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Abstract: We experimentally study a quantum random number generator based on the random
excitation of the linearly polarized modes of a gain-switched vertical-cavity surface-emitting laser
(VCSEL). Our device is characterized by having polarization switching under continuous wave
operation. By measuring the linear polarization mode that is excited in each pulse we collect
a sufficient number of bits to evaluate if a standard statistical test suite is passed. We consider
linear and Von Neumann post-processing methods in order to reduce the bias with different levels
of bits rejection. The post-processed bit strings pass all tests in the standard test suite for random
number generators provided by the National Institute of Standards and Technology (NIST). We
finally compare the results obtained with different post-processing functions, including several
[n, k, d] linear BCH codes. We show that large values of n and k are the best choice to obtain
simultaneously improved throughput and randomness.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Random number generators (RNGs) are widely used in many applications including cryptog-
raphycally secured communications, industrial testing, Monte Carlo simulations, massive data
processing, quantitative finance, etc. [1–3]. Quantum random number generators (QRNGs)
stand out from RNGs because their randomness stems from quantum processes, this being the
best guarantee for offering optimum privacy and security while maintaining high performance
[2,3]. Using QRNGs is a necessary security requirement for quantum key distribution systems
[4]. Most of the existing QRNGs are based on quantum optics. Single-photon [5–7] and
multiphoton QRNGs [8–20] have been demonstrated. Quantum random number generation based
on the phase fluctuations of the light emitted by a gain-switched edge-emitting semiconductor
laser [14,15,18,20] is one of the most common multiphoton techniques. In these QRNGs,
phase fluctuations are converted into amplitude fluctuations by using unbalanced Mach-Zehnder
interferometry. Advantages of these type of generators include fast operation at Gbps rates,
robustness, low cost, operation with flexible clock frequencies, and full integration on an InP
platform [21], being also recently used for state preparation in quantum key distribution systems
[4].

Very recently, QRNGs based on polarization switching (PS) in gain-switched vertical-cavity
surface-emitting lasers (VCSELs) have been proposed [22–24]. This type of generators are also
compact and fast, having the advantage of not requiring the interferometric element, essential
in [14,15,18,20,21], from which the amplitude fluctuations and hence the random numbers are
obtained. Also VCSELs offer advantages in comparison to edge-emitters, including compactness,
high energy efficiency, low fabrication costs, on-wafer testing capability, and ease of 2D array
packaging [25]. VCSELs show two orthogonal linearly polarized modes, and PS between them
can be observed when changing the bias current [25,26]. The random nature of this PS is the
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basis of this QRNG as it has been theoretically proposed [22–24], and experimentally analyzed
[24]. In this generator the current applied to a VCSEL is periodically changed from below the
threshold current to a value well above threshold. The linear polarization that is preferably
excited during the initial stages of pulse formation is random because it is determined by the
sequence of spontaneous emission noise events. Random excitation of the VCSEL polarizations
can be considered as a quantum entropy source because the amplified spontaneous emission is
quantum mechanical in nature and can be considered as quantum noise [3,23,24,27,28].

It has been experimentally shown that for VCSELs having PS under continuous wave (cw)
operation, similar probabilities of excitation of both linearly polarized modes can be achieved by
adjusting the modulation conditions and the sampling time [24], opening the way for obtaining a
low bias generator, that is with similar probabilities for "0" and "1" bits. However raw outputs of
physical random number generators show deviations from the mathematical ideal of statistically
independent and uniformly distributed bits [1,2,29–31], for instance in our case some bias can
appear due to unwanted and slight variations of the experimental conditions. To address this
problem an additional post-processing step is typically added to increase the bit entropy and
to decrease bias in the raw bit stream. However this may come at the expense of throughput,
for instance the Von Neumann processed bit stream is almost one quarter as long as the raw bit
stream [30].

In the above mentioned experiment [24] the number of obtained random bits was not large
enough in order to fully pass all tests in the standard test suite for random number generators
provided by the National Institute of Standards and Technology (NIST) [32]. Our preliminar results
indicated that statistical tests requiring small number of bits were passed. In this work we collect a
much larger random bit stream in order to obtain significant statistical results. As mentioned above,
post-processing of raw bit streams is necessary. We have considered different post-processing
methods: the Von Neumann, as in [24], and a set of linear Bose–Chaudhuri–Hocquenghem
(BCH) compression codes. We will use these linear compression techniques because it has been
shown that they can achieve much better throughput than Von Neumann compression, while
achieving practically good level of security [30].

Using these new sets of data we will show that the post-processed random bits obtained from
our QRNG fully pass all the NIST tests. We will compare the results obtained with different
post-processing methods in order to determine optimum performance in terms of throughput and
statistical results in the NIST tests.

The paper is organized as follows. In Section 2 we describe the experimental setup, the method
followed to obtain the random bits and the experimental results. Section 3 is devoted to describe
the post-processing methods and the results of NIST tests. Finally, in Section 4 the discussion
and conclusions are presented.

2. Experimental results

Our experimental all-fiber setup is shown in Fig. 1. A complete description of all their elements
can be found in [24].

The VCSEL subject to gain-switching is a commercially available quantum-well long-
wavelength (1550 nm) VCSEL (RayCan) with a threshold current, Ith= 2.51 mA at a temperature
of 298 K. This temperature is maintained during all the measurements. Under cw operation
PS is observed at a bias current of IPS = 6.73 mA from the short-wavelength (labelled as y) to
the long-wavelength (x) polarization mode [24]. The VCSEL is driven by the superposition of
two electrical signals: a bias current (Ioff , such that Ioff<Ith) and a square signal provided by a
pulse pattern generator. Both signals are superimposed by using a bias-tee as shown in Fig. 1.
This signal is such that a voltage pulse of amplitude Von is applied during half of the period,
T/2, and no voltage is applied during the rest of the period. A polarization controller (PC) and a
polarization beamsplitter (PBS) separate the two linear polarization modes of the VCSEL. These
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Fig. 1. Schematics of the experimental setup. OI: optical isolator, PC: polarization
controller, PBS: polarization beam splitter, PD: photodetector, OSC: oscilloscope.

signals go to two fast photodiodes connected to a real-time oscilloscope (Keysight DSO91204A,
with 13 GHz bandwidth).

Figure 2(a) shows the temporal waveforms of the x− and y−signals measured at the oscilloscope,
Vx and Vy, when the bias current is below threshold, Ioff= 2.48 mA, T= 10 ns, and Von=1.4 V,
that corresponds to an applied current Ion=16 mA. These signals are proportional to the power of
x− and y−linearly polarized modes, respectively. The VCSEL switchs-off in all pulses in such a
way that there is a random excitation of both linear polarizations after Von is applied.
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Fig. 2. Time traces of the signals corresponding to the x-polarization (blue line), y-
polarization (red line), and total power (black line) for a sampling rate of (a) 40 GSa/s , and
(b) 0.4 GSa/s. The signals at the sampling time, ts = 3.5 ns, and the signals at the time of
maximum total power are plotted with symbols in (a) and (b), respectively.

Polarization mode partition noise is also illustrated by plotting the signal corresponding to
the total power: their fluctuations are much smaller than those corresponding to the individual
polarizations. The random number generation process was performed in [24] in the following way,
also illustrated in Fig. 2(a). A "0" ("1") bit was assigned when Vx(ts)>Vy(ts) (Vx(ts) ≤ Vy(ts)),
where ts is a chosen sampling time. Then, the probability of obtaining a "0" bit, p(0), is the
probability of excitation of the x−polarization at ts, that is 0.52 for the conditions of Fig. 2(a)
when considering 104 pulses. Figure 2(a) has been obtained with a sampling rate of 40 GSa/s at
the oscilloscope working in the normal acquisition mode. This means that in each modulation
period only one random bit is extracted from the 400 sampled values of the signals in each period.

To improve the efficiency for extracting the random bits we have acquired the data in the
oscilloscope using the high resolution acquisition mode. In this acquisition mode the sampling
rate is 40 GSa/s and two consecutive averages are performed in the oscilloscope. The first one is
a boxcar average that considers high-resolution intervals of 80 points, and so for each period
of the 100 MHz signal five values of the signal are obtained: S0· · · S4. These values are again
averaged to obtain four high-resolution points in each period, HR0· · ·HR3, in the following
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way: HR0=(S0+S1)/2,. . . 0, HR3=(S3+S4)/2. The results obtained are shown in Fig. 2(b). Four
values of the signals are obtained each modulation period in such a way that a well defined
maximum in the total power can be identified due to the low-pass filtering performed by this
acquisition mode. We now obtain the random bits in a similar way than before but comparing
Vx and Vy at the time at which the maximum of Vx + Vy appears, tmax. Now, one random bit is
obtained from the four values of the signals in each period. In this way a much larger number of
random bits is obtained for a given number of recorded Vx and Vy. In our case 5.125 × 106 raw
random bits are obtained from the 2.05 × 107 values of Vx and Vy that are recorded in each data
file.

We show in Fig. 3(a) the values of p(0) calculated for 788 bits sequences that we have obtained
in temporal order. Each sequence has 5.125 × 106 bits, that are the raw bits obtained in each
recorded data file. Initial values are close to 0.5, so the results are close to 0.52, that is the value
obtained from the method used in [24] for extracting random bits. p(0) fluctuates around 0.5
until the sequence #75 after which it suddenly increases to 0.61. A rather monotonous decrease
is observed until sequence #170 after which p(0) stabilizes again around 0.5. Figure 3(a) shows
that the previous trend repeats another three times. The behavior shown in this figure can be
explained by the way in which the measurements were performed. These were done in five
sessions in such a way that all the equipment was switched off after each session. The beginning
of the second, third, fourth and fifth sessions correspond to the numbers of the sequences at
which the sudden increases are observed. This means that p(0) stabilizes after a time of the order
of 5 hours since the recording of each file takes around 4 minutes. Possibly this long stabilization
time is due to a non optimum control of the temperature of the VCSEL in our setup.
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Fig. 3. (a) p(0) obtained from the raw data bits, and (b) modulus of the bias obtained with
the Von Neumann post-processing, for each of the bit sequences.

We now define the bias, e, of the random number generator by e = p(0) − 1/2. The value of the
bias obtained for the complete set of raw bits of Fig. 3(a) (4.0385 × 109 bits) is e = 1.54 × 10−2 .
Since the value of the bias is large, post-processing of these raw bits is required in order to get
random numbers that can pass the statistical tests. This will be the subject of the next section.
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3. Post-processing methods and results of statistical tests

We first consider the non linear Von Neumann post-processing algorithm described in [1,30]. Von
Neumann’s is a very efficient method for reducing the bias with a modest throughput, that is the
accepted bit rate is 0.25 − e2 [30]. We apply this algorithm to the complete set of raw bits shown
in Fig. 3(a). In this way we obtain 788 sequences of 1.270487 × 106 post-processed bits each.
We plot in Fig. 3(b) the absolute value of the bias for each of these sequences, distinguishing
with colours the sign of the bias of each set. Post-processing largely decreases the bias values
with respect to those corresponding to Fig. 3(a). The total number of post-processed bits is close
to 109 for which e = −3.1 × 10−5.

We also consider the linear corrector codes post-processing techniques [31]. They are based
on the following result:

Theorem 1 [31] Let G be a linear corrector mapping n bits to k bits. Then the bias of any non
zero linear combination of the output bits is less or equal than 2d−1ed, where d is the minimal
distance of the linear code constructed by the generator matrix G.

As suggested in [30] we use the efficient [n, k, d]-BCH codes defined over the finite field GF(2)
and where n + 1 is a power of 2. For the raw input bits (xn−1, . . . , x0), the output (yk−1, . . . , y0) is
obtained as:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

gn−k . . . . . . · · · . g0 0 · · · . . . 0

0 gn−k · · · . . . . · · · g0 0 . . . . . . 0

. . . . . . . . . . . .

0 . . . . . . 0 gn−k . . . . . . g0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

xn−1

xn−2
...

x0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yk−1

yk−2
...

y0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and g(x) = gn−kxk + · · · + g1x + g0 is the cyclic generator polynomial of the [n, k, d]-BCH code.

For instance the BCH code with parameters [15, 7, 5] has as generator cyclic polynomial
x8 + x7 + x6 + x4 + 1. Another example is the BCH code with parameters [1023, 1003, 5] that has
generator cyclic polynomial x20 + x15 + x13 + x12 + x11 + x9 + x7 + x6 + x3 + x2 + 1 (see [33] for
several properties of those practical linear codes).

The throughput, k/n, can be much larger than that obtained with Von Neumann’s method,
∼ 1/4, while maintaining a very efficient bias reduction 2d−1ed (see Theorem 1). This means
that by choosing a k value slightly smaller than n a high throughput can be achieved.

Figure 4 shows the results obtained with the NIST statistical tests applied to the bits obtained
with different post-processing techniques. Each test is performed using 1000 sequences of 1
million bits each with a statistical significance level, α = 0.01. In Fig. 4 we show the P-valueT,
that gives an idea of the uniformity of the distribution of the P-values [32], and the proportion
of sequences passing the tests for the Von Neumann and five different linear BCH codes. For
tests that return multiple P-valueT and proportions, the more representative case, that is the one
having a P-valueT closest to the median of P-valueT, has been plotted. Two criteria are used in
these tests for "success": i) the P-valueT must be larger than 10−4, and ii) the proportions must
be in the (0.9805607,0.9994393) confidence interval [32]. These values have been included in
Fig. 4 using horizontal dashed lines. Results shown in Fig. 4 confirm that the post-processed bits
sequences are sufficiently random for passing the statistical tests of NIST.

We now compare the performance of the different post-processing techniques. Table 1 shows
the output bias, and the accepted bit rate for the post-processed data used in Fig. 4. We also
include the P-valueT and the proportions averaged over the 16 tests, <P-valueT> and <Prop>, in
order to quantify in a summarised way the results of NIST tests. The spreading of proportions
around <Prop> is also quantified by including the standard deviation of the proportions over the
tests, σProp.
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Fig. 4. NIST test results for data obtained using (a) Von Neumann, (b) [15,7,5], (c)
[255,107,45], (d) [511,484,7], (e) [1023,903,25], and (f) [1023,1003,5] post-processing
methods.

Table 1. Post-processing and NIST test results for different
post-processing methods

Post-processing Output bias Rate < P-valueT > < Prop > σProp

Von Neumann -3.1 ×10−5 0.2479 0.4737 0.9892 0.0050

[15,7,5] -1.4 ×10−8 0.4666 0.4446 0.9880 0.0033

[255,107,45] -2.2 ×10−5 0.4196 0.4204 0.9885 0.0035

[511,484,7] 8.2 ×10−6 0.9472 0.4103 0.9906 0.0022

[1023,903,25] 9.0 ×10−6 0.8827 0.5865 0.9903 0.0032

[1023,1003,5] 8.4 ×10−6 0.9804 0.4513 0.9889 0.0024
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Results on Table 1 show that all the post-processing methods are very efficient to reduce
the bias, being the [15,7,5] method the one for which minimum | e | has been obtained. The
accepted bit rate, given by the previously mentioned formulas, has a very wide range of variation,
from the value close to 1/4 corresponding to Von Neumann’s to the value 0.9804 obtained for
[1023,1003,5]. The [1023,903,25] method, also with large values of n and k, gives the largest
uniformity of the distributions of P-values because the obtained <P-valueT> is substantially
larger than those found with the other methods, as it can be seen in Table 1 and in Fig. 4. Table 1
also shows that the averaged value of the proportions is always close to 0.99, as expected for a
good RNG tested with α = 0.01. The [511,484,7] and [1023,1003,5] methods have the smallest
values of the standard deviation of the proportions. Results of Table 1 show that BCH codes with
large values of n and k are the best choice to obtain simultaneously large values of throughput and
<P-valueT> with a small standard deviation of the proportions around 0.99. The implementation
in hardware of linear codes with large n and k utilizes more resources than those used with Von
Neumann’s method. However, Table 1 also shows that methods utilizing fewer resources than
those with large values of n and k, like [15,7,5], permit to obtain similar <P-valueT> to those
found with Von Neumann’s but with a much larger throughput and smaller σProp.

As mentioned in the previous section, the complete set of raw bits used for post-processing
has a large bias value due to the way in which measurements were performed. A decrease of the
large bias values observed in Fig. 3(a) could be obtained by measuring in just one long session
after the bias stabilization is achieved. Alternatively, similar results can be expected if we select
sequences of Fig. 3(a) in which p(0) is close to 0.5. We have selected 200 sequences from the
initial 788 sequences in which p(0) is close to 0.5. We show in Fig. 5(a) the values of p(0) for
those selected sequencies of 5.125 × 106 raw bits each. The bias obtained with all the selected
1.025 × 109 raw bits is e = −1.0 × 10−4, much smaller than the e = 1.54 × 10−2 value obtained
for all the raw bits.
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Fig. 5. (a) p(0) obtained from the selected raw data bits, and (b) modulus of the bias
obtained with the [1023,1003,5] post-processing, for each of the bit sequences.

We now wonder if this bias reduction is enough in order to pass the randomness tests with
these selected raw data, so we have used them as input for the NIST statistical test suite with
α = 0.01. We have tested the randomness of 1024 sequences of 1 million bits each with the
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NIST tests. There are eight tests for which the proportion of sequences that pass the tests is
larger than 97.4% (longest runs, binary matrix rank, FFT, Maurer’s universal, linear complexity,
serial, random excursions and random excursions variant). The proportion obtained for the other
eight tests does not reach the 97.4% value, going from 5.4% (run test) to 93.2% (approximate
entropy test). In this way our selected raw data do not pass NIST tests. These results remark the
necessity of a post-processing of the raw data in order to pass the complete set of NIST tests.

Our final step is to apply one of our post-processing methods to the set of selected raw bits.
Then we apply the [1023,1003,5] method to the data set for which Fig. 5(a) was obtained. In
this way we have 200 sequences of 5.0248 × 106 post-processed bits each. We plot in Fig. 5(b)
the absolute value of the bias for each of these sequences. Post-processing largely decreases the
bias values with respect to those shown in Fig. 5(a). The total number of post-processed bits
is 1.00496 × 109 for which the bias is e = 2.2 × 10−5. From this set we take 1000 sequences
of 106 post-processed bits as input of NIST tests. The results of NIST tests are shown in
Fig. 6. The post-processed bits of the selected raw bit sequences are sufficiently random for
passing the statistical tests of NIST. We can now compare these results with those obtained from
post-processing the complete set of raw bits. Values of <P-valueT>=0.5696, <Prop>=0.9879,
and σProp = 0.0038 are obtained from Fig. 6. A comparison with results shown in Table 1 shows
that the uniformity of the distribution of P-values significantly increases when using selected raw
bits because <P-valueT> has increased from 0.4513 to 0.5696. Also the smaller variation of bias
obtained when using the selected set of raw bits results in the much larger value of P-valueT for
the Frequency test obtained in Fig. 6(a) (0.992) with respect to that found in Fig. 3(f) (0.467).
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Fig. 6. NIST test results for the [1023,1003,5] post-processing of the selected raw data of
Fig. 5. (a) P-valueT, and (b) proportions of sequencies that pass the tests

4. Discussion and conclusions

We have shown in the previous section that simple post-processings of the complete set of raw
bits, characterized by large variations of the bias, have been enough in order to pass the NIST
tests. This also means that our system for generating random bits would be practically unaffected
by small variations in the modulation parameters provided that an appropriate post-processing is
applied. The situation is similar when considering a better control of the experimental conditions
because we have shown that post-processing of a subset of the previous raw data, characterized
by a smaller variation of bias, also pass the NIST tests. This better control of the experimental
conditions for obtaining low bias raw bits results in a significant improvement of the randomness
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of the post-processed data as shown by the large increase of the <P-valueT> that has been
obtained in Fig. 6 with respect to that in Fig. 4(f).

In our experiment raw data bits have been generated at a rate of 100 Mbps. The bit rates
that we have considered are not very fast but we want to remark that our main aim has been to
collect a sufficient number of data to fully pass the NIST statistical tests. Taking into account
that in [24] we demonstrated operation at twice the data rate of this work and that VCSEL’s
modulation bandwitdhs can go beyond 35 GHz [34] there is plenty of room to increase the
generated random bit rate using our technique. Future work will be devoted to increase the
gain-switching modulation rate, and hence to increase the random bit rate.

In this work we have considered different post-processing techniques, ranging from the non
linear Von Neumann’s to the family of linear BCH codes. These offer a large pool of codes to
choose from in which it is possible to trade-off different aspects of a RNG performance, like output
bias and throughput. BCH post-processing functions can be implemented in field-programmable
gate array (FPGA) hardware circuitry [30]. FPGA implementations of BCH codes using the
parity-check and the generator polynomials, with their corresponding resource utilization analysis,
have been proposed and compared in [30]. Future work will also include the analysis using more
classical post-processing methods, for example, the Trevisan extractor or the Toeplitz extractor.

Using a wide variety of compression codes our post-processed random bits have passed
the NIST statistical tests. For tests that return multiple P-valueT and proportions, the results
corresponding to the worst case are sometimes found in the literature. We have considered
instead the results that correspond to P-valueT closest to the median of the P-valueT. We note
that if we choose the worst case our results do not significantly change because all the tests are
also passed and only a slight decrease of <P-valueT> with respect to that reported in Table 1 is
observed. Some other randomness tests are frequently used, apart from NIST. We will also try to
confirm the randomness of our data by using batteries of statistical tests like Dieharder, TestU01
and AIS 31. We also note that quantum randomness and classical noise must be considered to
extract the real quantum noise. Future work will be devoted to propose models to ensure that the
final randomness comes from quantum sources rather than classical ones.

Our setup uses complex controls mainly coming from the costly pulse pattern generator, and
high bandwidth real-time oscilloscope. These elements can be substituted by devices reducing
the cost, size and footprint of the equipment required for generating random numbers. The
pulse pattern generator can be substituted by a step-recovery diode (SRD) in combination with
a RF source. In fact, it has been recently shown that the use of an SRD as the electrical pulse
generator gives similar results to those obtained with a pulse pattern generator in a system similar
to that considered in our work [35]. The oscilloscope with the computer post-processing that
we have used can be substituted by a comparator electronic circuit in combination with a FPGA
implementation of the post-processing code. In fact, comparator hardware components are used
in compact digitization systems for generating random numbers [36].

In conclusion we have shown that random bits obtained from polarization switching of linearly
polarized modes in gain-switched VCSELs fully pass the batteries of the NIST SP800-22
statistical tests. We have compared the results obtained with different post-processing functions,
including several [n, k, d] linear BCH codes. We have shown that large values of n and k are the
best choice to obtain simultaneously large values of throughput and <P-valueT>. These results
indicate that our system is a good candidate for QRNG.
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