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Abstract This paper presents a formal model-based

methodology to support railway engineers in the design of

safe electronic urban railway control systems. The purpose

of our research is to overcome the deficiencies of existing

traditional design methodologies, namely the incomplete-

ness and the potential presence of contradictions in the

system specification resulting from non-formal develop-

ment techniques. We illustrate the application of the

methodology via a case study of a tram-road level crossing

protection system. It was chosen partly because it has a

simple architecture and a small number of elements, thus it

fits the scope limitations of this article. At the same time, it

is suitable for presenting all essential features of our

methodology. The proposed solution provides a specifica-

tion/verification environment that facilitates the construc-

tion of correct, complete, consistent, and verifiable

functional specifications during the development, while

hiding all the formal method-related details from the rail-

way engineers writing the specifications. Using this formal

model-based methodology, a high-quality functional

specification can be achieved, which is guaranteed to be

more exhaustive and will contain fewer errors than tradi-

tional development.

Keywords Requirement specifications � Statechart �Model

checking � Safety critical � Urban railway control

1 Introduction

In the current practice of system development, the rigor of

requirements and the level of expected quality and safety

both are required to be proportional to the risk posed by the

potential faulty behavior of the system (more precisely, the

necessary risk reduction). One way to meet the high

expectations of safety-critical applications is the use of

formal methods. Rail transport is a traditionally safety-

critical engineering field; thus, it is no surprise that formal

methods are also prescribed by railway-related standards

(e.g., EN 50129 [1], EN 50128 [2]). These standards

classify formal methods as ‘‘highly recommended’’ at

Safety Integrity Level (SIL) 3 and 4 (see [1] Annex E,

Table E.7, point 4).

Functional safety aims at preventing the unaccept-

able risk of physical injury or damage to human health

caused by the erroneous operation of a system, with the

proper implementation of one or more automatic protection

functions (also called safety functions). The definition

(specification) of the correct functionality of the system is a

core concept of safety, which is the task and responsibility

of the engineers working in the given application domain.

However, domain engineers are reluctant to use formal

methods during the system design/development activities,

because even though these are claimed to help avoid

specification errors, their application often requires sig-

nificant additional expertise because they are abstract,

computer science-based methods. The use of formal

methods is much more common in the software design/

development activities of the projects, because software
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engineers (computer scientists, programmers) receive an

adequate level of education to be able to readily use these

techniques. Railway engineers can only acquire these skills

after years of work.

At the same time, domain engineers are at the heart of

the information flow of the development. They help to

transform the different needs of the stakeholders into sys-

tem design and implementation, and they also give feed-

back about the detected errors, limitations, and deviations

to the stakeholders during the life cycle. This two-way

activity can be complicated and, in many cases, can lead to

many conflicts and many iterations during the develop-

ment. In practice, user requirement specifications very

rarely meet the criteria of a ‘‘good’’ requirement specifi-

cations. The work of domain engineers is to overcome

these difficulties, which require simple, fast, efficient, and

easy-to-apply solutions.

The use of formal modeling [3] is gaining popularity in

the development of safety-critical transport applications.

This technique is also preferred by railway engineers due to

the advantages and power of model-based systems engi-

neering [4]. Formal modeling provides an opportunity to

precisely specify the functionality of systems using math-

ematical/logical rules. The research described in this article

aims to present a case study demonstrating the practical

utilization of a new methodology that supports railway

engineers in the construction and verification of formal

specifications. The proposed specification-verification

environment aims to decrease the need for mathematical

and computer-science background/knowledge at the system

development level. Our framework integrates a set of well-

known and widely used methods, techniques, and tools

such as object-oriented formalisms (e.g., the Unified

Modeling Language [5]), model-driven development [6],

and model checking [7]. The application of the method-

ology supports the construction of correct, complete, con-

sistent, and verifiable functional specifications. As a result,

this approach leads to a significant improvement in quality

and distributes the development costs more evenly among

the related life-cycle phases.

The purpose of the following subsections is to briefly

introduce the practice of the railway control systems

development, including the widely applied methodologies,

techniques, and principles, and their relation to our pro-

posed methodology.

1.1 Life-Cycle Management

There are many different approaches to life-cycle man-

agement in the industry, such as for safety-critical systems

[8, 9] or [10]. A possible life-cycle model for railway

signaling development is the popular V-model [11]. Our

research focuses on the process from the requirements

specification phase to the design phase.

Based on practical experiences, the specification and

design phases are alternating activities of the development

life cycle (see Fig. 1). During the development, the

implementation of a system is achieved by reducing the

level of abstraction and increasing the formalization step

by step (also called a step-by-step refinement). A common

experience is that performing specification and design

activities simultaneously in engineering practice increases

the likelihood of systematic errors. The full implementa-

tion of a system usually cannot be immediately completed

after a single specification and design step (although it may

be possible in the case of trivial systems). This gradual

refinement process was taken into account during the

construction of the proposed methodology because it has a

significant impact on the effectiveness related to the

reduction of systematic errors.

1.2 Requirements Engineering and Management

In the railway development life cycle [11], tasks related to

requirements are ‘‘limited’’ to two life-cycle phases

(namely the ‘‘specification of system requirements’’ and

‘‘architecture and apportionment of system requirements’’)

[11], and these will be validated during the activities on the

right side (integration and validation) of the V-model.

However, recent development in project management and

systems engineering emphasizes that the requirement-re-

lated activities must not be limited to these phases alone.

Requirements engineering (RE) means a set of activities to

explore, evaluate and document the objectives, capabilities,

constraints, and assumptions of a system to be developed

[12]. Requirements management (RM) [13]—as a life-cy-

cle-comprehensive technique—includes such processes as

the following up, prioritization, verification, maintenance,

etc. of requirements during the whole life cycle. Many

widely used methodologies and methods are available

nowadays to support RE and RM by tools, toolkits,

workbenches, or frameworks (e.g., [14–16]).

In addition to the RE and RM, the examination of the

railway domain requirement sources (RS) also influenced

the construction of our proposed methodology. For the

development of an interlocking system, the requirements

can come from many sources. The various description

techniques used in RS are at different levels of abstraction

and formality. The requirements coming from RS are one

of the inputs to the development. The processing of the RS

is usually performed during the ‘‘specification of system

requirements’’ and ‘‘architecture and apportionment of

system requirements’’ phases of the life cycle [11]. As a

result, different types of requirement specifications are
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created (e.g., safety Requirements specification, SRS;

functional requirements specification, FRS).

The main source of requirements are the stakeholder

needs, but there are several other sources, too. Additional

RS can be divided into four main groups (in Europe):

legislation of the European Union (EU), national legisla-

tion, standards, and guides by authorities/professional

organizations. For example, in the case of an axle counter,

RS include a standard [17], a technical specification for

interoperability (TSI) [18], and a national regulation [19].

In practice, several RS can be identified as relevant to the

development of a system, which may lead to thousands of

requirements. Clarifying such a vast requirement set is

difficult due to its size, interdependence, and different

levels of abstraction and formality. This set of requirements

exhibits all sorts of problems: the lack of correctness,

completeness, consistency, verifiability, etc. During the

first phases of the life cycle [11], developers aim to analyze

this set of requirements in order to significantly reduce

these problems, and then create systems requirement

specifications from it.

1.3 Model-Based Systems Engineering, Model-

Driven Development

Model-based systems engineering (MBSE) [20] and

model-driven development (MDD) [21] are popular

approaches in the current engineering practice. There are

several tools (e.g., MATLAB [22] and Simulink [23], etc.)

to support MBSE or MDD. Engineers are generally

familiar with the tools available for modeling, simulation,

or analysis in their respective fields, so when they

encounter a problem, they immediately examine it using

modeling.

MBSE is a formalized application of modeling to sup-

port the life-cycle activities during the development [24],

which intends to bring together the model-centric approa-

ches of various engineering disciplines (e.g., electrical,

software). MDD is a philosophy of software development

that focuses on high-level models [25]. For both approa-

ches, models are the most important artifact, similar to our

proposed methodology.

A model is a simplified representation of a system at

some particular point in time or space, intended to promote

understanding of the real system (Bellinger 2004, [26]). A

model can have many appearances, such as textual, math-

ematical, graphical, or mixed. In railway engineering

practice, the graphical form is the most popular; however,

sometimes mixed solutions may also be required. Many

techniques and tools related to MBSE are applied in the

railway field to support modeling, for example, Unified

Modeling Language (UML) [27] or Systems Modeling

Language (SysML) [28], among others.

Finally, modeling is one of the recommendations of the

EN 50128 standard [2] dealing with the development of

software for railway control and protection systems. A set of

recommended modeling techniques are listed in Table A.17

of the standard [1], including also formal methods.

1.4 Formal Methods

Formal methods are precise modeling and analysis tech-

niques that are based on discrete mathematics and mathe-

matical logic, in particular. These techniques are used

primarily in the area of computer science [29]. Formal

Fig. 1 Relation between

abstraction and formalization
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methods are useful in system development, including soft-

ware and hardware development, aswell [30]. The semantics

and syntax of the formal models are well specified, clear, and

complete. They enforce the engineer to think deeply and

systematically about the problem, thus reducing significantly

the ambiguity and incompleteness of specifications.

Nowadays, the engineering practice of railway inter-

locking systems is characterized by non-formal and semi-

formal (consisting of textual and ad hoc marking systems)

specifications written by railway engineers. The cooperation

between the participants in the development process often

causes misunderstandings, uncertainty, or omissions [31].

Using formal models during the development process can

decrease the probability of these inadequacies [32]. Formal

methods support the rigorous specification, planning, veri-

fication, and modeling of complex systems [33]. They also

make the identification of errors possible in the early life-

cycle phases. The executable models can be tested early in

their creation. When a qualified code generator (e.g., QGen

[34]) generates the code, then the proof of correctness of the

models will remain valid as a correctness proof for the code

as well, in the scope of the verified properties.

The two main approaches to performing formal verifica-

tion are model checking [35] and theorem proving [36].

Several practical applications are already known in the field

of railways for both techniques (e.g. [37–42]). Using theo-

rem proving, the system attributes and behavior, the envi-

ronment (axioms), the required properties and the domain-

specific engineering knowledge is represented as a collection

of formulas. The purpose is to investigate whether the given

formulas form a consistent set or there is a contradiction. On

the other hand, in model checking the system, the environ-

ment, the required properties (logic formulas) and the

domain knowledge are described by models. During model

checking, the (typically symbolic) combined state space of

the models is generated, and the truth value of the given

formulas is checked in (potentially the whole) state space.

Because of the availability of the state space, modeling and

model checking can provide a so-called counterexample in

the case of property violations, which is beneficial for the

detection and elimination of errors. Thus, these techniques

are closer to system engineering practice than theorem

proving [43]. Therefore, we chose model checking for the

proposed methodology. Particular attention has been paid to

hide the specifics of formal methods from railway engineers

as much as possible.

2 Related Work

In this section, we give an overview of the past research

results and case studies related to the purpose described in

this paper. These differ from the proposed methodology in

that they aim at a different application field, focus on

diverse aspects, or employ other tools to handle the spec-

ification and verification of critical systems.

Kunnappilly et al. [44] describe a framework based on

the UML and the UPPAAL tool (a formal modeling and

model checking workbench). To introduce the operation of

their framework, the authors describe two case studies: a

mission-critical 5G-assisted robot surgery e-health appli-

cation and a less critical video streaming application. The

conclusion of the paper is that by combining the benefits of

user-friendly UML and UPPAAL, they created an effective

solution to address the issue by enabling both modeling and

formal verification already at the design phase. We use the

same tools the authors used (e.g., UML statechart and

UPPAAL) in our proposed methodology.

In the field of medical systems, the paper by Chunhui

et al. [45] presents a framework that facilitates the partic-

ipation of medical professionals in modeling, formal veri-

fication, and root cause identification of safety-critical

failures. The proposed environment allows one to perform

these activities at two levels of abstraction: at the model

and code levels. Clinical validation is also part of the

framework. The strategy of the authors to implement this

framework was to utilize existing tools designed for vali-

dation and verification. They used statechart diagrams to

describe the problems of the medical domain. These rep-

resentations can be transformed automatically to verifiable

formal models by the framework, so it is possible to verify

safety properties formally. After verification by medical

professionals, these models become the basis of exe-

cutable code generation. The framework transforms safety

properties specified at the model level into run-time code

monitors to ensure their fulfillment. The authors used a

cardiac arrest treatment system as a case study. Their paper

is in the medical domain, but it applies the same processes

and tools (e.g. Yakindu, UPPAAL) that we also use in our

proposed methodology.

The framework introduced in the paper [46] presents a

formal verification approach to the real-time extension of

UML statecharts. The authors specify one subset of the rich

UML statechart abstraction extended with real-time con-

structs (clocks, timed guards, and invariants). The for-

malism they developed is called hierarchical timed

automata (HTA). Our proposed methodology includes a

similar suggestion for the subset of the UML state charts.

However, we did not extend the defined subset. David et al.

[46] overview a possible translation of one HTA to a net-

work of flat timed automata. The set of these timed auto-

mata are one of the inputs of the real-time model checking

tool UPPAAL. Paper [46] gives a report on an XML-based

implementation of this translation using the well-known

pacemaker case study.
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The research goal of the thesis [47] was to analyze the

applicability of formal methods in the domain of industrial

control systems and propose a specification-verification

environment. The main challenges of the chosen domain

were performance and usability. The author proposes the

application of model checking to support the software

development of industrial control systems. The described

platform helps domain engineers by hiding the formal

details, so they do not need to acquire the special mathe-

matical/logical background needed for formal methods.

The case studies of this work come from the practice of the

European Organization for Nuclear Research (CERN). In

connection with our research, the following results of the

thesis are relevant: formal specification for programmable

logic controller (PLC) modules and model checking of

critical PLC programs. Our research goal is very close to

those of this thesis, with differences in the domain and

abstraction level.

The Gamma Statechart Composition Framework

(GSCF) is an integrated toolset to facilitate the design,

verification and validation, and code generation for com-

ponent-based reactive systems [48]. GSCF provides a

modeling language and framework for the hierarchical

decomposition of statechart components in an object-ori-

ented way. The framework is integrated with the third-

party Yakindu Statechart Tools modeling tool and the

UPPAAL model checker to provide formal verification of the

constructed models. GSCF automatically generates an

implementation of an individual component. This envi-

ronment also allows back-annotation and test generation.

The main difference between the GSCF and our proposed

framework is that the former targets software engineers as

end-users, whereas we target the railway signaling engi-

neers with our specification-verification environment. The

objectives, processes, and tools used are similar for both

frameworks. However, our methodology does not deal with

code generation, because it is not intended to cover that

level of abstraction. Both frameworks hide the inherent

complexity of using formal methods by offering a high-

level user interface. Case studies related to GSCF are

presented in [49] from the cyber-physical system domain.

The paper by Jiang et al. [50] describes a methodology

related to an extension of the MDD approach. Their MDD

process starts from a state-flow (a variant of statecharts)

model, followed by simulation, validation, and code gen-

eration. Simulink is a popular MDD tool used in the

development of industrial software systems. This MDD

process has been supplemented with an extended verifica-

tion environment. The extension consists of a translator and

a run-time verifier. The purpose of the translator is to

generate an UPPAAL model from the Simulink state-flow

model. Formal model checking can be performed on the

UPPAAL model using the property specification

(transformed requirements) of the designed system. The

verified model can be used for code generation by Simu-

link, and the run-time verifier supports monitoring the

generated software system in operation. The paper also

includes a case study related to a train communication

control system. The approach of [50] differs from our

framework in the targeted end-users, in the initial model

(state-flow vs. statechart) and the tool used (Simulink vs.

Yakindu Statechart Tools). Both frameworks use UPPAAL

for formal verification of the designed systems. The last

difference is code generation, but as stated earlier, we do

not intend to support implementation.

The paper by Yul et al. [51] presents an application of

formal model checking-based safety verification of a rail-

way interlocking system. The proposed model checking

technique is implemented on a timed automaton of the

considered interlocking system. The safety behavioral

specification is expressed as a set of computation tree logic

formulas. The UPPAAL model checker is used to perform the

model checking. The distinction between this study and our

research is that we perform modeling and model checking

at the component design level in this paper, while their

study [51] does it at the system level.

Wang et al. [52] also present the simulation results of a

performed verification. They describe a general interlock-

ing system function modeling by multistage refinements

using the Event-B language. Their methodology can help

developers reduce potential design flaws and identify

defects in the interlocking data in the early development

stage of the life cycle. The validated model can be the

foundation for the implementation. In their work [52], the

domain (railway interlocking) is the same as the scope of

our research. However, the difference is that it proposes a

complementary application of the model checking and

theorem proving.

The publications described above all have in common

that they try to support engineers of a certain domain to

incorporate formal methods into their development activi-

ties. To enable this, they select appropriate high-level semi-

formal descriptions that domain engineers can pick up with

little effort; they expect the engineers to prepare models

using the selected formalisms, and then automate the rest

of the verification process. But they all differ in the way

they achieve this. Therein lies the contribution of our paper

as well. Although our approach described in Sect. 3 is

based on existing tools, and the mathematical basis behind

the formalisms and tools used are also well established and

not new, the way they are selected and integrated is spe-

cially tailored for the engineering of safety-critical railway

systems. The novelty lies in the following: (1) it enables

the selection and integration of the appropriate high-level

semi-formal and low-level formal description forms and

tools into a toolchain that fits the railway field; (2) it
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illustrates the transformation from the semi-formal to for-

mal models (this transformation can be partly automated,

but the transformation rules are not in the scope of in this

paper); and (3) the proposed approach was created

specifically for the railway engineering domain (also taking

systems engineering best practices into account), where

these techniques are not yet widely applied.

The similarity of the publications [48–50] means that

they use a set of tools and techniques widely used in

engineering practice. However, due to their complexity,

these tools require an extremely high level of professional

knowledge and background. In many cases, in-depth

knowledge of a particular field of science is not enough for

their proper application, so they require interdisciplinary

knowledge (e.g., knowledge of mathematics, information,

and engineering). In the methodology proposed by us in

Sect. 3, we set the goal of reducing this need for diverse

knowledge as much as possible for railway engineers. We

plan to give them an easy-to-learn, fast and cost-effective

method that can be used in practice, and which gives a

result in which the viewpoint of quality meets the expec-

tations of this domain.

3 Methodology

In this section, we describe the principles of our proposed

methodology. Hereinafter, it will be referred to as

FMBRSE (Formal Model-Based Railway Safety Engi-

neering) methodology.

The purpose of the FMBRSE is to support railway

engineers in the application of formal specification and

verification in the development of a safety-critical railway

system. The result of applying the methodology in a

development task is a formally verified, validated func-

tional model of the given railway safety system. The

FMBRSE process is shown in Fig. 2.

The inputs of the process are the requirements described

by various stakeholders. These requirements are at differ-

ent levels of abstraction and formality (see Sect. 1.1). The

requirement sources that came from stakeholders are pre-

sented in Sect. 1.2.

Steps from (1) to (3) in Fig. 2 are well known to railway

engineers because they are prescribed by the standard [11].

The FMBRSE methodology provides a specification envi-

ronment for designing each component of the system in

terms of its functionality. This specification environment

builds on four pillars: requirements, interfaces, configura-

tion, and behavior. We recommend structured natural lan-

guage [53] for specifying requirements, a subset of the

UML component diagram [27] for interface specifications,

a specific tabular method for defining parameters, and a

subset of the UML state machines [27] for describing the

behavior/functionality of each component. The subsets

from the UML component and statechart diagrams have

been designed with the following considerations in mind:

keeping the syntax of UML, maintaining compatibility

with existing tools, and being easy to learn for railway

engineers. The methods above are essential parts of the

specification environment of the FMBRSE methodology.

Of course, if needed/useful, the proposed specification

environment can be supplemented with other techniques.

However, their integration with the existing FMBRSE

methodology must be verified and validated. The reader

can find the details of the defined UML subset in [54].

The FMBRSE methodology also provides a formal

verification environment using model checking (see step

(6) in Fig. 2). Model checking [55] is a method based on

discrete mathematics to answer the following question:

‘‘Does the model satisfy a set of requirements, or if there is

a requirement violation, then what sequence of events can

lead to this situation?’’ Steps (4) and (5) in Fig. 2 aim to

create the inputs of model checking—i.e., computation tree

logic (CTL) formulas [56] from the requirements, and

formal models from the functional specification of the

system—the purpose of which is to verify the functionality

of the designed system before implementation.

CTL formulas are constructed by applying a rule-ori-

ented technique to transform the natural language

descriptions. The behavior (timed automata) of the devel-

oped system is generated from the statecharts in an auto-

mated way. In certain cases, it is necessary to model the

environment of the system and/or the input function (the

generator of the input value sequences fed to the system

inputs), in order to be able to perform model checking.

These are not part of the automated generation of a formal

model because they depend too much on the designed

system. These should be designed individually with the

modeling goals in mind. In summary, a formal model of a

component—when the input function does exist—is made

up of three elements: the automata representing the func-

tionality, the input (value generator) function, and the

necessary elements modeling the environment (e.g., mod-

eling of the function call sequences, modeling of the timing

of actions).

The result of the model checking can be of three kinds.

If the requirements are fulfilled, then the model is verified

correct. When a requirement violation is found in some

state(s), then model checking provides a counterexample.

This counterexample characterizes an incorrect behavior

(the path/steps leading to the requirement violation) of the

model. The third possibility, ‘‘non termination’’, means that

either the verification fails due to insufficient memory, or

the verification is shut down prematurely because it takes

too much time. The possible outputs of model checking are

summarized in the process shown in Fig. 3.

222 Urban Rail Transit (2022) 8(3-4):217–245

123



The practical implementation of model checking within

FMBRSE is based on an existing, widely known frame-

work: UPPAAL [57]. UPPAAL is a tool for modeling and

verification of real-time systems developed by Uppsala

University and Aalborg University.

UPPAAL models systems as a network of timed automata.

A timed automaton is a finite-state machine supplemented

with clock variables. The network of timed automata

modeled in UPPAAL consists of concurrently operating

processes that can interact with each other. These processes

are described with graphical process templates, which also

have local declarations in textual form. A process template

basically consists of two main elements: locations (states)

and transitions (state changes). For each process, one

location must be appointed as the initial state. It is possible

to make a transition dependent on a guard (logical

expression formed from variables). A transition can also

perform an action during the state change (that e.g. modi-

fies the value of variables); this is called an update. Two

additional elements can be defined for a transition:

Fig. 2 Process of FMBRSE

methodology
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selection and synchronization. The selection non-deter-

ministically binds a given variable to a value in a prede-

fined range. The synchronization implements the

interaction between processes in UPPAAL. There are two

types of synchronization: single-channel synchronization

and broadcast synchronization. Both need a declared

channel through which the processes can interact with each

other. When two processes synchronize on a single chan-

nel, both transitions connected by the channel fire together;

i.e., the current location of both processes changes simul-

taneously. Broadcast channels allow one-to many syn-

chronization; i.e., the sender can synchronize with several

receivers at the same time.

The timing aspect of timed automata can be modeled by

means of so-called clock variables. A clock variable rep-

resents an abstract clock with a continuously increasing

value. Clocks cannot be stopped, and their value cannot be

read, but they can be reset. In summary:

• The value of clock variables increases monotonically

unless we explicitly reset them.

• Their value can be used in logical expressions, i.e., the

guards of transitions and the invariants of locations.

• Any amount of time (but only finite) or even zero time

can be spent in one state. (Invariants and special

locations: committed and urgent locations can modify

this behavior.)

In addition to modeling (and simulation), UPPAAL also

includes offers the ability to verify model verifications. The

built-in model checking engine evaluates the requirements

given as temporal logic expressions over the state space,

and reports whether or not they are fulfilled. We can

Fig. 3 Model checking (based on [54])
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formalize all our system-related requirements and examine

their fulfillment. As a formalism of the requirements,

UPPAAL uses a subset of CTL temporal logic language for

the requirements. With the help of the CTL, we can

examine changes in certain conditions over time. The

structure of each CTL expression in UPPAAL is as follows:

‘‘temporal operator’’ and ‘‘logical expression’’. Logical

expressions can contain e.g. conditions for variables and

clocks variables, combined with comparison and logical

operators, e.g. q[0 and expressions related to states, e.g.

‘‘p1.working’’. The temporal CTL operator can be one of

the following in UPPAAL (p and q are atomic statements)

[57]:

• Ahp: property p is satisfied on every path in every state

(invariantly),

• Aep: property p is satisfied on every path in some state

of the path (eventually),

• Ehp: there exists a path whose every state satisfies the

property p (potentially always),

• Eep: there exists a path whose some state satisfies the

property p (possibly),

• p[q: whenever p holds eventually q will hold as well

(leads to). The leads to property p[q can also be

expressed as Ah (p ) Ae q).

After successfully performing the model checking pro-

cess (with no requirement violations) described above (see

Fig. 2), railway engineers can pass on verified and high-

quality detailed requirements and functional specifications

to software engineers working at the implementation level.

Nonetheless, as mentioned earlier, the implementation

phase is beyond the scope of the FMBRSE methodology

and is not covered in this paper.

The FMBRSE framework can be used at both the system

and component levels. This article discusses the compo-

nent-level application (see Sects. 4 and 5) using a case

study. Another case study illustration of the system-level

application is described in the paper [58]. However, the

application of FMBRSE at the system level may encounter

a well-known difficulty: state space explosion. The reason

for this is that the state space of system-level models is

much more complex than that of the component-level

models. A potential approach for dealing with this is

compositional verification [59]. This technique is based on

a divide-and-conquer approach to infer the global proper-

ties of complex systems from the properties of their

components.

An overall characterization of the proposed methodol-

ogy follows. In terms of features, FMBRSE is a plan-dri-

ven/predictive [60] methodology, which means that

planning the future to the reachable goal is as detailed as

possible. It is a hybrid methodology that combines several

existing approaches, the most important of which are the

structured and object-oriented design philosophies [61].

FMBRSE applies relevant results from model-driven

development and function-based development (FBD) [62].

Its design principle is top-down, with hierarchical decom-

position [63] and iterations. The life-cycle ([11] V-model)

coverage by FMBRSE is partial. It only covers the design

phase, namely, from requirements to the detailed design

phase. Overall, FMBRSE integrates widely used existing

techniques and tools to facilitate the work related to system

development performed by railway engineers.

Fig. 4 Level crossing protection system for trams
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By constructing FMBRSE, our purpose was to fill the

gaps that characterize this special domain of electronic

urban railway control system design. Therefore, FMBRSE

was developed considering the characteristics and spe-

cialties of this domain, and enables fast, simple, cost-effi-

cient modeling and verification process in this field. We

achieved this by selecting and matching widely known

methods from systems engineering, so their application

does not require extra work from railway engineers.

We expect that the application of FMBRSE will result in

closer collaboration between the end-user/operator and the

manufacturer, and will allow for a more even distribution

of development costs from the design phases throughout

the life cycle of the system (see Fig. 22). In this method-

ology, we have integrated techniques that ensure an effi-

cient set of specification tools with minimal effort

compared with current solutions, and as a result, the

functional requirements specification is significantly

improved in terms of quality (completeness, correctness,

consistency, controllability).

4 Case Study

The safety of level crossings is of paramount importance to

tram operators in Hungary. Accidents are typically pre-

vented with two solutions: traffic control equipment (in the

case of complex intersections) and tram-road level crossing

(TRLC) protection systems (in the case of simple inter-

sections). The advantage of the latter solution lies in its

cost-effectiveness. To ensure the safety of TRLC systems,

the Hungarian operator BKV has developed a requirements

booklet [64]. This booklet has been the basis for the

development of electronic TRLC systems since 2014.

Figure 4 shows an example of an application of the TRLC

system for a simple single-track site. This system consists

of two tram detection points (D1 and D2). The function of

these points is to detect tram presence within the scope of

the system. Road traffic is controlled by road signals (R1

Fig. 5 Interfaces of the detection point

Table 1 Interface specification

of the detection point
Identifier Type Codomain Initial value Brief description

Fault Input [non-faulty | faulty] Faulty Fault input

/Fault Input [non-faulty | faulty] Faulty Negated Fault input

Presence Input [free | occupied] Occupied Presence input

/Presence Input [free | occupied] Occupied Negated Presence input

Globals Input – – See Table 2

Parameters Input – – See Table 3

Failure Output [non-faulty | faulty] Faulty Failure output

Occupancy Output [free | occupied] Occupied Occupancy output

Table 2 Specification of global constants

Identifier Value Brief description

CInt8Max 255 Maximum value for 8-bit integer type
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and R2), and tram traffic by indicator (I1). The elements of

the system are held together by the control cabinet

(CC). We chose this system partially because it is relevant

to safety, it has a simple architecture and a small number of

elements, thus it fits the scope limitations of this article. At

the same time, it is suitable for presenting all essential

features of our methodology.

In the initial state of the system (no tram in the scope of

the system), road signals show flashing yellow, and the

indicator is blank. When a tram arrives at detection point

D1, the road signals change to continuous yellow. This

state lasts for a well-defined, short period (from 4 to 10

seconds) of time. After that, the road signals change to a

red aspect, and road traffic must stop. Then the yellow

aspect appears on the indicator. To the tram driver, this

means that road traffic has been stopped successfully. Thus,

the tram can cross the intersection at the maximum speed

allowed by national rules. When the tram has left the

system at detection point D2, the equipment goes to the

initial state.

In terms of functionality, a detailed design (see Sect.

4.1) and formal modeling (see Sect. 5) of an abstract

component will be presented in the following sections. We

selected the detection point for these purposes because

vehicle detection is one of the foundations of system

safety.

4.1 Specifications of Detection Point

The purpose of the detection point is to detect a tram

vehicle within its scope. Based on [61], the functionality of

the detection point is described in simple terms: if the tram

is over the detection point, it is ‘‘occupied’’, and when the

tram is not over the detection point, it is ‘‘free’’. Railway

engineers can significantly supplement this behavior during

the functional specification based on the experiences

gained so far and domain-specific knowledge. This process

should be complemented by the several interactions with

end-users (operators) and designers during the develop-

ment process. In this paper, we do not present the mindset

described in Sect. 1.1 in detail. We give only those results

that we have reached at the end of the reconciliation

process.

The interface specification of the detection point (DP) is

given in Fig. 5 and Table 1. The DP has four functional

inputs and two outputs. The DP receives these digital

inputs from the input-output (IO) management module in

the safety-critical embedded software after these physical

input signals have passed—among other activities—on the

Table 3 Configuration elements of the detection point

Identifier Codomain Brief description

Min. Max. Unit

PTopn 0 5,000 [ms] Maximum time allowed for antagonism between Presence inputs

PTomin 0 10,000 [ms] Minimum time of train presence within the scope of the sensor. It is certainly

impossible that a train stays within the scope of the detection point for a shorter time

than Tomin.

PTomax 500 20,000 [ms] Maximum time of train presence within the scope of the detection point. It is certainly

impossible that a train stays within the scope of the detector for a longer time than

Tomax.

PTomaxE false true – Presence of upper limit Tomax. When PTomaxE is false, it is allowed that one train

could stay above the detection point for an ‘‘infinite time’’.

PTr 100 10,000 [ms] Release preparation time. The purpose of this time is to await release in a state faulty. In

other words, the detection point shall be waiting in a faulty state next to correct

inputs, i.e. next to a state non-faulty of Fault inputs and a free state of Presence

inputs. The detection point can only be released (i.e. can be entered into a free state)

when this time has elapsed.

Table 4 Specification of timers

Identifier Codomain Brief description

Min. Max. Unit

Topn 0 25,500 [ms] The time of the antagonism between the presence inputs

of the detection point

To 0 25,500 [ms] Occupancy time of detection point

Tr 0 25,500 [ms] Release time of detection point
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input-filtering. The DP component is also connected to

further modules through which it accesses global variables

(see Table 2, Globals) and parameters (see Table 3,

Parameters). These relationships are only given in a

simplified way in this specification. The DP object sets the

Failure and Occupancy outputs after processing the inputs.

The outputs of DP are used by other modules for their

operation. We note that we also neglected some outputs of

Fig. 6 Internal structure of the detection point

Table 5 Internal interface

specification of the detection

point

Identifier Type Codomain Initial value Brief description

CFault In//Output [false | true] True Configuration fault

AFault In//Output [false | true] True Antagonism between presence inputs

PFault In//Output [false | true] True Presence time fault

RPermit In//Output [false | true] False Release permission

OFailure In//Output [non-faulty | faulty] Faulty Internal failure state

OOccupancy In//Output [free | occupied] Occupied Internal occupancy state
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the DP component. For example, the diagnostics output

that helps log the states of each object in this software

system.

Table 1 lists the specification of each interface of the

DP, with their ID, type of interface, codomain, initial state,

and brief description. From the viewpoint of functionality,

we assumed based on our practical experiences that in

addition to the Presence input, there could exist a negated

Presence, Fault, and even a negated Fault input.

In a certain configuration of the detection point, the

occupancy time (To, see Table 4) has no upper limit

(PTomaxE, To with ‘‘infinite time’’, see Table 3). How-

ever, timers in real systems are always finite. In this case,

the situation when the To timer reaches its practical max-

imum, it must be handled properly. This maximum value

depends on implementation details, such as the platform

that runs the software realizing the functionality. In our

case study, we assumed that an 8-bit microcontroller and

8-bit unsigned integer variables reused, so the maximum

value is 255 (CInt8Max, see Table 2). This choice was also

motivated by the fact that a microcontroller with larger bit-

width would significantly increase the state space of the

system model. We assume that if the correctness of the

functionality is verified under such conditions (see Sect. 6),

then by inductive reasoning the verified properties will

hold even for a larger microcontroller. Other than this, the

functionality is independent of the implementation.

Table 3 contains the configuration elements (parame-

ters) relevant to DP functionality. Closely related to these

are the timings defined in Table 4. Both tables are similar

in structure, containing the identifier, codomain, and a brief

description of the parameters and timers. In terms of

Table 6 System definitions in Yakindu
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timings and parameters, the following relationships exist:

Topn with PTopn, To with PTomin, PTomax, PTomaxE,

and Tr with PTr. Our goal was to design and verify the

functionality of an abstract object, so we did not deal with

configuration elements such as the identifier of inputs, the

identifier of instances of DP (i.e., with instantiation of DP),

etc. Accordingly, these are not shown in Table 3.

The interface specification shown in Fig. 5 can be fur-

ther detailed in terms of functionality. The following

functions can be defined for DP: (1) compliance checking

with the configuration rules, (2) antagonism checking

between presence and negated presence inputs, (3) han-

dling of presence, (4) handling of faults, (5) handling of

release, and (6) setting of outputs of component. Based on

(1)–(6), the hierarchical decomposition of the DP compo-

nent is shown in Fig. 6. The internal interfaces defined for

decomposition are described in Table 5.

4.2 Implementation Behavior of Detection Point

Using Yakindu

The behavior of the detection point was described as UML

statechart in Yakindu (version 3.5.9). We chose a cycle-

based execution scheme; i.e., the run-to-completion step is

executed periodically at regular time intervals [65]. The

definition section implemented in Yakindu is shown in

Table 6. This was accomplished based on the specifications

described in Sect. 4.1. The clear and simple transformation

can be easily traced between Tables 1, 2, 3, 4, 5 and 6. The

functions (1) to (6) given in Sect. 4.1 were implemented as

state machines (see Figs. 7, 8, 9, 10, 11 and 12).

It is the responsibility of the designer to specify the

system parameters for a specific application. Design

instructions and application conditions are usually pro-

vided in the design manual of the system in question.

However, it must be taken into account that the designer

may make mistakes in their work. Therefore, the correct-

ness of the designed parameters must be checked according

to the rules specified in the design manual. There are

several options for this. When we developed this case

study, we decided that this function would be part of the

task as well. The configuration rules related to DP can be

read well from Fig. 7 (see guards). The operation of the

‘‘paramcheck’’ state machine is trivial: when there is a

configuration failure in the system, it remains in the con-

fig_failure state. If a configuration fault occurs during

system operation (e.g., the ‘‘parameter store’’ is damaged),

the state machine will transit to the config_failure state

from the config_ok state. The ‘‘paramcheck’’ state machine

gives failure at its output when it is in the config_failure

state (CFault is true) and gives non-failure when it is in the

config_ok state (CFault is false).

The presence antagonism checking function (‘‘antago-

nismcheck’’, see Fig. 8) checks that the presence

(in_presence_p) and negated presence (in_presence_n)

inputs are not in contradiction (non_antagonism state). In

the non_antagonism state, the Topn timer does not run, and

the AFault output of this function is false (i.e., there is no

antagonism between presence inputs of DP). If the DP

detects a discrepancy between the presence inputs, it enters

the state antagonism. In the antagonism state the Topn

timer runs. If the antagonism disappears, the state machine

returns to the non_antagonism state and resets the Topn

timer. If timer Topn is less than or equal to PTopn, there

will be no antagonism failure at output AFault (AFault is

false). If timer Topn is greater than PTopn and less than

CInt8Max, there will be antagonism failure at output

AFault (AFault is true). If timer Topn reaches value

CInt8Max, it will still be a true value at output AFault.

Until Topn reaches CInt8Max, the DP component would be

able to provide accurate information to the diagnostics

about how long the antagonism fault has occurred.

The ‘‘presencehandling’’ state machine (see Fig. 9) con-

sists of two main states: free and occupied. The system can

be entered into the free state if it detects free on both pres-

ence inputs. Depending on the type of occupancy from

which the DP enters the free state, it can set a failure at its

output (PFault is true or false). If the DP detects a presence

Fig. 7 Checking configuration (1)
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on any of its presence inputs, it enters an occupied state.

When DP is in an occupied state, the To timer is running. In

the occupied state, the DP is in one of the six states shown in

Fig. 8, depending on the configuration and the timer To.

The short_occupancy state means that the detection

point was occupied for such a short time, that it is physi-

cally impossible to be caused by a tram in practice. For the

DP, this means that the value of the To timer was less than

the PTomin parameter for the duration while both presence

inputs were in the free state (with PFault true).

If the presence time To has an upper bound (PTomaxE is

true), then the state machine can also enter to state over-

flowed_PTomax. The PTomax value means that the

detection point was occupied for an incredibly long time.

Such a long occupancy by a tram cannot occur in practice.

For the DP this means that the value of the To timer was

more than the PTomax parameter for the duration while

both presence inputs were in the free state (with PFault

true). Until the moment when To reaches CInt8Max

(PTomaxE is true), the DP component would be able to

provide accurate information to the diagnostics about how

long the presence has occurred (see state await-

ing_free_with_fault / overflowed_CInt8Max).

In practice, there may also be a case where it is not

necessary to define an upper bound for the time To. In

these cases, if DP detects tram presence, it uses the states

awaiting_free_without_fault/non_overflowed_CInt8Max

and awaiting_free_without_fault/overflowed_CInt8Max.

Finally, if the DP has correctly detected the occupancy

according to the configuration (PTomaxE can be also true

or false), the tram presence will remain in the state

non_overflowed_PTomax. The DP can enter from this state

to the free state without failure (i.e., with false PFault).

Function handling of faults (‘‘faulthandling’’) collects

the outputs of the state machines ‘‘paramcheck’’, ‘‘antag-

onismcheck’’, and ‘‘presencehandling’’ (see Fig. 10). In

addition to the former, it also handles fault and negated

fault inputs of DP. If there is any error in the system, this

Fig. 8 Checking presence antagonism (2)
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state machine enters state faulty and gives a failure at its

output (OFailure is true). If there is no fault in the system,

‘‘faulthandling’’ is in the state non_faulty and does not give

a failure at its output (OFailure is false).

The state machine ‘‘releasepermission’’ (see Fig. 11)

blocks the DP so that it cannot be released immediately

after a failure. The condition for release is that the DP must

be neither faulty nor in occupied states for a specified

period of time (PTr). The release time is measured by the

timer Tr. The state machine ‘‘releasepermission’’ uses

outputs of the ‘‘presencehandling’’ (OOccupancy) and

‘‘faulthandling’’ (OFailure). Based on these inputs, deter-

mine its own output (RPermit) as a function of time Tr.

The outputs (out_failure and out_occupancy) of the DP

component are set by the ‘‘outputsetting’’ state machine

(see Fig. 12). For this operation, ‘‘outputsetting’’ uses

outputs of the ‘‘presencehandling’’ (OOccupancy), ‘‘fault-

handling’’ (OFailure), and‘‘releasepermission’’ (RPermit).

The output of DP can be a failure together with occupancy

(failure_occupied) and non_failure together with free or

occupied.

In this section, we have demonstrated steps 1-3 of the

methodology described in Sect. 3. The Yakindu tool did

not give any syntax errors to the described model above.

The semantics of the model was verified by simulation.

However, in this way, we could not be fully convinced of

the correctness of the functionality of this model, as only a

few use cases were available to us. Therefore, we decided

to create this case study also with formal modeling to make

model checking.

5 Results

Starting from the statecharts described in Sect. 4.2, we

created the formal model of the detection point as UPPAAL

process templates (finite automata). In this section, we

present this constructed UPPAAL model. The prepared for-

mal model is one of the inputs to the model checking, as

discussed in Sect. 3. We used UPPAAL academic version

4.2.24.

5.1 Declarations in UPPAAL

The declarations part of the process templates in UPPAAL

(see Table 7) was generated from the system definition part

of Yakindu (see Table 6). This transformation is clear and

well traceable based on Tables 6 and 7.

Fig. 9 Handling of presence (3)
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For the model checking to be performed, it is not enough

to only transform the state machines defined in Yakindu.

For example, it must be ensured that the time handling

specified in the Yakindu definitions (see Table 6, first row)

will also be implemented in some form in UPPAAL. The

variables required for time handling in UPPAAL are listed in

Table 7, ‘‘Channels and variables for simulation’’. A pos-

sible implementation of time handling is discussed in Sect.

5.4.1. In addition, it is necessary to ensure in UPPAAL that

each automaton is executed in the correct order. The dec-

larations required for this are given in Table 7, ‘‘Run

control, permissions within a tick’’. A possible imple-

mentation of run sequences is discussed in Sect. 5.4.2. The

above two additions are needed in the declarations section

of the UPPAAL model compared with Yakindu.

5.2 System Declarations in UPPAAL

For the syntactical correctness of the UPPAAL model, the

system declaration part must be specified correctly. The

transformation of each Yakindu state machine to its equiv-

alent UPPAAL process template can be easily traced based on

their names. These automata are ‘‘paramcheck’’, ‘‘antago-

nismcheck’’, ‘‘presencehandling’’, ‘‘faulthandling’’, ‘‘re-

leasepermission’’, and ‘‘outputsetting’’. Three additional

automata (‘‘tick’’, ‘‘runcontrol’’, ‘‘inputgenerator’’) were

needed tomake theUPPAALmodel suitable for simulation and

verification. In the following sections, we first introduce the

automata directly transformed from the state machines and

then the additional automata.

Based on the parameters and global constants of the

Yakindu state machines (see Sect. 4.2), we can also specify

these parameters for each automaton in the systemFig. 10 Handling of faults (4)

Fig. 11 Release permission (5)
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declaration part of the UPPAAL model. The parameter list

for each UPPAAL automaton is shown in Table 8.

5.3 Constructed Automata in UPPAAL

The configuration checking function implemented in

UPPAAL is shown in Fig. 13. This automaton is constructed

based on the state machine shown in Fig. 7. Its parameters

and declarations sections are described in Table 9. In both

implementations, the number and name of the states and

the number of transitions are the same. There are only a

few differences in notation. The settings of outputs by the

state machine became in the ‘‘update’’ section of the state

transitions of the automaton.

The only thing that was not directly included in the

Yakindu model is the channel (ALLOWEDRUN) defined

for all edges of the automata. Through this channel, this

automaton is authorized to perform its functions in each

cycle. Related to this, the conditions of the guards at the

edges also had to be supplemented with the variable

PERMISSION. This mechanism is the same for the UPPAAL

automata described in below, so this is no longer discussed

separately.

The presence antagonism checking function imple-

mented in UPPAAL is shown in Fig. 14. This automaton is

constructed based on the state machine shown in Fig. 8. Its

parameters and declarations sections are described in

Table 10. The variables, parameters, and constants have

identical names in both the Yakindu and UPPAAL models, so

the transformation can be easily traced.

The composite states help engineers to create a merged,

simple, and effective representation of behavior. The

‘‘antagonism’’ state of the ‘‘antagonismcheck’’ state

machine is a composite state. There are three additional

states in this composite state. The contents of the com-

posite state cannot be transformed directly into UPPAAL

because, for the conversion, the composite state must be

unfolded. This means displaying the edges that were hid-

den by the merging. Similar cases can be also found in the

‘‘presencehandling’’ and ‘‘outputsetting’’ state machines

(see Fig. 9 and 12).

The presence handling function implemented in UPPAAL

is shown in Fig. 15. This automaton is constructed based on

the state machine shown in Fig. 9. Its parameters and

declarations sections are described in Table 11. The vari-

ables, parameters, and constants have identical names in

both Yakindu and UPPAAL, so the transformation can be

easily traced.

Fig. 15 shows an illustrative example of the process

described in Sect. 5.4 for unfolding the composite states in

Fig. 9.

The fault handling function implemented in UPPAAL is

shown in Fig. 16. This automaton is constructed based on

the state machine shown in Fig. 10. Its parameters and

declarations sections are empty.

The release permission function implemented in UPPAAL

is shown in Fig. 17. This automaton is constructed based on

the state machine shown in Fig. 11. Its parameters and

declarations sections are described in Table 12.

The outputs handling function implemented in UPPAAL is

shown in Fig. 17. This automaton is constructed based on

the state machine shown in Fig. 12. Its parameters and

declarations sections are empty.

Fig. 12 Handling of outputs (6)
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5.4 Additional Automata for Simulation and Model

Checking

Related to the automata given in Sect. 5.3, we already

mentioned that the UPPAAL process templates obtained from

the corresponding Yakindu state machines are insufficient

for simulation and model checking. The specifics of the

run-time environment must also be included in the formal

model. In this section, we suggest one possible solution for

this issue, but it is not an exclusive solution: other (po-

tentially more efficient) solutions may exist as well.

Three additions are needed to make the UPPAAL model of

the detection point suitable for simulation and model

checking: time handling (A), execution control (B), and an

input function (C) for the component (Fig. 18).

5.4.1 Handling of Time

The time handling implemented in UPPAAL is shown in

Fig. 19. The parameters and declarations sections of this

automaton are described in Table 13.

The ‘‘tick’’ automaton consists of two states. The ‘‘start’’

state is a committed state, so there is no time delay in this

state. In the ‘‘run’’ state the component performs the

described functionality. When this automaton switches

from the ‘‘start’’ to the ‘‘run’’ state, a new cycle begins

(CYCLE!). A cycle lasts 1 time unit (which is equivalent to

100 ms in the modeled system). The cycle length is rep-

resented by the invariant t\=1 of the ‘‘run’’ state. When the

component has finished running, the automaton returns

from the ‘‘run’’ to the ‘‘start’’ state. The ‘‘tick’’ and ‘‘run-

control’’ (see Sect. 5.4.2) automata are closely related to

each other in terms of control. The ‘‘tick’’ automaton gives

Table 7 Declarations in UPPAAL
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run permission to the ‘‘runcontrol’’ using channel CYCLE.

The ‘‘runcontrol’’ automaton notifies the ‘‘tick’’ automaton

when it has finished running using the variable ISRUN. If

the cycle ends, the clock variable t will reset, and the

variable ISRUN will return to false.

5.4.2 Execution Control

The execution control function is shown in Fig. 20. The

parameters and declarations sections of this automaton are

empty.

The ‘‘runcontrol’’ automaton is responsible for execut-

ing the functions of the component in the correct sequence.

Table 8 System declarations in UPPAAL

Fig. 13 Automaton for checking parameters

Table 9 Parameters and declarations of automaton ‘‘paramcheck’’
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Each of the automata belonging to the detection point

functions has a unique identifier (PERMISSION) from2 to 6.

The automaton with identifier 1 is ‘‘inputgenerator’’ (see

Sect. 5.4.3). Thus, the order of execution is as follows: ‘‘in-

putgenerator’’, ‘‘paramcheck’’, ‘‘antagonismcheck’’,‘‘pres-

encehandling’’, ‘‘faulthandling’’, ‘‘releasepermission’’,

‘‘outputsetting’’. Each automaton receives its run permission

via the broadcast channel ALLOWEDRUN, and they use the

variable PERMISSION to determine whether it is their turn.

Note that UPPAAL ensures that each automaton is exe-

cuted in the fixed order specified behind the ‘‘system’’

keyword in the system declarations section (see Sect. 5.2,

Table 8.). However, we do not exploit this feature,

assuming that a component might call a function multiple

times within the same cycle.

5.4.3 Input Function

One possible input function of the detection point imple-

mented in UPPAAL is shown in Fig. 21. The parameters and

declarations sections of this automaton are described in

Table 14.

Depending on our modeling purposes, we may or may

not need an input function to examine each component.

This function can be specified in several forms. In our case

study, we constructed an input function for the presence

and fault inputs of the DP component that covers all pos-

sible input combinations. The created function is shown in

Table 14. Note that the version of UPPAAL that is used is not

capable of handling the ‘‘switch case’’.

Each cycle begins with the DP object reading its inputs.

The input to be read is always randomly selected (see

Fig. 21, inp:int[0,15]) from the set of specified input

combinations. After that, each automaton runs based on a

given sequence (see Sect. 5.4.2). The automata perform

their task depending on the detected inputs, current state,

parameters, and timers.

6 Discussion

In Sect. 3, we gave an overview of the principles of the

FMBRSE methodology, which supports railway engineers

in the application of formal specification and verification

during the development of a safety-critical system. The

design and specification steps for the proposed methodol-

ogy were illustrated with the help of a case study in Sects. 4

and 5.

As a result, the FMBRSE approach leads to a significant

improvement in quality and distributes the development

Fig. 14 Automaton for checking presence antagonism

Table 10 Parameters and declarations of automaton ‘‘antagonismcheck’’
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costs more evenly among the related life-cycle phases. An

example of the impact of the application of the FMBRSE in

practice is shown in Fig. 22. The diagram on the left (see

Fig. 22a) shows the conventional development of the

functional specification of a component, and the diagram

on the right (see Fig. 22b) shows the same process within

the FMBRSE framework. In Fig. 22, three levels of

abstraction were distinguished:

HIGH: means the level of operator/end-user,

MIDDLE: means the level of railway engineer, and

LOW: means the level of software engineers.

Figure 22a and b both illustrate the number of iterations

(vertical axis) required to complete the functional specifi-

cation of a component.

Based on Fig. 22, the following conclusions can be

drawn: In traditional development, users are typically not

very involved in the process. They formally communicate

their requirements in some textual form (e.g., using

requirements booklets). (In this section we use the terms

‘‘formal’’ and ‘‘informal’’ in the ‘‘procedural’’ sense, and

Fig. 15 Automaton for handling of presence

Table 11 Parameters and declarations of automaton ‘‘presencehandling’’
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do not refer to the mathematical rigor, as was done pre-

viously.) They are unwilling to formally modify these

requirements during the development due to its lengthy

approval process and costs (in Hungary). This is the reason

why Fig. 22a shows only one iteration at the level HIGH.

However, the users are often informally helping to clarify

the issues related to the set of requirements during the

development, even more so with the application of the

proposed methodology. Therefore, users became much

more involved in the development with FMBRSE than in

the traditional case. Because of the increased participation

of users, railway engineers were able to create a functional

specification of much better quality in fewer iterations. For

this reason, the number of detailed design steps for soft-

ware engineers was also significantly reduced. Altogether,

a more ideal process was created in the design phase of the

development with the proposed methodology through the

equalization of costs and resources, and a better distribu-

tion of the work performed during the individual activities,

compared with the current practice.

The expected result of the methodology is a formally

verified and validated functional model of a component.

The verification step related to the case study described in

Sects. 4 and 4 is presented in this section using the built-in

model checking functionality of the UPPAAL tool.

We used a computer that has an Intel� CoreTM i5-7200U

CPU and 8 GB memory. The setting of UPPAAL during theFig. 16 Automaton for handling of faults

Fig. 17 Automaton for release

permission

Table 12 Parameters and declarations of automaton ‘‘releasepermission’’
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model checking was as follows: breadth-first search order,

conservative state space reduction, difference bound

matrices (DBM) state space representation, no diagnostic

trace, automatic extrapolation, 16 MB hash table size.

The subject of the model checking was the formal model

described in Sect. 4, and the requirements were given by

railway engineers in the form of natural language

descriptions. These requirements were converted into

branching temporal logic (CTL) formulas. Examples of

some of the requirements verified (the natural language

form on the left, and the converted CTL formulas on the

right) are shown in Table 15. These can basically be

divided into three groups: model validation (e.g., row 1),

state availability (e.g., rows from 2 to 8), and functional

requirements described by railway engineers (e.g., rows 9

and 10).

Note that the requirements given by domain engineers in

most cases cannot be directly converted into a CTL for-

mula. This transformation consisted of two steps. As a first

step, we rewrote the requirements into an intermediate

domain-specific (restricted) language (currently under

development). In the second step, the requirements given in

the intermediate language were converted into CTL

Fig. 18 Automaton for handling of outputs

Fig. 19 Automaton for handling of time

Table 13 Parameters and declarations of automaton ‘‘tick’’
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formulas. We found that expressions written in this inter-

mediate domain-specific language are still easy to under-

stand, but allow simple conversion to CTL formulas.

In our experience, handling requirements in this way

required numerous interactions with field engineers. This

process is the most resource-intensive part of the proposed

FMBRSE methodology, but it is worth the effort, since the

safety of the system is also most heavily dependent on this

activity.

The results of the model checking related to the case

study can be found in Table 17. These results were

obtained for the configuration given in Table 16. Note that

in addition to the examples given in Table 15, 50 more

requirements (not included here) were also subject to

model checking. These requirements were verified in 90

different configurations. We found that the requirements

related to availability are configuration-dependent, while

functional requirements are configuration-independent.

Rows 7 and 8 of Table 17 also show two examples of

requirements related to state availability not being satisfied.

Fig. 20 Automaton for execution control

Fig. 21 Automaton for input handling

Table 14 Parameters and declarations of automaton ‘‘inputgenerator’’
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In fact, this result is expected next to the given configu-

ration in Table 16.

With model checking of the DP component, we per-

formed each step of the proposed FMBRSE methodology

described in Sect. 3. Note that railway engineers experi-

enced difficulties in evaluating the results of requirement

violations. When UPPAAL provided a counterexample, it

proved almost impossible for them to decipher where the

error causing the requirement violation was. This issue

could be solved by developing a backward mapping/an-

notating method to show the counterexample in the high-

level model.

7 Conclusion

In this paper, we presented a formal model-based

methodology that facilitates the construction of correct,

complete, consistent, and verifiable functional specifica-

tions during the development of electronic urban railway

control system. The process we propose provides a speci-

fication-verification environment for railway engineers.

Using this framework they can achieve a higher-quality

functional specification compared with traditional devel-

opment. The most significant advantage of the described

approach is that it hides the formal methods-related details

from the railway engineers, so they can acquire a formal

verification result without learning the necessary mathe-

matical background. We demonstrated the use of the

Fig. 22 The impact of the use of FMBRSE in practice in an example of the DP (see Sect. 4)

Table 15 Some examples for verification of requirements of detection point in UPPAAL

ID Requirement (natural language) CTL formula

1 Exemption from deadlocks. A h not deadlock

2 Availability of the states of automata ‘‘presencehandling’’. ‘‘There is a least

one route in which a given state is available.’’

E e presencehandling.free

3 E e presencehandling.occ_wfault_short_occupancy

4 E e

presencehandling.occ_wofault_non_overflowed_PTomax

5 E e presencehandling.occ_wfault_overflowed_PTomax

6 E e presencehandling.occ_wfault_overflowed_CInt8Max

7 E e

presencehandling.occ_wofault_non_overflowed_CInt8Max

8 E e presencehandling.occ_wofault_overflowed_CInt8Max

9 If the detection point detects a tram presence on one of its presence inputs,

it leads to its occupancy output must become occupied.

(in_presence_p == true || in_presence_n == true)

[out_occupancy == true

10 If the detection point detects a fault on one of its fault inputs, it leads to its

occupancy output must become occupied, and failure output must

become faulty.

(in_fault_p || in_fault_n) [out_failure == true &&

out_occupancy == true

Table 16 Example of one configuration setting for model checking

Configuration element Specified value

PTopn 10

PTomin 20

PTomax 50

PTomaxE True

PTr 10
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framework through a case study related to a tram-road-

level crossing protection system.

We worked together with railway engineers during the

development of the case study. We concluded that a small

subset of UML enables a fast and efficient design and

verification process already in the early stages of the life

cycle, thus reducing development costs (with the help of

models and verification a significant number of errors are

revealed already in the early stages of the life cycle).

During the transformation of the Yankidu model to an

UPPAAL model, we found that a part of the proposed

specification-verification environment can be transformed

automatically. We are currently working on the formal

definition of these transformation steps.

We found that the main difficulty for railway engineers

is preparing the requirement specification. The problem is

that they do not (want to) deal with the formalization of the

requirements during the preparation of specifications. To

solve this issue, we began to develop an intermediate

domain-specific restricted textual language for the railway

field.

In summary, the proposed methodology proved its

suitability for the design of electronic urban railway control

systems. Using formal models and model checking, a high-

quality functional specification can be achieved, written by

railway engineers at the system development level. Finally,

the approach described in this paper is theoretically not a

new methodology; instead it uses widely applied and well-

proven techniques, but an expedient integration of existing

methodologies, which thus means that a new contribution

is the appropriate integration of existing methodologies,

tailored to the domain of electronic urban railway control

systems development. Therefore, the main contribution of

our work is that we choose from the many existing plan-

ning and verification methods a combination that is com-

patible with the characteristics of this domain. Its novel

elements include (1) the selection and integration of the

appropriate high-level semi-formal and low-level formal

description forms and tools into a toolchain that fits the

railway field, (2) the transformation from the semi-formal

to formal models as illustrated by the case study, and (3)

taking the specifics of the railway engineering domain and

the best-practice systems engineering into account during

the creation of the proposed methodology.
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Table 17 The result of the

model checking with the

specified configuration in

Table 15

ID Result of model checking Elapsed time [s] Resident/Virtual memory usage [KB]

1 Property is satisfied 45.29 417,968/845,588

2 Property is satisfied 0.91 417,968/845,588

3 Property is satisfied 0.001 11,414/33,668

4 Property is satisfied 0.351 15,800/39,968

5 Property is satisfied 1.426 34,876/68,544

6 Property is satisfied 24.415 417,368/847,920

7 Property is not satisfied 14.7 418,636/850,576

8 Property is not satisfied 14.622 418,636/850,576

9 Property is satisfied 27.199 418,884/851,368

10 Property is satisfied 27.562 420,428/855,380
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