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A B S T R A C T   

Mixing TiO2 with Mo2C has recently been proposed to improve the photocatalytic conversion of CO2 to methanol 
under visible light irradiation, although further efforts are still needed to enhance process performance. In this 
context, the use of p-type semiconductors (i.e., Cu2O) in co-doping strategies can enhance not only the redis-
tribution of electric charges due to its narrowing bandgap, but also the selectivity of the reaction towards 
methanol. This work focuses on the development of a continuous visible light-driven CO2 photoconversion to 
methanol process in an optofluidic microreactor using Cu2O/Mo2C/TiO2 heterostructures. A significant 
improvement in process performance can be seen under visible light with the heterostructures containing 4 wt% 
of Cu2O. Superior methanol production rates (36.3 µmol•g− 1•h− 1) with an apparent quantum yield = 0.64% and 
a reaction selectivity = 0.93 are reached, in comparison with the results achieved at Cu2O-free Mo2C/TiO2 
photocatalytic surfaces (11.8 µmol•g− 1•h− 1, 0.21% and 0.92, respectively). This can be adscribed to the role of 
Cu2O in the selectivity of the reaction towards methanol. The synergetic effect between Cu2O, Mo2C, and TiO2 in 
the heterostructures may also provoke a more efficient charge separation and transfer, while enhancing the 
visible light absorption properties of the material and its photocatalytic stability. The maximum methanol rate 
outperforms most of the values previously reported in slurry batch reactors and evidences the possibility of 
enhancing the continuous visible light-driven CO2-to-methanol photoconversion process with efficient metal co- 
doping approaches in optofluidic microreactors.   

1. Introduction 

CO2 utilisation represents an interesting strategy for the generation 
of value-added products from sustabinable perspectives [1–3]. Among 
the different obtainable products, the production of alcohols such as 
methanol (CH3OH) is widely studied owing to its importance in several 
applications, namely as a chemical storage carrier for hydrogen or as a 
platform product in gasoline and biodiesel [4–7]. Several CO2 conver-
sion approaches including thermochemical, biological, electrochemical, 
photoelectrochemical, and photochemical methods can be considered to 
meet the target [8,9]. For example, the electrochemical conversion of 
CO2 to CH3OH has been widely proposed to overcome the extreme 
operating conditions (temperature and pressure) of conventional ther-
mocatalytic procedures, while storing excess of energy from renewable 

and intermittent green sources in the form of chemical bonds [10–12]. 
The photochemical approach using solar irradiation, by contrast, rep-
resents a more direct way of transforming CO2 into CH3OH at mild 
conditions without additional energy inputs, thus mimicking the natural 
photosynthesis process used by plants [13–15]. Therefore, this CO2 
conversion approach presents potential to close the carbon cycle while 
generating several value-added products simultaneously under the sun. 
Nevertheless, this technology still requires the development of cheap, 
active, efficient, stable, and environmentally-friendly photocatalysts for 
the activation of CO2 molecule and its further light-driven trans-
formation towards valuable chemicals [13,16,17]. 

Titanium dioxide (TiO2) is the most applied semi-conductor so far in 
solar-fuel production strategies, and particularly for the generation of 
CH3OH, due to its photo-stability, wide availability, and low-cost 
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properties, among others [18]. The photocatalytic activity and effi-
ciency of TiO2 under sunlight exposure is, however, limited by its wide 
bandgap (> 3 eV), which makes this material active mainly in the UV 
light region [19]. Regrettably, the sunlight spectrum is composed only of 
4% UV light (< 380 nm) but ~44% of visible light (380–700 nm). Be-
sides, TiO2 also exhibits poor electron-hole pair separation (rapid 
recombination) and low adsorption capacity for CO2, thus leading to 
additional photocatalytic efficiency limitations for CO2 converison [20, 
21]. As a consequence, the research community is focused on the design 
and development of efficient procedures capable of enhancing the ac-
tivity and performance of TiO2 under visible light. In this respect, the use 
of Mo2C-based photocatalysts under visible light has been reported 
before, either for hydrogen production [22,23] or CO2 conversion [20, 
24]. These materials possess improved catalytic properties than alter-
native noble metals in terms of stability, selectivity, and opposition to-
wards poisoning [24]. Thus, the potential benefits of incorporating 
metal carbides in CO2 photoreduction to improve the performance of 
bare TiO2 under visible light exposure are well-founded. In particular, 
mixing TiO2 with synthesised Mo2C nanoparticles was recently found to 
enhance the visible light-driven photocatalytic conversion of CO2 into 
CH3OH over bare TiO2 (CH3OH production rate: 11.8 vs. 0.11 
µmol⋅g− 1⋅h− 1) as a function of the mass percentage of Mo2C incorpo-
rated in the blends [20]. This finding was explained by an improved 
interfacial conductivity, an efficient separation of electron-hole pairs, as 
well as a decrease in the bandgap energy of the photocatalytic material 
compared to bare TiO2. However, CH3OH production rates, reaction 
selectivity, and photocatalytic efficiencies were still far from those 
values achieved under UV irradiation. Hence, additional metal 
co-doping strategies can be applied to enhance the performance of 
Mo2C/TiO2 blends, decreasing the bandgap energy of the material and 
increasing the presence of actives sites for CO2 photoactivation and 
conversion. Previous reports show how copper (Cu)-derived catalysts (e. 
g., oxide-derived Cu) can be effective and selective for the conversion of 
CO2 to CH3OH in both electrochemical [4,7,25–27] and photochemical 
strategies [13,28–30]. In the latter approach, the combination of TiO2 
and Cu-derived materials involves favourable reaction mechanisms for 
the selective production of CH3OH, thereby facilitating the overall 
photoreduction performance [13,31]. In particular, copper (I) oxide 
(Cu2O) is a relatively abundant and cheap p-type semiconductor with 
specific optical and light absorption properties, a narrow bandgap en-
ergy (2–2.2 eV), and suitable conduction and valence band positions 
[32–36]. Thus, the incorporation of Cu2O particles in heterostructures 
can reduce the recombination of photogenerated charges, improve their 
redistribution in the photocatalytic surface, and enhance the selectivity 
of the reaction towards methanol formation [13,31]. 

Last but not least, not only active, stable, and selective photocatalytic 
materials are required to move forward into the implementation of CO2 
photoreduction technologies, but also the development of efficient 
photoreactor configurations with improved surface-area-to-volume 
ratio to optimise the exposure of photocatalytic active sites to light 
irradiation and facilitate the photoconversion of CO2 towards CH3OH 
simultaneously [37–39]. In this respect, the use of optofluidic devices 
(as a synergy of microfluidics and optics) has been proposed to provide 
uniform light distribution, flow control, enhanced mass transfer, and 
large surface-area-to-volume ratios [13,40]. Among the available opto-
fluidic microreactors, planar configurations seem to achieve superior 
performance in photocatalytic processes, owing to a larger photon 
receiving area [20,31,41]. 

Thus, in this work we propose the development of a planar opto-
fluidic microreactor with improved characteristics compared to com-
mon slurry batch reactors, for enhanced continuous CO2 photoreduction 
to CH3OH using visible light active Cu2O/Mo2C/TiO2 heterostructures. 
The results in the visible region are compared to those previously 
reached at Cu2O-free Mo2C (4 wt%)/TiO2 blends in the same photo-
reactor configuration to demonstrate the potential applicability of the 
prepared samples, thereby providing novel insights into the 

development of efficient, stable, and selective systems for the contin-
uous production of CH3OH from CO2 photoreduction. 

2. Material and methods 

2.1. Synthesis and characterisation of Cu2O/Mo2C/TiO2 photocatalysts 

The Mo2C nanoparticles are synthesised by a slightly modified 
standard carbothermal method that has been described in detail else-
where [20,42]. In brief, a molybdenum oxide precursor (MoO3) is firstly 
dissolved in ammonium hydroxide (NH4OH) solution under agitation at 
room temperature, namely “Sample 1”. Subsequently, a suspension of 
carbon black in ethanol (CH3CH2OH) is prepared by sonication, namely 
“Sample 2”. Then, “Sample 1” is added (drop by drop) into “Sample 2” at 
room temperature under stirring conditions. A dry powder is produced 
after increasing the temperature up to 60 ºC. Finally, the obtained dry 
powder is grounded in a mortar and afterwards introduced in a tube 
furnace under H2/N2 (5 v.%) atmosphere from room temperature to 800 
ºC. 

Thereafter, the nanometric synthesised Mo2C particles are physically 
mixed with TiO2 (P25 ≥ 99.5%, Sigma-Aldrich) to produce Mo2C (4 wt 
%)/TiO2 blends. This Mo2C weight percent is selected for an enhanced 
CH3OH production and reaction selectivity [20]. Finally, different 
amounts (2–10 wt%) of commercial Cu2O particles (particle size < 5 µm, 
97% purity, Sigma-Aldrich) are added to the synthesised Mo2C/TiO2 
samples to obtain different Cu2O/Mo2C (4 wt%)/TiO2 composites, as 
listed in Table 1. 

Scanning electron microscopy (SEM, equipped with Energy Disper-
sive X-ray microanalysis (EDX, Oxford X-Max 50)) and high resolution 
transmission electron microscopy (HR-TEM) measurements are acquired 
using a Zeiss Evo 15 microscope and a Jeol JEM 2100 microscope, 
respectively, to evaluate the size, morphology, and elemental compo-
sition of the prepared photocatalysts. Besides, X-ray diffraction (XRD) 
spectra are measured by an X′Pert PRO X-ray diffractometer (PAN-
aytical) to determine the crystal orientation of the photocatalytic 
structures. Thus, a CuKα radiation (λ = 1.5405 Å) is used in a range of 2 
Theta data from 20 to 100 degrees (scan rate = 0.04 degrees⋅s− 1). The 
different crystalline phases are then identified by comparing the 
experimental response to the Joint Committee on Powder Diffraction 
Standards (JCPDS). Moreover, Raman patterns are acquired in a SPELEC 
RAMAN (Metrohm DropSens) apparatus with a green laser (λ = 532 nm) 
that operated in the 100–3200 cm− 1 range. On the other hand, diffuse 
reflectance spectroscopy (DRS) analyses are carried out in a spectro-
photometer (Agilent Technologies Cary 5000) to determine the diffuse 
reflectance in the UV–VIS–NIR region. Furthermore, N2 adsorp-
tion–desorption isotherms are measured at − 196 ◦C using a Micro-
meritics ASAP 2020, and specific BET areas are calculated from the 
Brunauer, Emmett and Teller equation. Finally, an Edinburgh In-
struments FLSP 920 double grating fluorometer equipped with a Xe 
lamp, Hamamatsu R928 and H10330C-75-C3 photomultiplier tubes 
allowed for photoluminescence (emission and excitation) analyses to 
study the optical properties of different photocatalytic samples (powder 
or deposited onto porous carbon paper) in both wet and dry conditions. 
Spectra are corrected for intensity factors. 

Table 1 
Composition and nomenclature of the prepared photocatalysts.  

Photocatalytic 
material 

Cu2O content 
(wt%) 

Nomenclature 

Cu2O-free 
Mo2C (4 wt%)/TiO2  

0 Mo2C4 

Cu2O/Mo2C (4 wt%)/TiO2  2 Cu2Mo2C4  
4 Cu4Mo2C4  
6 Cu6Mo2C4  
8 Cu8Mo2C4  

10 Cu10Mo2C4  
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2.2. Manufacturing of photoactive surfaces 

The photoactive light-responsive surfaces are prepared by following 
an airbrushing procedure. In a first step, a photocatalytic ink containing 
the heterostructures is prepared using a Nafion® dispersion (5 wt%, Alfa 
Aesar) as a binder, and isopropanol (IPA, Sigma-Aldrich) as a vehicle, 
with a 70/30 (photocatalyst/Nafion) mass ratio and a 3 wt% of total 
solids (photocatalyst + Nafion). Secondly, after sonication, the resulting 
ink is airbrushed onto a porous carbon paper (TGP-H60, Toray Inc.) 
support covered by a paper mask with a hole of 1 cm2. This Toray paper 
support is selected due to its notable gas transfer properties, thus facil-
itating the transport of CO2 and diffusion of products [7]. Nafion may 
enhance the local proton activity in the vicinity of the photocatalyst 
surface, promoting proton-coupled multielectron transfer reactions, 
stabilizing intermediates, and inhibiting the re-oxidation of CO2 reduc-
tion products [43]. The airbrushing process is carried out at 100 ºC to 
ensure the complete evaporation of IPA during the accumulation of 
photocatalytic layers. In this study, a photocatalytic loading (L) of 2 
mg⋅cm− 2 (experimentally determined by weighing) is selected based on 
previous findings [13]. The light-responsive surfaces are then dried at 
ambient pressure and temperature for 24 h and rinsed with deionised 
water before use. It can be confirmed based on a previous report [4,13] 
that the photocatalyst is well bonded to the substrate after the air-
brushing process, since the weight loss of the photoactive surface was 
less than 10% after 4 h of continuous visible-light driven CO2 photore-
duction to methanol in the same optofluidic microreactor. 

2.3. Performance of Cu2O/Mo2C/TiO2 heterostructures in an optofluidic 
microreactor 

A home-made designed planar optofluidic microreactor (APRIA 
Systems S.L.) with a reaction microchamber of 1 cm2 and 75 µL is 
applied to evaluate the performance of the prepared heterostructures in 
continuous mode under ambient conditions. A detailed representation of 
both the micro-optofluidic photoreactor characteristics and the lab-scale 
experimental setup can be found in the supporting information. Briefly, 
the light-responsive surfaces are sandwiched between two highly 
transparent polymethylmethacrylate (PMMA, Altuglas-Arkema) plates 
and a stainless-steel plate on the top. The photocatalytic material is 
located in the centre of the reaction chamber of the PMMA plate, and 
irradiated with visible (450 nm) or 1200 mW UV (365 nm) LED lights 
with a light intensity of E = 5 mW⋅cm− 2, measured by a radiometer 
(Photoradiometer Delta OHM). The experiments are carried out in 
continuous mode for 120 min, even though the stability of the photo-
catalysts has also been evaluated in the long-term (7 h). An infrared 
thermometer controls the temperature during the operation. A CO2- 
saturated 0.5 M KHCO3 (Panreac >97%) aqueous solution is pumped 
(peristaltic pump, Miniplus 3 Gilson) to the liquid microchamber at a 
flow rate of 50 µL⋅min− 1. A collection vessel is placed at the micro-
reactor outlet to collect samples every 30 min, which are finally ana-
lysed (by duplicate) in a headspace gas chromatograph (GCMS-QP2010 
Ultra Shimadzu) equipped with a flame ionization detector (FID). Be-
sides, the concentration of HCOO- is measured with Ion Chromatog-
raphy (Dionex ICS 1100). 

The performance of the continuous CO2 photoreduction process is 
evaluated by: i) production rate (r, in µmol⋅g− 1⋅h− 1), defined as the 
concentration of product per gram of photocatalyst and time; ii) selec-
tivity (S), which corresponds to the ratio between the production rate for 
CH3OH and the cumulative product rates (r for CH3OH + r for HCOO-); 
and iv) apparent quantum yield (AQY), defined in Eq. (1) as follows: 

AQY(%) =
ne

np
× 100 (1)  

where ne represents the rate of electrons transferred towards CH3OH, 
defined as the number of molecules evolved (mol) multiplied by the 

number of reacted electrons (6 e- for CH3OH) and the Avogadrós number 
(mol− 1). On the contrary, np is the rate of incident photons on the sur-
face, calculated according to the following equation: 

np =
E⋅A⋅t⋅λ

h⋅C
(2)  

where E is the light intensity (W⋅m− 2), A represents the irradiation area 
(m2), t is the reaction time (s), λ corresponds to the wavelength peak (m), 
h is the Planck’s constant (J⋅s) and C represents the speed of light 
(m⋅s− 1), respectively. 

3. Results and discussion 

3.1. Characterisation of Cu2O/Mo2C/TiO2 photocatalysts 

Fig. 1 shows the SEM images of individual catalysts (Fig. 1a and 
Fig. 1b: spherical Mo2C and Cu2O particles, respectively) and several 
Cu2O/Mo2C/TiO2 photocatalytic samples, namely Cu2Mo2C4 and 
Cu4Mo2C4 (Fig. 1c and Fig. 1d, respectively). The particle size of the 
bipyramid Cu2O (< 5 µm) [7] and pseudospherical TiO2-P25 (21 nm) 
particles [44,45] is given by the commercial manufacturer of the ma-
terials (Sigma-Aldrich). Besides, the average particle size of the syn-
thesised Mo2C particles was determined to be < 20 nm in a previous 
study [46], where additional details about their pseudospherical 
morphology, crystalline phases, binding energy, and their electro-
chemical activity can be found. The structure and morphology of 
Mo2C/TiO2 blends have also been described in detail in a previous 
report [20]. In the present study, the different selected SEM images of 
Cu2Mo2C4 and Cu4Mo2C4 (please see all SEM images in the supporting 
information), reveal in Fig. 1c and Fig. 1d, respectively, that the distri-
bution of the photocatalysts is homogeneous after the physical incor-
poration of Cu2O into Mo2C (4 wt%)/TiO2 blends, in agreement with the 
results achieved in previous reports of our group for Mo2C/TiO2 and 
Cu/TiO2-based surfaces prepared by the same airbrushing method [13, 
20]. Additionally, Fig. 2 shows the HR-TEM images for Cu4Mo2C4 and 
Cu10Mo2C4 heterostructures, where apart from a homogeneous distri-
bution, an efficient connection between the three components can be 
seen. The use of ternary composites may provoke an effective interfacial 
charge transfer among Cu2O, Mo2C, and TiO2 for an enhanced 

Fig. 1. SEM images for: a) Mo2C, b) Cu2O, c) Cu2Mo2C4, and d) 
Cu4Mo2C4 composites. 
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photocatalytic activity [47]. 
Fig. 3 displays, as an example, the corresponding elemental mapping 

of Cu4Mo2C4. The colour sorting used clearly shows the existence of Cu, 
O and C elements, together with Ti and Mo, which evidences the suc-
cessful synthesis of Cu2O/Mo2C/TiO2 composites. Further details about 
the elemental composition of the different prepared photocatalytic 
materials can be found in the supporting information. 

Moreover, Table 2 shows the specific BET area values of the heter-
ostructures compared to Mo2C4 (Cu2O-free), pure Cu2O, and pure Mo2C 
particles. The averaged surface area of TiO2 nanoparticles is determined 
by the commercial manufacturer (50 m2⋅g− 1). The heterostructures 
present surface areas ranging from 45.5 to 55.2 m2⋅g− 1, which are 
significantly higher than those values (experimentally measured) for 
Cu2O (1.8 m2⋅g− 1), Mo2C (0.7 m2⋅g− 1), and Mo2C4 particles 
(30.1 m2⋅g− 1). As expected, Cu2O/Mo2C/TiO2 surface areas are similar 
to that of TiO2, since it is the predominant component in the hetero-
structures. Larger photocatalytic surface areas might lead to an 
increased number of available actives sites for receiving photon and 
electron-hole pairs formation. 

Fig. 4 exhibits XRD patterns for different prepared heterostructures 
as a function of Cu2O content. With respect to TiO2 presence, both rutile 
and anatase crystalline phases are identified in the five prepared pho-
tocatalysts. These specific TiO2 phases have been previously reported to 
be essential for reaching maximal photocatalytic activity and perfor-
mance in TiO2-based materials [48,49]. The corresponding diffraction 
peaks of anatase (JCPDS card no. 21–1272) as a function of 2 Theta 
(from lower to higher degrees) can be seen in Fig. 3, namely (101), 
(103), (004), (112), (200), (105), (211), (204), (116), (220), and (215) 
crystal facets, respectively. TiO2 rutile (JCPDS card no. 21–1276) dis-
plays, on the other hand, the following crystal planes: (110), (101), 
(111), (211), (220), (200), (301), and (112), as 2 Theta increases. 

Besides, the visible Mo2C diffraction peaks (please see yellow spectra) 
reveal (100), (002), (101), (102), (110), (103), (112), and (201) crystal 
orientations according to JCPDS card no. 01–1188. It should be noted 
that the response for Mo2C is clearly lower than that for TiO2 (pre-
dominant in the heterostructures), in agreement with a previous study at 
Mo2C/TiO2 blends [20]. The diffraction patterns that correspond to 
Mo2C can be seen in detail in a previous report [46]. Finally, the pres-
ence of Cu2O is demonstrated by comparing the obtained spectra with 
JCPDS card no. 05–0667 reference. In this respect, (110), (111), (200), 
(211), (220), (311), and (222) crystal orientations can be clearly 
observed. It is important to highlight here that several specific diffrac-
tion peaks become more visible as the content of Cu2O increases in the 
heterostructures, such as (111), (200), and (220) facets, observed at 2 
Theta = 36.4◦, 42.3◦ and 61.4◦, respectively. Thus, these three specific 
crystal planes are predominant in the prepared photoactive hetero-
structures. Among them, the Cu2O (111) structure has recently exhibited 
superior stability and selectivity towards alcohol production from CO2 

Fig. 2. HR-TEM images for: a) Cu4Mo2C4 and b) Cu10Mo2C4.  

Fig. 3. Elemental mapping of Cu4Mo2C4.  

Table 2 
BET specific surface area of Cu2O, Mo2C and different 
Cu2O/Mo2C/TiO2 heterostructures.  

(Photo)catalyst BET surface area 
(m2⋅g− 1) 

Cu2O  1.8 
Mo2C  0.7 
Mo2C4  30.1 
Cu2Mo2C4  47.0 
Cu4Mo2C4  55.2 
Cu6Mo2C4  48.3 
Cu8Mo2C4  52.1 
Cu10Mo2C4  45.5  
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conversion in comparison with (200) and (220) crystal planes, due to the 
promotion of electron migration and the presence of oxygen-vacancy 
defects that facilitate CO2 activation [50]. 

On the other hand, the Debye–Scherrer equation is used to estimate 
the crystallite size of Mo2C and TiO2. Average metal crystallite sizes of 
20.35 nm and 30.79 nm are calculated from the largest peaks at 25.2◦

(TiO2: anatase phase) and at 34.3◦ (Mo2C), respectively. Due to the 
nanometric size of Mo2C and TiO2, similar particle size values are ob-
tained from the diffractogram analysis in comparison with SEM mea-
surements and previous TEM findings. However, this approach is not 

applicable to Cu2O powder, since the Debye–Scherrer equation relates 
the crystallite size of sub-micrometer partices and it cannot be therefore 
considered to powders larger than 0.1 µm [46]. 

The Raman spectra of Cu2O (black line) and Cu2O/Mo2C/TiO2 
composites are depicted in Fig. 5 (left). Firstly, the response of Cu2O 
reveals a very low intensity signal since it is important to note that the 
intensity is increased by ten in the figure. In this respect, Raman peaks at 
151.5 Γ(1)

15 (LO), 207.5 Γ−
12and 623 Γ− (2)

15 cm− 1 can be discerned [51]. As 
was described in a previous report, Raman spectra of Mo2C are not 
visible at the prepared Cu2O/Mo2C/TiO2 samples due to the small size 
(shell) of molymbdenun oxide species (2–3 nm) presented in the Mo2C 
(core), which seem to be below the detection limit of the Raman in-
strument [20]. On the other hand, Raman peaks associated to the 
anatase phase of TiO2 are facile observed at 140 cm− 1: Eg; 191 cm− 1: Eg; 
390.5 cm− 1: B1 g; 513.5 cm− 1: (B1 g + A1 g); and 631.5 cm− 1: Eg. The 
peak at 441 cm− 1 represents the weakest one and it is associated with 
the Eg mode of the rutile phase of TiO2 [20], as observed in XRD analyses 
(Fig. 4). Overall, the whole Raman intensity decreases with the Cu2O 
content in the photocatalytic samples. 

Besides, most of Raman signals reveal insignificant variations in their 
relative intensities, full width at half maximum (FWHM), areas and 
positions. However, two of the signals (i.e., 513.5 and 631.5 cm− 1) 
develop Raman shift as a function of Cu2O content in the composites 
(please see right panel of Fig. 5). A zoomed part of the shifted peaks is 
included in the supporting information for the sake of clarity. This 
finding can be explained by changes in the sample composition, defects 
and interactions caused by Cu2O content, specially at high Cu2O load-
ings (particle agglomeration), as previously observed in BET measure-
ments (decreased surface area as the content of Cu2O increases) and SEM 
images. This is in accordance with previous literature, where the lower 
performances of (photo)catalytic surfaces at high loadings during CO2 
conversion have been widely related to particle agglomeration [7,13, 
52–54]. The position of the signal at 631.5 cm− 1 is similar for 
Cu2Mo2C4 and Cu4Mo2C4 samples but shifts towards lower wave-
numbers when the content of Cu2O in the heterostructures increases, 
which denotes that this signal represents a convolution between TiO2 
and Cu2O signals, due to the opaque characteristics of Cu2O [55]. Thus, 

Fig. 4. XRD patterns of different Cu2O/Mo2C (4 wt%)/TiO2 samples.  

Fig. 5. Raman spectra of Cu2O/Mo2C/TiO2 composites in comparison with Cu2O (left panel) and shift in the Eg (red line) and B1 g + A1 g (black line) band position 
with Cu2O content (right panel). 
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this Raman analysis might indicate an effective formation of Cu2O/-
Mo2C/TiO2 heterostructures for Cu4Mo2C4, as a promising well-bonded 
photocatalytic material for CO2 photoconversion to CH3OH. On the 
other hand, the signal at 513.5 cm− 1 reveals a strong Raman shift to-
wards lower wavenumbers from Cu2Mo2C4 to Cu4Mo2C4, and then the 
signal shifts towards positive wavenumber at higher Cu2O loadings. The 
Raman shifts for both signals at Cu2O contents higher than 4 wt% 
(specular signals) can be initially related with the Raman signal of Cu2O 
at 623 cm− 1, which increases with Cu2O loading and disturbs the 
response of anatase signals, as demonstrated in XRD characterisation 
(Fig. 4). However, the strong red shift developed by the Cu4Mo2C4 
sample can be ascribed to a tensile strain of both vibrational modes (B1 g 
+ A1 g) caused by the effect of Cu2O content in the heterostructures. 

The UV-Visible absorption analyses displayed in Fig. 6a show the 
absorbance response of the photocatalysts in both visible and UV re-
gions. A higher magnification analysis (Fig. 6b) has been made in order 
to compare the responses in the visible region as a function of Cu2O 
content. As observed, the absorption can be enhanced in the visible 
spectra as increases the amount of Cu2O in the samples up to 8 wt%, 
which can be explained by the presence of Cu2O (a p-type semiconductor 
active under visible-light) [47,56,57]. Further increases in Cu2O content 
(10 wt%) involved a reduction in absorption, as can be observed by 
comparing the visible spectra of Cu8Mo2C4 (blue line) and Cu10Mo2C4 
(black line) samples. This tendency might be explained by increased 
shadow effects and particle agglomeration at higher amounts of Cu2O, as 
confirmed by BET results (Table 2) and Raman spectra (Fig. 5), as well as 
by an enlarged material thickness that involves the formation of unde-
sirable boundary layers. 

Moreover, the estimated optical bandgap energies of the synthesised 
photocatalytic samples are calculated using the Kubelka-Munk method; 
in other words, the [F(reflectance, R)⋅hv]2 vs. photon energy (hv) plot is 
depicted, as can be seen in Fig. 7. The optical bandgap energies of the 
photoactive Cu2O/Mo2C/TiO2 heterostructures (ranging from 3.08 to 
3.15 eV) are lower than those results achieved for Cu2O-free Mo2C/TiO2 
blends (3.22–3.36 eV) and bare TiO2 (3.48 eV) [20], which can be 
initially assigned to the presence of Cu2O (narrow bandgap of 2.03 eV) 
[58–60] in the photoactive heterostructures. This is in agreement with 
previous literature [61], which shows that the addition of Mo2C in 
heterostructures leads to a decrease in their bandgap with respect to the 
bandgap value of the main component (P25 in this case). Decreasing the 
optical bandgap energy of the photocatalyst should lead to an improved 
process performance since the narrowing in the bandgap would favour 
the absorption of solar energy in the visible region and the excitation of 
electrons from the valence band to the conduction band simultaneously 
[34]. Although an ideal photocatalyst should function in the visible 
region with an optical bandgap of less than 3 eV [62], the literature 
shows how the use of heterostructures with an optical bandgap near 
3 eV can be highly active under visible light [63–65]. In this regard, the 

proposed heterojunctions display comparable bandgap values with 
respect to previous visible light-active photocatalysts reported. 

With respect to the optical properties, Cu2O shows an almost negli-
gible photoluminescence (please see the supporting information) upon 
UV or visible excitation, in agreement with previous studies for such a 
pure copper compound at ambient temperature [66]. TiO2-P25 also 
displays a very reduced intragap luminescence upon valence band 
excitation (please see the supporting information) according to the 
literature, caused by blue-emitting traps [67,68]. As a result, the pho-
toluminescence discussion is therefore focused on the optical properties 
of Mo2C. 

While Cu2O is not luminescent at the excitation wavelengths, pho-
toluminescence spectra of the Mo2C powder (dry conditions) show the 
occurrence of an emission/excitation in the energy region comprised 
within the TiO2 gap (Fig. 8). The 430 nm photoluminescence and 
355 nm excitation peaks (the latter corresponding to a pseudo-gap in the 
bulk Mo2C band structure [69,70]) do appear closely to the UV and 
visible wavelengths used in the continuous photocatalytic conversion of 
CO2 to CH3OH. The occurrence of states in this energy range implies that 
the electronic structure of Mo2C particles synthesized by a carbothermal 
method yields beneficial optical properties to be applied in light-driven 
CO2 conversion approaches, especially under visible light irradiation. 
This excitation and luminescence can also contribute in harvesting the 
visible/near UV range, as it occurs mostly below the TiO2 bandgap. 

Moreover, the Mo2C nanoparticles’ absorption spectrum in the 
visible region is also studied under an aqueous environment in Mo2C 
powder and Mo2C films (2 mg⋅cm− 2) supported onto toray carbon paper 
(please see the supporting information). Interestingly, we observe a 
decreased relative reflectivity of the wet samples in the visible spectrum. 

Fig. 6. a) UV-Visible absorption spectra of the heterostructures compared to Cu2O; b) higher magnification of composite absorption responses in the visible region.  

Fig. 7. Bandgap energy plot (Kubelka-Munk function) of Cu2O/Mo2C/TiO2 
samples and Cu2O particles. 
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Increased optical absorption in the low energy range reflects either 
polarization or doping effects on the semimetal nanoparticles in water 
[71,72]. Enhanced photoexcitation and mobility of carriers favor the 
photocatalytic activity of the heterostructure. 

3.2. Continuous light-driven CO2 photoconversion in an optofluidic 
microreactor 

The use of Cu2O/Mo2C/TiO2 photoactive surfaces in the presence of 
CO2 led to the formation of CH3OH (main product) and HCOO- (smaller 
quantities). The production of CH3OH is expected, taken into consider-
ation previous findings on the use of Cu2O [4,73–75], Mo2C/TiO2 [20], 
and Cu/TiO2 [13,76] materials in both electrocatalytic and photo-
catalytic CO2 reduction approaches. Moreover, HCOO- can be an inter-
mediate in the CO2 conversion pathway towards CH3OH, as also 
demonstrated before [5,77]. The formation of ethanol is not observed in 
any experiment, which can be related to the presence of Cu2O (111) 
structure (selective for CH3OH formation [50]) in the photocatalysts, as 
shown by XRD results (Fig. 4). Only traces of CO and CH4 (AQY <
0.05%) as gas-phase reduction products are observed, in accordance 
with previous results using the same optofluidic microreactor and 
Cu/TiO2 [13] and Mo2C/TiO2 [20] photoactive surfaces under visible 
light illumination. 

Fig. 9 displays the performance of the prepared photoactive surfaces 
after 120 min of continuous operation under visible (a) and UV light (b) 
illumination. The results reached in a previous study at Cu2O-free Mo2C 
(4 wt%)/TiO2 blends are also included for comparison (same operating 
conditions and experimental setup) [20]. It is worth mentioning that the 
production of CH3OH per gram of photocatalyst and time can be 
remarkably improved when incorporating Cu2O in the heterostructures. 
In fact, superior r for CH3OH are achieved for the five different prepared 
photoactive surfaces under visible light irradiation, in comparison with 
the performance of Cu2O-free Mo2C/TiO2 blends (see Fig. 9a). This does 
demonstrate the positive synergetic-induced properties of the photo-
catalytic structures investigated, where improved visible light absorp-
tion properties (Fig. 6 and Fig. 7), photoexcitation de-localization 
(Fig. 8), and decreased recombination rates of photogenerated charges 
may provoke an enhanced CO2 photoreduction selectivity towards 
CH3OH. The results also show that yields for CH3OH can be tuned by 
controlling the amount of Cu2O in the photoactive heterostructures. All 
in all, a maximum visible light-driven CH3OH production (together with 
an enhanced AQY) is achieved at Cu4Mo2C4 (4 wt% of Cu2O), which 
represents a three-fold superior value than that reached at Cu2O-free 
Mo2C/TiO2 under the same conditions (r = 36.3 vs. 11.8 µmol⋅g− 1⋅h− 1; 
AQY = 0.64 vs. 0.21%). The main explanations for this enhanced per-
formance are an improved specific surface area of Cu-based sites in this 
photoactive heterostructure (Table 2), as well as improved optical and 
light absorption properties (Fig. 6, Fig. 7 and Fig. 8). Additionally, the 
presence of Cu2O and Mo2C in the photocatalysts may boost the visible 
light activity compared to that of bare TiO2, which was unable to pro-
duce CH3OH from CO2 photoreduction under visible light illumination 
[13], due to a narrow optical bandgap energy of the Cu2O/Mo2C/TiO2 
materials, thus favouring the absorption of solar energy in the visible 
region and the excitation of electrons from the valence band to the 
conduction band simultaneously [34]. The superior photocatalytic 
performance of the prepared heterostructures might be attributed to a 
better separation and transfer of photogenerated charge carriers. The 
use of Cu2O/Mo2C/TiO2 heterostructures may allow an improved sep-
aration rate of electron-hole pairs for an enhanced photoefficiency to-
wards CH3OH generation due to the favourable electronic band 
structure. Based on previous comprehensive mechanistic studies re-
ported in the literature [78–80] it can be hypothesised that, at the 
operating wavelengths, conduction band (CB)-electrons of Cu2O can be 
firstly injected into the CB of TiO2 active sites, which is possible since the 
CB of Cu2O is higher than the CB of TiO2-P25 (CB potentials of − 1.1 V 
vs. NHE [78] and − 0.36 V vs. NHE [79], respectively). Then, the excited 
electrons in TiO2 can be transferred to the active surface of Mo2C, whose 
CB is lower than that of TiO2 (CB Mo2C = − 0.3 V vs. NHE [79]) while 
holes in Mo2C band structure may migrate to the VB of Cu2O. 

Fig. 8. Photoluminiscence (excitation and emmision) spectra of pure Mo2C 
powder. The emission spectrum is taken at the corresponding 355 nm excitation 
wavelength and the photoexcitation spectrum is taken at 430 nm emission. The 
black arrows indicate the wavelengths employed for the CO2 photoreduction 
experiments (365 nm: UV; 450 nm: visible light irradiation). 

Fig. 9. Yields for methanol (CH3OH) and formate (HCOO-) in the continuous photoconversion of CO2 at different Cu2O/Mo2C/TiO2 heterostructures under a) visible 
and b) UV light irradiation. 
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Unfortunately, further increases in Cu2O content (from 6 to 10 wt%) 
hinder the production of CH3OH, which can be associated with shielding 
effects together with reduced specific BET surface area and particle 
agglomeration (Raman analyses) that lead to reduced photocatalytic 
activity. The synergetic effects between Cu2O, Mo2C, and TiO2 in the 
visible spectrum also led to improved AQY for CH3OH (please see the 
supporting information). This enhanced behavior is in accordance with 
the photoluminiscence analyses of Mo2C, which leads to an improved 
electron-hole extraction and photocatalytic activity of the prepared 
heterostructures that favours the generation of CH3OH from visible 
light-driven CO2 conversion. The same tendency can be observed under 
UV light illumination (Fig. 9b), but with less remarkable changes with 
Cu2O content. 

In accordance with Fig. 9, the results displayed in Fig. 10 confirm the 
strong effect of Cu2O content on reaction selectivity (S) to produce 
CH3OH over HCOO- at the different heterostructures manufactured. As 
can be seen, Cu2O contents higher than 2 wt% seems to be beneficial for 
selective CH3OH generation from CO2 photoconversion under both, 
visible and UV light illumination, with values of S ranging from 0.91 to 
0.97. However, S appear to be hindered at a Cu2O content of 2 wt%, 
especially under visible light conditions, which can be mainly associated 
with a lower visible light absorption (Fig. 6), an increased optical 
bandgap energy (Fig. 7), and specific reactive sites that lead to an 
enhanced HCOO- formation at Cu2Mo2C4 (Fig. 9a). In any case, the 
production rate for CH3OH using this heterostructure is clearly superior 
with respect to that reached with the Cu2O-free surface under visible 
light irradiation (Fig. 9a), which highlights that the amount of Cu2O 
active sites in the photocatalytic surface has a crucial role on the 
selectivity of the reaction (and so on reaction mechanisms) towards 
CH3OH formation from CO2 conversion, in agreement with previous 
studies [4,7,33,34,81–83]. Thus, dedicated and comprehensive mecha-
nistic studies are required to provide further insights into the develop-
ment of more efficient photocatalysts under visible light irradiation. 

Overall, the best performance under visible light illumination for the 
continuous production of CH3OH can be reached at a Cu2O content of 
4 wt%, namely Cu4Mo2C4 photocatalyst (r = 36.3 µmol⋅g− 1⋅h− 1; AQY 
= 0.64%; S = 0.93). Finally, Fig. 11 compares the optimum r for CH3OH 
(µmol⋅g− 1⋅h− 1) obtained in the present work with those values reached 
in different visible light-driven CO2-to-CH3OH studies using aqueous 
solutions in the last years [13,20,81,84–102], although different pho-
tocatalytic materials, electrolytes, experimental conditions, and photo-
reactor design/configurations are applied (please see Table S3 in the 
supporting information) [36]. Besides, superior CH3OH rates have been 
reported elsewhere, but applying higher light irradiation intensities (i.e., 
1200 W⋅m− 2) [76] or non-environmentally friendly organic solvents 

such as dimethylformamide, triethylamine, acetonitrile, and trietha-
nolamine [36,103–116] that are able to facilitate the formation of CH2 
in the reaction mechanism towards CH3OH generation from CO2 con-
version, although most of them are considered harmful and hazardous to 
human health. 

Interestingly, the maximum CH3OH production rate reached at the 
Cu2O/Mo2C/TiO2 heterostructures developed in the present study under 
visible light irradiation (red dot in Fig. 11: 36.3 µmol⋅g− 1⋅h− 1) is com-
parable and mostly superior to those values achieved from visible light- 
driven CO2-to-CH3OH photoreduction systems in aqueous solution. In 
particular, the results are more than three-fold improved in comparison 
with those observed at Cu2O-free Mo2C/TiO2 blends [20] (green dot in 
Fig. 11: 11.8 µmol⋅g− 1⋅h− 1) under the same conditions, which reveals 
the enhanced photocatalytic activity of the prepared Cu2O-based het-
erostructures in the presence of visible light for CO2 conversion to 
CH3OH. Moreover, a similar performance was achieved in our group 
when using Cu nanoparticles synthesised in ionic liquid and embedded 
in TiO2 (Cu/TiO2) for CO2-to-CH3OH photoconversion 
(r = 34.4 µmol⋅g− 1⋅h− 1) [13] with the same operating conditions and 
experimental setup. It should be noted, however, that the reaction 
selectivity towards CH3OH production is superior when employing the 
Cu2O/Mo2C/TiO2 heterostructures developed in this work (S = 0.93) 
with respect to the values achieved at Cu/TiO2 (S ranging from 0.45 to 
0.84 as a function of Cu content), displaying also an stable CH3OH yield 
after 7 h of operation in contrast to Cu/TiO2-based surfaces that deac-
tivate with time (please see the supporting information). This may 
further prove the beneficial synergetic effect between Cu2O, Mo2C and 
TiO2 in the hererostructures for stable visible ligt-driven CO2 
conversion. 

Although there are also studies with improved CH3OH rates (>
100 µmol⋅g− 1⋅h− 1), it is worth mentioning here the high light intensity 
applied (e.g., 100 mW⋅cm-2) in comparison to that of the present study 
(5 mW⋅cm− 2), which might be partially responsible of such excellent 
performance. For instance, the application of a light intensity of 100 mW 
(for 2 h) at Ni@NiO/InTaO4-N photocatalysts led to an improved 
CH3OH formation (160 µmol⋅g− 1⋅h− 1) in water media [96]. Similarly, 
Iqbal and collaborators prepared p-n-type ZnFe2O4/TiO2 heterojunctions 
with marked improvements in CH3OH yield under visible light illumi-
nation (100 mW⋅cm− 2; r = 138.9 µmol⋅g− 1⋅h− 1) in a KOH/NaSO3/-
Na2S/water-based solvent [102]. Moreover, if we make a comparison 
between our achievements and those CH3OH rates reported at Cu2O--
based photoactive materials, similar process performances can be found. 
For example, a similar formation of CH3OH per gram of photocatalyst 
and time (r = 38.2 µmol⋅g− 1⋅h− 1) was reached in 2011 at nanocrystallite 
Cu2O/SiC materials [90]. The behavior of the developed Cu2O/-
Mo2C/TiO2 heterostructures is, by contrast, clearly superior than that of 
Cu2O/carbon nanoparticles [98], at which a CH3OH production of 
14.1 µmol⋅g− 1⋅h− 1 was reported in 2018. The marked improvement 
might be explained by better visible light absorption properties of the 
materials in the presence of Mo2C. Furthermore, the use of carbon 
quantum dots (CQDs) in Cu2O/CQDs heterostructures have revealed in 
2015 the possibility of improving the material stability and its visible 
light absorption characteristics, due to the excellent photoinduced 
electron transfer and optical properties of CQDs, respectively [97]. Thus, 
the incorporation of CQDs in the photocatalytic structures represents the 
main reason of an enhanced CH3OH rate (r = 55.7 µmol⋅g− 1⋅h− 1). 

Last but not least, it is worth mentioning that all previous systems 
compared with this work (Fig. 11 and supporting information) do not 
operate in continuous mode, except for those contributions from our 
group [13,20]. In other words, the photocatalytic material is usually 
suspended in the reaction media (slurry batch reactors) and the obtained 
products must be therefore separated from the photocatalyst, which 
involves additional process costs and makes the process less suitable for 
the practical application of the CO2-to-CH3OH photocatalytic reaction. 
This fact consequently denotes the relevance of the present study, where 
the photocatalyst is deposited onto a porous carbon support (not 

Fig. 10. Effect of Cu2O content on reaction selectivity for CH3OH in the pho-
toactive surfaces under visible light (grey) and UV (orange) irradiation. 
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suspended in aqueous solution) in a planar optofluidic microreactor that 
operates in continuous mode for visible light-driven CO2 conversion to 
CH3OH. 

4. Conclusions 

In this work, we investigate a continuous CO2 photoreduction to 
methanol process under visible light in a planar optofluidic microreactor 
(with more potential for real applications in comparison with conven-
tional batch approaches) using novel Cu2O/Mo2C/TiO2 hetero-
structures. The photoactive surfaces are prepared by airbrushing 
photocatalytic inks with different Cu2O loadings over porous carbon 
paper supports. The characterisation results show that the light- 
responsive materials present improved optical and absorption proper-
ties in the visible region and decreased optical bandgap energies in 
comparison with bare TiO2-P25 and Mo2C/TiO2 blends, due to the p-type 
semiconductor properties of Cu2O. Besides, the specific (111) Cu2O 
crystal facets found in the prepared heterostructures seem to facilitate 
CO2 activation (oxygen-vacancy defects) and electron migration to-
wards an improved selective methanol generation. This leads to an 
enhanced continuous photoconversion of CO2 to methanol with 
Cu4Mo2C4 (r = 36.3 µmol•g− 1•h− 1; AQY = 0.64%; S = 0.93) in com-
parison with the results achieved at Cu2O-free Mo2C4 surfaces 
(r = 11.8 µmol•g− 1•h− 1; AQY = 0.21%; S = 0.92). Larger Cu2O loadings 
(> 4 wt%), however, seem to hinder the photocatalytic activity of the 
heterostructures due to particle agglomeration. The system remains 
stable for methanol production after 7 h of continuous operation in the 
optofluidic microreactor. The maximum methanol rate achieved in this 
study outperforms most of the results reported in visible light-driven 
CO2-to-methanol photoreduction systems using batch photoreactors 
(suspended catalysts in aqueous and non-aqueous solvents), explained 
not only by the microreactor applied but also the efficient hetero-
structures. Hence, the continuous visible light-driven CO2 conversion 
using optofludic microreactors and Cu2O/Mo2C/TiO2 heterostructures 
constitutes a preferred system from a practical application viewpoint. 
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