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Abstract: The paper proposes a nonlinear control method for performing a backflip maneuver
with a nano quadcopter. To perform the maneuver, first a feasible reference trajectory is designed
that describes the intended state evolution. Then, the designed trajectory is precisely tracked
by a nonlinear geometric controller that is able to track even highly challenging reference
trajectories. The performance of the proposed method is evaluated and compared to a simple
adaptive feedforward control strategy based on simulations and real-world experiments using

Bitcraze Crazyflie nano quadcopters.
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1. INTRODUCTION

The aim of this work is to develop and implement trajec-
tory planning and motion control algorithms that allow a
nano quadcopter to perform complex maneuvers at high
speed. Many common tasks of a miniature quadcopter,
such as navigating in a cluttered environment or flying in
strong wind require to perform complex, fast maneuvers
that push the drones to their physical limits (Loquercio
et al., 2021). In these cases, classical flight controllers
designed for a linearized dynamical model are no longer ap-
plicable and more advanced control methods that exploit
the entire operating domain are needed (Lee et al., 2010).
These algorithms can be developed based on nonlinear
control techniques, or machine learning approaches.

The backflip maneuver has been chosen as an example,
because it is a challenging task even for an expert human
driver, and it emphasizes the complex nonlinear behaviour
of the drone. The complexity and speed of the maneuver
is characterized by the fact that it takes less than a second
to complete, during which the vehicle is able to make a full
turn around one of the horizontal axes.

In the literature, there are several different control strate-
gies to perform the flip maneuver. In El-Badawy and Bakr
(2016), energy-based control is applied to overcome the
uncontrollability of the quadcopter at singular configu-
rations to follow a circular or clothoidal reference tra-
jectory. In Chen and Pérez-Arancibia (2017), Lyapunov-
based controller synthesis is used to execute multi-flip ma-
neuvers with quadcopters. Machine learning approaches
are utilized in many cases, for example to imitate the
maneuver performed by an expert drone pilot with ap-
prenticeship learning in Abbeel et al. (2010), or design
time-optimal trajectories with deep reinforcement learning
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in Song et al. (2021) and learn acrobatic maneuvers in
Kaufmann et al. (2020); Hwangbo et al. (2017).

A simple learning strategy for adaptive feedforward con-
trol is proposed in Lupashin et al. (2010), based on the
optimization of a parametric motion primitive sequence.
As backflipping pushes the actuators of the quadcopter to
their physical limits, the application of near-maximal and
minimal control inputs are required. This approach builds
on the theory of bang-bang control and first-principles
motion primitive design to perform and optimize the flip
maneuver. The proposed method is easy to implement
and it is well suited for generating a feasible trajectory,
however, many trials on the real robot are necessary to
optimize the parameters of the motion.

The method we propose in this paper is based on geo-
metric control, which is a nonlinear approach for attitude
feedback control of rigid bodies in 3D space. In Lee et al.
(2010), it is theoretically proven that geometric control
is able to stabilize the orientation of a quadcopter in the
whole operating domain based on differential geometric
considerations and Lyapunov stability. The control law
proposed in Lee et al. (2010) has been improved and
extended by other researchers and it is the basis of several
advanced trajectory design and agile maneuvering control
algorithms, e.g. Turpin et al. (2012); Mellinger and Kumar
(2011). However, in the literature we have not yet seen the
application of geometric control together with systematic
trajectory planning for backflipping with quadcopters.

The main contributions of our work are as follows:

(1) We propose an optimization-based trajectory plan-
ning method for the backflip maneuver. The designed
reference trajectory is tracked by the nonlinear geo-
metric control proposed in Lee et al. (2010).

(2) We compare the proposed method to a feedforward
control approach introduced in Lupashin et al. (2010).
We evaluate the performance of both methods in
simulations and in real experiments, as well.
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This paper is structured as follows: firstly, we give an
overview of quadrotor modelling and control in Section 2.
Section 3 proposes an optimization-based trajectory plan-
ning method and introduces geometric control for the
precise tracking of the reference trajectory. In Section 4,
we compare the performance of the proposed method to
an optimization-based feedforward control strategy via
numerical simulations. In Section 5, we describe the ex-
perimental setup, and evaluate our results based on mea-
surements on the real robot. Finally, the conclusions are
summarized in Section 6.

2. QUADCOPTER DYNAMICS

The trajectory planning and motion control algorithms to
be introduced later require the mathematical model of the
quadcopter. In this section, we present the basic principles
of quadcopter modelling and equations of motion, mainly
based on Mahony et al. (2012).

Firstly, three main frames are introduced: the inertial
frame F' interpreted as NED (north-east-down) coordi-
nates, the vehicle frame Fv, and the body frame F°, which
is fixed to the vehicle. The transformation from F° to FV
is a translation, and from F to F? a rotation, because the
axes of F¥ and F? are parallel. In Fig. 1, the three frames
are displayed with the Euler angles in the body frame (roll:
@, pitch: 6, yaw: ¢), and the direction of the rotor thrusts
and angular velocities.

The translational dynamics of the quadcopter are charac-
terized by

0 0
mi=R,| 0 |+]|0], (1)
-F mg
where r = [z,y,2]" is the position of the quadcopter in

the inertial frame, m is the mass of the drone, F' is the
collective thrust of the propellers, and g is the gravitational
acceleration. RY € SO(3) is the rotation matrix between
the vehicle and body frames, where SO(3) denotes the
three-dimensional special orthogonal group, also called the
rotation group.

The rotational dynamics are described by Euler’s equa-
tions, as

o= Riw”,
WP = (J°) 7 (r—wb x JPuP),

where wP is the angular velocity of the vehicle in the body
frame, J is the inertia matrix, and 7 = [r, 7, 7,] | is the
vector of torques produced by the propellers. The notion
* stands for the projection: R®* — SO(3) ensuring that
2y = x x y for all z,y € R3, where the x operator
corresponds to the vector product of the operands. To
simplify the notations, the indication of the coordinate
frames is omitted in the rest of the paper and the following

notations are introduced: R = Ry, J = JP w = wP.

(2a)
(2b)

The dynamic model has four inputs, the collective thrust:
F in (1), and the torques around the three axes of the
body frame: 7 in (2). These inputs can be calculated from
the individual thrusts of the motors (7;) as follows:

Fig. 1. Inertial, vehicle, and body frames describing the ge-
ometric relations of the vehicle and the environment.
Thrusts and angular velocities of the rotors are also

illustrated.
—11 —11 } } L
m: Dol | R (3)
[ ;
E k kk *

where [ is the distance of two motors along the z axis, b
is the drag constant, and k is the thrust constant. Fur-
thermore, the thrust generated by each motor is propor-
tional to the square of the corresponding angular velocity:
T; = kw? for i € {1,2,3,4}.

3. TRAJECTORY PLANNING AND GEOMETRIC
TRACKING CONTROL

We implement backflipping as a 360 degree rotation
around the y axis of the quadcopter’s body frame, dis-
played in Fig. 1. The proposed approach for performing
the maneuver is based on closed-loop control: first a fea-
sible reference trajectory is designed for the flip, then the
trajectory is given to a nonlinear controller that ensures
the precise reference tracking. In this section, we first in-
troduce Geometric control as a baseline control algorithm
for trajectory tracking. Then the proposed optimization-
based trajectory planning method is presented.

3.1 Geometric Tracking Control for Aggressive Maneuvers

The nonlinear geometric tracking control used in this
work is based on the one presented in Lee et al. (2010)
and Turpin et al. (2012). The control method is able to
track reference position rq(t) = [zq(t),ya(t), za(t)] ", and
reference attitude Rq(t) € SO(3), represented by rotation
matrices.

To synthesize the control law, we use (1) and (2) describing
the dynamics of the quadcopter. Following the attitude
control method proposed in Lee et al. (2010), the force
and torque inputs are regulated as
F = (—K,e;, — K ey + mges + miq) Res,
7= —Kgrer — Kye, + w x Jw,

(4a)
(4b)

with diagonal gain matrices K;, K, Kgr, K., € R3*3, and
error terms

er = (RIR—R'Rq)",
2,/1+tr (R R)

e, =W — RTRdwd,
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where rq, Rq and wq are the position, orientation and
angular velocity reference, tr(-) is the trace operator, and
the vee operator () is the inverse of the hat operator such
that (-)¥ : SO(3) — R3. With control gains selected from
the stable domain, the proposed attitude control approach
is proved to be stable in the full space of rotation matrices
(excluding exact inversion), as derived in Lee et al. (2010).

3.2 Trajectory Planning for the Flip Maneuver

In this section, we use the geometric tracking controller
(4)-(5) to perform the flip maneuver. For this we first
design a suitable attitude reference trajectory R4, and
then a position trajectory rq. The objective of trajectory
planning is that the quadcopter should arrive as close to
the starting point as possible, while keeping the control
inputs within the allowed range during the maneuver.

The attitude reference is specified in unit quaternions:
qa = [qod: q1d, G2d, q3d] ', where qoq is the scalar part of
the quaternion, and g4 corresponds to the pitch angle, as
q1d = q3a = 0, because both the roll and yaw angles are
zero during the flip. Utilizing that g4 is a unit quaternion,
we can express the third element of it as gaqa = /1 — ¢34,
hence it is sufficient to design a trajectory only for goq.

A 360 degree rotation around the y axis means that the
scalar part of the attitude quaternion goes from 1 to -1.
In the trajectory design it is important to stay within the
dod € [—1,1] range, because only unit quaternions describe
rotation. We have chosen a smooth sigmoid function

qdod = % -1 (6)
14 e m(t=%)

to describe the scalar part of the reference attitude, where
the parameters are the speed of the maneuver v, and
the execution time t,,. The attitude quaternion reference
trajectory is displayed in Fig. 2. Assuming that ¢ = =0
during the flip, the conversion to Euler angles yields
0 = 2acos(qoq), where 6 € [—m, w]. Hence the pitch angle
goes smoothly from zero to m, jumps to —m, and goes
smoothly to zero.

Besides of rotation, the maneuver also requires transla-
tional motion, because without proper lifting at the be-
ginning of the backflip, the quadcopter would fall to the
ground due to gravity. The position reference is designed
considering that the rotational and translational equations
of the dynamical model are coupled. The translational mo-
tion of the flip maneuver is within the x—z plane, therefore
ya(t) = 0. The other two equations of the translational
dynamics in (1) are

mi = 7FR13,

mzZ = —FRs3 + mg,

(7a)
(7b)
where R;; denotes the (7,j)-th entry of the rotation
matrix R. However, assuming that the attitude tracking
converges fast enough to the reference, we can substitute
the reference rotation matrix in (7), resulting in the
translational state space representation

T 0100 0 ®)
o T o 0000 Rd13/m
§= 1z A= looo1|r B=] o |
z 0000 Ra33/m

qoa(t)
¢2a(t)

qd (t)

0 0102 03 04 05 06 07 08 09 1
t(s)

Fig. 2. Attitude quaternion reference trajectory for the
backflip maneuver with v, =20 1/s, ¢, = 0.9 s.

where £ is the state vector, Rq,; are the corresponding
elements of the reference rotation matrix Rq (converted
from the reference quaternion qq), and A, B are the state
space matrices. As the equations are decoupled, the effect
of gravity can be added to the z position after a simulation,
thus in the equation Z denotes the modified state. Notice
that (8) is a linear state space representation with the
thrust force w = F as the only control input. By dis-
cretizing the system, a quadratic programming problem
can be formulated over a finite horizon, similarly to model
predictive control. We calculate the discrete time state
space model using complete, zero-order hold discretization,
resulting in the form

&1 = Arér + Brug,
Ra13T72 /(2m)

17,0 0

4 _|0100 B, — Rq13Ts/m 9)

00 LT TR Ry T2 (2m) |
0001

Rq 33T, /m

where Ag, By are the discrete state space matrices. The
input of the model is the collective thrust of the propellers,
uy = F). For a fixed duration of the maneuver with N
discrete time steps, the following quadratic optimization
problem is formulated:

N
minimize Y | (6 — &) Qi (6 — Eax) + ul Wi
k=1

subject to &1 = Arér + Brug,

{fk}l[cvzl € X7
{uk}l]cvzo e,

where Q, € R*** and W, € R are weight matrices,
and X,U are the sets of constraints for the states and
the control input, respectively. The only objective of the
trajectory design is to minimize the final position error of
the quadcopter and keep the position within a specified
range, therefore the weight matrices are Wy, = 0,Qx = 0
for k =1... N, except for the weight of the final state that
is Qn = diag(1,0,1,0). As all the other weights are zero,
it is only required to define a final state position reference
&4,n, the components of which are zero except for the effect
of the gravity in Zq y = 0.5g(TxN)2.

(10)

We specify linear constraints for the states: z € [z_,z],
z € [z—, 24| to model the available space for the maneuver
avoiding collisions with other objects or walls. We also
define linear constraints for the control input, namely

| 7]

H/rliknguk:FkSFmax_Tv (11)

where 7, is the vector of the three torques around the three
body axes, out of which 7, = 7, = 0 normally during the
flip, [ is the distance of the quadcopter center of mass and
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the propellers projected to the x — z plane, and Fj, .y is the
maximal collective thrust of the rotors. The torque control
input 7 is calculated from the reference attitude R4 based
on (4b) assuming that the orientation and angular velocity
€rTors are zero.

The numerical solution of the optimization problem (10)
can be obtained easily by using an off-the-shelf QP solver,
e.g. by quadprog in Matlab. Finally, we fit cubic splines on
the discrete points of the optimized reference trajectory,
which the quadcopter follows with geometric tracking
control, based on the control law (4) and error terms (5).

4. SIMULATIONS

The simulations are based on the dynamic model of a
Bitcraze Crazyflie 2.1 miniature quadcopter which we use
for demonstrating the experimental results in Section 5,
as well. The nonlinear equations of motion are defined in
Section 2, and the physical parameters of the drone are
shown in Table 1, obtained from Forster (2015).

Our simulation framework is based on an OpenAl Gym
environment with PyBullet physics engine, written in
Python language (Panerati et al., 2021). All of the simu-
lation code used in this work is available on our GitHub !,
and a video illustrating the simulation results is available
at https://youtu.be/AhqfXZ-CPgM. In this section and
the oncoming sections, we display the measurement results
with the z axis pointing upwards (in contrast to the NED
convention discussed in Section 2), because the backflip
maneuver is more illustrative this way.

The simulation of the flip starts with hovering for about
0.1 s, followed by executing the maneuver, and then
switching back to hovering around the initial position.
Based on the physical properties of the quadcopter, we
have chosen the parameters of the reference pitch trajec-
tory to vy, = 20 1/s, ty, = 0.9 s, as illustrated in Fig. 2.
The quadratic programming problem (10) is solved under
the following constraints:

T_ —0.6
A R . )
X - = | Z0.05] ™ U: F e€0,0.64] N,

with sampling time Ty = 1/480 s. The maximal collective
thrust Finax = 0.64 N is from Férster (2015), and the
position bounds are chosen such that the trajectory is
feasible, and the quadcopter does not get too far from
the initial point, for example we can express the available
flying space here to avoid collision with walls or other
objects. The duration of the flip is t,, = 0.9 s, thus the
number of simulation steps is N = t,,/Ty = 432. The
quadratic optimization problem is solved by the quadprog
Matlab function within milliseconds of computation time.

The controller gains in (4) have been determined based
on the implementation of geometric control in the of-
ficial Crazyflie 2.1 firmware?. The numerical values
are K, = diag(0.5,0.5,1.25), K, = diag(0.2,0.2,0.8),
Kr = 0.08133, and K, = 0.002133, where I33 is the 3 x 3
identity matrix. In Lee et al. (2010), the stable regions of

I https://github.com/AIMotionLab-SZTAKI/aimotion-crazypack
2 https://www.bitcraze.io/documentation/repository/
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Fig. 3. Backflipping in simulation by feedforward control.
The position is displayed on the left, and the pitch
angle 6, pitch angular velocity 8, and collective thrust
F on the right. Orange lines represent the simulation
with optimal parameters, and grey lines represent the
result of small changes in the parameter set.
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Fig. 4. Backflipping in simulation by geometric control.
Position and attitude are depicted on the left, the
pitch angle 6, pitch angular velocity 6, and collective
thrust F' on the right.

control gains are given for scalar values. Here, we prac-
tically use scalar gains (multiplied by identity matrices),
except for an increased gain for the z position and velocity
errors to compensate the effect of uncertain gravitational
force. However, all elements of the diagonal gain matrices
satisfy the stability conditions detailed in Lee et al. (2010).

We compare the results of our method to an adaptive open-
loop control strategy for quadcopter backflipping which
we have implemented based on Lupashin et al. (2010).
The backflip maneuver is performed by optimizing the
parameters of a motion primitive sequence, and applying
feedforward control. The number of optimization variables
is reduced by utilizing bang-bang control, i.e. using near-
minimal and near-maximal control inputs. In contrast of
the method proposed in Lupashin et al. (2010), we use
Bayesian optimization (instead of gradient descent with
gradient approximation) to find the parameters of the
backflip motion primitive sequence (Shahriari et al., 2016).

Table 1. Physical parameters of a Crazyflie 2.1

quadcopter.
Mass m 0.028 g
Propeller-to-propeller length l 92 mm
Jxx 1.4 -10~% kgm?
Diagonal inertia elements Jyy 1.4-107° kgm?

Jrz 2.17-107° kgm?
Thrust coefficient k 2.88- 108 Ns?
Drag coefficient b 7.24 - 10~ 10 Nms?
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Fig. 5. Block diagram of the experimental setup: in-
door quadcopter navigation with internal and external
measurement system.

Fig. 6. Experimental setup: OptiTrack Prime 13 infrared
cameras and a Crazyflie 2.1 quadcopter with reflective
markers.

Simulation results using the feedforward control are dis-
played in Fig. 3, using the optimal parameter vector
and a set of near-optimal parameters, as well. On the
left plot, the position of the quadcopter during the
flip is shown, with snapshots from the simulation. The
end of the optimal maneuver is around the coordinate
(z,2) = (—0.4,0) m with near-zero pitch angle, thus the
final state error is only significant in the z position.
From that point, a PID controller (Panerati et al., 2021)
stabilizes the drone and controls to the origin. On the
right, the trajectory of the pitch angle in Euler represen-
tation, the angular velocity, and the collective thrust as a
control input are shown. The figure illustrates that even
small deviations from the optimal parameter set (< 10%)
result in significantly decreased performance.

The simulation results of trajectory planning and reference
tracking with geometric control are displayed in Fig. 4.
The left plot illustrates the reference and simulated pose
of the quadcopter during the backflip maneuver, and
the right plot contains the trajectory of the pitch angle,
angular velocity and collective thrust control input. The
trajectory of both the angular velocity and the thrust
input are smooth compared to the discontinuous angular
acceleration and thrust of the feedforward control. At
the discontinuities of the control input, the unmodeled
transient behaviour of the actuator dynamics can be
significant, therefore the geometric control approach is
more robust to such uncertainties than the feedforward
method.

5. EXPERIMENTS

The experimental setup consists of the Crazyflie drone,
the Optitrack motion capture system (Optitrack image
processing server and infrared cameras), and a ground
control PC. The block diagram presenting the interconnec-
tion of the components is shown in Fig. 5. The quadrotor
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Fig. 7. Backflipping measurement results with feedforward

control. The position and pitch angle of the quad-
copter are displayed.
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Fig. 8. Backflipping measurement results with geometric
control. The trajectories show that the maneuver is
performed successfully, and the drone gets back to
the initial position at the end.

is equipped with an IMU containing a 3D accelerome-
ter, gyroscope, magnetometer and barometer, and it has
two microcontrollers: a STM32F405 for running the flight
controller, and a nRF51822 for radio communication and
power management. The drone weighs 28 grams, and
the propeller-to-propeller distance is 92 millimeters. The
quadcopter runs the original Bitcraze firmware, while on
the server the Crazyswarm software platform is used to
ease the implementation and configuration of high-level
control components (Preiss et al., 2017). Optitrack is a
high precision motion capture system with submillimeter
resolution. We use it to obtain precise pose measurement
of the drones in real time.

Firstly, we evaluate the results of performing the backflip
with optimization-based feedforward control. Due to the
differences of the simulation model and the real quadcopter
dynamics, the parameters of the motion primitive sequence
used in simulation were re-tuned so that the flip is executed
with minimal final state error. This clearly demonstrates
the sensitivity of this method to model uncertainties.

The measurement results are displayed in Fig. 7, showing
the position and orientation of the quadcopter during the
maneuver. It is important to note that an additional lift
phase is added to the implementation to gain enough
vertical velocity and height, because the quadcopter falls
a significant distance in the recovery phase. During the
additional lift phase, a PID controller ! is used to achieve
exact vertical lifting and horizontal orientation. Fig. 7
shows that the flip is executed with small final error in
the pitch, and also quite small position error. However, it is
important to note that the performance of the feedforward

1 https://www.bitcraze.io/documentation/repository/
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controller is very sensitive to uncertainties in the dynamics
and initial conditions. For example, if the flip maneuver
begins when the orientation of the quadcopter is not
exactly horizontal, the stability can be lost at the recovery
phase. Hence the maneuver is only successful in about 6-7
trials out of 10 using the feedforward controller.

The experimental results of backflipping with geometric
control are displayed in Fig. 8. The most important part
of reference tracking is the pitch angle 6, because a
fast, stable and accurate attitude tracking is required
to perform the flip maneuver, and recover successfully.
As it is shown on the right plot of the measurement
results, the pitch is very close to the reference, and the
position also converges with a higher delay. In spite of
the imperfect position tracking, the geometric controller
is able to perform the backflip maneuver exactly the
same way ten out of ten times, which indicates that it
is significantly more robust than the feedforward method.
Even with smaller changes on the dynamic behaviour of
the quadcopter (e.g. changing the inertia by placing a
larger reflective marker on the vehicle), the maneuver is
performed successfully and the drone remains stable.

6. CONCLUSION

The proposed trajectory planning method proved to be
successful, the quadcopter performed the backflip maneu-
ver both in simulation and real-world experiments. An
important conclusion is that the feedforward controller is
very sensitive to parameter uncertainties and initial condi-
tions, therefore it needs specific tuning for each Crazyflie.
Geometric tracking control overcomes this problem, pro-
viding a highly robust and consistent performance for
the backflipping. Utilizing the robustness of the control
approach, the maneuver has been implemented for simul-
taneous backflipping with three drones, a video of which
is available at https://youtu.be/AhqfXZ-CPqgM.

The proposed trajectory planning method includes model-
based optimization, therefore it is straightforward to apply
for other types of quadcopters (e.g. medium or large-
sized), only the physical parameters need to be adjusted.
The introduced geometric tracking control is applied not
only for different types of quadcopters in Turpin et al.
(2012), but also for other autonomous systems, such as
robotic manipulators in Bullo and Lewis (2004). Hence the
proposed motion planning and control algorithms could be
used in industrial applications, as well.

In our oncoming research work, we intend to use learning
methods to perform complex maneuvers with less expert
knowledge and extend the capabilities of the miniature
quadcopters even more.
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