9.7% and 9.4% for the 47 COEI and 59 GSGO images with
N > 700, respectively. These values are consistent with
the simulation mode analysis shown below. Detailed
single-image results can be accessed on Zenodo: https://
doi.org/10.5281/zenodo.5819210.

The multi-image results are shown in Table 1. Note
that the four groups of images were packed and stitched
together as shown in Figure 1, and analyzed with one
multi-image CountEm run. CPU time was dependent on
the number of images analyzed, and ranged from a few
seconds for GSGOsg (40 images) to about 17 min for
COEIg (179 images). The relative deviation obtained with
one real mode estimation, 100 x (N —N)/N, ranged from
4% to 11%. These values are consistent with the “true”
relative standard deviation computed below in simula-
tion mode.
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X t(N CountEm L,
[¢)
s
100 | o
o’
» )
2 s
=1 i P
£ 50 0
1S
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g .
[} = 00
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200 1000 5000 20,000

True population size, N

FIGURE 2
counting time in minutes versus true flock size for 18 images of
Greater Snow Goose flocks. Note that the axes are logarithmic.

Manual (black circles) and CountEm (red crosses)

Real mode-simulation mode
consistency test

Real mode and simulation mode flock size estimations
are plotted in Figure 3 to evaluate their consistency.
Figure 3a shows the consistency of the variance within a
single run of each mode. The agreement holds when
comparing real mode data with 100 simulated estima-
tions (Figure 3b). Moreover, a visual verification of the
unbiasedness of the guided protocol is provided, since
the mean of the simulated (crosses) and real (circles
and triangles) estimations lies close to the corresponding
true value (line). This test validated the use of simulation
mode to assess the precision of the CountEm method.

Simulation mode precision assessment

We calculated the “true” relative SE, that is, the empirical
coefficient of error, CE.(N), for single images and the
four multi-image groups described above, in order to
evaluate the precision of the method. The results for the
106 single flock images and the four multi-image sets
(marked in green) are shown in Figure 4. Eighty percent
of the coefficients of error are below 10%, including the
large GSGO group shown in Figure la. The predicted

coefficient of error CE(N) obtained by applying
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TABLE 1 Multi-image results.
Group name N Deviation % No. images CPU time (s) Q Counting time (s)
COEISga 33,004 —3952 10.7 132 390 223 959
COEIgb 135,415 11,609 9.3 179 1040 371 1329
GSGOsg” 10,422 —1278 10.9 40 26 216 666
GSGOgh 527,790 21,692 4.3 99 135 219 1067

Abbreviations: COEI, Common Eiders; CPU, central processing unit; GSGO, Greater Snow Geese.
#COEI identifies images of Common Eider, and GSGO, images of Greater Snow Goose. Letters “sg” identify a group of images of all the small flocks (<700

birds per image).

PLetters “g” identify a group of all the images in the data set, without limit in flock size.
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FIGURE 3 (a) Flock size estimations obtained with CountEm

versus true flock size. Real mode data obtained from manually
applying CountEm are marked in red, whereas one simulated
estimation per image, obtained in simulation mode, is shown in
black. The data marked in green correspond to the four
multi-image groups. (b) Same as (a) with 100 simulated estimations
plotted in gray. The black line represents the 1:1 line of equality.
COEI, Common Eiders; GSGO, Greater Snow Geese.
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FIGURE 4 Empirical coefficient of error (CE) obtained with
2000 simulated measurements of the guided protocol in simulation
mode versus true flock size. The data marked in green correspond
to the four multi-image groups. COEI, Common Eiders; GSGO,
Greater Snow Geese.

CountEm to these images is plotted against the empirical

~

coefficient of error CE.(N) in Figure 5. The outlier with
CE(N)>25% corresponds to image COEI_175 (Cruz
et al., 2021), where the spatial distribution of the birds

was particularly inhomogeneous.

DISCUSSION

The CountEm software has been empirically tested with
a large set of images of flocks of birds and extended to
multi-image analysis. The ECA Flocks data set allowed
us to check the method across a wide range of flock sizes
and spatial patterns. We evaluated the precision of
CountEm in real mode (i.e., manually using the software
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FIGURE S5
applying CountEm versus empirical coefficient of error (CE) (as in
Figure 4). The data marked in green correspond to the four
multi-image groups. The black line represents the 1:1 line of
equality. COEI, Common Eiders; GSGO, Greater Snow Geese.

Estimated relative SE obtained from manually

with the images) and in simulation mode (i.e., via Monte
Carlo resampling of the point patterns that are obtained
from the annotated positions). The typical relative SEs
from CountEm on single images were in the 5%—10%
range, with an average counting time of ~5 min per
image. The relative errors for large multi-image groups
ranged between 10% and 15%, with counting times
between 10 and 20 min. These results are convincing in
terms of counting time and precision.

Visual inspection revealed that images with particularly
inhomogeneous bird distributions lead to higher errors
due to a lower number of non-empty quadrats. Some
adjustments can be made depending on the spatial
homogeneity of the data set, the desired coefficient of error,
and counting time. For instance, inhomogeneous data
would be required to increase the sample size, Q, and the
number of non-empty quadrats, n. This can be achieved by
manually modifying the initial number of quadrats, ny,
and sampling fraction, f, in the standard mode of the
CountEm software. However, exact statements regarding
the estimation variance under systematic sampling are
generally not available.

Multi-image counting time depends on image quality,
sample size, Q, and the number of images. A high
number of images increase the difficulty of parameter

selection and evaluation. For instance, GSGOg and
GSGOsg have very similar image quality and sample size.
However, the number of images and also counting time
is larger for GSGOg. Low image quality for some images
in COEIsg could be the cause of the higher counting
time. However, the multi-image mode allows a reduction
in total processing time (CPU time + counting time) by a
factor of ~20 with respect to iteratively analyzing single
images in a data set of about 100 images.

Based on our results, CountEm is an attractive option
for estimating the numbers of birds in flocks from
imagery. Alternative methods exist, namely manual
counting and computer vision methods. However,
manual counts are time-consuming (Figure 2) and false
detections and a relatively low accuracy across large
spatial extents are currently limitations for automated
methods (Hollings et al., 2018). Imagery collections such
as ECA Flocks that contain large numbers of oblique
aerial photos are challenging for computer vision
methods, since these are sensitive to large lighting
variations, varying resolutions, superimposed birds, and
inhomogeneous backgrounds. Furthermore, they need
specific remodeling if there is more than one cohort of
interest in the image (e.g., multiple species, age, or sex).
CountEm is not affected by these issues (see Figure 4),
and it can be applied to any kind of particles, with the
only requirement that all the particles in the flock should
be unambiguously identifiable for counting. This require-
ment can be met when the flock sits in an open area
(e.g., on water), which is often the case in the ECA
Flocks data set. In addition, the CountEm software
allows saving the results and the images, with the
quadrats facilitating a fast verification of the result. In
addition, the software provides an error estimation. As
expected from results obtained with human crowd
images (Gémez et al., 2019), the predicted error often
underestimates the empirical, “true” value.

When making manual counts from images, observers
can use other features in the image to make decisions on
what is being counted. For example, manual counts are
often used to estimate the numbers of breeding pairs
from large colonies of nesting birds where the counting
unit is not a single bird but occupied nesting sites (see
Chardine et al., 2013). These conditions are challenging
for computer vision methods as the counting unit
(occupied nest sites) may consist of one or two birds close
together within the breeding area of colonies, and birds
that occur outside the nesting areas must be discarded.
CountEm retains the human observer, and with the new
multi-image mode, allows fast estimation for large
groups of images, which is more efficient than iteratively
analyzing each image individually. For instance, the
GSGO group with 99 images (Figure 1a) had a total of
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N = 506,098 manually counted birds and was estimated
with CountEm, N =527,790, in 20 min with ~200 bird
counts and relative SE of ~10%. This performance is
made possible because CountEm exploits the strength of
systematic sampling. CountEm can be applied in any
situation where large aggregations of animals can be
captured in imagery. Its applications allow for estimating
colony size, and CountEm can be particularly useful
when an unbiased estimate of animals is needed rapidly
to respond to an environmental emergency such as an oil
spill (see Robertson et al., 2014).
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