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Abstract—Advanced driver assistance systems and highly auto-
mated driving functions require an enhanced frontal perception
system. The requirements of a frontal environment perception
system cannot be satisfied by either of the existing automotive
sensors. A commonly used sensor cluster for these functions consists
of a mono-vision smart camera and automotive radar. The sensor
fusion is intended to combine the data of these sensors to perform a
robust environment perception. Multi-object tracking algorithms
have a suitable software architecture for sensor data fusion. Sev-
eral multi-object tracking algorithms, such as JPDAF or MHT,
have good tracking performance; however, the computational re-
quirements of these algorithms are significant according to their
combinatorial complexity. The GM-PHD filter is a straightforward
algorithm with favorable runtime characteristics that can track
an unknown and time-varying number of objects. However, the
conventional GM-PHD filter has a poor performance in object
cardinality estimation. This paper proposes a method that extends
the GM-PHD filter with an object birth model that relies on the
sensor detections and a robust object extraction module, including
Bayesian estimation of objects’ existence probability to compensate
for drawbacks of the conventional algorithm.

Index Terms—Advanced driver assistance, Gaussian mixture
model, multi-object tracking, object detection, PHD filter, radar
detection, sensor fusion, smart cameras.

I. INTRODUCTION

THE need for autonomous vehicles results in a gradual
increase in the number of automated functions [1]–[3]. The

role of the environment perception becomes more significant
with the higher automation level of vehicles. Most advanced
driver assistance functions, such as Autonomous Emergency
Braking (AEB) or Adaptive Cruise Control (ACC), rely on an
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enhanced frontal perception system [4], [5], hereinafter referred
to as EFPS. The EFPS consists of three main modules: lane
detection, object detection, and multi-object tracking subsys-
tems. Object detection and tracking have several difficulties: the
number of objects within the surveillance area is time-varying
and unknown, missed detections, and false alarms may occur due
to sensor uncertainty. Furthermore, the sensors cannot observe
all the relevant state variables of the true objects, and the mea-
surements are noisy. This paper focuses on multi-object tracking
that aims to accurately estimate the cardinality and the state
of present objects in front of the ego vehicle. However, none
of the available sensors can satisfy alone the requirements of
the EFPS. For example, radars can measure the spatial distance
of the targets precisely, but they have a poor performance in
azimuth estimation. Meanwhile, mono-vision cameras have a
good lateral position resolution but inaccurately estimate the
objects’ longitudinal distances. Thus, sensor data fusion is
needed to obtain a robust and precise representation of the
environment [6]–[8].

A. Related Work

Multi-object tracking algorithms have a suitable architecture
for sensor fusion purposes. The commonly-used Probabilistic
Data Association (PDA) [9] and Joint Probabilistic Data Asso-
ciation (JPDA) [10] multi-object tracking algorithms estimate
the state of a known number of objects, often fusing the data of
multiple sensors [11]–[13]. Since, in real applications, the num-
ber of objects is time-varying and unknown, an estimation of the
object cardinality is needed. The Integrated Probabilistic Data
Association (IPDA) [14] and Joint Integrated Probabilistic Data
Association (JIPDA) [15] filters extend the previous approaches
to estimate the existence probability of the objects as the basis of
object management. However, the performance and runtime of
these algorithms depend highly on the gating size applied around
the objects. In addition, the complexity of JPDA and JIPDA is
combinatorial, which makes real-time applications complicated.
The Multiple Hypothesis Tracker (MHT) [16], [17] considers
the dynamics of data association by propagating it in time. This
multi-object tracking algorithm is also often used as a sensor
fusion module of object perception as in [18], [19]; however,
the computational cost of this approach is more significant com-
pared to IPDA and JIPDA. Random Finite Sets (RFS) provide an
alternative way to model the object list consisting of object states
and possibly labels in an arbitrary order. RFS-based multi-object
tracking can handle object birth and death, clutter measurements,
and missed detections by inserting the multi-object PDF of RFS
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into the recursive Bayesian framework. The implementation
of optimal and exact RFS-based recursive filtering is complex
and not tractable due to multiple set integrals. A suitable al-
ternative approach, the Probability Hypothesis Density (PHD)
filter, propagates and updates the first-order moment of the
RFS [20]. Although the PHD filter does not have a closed-form
solution, the Gaussian Mixture (GM-PHD) [21] and particle [22]
approximations can provide tractable recursions.

The GM-PHD filter is a straightforward algorithm with a low
computational cost that recursively estimates the first-order mo-
ment of the multi-object RFS. However, it requires an additional
module to extract the potential objects from the updated PHD
function consisting of Gaussian components. The GM-PHD
filter provides an estimation of the object cardinality, but this
variable follows a Poisson distribution. Since the standard devi-
ation of a Poisson distribution is proportional to the mean value,
this estimation leads to noisy cardinality estimates in the case
of many targets. Another way for object extraction is to apply a
threshold on the existence probability of Gaussian components
computed by the GM-PHD filter. However, this approach under-
estimates the number of present objects. Numerous papers aim
to overcome the limitations of the PHD filter. An approach is
to introduce state dependent detection probabilities as reported
in [23], [24], [25], [26]. In [27] state-dependent survival prob-
ability is considered in a scenario with low detectability. For
visual based tracking, the GM-PHD filter, proposed in [28], cre-
ates a cost function for object assignment and creates trajectories
using an auction algorithm. A multi-frame scheme is introduced
in [29] to deal with estimates of undetected targets. To preserve
the standard measurement model, a penalization scheme [30]
and a a competitive algorithm [31] is introduced to renormalize
weights along the objects and measurements.

B. Contributions of the Paper

This paper extends the conventional GM-PHD filter with a
robust object extraction module that estimates the existence
probability of the objects in a Bayesian manner. The proposed
method efficiently tackles the missed detections and clutter
measurements. Therefore, it provides a better estimation of
the object cardinality, obtaining a robust object perception for
ADAS and highly automated functions’ EFPS. The object ex-
traction module first performs a data association between the
Gaussian components and the sensor detections by two different
approaches based on the component weights considering them
as association probabilities instead of existence probabilities.
Then, the updated PHD function components and the detections
are clustered by the k-Nearest Neighbor algorithm [32] avoiding
exponential complexity. The elements of a cluster are fused,
relying on the IPDA algorithm. The IPDA weights and the
objects’ PoE (Probability of Existence) are computed by the
updated weights of the Gaussian components. This approach
results in a non-parametric IPDA algorithm in terms of gating
size. Although the Bayesian IPDA algorithm can be derived
based on RFS theory [33]; however, this leads one to the already
mentioned implementation problems. A connection between the
JIPDA tracking algorithm and the GM-PHD filter has been
pointed out in [34], but the object’s existence probability is
not computed based on the Bayesian rule. Furthermore, we

introduce a method for modeling the birth probability of mea-
surements that efficiently identifies new components in the
PHD function. The proposed robust GM-PHD filter significantly
improves the conventional GM-PHD filter, and it achieves the
performance of the state-of-the-art JIPDA algorithm, preserving
the beneficial complexity of the conventional GM-PHD filter.

II. THEORETICAL BACKGROUND

This section briefly summarizes the theoretical background
of the proposed method. The GM-PHD filter is based on finite
set statistics theory (FISST) [35] which provides mathematical
apparatus for computations with random finite sets. After in-
troducing RFS, the section discusses how the PHD workflow
simplifies the filtering of the multi-object PDF and presents a
practical variety, the Gaussian Mixture PHD filter.

A. Random Finite Sets

A random finite set X consists of n random vector variables
X = {x1, . . ., xn}, where the cardinality |X| = n is also a
random variable with �(n) probability mass function. The PDF
of a multi-object RFS is given by

p (X) = n!�(n)pn (x1, . . ., xn) . (1)

The multiplier n! corresponds to the fact that the elements
of an RFS are in arbitrary order, thus the permutation of the
elements results in equivalent RFS. Suppose X = [x1, . . .xn] is
an ordered array, then the connection between two multi-object
PDFs is written as

p (X = [x1, . . ., xn]) =
1
n!
p (X = {x1, . . ., xn}) . (2)

Although the multi-object PDF given in (1) can be inserted into
a recursive Bayes filter, the exact solution has a high computa-
tional cost because of its combinatorial complexity. The PHD
filter provides a good approximation to compute the posterior
RFS in real-time.

B. Gaussian Mixture PHD Filter

The PHD function is the first-order moment of the multi-
object PDF, which is defined as

D(x) =

∫
p (X)

∑
x′∈X

δ (x− x′) δX . (3)

The higher the value of the PHD function, the more likely
the corresponding state represents a real object. The expected
number of objects (cardinality of RFS) over a given region Ω
of the state-space can be computed as the integral of the PHD
function over this region:

E (|X ∩ Ω|) =
∫
Ω

D(x) dx . (4)

In the PHD filter the object model is based on Poisson Point
Process (PPP) in that the cardinality of the RFS follows a Poisson
distribution [36]. Thus, the PDF p(X) of a multi-object RFS and
its PHD (or intensity) function D(x) can be written as

p (X) = e−λ
∏
x∈X

λp(x) (5)



LINDENMAIER et al.: GM-PHD FILTER BASED SENSOR DATA FUSION FOR AUTOMOTIVE FRONTAL PERCEPTION SYSTEM 7217

D(x) = λp(x) , (6)

where p(x) denotes the PDF in the single-object state space and
λ is the Poisson rate of object cardinality that equals the number
of expected objects.

The PHD function can be inserted into the Bayesian frame-
work to obtain an estimation of the multi-object RFS. The
prediction for the PHD function, given the posteriorDk−1|k−1(x)
from timestep k − 1 is performed according to

Dk|k−1(x) = bk|k−1(x)

+ pS(x)

∫
πk|k−1 (x|xk−1)

Dk−1|k−1 (xk−1) dxk−1 . (7)

In equation (7) bk|k−1(x) denotes the birth PHD that corresponds
to the appearing objects while the second part of the equation is
the Chapman-Kolmogorov prediction of the prior, where pS(x)
denotes the survival probability and πk|k−1(xk|xk−1) is the
transition density from timestep k − 1 to k.

The PHD function is updated using the measurement set
Zk = {z1, . . ., zmk

} as

Dk|k(x) = (1 − pd(x))Dk|k−1(x)

+
∑
z∈Zk

pd(x)gk(z|x)Dk|k−1(x)

κ(z) +
∫
pd(x)gk(z|x)Dk|k−1(x) dx

.

(8)

where pd(x) denotes the detection probability of an object with
statex,κ(z) is the clutter density and gk(z|x) is the measurement
likelihood. It should be noted that the measurement set does not
only contain the object originated elements Ok ⊆ Zk but the
Ck ⊆ Zk clutter measurements as well. In equation (8), the first
term corresponds to miss-detected objects, and the second part of
the expression refers to measurement update. This equation does
not have a closed-form solution; the PHD function is usually
approximated by an assumed density.

The GM-PHD filter approximates the PHD function by a
weighted sum of H Gaussian components

D(x) ≈
H∑

h=1

whN
(
x; x̂h, P̂h

)
, (9)

where N (x; x̂h, P̂h) denotes the normal distribution of the
component with mean x̂h and covariance P̂h, while wh is the
weight of the corresponding component.

Given the posterior PHD function Dk−1|k−1(x) in the above
form, the predicted GM-PHD function can be written as

Dk|k−1(x) = DS
k|k−1(x) + bk|k−1(x) , (10)

where DS
k|k−1(x) denotes the predicted PHD of the previous

components representing the surviving objects:

DS
k|k−1(x) =

Hk−1|k−1∑
h=1

wh
k|k−1N

(
x, x̂h

k|k−1, P̂
h
k|k−1

)
, (11)

and bk|k−1(x) is the birth PHD:

bk|k−1(x) =

Hb
k∑

b=1

wb
k|k−1N

(
x, x̂b

k|k−1, P̂
b
k|k−1

)
. (12)

The birth PHD should capture the locations in the state-space
where objects are assumed to appear. The birth model of our
work is detailed in Section III-C.

The prediction of both surviving and birth components can
be separated into two steps. In the first step, the spatial dis-
tribution of the components is predicted based on a Kalman
prediction [37]. In the second step, the weights are scaled by the
survival probability:

wk|k−1(x) = pS(x)wk|k−1(x) . (13)

The number of the predicted components is computed as

Hk|k−1 = Hk−1|k−1 +Hb
k . (14)

Then the updated PHD consists of two parts: the PPP part
representing the miss-detected objects and the multi-Bernoulli
(MB) RFS, which corresponds to the detected objects:

Dk|k(x) = D∅
k|k(x) +DZ

k|k(x) . (15)

The PPP intensity consists of Hk|k−1 components:

D∅
k|k(x)=

Hk|k−1∑
h=1

(1−pd(x))w
h
k|k−1N

(
x; x̂h

k|k−1,P̂
h
k|k−1

)
. (16)

The MB part of the posterior PHD contains mkHk|k−1 compo-
nents capturing all the possible component-measurement pairs:

DZ
k|k(x) =

mk∑
i=1

Hk|k−1∑
h=1

wh,i
k|kN

(
x, x̂h,i

k|k, P̂
h,i
k|k

)
, (17)

where the N (x; x̂h,i
k|k, P̂

h,i
k|k) spatial PDF of the updated com-

ponents is proportional to the product of the N (zik;Hkx,R
i
k)

measurement likelihood and the N (x; x̂h
k|k−1, P̂

h
k|k−1) predicted

PDF. Thus, the posteriori spatial PDF is computed by the Kalman
update [37] based on the Hk measurement model and Ri

k mea-
surement covariance matrix. The weight wh,i

k|k representing the
existence probability of the component is updated as:

w̄h,i
k|k = pd(x)N

(
zik, Hkx

h
k|k−1, S

h
k

)
wh

k|k−1 , (18)

where

wh,i
k|k =

w̄h,i
k|k

κ(zik) +
∑Hk|k−1

h=1 w̄h,i
k|k

, (19)

and Sh
k denotes the innovation covariance of measurement zik

and component state xh
k|k−1.

The most beneficial property of the GM-PHD filter is
that the complexity of the algorithm depends linearly on the
Hk|k−1 number of predicted components. However, the posterior
PHD function consists of Hk|k = Hk|k−1(mk + 1) components
which means that the complexity of the algorithm would diverge.
In practical applications, a mixture reduction is needed to avoid
increasing computational costs.
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The reduction of the number of components is performed by
merging and pruning. A simple manner of mixture reduction is to
keep the first n̂k|k components of the updated PHD function after
sorting thewh

k|k updated weights, where n̂k|k can be computed as

n̂k|k = round

⎛
⎝Hk|k∑

h=1

wh
k|k

⎞
⎠ . (20)

In particle implementations of PHD filter, the resampled parti-
cles can also be given based on n̂k|k by Sequential Monte Carlo
(SMC) simulation as in [22]. However, since the multi-object
RFS is modeled as a PPP, this estimation of the expected number
of objects follows a Poisson distribution. It means that the higher
the number of objects, the more uncertain the cardinality estima-
tion is. A more robust way of object extraction from the updated
PHD is to compare the wh

k|k weights to a defined γ∃ threshold. If
the weight of a component is greater than the threshold, the com-
ponent initiates an object in the multi-object RFS as in [21], [23].

III. METHODOLOGY

This section details the proposed robust GM-PHD filter fusing
heterogeneous data from multiple sensors for EFPS of ADAS
functions. In the evaluation, besides a simulation setup, we
consider real measurement data to investigate our method in
practical applications. The most commonly applied sensor clus-
ter of frontal perception systems consists of a forward-looking
radar and camera [38], [39] The proposed method was evaluated
on a similar sensor cluster with characteristics detailed in Sec-
tion IV-B. The system architecture depicted in Fig. 1 consists
of two main layers and an additional step. The fusion layer is
separated from the sensor layer resulting in a modular fusion
architecture. In the sensor layer, only the acquisition of the sensor
data is performed. The sensor and fusion layers are connected by
the data synchronization that handles asynchronous sensor data
and identifies the processable measurements at a given time.
The fusion layer involves the GM-PHD filter and the object
extraction module. If the data synchronization assumes a sensor
data processable at a given time, it updates the GM-PHD filter,
and the object extraction updates the object list. Since the fusion
layer works on a joint object list, it utilizes the data of both
sensors fusing the measurements in the order defined by the data
synchronization. Finally, the posterior delay of the fused data is
compensated by predicting the fused objects to the current time.
The state prediction is performed based on a straightforward
constant acceleration (CA) model detailed in Section IV-C.

A. Data Synchronization

Data synchronization is a fundamental part of every sensor
fusion algorithm. This block is needed because:
� Sensors provide data with different frequency
� Sensors work asynchronously
� Out-of-sequence measurements (OOSM)
A measurement is assumed to be out of the sequence if its

timestamp is older than the timestamp of the latest measurement.
This phenomenon can occur because of the sensor data latency. If
the timestamp of measurement were older than the latest update
time of the filter, the prediction would be performed to the past,

Fig. 1. The system architecture.

Fig. 2. The sensor data latency and frequency;ΔL,sensor denotes the latency
of sensor data, ΔT,sensor is the time period of the sensor.

referred to as “negative-time measurement update”. There are
different approaches to handle OOSM in multi-object tracking.
One way is to approximate the solution by neglecting the process
noise in the prediction step as in [40]. An exact solution is
also provided in [41]. Other works deal with OOSM based on
data buffering techniques as in [42], [43]. According to [42]
the sensor data latency consists of three main parts: the data
acquisition, the pre-process, and the transfer, as shown in Fig. 2.
Deterministic data buffering means that the frequency and the
latency information of the sensors are provided. In [42], when
a new measurement is provided, the timestamp of the following
data is assumed to be known. Although this information is not
provided in our sensor configuration, based on measurement
analysis, the maximum latency of each sensor can be accurately
estimated. A measurement updates the object list at a given time
if none of the sensors may send data with an older timestamp;
otherwise, it is buffered. A buffered data is assumed to be
processable if:
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� the timestamp of the measurement is lower than the differ-
ence of the current time and the maximum latency of each
sensor and

� it is the latest measurement of the sensor.
The other role of the data synchronization module is schedul-

ing. According to [43], the two types of fusion algorithms are
asynchronous and synchronous. Asynchronous fusion means
that each sensor measurement triggers the algorithm. However,
in the synchronous case, the fusion is called by one of the
sensors or an independent scheduler with constant frequency.
The deterministic data buffer allows asynchronous running of
fusion; however, since the frequency of the smart camera is
significantly lower compared to the radar, the camera triggers
the fusion. Therefore, at least one camera measurement updates
the fusion in almost every cycle.

B. Implementation of GM-PHD Filter

The GM-PHD filter described in Section II-B is implemented
as in Alg. 1, where Fk, Qk, Hk and Rk denotes the model
parameters of the Kalman filter detailed in Section IV-C: the
transition matrix, the process noise covariance, the observation
matrix, and the measurement covariance, respectively. WhileSk ,
ek, and Kk are the computed variables, namely the innovation
covariance, the innovation, and the Kalman gain.

The miss-detected components are scaled based on the pd(x)
detection probability; therefore, it is crucial to obtain a proper
detection model. Some papers focus on the state-dependent de-
tection model in poor detectability circumstances as in [23], [24].
We also propose a state-dependent detection probability; how-
ever, this model considers the field of view (FoV) of the sensor.
The missed detections are resolved by the robust object extrac-
tion detailed in Section III-D. Different detection probability is
given if the object is within the sensor FoV and if it is outside
the FoV. Therefore, the detection probability is given as:

pd(x) =

{
p̂∅, if dhxy,k ∩ ΩFOV = ∅
p̂d, otherwise

, (21)

where p̂∅ and p̂d denotes the detection probability constant

outside and within the sensor FoV. In (21), dhxy,k =
[
dx dy

]h
k

refers the subspace of x̂h
k including the estimated position of the

object. The expression dhxy,k ∩ ΩFOV corresponds to the event
that the x̂h

k object is located outside the ΩFOV space of the FoV.
Wang et al. proposed a method that considers a state-dependent
survive probability [27]; however, in our implementation the
survive probability pS(x) = pS is given by a constant.

Most ADAS and HAD functions refer to the objects by their
unique ID after the relevant target selection. Therefore, the
{wk|k, x̂k|k, P̂k|k} parameters of the GM-PHD components are
extended with the required lk|k label consisting of the unique
ID of the objects. The labels of the updated components are
inherited from the corresponding previous components. Hence,
the labels of the updated components are not unique. In the
proposed robust GM-PHD filter, the unique ID of the present
objects is established by the object extraction module.

Algorithm 1: Gaussian Mixture PHD Filter.

1: given {wh
k−1|k−1,x̂

h
k−1|k−1,P̂

h
k−1|k−1, l

h
k−1|k−1}

Hk−1|k−1

h=1 ,

{wb
k−1|k−1, x̂

b
k−1|k−1, P̂

b
k−1|k−1, l

b
k−1|k−1}

Hb
k−1|k−1

b=1 ,Zk

Append birth components:
2: Hk|k−1 = Hk−1|k−1 +Hb

k−1|k−1
Prediction of previous and birth components:
3: for h = 1 to Hk|k−1 do
4: x̂h

k|k−1 = Fkx̂
h
k|k−1

5: P̂h
k|k−1 = FkP̂

h
k−1|k−1F

	
k +Qk

6: wh
k|k−1 = pS(x)w

h
k−1|k−1

7: lhk|k−1 = lhk−1|k−1
8: end for
Update missed detected components:
9: for h = 1 to Hk|k−1 do

10: x̂h
k|k = x̂h

k|k−1

11: P̂h
k|k = P̂h

k|k−1

12: wh
k|k = (1 − pd(x))w

h
k|k−1

13: lhk|k = lhk|k−1
14: end for
Update detected components:

15: for i = 1 to mk do
16: for h = 1 to Hk|k−1 do
17: ẑhk|k−1 = Hkx̂

h
k|k−1

18: Sh,i
k = Ri

k +HkP̂
h
k|k−1H

	
k

19: Kh,i
k = P̂h

k|k−1H
	
k (S

h,i
k )−1

20: eh,ik|k = (zik − ẑhk|k−1)

21: x̂
iHk|k−1+h

k|k = x̂h
k|k−1 +Kh,i

k eh,ik|k
22: P̂

iHk|k−1+h

k|k = (I −Kh,i
k Hk)P̂

h
k|k−1

23: gk(z
i
k|xh

k) = N (zik, ẑ
h
k|k−1, S

h,i
k )

24: w̄h,i
k|k = pd(x)w

h
k|k−1gk(z

i
k|xh

k)

25: l
iHk|k−1+h

k|k = lhk|k−1
26: end for

27: w
iHk|k−1+h

k|k =
w̄h,i

k|k

κ(zik) +
∑Hk|k−1

h=1 w̄h,i
k|k

28: end for
29: Hk|k = Hk|k−1 +mkHk|k−1
30: go to: Birth model
output: {wh

k|k, x̂
h
k|k, P̂

h
k|k, l

h
k|k}

Hk|k
h=1

C. Birth Model

The birth model is intended to capture the newborn objects
considering the locations where new ones can appear (e.g., on the
edge of the sensor FoV). According to [23], [44], it is beneficial
to compose the birth components based on the Zk−1 measure-
ment set at time k − 1. Some works extend the IPDA and JIPDA
algorithms with a birth model that computes the birth probability
of the detections based on the present objects [45], [46]. This
paper proposes an extension of the conventional GM-PHD filter
with a similar birth model; therefore, only the measurements
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Fig. 3. The flowchart of the extended GM-PHD filter.

representing new objects are drawn to the birth pool. This model
reduces the Hk|k−1 number of predicted components such as
the runtime and avoids the duplicated measurements that can
distort the estimated states x̂k|k of objects. The conditional
birth probability pb(z

i
k|Dk|k(x)) considers the PHD function

to compute the probability of the event that a measurement zik
represents a new object. The birth probability is computed based

on the {wh
k|k}

Hk|k
h=1 updated component weights assuming their

association probabilities as:

pb
(
zik|Dk|k(x)

)
= 1 −

Hk|k−1∑
h=1

w
iHk|k−1+h

k|k (22)

Each measurement with a birth probability above a given pb,t
threshold initiates a new component in the prior PHD based
on the inverse measurement model and it will be updated in
the next cycle. The pseudo code of the birth model is given in
Alg. 2, where P̂0,nz+ denotes the initial covariance containing
the initial uncertainties of the state variables unobserved by
the sensor providing the measurement. The weights wb

k|k of
the birth components equal to the initial existence probabil-
ity pinit(∃xb

k) of the corresponding object are computed based
on the confidence pTP (z

i
k) of detection zik, birth probability

pb(z
i
k|Dk|k(x)), clutter density κ(zik), and birth density b(zik).

The lbk|k labels of the birth components are defined based on the

lhk|k labels of the updated components and the user-definednmax

maximum number of objects by identifying the first unoccupied
object ID. The GM-PHD filter extended with the proposed birth
model is represented in Fig. 3.

D. Object Extraction

The GM-PHD filter detailed in Alg. 1 updates the PHD
function by (mk + 1)Hk|k−1 number of components. Without
a mixture reduction, the number of components would diverge,
and so does the algorithm’s runtime. The purpose of the mixture
reduction is not just to prune the unlikely components but also

Algorithm 2: Birth Model.

1: given {wh
k|k, l

h
k|k}

Hk|k
h=1 ,Zk, nmax

2: b = 0, ib = {1, . . ., nmax}
3: for i = 1 to mk do
Compute birth probability:
4: pb(z

i
k|Dk|k(x)) = 1

5: for h = 1 to Hk|k−1 do

6: pb(z
i
k|Dk|k(x)) = pb(z

i
k|Dk|k(x))− w

iHk|k−1+h

k|k
7: end for
Initiate component:
8: if pb(zik|Dk|k(x)) ≥ pb,t then
9: b = b+ 1

10: x̂
b

k|k = H−1
k zik

11: P̂
b

k|k = H−1
k Ri

k(H
−1
k )	 + P̂0,nz+

12: w
b

k|k = pTP(z
i
k)pb(z

i
k|Dk|k(x))

b(zik)

b(zik) + κ(zik)

13: lbk|k = min (ib /∈ {lhk|k}
Hk|k
h=1 )

14: end if
15: end for
16: Hb

k|k = b

17: go to: Object extraction

output: {wb
k|k, x̂

b
k|k, P̂

b
k|k, l

b
k|k}

Hb
k|k

b=1

to extract the states of present objects. Therefore, the mixture
reduction and the state extraction greatly impact the performance
of the multi-object tracking algorithm. Erdinc et al. investigated
the effect of missed detections on the existence probability of an
object in a single object scenario [47]. In case of single object
tracking, the n̂k|k number of expected objects at timestep k
equals to the pk|k(∃xi) existence probability of object xi, that
is computed as:

n̂k|k = p (∃xi)|nk=1 = (1 − pd (xk)) n̂k|k−1, (23)

where n̂k|k−1 = pS(xi)n̂k−1|k−1 denotes the predicted number
of objects (existence probability). However, this expression un-
derestimates the existence probability (the expected number of
objects) that can result false negative objects in the environment
representation. In Bayesian manner the right estimation of the
existence probability would be:

pk|k (∃xi) =
(1 − pd (xi)) pk|k−1 (∃xi)

1 − pk|k−1 (∃xi) pd (xi)
. (24)

Some papers also focus on robust object extraction to overcome
the underestimation of the object cardinality [48], [49]. Choi et
al. proposed a robust GM-PHD filter that considers component
merging, duplication check, and the tracking score of the ob-
jects [49]. However, their method requires a gating parameter,
such as IPDA or JIPDA, that may affect the tracking algorithm’s
performance and runtime. The proposed method associates the

{wh
k|k−1, x̂

h
k|k−1, P̂

h
k|k−1}

Hk|k−1

h=1 predicted components and the

Zk measurements based on the p(x̂h
k|k ↔ zik) association prob-

abilities defined by thewh
k|k updated component weights. There-

fore, an adaptive gating parameter is realized. Furthermore,
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Fig. 4. The flowchart of the Object extraction module.

Fig. 5. The two types of data association.

the existence probability of the objects is computed based on
the Bayesian rule given in (24), hence the underestimation of
the number of objects is resolved without computing tracking
scores. The flowchart of the object extraction is shown in Fig. 4.

The first step of the module is the data association that
obtains the clusters whose members will be fused. This step
is performed based on a locally adaptive k-nearest neighbor
(Local kNN) algorithm [50]. The kmax parameter is applied
as a saturation value for the number of cluster members, and the
neighbors are identified based on the Greedy algorithm. Two data
association approaches are proposed: the measurement-oriented
and the track-oriented, compared in Fig. 5 and described in
Alg. 3 and Alg. 4. The measurement-oriented approach assigns

the {chk|k−1}
Hk|k−1

h=1 = {wh
k|k−1, x̂

h
k|k−1, P̂

h
k|k−1, l

h
k|k−1}

Hk|k−1

h=1 pre-

dicted components to the {zik}mk
i=1 current measurements; in

contrast, the detections are assigned to the predicted compo-
nents in the track-oriented. The measurement-oriented algorithm
creates two cluster groups: the CZ measurement-updated and
the C∅ misdetection cluster group. The measurement-updated
group consists of clusters that contain one measurement, while
the misdetection group involves those components that are not
assigned to either of the measurements. The drawback of this
approach is that the clusters in the measurement-update group,
in most cases, represent one Bernoulli component of the updated

Algorithm 3: Object Extraction - Measurement-Oriented
Data Association.

1: given {wh
k|k, x̂

h
k|k, P̂

h
k|k, l

h
k|k}

Hk|k
h=1 , kmax

2: CZ = ∅, iCZ
= 0

3: C∅ = ∅, iC∅ = 0
4: ∀iz ∈ {1, . . .,mk} kiz = 0
Association probability:

5: p(x̂h
k|k ↔ zik) := w

iHk|k−1+h

k|k
6: for h = 1 to Hk|k−1 do
7: iz = argmaxi∈{0,...,mk}p(x̂

h
k|k ↔ zik)

8: c = {wiz,h
k|k , x̂iz,h

k|k , P̂ iz,h
k|k , liz,hk|k }

9: if iz = 0 then
10: p(x̂h

k|k ↔ zizk ) = 0
11: iC∅ = iC∅ + 1

12: C
iC∅
∅ = c := c∅

13: else if iz > 0 ∧ kiz < kmax then
14: p(x̂h

k|k ↔ zizk ) = 0
15: kiz = kiz + 1
16: if kiz = 1 then
17: iCZ

= iCZ
+ 1

18: end if
19: C

iCZ

Z = {CiCZ

Z , c}
20: end if
21: end for
22: C = {CZ ,C∅}
23: go to: Object extraction - Merging and PoE estimation

output: {CiC}iCZ
+iC∅

iC=1

PHD, neglecting the misdetection probability that is resolved in
the merging process. The track-oriented approach assigns the
current measurements to the predicted components, meaning
multiple measurements can be associated with a component.
Furthermore, since the bases of the clusters are the predicted
components, each cluster is initialized by its c∅ missed de-
tected component. The track-oriented data association creates

one {Ch}Hk|k−1

h=1 cluster group with clusters centralized to the
predicted components. In both approaches, the cluster members
correspond to a component of the updated PHD function: a
measurement-previous component pair represents a Bernoulli
component, and a singleton component refers to the PPP part of
the updated PHD.

The second step of the object extraction is the merging and
PoE estimation described in Alg. 5, that takes the {CiC}nC

iC=1

clusters, the {wk|k−1, lk|k−1}Hk|k−1

h=1 weights and labels of the pre-

dicted components, and the Ok−1 = {x̂o
k−1, P̂

o
k−1, l

o
k−1}

n̂k−1|k−1

o=1
previous objects defined by their estimated state, covariance and
unique ID as inputs. First, the corresponding predicted compo-
nent of a cluster must be identified by its liC unique label for
the recursive Bayesian PoE estimation. This process is slightly
different for measurement-oriented and track-oriented clusters.
Since the measurement-oriented clusters may contain more than
one predicted component, the corresponding predicted compo-
nent is identified by fusing the lck|k ∈ CiC labels of the cluster
members. Furthermore, suppose a measurement-oriented cluster
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Algorithm 4: Object Extraction - Track-Oriented Data
Association.

1: given {wh
k|k, x̂

h
k|k, P̂

h
k|k, l

h
k|k}

Hk|k
h=1 , kmax

2: ∀h ∈ {1, . . .Hk|k−1}, Ch = ∅
3: ∀ih ∈ {1, . . .,Hk|k−1}, kih = 0
4: h = {1, . . .,Hk|k−1}
Association probability:

5: p(x̂h
k|k ↔ zik) := w

iHk|k−1+h

k|k
Append missed detected component to every cluster:
6: for h = 1 to Hk|k−1 do
7: c∅ = {wh

k|k, x̂
h
k|k, P̂

h
k|k, l

h
k|k}

8: Ch = {Ch, c∅}
9: end for
Assign measurements to clusters:

10: for i = 1 to mk do
11: ih = argmaxh∈{1,...,Hk|k−1}p(x̂

h
k|k ↔ zik)

12: cZ = {wi,ih
k|k , x̂

i,ih
k|k , P̂

i,ih
k|k , li,ihk|k }

13: if kih < kmax then
14: Cih = {Cih , cZ}
15: kih = kih + 1
16: p(x̂ih

k|k ↔ zik) = 0
17: end if
18: end for
19: go to: Object extraction - Merging and PoE estimation

output: {CiC}Hk|k−1

iC=1

is the member of the CZ measurement-updated cluster group.
In that case, the cluster does not consider the misdetection of
the corresponding predicted component. Therefore, after iden-
tifying the liC ID of the corresponding predicted component,
the c ∈ C∅|lck|k=liC

miss-detected component generated by it is
appended to the cluster and removed from the C∅ misdetection
cluster group. In the track-oriented case, the corresponding
predicted component’s ID equals the cluster’s index because
the clusters are organized around the predicted components. In
both cases, the label of the updated cluster will be inherited
from the corresponding predicted component. The state of the
merged cluster is extracted based on the βc IPDA weights of
the cluster members. The pk|k(∃xiC ) existence probability of
the objects represented by the xiC fused clusters is computed
based on the Bayes rule as in the conventional IPDA algorithm.
The Gaussian components of the reduced posterior are given
by the clusters that contain at least one measurement and the
miss-detected components with w

c∅
k|k weight above a given γh

component existence threshold. If a component meets one of
these criteria, it is drawn to the reduced PHD function, but with
wih

k|k = pk|k(∃xiC ) weight updated in Bayesian manner. The
present objects are extracted similarly; however, two existence
thresholds are applied. If the liC cluster label is represented in the
Ok−1 previous object list, the pk|k(∃xiC ) existence probability
of the cluster is compared to a γ∃,low lower existence threshold.
If it is tentative yet, the existence probability must reach a γ∃,upp
higher threshold for the confirmation. The clusters that meet the
existence criteria are called confirmed objects, and the other

clusters are referred to as tentative objects. The output of the
object extraction is the Ok list of the confirmed (present) objects
and the reduced posterior PHD considering both the confirmed
and tentative objects.

IV. EVALUATION

In the evaluation, the proposed GM-PHD based sensor fusion
extended with the robust object extraction methods is compared
with two conventional GM-PHD filters, namely the Poisson and
threshold approaches and the state-of-the-art JIPDA algorithm.
In the Poisson approach, the n̂k|k expected number of objects
is computed according to (20) and after sorting the components
by their weights, the first n̂k|k components of the PHD function
initiates an object in the output. In the other conventional ap-
proach, the states of the components with weight greater than
γ∃ threshold are extracted as present objects. The γ∃ existence
threshold is set equal to γ∃,upp the object initiation threshold
of the proposed object extractions. Both of the conventional
GM-PHD filters are extended with the proposed birth model
described in Section III-C. The JIPDA filter is parameterized
in the same manner as GM-PHD filters but according to [15] it
expects z sensor detections in a V t

k validation gate around track
t at time k neglecting unlikely data associations. We applied 7
different V = V t

k constant validation gate parameters but only
the results of the optimal V = 100 is explained in Section V.

The performance of the five sensor fusion algorithms is
evaluated in a simulation environment and based on real-world
measurement data as well. In the simulation environment, the
performance of the algorithms is investigated based on GOSPA
(Generalized Optimal Sub-pattern Assignment) metric [51], that
considers the localization error of the objects and the cardinality
errors. The cardinality error involves both the false-negative
(missed detections) and false-positive objects. The GOSPA is
parametrized by dc = 10 cut-off distance threshold, p = 2 order
andα parameter. In many cases, the performance of the environ-
ment perception is given by Pr precision, and Rc recall metrics
as in [4]. If the alpha parameter is set as α = 2, the localization
error, the missed detection, and the false positive detection com-
ponents of the total GOSPA metric can be separated. Therefore,
the precision and recall can be computed as:

Pr =
TP

TP + FP
, (25)

Rc =
TP

TP + FN
, (26)

where TP , FP , and FN denote the total number of true-
positive, false-positive, and missed detections.

The ground truth of the real measurement data is performed
by video annotation. Thus it is unsuitable for computing an
accurate localization error. Therefore, in the evaluation of the
real measurement data, the F1 Score and MOTA (Multi-Object
Tracking Accuracy) metric of the algorithms and sensors are
computed as in [52], considering the precision, recall, and track
ID mismatches. The annotated objects are transformed to the
vehicle coordinate system based on the homography matrix
of the mono-vision camera. The output tracks are associated
with the ground truth based on GNN (Global Nearest Neighbor)
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Algorithm 5: Object Extraction - Merging and Poe Estima-
tion.

1: given {CiC}nC
iC=1, {wk|k−1, lk|k−1}Hk|k−1

h=1 ,

Ok−1 = {x̂o
k−1, P̂

o
k−1, l

o
k−1}

n̂k−1|k−1

o=1
2: ih = 0, io = 0
3: for iC = 1 to: nC do
4: CiC = {wc

k|k, x̂
c
k|k, P̂

c
k|k, l

c
k|k}n(C

iC )
c=1

Find corresponding predicted component:
5: if CiC measurement-oriented then
6: ĉ = round(

∑
c βcc)

7: liC = lĉk|k ∈ CiC

Append missed detected component:
8: if ∃c ∈ CiC �= c∅ then

9: CiC =
{
CiC , c ∈ C∅|lck|k=liC

}
10: C∅ = C∅ \ c ∈ C∅|lck|k=liC

11: end if
12: else
13: liC = iC
14: end if
Merging components:

15: for each {wc
k|k, x̂

c
k|k, P̂

c
k|k, l

c
k|k}n(C

iC )
c=1 ∈ CiC do

16: βc =
wc

k|k∑
c w

c
k|k

17: end for
18: x̂iC

k|k =
∑

c βcx̂
c
k|k

19: εc = (x̂iC
k|k − x̂c

k|k)(x̂
iC
k|k − x̂c

k|k)
	

20: P̂ iC
k|k =

∑
c βc(P̂

c
k|k + εc)

Bayesian PoE estimation:
21: pk|k−1(∃xiC ) = wh

k|k−1|lhk|k−1=liC

22: pk|k(∃xiC ) =

∑
c w

c
k|k∑

c w
c
k|k + 1 − pk|k−1(∃xiC )

Create reduced posterior PHD components
23: if ∃c ∈ CiC �= c∅ ∨ w

c∅
k|k > γh then

24: ih = ih + 1
25: wih

k|k = pk|k(∃xiC )

26: x̂ih
k|k = x̂iC

k|k, P̂ ih
k|k = P̂ iC

k|k
27: lihk|k = liC
28: end if

Extract present objects
29: if ∃lok−1 ∈ Ok−1 : liC = lok−1 then
30: γ∃ = γ∃,low
31: else
32: γ∃ = γ∃,upp
33: end if
34: if pk|k(∃xiC ) > γ∃ then
35: io = io + 1
36: x̂io

k = x̂iC
k|k, P̂ io

k = P̂ iC
k|k

37: liok = liC
38: end if
39: end for
40: k = k + 1
output: {wih

k|k, x̂
ih
k|k, P̂

ih
k|k, l

ih
k|k}

Hk|k
ih=1 PHD components,

Ok = {x̂io
k , P̂ io

k , liok }n̂k|k
io=1 confirmed objects

algorithm with a pre-defined dc cut-off distance threshold as in
GOSPA; however, the localization error is neglected.

Besides the performance metrics, the proposed robust GM-
PHD filters are compared to the state-of-the-art JIPDA filter
in terms of computational effort. Since the real-world mea-
surement detailed in Section IV-B includes different sections
with a varying number of objects, the runtime comparison is
detailed only for the measurement evaluation in Section V-B.
Since the O(Hk|k−1,mk) algorithm complexity depends on
the Hk|k−1 number of tracked components corresponding to
potential objects and the mk number of detections, the runtime
characteristics of the fusion algorithms according to them by
computing the average runtime of a Hk|k−1, mk pair.

A. Simulation Environment

The simulation environment performs a high-level simulation
of radar and smart camera detections. The real sensor data is
pre-evaluated to obtain the clutter and the detection model of the
sensors performing a realistic sensor simulation. The detection
model is intended to describe the detection probability obtaining
the parameters given in (21) based on the sensor FoVs. The
clutter model is more complex since the false alarms are not
uniformly distributed according to real sensor data. For example,
the radar frequently detects the highway guardrail’s poles and
tracks these irrelevant detections of actual objects. Therefore,
the spatial distribution of these false alarms is assumed to be
a Gaussian mixture instead of uniform distribution. Therefore,
the clutter model of the sensor is described by the sum of two
independent parts, the uniform distribution, and the Gaussian
mixture, as in:

κ̂(z) = λ̄UU (Vz) + λ̄N
N∑
i=1

N
(
z, ĉi, P̂i

)
, (27)

where U(Vz) and N (z, ĉi, P̂i) denote the uniform distribution
in Vz measurement space volume and the i-th component of the
Gaussian mixture with ĉi mean value and P̂i covariance. The
cardinality of the false detections is assumed to be distributed
according to Poisson distribution with different λ̄U and λ̄N
Poisson rates for the uniformly distributed false alarms and the
Gaussian mixture. The states of the guardrail poles are identified
based on the dynamic state of the ego vehicle and the lane
information. Since the radar tracks the poles, the parameters
of the Gaussian components are updated by a Kalman filter
detailed in Section IV-C. The measurement delay is simulated
by a random value between the minimum and maximum latency
of the sensors. The parameters of the sensors in the simulation
environment are summarized by Table I.

Two common ADAS scenarios, an Adaptive Cruise Control
(ACC) and Autonomous Emergency Brake (AEB), are tested in
the simulation environment. The scenarios generated with IPG
CarMaker are demonstrated by Fig. 6. The track consists of a
900 meters long straight section and an arc with a radius of
750 meters and a total turn angle of 90◦. In both scenarios, six
traffic vehicles (peer objects) are involved, lasting 40 seconds.
A peer vehicle cuts between the ego vehicle and ACC target
vehicles during the ACC scenario and forces the ego vehicle to
decelerate. Four other objects also participate in this scenario
to simulate more realistic traffic. The AEB scenario is more
complex and dynamic, including lane change performed by the
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TABLE I
PARAMETERS OF THE SIMULATED SENSORS

Fig. 6. Simulated ADAS scenarios. (a) ADAS scenario I: Adaptive Cruise
Control (ACC). (b) ADAS scenario II: Autonomous Emergency Brake (AEB).

ego vehicle. In the beginning, a peer vehicle is driving in front
of the ego vehicle inside. Then, the ego vehicle changes into the
outside lane behind two other cars and follows them. The two
cars initiate a lane change into the inside lane after ∼400 meters
revealing a standstill object. The ego vehicle starts to decelerate
and finally stops behind the standstill object while two other
objects are passing by the ego vehicle in the left lane, simulating
a real traffic flow.

B. Real-World Measurement Setup

The sensor cluster consists of an automotive Continental
ARS408 radar and a Mobileye EyeQ2 smart camera providing
the object detections as input data for the EFPS. Fig. 7 depicts

Fig. 7. The FoV of the sensor cluster and the surveillance area.

the FoV of the sensors and the surveillance area. The Mobileye
camera has a 130 m view range and 40◦ FoV angle. The radar has
multiple FoVs consisting of a near scan zone up to 60 m with
120◦ opening angle, and a far-looking one with 200 m view
range and 20◦ angle. The frequency of the Continental radar is
about 12 Hz, while the Mobileye camera has a lower ∼9 Hz
frequency. Although the surveillance area extends up to 200
meters due to the radar; however, the measurement evaluation
is performed on a smaller area since the ground truth objects
can be annotated confidently up to 80 meters. The measurement
setup is extended with a mono-vision camera supporting the
annotation-based ground truth generation and visualization. The
sensor data was logged through CAN communication by Vector
CANape, and the video of the mono-vision camera was recorded
in sync. The measurement was taken place on the beginning
section of the Hungarian M1/M7 highway in Budapest towards
Budaörs. The ground truth objects are created on a video section
of 6000 frames (∼60 FPS, 100 seconds). The annotated frames
were selected to evaluate the multi-object tracking in the heaviest
traffic and various dynamic scenarios such as lane-keeping in
different lanes and lane changes performed by the surrounding
objects and the ego vehicle as well.

C. Model Description

The proposed sensor fusion tracks dynamic objects with xk

state at time k relevant to planning a safe trajectory, such as
pedestrians, bicycles, and road vehicles including cars, trucks,
motorbikes. In the GM-PHD filter, the states of the Gaussian
components are estimated by a Kalman filter that requires a
process and measurement model. It is beneficial to apply a multi-
model estimation considering different vehicle maneuvers as
in [53], [54]. Since this paper focuses on the object extraction
module, therefore the xk object state at timestep k is computed
by a constant linear acceleration (CA) model based on the xk−1

object state at timestep k − 1 as in:

xk = Fkxk−1 + νk, (28)
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whereFk and νk denote the the transition matrix and the process
noise with covariance Qk. The state vector is defined as:

xk =
[
dx vx ax dy vy ay

]	
(29)

capturing the x longitudinal and y lateral components of the
d position, v velocity, and a acceleration concerning the ego
vehicle coordinate system. The transition and process noise
covariance matrices defined as

Fk = I2 ⊗

⎡
⎢⎣1 Δt Δt2/2

0 1 Δt

0 0 1

⎤
⎥⎦ , (30)

Qk = σ2
a

[
Qx,k 0

0 Qy,k

]
, (31)

and

Qx,k = Qy,k =

⎡
⎢⎣Δt4/4 Δt3/2 Δt2/2
Δt3/2 Δt2 Δt

Δt2/2 Δt 1

⎤
⎥⎦ . (32)

In (30) and (32) Δt denotes the elapsed time between timestep
k and k − 1. In (31) σa refers to the acceleration scale.

The smart camera provides detections in a Cartesian coordi-
nate system with longitudinal velocity and acceleration estima-
tion. The radar also provides the position of targets in a Cartesian
coordinate system, however, it estimates the velocity of objects
with longitudinal and lateral components. Therefore observation
matrix of smart camera Hk,c and the radar Hk,r are therefore:

Hk,c = Hc =

⎡
⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎦ (33)

Hk,r = Hr =

⎡
⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎦ (34)

The radar estimates the Rk,r measurement covariance of each
detection, however, the Rk,c of the camera detections are esti-
mated based on the σdx

, σdy
, σvx

, σax
position, velocity, and

acceleration uncertainties given in the technical specification of
the sensor as in:

Rk,c = Rc = diag
(
σ2
dx
, σ2

dy
, σ2

vx
, σ2

ax

)
. (35)

The parameters of the GM-PHD filter are obtained in accor-
dance with the simulation environment since it simulates the
real sensors. The pd(x) state-dependent detection probability is
given with the same parameters as in Table I. The pS(x) survive
probability is given by pS(x) = pS = 0.9999 constant value.
However, the κ̂(z) clutter model of the simulation environment
is not adapted to the tracking algorithm because the proposed
method does not consider the lane information, and the param-
eters of that model depend highly on the environmental circum-
stances. Therefore, the κ(z) = λ̄c/Vz clutter density is given by
a simple uniform distribution above theVz measurement volume

TABLE II
PRECISION, RECALL AND AVERAGE LOCALIZATION ERROR AND GOSPA IN

ADAPTIVE CRUISE CONTROL (ACC) SCENARIO

with a λ̄c Poisson rate set to 10 for the radar and 0.01 for the smart
camera. Similar to the clutter density, the b(z) = λ̄b/Vz birth
density is defined by a uniform distribution, and the λ̄b number
of expected newborn objects is given as λ̄b = 1 for both sensors.
The γ∃,low and γ∃,upp probability existence thresholds are set
as γ∃,low = 0.08 and γ∃,low = 0.65, while the γh component
surviving threshold γh = 0.03.

V. RESULTS

In this section, the evaluation results of the simulation en-
vironment and real-world measurement data are described. The
performance of the simulation environment and real-world mea-
surement are investigated in different aspects. In the simulation
environment, the exact states of the ground truth objects are
known. Therefore, the GOSPA metric of the different multi-
object tracking approaches and their components (missed de-
tections, false detections, localization error) are compared. In
practical applications, the precision and recall of the environ-
ment perception are essential metrics. Hence, they are also
included in the simulation results. However, the state of the
objects annotated on the mono-vision images of real-world
measurement is approximated with uncertainty, suitable only for
the assignment between fused objects and ground truth objects.
Thus, the sensor fusion algorithms are evaluated by the MOTA
metric considering the precision, recall, and track ID switches
neglecting the localization error. Furthermore, since the real
sensors also provide tracked objects, their performance metrics
are also obtained. The performance gained by the sensor fusion
compared to the raw sensor performance is a significant aspect
of the EFPS.

The complexity of the proposed robust GM-PHD filter is
investigated according to the runtime map over the number of
tracked objects and the number of sensor detections compared
to the state-of-the-art JIPDA algorithm. The runtime of conven-
tional GM-PHD filters is not detailed since the proposed sensor
fusion relies on it; therefore, their complexity has the same
characteristics. The runtime evaluation is performed only for
the real-world measurement since it includes different sections,
consisting of relatively few and many objects as well.

A. Simulation Results

The results of the simulated Adaptive Cruise Control (ACC)
and Autonomous Emergency Brake (AEB) scenarios are sum-
marized in Table II and III, detailing the precision, recall, av-
erage localization error, and GOSPA metric of the algorithms,
highlighting the proposed algorithms with bold fonts. According



7226 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 7, JULY 2022

TABLE III
PRECISION, RECALL AND AVERAGE LOCALIZATION ERROR AND GOSPA IN

AUTONOMOUS EMERGENCY BRAKE (AEB) SCENARIO

to Table II and III, the two conventional GM-PHD filters, the
Poisson and the Threshold concept, have very similar results
in each aspect of the performance metrics. Both of them filter
the false detections quite efficiently, resulting in ∼86 − 95%
precision values; however, scenario objects are often missed
detected, causing a lower recall metric. The state-of-the-art
JIPDA algorithm performs significantly better than the conven-
tional GM-PHD filters, reducing the average GOSPA metric
by ∼55 − 66%. The proposed robust proposed GM-PHD fil-
ters have a similarly powerful performance to the JIPDA. The
measurement-oriented (MO) GM-PHD filter has a slightly lower
recall in the ACC scenario. Still, the track-oriented approach has
a better result than the JIPDA filter in every performance aspect.
In the dynamic AEB scenario, both proposed robust GM-PHD
filters reduce the GOSPA metric of the JIPDA by 27% and 32%.
The evolution of results is shown in Fig. 8 over the simulation
time, detailing the number of missed and false detections, the
localization error, and the GOSPA metric.

A moving average filters the localization error and GOSPA
metric with 2 seconds window size. Since the two conventional
(Poisson and Threshold) and proposed robust (MO and TO)
GM-PHD filters have similar results to their counterparts, only
the better ones (Threshold and TO) are visualized in Fig. 8. The
proposed robust object extraction realizes much fewer missed
detections compared to the conventional GM-PHD filter in both
scenarios according to Fig. 8(a) and Fig. 8(b). The estimation
of the existence probability explains this: since the detection
probability is high if an object is miss-detected, its PoE would
be underestimated by the conventional GM-PHD filter, and it is
pruned. Although the radar provides much clutter, the difference
between the algorithms more negligible in false detections. The
conventional tracker confirms an object provided by the radar if
it detects it in two consecutive cycles; therefore, it can filter most
false detections. However, according to the comparison between
the conventional and TO object extraction approaches, it can
be said that the object cardinality is estimated more robustly
by the proposed methods in the corner cases of scenarios. The
proposed robust GM-PHD filter has a similar performance to
JIPDA in object cardinality estimation. Still, it filters the false
detections more efficiently in both scenarios because JIPDA
duplicates some objects. The localization error of the algorithms
increases when the relative velocity between the surrounding
objects and ego vehicle is high. Under these conditions, the
conventional GM-PHD filter has slightly more accurate local-
ization than the proposed method because the fused state of the
objects relies more on the measurement. However, the robust
GM-PHD filter estimates the object state more precisely than

Fig. 8. Missed detections, false detections, Localization error and total
GOSPA metric of simulated ADAS scenarios. (a) Adaptive Cruise Control
(ACC) scenario. (b) Autonomous Emergency Brake (AEB) scenario.
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TABLE IV
PERFORMANCE METRICS OF RAW SENSOR DATA AND FUSION ALGORITHMS

the state-of-the-art JIPDA. According to the simulation results,
the proposed GM-PHD filters provide a robust object extraction
that slightly exceeds even the JIPDA filter’s performance thanks
to the existence probability computed in a Bayesian manner.
Furthermore, the data association method does not influence its
performance because the results of the MO and TO approaches
do not differ.

B. Real-World Measurement Results

The results of the real-world measurement are summarized
in Table IV, including the precision, recall, F1 score, and the
MOTA metric of the raw sensor data and the five sensor fusion
algorithms. As it was described in Section IV-A, the radar
frequently detects and tracks the poles of the highway guardrail
and other irrelevant objects that are considered as false positive
objects. Hence the precision of the radar is low compared to the
smart camera. The MOTA metric is lower than zero because
the number of false detections is larger than true positives.
Although the smart camera has high precision, the recall is lower
than the radar despite its high detection probability because
it can provide four object detections maximally. The result of
the five fusion algorithms has similar characteristics as in the
simulation environment. However, in the case of Poisson dis-
tributed object cardinality, the real objects are often duplicated,
resulting in more false detections and lower precision. The
object extraction performed based on the Threshold method
filters most of the false detections reported by the radar, but
it frequently miss-detects real objects. The proposed robust
object extraction approach tackles the false detections even more
efficiently, exceeding the 95% precision of the JIPDA based
fusion too. Although the 86 − 87% recall is a bit lower than
precision, the proposed GM-PHD filters reduce the number of
missed detections of the conventional object extraction methods
by 15 − 19%. The JIPDA and proposed robust GM-PHD filters
have similar F1 scores, increasing the resultant performance
of the conventional GM-PHD filters by 12 − 17%. Still, the
proposed fusion algorithm with MO data association exceeds
the F1 score of the JIPDA, with 1%. Furthermore, the fusion
algorithm performed by the proposed methods increases the
F1 score of the best sensor (smart camera) by 7 − 8%. The
difference is more significant in terms of the MOTA metric
because the corresponding track ID of an object is not switched
since the multi-object tracking is more stable.

The runtime evaluation was performed in Matlab R2020b
environment on notebook with Intel Core i7-3520 M (2.9 GHz)

Fig. 9. The average runtime of the JIPDA based sensor fusion depending on
the number of tracked objects and detections.

Fig. 10. The average runtime of the robust GM-PHD based sensor fusion
depending on the number of tracked objects and detections.

processor and 16 GB memory. The resulting characteristics of
the state-of-the-art JIPDA algorithm and proposed robust GM-
PHD filter over the number of tracked objects and the number of
input detections are depicted with logarithmic scale in Fig. 9 and
Fig. 10 by the average runtime. Because of the properties of the
different sensors, both Fig. 9 and Fig. 10 form an L shape. The
radar detects many more objects, including false positives; in
contrast, the smart camera can provide four detections at most.
Therefore, the radar initiates plenty of objects, and the camera
confirms some of them and vice versa. Fig. 9 shows a >800 ms
significant peak in average runtime. This drawback of the JIPDA
occurs when some objects are relatively close to each other and
share some detections within their validation gate, forming one
cluster. In this case, the runtime increases exponentially with
the number of objects and detections within the cluster due to
the combinatorial complexity clearly visible on the linear stage
(logarithmic scale) in Fig. 9. However, Fig. 10 demonstrates that
the complexity of the proposed robust GM-PHD based sensor
fusion is scaled linearly with the number of tracked objects and
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sensor detections over the entire measurement. The runtime has
a 60 ms peak occurred at the initialization of the filter that is
still lower than the period time of the sensors. Therefore this
algorithm is assumed to be applicable in real traffic conditions
considering that Matlab is an insufficient environment in terms
of runtime compared to a C/C++ implementation.

VI. CONCLUSION

Although the conventional GM-PHD filter can track multiple
time-varying numbers of objects by inserting the first-order
moment of the random finite set PDF into the Bayesian frame-
work. However, due to this simplification, the object extrac-
tion results in a poor performance in the estimation of object
cardinality because the existence probability estimation does
not rely on Bayesian recursion. Furthermore, the conventional
GM-PHD filter does not involve a sophisticated model that
identifies newborn objects. The proposed methods extend the
conventional GM-PHD filter with an object birth model that
relies on the detections of the sensors considering their birth
probability. This birth model reduces the number of duplicated
objects and the runtime of the algorithm. The two robust object
extraction modules significantly increase the performance of the
conventional GM-PHD filters based on the Bayesian existence
probability estimation. According to the KPI of the proposed
sensor data fusion algorithm, besides the fused data results in
a more reliable environment perception than using either of the
sensors alone, it reaches and slightly exceeds the performance
of the state-of-the-art JIPDA algorithm. Therefore, they provide
a robust multi-object tracking fusing multiple sensor data that is
a fundamental part of the enhanced frontal perception system of
ADAS and other highly automated functions. Furthermore, our
solution preserves the favorable complexity of the GM-PHD fil-
ter, the linear scaling with the number of objects and detections;
hence, there is a powerful runtime reduction compared to the
exponential characteristic of JIPDA based sensor fusion.
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