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Resumen 

El adenocarcinoma ductal de páncreas (PDAC) es el tipo de cáncer con peor 
pronóstico debido a su diagnóstico tardío, la diseminación metastásica temprana y 

a la falta de tratamientos específicos. Esta enfermedad se caracteriza por una 
extensa heterogeneidad genética y un microambiente tumoral altamente 

inflamatorio y desmoplástico, lo que contribuye a la agresividad y a la resistencia a 
tratamientos de esta patología. Con el objetivo de comprender mejor los 
mecanismos implicados en la progresión y metástasis del cáncer de páncreas, en esta 

Tesis Doctoral, propusimos caracterizar la dinámica de la heterogeneidad 
intratumoral en PDAC. Para ello, combinamos la flexibilidad de un modelo de ratón 

de cáncer de páncreas con la alta sensibilidad de las tecnologías de secuenciación de 
nueva generación y de célula única, con una estrategia de trazado genético celular, 

la cual hemos mejorado. A pesar de un origen monoclonal, hemos demostrado la 
presencia de poblaciones celulares genéticamente distintas dentro de los tumores. 

Hemos identificado además fenómenos evolutivos de competencia y selección, 
similares a los descritos en humanos, con la particularidad de que algunos de estos 

clones presentan una capacidad metastática específica de tejido. Además, hemos 
descrito que estos tumores suelen presentar alteraciones en Kras y Cdkn2a, pero no 

en Trp53 o Smad4, al contrario que en humanos. También observamos de manera 
recurrente la activación de la ruta mutada de Kras, esencial para la generación de 

metástasis en el hígado, pero no en la de pulmón, que parece ocurrir de manera 
temprana. Por otra parte, hemos generado una nueva herramienta de trazado 
genético que puede ser útil para estudiar la heterogeneidad intratumoral. Por 

último, utilizando las tecnologías de secuenciación de célula única hemos 
identificado la presencia de distintos grupos transcripcionales en los tumores y 

metástasis de nuestro modelo, siendo algunos de ellos recurrentes entre muestras y 
con características que sugieren una colaboración entre distintos grupos de células. 

Curiosamente, las células metastáticas de pulmón presentan un perfil transcripcional 
característico, con una transición epitelio mesénquima parcial, una sobre activación 

de la ruta de EGFR y la producción de citoquinas que probablemente estén 
implicadas en la preparación del nicho metastático. Este perfil transcripcional está 

presente en una población minoritaria de los tumores primarios, lo que podría 



significar que se trata de una población premetastática. Finalmente, la mejora de 
conocimiento sobre los genes y las vías moleculares implicadas en la progresión 

tumoral y la aparición de metástasis puede traducirse en una mejora significativa del 
tratamiento de los pacientes de PDAC.   

 

  



 
 

Summary 

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease due to its 
late diagnosis, early metastatic widespread, and the lack of effective treatments. 

PDAC is characterized by extensive genetic intratumor heterogeneity and by a highly 
inflammatory and desmoplastic tumor microenvironment, which contributes to the 

aggressiveness and drug resistance of the disease. To understand the mechanisms 
involved in PDAC progression and metastasis, in this Doctoral Thesis, we proposed 
to characterize the dynamics of intratumor heterogeneity in PDAC. To do this, we 

combined the flexibility of a well-characterized pancreatic mouse model, the high 
sensitivity of next-generation and single-cell sequencing technologies, and a multi-

fluorescent protein lineage tracking model. First, we have demonstrated the 
monofocal origin of the aggressive pancreatic tumors from our mouse model and 

the presence of genetically distinct cell populations within tumors. We have also 
identified evolutionary phenomena of competition and selection, similar to those 

described in humans, with the particularity that some of these clones have tissue-
specific metastatic capacity. In addition, we have described that these tumors 

recurrently present amplification of the mutant Kras signal which seems important 
for the generation of metastases in the liver, but is disposable for the metastasis in 

the lung, which seems to be the result of early colonization.  Finally, we have 
identified the presence of different transcriptional groups in the tumors and 

metastases of our model, some of them being recurrent between samples and with 
characteristics that demonstrate a collaboration between different groups of cells. 
Interestingly, metastatic lung cells present a particular transcriptional profile, with a 

partial epithelial-to-mesenchymal transition, overactivation of the EGFR pathway, 
and the production of cytokines that are probably involved in the preparation of the 

metastatic niche. This transcriptional profile is present in a minority population of 
primary tumors, which could mean that it is a premetastatic population. Finally, the 

improvement of the knowledge about the genes and molecular pathways involved 
in tumor progression and the appearance of metastasis could be finally translated to 

a significant improvement in the treatment of PDAC patients. 



  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The important thing is not to stop questioning. 
Curiosity has its own reason for existence. 

Albert Einstein 
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Pancreatic ductal adenocarcinoma 

Epidemiology 

Pancreatic cancer is the fourth leading cause of cancer-related death in the 

Western World. For all stages combined, mortality rates have remained stubbornly 

unchanged for almost four decades, with a 5-year relative survival rate of 11%, the 

lowest rate among any cancer. Even for the small percentage of people who are 

diagnosed with local disease, their 5-year survival is only 39%. The majority of 

patients are diagnosed at an advanced stage, for which the 5-year survival is 3%. 

Moreover, the incidence rate of pancreatic cancer continues to rise by about 1% per 

year since 2000 (Siegel et al., 2022). Pancreatic cancer has a poor prognosis due to 

its early local invasion and distant metastatic dissemination, its lack of early specific 

symptoms, and its late diagnosis. It typically metastasizes to the liver, lungs, and 

lymph nodes. Symptoms of pancreatic cancer may include weight loss, abdominal 

and back pain, and the development of type 2 diabetes. Additionally, some 

pancreatic tumors may also cause jaundice (yellowing of the skin and/or eyes) 

leading to earlier diagnosis. Other defining features of pancreatic cancer include 

progression from distinct types of precursor lesions, an extensive stromal reaction 

(desmoplasia) resulting in a hypovascular and hypoxic microenvironment, 

reprogramming of cellular metabolism, and evasion of tumor immunity (Ryan et al., 

2014). 

Treatment opportunities for PDAC 

At the time of diagnosis, pancreatic cancer patients usually have locally 

advanced disease and even metastases, precluding surgery, which is currently the 

only possible curative method (Rosty & Goggins, 2002). Other treatment options are 

adjuvant chemotherapy and radiation to reduce the risk of recurrence. Targeted 

therapies, such as the epidermal growth factor receptor (EGFR) inhibitor erlotinib 
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(Moore et al., 2007) and the poly(adenosine diphosphate-ribose) polymerase (PARP) 

inhibitor olaparib (Golan et al., 2019), can also be given along with chemotherapy for 

advanced disease to extend survival or relieve symptoms, but they rarely produce a 

cure. In current treatment strategies, the combination of platinum agents plus other 

DNA damage-producing agents or mitotic spindle inhibitors are used. Systematic 

chemotherapy with gemcitabine or FOLFORINOX (combination therapy of folinic 

acid, 5-fluoruracil, irinotecan, and oxaliplatin), results in median survival of 5.6 and 

11.1 months, respectively (Burris et al., 1997; Conroy et al., 2011; Cid-Arregui & 

Juarez, 2015). Due to the combination of four cytotoxic drugs, FOLFORINOX is a 

highly aggressive treatment option that is in most cases only tolerated in young 

pancreatic cancer patients. A more recent treatment modality is the combinatorial 

treatment using nab-paclitaxel (nanoparticle albumin-bound paclitaxel) plus 

gemcitabine which was shown to prolong the median overall survival to 8.5 months 

compared to the treatment with gemcitabine alone (Von Hoff et al., 2013). 

Disappointingly, none of these systematic treatments are close to producing a 

complete remission and can only minimally extend the life span of pancreatic cancer 

compared to treatments already available 30 years ago.  

Early detection is therefore extremely important to improve patient survival. 

Imaging methods are not accurate enough to detect early lesions, assess tumor stage 

or resectability, or even discriminate between benign and malignant lesions (Singhi 

et al., 2019). The carbohydrate antigen 19-9 (CA 19-9) is currently considered the 

best-validated serum marker in patients with pancreatic cancer, but it has limited 

use in the early diagnosis and progression monitoring of the disease (Poruk et al., 

2013). More clinically meaningful and efficient diagnostic strategies such as 

molecular markers capable of identifying pancreatic cancer during the curative stage 

of the disease are urgently needed. It is expected that the understanding of genetic 

alterations and molecular pathways involved in tumor progression, combined with 

the development of high-throughput sensitive techniques, will lead to the discovery 
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of a panel of biomarkers that will enable an efficient therapy at curable stages of 

tumor development. 

Risk factors of PDAC 

Although it is estimated that 5 to 10% of pancreatic cancers have an 

inherited component, the genetic basis for familial aggregation is still unclear (Klein 

et al., 2004; Solomon et al., 2012). Some rare genetic syndromes are linked to an 

increased risk of developing pancreatic cancer. Hereditary breast and ovarian cancer 

syndrome with mutations in BRCA1 and BRCA2 genes are associated with a 3.5 to 

10-fold increased risk of developing pancreatic cancer (Breast Cancer Linkage 

Consortium, 1999), whereas hereditary breast cancer caused by mutations in the 

PALB2 gene duplicates the risk (X. Yang et al., 2020). Hereditary pancreatitis with 

mutations in PRSS1 gene and Peutz-Jeghers syndrome with mutations in STK11/LKB1 

also increase the risk to 50-fold and 100-fold respectively (Lowenfels et al., 1997; 

Giardiello et al., 2000). Similarly, familial atypical multiple mole and melanoma 

syndrome is linked to p16/CDKN2A mutations and a 17-fold increased risk (Vasen et 

al., 2000). Lastly, Lynch syndrome, also known as hereditary non-polyposis colorectal 

cancer, with mutations in MLH1, MSH2, and MSH6, genes increases the risk up to 

8.6-fold (Kastrinos et al., 2009). In all the cases, the risk of pancreatic cancer may be 

higher if there is also a history of pancreatic cancer in the family. 

In the same way, there are also some other non-genetic factors that increase 

the risk of developing PDAC such as non-hereditary chronic pancreatitis (Duell et al., 

2012), smoking (Bosetti et al., 2012), long-lasting diabetes mellitus (Ben et al., 2011), 

and obesity (Aune et al., 2012). 
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PDAC progression and development 

The pancreas is a glandular organ that belongs to the digestive and 

endocrine systems of vertebrates. In the adult pancreas, the endocrine portion 

comprises only 1-2% of cells that are contained in the islets of Langerhans. It is 

composed of alpha cells secreting glucagon to increase blood glucose levels, beta 

cells secreting insulin to reduce blood glucose levels, delta cells that produce 

somatostatin to inhibit insulin and glucagon release, and gamma cells, also known as 

PP, producing pancreatic polypeptide with a role in appetite. The hormones 

produced by islets are also important for regulating the exocrine tissue. The exocrine 

portion comprises around 98% of the pancreatic mass and is mainly composed of 

acinar and ductal cells. Acinar cells secrete digestive enzymes such as proteases 

(trypsinogen, among others), amylase, lipase, and trypsin inhibitors; while duct cells 

produce water, bicarbonate, chloride, intrinsic factor, and antibacterial proteins. 

The most frequent histological subtype of pancreatic cancer is pancreatic 

ductal adenocarcinoma (PDAC), accounting for 95% of pancreatic malignancies. It 

develops in the exocrine tissue of the pancreas. The remaining 5% of pancreatic 

tumors originate from hormone-producing endocrine cells, also known as islet cells 

or neuroendocrine tumors (NETs). NETs often have a better prognosis and younger 

median age of diagnosis.  

Histopathological and genetic analyses have defined three distinct pre-

malignant lesions of the pancreas: pancreatic intraepithelial neoplasms (PanIN), 

intraductal papillary mucinous neoplasms (IPMN), and mucinous cystic neoplasms 

(MCN) (Maitra et al., 2005). PanINs are the best-described precursor lesions of 

human PDAC. Nevertheless, tumors require multiple genetic abnormalities to 

progress to metastatic disease (Iacobuzio-Donahue, 2012). PanINs are thought to 

progress through a stepwise accumulation of specific somatic mutations and cellular 

atypia. According to the extent of cytological dysplasia, PanINs are sub-stratified 
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from a low grade to a high grade in PanIN-1A, PanIN-1B, PanIN-2, and PanIN-3 or 

carcinoma-in-situ (Hezel et al., 2006). The PanIN progression stages are typically 

paralleled by somatic mutations resulting in KRAS activation, as well as inactivation 

of CDKNA2, TP53, and genes of the canonical transforming growth factor-β (TGFβ) 

signaling pathway such as SMAD4 (Figure 1) (Hruban et al., 2000). These alterations 

are present in more than 50% of human PDAC cases and are thus hallmark mutations 

of the disease, accompanied by other genes mutated at low prevalence that reveals 

the complex mutational landscape of PDAC (Jones et al., 2008; Waddell et al., 2015). 

 

Figure 1| Classical progression model of pancreatic cancer. Histological and 
genetic progression from normal duct epithelium to invasive pancreatic cancer 
(from left to right). Modified from (Hruban et al., 2000). 

 

 The occurrence of KRAS activating mutations is the first and almost 

universal event (95% of PDAC) during early PanIN progression. These critical 

mutations are not randomly distributed along the protein-coding sequence of 

KRAS. There are two main hotspot mutations resulting in changes of amino 

acids G12 (~90% of cases) or Q61 (~5% of cases) (data from QCMG study, 

cBioPortal). KRAS activating mutations are typically followed by inactivation 

of the CDKN2A locus during PanIN progression. Loss of function of CDKN2A 
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already occurs in low-grade PanIN lesions and is observed in more than 90% 

of PDAC cases (Hruban et al., 2000; Schutte et al., 1997). The third hallmark 

of PanIN progression is the inactivation of TP53 protein which typically occurs 

in more advanced PanIN stages (Hruban et al., 2000). TP53 governs multiple 

processes involved in tumor suppression and is mutated in up to 85% of PDAC 

cases (Yachida et al., 2012). About 66% of all TP53 mutations are missense 

mutations that are typically located in the DNA binding domain and result in 

its functional inactivation (Jones et al., 2008; Yachida et al., 2012). The 

inactivation of SMAD4 is the fourth hallmark mutation that occurs during the 

late stages of PanIN progression to human PDAC (Hruban et al., 2000). SMAD4 

is inactivated in 60% of human PDAC cases, either through somatic mutation 

(~25%) or through homozygous deletion (~30%) (Hahn et al., 1996; Dardare 

et al., 2020). SMAD4 is a co-transcription factor and the central effector of 

the TGFβ signaling pathway, which is important for the regulation of cellular 

growth, differentiation, and tissue homeostasis (Shi & Massagué, 2003). 

The study of PanIN precursor lesions supported a stepwise progression 

model with the gradual accumulation of somatic genetic alterations along with 

increasing cellular atypia (Hruban et al., 2000). This pattern indicates that the 

acquisition of driver mutations is associated with waves of clonal expansion. 

Nevertheless, recent studies challenged this linear progression model, showing an 

alternative model of punctuated evolution which might be also relevant during the 

PDAC progression of a subset of human patients (Waddell et al., 2015; Notta et al., 

2016). In contrast to linear evolution, this new model proposes the fast accumulation 

of several genomic and phenotypic changes in a small/unobservable niche, leading 

to a very fit phenotype that quickly sweeps through the population. One of the 

observed events that support this model is chromothripsis. This is defined as a 

phenomenon by which hundreds of chromosomal alterations occur during a single 
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catastrophic genomic event within a single cell cycle (Stephens et al., 2011; Korbel & 

Campbell, 2013). The importance of chromothripsis in PDAC is controversial. In some 

studies, chromothripsis events have been reported at a high frequency in human 

PDAC (67%), suggesting that PDAC progression occurs in a catastrophic manner 

(Notta et al., 2016; Real, 2003). In around 16% of cases, the occurrence of 

chromothripsis caused combined genetic alterations in KRAS, CDKN2A, TP53, and/or 

SMAD4 (predominantly affecting two genes) (Notta et al., 2016). By contrast, there 

are studies in which they have observed chromothripsis in only 10% of PDAC, so, 

they did not find any evidence of chromothripsis being a major mechanism of driver 

gene accumulation (Waddell et al., 2015). Besides the controversy of the importance 

of chromothripsis in PDAC development, chromothripsis has been linked to 

aggressive tumor behavior in other cancer entities (Rausch, Jones, et al., 2012). 

The sequencing of more than 500 pancreatic cancer exomes and more than 

100 genomes revealed the extensive mutational heterogeneity of PDAC beyond the 

four signature mutations (Jones et al., 2008; Biankin et al., 2012; Waddell et al., 2015; 

Bailey et al., 2016) with mutations frequencies below 10% in many genes involved in 

DNA damage repair, SWI/SNF mediated chromatin remodeling, axon guidance 

pathway or in well-known oncogenes (Campbell et al., 2010; Biankin et al., 2012; 

Waddell et al., 2015). Of note, only some of these genetic alterations, such as in 

BRCA1/2, PALB2, MYC, or KDM6A, could be attributed to certain phenotypes of 

pancreatic cancer. For instance, genetically unstable human PDACs are significantly 

associated with homozygous inactivating mutations of BRCA1/2 or PALB2 and can be 

targeted by platinum-based therapy while wild-type tumors do not respond well to 

that treatment (Waddell et al., 2015). MYC amplification, inactivating mutations of 

KDM6A, or upregulated expression of the TP63ΔN transcriptional network, are 

associated with squamous differentiation of human PDAC (Witkiewicz et al., 2015; 

Bailey et al., 2016). The rest of the mutated genes are not related to clinical, 

morphological, or biological characteristics of the disease, such as dedifferentiation 
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or metastatic dissemination (Makohon-Moore et al., 2017). In contrast, the 

metastatic process has been linked to the epigenetic and metabolic reprogramming 

of specific pancreatic cancer cells (McDonald et al., 2017; Roe et al., 2017). 

Accordingly, although significant progress has been made in the genetic 

characterization of pancreatic cancer in the last few years, the understanding of 

tumor evolution and phenotypic diversification in PDAC is still limited.  

Changes in Kras allele dosage are another important event for murine tumor 

progression and it has been similarly reported in human PDAC (Mueller et al., 2018). 

Amplification of the mutant KrasG12D allele in PDAC increases the metastatic potential 

by inducing epithelial-mesenchymal transition (EMT) signatures, being associated 

with a worse prognosis. Alternative oncogenic gains in the Kras downstream 

signaling (Myc, Yap1, or Nfkb2) were also identified and described to collaborate 

with heterozygous KrasG12D in driving tumorigenesis, but with a lower metastatic 

potential. This KRAS allelic imbalance might help to understand tumor progression 

and how the tumor acquires major biological features (Mueller et al., 2018).  

Molecular subtypes of PDAC 

Due to the absence of a clinically relevant classification of PDAC, several 

studies have classified human PDAC samples according to their transcriptional 

profiles, which are based on the expression of coding genes (Collisson et al., 2011; 

Moffitt et al., 2015; Bailey et al., 2016). Importantly, most of the differences between 

these classifications are probably explained by their different input materials and 

experimental approaches (Collisson et al., 2019). First, in 2011, Collisson et al. 

microdissected human PDAC from tissue sections away from the stroma and defined 

three molecular human PDAC subtypes, named classical, quasi-mesenchymal (QM), 

and exocrine-like (Collisson et al., 2011). These subtypes presented different tumor 

progression rates and treatment responses in patients. Particularly, the QM subtype 

correlated with high tumor grade and poor survival. Next, virtual/bioinformatical 
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microdissection of patient-derived xenografts and human PDAC cell lines, excluding 

the normal pancreas and tumor microenvironment transcripts from the analysis, 

allowed to define the classical and basal-like subtypes (Moffitt et al., 2015). The 

basal-like subtype mostly correlates with the QM subtype from the previous 

classification. Later, Bailey et al. used bulk tumor tissues, including normal and 

stromal cell types, and proposed four subtypes of human PDAC, denominated 

squamous, pancreatic progenitor, aberrantly differentiated endocrine exocrine 

(ADEX), and immunogenic (Bailey et al., 2016).  

Recently, the same authors have made efforts to unify the nomenclature 

between their studies, correlating similar or overlapping molecular subtypes and 

trying to infer the relationships between them (Collisson et al., 2019). In this context, 

at least two human PDAC subtypes originally described by Collisson et al. mostly 

overlap with the subtypes proposed by the following ones. The classical subtype 

correlates with pancreatic progenitor and immunogenic subtypes, and the QM 

overlaps with the basal-like and squamous subtypes. It is not clear that the 

immunogenic subtype is a real subtype of pancreatic cells since it could be caused 

by contamination with cells of the immune system. Indeed, the exocrine-like 

signature has been associated with an artifact of acinar cell ‘contamination’ and it is 

not present in Moffitt’s classification. Moreover, each PDAC subtype has specific 

gene alterations affecting functionally relevant cancer signaling pathways (Bailey et 

al., 2016). The pancreatic progenitor subtype preferentially expresses genes involved 

in early pancreatic development such as FOXA2/3, PDX1, and MNX1. The 

immunogenic subtype presents immune network upregulation, including pathways 

involved in acquired immune suppression. It generates a more pronounced immune 

response. The ADEX subtype presents upregulation of genes that regulate networks 

involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine 

differentiation (NEUROD1 and NKX2-2). Lastly, the QM, basal-like, and squamous 

subtypes are associated with a poor prognosis. They present upregulation of the 
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TP63ΔN transcriptional network, mutations in TP53, and in genes involved in 

chromatin modification, such as MLL2/KMT2D, MLL3, and KDM6A (Collisson et al., 

2019). They also lose endodermal identity through hypermethylation of genes 

involved in endodermal and pancreatic cell fate determination, such as HNF4A and 

GATA6 (Bailey et al., 2016). This makes the transcriptome an optimal method to 

distinguish the QM/basal-like/squamous subtype from the others (Collisson et al., 

2019).  

These human transcriptome data sets have been cross-validated with 

transcriptomes from PDAC mouse models. Genomic and transcriptomic analyses of 

mouse-derived tumors can be combined with their clinical manifestation to generate 

associations between genetic mutations and disease phenotypes. Collisson classifier 

gene sets were projected on human- and mouse-derived tumor data, revealing 

genomic species differences, but also conserved oncogenic networks between 

mouse and human molecular subclusters (Collisson et al., 2011; Mueller et al., 2018). 

The cross-validation separated the human transcriptomes into two subtypes 

(classical and QM) and the mice ones into three subtypes (classical-equivalent, QM-

equivalent, and mesenchymal-equivalent) (Collisson et al., 2011; Mueller et al., 

2018). The mesenchymal-equivalent subtype shows a strong upregulation of 

epithelial-to-mesenchymal transition gene sets and a significant increase of mutant 

Kras dosage compared to the “QM-equivalent” subtype (Mueller et al., 2018). 

Reliable molecular classifications of PDAC uncover principal oncogenic networks that 

could potentially improve therapeutic approaches for patients. 
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Mouse models of PDAC 

Genetically engineered mouse models (GEMMs) have been used in cancer 

research to study human tumorigenesis molecular mechanisms for decades. Specific 

mutations can be targeted/introduced to the endogenous locus of genes in mouse 

embryonic stem (ES) cells by homologous recombination, allowing its transfer 

through the mouse germ line (Robertson et al., 1986). In addition, conditional and 

inducible mouse models typically use Cre/LoxP or Flp/FRT site-specific 

recombination systems (Sauer, 1998) for tissue- or time-specific gene 

activation/inactivation. 

KRAS oncogene is the master driver of PDAC and it is mutationally activated 

in over 90% of cases (Singhi et al., 2019). One of the KRAS hotspot mutations in 

human PDAC patients is the G>D mutation in codon 12. In 2001, the generation of 

the KrasLSL-G12D mouse facilitated for the first time the conditional expression of a 

hotspot activating Kras mutation at physiological levels from the endogenous locus 

(Jackson et al., 2001). This model was generated through the knock-in of the KrasG12D 

mutation silenced by a loxP-stop-loxP (LSL) cassette. The KrasG12D-allele can be 

activated by Cre-recombinase expression and subsequent LSL element excision that 

enables the expression of the downstream oncogene in a tissue- or time-specific 

manner. This excision can be promoted specifically in the pancreas by breeding 

KrasLSL-G12D mice to transgenic mice expressing Cre recombinase from pancreatic-

specific promoters. The pancreatic and duodenal homeobox 1 (Pdx1) (Gannon et al., 

2000) and the pancreas-specific transcription factor 1a (Ptf1a/p48) genes (Nakhai et 

al., 2007) are early developmental transcription factors in the mouse pancreas. Both 

of them have been widely used to achieve pancreas-specific conditional expression 

of the Cre recombinase. The Pdx1 gene is expressed earlier at mouse embryonic day 

E8.5, while the Ptf1a gene is expressed at E9.5. Both genes support the LSL excision 

in the exocrine pancreatic compartment (Offield et al., 1996; Kawaguchi et al., 2002). 

Unfortunately, the activity of both promoters in non-pancreatic tissue has been also 
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described. Thus, Pdx1 expression has been described in the rostral duodenum, bile 

duct, and antral stomach during foregut development (Gannon et al., 2000). 

Additionally, the Ptf1a gene product can also be detected in the retina and the brain 

(Nakhai et al., 2007). 

 Expression of endogenous levels of KrasLSL-G12D in the pancreas with either 

promoter (KC model), drives the formation of the full spectrum of PanIN lesions with 

slow progression to PDAC and a median tumor latency of 67 weeks (Hingorani et al., 

2003). The number and grade of these PanINs increase with the age of the mice. 

These PanINs spontaneously progress at low frequency to both locally invasive PDAC 

and metastatic spread to the liver, lungs, and lymph nodes, as found in humans. 

These observations revealed that activating Kras mutations are essential for 

pancreatic carcinogenesis. Moreover, it allowed for the first time the functional 

testing of hallmark mutations in PDAC and its progression patterns in an in vivo 

context through the combination of this KC model with conditionally deleted or 

mutated alleles of tumor suppressor genes known to be mutated during PanIN-to-

PDAC progression in humans, such as CDKN2A, TP53, and SMAD4. 

Whereas Cdkn2a knock-out alone in the mouse pancreas did not lead to the 

development of any malignancy, the homozygous deletion of the Cdkn2a locus in 

addition to KrasG12D in the mouse pancreas accelerated the early appearance of 

PanIN lesions and the rapid progression to highly invasive and metastatic spread 

mainly to the lymph nodes (Aguirre et al., 2003). The survival of 

KrasG12D;Cdkn2aFlox/Flox mice was dramatically reduced compared with the KC model, 

from more than 12 months to 2 months. This rapid tumorigenesis could explain the 

low metastasis frequency in distant organs such as the liver and lungs. Therefore, 

Kras activation seems to be an initiating step in PanINs development, and Cdkn2a 

loss accelerates the malignant progression of the disease.  
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 Trp53 is typically inactivated through homozygous deletion and/or somatic 

mutations such as the R172H substitution mutation (mouse ortholog of human 

R175H). To study the role of Trp53 inactivation during PanIN progression and PDAC 

development in mice, conditional Trp53 knock-out (Trp53Flox) and/or mutant 

(Trp53LSL-R172H) alleles were crossed into the Pdx1-Cre;KrasLSL-G12D background 

(KrasG12D;Trp53Flox/Flox and KrasG12D;Trp53LSL-R172H/LSL-R172H) (Hingorani et al., 2005; 

Bardeesy, Aguirre, et al., 2006). Without expression of oncogenic KrasG12D, 

homozygous deletion of Trp53 and heterozygous expression of R172H mutation did 

not result in any morphological changes or any signs of pancreatic carcinogenesis. 

Nevertheless, KrasG12D;Trp53Flox/Flox mice resulted in rapid tumorigenesis in the 

pancreas and a severely reduced median survival of 2 months as compared to 12 

months of the KrasG12D model. The KrasG12D;Trp53LSL-R172H/LSL-R172H mice promoted an 

acceleration of invasive cancer formation, frequent liver or lung metastases and 

reduced the survival of the mice to 5 months (Hingorani et al., 2005; Bardeesy, 

Aguirre, et al., 2006). These primary tumours and metastasis exhibited a high degree 

of genomic instability as seen in human PDAC. However, mutations in other 

important cancer genes were not detected highlighting a strong oncogenic 

cooperation between Kras and Trp53. Interestingly, the metastatic burden was 

found to be increased in KrasG12D;Trp53LSL-R172H/LSL-R172H compared to 

KrasG12D;Trp53Flox/Flox mice, although they developed primary pancreatic cancer in a 

similar manner (Morton et al., 2010).  

Two different models were developed to investigate the role of Smad4 

deletion for PDAC initiation and progression. As already observed for complete 

inactivation of Cdkn2a or Trp53, the pancreas-specific homozygous knock-out of 

Smad4 alone did not result in morphological abnormalities or the induction of any 

malignant lesions in the mouse pancreas (Bardeesy, Cheng, et al., 2006). In contrast, 

the combination of pancreas-specific expression of oncogenic KrasG12D and complete 

deletion of Smad4 resulted in a dramatically reduced median survival of 80 days. 
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KrasG12D;Smad4Flox mice predominantly developed pancreatic lesions resembling 

intraductal papillary mucinous neoplasia (IPMN, a PDAC precursor in humans) and 

shows higher expression of epithelial markers instead of the frequent epithelial-to-

mesenchymal transition observed in tumors with intact Smad4 (Bardeesy, Cheng, et 

al., 2006).  

Importantly, in all mouse models where oncogenic Kras is activated during 

embryogenesis, low-grade PanINs take 8-12 months to develop to high-grade lesions 

and PDAC. In this context, tumor latency can be reduced to 4 months by inducing 

acute pancreatitis with caerulein (Carrière et al., 2009, 2011) 

Recently, a new mouse model of pancreatic cancer has been developed 

(Schönhuber et al., 2014). It consists on an inducible dual-recombinase system that 

combines the flippase-FRT (Flp-FRT) and the Cre-loxP recombination technologies 

for controlling tumor initiation and secondary genetic manipulation, respectively 

(Figure 2).  It expresses an oncogenic allele of Kras specifically in the pancreas (TgPdx1-

Flp:KrasFSF-G12D). After pancreatitis induction with caerulein, this model develops PDAC 

that fully recapitulates all types of lesions observed in human PDAC progression as 

well as metastatic spread to lymph nodes, liver, and lungs before the age of 8 

months. Additionally, this model expresses CreERT2 (R26FSF-CreERT2), a tamoxifen-

inducible version of Cre recombinase. CreERT2 is controlled by an upstream FSF (FRT-

Stop-FRT) cassette, which allows CreERT2 expression to tissue expressing Flp 

recombinase (in this background specific to the pancreas).  This scenario allows the 

introduction of any genetically engineered allele that depends on Cre expression.  
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Figure 2 | Genetic strategy to induce PDAC and introduce a second genetic 
manipulation. Left, genetic strategy to activate oncogenic KrasG12D in the 
pancreas using the Flp-FRT recombination system (Pdx1-Flp activation) and to 
secondly activate any allele by tamoxifen-mediated activation of CreERT2 in 
the Flp lineage through the Cre-loxP recombination system. Right, alcian blue 
and hematoxylin and eosin (H&E) stained sections of PanIN lesions and PDAC 
of Pdx1-Flp;FSFKrasG12D/+ mice. Modified from (Schönhuber et al., 2014). 
 
 

Finally, in the last decade, tumorigenic strategies have been developed to 

confirm and identify relevant pancreatic cancer genes in mice. These new systems, 

are based either on the random mobilization of transposons, such as the Sleeping 

Beauty or PiggyBac transposon systems (Dupuy et al., 2005; Ding et al., 2005) or on 

the simultaneous edition of multiple genes using the clustered regularly interspaced 

short palindromic repeats (CRISPR)/Cas9 technology, have unraveled the role of new 

tumor suppressor genes such us Uspx9 or Foxp1 (Pérez-Mancera et al., 2012; Rad et 

al., 2015) 
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Intratumor heterogeneity  

The simple model of linear cancer progression, in which tumors arise as the 

result of the progressive accumulation of genetic alterations, each one followed by 

a selection of the fittest clone with the metastases as the final fatal stage, has been 

challenged in the last decades. Instead, in 2008 Campbell and collaborators 

identified the simultaneous presence of different genetic clones in chronic 

lymphocytic leukemia (Campbell et al., 2008). Later, this observation was also 

detected in many solid tumors (McGranahan & Swanton, 2017). Therefore, tumors 

seem to contain different cell populations forming complex ecosystems in constant 

evolution after malignant transformation. It is also difficult to reconcile this new view 

of tumor progression with the presence of a small population of cancer stem cells, 

identified in some tumor types and postulated to support the growth of the tumor 

bulk (Magee et al., 2012). According to this, it is possible that one or other model 

predominates in some tumor types, whereas a combination of both is needed to 

explain the behavior of others.  

Clinical implications of intratumor heterogeneity 

The presence of ITH has profound clinical implications. It has been 

postulated that tumor heterogeneity plays a major role in treatment resistance and 

metastasis, the two major causes of cancer-associated death. In terms of diagnosis, 

the main source of human tumor samples comes from single biopsies. This material 

is not sufficient to capture the whole molecular heterogeneity in the primary tumors 

(Fisher et al., 2013). This challenges our ability to correctly classify the molecular 

features of a tumor and determine the subtype of the disease from a single sample 

(Gerlinger et al., 2012, 2014). Interestingly, the presence of clones that could be 

categorized in different molecular groups has been described inside the same 

ovarian primary tumor (Bashashati et al., 2013). 
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Treatment of cancer patients is also hampered by the presence of ITH. As a 

correct molecular characterization determines a preferred treatment, targeted 

therapies might affect only some cell clones inside the tumors, while others are 

insensitive to them. As a consequence of this clonal selection induced by therapies, 

responses to therapy are expected to be reduced with time. This could explain the 

frequent cancer relapses arising after targeted therapies. Moreover, the presence of 

treatment-resistant cell clones inside the primary tumor has been detected even 

before treatment. These cells are postulated to be the main cause of tumor relapse. 

Additionally, there is evidence that the spread of tumor cells, as well as seeding 

metastases, might be sometimes an early event in tumor progression, even at a pre-

malignant stage. If metastases are seeded by some of these minority clones, the 

limited success of the same therapy in metastatic growths can be expected (Rhim et 

al., 2012). Consequently, the grade of ITH has been associated with a worse 

prognosis in cancer patients (Fisher et al., 2013; Almendro et al., 2014). 

 

Genetic intratumor heterogeneity 

Genetic intratumor heterogeneity (ITH) is likely the result of an ongoing 

genetic instability followed by independent branched evolution of the generated 

more competitive subclones (Jamal-Hanjani et al., 2017; de Bruin et al., 2014; 

Campbell et al., 2010; Swanton, 2012; Hiley et al., 2014; Yachida et al., 2010; 

Gerlinger et al., 2014).  Interestingly, the assumption that clonal subpopulations 

must always be in competition has been challenged by the results of studies showing 

that cooperation between clearly different subclones might be required for tumor 

propagation in cancers with non-cell-autonomous initiating events, and that 

metastatic sites can be seeded by genetically distinct subclones from the same 

primary tumor (known as polyclonal-seeding) (Cleary et al., 2014; Gundem et al., 

2015; Hong et al., 2015; Maddipati & Stanger, 2015). The exchange of tumor material 
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between different metastatic sites (known as cross-metastatic seeding) and 

recolonization of the primary tumor by circulating tumor cells (known as tumor self-

seeding) (Gundem et al., 2015; Hong et al., 2015; M.-Y. Kim et al., 2009) have been 

also been reported.  

How this genetic heterogeneity is generated and maintained is not well 

understood. It could be either an ongoing process consequence of a general genetic 

instability or a sporadic event happening at a specific moment during tumor 

progression. This second scenario can derive from the occurrence of a catastrophic 

event that should produce a massive genetic variation in a very short period of time. 

Examples of this kind of event, such as chromothripsis or kataegis, have been 

described by several authors (Nik-Zainal et al., 2012; Stephens et al., 2011).  

One of the most cited studies of ITH in cancer was based on multiregional 

sequencing of renal carcinomas and associated metastatic sites (Gerlinger et al., 

2012). This multisampling strategy was based on biopsy sampling of multiple regions 

within the primary tumor as well as associated metastasis which were sequenced 

(Jamal-Hanjani et al., 2017; Gerlinger et al., 2014). By multiregional sequencing, two 

categories of somatic single-nucleotide mutations are distinguished by their 

presence in all the regions (common or founder mutations) or in some of them 

(specific or progressor mutations). The common mutations are assumed to 

accumulate in the early stage of cancer evolution, indicating a common genetic 

origin. The common ancestor clone that has acquired all the founder mutations then 

branches into subclones, which accumulate specific progressor mutations and 

contribute to the formation of ITH. The evolutionary history of the tumor can be 

inferred through these multiregional mutational profiles by constructing a 

phylogenetic tree (Gerlinger et al., 2012, 2014). Interestingly, in this study, it can be 

observed that all metastatic regions emerged from a single evolutionary branch that 

diverged quite early from the branch responsible for the expansion of the primary 

tumor. 
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Intratumor genetic heterogeneity in PDAC 

A high degree of ITH has been reported in PDAC (Yachida et al., 2010; 

Campbell et al., 2010). Yachida and colleagues demonstrated that clonal populations 

that give rise to distant metastases in a branched evolutionary pattern are already 

present in the primary tumor. These clones genetically evolve from the original non-

metastatic parental clone. Accordingly, the genetic heterogeneity of metastases 

reflects heterogeneity already present in the primary carcinoma (Yachida et al., 

2010). The timing of genetic evolution in pancreatic cancer has been studied. 

Mathematical modeling data suggested a timeframe of at least a decade between 

the occurrence of the initiating mutation and the appearance of the parental non-

metastatic founder cell. Cancer required an additional five years to acquire 

metastatic potential and patients died an average of two years later (Yachida et al., 

2010). In this case, the degree of genetic differences between the primary tumor and 

the metastatic sites indicated that metastasis emerged late during tumor 

development. 

In 2010, Campbell and colleagues also demonstrated that genome instability 

occurred early in their samples of pancreatic cancer. Additionally, they found that 

metastasis-initiating cells were genetically heterogeneous, that seeding metastasis 

may require driver mutations beyond those required for primary tumors, and that 

phylogenetic trees across metastases show convergent evolutionary paths and 

organ-specific relationships between metastases (Figure 3) (Campbell et al., 2010). 

Later, this polyclonal-seeding, in which genetically different subclones from the 

primary tumor colonize the metastatic sites, was confirmed (Maddipati & Stanger, 

2015). Importantly, no recurrently mutated metastasis driver gene has been found 

yet in human PDAC (Makohon-Moore et al., 2017). 
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Figure 3 | Phylogenetic relationships of different metastases from a PDAC 
patient and a derived model of clonal evolution of metastases. A) Left, 
presence (green) or absence (yellow) of somatic rearrangements across the 
metastases from a patient. Right, inferred phylogenetic tree of relationships 
for metastases, showing a clade of abdominal metastases and a more evolved 
clade of lung metastases. The genetic distance between nodes is proportional 
to the length of black lines. B) Model for the clonal evolution of metastases 
derived from the observed phylogenetic relationships. Molecular time is 
represented from left to right and is associated with the acquisition of genetic 
alterations, subclonal evolution, and expansion during the progression of the 
disease, even within metastases, observing tertiary metastases seeding. 
Modified from (Campbell et al., 2010). 
 

To study the development of this ITH in vivo, the generation of mouse 

models, such as the Confetti mice, could be very useful (Schepers et al., 2012). This 

model relies on a lineage-specific genetic labeling system, named Brainbow (Livet et 

al., 2007). It is based on the random and inheritable expression of different 

fluorescent markers. Thus, a variable number of different fluorescent proteins, 

surrounded by loxP sites, are located downstream of a constitutive promoter. After 

the action of Cre recombinase, one of these proteins is located immediately after the 

promoter. The election of the recombination event is mainly random and once it 

occurs, it is permanent and inherited by all descendant cells (Figure 4). This mouse 

model could be combined with the previously described PDAC mouse model (TgPdx1-

Flp:KrasFSF-G12D) (Schönhuber et al., 2014) to study the tumor clonality in different 

stages of PDAC progression. 
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Figure 4 | Genetic tracing system based on the stochastic expression of 
fluorescent proteins. A) Brainbow-2.1 construct containing four fluorescent 
proteins flanked by loxP sites in opposite orientations. Cre recombination leads 
to a random inversion or deletion of the proteins which are expressed in 
different cellular locations: red and yellow fluorescent proteins in the 
cytoplasm, cerulean in the membrane, and the green protein in the nucleus. 
From (Livet et al., 2007). B) Labelled stem cells from the small intestine of the 
Confetti mouse (expressing the Brainbow-2.1 allele). From (Schepers et al., 
2012).  

 

Functional intratumor heterogeneity  

ITH has also been revealed at the transcriptional level inside the tumors and 

metastases due to the recent advances in single-cell technologies. In particular, 

tumor cells with different transcriptional profiles have been found inside the tumors 

(Patel et al., 2014; Puram et al., 2017). These tumor cells are able to establish 

mutually beneficial exchanges (Tabassum & Polyak, 2015) or, alternatively, 

hierarchical relationships through, for example, the potential presence of cancer 

stem cells (CSCs). They have been described as a minority group of cells with 

extraordinary capabilities to promote tumor progression, metastatic spread, and 

treatment resistance (Prasetyanti & Medema, 2017). Importantly, malignant cells 

from the primary tumor present the ability to modify the environmental conditions 
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of the metastatic sites through the production of extracellular vesicles (Peinado et 

al., 2017). For example, it has been shown that derived exosomes from PDAC favor 

the formation of the pre-metastatic niche in the liver (Costa-Silva et al., 2015). 

Besides the diverse malignant cells, we found local stromal components and 

immune cells. This complex diversity whitin tumors is known as tumor 

microenvironment (TME) and affects the aforementioned processes by activating 

fibrotic pathways and establishing a pro-inflammatory environment. In this context, 

cancer-associated fibroblasts (CAFs) are an abundant component of the stroma in 

most solid tumors and actively participate in the formation of a desmoplastic tumor 

niche (T. Liu et al., 2019). These are the main characteristics of human PDAC. 

Moreover, several types of CAFs have been identified in different cancers, including 

PDAC (Elyada et al., 2019). Importantly, each group of CAFs has specific functions, 

recruiting immune cells or inducing epithelial-mesenchymal transition in tumor cells 

(Tirosh, Izar, et al., 2016; Puram et al., 2017). Moreover, immune cells are also 

frequently infiltrated within tumors. Their presence also influences the outcome of 

the patients, such as the better outcome of patients with non-small cell lung cancer 

presenting a higher proportion of active CD8+T lymphocytes versus the exhausted 

ones (Guo et al., 2018). So, the complex relationship between all the cell types 

present in the tumors determines a tolerant or non-tolerant TME. 
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Next-generation sequencing 

The origins of DNA sequencing 

Since the description of the double helix structure of the deoxyribonucleic 

acid (DNA) in 1953 by Watson, Crick, and Franklin, many attempts were made to 

sequence DNA. The first-generation sequencing technologies emerged in 1977 and 

include the Maxam-Gilbert method, based on chemical cleavage (Maxam & Gilbert, 

1977), and the Sanger method, based on a chain-termination strategy (Sanger, 

Nicklen, et al., 1977). Following the latter approach, Sanger and colleagues 

successfully sequenced the first DNA genome belonging to bacteriophage PhiX174 

with a whole length of 5375 base pairs (bp) (Sanger, Air, et al., 1977). Since then, the 

Sanger method was popularized as Sanger sequencing and became the sequencing 

gold standard for the next 30 years. In this approach dye-labelled deoxynucleotides 

(dNTPs) and dideoxy-modified dNTPs (ddNTPs) are mixed and supplied to a DNA 

polymerase. During the elongation, some strands incorporate a ddNTP, thus 

terminating elongation because ddNTPs lack the 3′-hydroxyl group, which is required 

to form a bond with the 5′-phosphate of the next dNTP (Chidgeavadze et al., 1984). 

Then the strands are separated by electrophoresis and the terminal base label of 

each strand is identified according to the fragment length. A significant number of 

modifications were implemented to Sanger sequencing over the years. Thus, a set of 

four fluorescent labels reduced the number of required independent reactions, this, 

together with fragment size discrimination through capillary gel electrophoresis, 

allowed the simplification and automation of the process (L. M. Smith et al., 1986). 

In 2001, the first human genome map with their approximately 3x109 nucleotides 

was completed using the improved Sanger method (Lander et al., 2001).  
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Next-generation sequencing technologies 

Since 2005, the emergence of next-generation sequencing (NGS) 

technologies, also known as massively parallel or high-throughput sequencing 

technologies, revolutionized genomic research. The advantages of NGS compared 

with traditional sequencing methods include the analysis of hundreds of 

independent sequences generated from a specific region and the consequently 

higher sensitivity to detect low-frequency variants, the speed-up of sequencing even 

for high sample collections, and the high production of sequence in a single 

experiment reducing very significantly the cost per sequenced base (Goodwin et al., 

2016). Nowadays, NGS technologies facilitate, for instance, the sequence of a 

complete human genome within a couple of days for less than $1000 compared with 

the sequencing of the first human genome which cost about $1 billion and took 13 

years to be completed using Sanger sequencing (Schwarze et al., 2020). 

The first commercially successful NGS platforms were based on the Roche 

454 technology, which later led to the Ion Torrent/Proton system (Rothberg et al., 

2011).   

Roche 454 sequencing platform is the most closely related to the original 

pyrosequencing technology (Margulies et al., 2005). The process is carried out in 

fragments immobilized into beads captured inside emulsion droplets. One of the 

four fluorescently labeled dNTPs is sequentially added in each sequencing cycle. The 

nucleotide incorporation in a molecule releases a pyrophosphate that is converted 

into ATP by an ATP-sulfurylase. In the presence of ATP, luciferase converts luciferin 

to oxyluciferin to generate light, which is then detected and captured identifying 

those molecules that incorporate the specific nucleotide in each cycle. This platform 

was very successful between 2005 and 2008 due to a large number of sequences 

generated and the low cost of sequencing. In 2012, the 454 technology became non-

competitive and Roche ceased supporting this platform in 2016.  



Introduction 

27 
 

Following the same principle, Life Technologies developed in 2010 the Ion 

Torrent/Proton system (Rothberg et al., 2011). It follows the same strategy as 454 

but records the incorporation of each nucleotide with a semiconductor that detects 

pH changes in the reaction solution produced by the release of a hydrogen ion (H+) 

when dNTPs are incorporated into the DNA. Consequently, Ion Torrent/Proton 

instruments do not require modified nucleotides or optical methods, such as 

fluorescence or chemiluminescence, which promised to greatly reduce the 

sequencing reaction time and cost. However, the process is time-consuming (1 

hour/100 bp) (Kchouk et al., 2017).  

Both strategies produce an output of reads of variable length that is 

determined by the template sequence. The lack of terminators in both systems was 

a major limitation that generates high error rates in homopolymer repeats and 

ultimately limits the resolution of polynucleotide tracks (Kchouk et al., 2017). 

In 2006, the Solexa sequencing platform was commercialized and acquired 

by Illumina in 2007. Illumina sequencing, as it was popularly known, is also based on 

sequencing by synthesis approach, using a molecular clustering technique. As a 

novelty, four reversible terminator nucleotides labeled with a different fluorophore 

are present in each sequencing cycle (Bentley et al., 2008). The identity of the 

incorporated nucleotide in each cluster is determined by recording the fluorescence. 

Then, the terminator with the fluorescent label is eliminated and the chamber is 

ready for a new incorporation cycle. In this system, the template is immobilized on 

a glass surface which is densely coated with oligonucleotides complementary to the 

adaptors of the library. In paired-end sequencing mode, after the production of the 

first read, the adapter on the opposite side of the read hybridizes with another set 

of oligonucleotides that are present on the glass, creating a bridge that allows the 

reverse sequencing. Then, a new set of sequencing cycles is performed producing 

the second read from the opposite extreme of the fragment (Morozova & Marra, 

2008). Currently, Illumina is the most popular technology in the NGS market, offering 
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scalable options to complement the requirements of each study, the cost of 

sequencing, and the intended use of the sequencing data (Buermans & den Dunnen, 

2014). It offers low throughput cheap benchtop platforms (MiniSeq and MiSeq 

series) as well as high throughput more expensive production systems (NextSeq, 

HiSeq, and NovaSeq series). 

Oxford Nanopore technology emerged in 2009 offering significant 

differences from other NGS technologies (Clarke et al., 2009). This novel system 

measures electrical current fluctuations as different molecules go through α-

hemolysin or a Mycobacterium smegmatis porin A (MspA) nanopores (Kircher & 

Kelso, 2010; Y. Wang et al., 2014). It allows DNA, RNA, and protein sequencing. The 

distinguishing features of this new technology are (1) the sequencing of single 

molecules avoiding the need for DNA fragments amplification (L. Liu et al., 2012), (2) 

the fast sequencing in real-time (instead of being paused after each base 

incorporation) (Schadt et al., 2010), and (3) the generation of long sequencing reads 

solving problems related with repetitive regions (Kchouk et al., 2017). Longer 

sequence reads allow sequencing through extended repetitive regions and facilitate 

closing gaps in current reference assemblies generated from short reads. However, 

there is a major issue of a high error rate (Mikheyev & Tin, 2014). In 2014, following 

the previous approach, the first commercially available sequencer in portable size 

appeared, termed MiniOn. Despite its high sequencing error rate (around 14%), it is 

particularly attractive for surveillance and clinical diagnostic applications where 

resources are limited (Lu et al., 2016).  

NGS applications  

The high flexibility and power of NGS technologies enable more than 200 

name-specific applications. Here I will summarize only some of them. Importantly, 

the type of biological information extracted from each of them is determined by the 

unique combination of the starting biological material and the specific protocols 
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related to library preparation, sequencing, and analysis (Metzker, 2010). To extract 

meaningful information from the sequencing data, specific software have been 

designed for each NGS application. Accordingly, a new generation of bioinformatics 

tools has emerged as a requisite to analyze sequencing data. Additionally, 

researchers frequently need to generate small pieces of code to adapt the analysis 

to their specific requirements. As it would be very difficult to do a comprehensive 

review of all available NGS applications and bioinformatic tools, I would focus on 

those that are especially relevant in the context of the present thesis. 

Identification of genetic mutations (DNA-seq applications) 

The unbiased sequencing of the complete genome (whole-genome 

sequencing or WGS) is the most comprehensive method to identify differences 

versus a reference genome (re-sequencing) or to determine the full sequence of a 

previously unknown genome (de novo sequencing). This can be applied to identify 

the complete list of nucleotide sequence changes present in the entire genome 

including single nucleotide variants (SNV) or substitutions, small insertion and 

deletions (indel), copy number alterations (CNA), and large-scale reorganizations 

such as translocations, deletions, insertions, and inversions.  

Despite the reduction in sequencing costs, the study of the whole genome 

at high coverage involves a large economic investment. In this sense, several 

approaches have been developed to focus sequencing efforts on specific regions of 

interest of the genomic DNA (targeted sequencing), either performed through region 

capture with designed soluble probes or through PCR-based strategies, both 

constitute cheaper alternatives. The first strategy consists of the use of synthetic 

probes complementary to these regions of interest that can be hybridized on a solid 

support or in a liquid phase. These probes are usually combined with biotin, which 

allows the fragments to be purified with paramagnetic beads combined with 

streptavidin and a magnet. The most extended application is the targeted 
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sequencing of all the protein-coding exons of the genome (whole exome), which 

corresponds to only 1% of the whole human genome  (Hodges et al., 2007; Teer & 

Mullikin, 2010). Additionally, several companies offer the customer the opportunity 

to design a pool of probes to purify any combination of selected genomic regions 

(Mamanova et al., 2010). The second strategy for the enrichment of specific regions 

is based on their amplification by PCR. Commercial platforms such as Haloplex 

(Agilent) or Ampliseq (Life Technologies) have exploited this strategy, which offers 

the advantage of requiring a smaller amount of starting material, as well as being 

able to work with lower quality material such as that extracted from fixed tissue. 

However, PCR-based strategies have several limitations, such as potential errors 

introduced by the polymerase, strands bias, or the low uniformity of the sequenced 

regions (Q. Wang et al., 2017). 

In recent years, new alternatives have been developed to easily generate 

libraries of fragments of the regions of interest avoiding the amplification bias. Some 

of them, such as the use of molecular inversion probes (MIPs) or the primer 

extension capture (PEC) techniques, allow the reduction of PCR errors and biases 

while maintaining a simple protocol without the requirement of expensive reagents 

or infrastructures (Niedzicka et al., 2016; Briggs, 2011). 

Regarding data analysis, it is convenient to perform an initial quality control 

of the sequencing data before extracting biological information from it. Tools such 

as FastQC allow extracting basic parameters directly, like the abundance of specific 

repetitive sequences, the homogeneity of the sequence quality through the read 

length, or the GC content of the sequencing data, from the raw read data. Other 

useful parameters such as the diversity of the sequenced fragment library (amount 

of PCR duplicates) or the distribution of insert sizes can be extracted only after read 

alignment using tools like SAMTools (H. Li et al., 2009) or PICARD (Broad Institute. 

Picard. http://broadinstitute.github.io/picard). Most of the DNA-seq applications 

require the alignment of the generated short sequences (reads) to a reference 

http://broadinstitute.github.io/picard
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genome. This step is typically the most resource-consuming process and the most 

critical for the subsequent steps. Several aligners have been specifically designed for 

the use of NGS data. Almost all of them try to identify all potential locations on the 

genome for a specific part of the read (seed). Subsequently, this seed is extended 

and the number of mismatches or gaps required for the alignment of the complete 

read is computed by the aligner to choose the most probable location of the read. 

This is finally reported and accompanied by a quality score representing the certainty 

of the alignment. Following the previous strategy, SOAP (R. Li et al., 2008) and MAQ 

(H. Li et al., 2008) were the first aligners developed. These tools were posteriorly 

improved using Burrows-Wheeler indexing of the reference genome by BWA (H. Li 

& Durbin, 2009) and Bowtie (Langmead et al., 2009). This alignment is standardized 

in the SAM/BAM/CRAM format, and several software suites have been developed 

for its manipulation like sorting, cleaning, or indexing. Some examples are SAMTools 

(H. Li et al., 2009), PICARD (Broad Institute. Picard. 

http://broadinstitute.github.io/picard), or GATK (McKenna et al., 2010). 

Additionally, some tools like the Integrative Genomics Viewer (IGV) allow the 

graphical visualization of the alignments (Thorvaldsdóttir et al., 2013). 

After the quality control and the read alignment, small sequence changes, 

genomic structural variants, and copy number changes can be identified. Among the 

different computer strategies to call mutations, the identification of base 

substitutions is probably the most studied one. Many of the tools available are based 

on a Bayesian model, initially described in MAQ, to compute the different 

probabilities associated with each potential genotype in a specific genomic position. 

This approximation works well for germline substitutions. Nevertheless, in the 

detection of cancer somatic mutations, where typically, the tumor sample is 

compared to a non-tumoral DNA sample; the presence of normal DNA 

contamination, copy number alterations, and intratumor heterogeneity make it 

difficult to build a model of expected frequency. In this context, new software has 

http://broadinstitute.github.io/picard
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been created specifically to detect somatic single nucleotide variants (sSNVs). Some 

examples are Strelka (Saunders et al., 2012), VarSkan 2 (Koboldt et al., 2012), Seurat 

(Christoforides et al., 2013), MuTect (Cibulskis et al., 2013), and Ramses (Martínez et 

al., 2014). Detecting indels have been proved to be a more difficult task and very few 

tools show good sensitivity and specificity. The main problem relies on the alignment 

of reads containing this type of mutation. For that reason, some tools like Pindel (Ye 

et al., 2009) and Dindel (Albers et al., 2011) use a second alignment step on singleton 

reads to identify insertions and deletions. Nevertheless, these tools are not very 

specific and generally require additional filtering steps. 

Interestingly, in Illumina platforms paired-end sequencing can be used to 

identify structural variants like insertions, deletions, duplications, inversions, and 

translocations. Chromosome mapping, read orientation, or insert size of the read 

pair are used to identify genomic breakpoints. Additionally, breakpoints can also be 

identified in high coverage sequencing data in split-apart reads in which different 

segments of the same read map to different parts of the genome. Some tools that 

can be used to identify these kind of mutations are BreakDancer (Chen et al., 2009) 

and DELLY (Rausch, Zichner, et al., 2012). 

Finally, the quantitative nature of NGS technologies can also be used to 

detect copy number changes. Thus, the number of reads coming from a specific 

genomic region depends on the number of DNA copies for that region. Once the 

genome has been segmented and the data normalized, some tools allow the 

identification of deletions or amplifications. Some tools available for this are CODEX 

(Jiang et al., 2015), CNV-seq (Xie & Tammi, 2009), Control-FREEC (Boeva et al., 2012), 

and ExomeCNV (Sathirapongsasuti et al., 2011). The processing of targeted 

sequencing data needs to consider the potential bias produced during enrichment. 

To solve it, CopywriteR software was designed to use only off-target data, 

theoretically not affected by enrichment biases (Kuilman et al., 2015). 
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Identification of epigenetic alterations (DNA-seq applications) 

Other DNA-seq applications provide information about the DNA structure 

through the combination of NGS with the isolation of specific genome regions based 

on its accessibility to specific enzymes. Thus, DNAse-seq (sensitive regions to DNAse 

I digestion), FAIRE-seq (sensitive regions to cross-link with paraformaldehyde), or 

ATAC-Seq (accessible regions by Tn5 transposase) techniques show the open or 

closed structure of the DNA genome-wide (Meyer & Liu, 2014). The specific DNA-

DNA contacts can also be elucidated using NGS, allowing a higher order of structure 

resolution. For probing the three-dimensional architecture of whole genomes, Hi-C 

strategy combines the chemical cross-linking of nearby DNA sequences with 

fragmentation by restriction digestion and random ligation of the generated 

fragments prior to their genome-wide massively parallel sequencing (Lieberman-

Aiden et al., 2009). Furthermore, genome-wide profiling of DNA-binding proteins, 

histone modifications, or nucleosomes can also be achieved through chromatin 

immunoprecipitation followed by sequencing (ChIP-seq). This technique is based on 

the ultra-sequencing of immunoprecipitated DNA using a specific antibody against a 

DNA-binding protein. In that way, all protein-DNA binding sites in a specific moment 

can be identified (Johnson et al., 2007). Finally, DNA methylation can also be 

detected through ChIP-seq with anti-5-methylcytosine (5-mC) antibodies, known as 

methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) (Down 

et al., 2008), and through the application of DNA-seq technologies to bisulfite-

modified DNA (Y. Li & Tollefsbol, 2011).  

The ChIP-seq, FAIRE-seq, ATAC-seq or DNAse-seq data analysis relies upon 

the identification of specific regions with a significant increase in sequence coverage 

compared to the background “noise” of the genome (enriched region identification). 

These regions or peaks can be identified by different statistical methods, after 

genome segmentation and coverage normalization of the sequencing data. The most 

popular tool is MACS (Zhang et al., 2008), but other tools such as FindPeaks (Fejes et 



Introduction 

34 
 

al., 2008), F-seq (Boyle et al., 2008), and QuEST (Valouev et al., 2008) are also used. 

DESeq2 also allows the identification of enrichment differences among samples 

(Love et al., 2014). 

Identification of transcriptional alterations (RNA-seq applications) 

NGS technologies generate a number of reads proportional to the initial 

number of template molecules in the sample. This characteristic allows the use of 

cDNA converted from RNA as starting material (RNA-seq) to perform gene 

expression studies of all types of transcripts, including messenger RNA (mRNAs), 

non-coding RNAs, and small RNAs, with higher sensitivity and reliability than the 

obtained by array-based technologies. Additionally, as the RNA-seq strategies are 

not based on a previously generated gene model, new genes, fusion genes or splice 

variants, and other post-transcriptional modifications can be identified with the 

appropriate analysis software (Z. Wang et al., 2009). Moreover, specific library 

preparation methods retaining the molecule strand orientation during the cDNA 

conversion have been developed.  (Levin et al., 2010). 

In order to align RNA-seq data, first TopHat and after HiSat tools were 

developed (D. Kim et al., 2013, 2019; Zhang et al., 2021). They work in two stages. 

First, all the exons of the genome are identified by a stringent direct alignment of 

the reads to the reference genome; unaligned reads are subsequently used to find 

the junctions (splicing events) between the exons. Gene expression change 

detection relies on the quantitative nature of NGS technologies. Specifically, the 

number of reads generated from a specific transcript is proportional to the number 

of copies of this transcript in the original sample, the length of the transcript, and 

the total amount of sequence generated from this sample. The expression data is 

usually normalized as RPKM (reads per transcript kb and per million total reads) or 

FPKM (fragments/read-pairs per transcript kb and per million total reads) to 

compare the gene expression across different sequencing reactions. Two of the most 
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broadly used software to detect gene expression changes in RNA-seq data are 

DESeq2 (Love et al., 2014) and Cufflinks (Trapnell et al., 2010, 2013). Additionally, 

Cufflinks suite counts with specific tools to identify new genes, transcript-specific 

expressions, or new splice variants. Furthermore, if the two alleles of a specific gene 

have different nucleotide sequences, RNA-seq data can be used to detect the specific 

expression of each one of the different alleles. 
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Single-cell sequencing technologies 

The recent development of technologies based on sequencing individual 

cells provides unprecedented opportunities to analyze the cancer complexity at the 

single-cell resolution (reviewed in (González-Silva et al., 2021). This strategy 

facilitates the characterization of the internal architecture of the tumor during 

disease progression at the genetic, epigenetic, and transcriptomic levels. At the 

genetic level, single-cell DNA-sequencing (scDNA-seq) technologies offer higher 

sensitivity than NGS technologies in the detection of minority clones, the 

reconstruction of clone structure, and the identification of common or exclusive 

alterations in the same cells. To analyze chromatin accessibility at single-cell 

resolution, single-cell sequencing assay for transposase accessible chromatin 

(scATAC-seq) has been developed, revealing the epigenomic landscape. At the 

functional level, single-cell RNA-sequencing (scRNA-seq) technologies provide a 

precise cell type annotation of complex cellular samples from primary samples due 

to the recent generation of single-cell transcriptome atlases comprising normal and 

pathological samples from humans and mice (Tabula Muris Consortium et al., 2018; 

Regev et al., 2017).  

In the present research work, I would focus on scRNA-seq. Despite the 

existence of scDNA-seq and scATAC-seq strategies, scRNA-seq technologies are the 

most developed ones and have provided more insight into cell types and states, 

allowing a deeper understanding of gene regulatory mechanisms. Regarding cancer 

research, scRNA-seq experiments have revealed the presence of multiple cell 

populations within the tumors belonging to different molecular groups according to 

the actual molecular classifications (Roerink et al., 2018; Puram et al., 2017). The 

presence of this functional heterogeneity inside a tumor might prevent, or at least 

bias, the tumor molecular classification from a single biopsy. Moreover, scRNA-seq 

technologies offer a great opportunity to identify and study those populations that 

are supposed to be present in very low numbers, in a quiescent or dormant state, 
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and to design more specific anticancer treatments (Winterhoff et al., 2017). Thus, 

scRNA-seq experiments have shown the presence of populations with stem-like and 

treatment-resistance properties in oligodendroglioma and melanoma (Tirosh, Izar, 

et al., 2016; Tirosh, Venteicher, et al., 2016). Additionally, scRNA-seq technologies 

could facilitate the correct characterization of the complex relationship between the 

great diversity of immune cells inside a tumor, which will determine an overall 

tolerant or non-tolerant environment. Tumor neoantigens were also successfully 

identified by single-cell characterization of the T-cell receptor (TCR) repertoire, 

which might be useful in the diagnosis and treatment of cancer (Guo et al., 2018). 

Finally, scRNA-seq experiments have revealed the presence of heterogeneous 

circulating tumor cells (CTCs) populations with both epithelial and mesenchymal 

markers, highlighting that isolation methods based on epithelial markers are not 

adequate to capture all CTCs (Ting et al., 2014; Miyamoto et al., 2015). The high 

throughput of scRNA-seq technologies offers an opportunity to reduce the extensive 

purification required in previous sequencing strategies. A recent study on prostate 

cancer CTCs identified the activation of the non-canonical Wnt signaling pathway 

anticipating the appearance of drug resistance (Miyamoto et al., 2015). This 

observation supports the inclusion of the study of CTCs in the therapeutic decision-

making in oncological practice. In summary, all this new data generated from scRNA-

seq experiments may have direct clinical implications, enabling a better diagnosis 

and treatment of cancer patients. 

A major limitation in the application of scRNA-seq technologies to primary 

solid tumor samples is the requirement of dissociation protocols to obtain viable 

individualized fresh cells. Several studies warn against the potential transcriptional 

changes arising from tissue manipulation during the time between sample collection 

and processing (Tung et al., 2017). Some authors have avoided this limitation by 

working with cell lines or organoids. Although they provided useful information, they 

failed to mimic complex interactions between cancer cells and the 



Introduction 

38 
 

microenvironment.  Additionally, to understand the molecular basis of tumor 

evolution, it will be preferable to obtain several samples, or even serial samples, 

from the same patient, which is not straightforward in solid tumors. recent 

techniques to extract biopsies in a minimally invasive way, such as fine-needle 

aspiration (FNA), are not useful for traditional genomic analysis because little 

material is obtained, but they are useful for analysis with scRNA sequencing 

technologies in clinical research (Baslan & Hicks, 2017). Fortunately, many platforms 

are compatible with specific protocols of cell fixation and storage. Transcriptomic 

programs obtained from these cells seem very similar to those of freshly processed 

cells (Alles et al., 2017; Guillaumet-Adkins et al., 2017). If these protocols are 

optimized for all applications and broadly set up, we could anticipate a great increase 

in the application of scRNA-seq technologies in clinical research where coordinating 

sample collection and processing is not easy. Moreover, the recent development of 

scRNA-seq strategies on isolated single nuclei sometimes obtained even from 

paraffin-embedded (FFPE) material, removes the need to obtain viable cells and 

facilitates the study of long-stored samples (Grindberg et al., 2013; Martelotto et al., 

2017).  

Development of single-cell RNA sequencing technologies 

In just a few years since the emergence of scRNA-seq technologies, the 

ability to obtain single-cell expression profiles increased from very few cells to 

thousands in a single experiment (Tang et al., 2009; Zheng et al., 2017). The initial 

protocols used micromanipulation techniques to isolate the cells. This approach was 

laborious, expensive, and required a cDNA amplification step that produced a bias in 

the data which was also characterized by low throughput (Xue et al., 2013; Grindberg 

et al., 2013). The posterior introduction of unique molecular identifiers (UMIs), 

which are random sequences that label individual molecules, significantly removed 

the amplification bias (Islam et al., 2014). Further developments in STRT-seq or CEL-

seq protocols, added an individual barcoding step on isolated cells followed by a 
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single retrotranscription reaction reducing batch artifacts (Islam et al., 2011; 

Hashimshony et al., 2012). In 2015, microfluidic devices were introduced to isolate 

the cells in Drop-seq or InDrop protocols, enabling the processing of thousands of 

cells at once for a fraction of the cost of the traditional methods (Macosko et al., 

2015; A. M. Klein et al., 2015). Following this strategy, 10x Genomics automated 

equipment characterized recently 1.3 million cells at the single-cell level (Zheng et 

al., 2017). Unfortunately, microfluidic-based methods are not efficient in the 

removal of the abundant ribosomal RNA. Unfortunately, microfluidic-based methods 

do not efficiently remove the abundant ribosomal RNA, so they sequence the end of 

poly-A-tailed RNAs through the use of poly-T oligonucleotides.This is very useful to 

generate expression profiles in this group of RNAs but do not provide comprehensive 

cell transcriptomic information. Other strategies, such as Split-seq and Sci-seq, avoid 

the physical isolation of the cells. Instead, they use a combinatorial barcode system 

to tag more than 100,000 single-cell transcriptomes in an individual and unique 

manner (Cao et al., 2017; Rosenberg et al., 2018). These techniques do not require 

any expensive microfluidic infrastructure because the cells themselves are fixed and 

used as ‘containers’/nanochamber reactors. Finally, single-cell multi-omics 

approaches that allow the study of genetic, epigenetic, and transcriptomic profiles 

in the same cell have been developed, enabling a much deeper characterization of 

the tumor ecosystem (Stuart & Satija, 2019; Hou et al., 2016).  

Single-cell RNA sequencing data analysis 

scRNA-seq data analysis is a great challenge. Due to the great variety of 

sequencing strategies and biological questions, there are many different reported 

analysis workflows, some of them already publicly available for researchers with 

limited bioinformatics resources (Tung et al., 2017; Stegle et al., 2015). In general, 

the computational workflow can be split into two stages: data processing and data 

analysis. Data processing involves the manipulation of the sequencing data from a 

fastq or bcl file to a data expression matrix (DGE) of single-cell gene expression 
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values. This first stage includes sequence quality control (QC) and poly(A) trimming 

to discard the low-quality cells, read alignment to the reference genome for 

transcript identification, deduplication to remove duplicate copies of redundant data 

which significantly decreases storage capacity requirements, de-multiplexing of 

barcodes and UMIs, and digital quantification of single-cell gene expression levels. 

The DGE data frame is used as an input for the second stage which is the most 

variable in methods as it greatly depends on the nature of the sample and the 

biological questions. However, most computational pipelines include tools for data 

normalization and QC as the first steps. Afterward, most pipelines perform a 

normalization step to select the most relevant features, remove uninformative 

genes, and reduce the number of dimensions to perform the downstream analysis. 

Next, a linear transformation (‘scaling’ the data) is applied prior to dimensional 

reduction techniques such as principal components analysis (PCA), t-distributed 

stochastic neighbor embedding (t-SNE) (Maaten & Hinton, 2008), or preferable the 

uniform manifold approximation and projection (UMAP) approach which is able to 

represent the complex data structure with a lower computation time than the others 

(Becht et al., 2018), and lastly, the cell clustering. Depending on the potential 

applications, additional steps are usually required including subpopulation 

identification, differential gene expression analysis, functional signatures 

identification, pseudo-timing modeling, cell trajectory inference, or network 

reconstruction. An additional level of complexity in the computational methods 

consists of overlaying multi-omics data from the same biological entity. This 

approach is in increasing demand and improves the possibilities for a comprehensive 

cell characterization (Valdes-Mora et al., 2018). 
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Intratumor heterogeneity is postulated to play a critical role in tumor 

progression, metastasis spread and treatment resistance.  In this Doctoral Thesis, we 

proposed to combine the use of mouse models, an innovative genetic cell lineage 

tracking system based on fluorescent proteins, and next-generation and single-cell 

sequencing technologies to further characterize the role of intratumor 

heterogeneity in pancreatic cancer progression and metastasis. To this end, we 

proposed the following specific objectives: 

I. To analyze the tumor clonality in early and late stages using 

fluorescent lineage tracing tools. 

II. To generate new lineage tracing tools to study the involvement of 

intratumor heterogeneity in cancer progression. 

III. To study of the role of genetic intratumor heterogeneity in 

pancreatic cancer progression. 

IV. To characterize the presence of transcriptomic intratumor 

heterogeneity and its role in metastasis. 

 

 

  



 

 
 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental procedures 

  



 

 
 

  



Experimental procedures 

49 
 

Molecular Biology methods  

Molecular cloning methods 

Different genetic constructs were generated to test several fluorescent 

proteins. Specific primers were designed to amplify the coding regions of multiple 

fluorescent proteins from commercial vectors acquired in Addgene repository (Table 

1). Other primers were designed to contain in their tail the sequences of restriction 

sites to allow their insertion by cohesive digestion and ligation into the desired 

digested expression vector (pCDNA3.1-fWPRE) (Table 2). This vector was previously 

prepared to contain a farnesylation signal to direct the expression of the protein to 

the cell membrane and the RNA stabilization signal from the Woodchuck Hepatitis 

Virus Posttranscriptional Regulatory Element. Typically, 15-20 units of each 

appropriate restriction enzyme or combination were used to digest either vectors or 

PCR products for 1h at 37ºC. The digested PCR products were purified with Thermo 

Scientific GeneJET PCR Purification Kit (#K0702). Digested vectors were purified by 

gel excision and the Thermo Scientific GeneJET Gel Extraction Kit (#K0692).  

Table 1. Name, use, and reference of the vectors acquired in Addgene. 

Vector Use Reference 

pThy1-Brainbow-3.2 Plasmid used to amplify mKate2 and mOrange2 #45179 

pCAG-YFP Plasmid used to amplify YFP #11180 

YPet-C1 Plasmid used to amplify YPet #54648 

Citrine-C1 Plasmid used to amplify Citrine #54715 

AAV-EF1a-BbTagBY Plasmid used to amplify Tag-BFP #45185 

LI D-E T-Saph + linker c1 Plasmid used to amplify t-Sapphire #54412 

Sirius/pcDNA3 Plasmid used to amplify Sirius 51957 
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Table 2. Primers designed to amplify the coding sequences of interest from the original 
vectors with restriction sites HindIII-BamHI to clone in the pCDNA3.1-fWPRE vector. 

Fluorescent 
protein Primer names Primer sequences 

mOrange2 
HindIII-mOrange2-F 5'-ACGTAAGCTTGGCGTGCTAGCATAACTTCG-3' 

BglII-mOrange2-R 5'-ACGTAGATCTCAGGGTCAGCTTGCCGTAG-3' 

t-Sapphire 
tSaphire-F-HindIII 5'-ACTGAAGCTTATGGTGAGCAAGGGCGAGGAGC 

TGTT-3' 

tSaphire-R-BglII 5'-ACTGAGATCTCTTGTACAGCTCGTCCATGC-3' 

mKate2 
HindIII-mKate2-F 5'-ACGTAAGCTTCGCTATGGTGAGCGAGCTGAT-3' 

BglII-mKate2-R 5'-ACGTAGATCTTGCACTTCTGTGCCCCAGTT-3' 

Tag-BFP 
TagBFP-R-BglII 5'-ACTGAGATCTCTGTGCACTTCTGTGCCCCAGT-3' 

TagBFP-F-HindIII 5'-ACTGAAGCTTGCTCTCCTGATACCGTTCGT-3' 

YPet 
YPet-F-HindII 5'-ACTGAAGCTTATGGTGAGCAAAGGCGAAG-3' 

YPet-R-BglII 5'-ACTGAGATCTCTTATAGAGCTCGTTCATGCCCT-3' 

As a general rule, 1 unit of T4 DNA Ligase (Thermo Scientific #EL0014) was 

used to ligate the digested vector and the digested insert. In general, approximately 

200 ng of total DNA was used in the ligation reaction, with between 5 to 10 molecules 

of insert for each molecule of the vector. The ligation reaction was incubated at 22ºC 

for 1h. After ligation, the ligation mix is desalted for 20 minutes. 2µl of microdialyzed 

ligation reaction were transformed by electroporation in DH5α competent cells. 

They, they were recuperated for 1h at 37ºC in LB without antibiotic and plated with 

ampicillin which is, in this case, the correct antibiotic according to the resistance 

gene contained in the vector. We analyzed the transformants by PCR directly on 

some cells taken from the colony or by extracting the DNA (Thermo Scientific 

GeneJET Plasmid Miniprep Kit #K0503) and performing restriction analysis. Finally, 

all potential constructs were sequenced by the company STAB VIDA (Caparica, 

Portugal). 
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Sanger sequencing  

We validated the fluorescent protein constructs by Sanger sequencing. We 

first performed PCR amplification of the region of interest by using oligonucleotides 

in Table 2. Each PCR reaction was then subjected to Sanger sequencing analysis. 

Sequencing reactions were performed by the company STAB VIDA (Caparica, 

Portugal) and the resulting electropherograms were visualized using SnapGene 

Viewer. 

Fluorescent proteins evaluation 

To analyze the cells by confocal microscopy, we plated the cells over a glass 

coverslip previously washed with ethanol and coated with poly-d-lysine to promote 

the attachment of the cells. In the case of FACS analysis, cells were trypsinized, 

washed, and resuspended in PBS. The maximum signal is reached 48h after 

transfection. To evaluate the fluorescent proteins, we used a fluorescent confocal 

microscopy Leica TCS SP5 with five lasers of 405 nm, 488 nm, 514 nm, 543 nm, and 

549 nm of wavelength. Different excitation windows were designed in order to 

recover uniquely as much light as possible for each of the individual proteins. To 

separate the fluorescent proteins, we used a FACS Aria III system (fluorescence-

activated cell sorting) from Becton Dickinson with the following configuration: 407 

nm laser (filters: 450/50, 610/20, 710/50, 780/60, 660/20, 525/50), 488 nm laser 

(filters: 488/10, 695/40, 530/60), 561nm laser (filters: 610/20, 710/50, 780/60, 

670/14 and 582/15) and 633 nm laser (filters: 670/30, 780 / 60, 730/45). Laser and 

filter combination used to register the signals for the FPs are summarized in Table 3. 
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Table 3. Laser and filters combination of different FPs for the confocal microscopy and the 
sorter. Emission ranges refer to the detection filters used to detect each protein. 

 Confocal microscopy Sorter/FACS 

Fluorescent protein Excitation Emission Excitation Emission 

Tag-BFP/Sirius 405 nm 445/25 nm 407 nm 405/50 nm 

EGFP 488 nm 505/10 nm 488 nm 530/30 nm 

mOrange2 543 nm 575/15 nm 561 nm 582/15 nm 

YFP/Citrine/YPet/Phi-YFP 514 nm 535/10 nm 670 nm 530/30 nm 

mKate2 594 nm 670/30 nm 505 nm 670/30 nm 

tSapphire 405 nm 505/10 nm 407 nm 527/50 nm 

Electrocompetent cells 

For the generation of electrocompetent cells, we grow DH5α Escherichia coli 

strain in LB until it reaches an optical density at 600 nm (OD600) between 0.4 and 0.6. 

Subsequently, we performed two washes with cold water and two washes with a 

cold 10 % glycerol solution keeping the cells at 4 ºC during the whole procedure. 

Finally, cells were snap-frozen in dry ice and kept at -80 ºC until used. 

DNA genotyping  

Genomic DNA was isolated from mouse tail biopsies using alkaline lysis 

buffer (NaOH 25 mM, EDTA 0.2 mM, pH=8) followed by 99 ºC incubation for 90 min 

and posterior neutralization (Tris 40 mM, pH=7.4). PCR was performed using 

DreamTaq DNA polymerase (ThermoFisher) in all the cases and using the 

oligonucleotides summarized in Table 4. Confetti allele was genotyped under the 

following conditions: denaturation at 95 ºC for 30 sec, annealing at 60 ºC for 30 sec, 

and extension at 72 ºC for 30 sec, with 40 cycles of amplification. The size for the 

mutant band was 300 bp and 386 bp for the wild-type band. Cre allele genotyping 
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was performed under the following conditions: denaturation at 95 ºC for 30 sec, 

annealing at 60 ºC for 30 sec, and extension at 72 ºC for 30 sec, with 35 cycles of 

amplification. The size for the wild-type band was 226 bp and 316 bp for the mutant 

allele. Kras allele was genotyped under the following conditions: denaturation at 95 

ºC for 30 sec, annealing at 55 ºC for 40 sec, and extension at 72 ºC for 40 sec, with 

40 cycles of amplification. The size for the mutant band was 351 bp and 270 bp for 

the wild-type band. Flippase allele genotyping was performed under the following 

conditions: denaturation at 95 ºC for 30 sec, annealing at 56 ºC for 50 sec, and 

extension at 72 ºC for 50 sec, with 40 cycles of amplification. The size for the wild-

type band was 300 bp and 620 bp for the mutant allele. Tpr53 allele genotyping was 

performed under the following conditions: denaturation at 95 ºC for 30 sec, 

annealing at 60 ºC for 40 sec, and extension at 72 ºC for 40 sec, with 35 cycles of 

amplification. The size for the wild-type band was 258 bp and 292 bp for the mutant 

allele. 

Table 4. Primers sequences to genotype our PDAC mice. 

Allele Primer names Primer sequences 

Confetti 

11341 5'-GAATTAATTCCGGTATAACTTCG-3' 

oIMR8545   5'-AAAGTCGCTCTGAGTTGTTAT-3' 

oIMR8916  5'-CCAGATGACTACCTATCCTC-3' 

Cre 

ROSA26-3ARM-Fwd 5'-CCCGACAAAACCGAAAATCTG-3' 

ROSA26-WT-Rev 5'-GGAGTTCTCTGCTGCCTCCT-3' 

R26-Dual/CRE-Rev 5'-GGCTGCAAACAGCTAATGCAC-3' 

Kras 

Kras-Common-Fwd 5'-CACCAGCTTCGGCTTCCTATT-3 

Kras-WT-Rev 5'-AGCTAATGGCTCTCAAAGGAATGTA-3 ' 

Kras-FSF-MUT-Rev 5’-GCGAAGAGTTTGTCCTCAACC-3' 

Flippase 

Pdx1-Flp-Fwd 5'-AGAGAGAAAATTGAAACAAGTGCAGGT-3' 

Flp-Rev 5'-CGTTGTAAGGGATGATGGTGAACT-3' 

Gabra-Fwd 5'-AACACACACTGGAGGACTGGCTAGG-3' 

Gabra-Rev 5'-CAATGGTAGGCTCACTCTGGGAGATGATA-3' 
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Trp53 
p53-frt1 5'-CAAGAGAACTGTGCCTAAGAG-3' 

p53-frt2 5'-CTTTCTAACAGCAAAGGCAAGC-3' 

DNA extraction  

DNA was extracted from fresh frozen tissues or cell lines using the Agencourt 

DNAdvance Beckman Coulter kit (#A48705, Beckman Coulter, Brea, CA, USA), 

following the manufacturer's instructions. After extraction, samples were quantified 

using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies) and 

evaluated for purity (260/280 nm ratio).  

Exome-DNA libraries generation 

To generate whole-exome DNA libraries, SureSelectXT Mouse All Exome kit 

(Agilent Technologies) was used following the SureSectXT Target Enrichment System 

for Illumina Paired-End Multiplexed Sequencing Library protocol (Agilent 

Technologies). For all cleaning steps, we used Agencourt AMPure XP (Beckman 

Coulter, #082A63881), following the manufacturer's protocol. Size distribution of the 

library was measured with the 4200 TapeStation using DNA 1000 kit or D1000 

ScreenTape Assay (Agilent Technologies). DNA was quantified using the Qubit dsDNA 

BR Assay (Life Technologies, #Q32851) a qPCR reaction with primers designed to 

target the Illumina adapters. Massively parallel sequencing was carried out in an 

Illumina sequencing machine with a 100 bp paired end (PE) protocol aiming at a 90x 

average coverage depth.  
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Somatic mutation orthogonal validation 

 To confirm the presence of the mutations found in the whole-exome 

sequencing experiments, we designed to amplify a DNA fragment around each 

identified mutation, and this DNA fragment was amplified and sequenced at high 

depth in all the samples extracted from the same mouse. DNA was extracted from 

fresh frozen tissues as has been previously indicated, and quantified using the Qubit 

dsDNA BR Assay (Life Technologies, #Q32851). All DNA fragments amplified from the 

same sample were mixed before performing DNA libraries. For all cleaning steps, we 

used Agencourt AMPure XP (Beckman Coulter, #082A63881), following the 

manufacturer's protocol. To prepare the sequencing libraries, we performed some 

enzymatic steps including: end-repair and adenylation (DNA Rapid End Repair 

module, NEXTFLEX), generation of the paired-end adaptor by hybridizing two 

phosphorylated complementary synthetic oligonucleotides, ligation of the PE 

adaptor with a T4 DNA Ligase (Thermo Fisher Scientific, #EP0062), and PCR indexing 

amplification (Phusion high fidelity DNA polymerase (Thermo Fisher Scientific, # 

F530L). Purity of the libraries were tested using the Nanodrop (260/280 nm ratio), 

size distribution was measured with the 4200 TapeStation using DNA 1000 kit or 

D1000 ScreenTape Assay (Agilent Technologies), and quantified using the Qubit 

dsDNA BR Assay (Life Technologies, #Q32851) and a qPCR reaction with primers 

designed to target the Illumina adapters. Massively parallel sequencing was carried 

out in an Illumina sequencing with a 100 bp paired end (PE) protocol and a 10.000x 

average coverage. 

Single-cell RNA libraries generation  

To perform single-cell capture and barcoding of thousands of single cells 

from the mouse primary tumor and metastases, we used the BD RhapsodyTM Single-

Cell Analysis System which includes the Scanner and the Express Single-Cell Analysis 
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System. Both of them were used following the manufacturer’s user guides (BD 

Rhapsody, Doc ID 214062, Doc ID 214063). 

To create single-cell whole transcriptome mRNA libraries up to 10.000 cells 

after cell capture, we used a 3’ whole transcriptome analysis (WTA) approach, 

following the Whole transcriptome analysis alpha protocol (BD Rhapsody). In 

summary, the cDNA of mRNA targets is first encoded on the magnetic capture beads 

during reverse transcription. Then, a random priming approach is performed, 

followed by an index PCR step.  

To generate the Sample Tag sequencing libraries, after labelling the cells with 

the Sample Tags, we used the mRNA Whole Transcriptome Analysis (WTA) and 

Sample Tag Library Preparation protocol (BD Rhapsody, #23-21712-00). This protocol 

was used to combine several samples in the same cartridge (2305_1Tumor and 

2305_2Lung; 2849_1Total, 2849_1Liver1, 2849_3Liver2, and 2849_4Lung). Th 

extended Sample Tags were first denatured from the BD Rhapsody Cell Capture 

Beads.  Later, they were amplified with a series of PCR steps. Meanwhile, the whole 

transcriptome amplification library is generated directly from the BD Rhapsody Cell 

Capture Beads using a random priming approach and followed by an index PCR step. 

Both the whole transcriptome mRNA and Sample Tag libraries were combined for 

sequencing on an Illumina sequencer generating an average of 40.000 reads per cell. 

RNA isolation and quantitative Reverse-Transcriptase PCR  

Total RNA was isolated and purified using Extract Me Total RNA Kit (Blirt, 

DNA Gdansk, Poland) according to the manufacturer’s instructions. RNA quality was 

measured using RNA ScreenTape® (4200 TapeStation Instrument – Agilent 

Genomics). Reverse transcription was performed using the Takara PrimeScript cDNA 

Synthesis kit (Takara Bio, Inc., Dalian, Japan) according to the manufacturer’s 
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instructions. mRNA expression was measured in triplicate for each sample by 

quantitative reverse-transcriptase PCR (qRT-PCR) analysis, using Luminaris Color 

HiGreen qPCR Master Mix (Thermo Scientific) with StepOnePlusTM real-time PCR 

system (Applied Biosystems, Foster City, CA). As an internal control, gene expression 

was normalized to the β-actin gene (used as a housekeeping gene). The ΔΔCt method 

was used for quantification and comparison. A list of the primers used for the qRT-

PCR experiments can be found in Table 5. Supplementary information including the 

results of the qRT-PCR can be found in the following link: https://unican-

my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0Xiw

Bd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv. 

Table 5. Sequences of the primers to amplify around 110 bp of the coding sequences 

of the genes of interest. 

Gene Primers Primer sequences 

Cd74 
Cd74_Fwd TGACCAACGCGACCTCATCT 

Cd74_Rev CCAGGACAGAGACACCGGTG 

Cxcl2 
Cxcl2_Fwd TTGCCTTGACCCTGAAGCCC 

Cxcl2_Rev CGTTGAGGGACAGCAGCC 

Il1b 
Il1b_Fwd CTCGTGCTGTCGGACCCATA 

Il1b_Rev ATTTTGTCGTTGCTTGGTTCTCC 

Srgn 
Srgn_Fwd CCTTCGTCCTGGTTTGGGGA 

Srgn_Rev GGTCCCTTCTCCTCGATGCA 

Ctss 
Ctss_Fwd GCATCGAGGAGAAGGGACCA 

Ctss_Rev TTTCCCAGATGAGACGCCGT 

H2.AB1 
H2.AB1_Fwd TGGAGGCTCAGTGATATGGTGC 

H2.AB1_Rev TCTCGGTACCTCTGCGTTGG 

Lyz2 
Lyz2_Fwd GAGCTGTGAATGCCTGTGGG 

Lyz2_Rev CATGCTCGAATGCCTTGGGG 

Ccl6 
Ccl6_Fwd GGATGAGAAACTCCAAGACTGCC 

Ccl6_Rev GGAGGGTTATAGCGACGATCTTC 

 

https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv
https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv
https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv


Experimental procedures 

58 
 

Cell Biology methods  

Cell culture  

HEK-293T, HeLa, and mouse pancreatic primary cells were routinely 

maintained in Dulbecco's modified Eagle's medium (DMEM) DMEM (Lonza, Verviers, 

Belgium), supplemented with 10% FBS (HyClone Victoria, Australia), 1% Gentamycin 

and 1% Ciprofloxacin at 37°C in a humidified atmosphere containing 5% CO2. 

Isolation of primary mouse PDAC cell cultures and obtention of single-cell 

suspensions 

Cell lines of primary pancreatic tumors from our mouse model were 

obtained by cutting into small pieces the primary tumor, which was mechanically 

and enzymatically digested using the mouse tumor dissociation kit (Miltenyi Biotec 

Tumor Dissociation kit, mouse, #130-096-730). After, tumor cells from mouse 

tumors were enriched with a tumor cell isolation kit (Miltenyi Biotec Tumor cell 

isolation kit, mouse, #130-110-187), following the manufacturer’s instructions. The 

same protocol was used to obtain single-cell suspensions from the primary tumor 

and metastases of our mouse model. 

Mycoplasma PCR 

For testing mycoplasma contamination, cells were cultured for 3 days to 

100% confluency in DMEM supplemented with 10% FBS without Gentamycin and 

Ciprofloxacin. 1 ml of cell culture supernatant was harvested in a 1.5 ml Eppendorf 

tube and stored at -20°C. Harvested cell culture supernatant was defrosted on ice 

and 1 μl of added to 10 μl of a MasterMix containing 5.5 μl of 2x KAPA Genotyping 
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Mix (Sigma-Aldrich), 0.22 μl of primer mix (containing 5 μM of each primer; 7x 

forward plus 3x reverse primer) and 4.28 μl ddH2O was prepared for each PCR 

reaction (resulting in a total volume of 10 μl MasterMix per sample). PCR reaction 

was performed with the following conditions: 98 ºC for 180 sec; 65 ºC for 60 sec; 72 

ºC for 60 sec; 35 cycles of amplification at 98ºC for 15 sec, 65ºC for 30 sec, and 72 ºC 

for 20 sec; a final extension at 72 ºC for 300 sec; and holding at 16 ºC. PCR reaction 

was analyzed on a 1.5% agarose gel (the presence of a PCR band at 500 bp indicates 

mycoplasma contamination). 

DNA transfection into eukaryotic cell lines 

Experiments of fluorescent proteins expression were done in the human 

embryonic kidney 293T cell line (HEK-293T). DNA was introduced into the host cells 

by transfection with polyethylenimine (PEI) (Sonawane et al., 2003).  We used 1’5mg 

of DNA and 6µl of PEI to transfect the cells in 6-well plates (ratio DNA:PEI 1:4). For 

best transfection efficiency, cells were transfected at 60% of confluence.  

Immunofluorescence   

For immunofluorescence analysis, HeLa cells were washed with PBS 1X and 

fixed in 4% formaldehyde solution for 15 min at room temperature. Then, cells were 

rinsed three times with PBS 1X, permeabilized using 0.5% Triton X-100 for 5 min at 

room temperature, and blocked with 3% BSA diluted in PBS plus 0.5% Triton X-100 

(PBT) for 1 h at room temperature. Incubation with diluted primary antibodies was 

performed for 1 h at room temperature in a humidity chamber. Primary antibodies 

are specified in Table 6Table 4. Then, cells were washed three times with PBT 1X for 

5 min and secondary antibody incubation was carried out for 1 h at room 

temperature in a humidity chamber. 3xHA-fmOrange2 and Myc-fmKate2 were 
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incubated with a donkey anti-mouse IgG Alexa 488 secondary antibody (Thermo, 

#A21202); 6xHis-ftSapphire, 3xFLAG-fTagBFP, and fYPet-V5 were incubated with a 

donkey anti-mouse IgG Alexa 647 secondary antibody (Thermo, #A31571). After cells 

were washed three times with PBT 1X for 5 min and coverslips were mounted with 

Prolong™ Gold Antifade Mountant with DAPI (Invitrogen, Thermo Scientific). 

Table 6.  Primary antibodies used in the immunofluorescences. 

Tag-FP Primary antibody Used 
dilution Source (catalog number) 

3xHA-fmOrange2 Mouse anti-HA IgG2a 1:50 Santa Cruz Biotechnology 
(#sc-7392/F7) 

6xHis-ftSapphire Mouse anti-His IgG1 1:50 Santa Cruz Biotechnology 
(#sc-8036) 

Myc-fmKate2 Anti-cMyc Monoclonal 1:100 OriGene (#TA150121) 

3xFLAG-fTagBFP Mouse anti-FLAG M2 IgG1 1:500 Sigma (#1804) 

fYPet-V5 Mouse anti-V5 IgG2a 1:250 BIO-RAD (#MCA1360GA) 

Fixation and embedding fresh Confetti mouse tissues 

To preserve the fluorescent colors of Confetti, it is essential to store the 

tissues preserving the fluorescence and tissue morphology. Tissues were fixed in 

formalin 4% for 2 h at room temperature, washed twice with PBS 1X, transferred to 

a 15% (w/v) sucrose solution using PBS until the tissue sinks, and transferred to a 

30% (w/v) sucrose solution using PBS until it sinks. At this point, the permeation was 

complete. Then, the tissue was embedded in OCT and frozen at -80ºC until ready for 

sectioning. To process the samples, the frozen tissue block was transferred to a 

cryotome cryostat and both were allowed to equilibrate to -20 ºC. Cuts of 14 µm 

were made on SuperFrost Plus slides. To fix the frozen sections, slides were 

immersed in acetone for 10 min at room temperature and washed twice with PBS 

1X prior to dispensing a small drop volume (25 µl per 22 mm x 22 mm coverslip) of 
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the VETASHIELD mounting medium onto the sample for preserving fluorescence. A 

coverslip was placed over the sample and the VECTASHIELD was allowed to disperse 

throughout the section before observing it in the Confocal Microscopy. 

Cell preparation and staining for the FACS experiment 

To ensure a negative and positive control of the experiment, 150.000 HEK-

293T cells were seeded in each well of a 6-well plate 72h before the FACS 

experiment. To obtain the positive control, the cells from 2 wells were transfected 

48h before the FACS experiment with a pCDNA3.1-HisA-Cd74 construct (obtained by 

cloning the Cd74 gene in pCDNA3.1-HisA expression vector). To prepare the single-

cell suspensions, the cells from the mouse primary cell lines were trypsinized, 

washed twice with PBA 1X, and resuspend in 200 µl of FACS buffer (previously 

prepare as follows: 20 ml of fetal calf serum, 10 ml of NaN3 10%, 100 ml of PBS 10X, 

870 ml of H2O). 

To perform the cell staining, the cell suspension was incubated with 1 µl of 

the blocker (only the tubes that will be posteriorly stained) for 10 min at 4 ºC, 

centrifuge at 1500 rpm for 5 min at 4 ºC, and the supernatant was discarded, the 

cells were resuspended in 200-500 µl of cold-FACS buffer, incubated 3 min at 4 min, 

and centrifugated at 1500 rpm for 5 min at 4 ºC, the supernatant was discarded, cells 

were resuspended in 100 µl of the antibody mixture (mouse CD74 APC-conjugated 

antibody, monoclonal rat IgG1, R&D systems #FAB7478A; 1:20 dilution in a final 

volume of 100 µl per sample), incubated for 30 min at 4 ºC and dark, and 

centrifugated at 1500 rpm for 5 min at 4 ºC, the supernatant was discarded, cells 

were washed twice with FACS buffer, resuspended in an appropriate volume FACS 

buffer, and transferred to 5 ml tube by passing through a nylon mesh (or a filter of 

30 µm of diameter) before performing the FACS sorting. Then, cells were isolated by 

FACS based on Cd74 expression. 
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Animal model procedures  

Animal care  

All animal procedures were approved and performed in accordance with the 

guidelines of the Committee of Animal Experimentation of the University of 

Cantabria. Animals were housed in a pathogen-free facility under a photoperiod of 

12 h light/12 h dark, 22 ± 2 ºC of temperature, 50 ± 10% of relative humidity and ad 

libitum access to water and food. 

Experimental PDAC mouse model and PDAC induction 

We acquired a well-characterized PDAC mouse model developed by Dr. 

Dieter Saur (Schönhuber et al., 2014). TgPdx1-Flp:KrasFSF-G12D/+:R26FSF-CreE2T2 /FSF-CreERT2 

(KFC) mice were used as parental mice for colony maintenance. Experimental mice 

were obtained crossing KFC mice with 129Sv mice to generate a F1 heterozygous for 

all 129Sv SNPs in order to detect loss of heterozygosity (LOH). 

For PDAC induction, pancreatitis was induced through the administration of 

seven hourly intraperitoneal injections of caerulein (50 µg/kg of body weight) in 2-

month-old-mice on two consecutive days. When the mice show clear signs of disease 

(ascites jaundice or weight loss), they were sacrificed and a careful inspection of all 

organs was performed to detect pre-malignant lesions, primary tumors and 

metastases. Tail samples are taken as normal samples for further experiments. 
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In vivo metastasis protocol  

Unanaesthetised mice were warmed with a heat lamp for tail vein injections to allow 

venous dilation. Mice were then placed into a plastic retraining apparatus, and 

500.000 tumor cells were injected via the lateral tail vein of C57BL/6 mice strain. 

After 3 months, or before if there were symptoms of disease, mice were sacrificed. 

Then, the lungs and livers were fixed embedded, and frozen until the fluorescence 

analysis, or alternatively, they were dissociated into single-cell suspension to 

perform single-cell RNA-seq libraries. 

 
Data analysis 

DNA-sequencing data analysis 

Raw sequence data was quality controlled using FastQC. Then, they were 

aligned to the mouse genome from Ensembl Genome Reference Consortium mouse 

38 (GRCm38) using BWA-MEM (H. Li & Durbin, 2009). Format transformation, 

sorting, and indexing of the bam files were done with SAMTools (Li et al., 2009). The 

alignment was fixed and cleaned, and PCR duplicates reads were marked and 

excluded from the analysis with Picard. Local realignment around indels was done 

with GATK (McKenna et al., 2010). We calculated the enrichment statistics and target 

coverage with Bedtools. Next, paired tumor and normal bam files were used to 

identify putative somatic single nucleotide variations (SNVs) using Realignment 

Assisted Minimum Evidence Spotter (RAMSES), which is an in-house written 

algorithm ) (Martínez et al., 2014). We selected those mutations with a confidence 

score higher than 2 and a mutational frequency higher than 0.05. PINDEL was used 

to detect small insertions and deletions (indels) that were reported with a minimum 

of 5 reads in the sample and being absent in the control DNA (Ye et al., 2009). 

Functional consequence of the mutations was annotated our own in-house written 
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software (MutAnn, unpublished), that uses the information from Ensembl GRCm38. 

Big rearrangements such as copy number alterations (CNA) and loss of 

heterozygosity were found with Control-FREEC (Boeva et al., 2012). Supplementary 

information including tables (such as the list of protein-coding mutations in the 

different mice) and figures can be found in the following link: https://unican-

my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0Xiw

Bd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv. 

Single-cell RNA-sequencing data processing and data analysis 

We followed the Seurat guided tutorial from Dr. Satija’s lab 

(https://github.com/satijalab/seurat/blob/master/vignettes/pbmc3k_tutorial.Rmd)

. First, a quality control and poly(A)trimming of the fastq files is performed to discard 

the cells with low quality which are those with a higher percentage of mitochondrial 

reads than 20%. Next, genes that are present in less than three cells are also filter 

out. Then, we normalized the data, identified the highly variable features, scaled the 

data and performed linear dimensional reduction with the uniform manifold 

approximation and projection (UMAP) approach (Becht et al., 2018), and lastly, the 

cell clustering. Specific cellular subpopulations were identified by looking for the 

expression level of specific known markers, such as Sox9 and Krt18 for the tumor 

cells, Ptprc/Cd45 for the immune cells, Ctss for the macrophages, Col1a1 for the 

fibroblasts, Acta2 for the myofibroblastic cancer-associated fibroblasts (CAFs), Fabp4 

fot the lipofibroblasts, and Cd74 for the antigen-presenting CAFs. Gene set 

enrichment analysis (GSEA) was used to do differential gene expression analysis 

(Subramanian et al., 2005). Moreover, Slingshot transcriptional trajectories was used 

to infer cell trajectories (Street et al., 2018). Lastly, InferCNV analysis was used to 

extract CNA from the single-cell RNA-seq data allowing to analyze the potential 

relationship between the genetic and the transcriptomic intratumor heterogeneity. 

https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv
https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv
https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv
https://github.com/satijalab/seurat/blob/master/vignettes/pbmc3k_tutorial.Rmd
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Supplementary information including tables (such as the list of the genes that are 

upregulated and downregulated in each cluster from Seurat analysis) and figures can 

be found in the following link: https://unican-

my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0Xiw

Bd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv.

https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv
https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv
https://unican-my.sharepoint.com/:f:/g/personal/varelaei_unican_es/EuBHr9bq21tEqbjbR4q0XiwBd6G0uSSgAXt4YcKqrN4GAQ?e=Y1rcsv
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I. To analyze the tumor clonality in early and late stages 
using fluorescent lineage tracing tools 

To study PDAC intratumor heterogeneity (ITH) in vivo, we crossed a well-

characterized mouse model of pancreatic cancer (TgPdx1-Flp:KrasFSF-G12D) (Schönhuber 

et al., 2014) with transgenic mice expressing a conditional and inducible allele of Cre 

(R26FSF-CreERT2). The resulting mice express a tamoxifen-dependent Cre recombinase 

in the same pancreatic cells expressing the oncogenic version of Kras. This approach 

allows an inducible dual/double-recombinase strategy that combines the flippase-

FRT (Flp-FRT) and the Cre-loxP recombination technologies for tumor initiation and 

secondary genetic manipulation, respectively.  

In order to study the genetic clonality in the early and late stages of murine 

pancreatic tumors, we took advantage of a multi-fluorescent protein lineage tracking 

mouse strain (Confetti mice) based on the Brainbow-2.1 allele (Schepers et al., 2012; 

Livet et al., 2007). First, to check the function of the Brainbow allele, we induced the 

recombination of the allele with tamoxifen. As expected, we clearly observed a 

proportional representation of the four fluorescent markers, demonstrating that the 

system perfectly works in our hands (Figure 5A). Next, we crossed our mouse model 

to the Confetti mice and induced the fluorescent labeling after pancreatitis 

induction. Similarly, in this context, we also observed the four markers, especially in 

early stage premalignant lesions of the pancreatic disease (Figure 5B). Interestingly, 

early-stage lesions are multiclonal, with multiple labels observed in each lesion 

(Figure 5C); but this clonality is progressively lost in more advanced lesions as 

evidenced by the presence of a single label (Figure 5D). Surprisingly, the labeling was 

systematically lost in the most advanced stages of the disease (Figure 5D). Recently, 

a collaborated work led by Dr. Roland Rad and Dr. Dieter Saur has demonstrated that 

Kras wt allele is frequently lost or silenced in advanced stages of mouse pancreatic 

cancer (Mueller et al., 2018). According to the chromosomal location of the Rosa26 

locus and our mouse crossing designs, the Brainbow-2.1 allele is located very close 
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to the Kras wt allele in our mice. So, a plausible explanation for the loose of the 

labeling could be the combined loss of both alleles together during the later stages 

of PDAC development.  

 

Figure 5 | Representative pictures of the confetti allele activated in the 
pancreas. A) Confetti labeling in the normal pancreas shows an even 
representation of the four potential labels of the Brainbow-2.1 allele. B) 
Confetti labeling in a pancreatic tumor reveals (C) the presence of all the 
fluorescent proteins in the premalignant lesions, in contrast to (D) the most 
advanced stages presenting a monofocal/clonal origin of the lesions (even with 
the loss of fluorescence). 
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II. To generate new lineage tracing tools to study the 
involvement of intratumor heterogeneity in cancer 
progression 

During the first experiments, it became evident that the original proteins 

selected for the Brainbow-2.1 construct presented quite a lot of spectra overlapping 

which hampers the correct identification of the four proteins and the analysis of 

potential protein combinations. Being aware of this problem an improved construct 

(called Brainbow-3.2) was developed by the original authors using three proteins 

with almost non-overlapping spectra (Malide et al., 2012). This model offers a better 

grade of resolution but it is still limited to only three potential outcomes and 

consequently, to the purification of only three cell populations in each sample. It has 

been shown that the number of possible combinations produced in cells can be 

increased by using more different fluorescent proteins or by modifying the same 

proteins to locate in different cellular compartments (Malide et al., 2012; Loulier et 

al., 2014). 

To overcome these problems, as the second objective of this thesis, we 

aimed to generate a new cell lineage tracing tool more useful to study ITH in tumor 

progression. In order to solve the spectral complications of separating many 

different color combinations, we performed a systematic evaluation of the 

spectrometric characteristics of different fluorescent proteins in order to construct 

a new Brainbow-based lineage tracking allele with a higher repertoire of colors. For 

this purpose, we cloned and tested up to twenty fluorescent proteins in a eukaryotic 

expression vector (pCDNA3.1) (Figure 6A). Of them, according to their spectrometric 

characteristics, we selected ten to transiently transfected the HEK-293T cells and 

check their excitation and emission spectra. The emission spectra of most of them 

showed significant overlapping (Figure 6B). Nevertheless, we were able to establish 

unique conditions in the confocal microscope to maximize the identification of five 

fluorescent proteins (mOrange, tSapphire, mKate2, TagBFP, and YPet) (Figure 6C-E).  
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Figure 6 | Confocal microscopic experiments. A) Schematic representation of 
the eukaryotic expression vector, based on pCDNA3.1, used to express the 
fluorescent proteins (FP) in HEK-293T cells. B) Emission spectra diagram of 
several fluorescent proteins analyzed by confocal microscopy. C) Excitation and 
emission range of different fluorescent proteins. D) Composite image of a mix 
of cells individually transfected with the different fluorescent proteins. E) 
Representative images of cells transfected with five fluorescent proteins taken 
at five different emission intervals in the confocal microscope designed to 
maximize the unique identification of each protein.  
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Additionally, due to the different spectra shown by these proteins, we 

distinguished the expression of each one of these five different proteins and 

separated the cells expressing them using a FACS Aria III sorter with four spatially 

separated lasers (Figure 7).  

 

Figure 7 | FACS experiments. A) Excitation and emission range of different 
fluorescent proteins in the sorter. B) The 5 different cell populations are 
separated in the FACS. 

 

To increase the detection versatility of our system, we subsequently 

incorporated a specific epitope or tag (3xHA, 6xHis, Myc, FLAG, V5) to each 

fluorescent protein which allows their identification with a specific antibody. We 

were able to uniquely detect each one of the five different labeling proteins (Figure 

8A). With all these improvements, we constructed a new allele following the original 

Brainbow-2.1 strategy (Livet et al., 2007), with the five fluorescent proteins and their 

tags surrounded by loxP sites (Figure 8B). After the transfection of the HEK-293T cells 

with this allele and the addition of the Cre recombinase, a homogeneous expression 

of all the fluorescent proteins was obtained (Figure 8C) proving an even number of 

recombination events among all loxP sites. So, our allele allows the combination and 

identification of different label combinations, and the same allele can be used in 

different experimental settings even in the absence of fluorescent detection.   
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Figure 8 | Final fluorescent protein allele. A) Representative images of HEK-
293T cells transfected with the five fluorescent proteins and their specific tags 
to uniquely detect their expression with specific antibodies. B) Bidimensional 
representation of the new lineage genetic tracing designed allele with the five 
fluorescent proteins and their tags surrounded by loxP sites for the study of 
intratumor heterogeneity in cancer mouse models. C) Representation of the 
results of cytometric analysis of HEK-293T cell line transfected with the new 
labeling before (up) and after (down) inducing the recombination with 
tamoxifen. Each graph represents the signal in each of the five selected 
channels (one for each protein). An even representation of cells labeled with 
the five different fluorescent proteins can be observed after recombination.  
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In a hypothetical homozygous mouse model, with two copies of this allele, 

up to fifteen different color combinations could be uniquely identified which 

increases significantly the Confetti 4-colour potential (Figure 9Figure 8). 

 
Figure 9 | Potential color combinations in a hypothetical homozygous mouse 
model. Homozygous mouse cells would be able to generate up to fifteen 
different color combinations due to the independent behavior of the two 
alleles. 
 

Finally, we have generated lentiviral vectors with the individual fluorescent 

proteins that can be used to generate cell culture in vitro. To test this strategy, we 

generated stably transfected pancreatic cell cultures and performed in vivo 

metastasis experiments. As can be seen in Figure 10, these cells retain their labeling 

after metastasis and produce ductal structures in the lung.  

 

Figure 10 | In vivo metastasis experiment. Fluorescent pancreatic ductal 
structure in the lung after intravenous injection of a pancreatic primary cell line 
labeled with a fluorescent protein. 
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III. Study the role of genetic intratumor heterogeneity in 
pancreatic cancer progression. 

Characterization of punctual mutations in KFC mice 

In order to study the genetic ITH in vivo, we performed multiregional whole-

exome sequencing of pancreatic primary tumors and their associated lung- and liver-

metastasis from a pancreatic mouse model (Schönhuber et al., 2014). We analyzed 

46 tumoral samples from 10 mice. We found 1552 mutations of which 1426 

mutations fall inside protein-coding genes. We focussed on them as they are easier 

to interpret and more likely to functionally impact cell behavior. We identified 

between 7 and 59 somatic protein-coding mutations per sample (on average, 31 

mutations per sample) and we didn’t observe any difference between primary and 

metastatic samples (on average, 29 and 32 mutations per sample, respectively), 

suggesting that the metastatic potential is not in general accompanied with an 

increase in genetic instability. We verified the presence of each mutation in all the 

samples from the same mouse with specific PCR amplification followed by high 

coverage sequencing.  

In terms of the functional impact of the mutations, they are distributed in 

62% missense mutations, 21% silent mutations, 8% splice mutations, 4’7% non-sense 

mutations, 3’7% frameshift mutations and less than 1% of start lost and stop lost 

mutations. This distribution is similar among mice, pointing out that most of the 

mutations are probably the result of random mutation accumulation due to genetic 

instability. Regarding the substitutional profile, the most frequent substitutions are 

C>T (303 mutations), G>A (250 mutations) and C>A (204 mutations).  

Moreover, although we don’t find a high number of recurrently mutated 

genes among different samples (Table 7), some of them could constitute new 

candidates for PDAC cancer genes. Some examples are Ctnna3, Matr3, or Lrp1b. 
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Ctnna3 was found mutated in three mice, with three different missense mutations. 

This gene encodes a cadherin-associated protein alpha 3, which plays an important 

role in cell-cell adhesion (J. D. Smith et al., 2011). Therefore, its inactivation could 

contribute to a higher invasive characteristic in the cells. Matr3 was found mutated 

in three mice, with three different mutations altering essential splice positions which 

likely affect the correct mRNA splicing. This gene encodes a nuclear matrix protein, 

which is involved in differentiation (Cha et al., 2021). Finally, we identified two 

different missense mutations in Lrp1b in two mice.  Lrp1b gene is a putative tumor 

suppressor and encodes a member of the low-density lipoprotein (LDL) receptor 

family. The LDL receptor family interacts with multiple ligands and is proposed to be 

involved in extracellular signal transduction. Silencing and down-expression of LRP1B 

have been observed in renal cell carcinoma and thyroid cancer. Additional deletion 

of LRP1B has been linked to resistance to chemotherapy in high-grade serous 

cancers. 

Table 7. List of the genes that are mutated in more than one mouse. Kras and some 
potential new PDAC cancer genes are colored in yellow. 

Gene N*  Gene N*  Gene N*  Gene N* 
Dhfr 4  Car4 2  Lrp1b 2  Rp1 2 
Hfm1 4  Cdk20 2  Mapk8ip2 2  Rpap2 2 
Ctnna3 3  Col9a1 2  Mn1 2  Sap30bp 2 
Dop1b 3  Dgka 2  Mroh2a 2  Serbp1 2 
Gm12880 3  Efl1 2  Mrpl49 2  Slc2a4 2 
Matr3 3  Fgd6 2  Msh5 2  Snhg4 2 
Stam2 3  Foxr2 2  Nbeal2 2  Sycp1 2 
Tmcc1 3  Garem1 2  Nfasc 2  Ubap2 2 
4930474N05Rik 2  Grin2c 2  Nipbl 2  Ube2k 2 
Ankrd45 2  Hmcn2 2  Nup37 2  Unc13d 2 
Arpc1b 2  Kras 2  Peak1 2  Utrn 2 
B430010I23Rik 2  Krba1 2  Pigo 2  Zan 2 
Bnip3 2  Lnx1 2  R3hdm1 2  

  
Cacul1 2   Loxhd1 2   Rab3c 2       
*N = Number of mice that present mutations in a specific gene 
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Interestingly, although KFC mice already have a mutant version of Kras 

(KrasG12D), we have found Kras activating mutations (KrasQ61L) in the wild-type (WT) 

allele of two lung metastatic samples from two mice (ID-2365 and ID-1187). 

 

Characterization of big genomic rearrangements in KFC mice 

We studied copy number alterations (CNA) and regions with loss of 

heterozygosity (LOH) from the exome sequencing data. 

We analyzed the CNA present in the 46 tumoral samples from the 10 mice. 

We found 1680 CNA, of which 1128 were gain alterations. In particular, there were 

between 17 and 126 CNA per sample (on average, 37 CNA per sample). We observed 

a slight increase in the number of CNA in the lung metastatic samples (on average, 

48 CNA per sample) compared to the pancreatic primary tumor and the liver 

metastatic samples (on average, 33 and 31 CNA per sample, respectively). This 

increase was not significant (p-valorCNA-LungMet-PPT = 0.0504; p-valorCNA-LungMet-LiverMet = 

0.15), in agreement with the commented substitution profiles, emphasizing the idea 

that the metastatic potential wouldn’t be accompanied with an increase in genetic 

instability. 

 Additionally, in those samples coming from mice with C57BL/6-129Sv 

background (26 tumoral samples from 5 mice), we were able to identify regions with 

loss of heterozygosity (LOH). Similar to what is observed in human PDAC samples, in 

some cases, we found deletions or LOH in the region where Cdkn2a is located 

(chromosome 4 from 89192710 position to 89212856 position, Chr4:89192710-

89212856; Figure 11A, B). We also find recurrent alterations in chromosome 6 

around the region where Kras is located (Chr6:145162425-145195965; Figure 

11¡Error! No se encuentra el origen de la referencia.B).  
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Figure 11 continues on the next two pages. 
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Figure 11 | Schematic representation and phylogenetic relationships of the 
different clones present in the primary pancreatic tumor and their arising 
metastasis using a multisample sequencing strategy to decipher tumor 
evolution. The graphs represent copy number alterations (CNA) and loss of 
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heterozygosity (LOH) from chromosomes 4 and 6 of two different mice (ID-
2343 and ID-2365). A) Complete LOH in the chromosome 6 (containing Kras) of 
the two-liver metastasis (in blue), is likely the result of the loss of the WT 
chromosome plus the duplication of the mutant one because there are 2 copies 
of the chromosome 6.  LOH is also present in chromosome 4 (harboring 
Cdkn2a) in one liver metastasis without any CNA (in blue). The lung metastatic 
sample is perfectly heterozygous without any CNA. B) Deletion of one copy of 
chromosome 4 in the primary pancreatic tumor (containing Cdkn2a, in blue). 
Trisomy of chromosome 6 (harboring Kras, in red) in the primary and the liver 
metastases. The lung metastasis is heterozygous without any CNA. 
 

These alterations likely result in the further activation of the oncogenic Kras 

signal by either loss of Kras WT allele or amplification of Kras mutant allele, as has 

been described in a recent collaboration of our group in a project led by Dr. Roland 

Rad and Dieter Saur (Mueller et al., 2018). The need to amplify the Kras oncogenic 

signal is also shown by the identification of two activating mutations in the Kras WT 

allele (KrasQ61L) from two lung metastases. Interestingly and in contrast with what is 

observed in humans, we didn’t find alterations in Trp53 or Smad4 genes. This 

indicates that, whereas inactivation of Cdkn2a seems to be essential in both human 

and murine PDAC, Trp53 and Smad4 alterations don’t seem to be required for a full 

PDAC progression in mouse models.  

Finally, and in accordance with the need to further activate Kras oncogenic 

signals, in two lung samples in which we failed to detect CNA in the Kras region, we 

found two new Kras activating mutations (KrasQ61L) in the WT allele (ID-2365 and ID-

1187 mice). 
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Characterization of ITH and evolution inference in murine pancreatic tumors 

The identification and validation of all the mutations and CNA in multiple 

samples from the same mice allowed us to confirm the presence of different genetic 

clones inside the tumors and infer their evolutionary relationships (Figure 12). 

 

Figure 12 | Genetic evolution in murine pancreatic tumors. A) Somatic 
mutations validated from exome sequencing in pancreatic primary tumors 
(PPT) and metastatic samples of a mouse (ID-788). Common mutations are 
shared between all the lesions (in grey), private mutations are specific to a 
specific tumor region (in yellow, green, and orange) or restricted to a single 
lesion (liver metastases in blue). There are tissue-specific mutations present in 
the PPT and the liver metastases (in orange) or in the PPT and the lungs (in 
green). B) Schematic representation and phylogenetic relationships of the 
different clones present in the PPT and their arising metastasis to decipher 
tumor evolution from the previously validated mutations.  

In all the mice, we found shared mutations in all the taken samples from the 

same mice, indicating a common genetic origin of the tumors (monofocal tumors) 

(Figure 12, Figure 13), which is in accordance with the Confetti experiments. These 

common mutations are known as clonal mutations (also as founder/public 

mutations) and are assumed to have been accumulated in the early stage of cancer 

evolution.  Moreover, the presence of heterogeneity inside the tumors and the 

metastases was confirmed by the presence of different mutations in one or some 

samples from the same mouse. This observation reveals the presence of subclones 

accumulating specific progressor or private mutations that contribute to the 

formation of ITH (Figure 13). 
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In some cases (ID-757, ID-799, ID-2379), there was evidence of separate 

waves of metastatic spread from the primary tumor to different tissues through the 

presence of some metastatic subclones sharing a higher number of mutations with 

the primary tumor which were not present in other metastatic subclones from the 

same tissue, suggesting continuous metastatic seeding (Figure 13B, C). The CNA also 

revealed different waves of metastatic spread. This is the case of a mouse (ID-2365) 

in which we found CNA in chromosomes 4 and 6 in the primary and the liver 

metastases, but not in the lung metastases. This observation, plus the fact that all 

the samples shared a number of mutations, indicated that the lung metastasis 

occurred as an early event (Figure 13B). This could also reflect that the alterations 

required to produce a metastasis in the liver are different from those needed in the 

lungs. 

  In a single mouse (ID-799), we observed the Lpxn gene, also known as 

Leupaxin, mutated in two independent manners, suggesting convergent evolution 

(Figure 13C). In humans, this gene acts as a negative regulator in integrin-mediated 

cell adhesion events and contributes to the regulation of cell adhesion, spreading, 

and cell migration.  

In other mice (ID-788, ID-2365, ID-2343, and ID-2850), we found specific 

mutations present in some subclones of the primary tumor and the lung metastases, 

and other private mutations that were present in other subclones from the primary 

and the liver metastases, revealing tissue-specific metastasis (Figure 13A). Curiously, 

Kras amplification is recurrently not present in the lung metastases. The CNA can 

also indicate tissue-specific metastasis. This was the case of the ID-2850 mouse in 

which the two lung metastatic samples and a primary tumor sample were very 

similar in the CNA analysis, while the liver metastases showed a low number of 

alterations and they were more similar between them, probably indicating tissue-

specific metastases 
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Figure 13 |Schematic representation and phylogenetic relationships of the 
different clones present in the primary pancreatic tumor and their arising 
metastasis using a multisample sequencing strategy to decipher tumor 
evolution. In all the cases, the common mutations present in all the samples 
are colored in yellow, indicating the monofocal origin of the tumors. 
Genetically different subclones are represented by several colors, confirming 
the presence of ITH. A) Specific subclones of the primary tumor are present in 
the lung metastases, and other private mutations present in other subclones 
from the primary are also present in the liver metastases, revealing tissue-
specific metastasis. B, C) Presence of some metastatic subclones sharing a 
higher number of mutations with the primary tumor which were not present 
in other metastatic subclones from the same tissue, indicating separate waves 
of metastatic spread from the primary tumor to different tissues. C) Lpxn gene 
mutated in two independent manners, suggesting convergent evolution. 
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Unfortunately, we have not found any metastasis-specific recurrent genetic 

alteration. This observation, in accordance with recent studies in colorectal cancer 

(Ganesh et al., 2020), suggests that metastatic potential could not be genetically 

determined, or at least, not by mutations present in protein-coding genes. As any 

alteration, genetic, epigenetic, or caused by the microenvironment, that affects 

cellular behavior is expected to affect the cell transcriptome, we decided to 

characterize the functional intratumor heterogeneity in these tumors. 
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IV. To characterize the presence of transcriptomic 
intratumor heterogeneity and its role in metastasis 

Characterization of the presence of transcriptomic ITH in KFC mice 

In order to study the transcriptomic or functional ITH in vivo, we performed 

single-cell RNA-seq of primary tumors and their associated lung- and liver-metastasis 

from our pancreatic mouse model. In total, we analyzed 15 samples from 9 different 

mice including the total fraction of 9 pancreatic primary tumors, the tumor isolated 

cells of 2 of them, and the total fraction of 2 associated lung-metastasis and 2 

associated liver-metastasis.  

We obtained transcriptional data from a total of 97432 cells (6495 cells per 

sample, on average). From them, we obtained good quality data from 60741 cells 

ranging from 1441 to 10572 cells per sample.  

After performing dimensionality-reduction-based UMAP clustering, we 

identified 28 subgroups/subclusters of cells according to their transcriptomes 

(Figure 14). These subclusters represent the transcriptionally different cell 

populations present inside the tumors. First of all, we identified the stromal 

component by looking for the expression level of specific known markers (Figure 14). 

Thereby, immune component of the tumors can be easily identified by a high 

expression of the Ptprc/Cd45 gene which is specific for blood cell differentiation. As 

expected, we found this gene highly expressed in an important fraction of the cells, 

confirming the huge infiltration of immune cells in the pancreatic tumors. Tumor 

cells were identified by the overexpression of Sox9, Krt18, and Krt19 marker genes. 

We also identified macrophages and lymphocytes. Next, Colagen1A1 was used to 

identify a specific cluster of cancer-associated fibroblasts (CAFs). 
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Figure 14 | Unsupervised dimension reduction projection of the 
transcriptional profile of 60741 cells from 15 samples from 9 PDAC mice. 
Machine-derived clustering together with violin plots of specific marker 
expression, showing normalized expression in each of the subclusters, allows 
the identification of different cell types and transcriptional groups. Sox9 and 
Krt18 are known markers of tumor cells, Ptprc/Cd45 is highly expressed in 
immune cells, Ctss is a macrophage marker gene, and Col1a1 is a fibroblast 
marker gene.  
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To further characterize CAF subpopulations, we separately analyzed the cells 

from the main fibroblast cluster (cluster 15 from Figure 14) and clusterized them on 

a UMAP plot, forming 13 subclusters, each with distinct gene signatures (Figure 15). 

We identified at least 3 of the 4 types of fibroblasts that have been previously 

described in PDAC  (Elyada et al., 2019). For instance, subcluster 8 expressed high 

levels of Acta2, corresponding with myofibroblastic CAFs (myCAF). This subcluster is 

composed of fibroblast from most of the samples, indicating that this subpopulation 

of CAFs appears recurrently during PDAC progression.  Subcluster 6 expressed 

marker genes, such as Cd74 (among other antigen-presenting molecules such as TCR 

or MHCII), that were very similar to the human antigen-presenting CAFs (apCAF) 

signatures. But, these fibroblasts are only identified in a single primary sample (ID-

2849_1). Subcluster 10 was rich in the Fabp4 marker like the lypofibroflasts (lipoF). 

These lipoF were identified in at least two mice. We did not observe any group that 

could correspond to the called inflammatory CAFs (iCAF) that overexpress cytokines.  

 
Figure 15 | Unsupervised UMAP projection of the transcriptional profile of 
cancer-associated fibroblasts. A) Unsupervised clustering of all cancer-
associated fibroblasts from 12 samples from 9 PDAC mice. B) Violin plots of 
selected myofibroblastic CAFs (myCAF), lypofibroflasts (lipoF), and antigen-
presenting CAFs (apCAFs) markers showing normalized expression in each of 
the subclusters. C) Composition of each subcluster of fibroblasts among 
samples.   



Results 

89 
 

Characterization of the presence of recurrent transcriptional tumor cell groups 

In order to identify the different transcriptional programs inside the tumor 

cell component, we extracted tumor cells from the main 11 tumor subclusters 

(subclusters 0, 4, 6, 9, 10, 11, 12, 18, 21, 23, and 27 from Figure 14) and analyzed 

them separately. Unfortunately, liver samples were so highly infiltrated with 

immune cells that we failed to obtain good quality data from any tumor cell. 

Clustering of the cells allowed us to identify 21 subclusters (Figure 16A), each with 

distinct transcriptional signatures. 

Interestingly, cancer cells from the two different mice with lung metastasis 

clustered together with a distinct transcriptional profile (subclusters 8, 12, and 15) 

(Figure 16A). Particularly, they appeared to be involved in positive regulation of cell 

death, epithelial and epidermal cell differentiation, the organization of cell-substrate 

junctions, myeloid leukocyte activation, leukocyte mediated immunity, and MAPK 

and protein kinase regulation. In particular, these metastatic subpopulations 

overexpressed Ager and Ereg genes as late metastatic markers (Figure 16B).  

Moreover, inside the functional ITH, we found recurrent transcriptionally 

differentiated cancer cell populations, indicating that some transcriptional cancer 

cell groups appear recurrently during PDAC progression (Figure 17A). Some of these 

subgroups overexpress gene pathways that likely play important functions during 

tumor progression. For instance, subcluster 4 overexpress genes involved in 

translational initiation and ribosomal activity, and subcluster 5 is involved in cell 

junction and cell adhesion processes. The cells in these both subclusters likely have 

a higher metastatic potential than the rest of the cells. Additionally, subcluster 7 

contains cells that overexpress genes involved in cell division which likely correspond 

to a population of highly proliferative cells. Finally, subcluster 19 overexpress genes 

involved in the regulation of the immune response which might constitute a group 

of cells in high communication with tumor stroma. 
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Figure 16 | A) Unsupervised UMAP projection of all the tumor cells from 13 
samples from 9 PDAC mice. On the right side, there are graphical 
representations showing the normalized expression of epithelial (Epcam and 
Cdh1) and mesenchymal (Vim) markers in the clustering. B) Violin plots of 
selected Ager and Ereg marker genes as late metastatic markers showing 
normalized expression in each of the subclusters. 
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Epithelial-mesenchymal transition and metastatic trajectories 

We also observed a higher expression of epithelial markers, such as Epcam 

or Cadherin1, in some subclusters from the primary (subclusters 1, 6, 13, and 14) and 

the metastatic subclusters (subclusters 8, 12, and 15) compared with a clear 

reduction of the epithelial identity in others (0, 2, 4, 5, 7, 10, 11, 17, and 18) or even 

a complete loss of the epithelial identity (subclusters 3 and 9), where Vimentin 

expression was higher, indicating a mesenchymal profile (Figure 16A). This 

observation may reflect a continuous epithelial-mesenchymal transition (EMT) in the 

tumor cells, which has been reported in many tumor types, including pancreatic 

cancer, and has been associated with the metastatic potential (Rhim et al., 2012). 

Interestingly, trajectory inference analysis identified at least two 

differentiated transcriptional programs of EMT, with metastatic populations 

presenting only partial EMT versus primary tumor cells, which shows a complete 

EMT (Figure 17B). While studying the intermediate stages to characterize the 

transcriptional trajectories, subcluster 19 was proposed as an intermediate point in 

this transition. 

Moreover, among the different recurrent transcriptional groups (Figure 

17A), the cluster 19, that is located in the middle between the primary tumor and 

the metastases, is composed of cells extracted from primary and metastatic samples 

suggesting that it could be a group of pre-metastatic cancer cells inside of the 

primary tumors with already some transcriptional characteristics of the metastatic 

cells. 
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Next, we looked for specific markers of this minor cell population of interest 

(Figure 17C). We observed overexpression of several ligands and receptors of the 

TGFβ pathway, such as Cxcl2 and Il1. This could indicate that this minority cell 

population communicates with the normal cells of the tumor microenvironment to 

promote angiogenesis and invasion of the primary tumor and they might prepare 

the metastatic niche in the lungs. 

 

Figure 17 | A) Composition of each tumor subcluster among samples. On the 
right, repeated unsupervised UMAP projection of all the tumor cells. B) 
Trajectories inferred with the InferCNV software. C) Violin plots of Cxcl2 and 
Cd74 early markers genes of the pre-metastatic cell population.  
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In an attempt to characterize this tumor minor cell population, we selected 

Cd74 among the highly expressed specific markers, to purify these cells from the 

primary cell cultures that had been previously established from the tumor cells of 

the primary tumor. Unfortunately, although we were able to purify this minority cell 

subpopulation in the FACS with a higher Cd74 expression (Figure 18), after expanding 

and maintaining the purified cell lines in cell culture, the most expected enriched 

genes were lost (such as Cd74, Cxcl2, Il1b, Srgn, Lyz2, Ctss, and Ccl6). This observation 

suggests that the transcriptional profile present in these cells in the primary tumors 

appears as a consequence of the specific tumor microenvironment and it is not 

maintained when we grow up the cells in vitro. 

 

Figure 18 | FACS experiments isolating the Cd74+ minority cell population. A) 
HEK-293T cells were used the negative control of the experiment. HEK-293T 
cells transfected with pCDNA3-Cd74+ expression vector used as a positive 
control. B, C, D) Primary cell culture established from 3 different primary 
pancreatic tumors showing the Cd74+ minor cell population that we isolated. 
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To validate our hypothesis, we performed an in vivo metastasis assay in 

which we intravenously injected a primary cell line (from ID-2365) into a C57BL/6-

129Sv mouse. These cells recovered their ability to produce lung metastasis. After 

scRNA-Seq analysis of the tumor cells present in the induced-lung metastasis (ID-

756-Lung), we found a transcriptionally similar cell population that clusterized with 

the original pre-metastatic population (Figure 19). These observations confirm that 

although the transcriptional profile is lost in cell culture, it is recovered in a favorable 

pro-tumorigenic microenvironment and the metastatic potential is conserved after 

growing up the cells in vitro. 

 

Figure 19 | Unsupervised clustering of tumor cells. In each graph, the tumor 
cells from each specific mouse are colored in pink. 756-Lung metastasis is 
originated after injecting a primary cell culture established from the ID-2365 
mouse. Tumor cells from the 756-Lung metastasis are transcriptionally similar 
to the tumor cells from other lung metastases and to the pre-metastatic cluster 
of interest. Lung metastatic clusters and the intermediate pre-metastatic cell 
population are highlighted with red and blue circles, respectively. 
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Analysis of the potential relationship between the genetic and the transcriptomic 

ITH. 

Finally, we analyzed the potential relationship between the genetic and the 

transcriptomic ITH. We identified the presence of CNA from the scRNA-seq data 

using InferCNV software through the assumption that changes in the expression of 

several genes that are closely located reflect a change or a CNA in the same part of 

the chromosome. Interestingly, we recurrently observed changes in chromosome 4 

(Cdkn2a) and chromosome 6 (Kras), supporting our previous findings in the exome 

data. We clustered the cells according to these genetic alterations predictions and 

tried to associate them with the previously identified transcriptional groups. As it 

can be seen in Figure 20, there is not any clear correlation between the genetic and 

the transcriptomic subclusters which indicates that the generation of a specific 

transcriptional group of those recurrently observed in our mice, is not in general 

associated with the acquisition of specific genetic alterations. One potential 

exception is the transcriptomic subcluster 4 which seems to group mainly in a 

specific subcluster of the genetic tree. Notably, when we introduced the CAFs in the 

analysis, they grouped together with the absence of any predicted CNA.  This 

observation suggests that these CAFs originate from normal cells and not from a 

specific group of tumor cells (Yamaguchi et al., 2021). Additionally, the 

transcriptional minority subcluster 19 is randomly distributed among these genetic 

subgroups which again supports that the metastatic potential is not in general 

associated with the acquisition of specific secondary genetic alterations.  



Results 

96  
 

 
Figure 20 | Analysis of the potential relationship between the genetic and the 
transcriptomic ITH. A) Estimation of copy number variants by InferCNV across 
all the tumor cells from a specific mouse (ID-2365). The rows correspond to the 
cells. The top color bars indicate different chromosome regions. Genes are 
ordered from left to right across the chromosomes. Chromosomal region 
amplifications and deletions are shown in red and blue, respectively, indicating 
higher or lower expression values of the tumor cells compared with those in 
control cells. Hierarchical clustering is shown on the left. B) Representation of 
the CNA from chromosome 4 (Cdkn2a loss) and chromosome 6 (Kras 
amplification) from the previous mouse. C) InferCNV from a second mouse (ID-
2379). On the right, all transcriptomic subclusters, including a group of CAFs as 
a control, and the tumor cells from the transcriptomic subcluster 19 are 
represented.
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Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease 

accounting for 95% of all pancreatic malignancies. While new treatment options 

have improved the prognosis of many other cancer types, PDAC has a poor outcome 

and a rising incidence due to its late diagnosis, early metastatic widespread, and the 

lack of effective treatment options (Siegel et al., 2022). Taking advantage of next-

generation sequencing (NGS), an extensive genetic intratumor heterogeneity (ITH) 

of PDAC was revealed (Jones et al., 2008; Biankin et al., 2012; Waddell et al., 2015; 

Bailey et al., 2016). Moreover, PDAC is characterized by a highly inflammatory and 

desmoplastic tumor microenvironment (TME), which contributes to the 

aggressiveness and drug resistance of the disease (Whatcott et al., 2013). As a high 

grade of ITH has been associated with poor prognosis in cancer patients, in this 

Doctoral Thesis we proposed a proper characterization of the dynamics of ITH to 

understand the mechanisms involved in PDAC progression and metastasis, with the 

final aim of improving cancer patient’s survival through the design of more efficient 

treatments. In particular, we proposed for the first time the independent study of 

different cell clones present in the primary tumor and their associated metastasis. 

To do this, we combined the flexibility of a mouse model with the high sensitivity of 

next-generation, single-cell sequencing technologies and a multi-fluorescent protein 

lineage tracking system. 

Mouse cancer models have been used in the past to study tumor-promoting 

molecular pathways. Nevertheless, the translation of the observations done in mice 

to human patients has been traditionally difficult due to species-specific 

mechanisms. In our case, pancreas-specific expression of KrasG12D in mice induces 

PDAC that faithfully recapitulates all types of lesions observed in human PDAC 

progression, from PanINs to metastatic spread to lymph nodes, liver, and lungs, the 

same tissues of preferent metastasis in human samples. Surprisingly, even when the 

mutant Kras allele is activated in multiple cells, we systematically observed that 

advanced tumors are monofocal, evidenced by the combination of this mouse model 
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with an inducible multi-fluorescent protein lineage tracking allele. Unfortunately, the 

labeling was lost in the most advanced stages of the disease. A potential explanation 

of this could be the result of an immunogenic reaction to the expression of the 

fluorescent proteins. According to some authors,  GFP expression can deteriorate 

over time as GFP-labelled cells are prone to death, proving the immunogenicity and 

toxicity of this fluorescent protein in vivo (Ansari et al., 2016). Importantly, adverse 

immune responses to tumor cells expressing the GFP reporter have been described 

(Stripecke et al., 1999; Day et al., 2014). Nevertheless, we are able to see 

fluorescently marked cells in the mice after intravenous infection which proves that 

there is not a massive immune response against fluorescent proteins in our model. 

Alternatively, it was demonstrated that the oncogenic Kras signal in mouse PDAC is 

frequently activated by either loss or silencing of the Kras wt allele  (Mueller et al., 

2018). Due to our mouse design, the Brainbow-2.1 allele is located in the Rosa26 

locus in cis with the Kras wt allele. Consequently, a plausible explanation could be 

the concurrent loss of the Brainbow-2.1 allele together with the Kras wt allele, losing 

the expression of the fluorescent protein in the more advanced states. This 

observation reinforces the requirement for tumor cells to amplify the mutant Kras 

signal in the later stages of PDAC development in our mouse model. 

In addition to this limitation of our mouse model setting, the original 

fluorescent proteins selected for the original Brainbow-2.1 construct presented 

mostly overlapping spectra, which complicates their identification and the analysis 

of potential protein combinations, limiting the strategy to only four potential 

outcomes (Schepers et al., 2012). Being aware of this problem, the same authors 

improved the construct (called Brainbow-3.2) using three proteins with almost non-

overlapping spectra and incompatible loxP sites (Cai et al., 2013). However, the 

strategy was restricted to only three different markers. At the same time, other 

authors showed that more different fluorescent proteins could be used or these 

proteins could be modified to locate them in different cellular compartments and 
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thus increase the number of potential combinations produced in cells  (Malide et al., 

2012; Loulier et al., 2014). 

For these reasons, we proposed to improve the original Confetti allele and 

introduce it in another murine locus to avoid the loss of the labeling in the most 

advanced stages of the disease. In this context, we generated a construct containing 

five different fluorescent proteins and specific tags (3xHA-mOrange2, 6xHis-

tSapphire, Myc-mKate2, FLAG-TagBFP, and V5-YPet) surrounded by loxP sites. We 

validated the even representation of the five markers after CRE recombination. This 

new allele could be used in different experimental conditions, even without 

fluorescent detection due to the use of specific tags. In a hypothetical homozygous 

mouse model, with two copies of the new allele, up to fifteen color combinations 

could be uniquely distinguished, which significantly increases the original 4-color 

potential. Moreover, we have proved that the labeling is maintained after 

metastases induction through the injection of lentiviral vectors containing each 

fluorescent protein. This new lineage tracing tool might allow studying the 

involvement of ITH in cancer progression. We propose to introduce this new allele 

in the ColA1 locus (García-Marqués & López-Mascaraque, 2013), which is in a 

different chromosome than Kras, avoiding the loss of the labeling due to the 

loss/silence of the Kras wt allele. Additionally, we have generated individual lentiviral 

particles containing each one of the new markers independently that can also be 

used in different experimental settings to mark different cell populations. 

Next, we studied the role of genetic ITH in PDAC progression through 

multisampling whole-exome sequencing experiments in a total of 55 samples from 

10 different mice. We found on average 62 protein-coding mutations per sample, 

including substitutions, small insertions and deletions (indels), and copy number 

alterations (CNA), showing no statistically significant differences between primary 

and metastatic samples, which suggests that the metastatic potential wouldn’t be 

accompanied with a higher genetic instability.  
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It should be noted that this study is the first time in which multisampling 

sequencing has been carried out in mice to finely characterize the evolution of 

genetic intratumor heterogeneity in a genetically homogenous mouse model. 

Interestingly, our KFC mice showed genetic ITH similar to human PDAC patients 

(Yachida et al., 2010; Campbell et al., 2010), so studies of the evolution of ITH can be 

done using animal models.  

As in humans, we recurrently found alterations in Cdkn2a and Kras, but 

alterations in Trp53 or Smad4 were not identified. In human PDAC, KRAS and 

CDKN2A have been described to be affected in the earlier stages, while TP53 and 

SMAD4 alterations are later events, mainly occurring in invasive PDAC (Hruban et al., 

2000; Hosoda et al., 2017). Therefore, our finding could indicate that whereas Kras 

amplification and the loss of Cdkn2a seem to be essential in human and mice PDAC, 

Trp53 and Smad4 alterations wouldn’t be required for a metastatic progression of 

PDAC in our mouse model. Moreover, Cdkn2a encodes p16INK4A and p19ARF (p14ARF in 

humans) proteins that act as tumor suppressors by regulating the cell cycle. 

Considering that p19ARF activates the Trp53 tumor suppressor gene, perhaps the 

inactivation of the Cdkn2a in mice might have a similar effect as P53 loss in humans. 

Lastly, Smad4 deficiency has no discernible impact on normal pancreas development 

but it has been associated with increased proliferation of the tumor epithelium and 

the stromal tissue, accelerating PDAC development of KrasG12D mice (Bardeesy, 

Cheng, et al., 2006). The absence of alterations in Smad4 and the presence of 

epithelial-mesenchymal transition (EMT) in our mice agree with published works 

revealing that pancreatic tumors with intact Smad4 frequently exhibit EMT 

(Bardeesy, Cheng, et al., 2006). In particular, SMAD4 plays a complex role in the 

transforming growth factor-beta (TGFβ) pathway, which is a potent inducer of EMT 

(Dardare et al., 2020; Massagué, 2008). Recently, it has been suggested that tumor 

cells undergo EMT through intermediary states that are characterized by greater 

aggressiveness and metastatic capacity. Indeed, TGFβ modulates immune regulation 
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and tumor microenvironment modification, processes that cancer cells might exploit 

to their advantage (Massagué, 2008). This fact plus the differences between mouse 

and human immune systems might explain the absence of Smad4 mutations in our 

mice. Nevertheless, whether SMAD4 loss has a real influence on the prognosis of the 

human disease is still controversial (Dardare et al., 2020).  

Similar to previous studies, we didn’t find a high number of recurrently 

mutated genes among different samples, but some of them could be new candidates 

for PDAC cancer genes. In this regard, some examples are Ctnna3, Matr3, or Lrp1b. 

We found different Ctnna3 non-silent mutation in three mice. Ctnna3 codifies a 

cadherin that is relevant in cell-cell adhesion (J. D. Smith et al., 2011). Therefore, its 

inactivation could contribute to a higher invasive characteristic in the cells. In this 

regard, CTNNA3 has been already described as a tumor suppressor frequently 

mutated in laryngeal carcinomas (Fanjul-Fernández et al., 2013). Secondly, three 

different Matr3 mutations were found in three mice, affecting essential splice 

positions which likely alter the correct mRNA splicing. Matr3 encodes a nuclear 

matrix protein, which is involved in differentiation (Cha et al., 2021). MATR3 has 

been recently described as a tumor suppressor in basal-like breast cancer (J. Yang et 

al., 2020). Thirdly, we found two different missense Lrp1b mutations in two mice. 

Lrp1b gene is a putative tumor suppressor proposed to be involved in extracellular 

signal transduction. Silencing and down-expression of LRP1B have been observed in 

renal cell carcinoma and thyroid cancer (Ni et al., 2013). Further deletion of LRP1B 

has been associated with chemotherapy resistance in high-grade serous cancers 

(Cowin et al., 2012). Notably, 5% of PDAC patients (7/162) harbor non-synonymous 

mutations in LRP1B according to data from The Cancer Genome Atlas (TCGA). 

Nevertheless, much work remains to be done in order to confirm that these genes 

could constitute new PDAC cancer genes.  
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Interestingly, although KFC mice already have a mutant version of Kras 

(KrasG12D), we have found Kras activating mutations (KrasQ61L) in the wild-type (WT) 

allele of two lung metastatic samples. 

Next, we compared protein-coding mutations, CNA, and regions with loss of 

heterozygosity (LOH) among all the samples from each mouse to infer their 

evolutionary relationships. We found that all the samples from the same mouse 

shared a number of mutations. This result was in accordance with the labeling 

experiments, verifying the monofocal origin of the advanced tumors in our mice. 

Following this strategy, we also found similar evolutionary processes in our 

mouse model to those observed in PDAC patients, such as different waves of 

metastatic spread and convergent evolution (Campbell et al., 2010; Yachida et al., 

2010; Maddipati & Stanger, 2015). We found evidence of separate waves of 

metastases from the primary tumor to different tissues in three mice (ID-757, ID-

799, and ID-2379) through the detection of a higher number of shared mutations 

between some metastatic samples and the primary tumor compared with other 

metastatic clones from the same tissue. These findings suggested continuous 

metastatic seeding similar to what was proposed in human PDAC tumors (Campbell 

et al., 2010). A similar example of different waves of metastases was revealed 

through the presence of shared CNA in chromosomes 4 and 6 in the primary and the 

liver metastases, but not in the lung metastases from one mouse (ID-2365). This 

observation indicates that lung metastatic spread occurred previous to the liver 

metastasis and it would suggest that specific alterations are needed to produce 

metastases in different organs. Furthermore, we observed convergent evolution 

through the identification of the Lpxn gene mutated in two independent manners in 

the lung metastasis from a single mouse (ID-799). This gene is a negative regulator 

in integrin-mediated cell adhesion processes and contributes to the regulation of cell 

adhesion, spreading, and cell migration. 
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Importantly, we found similar evidence of tissue-specific metastasis to those 

previously described in human PDAC (Campbell et al., 2010; Yachida et al., 2010; 

Maddipati & Stanger, 2015). In three mice we observed this process through the 

identification of specific mutations shared by the primary tumor and the lung 

metastases, and other specific mutations that were present in the primary and the 

liver metastasis (ID-788, ID-2365, ID-2343, and ID-2850). This tissue-specific 

metastasis was also revealed at the CNA level. Interestingly, we didn’t recurrently 

find Kras amplification in the lung metastases, while it is present in the primary 

tumor and the liver metastases in most of the cases. These observations might 

indicate an early lung metastatic spread, which is in accordance with an early tumor 

cell dissemination proposed by some authors in pancreatic cancer, breast cancer, 

and melanoma (Rhim et al., 2012; Hüsemann et al., 2008; Eyles et al., 2010). It would 

also suggest that the amplification of Kras might not be essential for producing lung 

metastases, unlike the liver. So, there may be different possible mechanisms to 

produce the two types of metastases. Alternatively, it could be that the cells that 

produce the lung metastases are different from those generating the liver 

metastases.  

In this regard, it has been proposed for decades that the tumor cell 

colonization is not a random process but that, instead, tumor cells have preferences 

when metastasizing to specific organs (Paget, 1989). This hypothesis is known as the 

‘seed and soil’ hypothesis and it proposes that the spread of tumor cells depends on 

the interaction and cooperation between tumor cells (seed) and the host organ (soil). 

Furthermore, recent studies have described the development of premetastatic 

niches to facilitate the tumor cell colonization and growth through the accumulation 

of extracellular matrix proteins and aberrant immune cells at the target organ 

(Peinado et al., 2017). This favorable microenvironment is firstly promoted by the 

primary tumor which produces exosomes- and tumor-derived soluble factors prior 

to tumor dissemination (Peinado et al., 2011). Furthermore, evidence of different 
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requirements for the establishment of metastases in specific organs has been 

already provided in breast cancer (Minn et al., 2005). In this case, they identified 

some specific genes that mediate cancer metastasis to the lungs and not to the 

bones, the two most frequent metastatic targets of breast cancer. 

Unfortunately, we didn’t find any recurrent genetic alteration that could 

explain the metastatic potential. This observation is in agreement with recent studies 

in colorectal cancer (Ganesh et al., 2020) and suggests that the metastatic potential 

could not be determined by protein-coding mutations. So, we proposed to 

characterize the functional/transcriptomic ITH as any alteration, including the 

influence of the tumor microenvironment, is expected to affect the transcriptome of 

the cells and, as a consequence, the tumor progression and metastatic potential. 

To further explore this question, we analyzed 60741 cells from primary and 

metastatic samples from 9 different mice with scRNA-seq experiments. We 

confirmed the presence of functional ITH revealed by the presence of different 

transcriptomic groups which corresponds with the different cell populations inside 

the tumors. We superficially characterized the immune and fibroblastic components 

of our primary tumors. In particular, we found three of the four CAF subpopulations 

already described in another PDAC mouse model and in human PDAC (Elyada et al., 

2019), supporting again the resemblance of our cancer model to human patients. 

Due to the huge relevance of this component for tumor development, further 

analysis is required to study the interaction of this component with tumor cells, some 

such as the study of ligand-receptor co-expression in these cells. 

However, in this Doctoral Thesis, we focused on the characterization of the 

presence of recurrent transcriptional profiles of the tumor cells, which also revealed 

functional ITH. Although we failed to characterize tumor cells from liver metastasis 

due to the high immune cell infiltration, interestingly, lung metastatic cells from 

different mice cluster together indicating similar transcriptional profiles. 
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Importantly, we found recurrent transcriptional subgroups of cancer cells among 

mice, suggesting a collaboration between the different transcriptional groups. Some 

of these recurrent subgroups overexpress gene pathways involved in tumor 

progression, such as translational initiation and ribosomal activity, cell junction and 

cell adhesion processes, or cell division. Among them, we also identified a minority 

subgroup halfway between the primary and the metastases, suggesting that it could 

be composed of pre-metastatic cancer cells. They overexpressed several ligands and 

receptors of the TGFβ pathway, such as Cxcl2 and Il1, which could indicate that they 

communicate with the normal cells of the TME to promote angiogenesis and invasion 

of the primary pancreatic tumor and to prepare the metastatic niche in the lungs. 

Notably, the activated TGFβ receptor modulates transcription in association with 

Smad4 through the phosphorylation of the Smad2 and Smad3 proteins, TGFβ ligands 

are commonly overexpressed in PDAC, promoting EMT and cancer cell invasion in 

cell lines (Nolan-Stevaux et al., 2009; Horiguchi et al., 2009). So, our observation is in 

accordance with published works demonstrating that TGFβ can also induce 

angiogenesis, activate tumor-promoting myCAF, and attenuate immune 

surveillance, creating a pro-tumorigenic TME (Kano et al., 2007; Hinz et al., 2007), 

although its potential to act as a tumor promoter or suppressor depends on its cross-

talk with other pathways (H & K, 2010; Hezel et al., 2012; A. L. Smith et al., 2012). 

Indeed, we observed an epithelial-mesenchymal transition (EMT) in the 

tumor cells, which agrees with what has been reported in many tumor types, 

including human PDAC where EMT has been reported to be essential for the 

metastatic dissemination of tumor cells (Rhim et al., 2012; Hotz et al., 2007). We 

identified two transcriptional programs of EMT: a partial EMT of the metastatic 

tumor cells and a complete EMT of the primary tumor cell populations. The partial 

EMT in two different lung metastases agrees with our previous suggestion that the 

metastatic mechanisms might be different among tissues. More studies of the 

intermediate stages are required in order to characterize the trajectories.  
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Finally, in an attempt to establish a relationship between the genetic and the 

transcriptomic subgroups we identified the presence of CNA from the scRNA-seq 

data. We recurrently found CNA in chromosomes 4 and 6, probably corresponding 

to the tumor-promoting alterations of Cdkn2a and Kras, respectively. Again, we did 

not find CNA in the chromosomes 11 and 18 that contain Trp53 and Smad4, 

respectively, supporting our findings in the exome data. Nevertheless, we did not 

find any clear correlation between the genetic and transcriptomic subgroups or with 

the EMT. This observation indicates that the generation of recurrent transcriptomic 

subgroups in our mice is not associated with the acquisition of specific genetic 

alterations. Interestingly, we did not find CNA in the CAFs, suggesting that their origin 

is not a tumor cell, as it has been proposed by some authors (Yamaguchi et al., 2021). 

At this point, much work remains to be done in order to decipher the intrinsic 

mechanisms of PDAC tumor progression, being one of the major challenges to 

understanding how these specific transcriptomic changes are involved in PDAC 

cancer progression.  
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1. Lineage tracing and genomic analysis show that advanced pancreatic 

tumors are monofocal in our mouse model.  

2. We have constructed a set of fluorescent labeling tools that allows us to 

generate up to 15 different color combinations to allow the 

characterization and isolation of the different genetic clones present in 

our mouse pancreatic cancer model. 

3. Mouse pancreatic tumors present intratumor heterogeneity as well as 

similar branched and convergent evolution phenomena described in 

human tumors. 

4. Our mouse model presents recurrent genomic alterations in Kras and 

Cdkn2a but not in Tp53 or Smad4. 

5. We recurrently observed early lung metastatic spread, as well as tissue-

specific metastasis of different genetic clones that are incompatible with 

a progressive mutation accumulation model for tumor progression. 

6. Murine pancreatic tumors recurrently present alterations that activate 

the mutant Kras pathway and that are dispensable for lung metastasis.  

7. Our mouse model present functional intratumor heterogeneity with the 

presence of recurrent transcriptionally differentiated cancer cell 

populations. 

8. Lung metastatic cells present a distinct recurrent transcriptional 

program. 

9. We observed at least two differentiated transcriptional programs of 

epithelial-mesenchymal transition (EMT), with lung metastatic 

populations presenting only partial EMT versus primary tumor cells. 



Conclusions 

116 
  

10. Lung cancer metastatic program is characterized by the upregulation of 

EGFR pathway and the expression of ligands described to be involved in 

metastatic niche education.  

11. Lung metastatic transcriptional program is already present in a minor 

population of pre-metastatic cells in primary tumors.
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Opinion

Tumor Functional Heterogeneity Unraveled by
scRNA-seq Technologies
Laura González-Silva,1 Laura Quevedo,1 and Ignacio Varela1,*

Effective cancer treatment has been precluded by the presence of various forms of intratumoral

complexity that drive treatment resistance and metastasis. Recent single-cell sequencing tech-

nologies are significantly facilitating the characterization of tumor internal architecture during

disease progression. New applications and advances occurring at a fast pace predict an imminent

broad application of these technologies in many research areas. As occurred with next-genera-

tion sequencing (NGS) technologies, once applied to clinical samples across tumor types, sin-

gle-cell sequencing technologies could trigger an exponential increase in knowledge of the

molecular pathways involved in cancer progression and contribute to the improvement of cancer

treatment.

Multifaceted Heterogeneity and Its Impact on Cancer Progression

Tumors comprise various cell populations in constant evolution. Some of this complex heterogeneity

derives from genetic diversification and Darwinian selection of tumor cells as they adapt to variable

environments. Next-generation sequencing (NGS; see Glossary) used for the past decade had

enough sensitivity to detect mutations present in minor cell populations and, combined with multi-

sampling of human tumors (multisampling sequencing), fostered many studies that characterized in-

tratumor heterogeneity in various cancers [1]. The level of intratumor heterogeneity is considered a

main driver of therapy resistance and metastasis and is associated with poor prognosis [2].

In addition, human cancers frequently have tumor cell populationswithdifferent transcriptional programs.

This functional diversity is likely associatedwith thegenetic heterogeneitydescribed abovebut is also the

result of many other factors. First, the presence of a hierarchical structure, where a group of quiescent

stem-like cells fosters thegrowthof a tumor comprising cells indifferent differentiation states,wasdemon-

strated in various tumor types [3].Additionally,different transcriptionalprogramscanbeactivated in tumor

cells as a response to stochastic factors or to a variable tumormicroenvironment. This functional diversity

provides tumors with a plasticity that grants a high capacity for adaptation [4].

Finally, human tumors comprise not only malignant/transformed cells but also a plethora of different

cell types recruited from the surrounding tissue and the immune system. The tumor microenviron-

ment shows also genetic and transcriptional diversity and plays important roles in tumor progression,

metastasis, and treatment resistance [1,5].

Fine characterization of these levels of tumor heterogeneity is essential to the successful treatment of

cancer patients. The recent development of technologies based on sequencing individual cells (sin-

gle-cell sequencing technologies) opens new ways for the characterization of tumor heterogeneity.

At the genetic level, single-cell DNA-seq technologies offer higher sensitivity in the detection of mi-

nority clones, the reconstruction of clone structure, and the identification of concurrent or exclusive

alterations in the same cells. However, it is in the study of functional heterogeneity that single-cell

RNA-seq (scRNA-seq) significantly improves on previous technologies, increasing our molecular

comprehension of cancer progression. A precise cell-type annotation of complex cellular samples

from primary tumors is possible thanks to the recent generation of single-cell transcriptome atlases.

These comprise normal and pathological samples from human and mouse [6,7].

The Emergence of scRNA-seq Technologies

In just a few years, the ability to perform single-cell expression profiles increased from a handful

of cells to thousands of cells in a single experiment [8]. After the first scRNA-seq experiment in a
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four-cell-stage blastomere [9], several studies were published based on cell isolation and individual

genomic library preparation. These initial protocols were laborious and expensive, required RNA

amplification steps that introduced bias in the data, and were characterized by reduced throughput

[10,11]. The subsequent introduction of unique molecular identifiers (UMIs), which are random se-

quences that label individual molecules, significantly removed cDNA amplification bias [12]. Further

developments in STRT-seq and CEL-seq protocols included the introduction of an individual bar-

coding step on isolated cells before a single retrotranscription reaction reducing batch artifacts

[13,14]. In 2015, the introduction of microfluidic devices (Drop-seq [15] and InDrop [16]) enabled

the processing of thousands of cells at once. Following this strategy, 10x Genomics automated

equipment recently characterized 1.3 million cells at the single-cell level [8]. Unfortunately,

microfluidics-based methods are not efficient in the removal of the abundant rRNA. Consequently,

they use poly-T oligonucleotides to sequence the end of poly-A-tailed RNAs. This is useful in

generating expression profiles in this group of RNAs but does not provide complete transcriptomic

information. Split-seq and Sci-seq strategies avoid physical cell isolation, taking advantage of a

combinatorial barcoding strategy that permits the individual labeling of more than 100 000 sin-

gle-cell transcriptomes [17,18]. These techniques do not require expensive microfluidics infrastruc-

ture and permit greater control over the number of analyzed cells. Finally, single-cell multiomics

approaches that allow the study of genetic, epigenetic, and transcriptomic profiles in the same

cell have been developed [19,20]. This opens a window of opportunity for comprehensive cell

characterization.

Single-cell sequencing data analysis is a great challenge, similar to the early years of the use of NGS

technologies. Due to a great variety of sequencing strategies and biological questions, there are

many different reported analysis workflows. Analysis tools for subpopulation identification, differen-

tial expression, functional signatures, pseudotiming modeling, and network reconstruction are pub-

licly available for researchers with limited bioinformatics resources [21,22].

Dissecting the Tumor Ecosystem with scRNA-seq
Functional Diversity of Tumor Cells

Transcriptional heterogeneity among tumor cells has clear and direct clinical implications. First,

molecular classification according to transcriptional signatures is commonly used for clinical man-

agement in many tumor types. Regarding this, the presence of different transcriptional programs

inside the same tumor might prevent, or at least bias, molecular classification from a single biopsy.

In this context, scRNA-seq experiments have demonstrated the presence within the tumor of

multiple cell populations belonging to different molecular groups according to standard classifica-

tions [23–25].

Second, the presence of functional diversity within tumors likely improves their adaptation to hostile

environments. Functionally diverse cell populations with symbiotic, mutually beneficial relationships

have been reported in tumors [26]. This diversity can also be hierarchical, as described in several tu-

mor types in which a minority of highly specialized cells, termed cancer stem cells (CSCs), might have

special capacities tomaintain tumor growth, metastasize, and resist antitumor treatments [27]. Never-

theless, the lack of universally accepted CSC markers and properties has generated controversy in

these studies. scRNA-seq technologies offer an opportunity for the unbiased identification and study

of those populations that supposedly are present in very low numbers and in a quiescent or dormant

state, and to design more specific antitumor treatments [28]. scRNA-seq experiments recently

demonstrated the presence of populations with stem-like and treatment-resistance properties in oli-

godendroglioma and melanoma [29,30].

Finally, single-cell technologies can detect minor treatment-resistant cell populations inside com-

plex tumors, which can be used to select appropriate therapies. For instance, the presence of a

melanoma cell population expressing high levels of AXL anticipated the occurrence of

clonal selection after treatment with RAF or MEK inhibitors and the eventual development of

drug resistance[29].

Glossary
Circulating tumor cells (CTCs):
cancer cells that have escaped
from the primary tumor and trav-
elled through the blood vessels.
Functional heterogeneity: pres-
ence of cells with different tran-
scriptional programs inside
tumors.
Genetic heterogeneity: existence
of cell clones with different ge-
netic somatic mutations inside
human tumors.
Genomic library: collection of
DNA fragments with common
adapters ready to be analyzed by
next-generation sequencing
technologies.
Intratumor heterogeneity: the
presence of cell diversity inside
human tumors.
Microfluidics: group of tech-
niques that allow the manipula-
tion of fluids in the range of mi-
croliters to picoliters.
Multisampling sequencing:
comprehensive analysis of
regionally distant samples from
the same tumor by next-genera-
tion technologies.
Next-generation sequencing
(NGS) technologies: family of ap-
plications that allow the afford-
able parallel sequencing of hun-
dreds of millions of small
fragments in a single reaction.
Single-cell multiomics: technolo-
gies that allow the simultaneous
analysis of different cell molecular
characteristics such as genomics,
transcriptomics, epigenomics, or
proteomics.
Single-cell RNA-sequencing
(scRNA-seq): analysis of the RNA
content of single cells by next-
generation sequencing
technologies.
Transcriptional signature: a spe-
cific set of genes expressed by a
cell in a given moment under
particular circumstances.
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Tumor Microenvironment

Cancer-associated fibroblasts (CAFs) are present in many if not all solid tumors and participate

actively in tumor development [31]. The molecular mechanisms behind CAFs’ role remain largely un-

known and the lack of reliable cell markers to identify CAFs prevents a clear statement of their abun-

dance and importance in solid tumors [32]. The origin of CAFs is also under debate. They can be the

result of the transformation of resident fibroblasts previously present in the normal tissue or new cells

generated from special cell precursors recruited to the tumor [33]. scRNA-seq reports in the

past years have provided useful information in this respect. Different types of CAFs have been re-

ported in breast and colorectal tumors, which is likely to be associated with different cell origins

[34–36]. Additionally, each group of CAFs has special functions in the recruitment of immune cells

and in the induction of the epithelial–mesenchymal transition (EMT) in tumor cells [24,29,34,36].

Tumors are also frequently infiltrated by immune cells. The activation of the immune system to attack tu-

mor cells is attractive as an antitumoral therapy [37]. Consequently, the so-called immunotherapies have

become a promising tool in fighting cancer, although variable responses have been observed when they

are applied to cancer patients [38]. There is a great diversity of immune cells with differing, and probably

opposite, functions in tumor development. This complexity requires a correct transcriptional character-

ization of all the different cell types present in the tumor [39]. Here, scRNA-seq studies offer an

unprecedented opportunity. A recent study demonstrated that a high proportion of active versus ex-

hausted CD8+ T lymphocytes is associated with a better outcome in non-small cell lung cancer [40]. By

contrast, tumors presenting large proportions of regulatory T lymphocytes or myeloid-derived suppres-

sor cells have a poor prognosis [41–43]. The complex relationship between the different immune cells

present in the tumor will determine an overall tolerant or nontolerant environment. Finally, some studies

successfully identified tumorneoantigensby single-cell characterizationof theT cell receptor (TCR) reper-

toire, which might be useful in the diagnosis and treatment of cancer [40] (Figure 1, Key Figure).

Circulating Tumor Cells

The characterization of cells that extravasate into the blood circulation, circulating tumor cells

(CTCs), constitute a good and low-invasive alternative for the diagnosis and, more importantly, moni-

toring of tumors [44]. The utility of this strategy has been widely shown in many tumor types and the

quantification of CTCs can be used as a prognostic factor [45]. Whereas many authors claim that CTCs

recapitulate intratumor diversity perfectly, others have reported that they resemble metastasis more

than primary tumors [46].

The low number of CTCs present in the blood circulation has forced many studies to purify CTCs ac-

cording to specific epithelial surface markers. Debate about the specificity of these markers calls into

question some of the reported observations [45]. Some current platforms for CTC isolation are based

on physicochemical properties, but it remains unclear whether this constitutes a less biased isolation

method [47]. The high throughput of modern single-cell sequencing technologies offers without

doubt an opportunity to reduce the need for extensive purification, which will help to clarify the na-

ture and the source of CTCs (Figure 1).

Relevant observations came recently from CTC single-cell sequencing studies. The presence of hetero-

geneous CTC populations with both epithelial and mesenchymal markers was identified, stressing that

isolation methods based on epithelial markers are likely to be inadequate to capture all CTCs [48,49].

Additionally, a recent study on prostate cancer CTCs identified the activation of the noncanonical

Wnt signaling pathway, anticipating the appearance of drug resistance [49]. Finally, the presence of pla-

koglobin in breast cancer CTCs was associated with earlier metastasis appearance [50]. This suggests

that we need to include the study of CTCs in therapeutic decision-making in oncological practice.

Limitations of Single-Cell Technologies in Human Cancer

Amajor limitation in the application of scRNA-seq technologies to solid tumor samples is the require-

ment for complex dissociation protocols to obtain viable, individualized fresh cells. This limitation is

especially important as several studies have raised caution on potential transcriptional changes
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arising from tissue manipulation between sample collection and processing [21]. Some authors have

bypassed this limitation by working with either cell lines or organoids (Figure 2) [51]. Although these

have provided useful information, they fail to mimic the complex interactions between cancer cells

and the microenvironment. Additionally, to understand the molecular basis of tumor evolution, it

would be important to obtain several samples, or even serial samples, from the same patient, which

is not straightforward in solid tumors. Recently developed low-invasive biopsy techniques such as

fine-needle aspiration (FNA) are not very practical for traditional genomic analysis due to the low

amount of recovered material, but offer a window of opportunity for the application of scRNA-seq

technologies in clinical research [52].

Fortunately, many platforms are compatible with cell fixation and storage protocols. Transcriptomic

programs obtained from these cells seem similar to those of freshly processed cells [53,54] (Figure 2).

Key Figure

Functional Heterogeneity of Human Tumors Revealed by Single-Cell RNA-seq (scRNA-seq)
Studies

Figure 1. Graphical representation of some of the main cell types present in solid tumors. scRNA-seq studies providing useful information about potential

functions in cancer progression are specified next to each cell type. Abbreviation: EMT, epithelial–mesenchymal transition. See [24,25,29,30,34–36,40,43,48–50].
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If these protocols are optimized for all applications and broadly implanted, it is easy to anticipate a

great increase in the application of scRNA-seq technologies in clinical research, where coordinating

sample collection and processing is not always easy. Moreover, the recent development of scRNA-

seq strategies for isolated single nuclei, sometimes obtained from formalin-fixed paraffin-embedded

(FFPE) material, reduces the need to obtain viable cells and facilitates the study of long-stored sam-

ples in retrospective projects [11,55].

Concluding Remarks

Despite overall improvement in the treatment of cancer patients, long-term success of targeted

therapies remains limited to specific tumor types. Tumor cellular complexity is likely a key factor

in this failure. Consequently, tumors with huge infiltrations of different cell types, like pancreatic

adenocarcinoma, have mortality rates that remained stubbornly unchanged.

The recent development of single-cell sequencing technologies brings a revolution in the character-

ization of tumor heterogeneity, not only at the genetic but also at the epigenetic and transcriptomic

level. Despite technical problems that need to be solved, we anticipate the incorporation of these

technologies in clinical research extended to many tumor types. Similar to the explosion of genetic

data generated following the development of NGS, single-cell sequencing technologies will trigger

Figure 2. Different Sample Types Used for Single-Cell Sequencing.

Different types of samples currently used for single-cell sequencing are represented together with their advantages (green boxes) and disadvantages

(red boxes).
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an exponential increase in knowledge about tumor architecture and evolution dynamics (see

Outstanding Questions). Finally, all of this new data will be translated into better diagnosis and treat-

ment of cancer patients.
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Abstract
The survival rate in lung cancer remains stubbornly low and there is an urgent need for the identification of new therapeutic
targets. In the last decade, several members of the SWI/SNF chromatin remodeling complexes have been described altered in
different tumor types. Nevertheless, the precise mechanisms of their impact on cancer progression, as well as the application
of this knowledge to cancer patient management are largely unknown. In this study, we performed targeted sequencing of a
cohort of lung cancer patients on genes involved in chromatin structure. In addition, we studied at the protein level the
expression of these genes in cancer samples and performed functional experiments to identify the molecular mechanisms
linking alterations of chromatin remodeling genes and tumor development. Remarkably, we found that 20% of lung cancer
patients show ARID2 protein loss, partially explained by the presence of ARID2 mutations. In addition, we showed that
ARID2 deficiency provokes profound chromatin structural changes altering cell transcriptional programs, which bolsters the
proliferative and metastatic potential of the cells both in vitro and in vivo. Moreover, we demonstrated that ARID2
deficiency impairs DNA repair, enhancing the sensitivity of the cells to DNA-damaging agents. Our findings support that
ARID2 is a bona fide tumor suppressor gene in lung cancer that may be exploited therapeutically.

Introduction

Lung cancer is the major cause of cancer-related deaths
worldwide with an average 5-year survival rate below 20%
irrespective of the subtype [1]. Consequently, any new
knowledge about the molecular mechanisms that drive
this disease could have a great impact on the treatment of
patients. Recently, large genomic projects have facilitated
the identification of major players in this tumor type. Thus,
small cell lung cancer (SCLC), which constitutes around
15% of all cases, is mainly driven by mutations in TP53 and
RB1, but the role of other genes like PTEN, SLIT2, or
CREBBP has been also described [2]. Among non-small
cell lung cancer (NSCLC), more than half of the cases are
adenocarcinomas, where TP53, KRAS, EGFR, ALK, ROS1,
and BRAF are the main recurrently altered genes [3], while
squamous cell carcinomas (SCC) are genetically more het-
erogeneous and poor in actionable mutations so far.

Lately, several members of the SWI/SNF family of
chromatin remodeling complexes have been identified
recurrently altered in different tumor types adding to the
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accumulated compelling evidence on the role of chromatin
structure in cancer development. It is estimated that ~20% of
all tumors contain alterations in these complexes, a frequency
that is only exceeded by mutations in TP53 [4]. In the case of
NSCLC, the expression of any of the two mutually exclusive
catalytic ATPase subunits (SMARCA2 or SMARCA4) is
lost in 30% of the cases where it is associated with worse
prognosis [5]. In addition, ARID1A, which encodes for one of
the auxiliary subunits of the complex, frequently appears
mutated in lung adenocarcinoma [6].

Results

Loss of ARID2 protein expression in 20% of lung
cancer patients is partially explained by the
presence of ARID2 mutations

In order to understand better the role of chromatin remodeling
complexes in lung cancer development, we performed a
genetic screening on the coding sequences of known cancer
genes as well as members of the main chromatin remodeling
complexes (Supplementary Table 2). We applied targeted
next-generation sequencing technologies in a collection of
81 lung cancer cases (40 lung adenocarcinomas, 12 SCC, and
29 small cell carcinomas) (Supplementary Table 1). Interest-
ingly, we found mutations in ARID2 in five of the patients,
three classified as lung adenocarcinoma and two as small cell
carcinoma (Fig. 1a and Supplementary Table 3). In addition,
to identify lung cancer driver genes, we run OncodriveFML
[7] with our data. This software identifies genes with a number
and distribution of predicted deleterious mutations higher than
expected by chance, evidencing positive selection. ARID2
ranked second in the list of genes showing significant positive
selection after multi-test correction, just below TP53 (Fig. 1b
and Supplementary Table 4). To validate these results, we
sequenced ARID2 coding sequences in a second cohort of
144 lung adenocarcinoma cases and found mutations in 12
patients. If we consider all analyzed lung cancer patients,
irrespective of the subtype, ARID2 mutations occur at a fre-
quency of 7.5 % (17/225) (Supplementary Table 3). In the
case of lung adenocarcinomas (40 and 144 patients from first
and second cohorts, respectively), we found ARID2 non-
synonymous mutations in 7% of the samples (13/184), which
is near twice the frequency reported in COSMIC database for
this tumor type (3.7%, 83/2241) [8] and ranks ARID2 among
the ten genes most commonly mutated in lung cancer. In
concordance with a potential role of ARID2 as tumor sup-
pressor, many of the identified mutations, clustered at the
beginning of the protein sequence, are predicted to generate a
premature truncation of the protein (Fig. 1c and Supplemen-
tary Table 3). Subsequently, to check if the loss of ARID2
function is a common feature in lung cancer, we performed

immunohistochemistry analyses in 139 of the studied samples
finding loss or low/heterogeneous ARID2 production in ~20%
of the cases (28/139) (Fig. 1d and Supplementary Fig. 1). In
addition, loss of ARID2 expression was significantly more
frequent in ARID2-mutated patients (6/10 Fisher exact test
p= 0.0098). Interestingly, this was also true for some samples
with missense mutations, which suggests that these mutations
might interfere with the correct folding or processing of the
protein. Indeed, many of the mutations found are predicted
to produce deleterious effects in the protein according to
SHIFT or Polyphen algorithms (Supplementary Table 3). We
observed a complete loss of ARID2 signal in many lung
cancer samples suggesting a selective pressure to inactivate
both ARID2 alleles. In addition, some non-mutated samples
showed also loss of ARID2 production, suggesting the exis-
tence of nongenetic mechanisms that interfere with ARID2
expression. Since the presence of normal tissue contamination
in the tumor samples as well as the sequencing strategy fol-
lowed for normal tissue, prevented an estimation of the
cellularity or the zygosity of the mutations, we could not
determine whether full loss of ARID2 protein is due to genetic
loss or silencing of the wild-type allele.

ARID2 deficiency increases proliferative and
metastatic potential in vitro and in vivo

In order to check if alterations in ARID2 could promote lung
cancer development, we knocked down the protein in dif-
ferent ARID2-proficient NSCLC cell lines. As it can be
observed in Fig. 2a, b, ARID2 mRNA and protein produc-
tion was efficiently reduced by two different shRNAs.
This reduction was accompanied by an increase in the
proliferation of A549 cells, as well as their invasion and
migration capacities compared to those cells transduced
with the empty vector. Similar results were obtained in
NCI-H460 cell line (Fig. 2c, d and Supplementary Fig. 2).
Moreover, when these cells were injected into immuno-
compromised mice, they showed a greater capacity to pro-
duce tumors in vivo (Fig. 2e and Supplementary Fig. 3).

RNA-Seq experiments in A549 transduced cell lines
showed that loss of ARID2 was accompanied by significant
changes in the expression of 1155 genes (366 upregulated and
789 downregulated), that supported the observed phenotypes in
the cells (Fig. 2f and Supplementary Table 5). Thus, we
observed a downregulation of genes involved in cellular
adhesion and cell differentiation such as NPNT, CDH6, FAT3,
FN1, SOX2, or SDC2 as well as an upregulation of genes
associated with a higher cell-cycle progression such as CDC45,
MCM2, or HIST1H1E, which could be associated with the
increased proliferation, migration, and invasion capacities of
ARID2-deficient cells. In addition, we observed down-
regulation of other tumor suppression genes like RPS6K2,
TNFSF10, ISM1, or LDLRAD4 together with upregulation of
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protumoral and antiapoptotic genes like HOXB1, BCL2A1, or
RCVRN. Most of these alterations were not observed when we
knocked down ARID1A or ARID1B subunits in the same cells
(Supplementary Fig. 4a), which indicates a specific gene-set

regulation by ARID2-containing SWI-SNF complexes. Tran-
scriptional changes in selected genes were further validated by
qRT-PCR in independently generated ARID2 knockdown cell
lines (Supplementary Fig. 4b).

Fig. 1 Frequent ARID2 mutations associated with protein loss.
a Box representation of the mutated patients for the most significantly
mutated genes according to OncodriveFML in the lung cancer cohort
generated with Maftools. Each box in the central matrix represents an
independent patient. Colored boxes represent mutated patients for the
corresponding gene in a color code indicating the type of mutation.
b Representation of the significance analysis of the functional impact

of the mutations found in each gene performed by OncodriveFML.
Genes in read showed a q value < 0.1 after multi-test correction.
c Visual representation of the location of all identified ARID2 muta-
tions in our discovery and validation lung cancer cohort in relation to
the functional protein domains. d Representative images of ARID2
immunohistochemistry experiments in two ARID2-mutated (right) and
two ARID2-wild-type (left) lung adenocarcinomas.
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Altogether, these results prove that ARID2 plays a tumor
suppressor function in lung cancer.

ARID2 deficiency is accompanied by widespread
chromatin changes, specially affecting enhancers

We hypothesized that gene expression changes observed
in ARID2-deficient cells might by the result of changes in
SWI/SNF chromatin remodeling activity. To investigate
this, we performed ATAC-Seq experiments in ARID2

knocked down A549 cells. ARID2 loss was accompanied
by a general loss of chromatin accessibility with 990
regions that showed a significant loss of chromatin
accessibility versus 687 regions that showed increased
accessibility (Supplementary Table 6). Interestingly, those
regions that lost accessibility in the absence of ARID2
were located distal to gene transcription start sites (Fig. 3a)
and showed enrichment of enhancer-specific H3K4me1
and H3k27ac histone marks according to ENCODE project
data. An opposite behavior is observed on those regions
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that gained accessibility after ARID2 loss (Supplementary
Fig. 5). In addition, AP-1 family transcription factor
binding motif, described as abundantly present in enhan-
cers [9], is highly enriched on those regions that showed
less accessibility on ARID2-deficient cells (Fig. 3b). In
order to explore a special impact of ARID2 loss on
enhancers, we analyzed the accessibility of those regions
annotated as enhancers in the GeneHancer project [10]. As
it can be seen in Fig. 3c, the loss of accessibility is sig-
nificantly more profound in enhancers than in the rest of
the genome, as 87% (1744 of 2001) of the enhancers that
showed significant accessibility changes, lose accessibility
in ARID2-deficient cells. In addition, many of the target
genes of these enhancers showed significant down-
regulation in the RNA-Seq data (Fig. 3d). All this support
that ARID2 is essential to keep an open chromatin con-
formation around enhancers, which significantly impacts
on the transcriptional regulation of specific gene networks
(Supplementary Table 6).

ARID2 is essential to maintain the expression of the
metastasis inhibitor MTSS1 and the adhesion
molecule SDK1

In order to identify ARID2 target genes of broad
relevance to lung cancer patients, we compared our
RNA-Seq results with differential expression analysis

performed on human lung adenocarcinoma patients from
TCGA database. Eighteen genes were found upregulated
in both ARID2-deficient cells, and in low-ARID2-
expressing lung adenocarcinoma patients (Supplemen-
tary Table 7). Among them, we found AREG, ERG, or
NGF growth factors that might explain the higher pro-
liferation capabilities of ARID2-deficient cells (Fig. 3e
and Supplementary Table 7). In addition, we found 133
genes downregulated in both datasets indicating a
main gene expression activating role of ARID2 in this
cellular context.

Interestingly, among those genes whose expression rely
on ARID2, we found MTSS1, a well-described metastasis
inhibitor [11], as well as SDK1, involved in cell–cell
adhesion. The observed significant reduction of MTSS1 and
SDK1 expression likely explain the higher invasion cap-
abilities of ARID2-deficient cells. In addition, we found a
significant reduction of chromatin accessibility on two
enhancers regulating these genes in GeneHancer database
after ARID2 loss [10]. This observation is concordant with
the hypothesis that MTSS1 and SDK1 expressions are
positively regulated by ARID2 by keeping an open chro-
matin structure at their enhancers (Fig. 3f).

ARID2 loss impairs DNA damage repair

The RNA-Seq analysis also revealed deleterious con-
sequences suffered by ARID2-deficient cells that could
be exploited therapeutically. Gene-set Enrichment Ana-
lyses (GSEA) on the transcriptional alterations observed
in ARID2-deficient cells also showed a significant
upregulation of genes involved in DNA damage detection
and repair, suggesting a defective DNA damage response
(Fig. 4a). Supporting a role of ARID2 in DNA repair,
analysis of its localization in untransduced A549 cells
showed a colocalization with γH2AX and 53BP1 at the
DNA-repair foci (Fig. 4b and Supplementary Fig. 6). In
addition to that, ARID2-deficient cells showed a delay in
the resolution of DNA damage foci compared to wild-
type cells in A549 and NCI-H460 NSCLC cell lines upon
treatment with etoposide. Interestingly, this delay was
not dependent on TP53 function as we could see a similar
delay in ARID2-deficient NCI-H1568 cell line, which is
TP53-deficient (Fig. 4c, d). These observations indicate
that ARID2 deficiency inhibits efficient DNA repair and
suggest that its loss may sensitize cells to DNA-
damaging agents.

ARID2 deficiency increases cell sensitivity to
chemotherapy and veliparib

As platinum-based chemotherapy is widely used for the
treatment of lung cancer patients [3], we first examined

Fig. 2 ARID2 deficiency is associated with an increase in onco-
genesis in vitro and in vivo. a Bar representation of ARID2-
expression level fold changes measured by qRT-PCR in A549 cells
transduced with shARID2 v2 and v3 as well as the empty vector which
is used as control. Data are shown as mean ± SEM of three indepen-
dent experiments, relative to control cells A549 Empty vector (black
bars), (two-tailed t-test *p < 0.05, **p < 0.01, and ***p < 0.001).
b Representative image of a western blot analysis measuring ARID2
protein levels in A549 parental cells as well as those cell lines trans-
duced with ARID2 shRNAs and the empty vector. In all the cases, the
results are shown with and without induction of the shRNA expression
by doxycycline (Dox) treatment. c Representative experiment of the
number of cell divisions suffered by the cells in 48 h estimated by
CFSE labeling in A549 cells by flow cytometry. Bar quantification on
the number of cells that have suffered each number of cell divisions is
represented on the right. d Bar representation of quantified cells in
destination chamber on migration and invasion assays of A549 cells
transduced with two different ARID2 shRNAs (blue and red bars).
Data are shown as mean ± SEM of three independent experiments,
relative to control cells A549 Empty vector (black bars), (two-tailed t-
test *p < 0.05, **p < 0.01, and ***p < 0.001). e Representative images
of lung metastasis generated in intravenously injected mice with A549
cells transduced either with shEmpty, or shARID2v3 vectors (n= 7
per group). Individual metastasis is delineated in the image and
counted (upper right corner numbers). On the left, a quantification of
the number and size of the tumors generated in the two groups is
shown. (Fisher exact test *p < 0.05, **p < 0.01, and ***p < 0.001).
f Heatmap representation of a selection of differently expressed genes
in ARID2-deficient A549 cells (n= 4) and grouped according to their
biological function. Expression differences go from red (upregulation)
to blue (downregulation) according to the log2 of the fold change.
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ARID2-deficient cell lines sensitivity to cisplatin, as well as
etoposide. As it can be seen in Fig. 4e and Supplementary
Fig. 7, in concordance with defective DNA repair in the

absence of ARID2, ARID2-deficient A549, and NCI-H460
cells exhibited a higher sensitivity to both compounds
compared to control cells.
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In addition, in the last decade, many researchers have
described a higher sensitivity of PARP inhibitors in tumors
harboring defects in DNA-repair mechanisms due to syn-
thetic lethality [12]. Consequently, we checked if this might
apply as well to ARID2-deficient cells. As it can be seen in
Fig. 4e, ARID2 loss led to a higher sensibility to veliparib, a
well-described PARP inhibitor that is under research in
several clinical trials in breast, ovarian, and, most impor-
tantly, lung cancer. This observation suggests ARID2
deficiency as a useful marker for the stratification of lung
cancer patients that may benefit for PARP inhibitor
treatment.

Discussion

Although some evidence of the presence of ARID2 altera-
tions in lung cancer have been reported previously [13], the
relevance of these alterations for oncogenesis has not been
clearly proved. Our results showed an ARID2 mutation
recurrency higher than the one reported in COSMIC data-
base. In addition, the distribution and predicted impact of the
mutations found and our in vitro and in vivo experiments
provided compelling evidence of the role of ARID2 as bona
fide tumor suppressor in lung cancer. Supporting this, ARID2
has been already proposed as cancer driver gene in mela-
noma and hepatocellular carcinoma [14, 15]. We don’t have
enough data to definitely prove that complete ARID2 activity
loss is necessary for tumor progression but several evidences

support this idea. First, in many cases, we observed a com-
plete loss of ARID2 expression in the human adenocarci-
noma samples, which suggests a selective pressure to
inactivate both ARID2 alleles. In addition, we observed that
V2THS_74399 shRNA construct was less efficient in abro-
gating ARID2 expression than V3THS_347660 and cells
transduced with the former typically showed less-pronounced
changes than cells transduced with the latter.

The precise molecular mechanisms by which alterations
in chromatin remodeling complexes promote cancer
development are not sufficiently understood. Interactions
with well-described cancer genes like TP53, RB, or MYC
have been described [16–18]. In addition to this, they play
essential roles in the activation of differentiation and the
suppression of proliferative programs of many cellular
lineages [19]. In this study, we described a list of near 200
genes that are specifically deregulated after ARID2 loss in
both our cellular model and in lung adenocarcinoma
patients from the TCGA database. Some of these genes, like
AREG, EREG, or NGF growth factors might account for the
higher proliferation capabilities of ARID2-deficient cells. In
terms of the molecular mechanisms behind this regulation,
we show that ARID2 deficiency is associated with wide-
spread chromatin structural changes. Our results prove that
ARID2 is essential to keep an open chromatin structure in
enhancer regions in agreement with an important role of
different SWI/SNF members in regulating enhancer activity
[20, 21]. Two of these ARID2-dependent enhancers reg-
ulate MTSS1 and SKD1 expression that, consequently,
showed a significant downregulation in ARID2-deficient
cells. This suggests that ARID2 might regulate directly the
expression of MTSS1 and SDK1, although further work is
necessary to finally confirm this. MTSS1 is a well-described
migration and invasion inhibitor, associated with worse
prognosis in several tumor types [11, 22, 23], and SDK1
plays important roles in cell–cell adhesion. Their deficiency
might well explain the higher migration and invasion cap-
abilities of ARID2-deficient cells.

In addition, we observed an active role of ARID2 in the
detection and repair of DNA damage in vitro in lung cancer
cell lines, as ARID2-deficient cells present important delays
in the resolution of DNA damage foci that were not depen-
dent on TP53 activity. In accordance with this view, other
members of the SWI/SNF complex have been shown to be
involved in different steps of DNA damage repair [24–26].

Finally, any advance in the possibility of exploiting
therapeutically any vulnerability associated to deficiency in
SWI/SNF complex genes is of great interest, as ~20% of all
human cancers are reported to have alterations in this
complex. In this study, ARID2-deficient cells showed a
higher sensitivity to different DNA-damaging therapies,
likely as a result of the ARID2 involvement in DNA repair.
Considering that platinum-based chemotherapy is still

Fig. 3 Profound chromatin structural changes on enhancers affect
gene expression after ARID2 loss. a Analysis of the genomic regions
that significantly lost chromatin accessibility after ARID2 loss in A549
cells. In the upper pannel the regions are grouped according to their
distance to nearest gene transcription start site (TSS). Below, the
intensity of H3K4me1, H3K4me3, and H3k27ac histone marks in each
identified region is represented by heatmaps (left). In addition, the
percentage of identified regions that overlap with regions with histone
modification marks are represented in a bar graph (right). b Enrich-
ment of sequence motifs identified by HOMER in those regions that
lost chromatin accessibility after ARID2 loss in A549 cells. c Bar
representation of the number of genome-wide (global) regions or
enhancer regions, which lost (FCneg green bars) or gained (FCpos
yellow bars) after ARID2 loss in A549 cells. (Fisher exact test ***p <
0.001). d Dot plot representing the correlation between the accessi-
bility changes in enhancer regions and expression changes on the
target genes for each enhancer. Blue dots represent enhancers that
showed significant accessibility changes in ARID2-deficient A549
cells. e Boxplot graph of gene expression differences identified in both
our ARID2-deficient A549 cells and in lowly ARID2-expressing lung
adenocarcinoma patients (ARID2_low) versus highly ARID2-expres-
sing patients (ARID2_high) from TCGA database, (DEseq2 statistical
test *p < 0.05, **p < 0.01, and ***p < 0.001). f Visualization, in two
described MTSS1 and SDK1 enhancers, of read alignments for the
different replicates of our ATAC-Seq experiments in ARID2-deficient
A549 cells. In addition, read alignments of ChIP-Seq experiments
performed against different histone marks during ENCODE project are
also represented.
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widely used in lung cancer patients with high variable
success [3], our results suggest that ARID2 expression
might be explored as a stratification marker for these

therapies. Moreover, we show that ARID2 deficiency shows
synthetic lethality with PARP inhibition using veliparib, an
inhibitor that has shown good results in the treatment of
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breast cancer [27] and is included in several clinical trials on
breast, ovarian, and, most importantly, lung cancer. Our
results suggest that the stratification of lung cancer patients
according to ARID2 expression might improve the effi-
ciency of PARP inhibitors in NSCLC. In addition, a very
recent study has shown that ARID2-deficient melanoma
cells are particularly sensitive to immunotherapy through
alterations in mTORC1 and IFNγ pathways [28]. Interest-
ingly, we observed that some downstream response genes in
these pathways such as GBP2, GBP3, and SCD5 are sig-
nificantly downregulated in ARID2-deficient cells (Sup-
plementary Table 5). All these results support the potential
use of ARID2 expression as a new stratification marker for
personalized treatment in lung cancer patients.

In summary, here we present compelling evidence for the
role of ARID2 as tumor suppressor in lung cancer. Although
ARID2 has been proposed as a driver gene in other tumor
types [14, 15], little has been reported about the molecular
mechanisms underlying this involvement. In this work, we
propose that its role in lung cancer is exerted by fostering a
specific pro-oncogenic transcriptomic program as a result of
changes in chromatin structure around enhancers. Impor-
tantly, our results indicate that ARID2 deficiency could be
exploited for lung cancer patient treatment.

Materials and methods

Detailed protocols can be found in Supplementary Methods.

Next-generation sequencing

Cancer patient primary tumor samples and, when available,
matched corresponding normal samples, were obtained
from different tumor biobanks after the corresponding
approval of the hospital ethics committees and patient
informed consent. A detailed list of the origin and char-
acteristics of each sample can be found in Supplementary
Table 1. DNA was extracted using the Agencourt DNAd-
vance Beckman Coulter kit (Beckman Coulter, USA),
fragmented, and submitted to end-repair and adenylation,
adaptor ligation, and PCR indexing amplification. Target
capture was performed using a Sure Select® user-defined
probe kit (Agilent Technologies, USA).

For ATAC-Seq libraries, cell nuclei were extracted using
a cold lysis buffer and submitted to tagmentation (Nextera
DNA Library Preparation Kit, Illumina, USA). After pur-
ification, adapter sequences were used to complete Illumina
sequencing adapters by PCR with Phusion High-Fidelity
DNA polymerase (Thermo Fisher Scientific, UK).

Total RNA was purified using Extract Me Total RNA Kit
(Blirt, USA). Reverse transcription was performed using the
Takara PrimeScript cDNA Synthesis kit (Takara Bio Eur-
ope, France). Poly-A mRNA was enriched, fragmented, and
submitted to cDNA generation using PrimeScript Enzyme
for first strand and RNAse HI, DNA polymerase I and T4
DNA Polymerase (Thermo Fisher Scientific, UK) for the
second strand. Afterwards, genomic libraries were gener-
ated as above. Individual mRNA expression was measured
by qRT-PCR using Luminaris Color HiGreen qPCR Master
Mix (Thermo Fisher Scientific, UK). β-actin was used as
housekeeping gene and the ΔΔCt method was used for
quantification and comparison.

Sequencing data analysis

DNA sequence data were mapped to the human genome
(hg19) using BWA 0.7.3 [29]. In addition, Samtools 0.1.18
[30], Picard 1.61 (http://broadinstitute.github.io/picard/),
and GATK 2.2.8 [31] were used for format transformation,
cleaning, sorting and indexing of the bam files, marking
PCR duplicates, and performing indel local realignment.
RAMSES [32] and PINDEL 0.2.4d [33] were used for
substitutions and small insertion and deletion identification,
respectively. All ARID2 mutations were validated by PCR
amplification coupled with ultrasequencing at 10,000×
coverage. In addition, a similar orthogonal validation of
more than 180 mutations randomly picked showed a near
80% of specificity in the mutation calling. OncodriveFML
software was run to detect genes with evidence of positive
selective pressure [7].

ATAC-Seq reads were aligned against the human gen-
ome (hg19) using BWA 0.7.3 [29]. Accessible regions were

Fig. 4 ARID2 deficiency affects DNA repair and affects sensitivity
to antitumor therapies. a Results of the Gene-Set Enrichment Ana-
lysis (GSEA) from RNA-Seq experiments in ARID2-deficient A549
cells showing enrichment of genes involved in different DNA-repair
ontologies. On the right, a heatmap representation of the expression of
different genes belonging to these ontologies in the different replicates
is included. b Representative images of immunofluorescence experi-
ments demonstrating colocalization of 53BP1 (green) and ARID2 (red)
in A549 cells in DNA damage foci. Colocalization was confirmed on
the right through the parallel quantification of red and green signals on
a manually selected path through the image using the LineScan tools
from Methamorph software. c Representative images of DNA-repair
foci visualized by H2AX immunofluorescence (green) in transduced
nuclei stained with DAPI (blue) at different recovery times after the
treatment with etoposide in NCI-H460 cell lines. d Bar representation
of the foci quantification in each transduced cell line. d Bar quantifi-
cation of the number of foci per cell at different recovery times after
DNA damage induced by etoposide, in different ARID2-deficient cell
lines, the results are represented as mean ± SEM of at least three
independent experiments, (two-tailed t-test *p < 0.05, **p < 0.01, and
***p < 0.001). e Representative experiments measuring cell survival to
increasing concentrations of cisplatin, etoposide, and veliparib on
A549 cells transduced with shEmpty (black), or shARID2v3 (red)
vectors. Bar graphs represent the calculated IC50 value for each
experiment. In all cases, the results are represented as mean ± SEM of
at least three independent experiments, (two-tailed t-test *p < 0.05,
**p < 0.01, and ***p < 0.001).
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identified using MACS 2.1.2 [34]. A combined list of all the
regions identified in all the samples by MACS, as well as
the list of enhancers annotated in the GeneHancer project
[10], were used to identify significant changes in region
accessibility in ARID2-deficient cells versus control using
DESeq2 [35]. Region annotation was performed using
ChIPSeeker software [36]. BEDTools [37] was used to
estimate the overlapping of the identified regions with
ENCODE publicly available histone marks ChIP-Seq A549
data and the results were plotted using deeptools v3.3.1
[38]. Motif enrichment analysis was performed using
HOMER [39]. Finally, alignments were visualized using
IGV genome browser [40].

RNA-Seq data were aligned using Tophat [41] to the
human genome (hg19). Differentially expressed genes
(DEG) were identified using HTSeq+DESeq2 [42, 43].
GSEA on gene ontology terms was performed using GSEA
software [44]. For the analysis of the TCGA database
lung adenocarcinoma patients, raw counts for each patient
(n= 524) were downloaded and normalized using
DESeq2 software. Low-ARID2-expressing lung adeno-
carcinoma patients (n= 64) were defined as those with a
normalized expression less than the mean minus two stan-
dard deviations calculated from the whole cohort. Similarly,
high ARID2-expressing lung adenocarcinoma patients (n=
78) were defined as those with a normalized expression
higher than the mean plus two standard deviations. DEG
between two groups were identified using DESeq2.

Cell culture and in vitro assays

A549, NCI-H1568, and NCI-H460 lung cancer cell lines
were obtained from The Francis Crick Institute common
and ATCC repositories, authenticated by STR profiling,
and tested for mycoplasma. Tetracycline-inducible pTRIPZ
constructs V2THS_74399 (v2), V3THS_347660 (v3)
(ARID2), V2THS-283735 (ARID1A), and V2THS-11753
(ARID1B) were used for stable cell line generation (Dhar-
macon/GE Healthcare, USA). The empty vector (RHS4750)
was used as control. Virus production was performed by
transfecting HEK293T/17clone cells with the pTRIPZ and
packaging constructs. Infected cells were selected with 1-
μg/ml puromycin and isolated by FACS using a FACS-Aria
II cell sorter (Becton Dickinson, USA) based on TurboRFP
expression after the induction with 1 μg/ml of Doxycycline

Extrapolated growth curves were constructed over a
period of 14 days by serial passaging and cell counting with
a hemocytometer or by the PrestoBlue® assay (Thermo
Fisher Scientific, UK). Cell proliferation was also analyzed
using the CellTrace™ CFSE Cell Proliferation Kit (Invi-
trogen, USA) in cells synchronized by gradual serum
deprivation following published protocols [45]. Cells were
harvested at 48 h and subjected to division peak resolution

by flow cytometry. The cell proliferation index was ana-
lyzed using MODFIT software (Verity, USA). Proliferation
index was the sum of the cells in all generations divided by
the calculated number of original parent cells.

In vitro cell migration assays were performed by using
8-μm pore size transwell chambers (Corning™ Transwell™
Multiple Well Plate) in 24-well plates using 10% FBS in the
lower chamber as chemo-attractant. For invasion assays,
cells were plated on growth factor-reduced Matrigel (BD
Biosciences) pre-coated 8-μm pore transwell chambers.
Filters or invasive cells were quantified by fixing chambers
in 4% paraformaldehyde for 10 min and staining with
crystal violet.

Growth inhibition assays were performed to determine
the half maximal inhibitory concentration (IC50) values for
different antitumoral drugs. Viability after 48 h was deter-
mined by PrestoBlue® reagent (Thermo Fisher Scientific,
UK)). IC50 value for each drug was determined with Prism
software (GraphPad, USA).

In vivo tumorigenesis assays

Animal studies were conducted in compliance with guide-
lines for the care and use of laboratory animals and were
approved by the Ethics and Animal Care Committee of
Universidad de Cantabria. For proliferation assays, five
million cells in 500 μl of PBS were subcutaneously injected
into the flanks of 6–8-week-old female nude mice (Athymic
Nude-Foxn1nu, Envigo, UK). Twenty-four days after the
injection, mice were euthanizing and tumor tissues were
harvested for analyses. For metastasis assays, 2.5 million of
cells in 500 μl of PBS with 0.1% BSA were tail-injected
into 6–8-week-old female nude mice. Hairpin expression in
the cells was induced with 1 μg/ml of Doxycycline 7 days
before injection. After 2 months, mice were euthanizing and
tumor tissues were harvested for analyses. In both cases, to
keep the hairpin expression, the animals were treated from
the day of injection with 2 mg/mL of Doxycycline in the
drinking water supplemented with 1% sucrose refreshed
every 2–3 days.

Western blot analysis

Total protein lysates were prepared in RIPA buffer (50-mM
Tris-HCl, pH 8.0, 150-mM NaCl, 1 % NP-40, 1-mM
Sodium Orthovanadate, 1-mM NaF), separated by SDS-
PAGE in 8% polyacrylamide gels, and transferred to
nitrocellulose membranes. Subsequently, membranes were
washed with TBST (50-mM TRIS+ 150-mM Sodium
chloride+ 0.1% Tween 20, pH 7.4) and blocked using 5%
nonfat milk solution in TBS for 1 h at room temperature.
Membranes were then incubated with primary antibodies
anti-ARID2 (E-3, Santa Cruz) and anti-Actin (I-19, Santa
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Cruz), diluted 1:200 and 1: 1000 in TBST with 5% (w/v)
BSA at 4 °C overnight, respectively. Donkey anti-mouse
or donkey anti-goat secondary antibodies (LI-COR Bio-
technology, USA) conjugated to IRDye 800CW (926-
32212) or IRDye 680RD (926-68074), respectively, were
used as secondary antibodies.

Immunohistochemistry analysis

For ARID2 detection on paraffin sections, antigen retrieval
was performed for 32 min at 97 °C in citrate buffer pH 6,
incubated with 1:300–1:500 anti-ARID2 antibody (abcam
ab113283) and developed with HRP-polymer secondary
antibodies (Optiview, Roche). ARID2 expression was
evaluated by two pathologists on coded tissue sections,
without information about the ARID2 mutation status. Only
surgical pathology cases with enough material, both tumor
and non-neoplastic surrounding tissue, were considered
for ARID2 immunohistochemistry. A consensus score
was reached viewing the slides by two pathologists at a
multiheaded scope.

Immunofluorescence was performed in cells fixed with
4% paraformaldehyde in PBS for 15 min at room tem-
perature. The cells were permeabilized with 0.5% Triton
X-100 in PBS and blocked with 3% BSA in PBT (PBS
containing 0.05% Triton X-100). Finally there were sub-
jected to immunofluorescence staining with ARID2 anti-
body (E-3, sc-166117 Santa Cruz, USA or A302-230A,
Bethyl Laboratories, USA), anti-phospho-Histone H2A.X
Ser139 (γH2AX, clone JBW301, Merck Millipore, USA),
or anti-53BP1 antibody (H-300, sc-22760, Santa Cruz,
USA). Cover slides were incubated with Alexa-labeled
secondary antibodies and mounted in VECTASHIELD
Antifade Mounting Medium with DAPI (Vector Labs,
USA). Colocalization of ARID2 with 53BP1 or γH2AX
was performed measuring the variation in intensity across
the lines drawn using the linescan tool from MetaMorph®

(Molecular Devices, USA). For DNA-repair assays, cells
were treated with 10-μM Etoposide for 1 h. Subsequently,
γH2AX foci were quantified using ImageJ software at
different recovery times after removing the drug from
the media.

Statistical analysis

In all cases, at least three independent experiments were
performed in order to assess the statistical significance of all
differences. In figure legends, the specific statistical test
performed in each case is indicated. In general, for quanti-
tative variables, a one-tailed t-test with equal variance was
used to identify significant differences between groups. For
qualitative variables, a Fisher exact test was used in order to
identify significant differences between groups of patients.

The different software used for the identification of muta-
tions, gene expression differences, enrichment transcription
factor binding sites, and gene ontology terms have their
own statistical models explained in detailed in the refer-
ences. When multiple tests were performed, the significance
is shown corrected for multiple testing.

Data availability

DNA-Seq, ATAC-Seq, and RNA-Seq data: https://www.
ebi.ac.uk/ena/data/search?query=PRJEB26936.

Code availability

All computer code is available upon request.
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