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The emergence of collective synchrony from an incoherent state is a phenomenon essentially described by

the Kuramoto model. This canonical model was derived perturbatively, by applying phase reduction to an

ensemble of heterogeneous, globally coupled Stuart-Landau oscillators. This derivation neglects nonlinearities

in the coupling constant. We show here that a comprehensive analysis requires extending the Kuramoto model

up to quadratic order. This ‘enlarged Kuramoto model’ comprises three-body (nonpairwise) interactions, which

induce strikingly complex phenomenology at certain parameter values. As the coupling is increased, a secondary

instability renders the synchronized state unstable, and subsequent bifurcations lead to collective chaos. An

efficient numerical study of the thermodynamic limit, valid for Gaussian heterogeneity, is carried out by means

of a Fourier-Hermite decomposition of the oscillator density.

Collective synchronization is a phenomenon in which an

ensemble of heterogeneous, self-sustained oscillatory units

(commonly known as oscillators) spontaneously entrain their

rhythms. This is a pervasive phenomenon observed in nat-

ural systems and man-made devices, covering a wide range

of spatio-temporal scales, from cell aggregates to swarms of

fireflies [1, 2].

Seeking to understand the onset of collective synchroniza-

tion, Winfree invented a model consisting of globally coupled

oscillatory units with one degree of freedom (phase oscilla-

tors) [3, 4]. Following this scheme, Kuramoto found an ana-

lytically tractable model, which captures the onset of collec-

tive synchronization from an incoherent state [5, 6]. Due to

its simplicity, the Kuramoto model and its generalization with

phase-lagged coupling —the so-called Kuramoto-Sakaguchi

model after Ref. [7]—, have been intensely studied, with a

vast number of extensions and applications in several fields

[8, 9].

The Kuramoto(-Sakaguchi) model is often introduced as

above, i.e. as a mere mathematical refinement of the Winfree

model. However, this is only partly true, since Kuramoto rig-

orously derived the model bearing his name. In particular,

he applied phase reduction to an ensemble of weakly coupled

Stuart-Landau oscillators [5, 6]. The Stuart-Landau oscillator

is a relevant natural choice, as it represents a generic limit-

cycle attractor close to a Hopf bifurcation.

Kuramoto’s perturbative phase-reduction approach is valid

for weak coupling. Specifically, oscillator heterogeneity and

interactions appear at zeroth and linear orders in the cou-

pling constant, respectively. These considerations explain

why the quadratic order was neglected in the original Ku-

ramoto model. Nevertheless, in certain circumstances, go-

ing beyond the first (or linear) order may be required. In-

deed, the description of some experiments with lattices of

optomechanical [10] and nanoelectromechanical [11] oscilla-

tors rely on second-order phase reductions. The analysis of

the corresponding second-order phase-reduced models has re-

mained, however, rather incomplete. The reason for this is the

nonpairwise interactions appearing at quadratic order. From

this perspective, the original setup with heterogeneous, dif-

fusively coupled Stuart-Landau oscillators appears to be the

ideal testbed model for investigating second-order phase re-

duction to the fullest extent possible. So far, only the case of

identical oscillators has been analyzed [12].

Recently, nonpairwise (also called ‘higher-order’) interac-

tions are attracting growing attention in several fields, such as

neuroscience, ecology, and social systems (see Refs. [13, 14]

and references therein). In this spirit, several works have con-

sidered populations of phase oscillators with nonpairwise in-

teractions from the outset. Simplifying ad-hoc assumptions,

such as absent pairwise coupling [15–18] and/or particularly

convenient nonpairwise interactions [18–21] (e.g. admitting

the Ott-Antonsen ansatz [22]), are adopted seeking analytical

tractability.

In this Letter we extend the Kuramoto model up to second

order in the coupling constant ǫ. In this “enlarged” Kuramoto

model the new terms of order ǫ2 comprise two different three-

body (nonpairwise) interactions. Strikingly, their combined

action triggers a secondary instability in which standard col-

lective synchronization destabilizes. This is the precursor of

a sequence of instabilities giving rise to a state of collective

chaos. We efficiently investigate the thermodynamic limit of

the model by means of a Fourier-Hermite decomposition of

the oscillator density. This scheme appeared some years ago

in a theoretical study [23], but it is numerically implemented

here for the first time (adopting an appropriate closure).

The starting point of our work is a heterogeneous popula-

tion of N ≫ 1 Stuart-Landau oscillators with global diffusive

coupling:

Ȧj = (1+iσωj)Aj−(1+ic2)|Aj |2Aj+ǫ(1+ic1)
(

A−Aj

)

.
(1)

Here Aj ≡ rje
iφj is a complex variable, and index j runs

from 1 to N . The ωj’s are drawn from a unit-variance normal

distribution g(ω). The mean of g(ω) is selected to be 0, by

going to a rotating frame if necessary. Therefore, each indi-

vidual Stuart-Landau oscillator possesses a natural frequency

equal to σωj − c2, where c2 is the noniscochronicity parame-

ter. Parameter σ > 0 is included to account for the frequency

dispersion. Concerning the coupling, it is diffusive through

the mean field A = 1

N

∑N
i=1

Ai. Parameter ǫ > 0 controls

the coupling strength, and c1 modulates its reactivity. We are

exclusively interested in the thermodynamic limit (N → ∞)



2

0 500 1000 1500 2000
time

0.0

0.2

0.4
| A

|

a)
ε=0.07 ε=0.115

ε=0.078

ε=0.09

-2 0 2
ǫj

-π

0

π

φ
j

b)
-2 0 2

ǫj

c)
-2 0 2

ǫj

d)
-2 0 2

ǫj

e)

0.07 0.08 0.09 0.10 0.11 0.12 0.13
ε

0

0.4

0.8

| A
|

UIS PS Unsteady (T2) Unsteady
(complex)

PS

f)

FIG. 1. Dynamics of the population of 20000 Stuart-Landau oscil-

lators, Eq. (1), for different values of ǫ with c1 = −0.4, c2 = 3,

and σ = 10−3. (a) Time series of the mean field amplitude |A| for

ǫ = 0.07, 0.078, 0.09, and 0.115. |A| ≃ 0, |A| ≃ const. > 0,

and periodic |A(t)| correspond to UIS, PS, and quasiperiodic global

attractor, respectively. (b,c,d,e) Snapshots of the angular variables

φj for each of the four ǫ values chosen in (a). Only a subset of 4000

oscillators are shown for clarity. (f) Local maxima and minima of

|A| as constant ǫ is increased by steps of size 1.35 × 10−3.

of the model. In this work we select σ = 10−3 and c2 = 3
(a standard value in the literature, see e.g. [24]), leaving c1
and ǫ as control parameters. The effect of varying c2 and σ is

discussed at the end of this Letter.

System (1) displays a plethora of complex states. In partic-

ular, collective chaos already emerges at moderate and large

coupling under simplifying assumptions such as, homogene-

ity (σ = 0) [24, 25] and vanishing reactivity and shear

(c1 = c2 = 0) [26]. We focus here on the weak coupling

regime, in which the oscillators remain close to their origi-

nal limit cycles at rj = 1 and a phase description becomes

possible. Two states are generically expected for small ǫ.
On the one hand, there is the uniform incoherent state (UIS),

corresponding to a vanishing mean field A (in the thermody-

namic limit), with the oscillators angles φj uniformly scat-

tered, see Figs. 1(a) and 1(b) for particular parameter values

and ǫ = 0.07. On the other hand, typically, as ǫ exceeds a

certain threshold UIS becomes unstable and a state of collec-

tive partial synchrony (PS) emerges. In this configuration, a

macroscopic proportion of the oscillators becomes entrained

to a common frequency 〈φ̇j∈S〉 = Ω and the mean field ro-

tates uniformly with constant amplitude: |A| = const. In

a finite population, as in Fig. 1(c), entrained oscillators may

not be observed, since they belong to one of the tails of g(ω).
Drifting oscillators alone cause A to depart from zero. Sur-

prisingly, our numerical simulations indicate that the dynam-

ics may become of a different kind as the coupling is further

increased, while still remaining small. As shown in Fig. 1(a)

for ǫ = 0.09, the collective dynamics incorporates a new fre-

quency, and |A(t)| oscillates periodically, i.e. the attractor is

a two-dimensional torus or T2 (disregarding finite-size fluctu-

ations). Figure 1(d) shows the corresponding snapshot of the

angles φj for ǫ = 0.09. We may see that part of the popu-

lation forms a two-cluster state that evolves in time such that

the phase differences are time-dependent but bounded. As far

as we know, this unsteady configuration with time-dependent

clusters has not been observed before in Eq. (1). It is very

much alike the Bellerophon state coined in [27] for ensem-

bles of phase oscillators. For still larger ǫ, |A| exhibits even

more complex oscillations, as can be seen setting ǫ = 0.115
in Fig. 1(a). In Fig. 1(f) we represent the local maxima and

minima of |A(t)| as a function of ǫ. The low-frequency mod-

ulation sets in at ǫ ≈ 0.109. As a result of the instability,

a three-frequency quasiperiodic collective motion is, in prin-

ciple, expected. Still, an additional transition to weak col-

lective chaos cannot be ruled out. At some parameter values

(e.g. ǫ = 0.14, c1 = −0.415), see the Supplemental Material,

the largest Lyapunov exponent does not decay to zero with the

system size, what is a clear indication of collective chaos. (For

the value ǫ = 0.115 taken in Fig. 1 the result is inconclusive.)

To put the previous observations in a wider framework we

numerically determined where the unsteady behavior occurs

in the c1 − ǫ plane. The phase diagram in Fig. 2(a) shows

where qualitatively different dynamics are observed. The sta-

bility boundary of UIS was analytically computed following

the approach in [28], see the Supplemental Material. Remark-

ably, numerical simulations of Eq. (1) reveal that PS is unsta-

ble inside the dark shaded region in Fig. 2(a), i.e. unsteady

|A(t)| spontaneously sets in. In addition, numerical contin-

uation discloses an adjacent narrow band of coexistence be-

tween unsteady dynamics and PS. The orange line in Fig. 2(a)

divides the unsteady region into two parts: the lower one with

T2 collective motion, and the upper one with more complex

oscillations. We emphasize that determining the exact nature

of the complex unsteady states is an arduous work, which hin-

ders a more detailed phase diagram.

At this point, we resort to phase reduction in order to bet-

ter understand the nature and organization of the unsteady

collective states. For weak coupling phase reduction allows

us to describe the system solely in terms of phase variables

θj = φj − c2 ln rj [2, 6]. Following [12] we write down

the second-order phase reduction [29] of (1), or ‘enlarged Ku-

ramoto model’:
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FIG. 2. Phase diagrams of model (1) for c2 = 3 and σ = 10−3, as well as its first- and second-order phase reductions. (a) Model (1): all

boundaries were obtained from numerical simulations with a population of N = 20000 Stuart-Landau oscillators, save the boundary of UIS

(obtained analytically). In the dark shaded region UIS and PS are both unstable, and |A| varies with time. In the light shaded region PS coexists

with an unsteady state. (b) Kuramoto-Sakaguchi model obtained from Eq. (2) discarding quadratic terms in ǫ. (c) Enlarged Kuramoto model,

Eq. (2); all boundaries, except the UIS-PS line, were determined using Eq. (5). The right boundary of the bistability region (in purple color)

indicates where the attractor with unsteady dynamics abruptly disappears, indistinctively through a saddle-node bifurcation of tori, a boundary

crisis, or any other bifurcation.

θ̇j = σωj + ǫη R sin(Ψ − θj + α) +
ǫ2η2

4

[

R sin(Ψ − θj + β)−R2 sin(2Ψ− 2θj + β) +RQ sin(Φ−Ψ− θj)
]

, (2)

where three new constants, depending on c1 and c2, are de-

fined: η ≡
√

(1 + c22)(1 + c21); and the phase lags α ≡
arg[1 + c1c2 + (c1 − c2)i], and β ≡ arg(1 − c21 + 2c1i).
For simplicity, we have chosen a reference frame with vanish-

ing central frequency. Interactions involve two mean fields,

Z1 ≡ ReiΨ and Z2 ≡ QeiΦ, which are the first two elements

of an infinite set of Kuramoto-Daido order parameters [30]:

Zk ≡ N−1
∑N

j=1
eikθj . Equation (2) includes nonpairwise

interactions, which are inherent to higher-order phase reduc-

tion, even if the coupling in the original system (1) is pairwise

and linear [12, 31, 32]. In particular, three-body interactions

are conveyed by the last two terms [33] and are comparatively

weak (of order ǫ2), as usual in physics [34]. This is not the

case of most previous studies on coupled phase oscillators

[15–17, 19, 20, 35, 36], but see [11, 12, 32, 37].

We start the analysis of Eq. (2) noticing that if we neglect

the O(ǫ2) terms, then we recover the Kuramoto-Sakaguchi

model with coupling constant ǫη. For N → ∞, the phase

diagram resulting from this O(ǫ) approximation is shown in

Fig. 2(b). The only attracting configurations are UIS and PS.

The boundary of UIS can be calculated following [7]. It di-

verges at c1 = −c−1
2 = −1/3, corresponding to α = −π/2.

When comparing Figs. 2(a) and 2(b), it is manifest that first-

order phase reduction does not provide a faithful description

of system (1) in the left part of the phase diagram.

We now consider Eq. (2) in full. Concerning the linear sta-

bility of UIS (R = Q = 0), only the first term of order ǫ2 is

relevant. It may be added to the linear term to recalculate the

stability boundary [7], see the Supplemental Material. The

result is shown as a solid black line in Fig. 2(c). Now the

boundary of UIS exhibits a knee at c1 ≈ −1/3, in qualita-

tive agreement with Fig. 2(a). Analyzing the stability of PS is

a much harder problem. Through a numerical self-consistent

approach [7] we tracked the branch of PS emanating from in-

coherence. However, this does not allow us to determine its

stability. Moreover, the direct numerical integration of Eq. (2)

is not more efficient than simulating Eq. (1): The number of

degrees of freedom is reduced by a factor 2, but at the cost of

including computationally expensive trigonometric functions.

In order to exploit the dimensionality reduction achieved

in Eq. (2), an alternative strategy is required. We resort to

a moments system introduced almost a decade ago by Chiba

in his theoretical study of the Kuramoto model [23]. Cru-

cially, working with a set of moments avoids finite-size fluc-

tuations and the concomitant microscopic (phase) chaos [38].

We start defining the density ρ(θ|ω, t), such that ρ(θ|ω, t)dθ
is the fraction of oscillators with phases between θ and θ+ dθ
and frequency ω at time t. Now, we write the Fourier-Hermite

decomposition of ρ:

ρ(θ|ω, t) = 1

2π

∞
∑

k=−∞

∞
∑

m=0

Pm
k (t)e−ikθhm(ω), (3)

where hm(x) = Hem(x)/
√
m! are normalized (probabilist’s)

Hermite polynomials:
∫∞
−∞ hm(ω)hn(ω)g(ω)dω = δmn.

The Fourier-Hermite coefficients Pm
k are obtained inverting
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Eq. (3):

Pm
k (t) =

∫ 2π

0

dθeikθ
∫ ∞

−∞
dωhm(ω)g(ω)ρ(θ|ω, t). (4)

These Fourier-Hermite modes extend the Kuramoto-Daido or-

der parameters to the space of the natural frequencies. Specif-

ically, P 0
k = Zk (in the N → ∞ limit). The density ρ obeys

the continuity equation ∂tρ = −∂θ(ρ θ̇). Inserting the expan-

sion (3), using the recurrence relation ωhm =
√
mhm−1 +√

m+ 1hm+1 [39], and redefiningPm
k → (−i)mPm

k for con-

venience, we get an infinite set of ordinary differential equa-

tions:

k−1Ṗm
k = σ

(√
mPm−1

k −
√
m+ 1Pm+1

k

)

+
ǫη

2

(

Pm
k−1Z1e

iα − Pm
k+1Z

∗
1e

−iα
)

+
ǫ2η2

8

(

Pm
k−1Z1e

iβ − Pm
k+1Z

∗
1e

−iβ − Pm
k−2Z

2
1e

iβ

+ Pm
k+2Z

∗2
1 e−iβ + Pm

k−1Z2Z
∗
1 − Pm

k+1Z
∗
2Z1

)

, (5)

where the asterisk denotes complex conjugation. System (5)

is equivalent to Eq. (2) with N → ∞.

The numerical integration of Eq. (5) requires to implement

a truncation at finite kmax and mmax, with an adequate clo-

sure. Note first that, in the UIS, P 0
0 = 1 is the only nonzero

coefficient, whereas in the PS state the modes decay with

k and m roughly as |Pm
k | ∼ e−ake−b

√
m. We imposed

the boundary conditions: Pm
kmax+1

= 0, and Pmmax+1

k =

2Pmmax

k − Pmmax−1

k . We tested the performance of differ-

ent system sizes, finding that kmax = mmax = 40 already

yield an excellent convergence, even for strongly unsteady

states. Therefore, our analysis below relies on Eq. (5) with

nf = kmax× (mmax+1)× 2 = 3280 degrees of freedom. In

comparison, simulating Eq. (2) with nf oscillators is unpro-

ductive because of unavoidable finite-size fluctuations.

One now can see that the PS state corresponds to a solid

rotation Pm
k (t) = pmk eikΩt. After inserting this solution into

Eq. (5), the unknowns pmk and Ω are found via a Newton-

Raphson algorithm (imposing p11 ∈ R). The result completely

agrees with the one obtained from the self-consistent numer-

ical calculation mentioned above. Now, however, we can de-

termine linear stability. Moving to a rotating frame with angu-

lar velocity Ω, we linearize the system around the fixed point.

The locus of a secondary (Hopf) instability is accurately lo-

cated requiring the eigenvalues of the Jacobian matrix with

the largest real part to be ±iΩH (with an extra zero eigenvalue

due to rotational invariance Pm
k → eikγPm

k ). The Hopf line

is shown in blue in Fig. 2(c). The transition is supercritical

(subcritical) at the solid (dashed) line. The emerging oscilla-

tory mode yields a torus attractor (T2), in which, due to the

rotational symmetry, no lockings on its surface are expected,

see e.g. [40, 41]. Recalling Eq. (2) we infer that, at the level

of the individual oscillators, the superimposed oscillation in-

duces entrainment at frequencies Ω+ (n/2)ΩH (n ∈ Z). The

half-integer frequency plateaus stem from the term accompa-

nying R2 in Eq. (2). In particular, the two clusters in Fig. 1(d)

correspond to a frequency plateau at frequency Ω+ ΩH/2.
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FIG. 3. Sequence of bifurcations of Eq. (2), obtained from Eq. (5), as

c1 is increased with ǫ = 0.14. (a) Five largest Lyapunov exponents

{λi}i=1,...,5. (b) Local maxima and minima of R(t). As a reference,

the R values of UIS (R = 0) and PS (R > 0) are depicted in gray.

Solid (dashed) lines correspond to linearly stable (unstable) states.

The remaining regions of the phase diagram in Fig. 2(c)

are determined from direct numerical simulations of Eq. (5)

with the aforementioned closure, as well as by computing the

largest Lyapunov exponents {λi}i=1,2,.... Our systematic ex-

ploration reveals a period-doubling bifurcation line (T2 → T2
d

transition) close to the supercritical-Hopf line. The period-

doubling bifurcation line almost certainly exists also for the

ensemble of Stuart-Landau oscillators. Magnifying the gray

line in Fig. 1(a) the signature of a doubled torus T2
d can be

discerned. However, it is very hard to determine the bifurca-

tion point due to the long transients involved and unavoidable

finite-size fluctuations, see Fig. 1(f).

As occurs with the ensemble of Stuart-Landau oscillators,

the torus attractor undergoes a Hopf bifurcation, see the or-

ange line in Fig. 2(c). Thereby three-frequency quasiperiodic

dynamics (T3 attractor) emerges, consistently with three van-

ishing Lyapunov exponents.

Adjacent to the T3 domain in Fig. 2(c), there exists a region

with chaotic dynamics, in conformity with the Ruelle-Takens-

Newhouse scenario. As occurred with system (1), Fig. 2(a),

PS and unsteady states coexist. In Fig. 2(c) the bistability re-

gion is bounded by a purple line denoting either a saddle-node

bifurcation, emanating from a (codimension-2) Bautin point at

the bottom of the Hopf line, or an attractor crisis. The phase

diagram in Fig. 2(c) reveals which are the unsteady collective

states of (1), and their expected arrangement. Indeed, obtain-

ing a phase diagram with the degree of detail of Fig. 2(c) is

virtually unattainable simulating the original system, Eq. (1).

To better characterize the chaotic region, a detailed explo-
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ration along the horizontal line ǫ = 0.14 is shown in Fig. 3.

In Figs. 3(a) and 3(b) the five largest Lyapunov exponents

and the local maxima and minima of |P 0
1 (t)| = R(t) are, re-

spectively, depicted for the same c1 range. In the T3 interval

there may be some additional bifurcations (lockings or torus

doubling), which we did not attempt to resolve. Interestingly,

in the chaotic domain an increasing number of Lyapunov ex-

ponents become positive as c1 increases, i.e. collective chaos

transforms into collective hyperchaos.

In this Letter we have introduced the ‘enlarged Kuramoto

model’; a population of phase oscillators in which three-body

interactions enter in a perturbative way. Remarkably, this

makes a world of difference, drastically reshaping the tradi-

tional Kuramoto scenario. The ‘enlarged Kuramoto model’

exhibits a variety of unsteady states, including collective

chaos and hyperchaos. To our knowledge, these states have

not been previously reported in a population of globally cou-

pled phase oscillators, with a unimodal distribution of the nat-

ural frequencies. We have considered a particular frequency

dispersion σ = 10−3 in Fig. 2(c). If σ is lowered the bot-

tom of the Hopf bifurcation line approaches the c1 axis at

c1 = −c−1
2 . This is expected to occur for any nonzero c2

value, in consistence with the σ = 0 case [12] (to be shown

elsewhere). Nonetheless, only heterogeneity, in contradistin-

tion to weak noise [12, 42], is able to trigger unsteady collec-

tive dynamics (absent for σ = 0). As a final remark, we stress

that reducing the population of Stuart-Landau oscillators (1)

to the phase model (2) is both illuminating and convenient,

as it enables an efficient investigation of the thermodynamic

limit by virtue of the Fourier-Hermite expansion. The appli-

cation of this scheme to other populations of phase oscilla-

tors with Gaussian heterogeneity is straightforward. For other

forms of g(ω) the suitable set of orthogonal polynomials must

be adopted: e.g. the Fourier-Legendre mode decomposition is

appropriate for uniform g(ω).
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