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Abstract: Steel slag (SS) is a secondary material from steelmaking production with little commercial
value. Its volumetric expansion and low reactivity limit the use of SS in Portland cement (PC)-
based materials. This study investigated the potential use of basic oxygen furnace (BOF) slag as a
single precursor in alkali-activated matrices (AAMs). Six AAM pastes were assessed by changing
the silica modulus (0.75, 1.50 and 2.22) and the sodium concentration (4% or 6% Na2O—wt. SS).
The early hydration was assessed using isothermal calorimetry (IC), followed by the assessment
of the mechanical performance (compressive strength), apparent porosity, and structure and mi-
crostructure characterization (X-ray diffraction, thermogravimetric analysis and scanning electron
microscopy). The results indicated that although the BOF slag may be considered a low-reactivity
material, the alkaline environment effectively dissolved important crystalline phases to produce
hydrates (reaction products). An optimized combination of activator sources was achieved with 4%
Na2O and a silica modulus of 1.50–2.22, with a compressive strength up to 20 MPa, a significant
amount of reaction products (C-S-H/C-A-S-H gels), and low initial and cumulative heat release.
Those properties will help to promote SS recycling use in future engineering projects that do not
require high-strength materials.

Keywords: basic oxygen furnace slag; alkali-activated materials; waste recycling; activation parameters;
microstructure properties

1. Introduction

The current world housing deficit is estimated to be 1.3 billion [1] and the infrastruc-
ture investment gap by 2040 is expected to be around 15 trillion (1012) dollars [2]. Both
industries (construction and infrastructure) consume a large amount of Portland cement
(PC), contributing to its elevated demand, with an average annual global production of
4.0–4.2 Gt [3]. As a downside of this large production, the PC industry is responsible for 8%
of the global greenhouse gas emissions [4], which demands the development of alternative
and cleaner binders that may replace PC in its applications.

Alkali-activated materials (AAMs) have been promoted as alternative greener building
materials in recent decades. One of the main reasons for this is that AAMs can be designed
to lower greenhouse gas emissions by employing industrial residues as raw materials
during the production process [5]. The global warming potential impact of AAMs was
estimated to be between 45% and 80% lower than PC depending on the raw materials
used [6–8]. The main benefits of AAMs are a low CO2 footprint by valorizing industrial
wastes, high mechanical performance, potentially high chemical resistance and the capacity
to encapsulate hazardous wastes [9–15]. AAMs are derived from the reaction of alumi-
nosilicate sources with an alkaline solution [16]. The conventional approach is to combine
an alkali-activator solution (i.e., hydroxides or silicates of sodium or potassium) with an
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amorphous aluminosilicate powder, usually ground-granulated blast furnace slag (GGBFS);
pulverized fly ash (PFA); calcined clays, such as metakaolin (MK); or glass waste. The
alkaline activation results in either an alkali aluminosilicate gel or a calcium aluminosilicate
hydrate gel or the coexistence of both [17,18]. However, the supply of those three main
precursors is now challenging: GGBFS already has a well-defined route of utilization apart
from AAMs (i.e., as supplementary cementitious material replacing PC); PFA availability
was significantly reduced due to the continuous decommissioning of coal power plants
worldwide [19] and MK is a natural resource. Consequently, there is a need for finding
alternative binders to replace these and meet the future demands of AAMs.

Steel slag (SS) is the main solid waste (over 90% by weight) generated by the steelmak-
ing industry. According to the World Steel Association, more than 270 million tons of SS
were generated in 2019 [20]. Typically, this amount is stockpiled in open fields, causing
environmental harm and financial liability [21]. Furthermore, China and Brazil, which
are two important crude steel producers, reuse less than 30% of the SS generated [21,22].
The conversion of iron into steel in a basic oxygen furnace (BOF), also known as the Linz–
Donawitz (LD) process, is a widespread process used by the steel industry, where molten
iron is combined with steel scraps and fluxes to produce steel and generate BOF slag [23].
The former usually consists of CaO (30–60%), Fe2O3 (3–38%), SiO2 (7–20%), FeO (7–35%),
Al2O3 (1–6%), MgO (1–15%), MnO (2–8%) and P2O5 (1–5%). The common mineral phases
are dicalcium silicate (C2S), tricalcium silicate (C3S), tetra-calcium aluminoferrite (C4AF),
olivine, merwinite, CaO-FeO-MnO-MgO solid solution and free CaO [24]. The volumet-
ric expansion of the SS [25] and its low reactivity [26] are the most critical challenges to
ensuring application in PC-based materials. Despite this, several studies continue to be
published that evaluate SS’s potential as supplementary cementitious material even though
low percentages of SS are employed [27–30].

Regarding the development of AAMs, most recent studies were carried out using
SS as a partial replacement in blends with other precursors [31–40] or using SS as the
sole precursor in the matrix [41–48]. The latter is gaining researchers’ attention due to
the possibility of increasing the reuse of SS as an alternative, environmentally friendly
application [11]. The number of publications is still scarce, and thus, it is difficult to
establish concrete conclusions about the real influence of SS and activation parameters
on the final properties of AAMs. However, some significant findings were reported, as
follows. Liu et al. [45] found that the calcium silicates (C2S and C3S) present in the SS
composition dissolve under alkaline conditions to form reaction products. Ozturk et al. [42],
Sun et al. [43] and Morone et al. [44] concluded in their studies that significant amounts
of C-S-H-type gel and CaCO3 are formed as hydration products, and the best SiO2/Na2O
molar ratio in the activator was between 2.0–2.3. Sun et al. [43] only evaluated the effect of
the silica modulus variation using the same Na2O concentration (only 4%) and Morone
et al. [44] evaluated the carbon storage capacity of BOF slag using CO2 curing by assessing
mortars and not pastes. They also used different activation parameters (molar ratio,
activator type) and a different curing regime, and the focus was not on the influence of the
activation parameters. Additionally, contradictory results were published, confirming the
need for a more thorough investigation of the alkaline activation of SS [11].

This study aimed to tackle some of the issues stated in the last paragraphs, i.e., the
need for alternative binders, the necessity for further reuse of steel slag and the scarce
number of investigations on steel slag activation. It investigated the influence of activation
parameters on the mechanical and microstructural properties to validate the use of BOF slag
as a single precursor in AAM. Six different AAM pastes were produced by changing the
silica modulus and the sodium concentration. The fresh properties were evaluated using
the heat of hydration and the mechanical properties were evaluated using compressive
strength. The pastes were also submitted to XRD, TGA and SEM to assess the microstructure
changes, i.e., the mineral composition, crystalline and solid phase variation, pore structure
and variation in the reaction products.



Appl. Sci. 2022, 12, 12437 3 of 22

2. Materials and Methods
2.1. BOF Slag Characterization

The SS used in this work was a byproduct generated during the conversion of iron
into steel in a basic oxygen furnace (BOF). The original BOF slag had a maximum particle
size of 4.8 mm. The BOF slag was crushed and then ground in a ball mill to reduce it to
a maximum particle size of 75 µm. The density of the BOF slag measured using helium
pycnometry was 3.18 g/cm3.

The particle size distribution (PSD) of the ground precursor was obtained via laser
granulometry (Cilas 1090 Laser) using the Fraunhofer diffraction theory. The analyses
were made using the wet method (SS does not react with water) with a 60 s ultrasonic
bath to increase particle dispersion. Triplicate samples were tested. The ground precursor
presented 100% of particles as lower than 75 µm, with 8.11 µm as the mean diameter, as
shown in Figure 1.
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Figure 1. Particle size distribution of the BOF slag.

The chemical composition, which is presented in Table 1, was obtained via X-ray
fluorescence (XRF) on a Bruker S2 Ranger X-ray spectrometer (Bruker, Billerica, MA, USA).
The BOF slag mainly consisted of CaO (36.66%) and FeO (24.19%), followed by SiO2 (12.10%)
and MgO (10.60%). Its alkalinity was 4.14, which favored its hydraulic activity [49], but not
necessarily its cementitious behavior (the latter depends on the phases present within the
chemical composition) [50].

Table 1. Chemical composition of BOF slag.

Chemical Composition of Oxides (%)

CaO FeO SiO2 MgO Al2O3 Cr2O3 MnO P2O5 SO3

BOF
slag 36.66 24.19 12.10 10.60 3.84 0.10 4.53 1.11 0.71

The mineralogical phases were determined via X-ray diffraction (XRD) on a Shimadzu
XRD 7000 diffractometer with Cu radiation at 40 kV and 30 mA. The scanning speed
was 0.30 s/step, the length of each step was 0.02◦ and the scanning range was 5–80◦.
Rietveld refinement software (GSAS) was used for the quantitative analysis. The XRD
pattern of the BOF slag shown in Figure 2 presents several mineral phases, including
larnite (C2S), srebrodolskite (C2F), brownwillerite (C4AF), portlandite (Ca(OH)2), calcite



Appl. Sci. 2022, 12, 12437 4 of 22

(CaCO3), quartz (SiO2), wustite (FeO) and periclase (MgO). The quantification of each
phase is also presented. A similar complex mineralogical composition of BOF slag was
previously reported [51–53].
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Figure 2. XRD pattern and Rietveld refinement.

The TGA-DTA (thermogravimetric analysis coupled with differential thermal analysis)
was conducted on Hitachi STA73000 equipment to identify and quantify the variation in the
solid phases. The BOF slag was heated from 25 ◦C to 1000 ◦C at a heating rate of 10 ◦C/min
in a high-purity nitrogen atmosphere. Figure 3 shows the TG and DTG diagrams, which are
divided into two main mass loss regions: (i) portlandite dehydroxylation between 350 ◦C
and 450 ◦C and (ii) calcite decomposition between 600 ◦C and 800 ◦C.
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Figure 3. TG (dotted line) and DTG (solid line) diagrams of the BOF slag.

The standard pozzolanic activity index was determined according to the Brazilian
Standard ABNT NBR 5752:2014 [54]. The pozzolanic index is the ratio between the com-
pressive strength at 28 days of a mortar containing 25% wt. of the studied materials (herein
the BOF slag) replacing the PC and the strength of the reference mortar containing 100% of
PC. Composite PC type CP II-F-32 according to the Brazilian Standard NBR11578-1997 [55]
and normalized sand [56] were used to produce the mortars.
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The modified R3 reactivity test was performed to evaluate the pozzolanic activity
of the supplementary cementitious materials [57]. It was performed on the BOF slag to
determine its heat release and calcium hydroxide consumption in a calcium-rich simulated
pore solution. Isothermal calorimetry was used to measure the heat released due to the
reaction with calcium hydroxide at 50 ◦C and in a 0.5 M KOH solution. The final amount
of calcium hydroxide was determined based on the mass loss between approximately
380 ◦C and 460 ◦C using the tangential method outlined in Kim and Olek [58]. Thermo-
gravimetric analysis was performed on the resulting blends after 240 h to determine the
calcium hydroxide consumption. The calcium hydroxide consumption was calculated as
the difference between the initial and final calcium hydroxide contents and then divided
by the mass of supplementary cementitious materials (SCM) in the systems [59]. Three
replicates were tested.

2.2. Mix Proportions

The alkaline solutions were prepared using NaOH pellets (99% purity), Na2SiO3 (solid
content of 47.10%, SiO2/Na2O of 2.16) and water. Six different pastes were studied by
combining different silica modulus in the activator (0.75, 1.50 and 2.22) and the percentages
of Na2O (4% and 6%), as presented in Table 2. The water-to-binder ratio (w/b) was
varied to ensure the same workability between all the pastes. The pastes were mixed in
a mortar mixer; the alkaline solution (previously mixed and cooled down) was added
first, followed by the precursor at a lower mix speed. After approximately 5 min, the
paste was mixed for 1 min at the higher mix speed. This mixing process was carried
out according to the Brazilian Standard ABNT NBR 7215:2019 [60]. The cast specimens
(for hardened characterization) were cured at ambient laboratory conditions (∼=24 ◦C,
90 ± 5% RH); they remained in the mold for the first 24 h (placed inside sealed plastic bags)
and, after demolding, were placed underwater until testing. The choice to use underwater
curing was made to avoid the fast water loss that leads to potential shrinkage.

Table 2. Mix proportions.

Formulation Modulus Na2O/Binder (%) Water/Binder Steel Slag (g) Water (g) Na2SiO3 (g) NaOH (g)

0.75M-4% 0.75
4

0.35 540 159.03 48.78 18.68
1.50M-4% 1.50 0.35 540 135.34 97.57 9.19
2.22M-4% 2.22 0.38 540 128.59 144.40 -

0.75M-6% 0.75
6

0.35 540 144.04 73.18 28.02
1.50M-6% 1.50 0.40 540 135.50 146.35 13.79
2.22M-6% 2.22 0.40 540 101.39 216.60 -

2.3. Early Hydration

The hydration kinetics of the fresh pastes was assessed via the heat of hydration tests
using an isothermal calorimeter (Calmetrix I-Cal 2000 HPC isothermal calorimeter, Boston,
MA, USA). The samples were made with 20 g of precursor and 8–11 g of alkaline solution.
Measurements were carried out every 5 s in the first 8 h and every minute in the next 64 h.

2.4. Hardened Properties

The hardened pastes were subjected to apparent density and porosity tests (water
saturation method) and mechanical evaluation (compressive strength). The apparent
density and porosity were determined according to the Brazilian Standard ABNT NBR
9778:2009 [61] after 28 days of curing. Cylindrical samples 25 × 50 mm (diameter × height)
were used for the mechanical tests. The compressive strength of each paste was measured
after 1, 3, 7 and 28 days of curing using a universal press Emic D30000 with a 300 kN load
cell and a 0.25 ± 0.05 MPa/s loading rate [60]. Six specimens were used and the average
and standard deviation were calculated and reported.
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2.5. Structural and Microstructural Assessment

XRD and TGA were used to assess the structural analysis of the hardened pastes. The
changes in the mineralogical composition (crystalline phases on the XRD) and quantification
of the hydrates via TGA-DTG were evaluated at 1, 3, 7 and 28 days. Microstructural analysis
was carried out using scanning electron microscopy (SEM; Hitachi TM3000) with EDX
analysis operating in the backscattering mode. The SEM/EDX test conditions were set in a
low vacuum mode with an acceleration voltage of 15 kV and a working distance of 5.2 and
5.9 mm. Samples were polished for characterization.

3. Results and Discussions
3.1. BOF Slag Pozzolanic/Reactivity Behavior

The pozzolanic index (PI) of the BOF slag was 67.29%; therefore, this SS was considered
a non-pozzolanic material accordingly to the Brazilian Standard ABNT NBR 12653:2014 [62].
Basic GGBFS, typically a pozzolanic material, has a much higher PI of approximately 95%.
In contrast, acidic GGBFS has a lower PI, comparable to the BOF slag, between 65 and
85%. A low pozzolanic behavior of the BOF slag was expected based on the high content of
crystalline phases, as highlighted by the XRD (Figure 2).

The modified R3 reactivity test results of the BOF slag are summarized in Table 3,
where a comparison is made with typical results from other raw materials, i.e., another
BOF slag, a ladle furnace steel slag (LFS), GGBFS and limestone [26,57]. It is possible to see
a significant difference in the reactivity of SCMs and even between different samples of
BOF slags. The studied BOF slag may be considered to have a low reactivity based on its
amount of heat released and calcium hydroxide consumptions, which were 76 J/g SCM
and 16 g/100 g SCM, respectively.

Table 3. Results of modified R3 reactivity test.

Heat Release (J/g SCM) Calcium Hydroxide
Consumption (J/g SCM)

BOF slag 76 16
Another BOF slag [26] 210 9

LFS [26] 490 −11.5
GGBFS [26,57] 500 32
Limestone [57] 20 −5

The difference in terms of heat release and calcium consumption of both BOF slags
was related to the inherent variability of steel slags. Due to the processing and cooling
effects on the chemical and mineralogical compositions, such as the amorphous phases,
there was considerable variability in their behavior. The heat released from the LFS and
GGBFS were similar and significantly greater than both BOF slags. This may have been
due to the more significant amounts of amorphous phases in the formers compared with
the present BOF slag [26], which was demonstrated by its crystalline nature (Figure 2). The
calcium hydroxide consumption of the LFS and the limestone were negative, which meant
that they generated calcium hydroxide possibly because of the reaction of the existing free
lime in their composition. GGBFS had the highest calcium hydroxide consumption due to
its higher amorphous content compared with the others.

3.2. Early Hydration Results via Calorimetry

Figure 4a,b show, respectively, the heat flow rate and the cumulative heat release
during the activation of the BOF slag. The alkali-activated BOF slag pastes present differ-
ent behavior depending on the activation parameters. In general, the hydration process
of alkali-activated SS may be divided into five stages similar to cement-based materials
and GGBFS-based AAM: the rapid initial dissolution, induction/reorganization, accel-
eration, deceleration and stabilization periods [33,43,47]. However, the changes in both
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the silica modulus and Na2O concentration in the activator clearly modified the BOF slag
activation kinetics.
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The rapid dissolution of the slag particles (calcium silicate and calcium aluminate)
led to the first exothermic peak observed in all mixtures despite differences in intensity, as
shown in Figure 4a. This stage is characterized by the formation of the initial dissolved
silicate and aluminate units [43]. The type and concentration of the alkali activator are
known to influence the duration and intensity of each stage during the reaction [63].
Figure 4 shows that the intensity of the first peak varied between 13 and 38 mW/g when
the Na2O concentration was 4%. Conversely, the values were much higher for the 6%
concentration, varying between 80 and 130 mW/g. Those results indicated that the higher
the alkalinity in the solution, the faster the initial dissolution and the higher the initial heat
release rate [43]. The effect of the silica modulus on the first stage was also evident for a
fixed Na2O percentage. The rise in the silica modulus from 0.75 to 2.22 also increased the
intensity and speed of the heat release [44].

The induction period was characterized by low reactivity and shortened when NaOH
+ Na2SiO3 were used as activators. Moreover, these activators are thought to make a small
contribution to the total heat [63]. Since the aluminum phase in the BOF slag does not form
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crystalline products, such as ettringite, no delayed reaction occurs and the induction period
is short [47]. The induction period was only identified for the 0.75M-4% and 1.50M-4%
curves. The acceleration and deceleration periods (second peak) are related to the formation
of hydration products, including reaction gels and Ca(OH)2, that result from the hydration
of the calcium silicate present in the slag [33]. Similarly, regarding the induction period,
the second peak was only identified for 0.75M-4% and 1.50M-4%. These results do not
necessarily indicate the absence of Ca(OH)2 or reaction gels in the other formulations.
Actually, the acceleration start point was significantly delayed and the reaction rate was
reduced as the silica modulus increased, which indicated that Na2SiO3 had a retarding
effect on the early reaction of the BOF slag [64].

As shown in Figure 4b, the cumulative heat output of the formulations varied between
13.19 and 21.51 J/g, which was a slight difference between matrices. Those values are
considered very small compared with other cementitious materials, such as GGBFS-based
AAM (80–150 J/g) [65] and cement-based materials (250–350 J/g) [66]. These results from
our study are in line with the findings of the R3 reactivity test; the lower heat generation of
the studied SS was probably associated with the slight presence of active components on
the BOF slag mineralogical composition (Figure 2).

3.3. Hardened Properties

Figure 5 presents the average results for the compressive strength of the studied pastes
at 1, 3, 7 and 28 days. The error bars represent the standard deviation. Considerable
development in strength from 1 to 28 days was observed for all formulations. The increases
in strength from 1 to 28 days for 0.75M-4%, 1.50M-4%, 2.22M-4%, 0.75M-4%, 1.50M-4% and
2.22M-4% were 336.49%, 209.74%, 233.67%, 386.52%, 297.50% and 759.78%, respectively.
These results confirmed the alkali activation process of the BOF slag and the hardening of
all pastes, such as those presented by Morone et al. and Sun et al. [43,44].
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It is possible to notice that the increase in silica modulus within the same Na2O
concentration had different impacts on the compressive strength for each case (4% or 6%).
For 4% Na2O, the higher the silica modulus, the higher the strength of the pastes. A rise
in the modulus provided more silicate (higher Si/Al molar ratio in the matrix), which
promoted strength development [67]. However, the opposite behavior occurred when 6%
Na2O was employed. In the latter situation, the strength of pastes decreased for a higher
silica modulus. This will be further discussed in the following section (Section 3.4).

Similarly, the increase in Na2O concentration within the same modulus only enhanced
the strength in the case of a low modulus (0.75M). In the other cases (1.50M and 2.22M), the
increase in Na2O negatively affected the mechanical behavior. Wang et al. [68] observed a
threshold above which the alkali concentration compromises the strength development.
Shi et al. [69] also pointed out that a high silica modulus may decrease the liquid alkalinity
provided by the high alkali concentration and consequently reduce the extent of activation
and compressive strength.

The trend of the compressive strength results is presented in Figure 6, where all
variables are gathered. The figure graphically shows that the lowest strength values
were found for extremes in the activator’s content: a low alkali concentration combined
with a low silica modulus or a high alkali concentration combined with a high silica
modulus. Better strength performance could be achieved when an optimized combination
of activator sources was considered. In this study, a low Na2O concentration (4%) with an
intermediary silica modulus (1.50–2.22) presented the best mechanical results, increasing
the compressive strength up to 20 MPa. The compressive strength of the pastes was
lower than the conventional ones (based on the activation of GGBFS); however, it is
essential to emphasize that BOF slag is an industrial waste that presents economic and
environmental benefits. The compressive strength results are helpful for material design in
future engineering projects that do not require high-strength materials.
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Figure 6. Compressive strength distribution with respect to the formulation and curing age.

Similar results were presented by Sun and Chen [43] in their study, where 4% Na2O
was combined with an optimal silica modulus of 2.0 to develop an alkali-activated SS paste
with compressive strengths of 15 MPa and 25 MPa at 28 and 180 days, respectively. On the
other hand, Ozturk et al. [42] successfully developed an alkali-activated SS mortar with
considerably high strength (22 MPa) by employing a higher Na2O concentration and an
intermediate silica modulus of 6% and 2.0, respectively.

Figure 7 presents the mean compressive strength at 28 days and the initial heat
release found using calorimetry (Section 3.2) plotted against the silica modulus and Na2O
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concentration (4% and 6%). The graphs do not have the same trend. A rise in the silica
modulus increased the initial heat release irrespective of the Na2O concentration. However,
a high silica modulus combined with a high concentration of Na2O (6%) was detrimental to
the strength development. The first reason for this was the relatively fast loss of consistency
observed for those pastes during the molding process (i.e., 1.50M-6% and 2.22M-6%), which
was in line with the high initial heat release (orange curves in Figure 7). This may have
compromised the casting and directly affected the strength. The second reason was an
excess amount of silicate and OH− in the mixture, which inhibited the activation reaction
by limiting the diffusion of ions [70]. Thus, the reaction of Ca2+ with Si4+ was negatively
affected, along with the strength development.
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Figure 7. Influence of the activator parameters on the relation between the initial heat release and
compressive strength (blue: 4% of Na2O; orange: 6% of Na2O; squares: initial heat release; triangles:
compressive strength).

Figure 8 presents the average results for the apparent density and porosity of pastes
at 28 days. The standard deviation is indicated by the error bars. The green triangles
represent the apparent density. Regarding the porosity, the pastes made with 4% Na2O
are represented with hatched bars, while the 6% Na2O pastes are represented with solid
bars. The apparent density values lay between 1.38 and 1.61 g/cm3, and the porosity mean
values were between 33.92 and 36.62%. Unlike the compressive strength, it is possible to
observe that the activation parameters’ change did not significantly affect either the porosity
or the apparent density. Regarding the formulations made with 4% Na2O, a rise in the
silica modulus (higher silicate content) increased the apparent density and porosity. This
result may have been due to the fact that sodium silicate has a higher density than sodium
hydroxide, yet its high viscosity negatively affected the workability of the pastes [71] and
consequently increased the incorporated air in the paste. In contrast, pastes activated with
6% Na2O presented a more coherent behavior: the increase in silica modulus increased the
porosity (same as the 4% pastes) and slightly decreased the apparent density.

Overall, the paste porosity was highly related to the water-to-binder ratio (w/b), which
played an important role in the consistency of the mixes [72]. It is important to state that
the highest mean porosities were found for the 2.22M-4%, 1.50M-6% and 2.22M-6% pastes.
They also had higher w/b values of 0.38, 0.40 and 0.40, respectively. You et al. [73] found
that the use of SS as a binder increased the total porosity of GGBFS-based alkali-activated
mortars. In contrast, Guo and Yang [40] found that an increase in the SS percentage of a
PFA-based alkali-activated paste increases the apparent density. To the author’s knowledge,
no previous comprehensive study presented conclusive results on the influence of the
activation parameters on the apparent density and/or porosity of alkali-activated SS paste.
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Figure 8. Apparent density and porosity of pastes.

3.4. Structural and Microstructural Properties
3.4.1. XRD Analysis

The XRD patterns of all pastes at 28 days are shown in Figure 9. Compared with
the BOF slag pattern, the intensities of some diffraction peaks remarkably decreased and
some peaks disappeared. The appearance of a broad hump below 10◦ 2θ and around
29◦ 2θ (dotted red circle) became clear, indicating that an amorphous phase structure,
such as C-S-H/C-A-S-H gels, was formed [74–76]. The crystalline diffraction peaks of the
calcium silicates and aluminates also decreased, suggesting that they dissolved (partially,
at least) and reacted with an alkaline solution to produce the hydrated products in all
pastes [43]. There was also calcium carbonate that resulted from the consumption of
calcium hydroxide. No apparent changes were observed in the peaks of wustite (FeO)
or quartz (SiO2), suggesting that these phases did not participate in the alkali activation
reaction [31].

Figure 10 presents the comparison of the mineralogical composition for two different
pastes (0.75M-4% and 2.22M-4%) for the early (1 day) and later hydration (28 days). As
can be seen, the main differences between both formulations were the peaks of Ca(OH)2 at
around 18◦ and 33◦ 2θ for the 0.75M-4% paste and the broader humps of C-S-H/C-A-S-H
gels at about 10◦ and 29◦ 2θ for the 2.22M-4% paste. These findings were in accordance with
the compressive strength results (Figure 5), showing that the hydrate gels were responsible
for the strength development. Additionally, the presence of Ca(OH)2 is known to promote
the formation of reaction products in the system by increasing the Ca/Si ratio, which is
beneficial for the formation of calcium silicate gels [34]. Thus, the crystalline phase in the
0.75M-4% pastes strongly suggested that the alkali reaction was weaker and fewer hydrates
were formed.
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Figure 9. XRD patterns of pastes at 28 days (dotted red circle: broad hump indicating amorphous
phase structure).

3.4.2. TG/DTG Analysis

Thermogravimetric analysis is widely used to monitor the hydration process and
identify and determine the content of reaction products, such as silicates, gels, other
hydrates and carbonates. The TG/DTG of two different pastes (0.75M-4% and 2.22M-4%)
as a function of the curing time are presented in Figure 11. The high mass loss below 120 ◦C
was assigned to the complete release of physically bound water within the gel structure [77].
All pastes presented a shift toward high temperatures in the DTG peaks in this region as
the curing progressed from 1 to 28 days (as represented in Figure 11). This suggested the
formation of gels with more tightly bonded water as the reaction products developed [76].
The continuous mass loss after 120 ◦C until 600 ◦C was attributed to the decomposition
of hydrated gels, such as C-S-H and C-(A)-S-H [78], and the dehydroxylation of residual
Ca(OH)2 [77]. Notably, further mass loss can be observed at 600–800 ◦C, which was caused
by the decomposition of calcium carbonate CaCO3 [76,77]. No other abrupt mass loss was
observed until 1000 ◦C; all formulations had a slight and continuous mass loss.
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Figure 10. Comparison of the XRD patterns of 0.75M-4% (blue) and 2.22M-4% (yellow) at 1 and
28 days (dotted red circle: broad hump indicating amorphous phase structure).

Figure 11a presents the TG/DTG curves of the 0.75M-4% sample, representing the
same behavior as the 0.75M-6% sample. It is possible to identify a more defined mass loss
around 400 ◦C, probably due to the residual Ca(OH)2 that was not totally consumed during
the reaction. This was in line with the Ca(OH)2 that was also identified in the XRD anal-
ysis for those formulations, as discussed in the previous section (Section 3.4.1—Figure 9).
Alternatively, Figure 11b presents the TG/DTG curves of the 2.22M-4% sample as a rep-
resentative curve for the remaining formulations. It is possible to observe the significant
mass loss below 120 ◦C, the continuous mass loss above 120 ◦C, the calcite decomposition
around 600 ◦C, and the constant and slight mass loss until 1000 ◦C.

Figure 12 presents the mass losses of all pastes as the curing progressed for two
different temperature ranges (120–600 ◦C and 600–1000 ◦C). The curves showed an apparent
increase in mass loss over the curing time for all formulations. Those two temperature
ranges correspond to the decomposition of the main reaction products, namely, C-S-H/C-
A-S-H gels and CaCO3, respectively. The results confirmed the findings of previous
studies [42–44]. Moreover, the high content of reaction products primarily in the TGA
120–600 ◦C range correlated well with the strength development (Figure 13).
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As the quantity and density of the gels increased, the mass loss also increased
(Figure 12), which was revealed macroscopically as the enhancement in compressive
strength [31]. Nevertheless, there was no correlation between mass loss and compressive
strength. For instance, all formulations contained mass loss between 6.5–7.5% at 28 days
but presented completely different mechanical behavior (Figure 13). It is essential to say
that not all hydrates decomposed from 120–600 ◦C contributed to the strength development.
In addition, other external factors are related to compressive strength, such as workability,
casting/molding capacity, water content and internal porosity.

The variation in the activation parameters affected the hydration process. Figure 14
presents the TGA mass loss at 28 days and the initial heat release found via calorimetry
(Section 3.2) against the silica modulus and Na2O concentration (4% and 6%). It is possible
to see that the increase in the silica modulus (more soluble Si4+) was much more favorable
at a low Na2O concentration (4%) when it came to forming more reaction products, and
consequently, improving the compressive strength (Figure 7). Overall, for a constant silica
modulus, a high Na2O concentration led to increased heat output and the formation of
more hydrates (higher mass loss via TGA) due to the high alkali content [79].
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3.4.3. SEM-EDX Analysis

Figures 15 and 16 show the SEM micrographs with elemental mapping and EDX spot
analyses for the formulations 0.75M-4% and 2.22M-4%, respectively. The major elements
from the elemental mapping of the 0.75M-4% sample (Figure 15) were Si (from the activator)
and Ca (from the BOF slag). The phases labeled A, B and C were, respectively, the RO phase,
calcium silicate (from unreacted BOF slag particle) and C-S-H gel. The RO phase is an
undissolved crystal phase commonly found in BOF slags and will remain like that even if
hydrated for many years [27]. Figure 15 presents more unreacted BOF slag particles, which
is in accordance with the lowest amount of reaction products found via TGA (Figure 12a)
and the lowest compressive strength (Figure 6). An open microstructure with porous
regions all over the matrix resulted from a poor hydration/activation process, which
compromised the compressive strength development.

Differently, Figure 16 presents the 2.22M-4% formulation with an entirely different
microstructure. The elemental mapping showed an even greater predominance of Si and
Ca in the matrix. Phases labeled A, B, C and D were, respectively, the RO phase embedded
in the BOF slag particles, the remaining steel inclusion, calcium silicate (unreacted BOF
slag) and C-S-H gel. In this case, the RO phase was embedded in the BOF slag particles,
blocking these particles from dissolving and forming the reaction products (gel). A more
homogeneous microstructure was observed, which was characterized by a smaller number
of undissolved or partially dissolved BOF slag particles and lower porosity. More hydrates
were formed (Figure 12a), which filled the existing pores (voids) and bonded the remaining
solid particles together to form a continuous, dense and complete matrix [32]. Therefore,
the denser microstructure resulted from a better hydration/activation process, and the high
presence of hydrates reduced the microstructural porosity, resulting in higher compressive
strength (Figure 6).
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4. Concluding Remarks

This study explored the possibility of using SS as a single precursor in AAM. The effect
of the variation of the activation parameters, namely, the Na2O concentration and silica
modulus, on the fresh and hardened properties of BOF slag-based AAM was evaluated
through a series of experiments. The focus was given to the structural and microstructural
behavior of the AAM pastes. The main conclusions were as follows:

• The BOF slag studied presented low pozzolanic behavior, low heat generation and
may be considered a low-reactivity material. Nevertheless, the alkali activation process
and hardening of pastes were confirmed in all studied cases.

• Crystalline phases of the BOF slag dissolved under the alkaline environment to pro-
duce hydrates in all studied formulations, as presented by the TGA and XRD results.

• The high initial heat release measured from the formulations with a high concentration
of Na2O and a high silica modulus may have contributed to the rapid setting, thus
compromising the casting process of those formulations.
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• All formulations presented the same behavior in terms of hydrate formation over the
curing time. The TGA results showed the amount of hydrates by quantifying the
mass loss, but no correlation with compressive strength development was determined.
Other external factors are related to compressive strength, such as workability, molding
process, water content and internal porosity.

• A low silica modulus combined with a low Na2O concentration led to the identification
of residual Ca(OH)2 in the TGA and XRD results. This strongly suggested that the
alkali reaction was weaker, and thus, less reaction products were formed, which
jeopardized the strength development.

• A high silica modulus combined with a high Na2O concentration increased the al-
kalinity in the solution, thus increasing the intensity and speed of the heat release.
Moreover, the excess of silicate and OH− limited the diffusion of ions, and thus, the re-
action of Ca2+ with Si4+. As a result, the casting process and the strength development
were compromised.

• Finally, better strength performance was achieved when an optimized combination
of activator sources was considered. In this study, a low Na2O concentration (4%)
with an intermediary silica modulus (1.50–2.22) presented the best mechanical results
(compressive strength up to 20 MPa), a good amount of reaction products formed
(C-S-H/C-A-S-H gel and CaCO3), and a low initial and cumulative amount of heat
released. Although the compressive strength was lower than for the conventional ones,
it is essential to highlight that BOF slag is an important industry waste that presents
economic and environmental benefits and can be used in future engineering projects.
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