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Background: Volumetric measurements of fetal brain maturation in the

third trimester of pregnancy are key predictors of developmental outcomes.

Improved understanding of fetal brain development trajectories may aid

in identifying and clinically managing at-risk fetuses. Currently, fetal

brain structures in magnetic resonance images (MRI) are often manually

segmented, which requires both time and expertise. To facilitate the targeting

and measurement of brain structures in the fetus, we compared the results of

five segmentation methods applied to fetal brain MRI data to gold-standard

manual tracings.

Methods: Adult women with singleton pregnancies (n = 21), of whom

five were scanned twice, approximately 3 weeks apart, were recruited [26

total datasets, median gestational age (GA) = 34.8, IQR = 30.9–36.6]. T2-

weighted single-shot fast spin echo images of the fetal brain were acquired

on 1.5T and 3T MRI scanners. Images were first combined into a single 3D

anatomical volume. Next, a trained tracer manually segmented the thalamus,

cerebellum, and total cerebral volumes. The manual segmentations were

compared with five automatic methods of segmentation available within

Advanced Normalization Tools (ANTs) and FMRIB’s Linear Image Registration

Tool (FLIRT) toolboxes. The manual and automatic labels were compared

using Dice similarity coefficients (DSCs). The DSC values were compared using

Friedman’s test for repeated measures.

Results: Comparing cerebellum and thalamus masks against the manually

segmented masks, the median DSC values for ANTs and FLIRT were 0.72

[interquartile range (IQR) = 0.6–0.8] and 0.54 (IQR = 0.4–0.6), respectively.

A Friedman’s test indicated that the ANTs registration methods, primarily

nonlinear methods, performed better than FLIRT (p < 0.001).
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Conclusion: Deformable registration methods provided the most accurate

results relative to manual segmentation. Overall, this semi-automatic

subcortical segmentation method provides reliable performance to segment

subcortical volumes in fetal MR images. This method reduces the costs of

manual segmentation, facilitating the measurement of typical and atypical

fetal brain development.

KEYWORDS

fetal, MRI, brain, linear registration, nonlinear registration, volumetric reconstruction

Introduction

Magnetic resonance imaging (MRI) of the fetal brain for
clinical purposes has advanced considerably in recent years due
to its application in assessing atypical brain development and
brain injury and its potential utility in predicting functional
outcomes in high-risk fetuses (Banović et al., 2014; Brossard-
Racine et al., 2014, 2019; Cesaretti et al., 2016; Andescavage
et al., 2017). Additionally, research-based MRI studies of typical
fetal brain development have provided important normative
data for subsequent comparison with clinical populations (De
Asis-Cruz et al., 2021). MRI methods for the characterization of
fetal brain abnormalities are of key clinical relevance due to the
high incidence of central nervous system malformations (i.e.,
anencephaly, ventriculomegaly, schizencephaly, and callosal
agenesis) in as many as 1/1,000 fetuses (Werner et al., 2018).
In particular, detection of delayed brain growth offers new
opportunities to identify objective biomarkers that can facilitate
a better understanding of fetal brain development, improved
management of high-risk pregnancies (Rutherford et al., 2008;
Cesaretti et al., 2016; Knezović et al., 2019; Wu et al., 2020),
and potentially early detection of neurodevelopmental outcome
(Banović et al., 2014; Bonnet-Brilhault et al., 2018). Additionally,
longitudinal studies point to fetal brain abnormalities as an
important contributor to later life neurodevelopmental and
psychiatric disorders (Thomason, 2020). Better understanding
of typical fetal brain developmental trajectories may aid in
predicting functional outcomes.

Quantitative measurements of the fetal brain and subcortical
volumes can support characterizing normal brain development
and identifying early predictors of brain dysmaturation

Abbreviations: ANTs, advanced normalization tools; ANTs Lin MI, ANTs
linear registration with mutual information similarity metric; ANTs Lin CC,
ANTs linear registration with cross-correlation similarity metric; ANTs NL
MI, ANTs nonlinear registration with mutual information similarity metric;
ANTs NL CC, ANTs nonlinear registration with cross-correlation similarity
metric; CSF, Cerebrospinal Fluid; CNN, convolutional neural network;
FGR, fetal growth restriction; FLIRT, FMRIB’s Linear Image Registration
Tool; FSE, fast spin echo; GUI, graphical user interface; IUGR, Intrauterine
Growth Restriction; MRI, magnetic resonance imaging; TR, repetition
time; TE, echo time; ROI, regions of interest; SyN, symmetric image
normalization.

(Boardman et al., 2010; Rathbone et al., 2011). However,
the traditional manual segmentation of MR images is time-
consuming and requires high-level expertise; thus, it is
impractical to implement these methods to large datasets. For
functional imaging, manual segmentation of 4D fetal images can
take upwards of 30 h to complete a single scanning run in an
individual participant’s data (Nichols et al., 2022). Automatic
segmentation pipelines and routines developed for neonatal and
child imaging protocols are not appropriate for studying fetal
brain tissue due to the variations in image acquisition, and
maturational differences leading to poorer contrast of the gray
and white matter. Therefore, reliable automatic segmentation
methods for fetal MR images are needed to study typical and
atypical fetal brain development.

We applied two atlas-based segmentation techniques, linear
and nonlinear atlas registration algorithms, to perform the
regional segmentation of the cortex and subcortical areas in the
fetal brain to examine their macrostructural development. The
cerebellum and thalamus are key deep brain structures related
to alterations in neuro-cognition and motor behaviors that are
typically seen in infants impacted by growth restriction as well
as preterm birth. Early growth impairments or alterations in
the trajectory of growth in the cerebellum have been found
to be associated with an increased risk of autism (Beversdorf
et al., 2005; Limperopoulos et al., 2007). Further, cerebellar
lesions in adulthood can impair decision-making, working
memory, and planning (Koziol et al., 2014; Clausi et al.,
2015). Deficits in linguistic abilities, anxiety, and impaired
social behavior have also been associated with cerebellar lesions
(Schmahmann, 2004; Ramphal et al., 2021). Early cerebellar
lesions at the vermis area can produce impaired eye gaze,
anxiety, and lack of mental flexibility such as stereotyped
behavior (Wells et al., 2008; Clausi et al., 2015). The thalamus,
is the primary relay station to the cortex and plays an important
role in motor and cognitive functions (Dehghani and Wimmer,
2019). Atypical development of the thalamus is associated with
impaired emotional processing, language, and social cognition
in children and adult populations with neurodevelopmental
disorders (Hardan et al., 2006). Volumetric segmentations of the
cerebellum and thalamus can aid in morphological analysis of
the growth of the two brain structures, which may be beneficial
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to exploring in utero origins of cognitive and motor functions in
the typically developing fetus.

Manual based segmentation methods have been employed
to segment subcortical fetal brain tissues (Twickler et al.,
2002). However, these methods are very time consuming and
require high level expertise. Deep-learning methods such as
deep convolutional neural networks (CNNs) have been used
to segment subcortical structures in fetal MR images (Khalili
et al., 2019; Zhao et al., 2022). Atlas-based segmentation
methods have been used to target deep brain structures in
fetal MR images (Habas et al., 2010). Landmark-based rigid
image transformation has been applied to fetal MR images
to obtain volumetric and cortical measures (Wu et al., 2020).
However, deformable registrations may be more robust. They
may be able to more accurately segment subcortical structures
in fetal MR images compared to linear registration, but are
more computationally intensive and may be more challenging to
implement in clinical settings. Using an atlas-based method, we
examined whether more computationally intensive deformation
image registration methods, using the Advanced Normalization
Tools (ANTs), are needed for adequate subcortical segmentation
compared to an affine image registration FLIRT (FMRIB’s
Linear Image Registration Tool). This research aimed to develop
and implement a semi-automatic pipeline combining semi-
automatic fetal brain reconstruction, segmentation, volumetric
reconstruction, and atlas registration algorithms for subcortical
segmentation in fetal brains to extract and analyze subcortical
volumes.

Materials and methods

Participants

Pregnant individuals with singleton fetuses were recruited
to the study. All participants self-identified as native English
speakers and reported no history of psychiatric illness,
neurological disorder, or hearing impairment.

The study was approved by the Health Sciences Research
Ethics Board at Western University. The research was
conducted according to the principles expressed in the
Declaration of Helsinki. The letter of information was sent to
participants in advance of the study, and a member of the
research team reviewed the protocol. All participants provided
informed consent.

Magnetic resonance imaging protocol

Participants were scanned at two sites, and the study
procedures were maintained at both locations. The majority of
the scans (n = 21) were acquired on a 3T MRI [General Electric
(GE), Milwaukee, WI, SA; MR7500] with a 32-channel GE torso

coil and a 60 cm bore at the Translational Imaging Research
Facility at the Robarts Research Institute. Of the 21 scans, 5
were repeat scans whereby the mothers returned for an identical
scanning session. The other five scans were collected on a 70 cm
bore 1.5T (GE, MR450w) with a GEM posterior and anterior
array coil at London Health Science Center.

The T2-weighted MR images were acquired using a
single shot fast spin echo (SSFSE) sequence [repetition
time (TR) > 1,200 ms, echo time (TE): 81.36–
93.60 ms, voxel size: 0.98 mm × 1.96 mm × 8 mm and
0.125 mm × 0.17 mm × 9 mm], applied in three image planes
(Figure 1).

Volumetric reconstruction of magnetic
resonance images

NiftyMIC (Ebner et al., 2020) was used for fetal brain
segmentation and 3D reconstruction. The main processing
pipeline for detection and segmentation of the fetal brain
included with NiftyMIC involves only a single command
(fetal_brain_seg) and can be executed unsupervised. Various
features of different slice-to-volume reconstructions methods
including NitfyMIC have been compared for fetal MRI, and have
reported comparable results (Payette et al., 2021).

It was essential to first estimate the fetal brain location
in the MR image such that a bounding box was created to
reduce both unrelated contents and image space, as well as the
algorithm processing time for the later more precise fetal brain
segmentation algorithm using 2D P-Net CNN (Yamashita et al.,
2018). NiftyMIC’s fetal_brain_seg command was then executed
on the MR image, generating a mask of the fetal brain in the
surrounding tissue for each slice within the image. This step took
under 2 min per stack of 2D slices.

The resulting masks were then reviewed using FSLeyes.1

These automatically generated 2D fetal brain masks from
NiftyMIC were suboptimal for most participants, resulting in
either over- or under-estimating fetal brain tissue in the slices;
surrounding maternal gray and white tissue were still evident
in the slices, depending on the acquisition and field of view.
Therefore, manual adjustments of the masks, such as filling and
excluding pixels, were performed on all automatically generated
2D masks (n = 26). Time spent manually editing ranged from 1
to 15 min per stack of 2D slices, with the majority taking under
5 min to complete.

After segmenting fetal brains in the 2D planes, the stacks
of 2D slices were reconstructed into 3D volumes, and the 2D
fetal brain segmentations were also reconstructed into 3D space.
The 2D MR image slices could be corrupted by low-frequency
bias field signals to blur the high-frequency contents, such

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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FIGURE 1

The original T2-weighted acquisition of a fetal MR image in axial, sagittal, and coronal planes. T2-weighted images acquired separately in three
separate image planes in the axial (left), sagittal (middle), and coronal (right) in a representative participant. The three image planes were
subsequently used for the reconstruction of 3D images.

as edges and contours. Intensity variance also resulted from
existing bias field signals where the same tissue had a uniformed
pixel gray level in the images. Thus, the stacks of segmented
2D fetal brain slices were first bias-field corrected. Second, the
bias-field corrected 2D slices were reconstructed into a 3D
volume by the slice-to-volume process that rigidly registered
the 2D slices to one randomly selected target slice from the
fetal brain MR images so that all the slices were volumetrically
aligned. The slice-to-volume process also used linear regression
to correct and match the slices’ voxel intensities to the target
slice’s voxel intensity. Third, the volume-to-volume process was
performed on the 2D slices and previously segmented 2D masks
to reconstruct into 3D volumes and 3D fetal brain masks in
native space. Processing times varied but were up to 2 h in some
participants’ data (Uus et al., 2022).

Subsequently, the native-space 3D volumes were rigidly
registered to a spatiotemporal atlas developed from images
acquired at 3T MRI from typically developing fetuses to
obtain the volumetric reconstruction in the standard anatomical
planes of atlas space.

Registration-based subcortical segmentation
The reconstructed 3D fetal brain masks were applied

onto the reconstructed 3D brain volumes for fetal brain
skull stripping (Figure 2). The 3D brain volumes were
segmented with the binary masks for fetal brain-only MR
images. This segmentation was a prerequisite for later
subcortical segmentation utilizing image registration since
image registration for tissue alignment assumes the target object
and the moving object are the same tissue with similar shapes.
Registering the skull-stripped fetal brain atlas to the subject’s
fetal brain, excluding maternal tissue, would reduce unrelated
content for meaningful registration results. The skull stripping
step was performed using 3dcalc from the AFNI toolkit that
multiplied the reconstructed 3D fetal brain image with the
binary 3D masks. Then the orientations of the skull-stripped MR

images were manually adjusted according to the orientations of
the age-appropriate fetal brain atlas using the ITK-SNAP GUI
(Figure 2; graphical user interface2).

Two different registration toolkits were applied to the
reconstructed images and compared to determine an optimal
fetal subcortical segmentation strategy. Deformable registration
was performed using ANTs (Avants et al., 2008) using the
well-known SyN (symmetric image normalization) method, and
linear (affine) atlas registration was performed using FLIRT
(Jenkinson et al., 2012). The fetal brain atlas (Figure 3;
Gholipour et al., 2017) is an averaged atlas from fetuses
imaged at 36 weeks GA with predefined labels of deep-brain
structures, including the thalamus and cerebellum. The atlas was
nonlinearly and linearly registered into the native participant 3D
MRI space. The transformation matrix was saved and applied
onto the atlas mask to warp the tissue labels into subject
space. The transformed atlas labels were used as thalamus and
cerebellum masks and were compared with manual masks by
calculating DSCs for the reliability test.

The applied FLIRT registration tool implemented the
correlation ratio similarity metric for linear (affine) registration
as the default parameters. The ANTs registration tool used a
mutual information (MI) similarity metric for linear (rigid and
affine) registration and nonlinear (SyN) registration. Different
combinations of similarity metrics for both linear and nonlinear
image registration of ANTs were also applied and compared
to find the more suitable image registration method for our
MR image data. The cross-correlation (CC) and MI similarity
metrics, provided in the ANTs toolbox, which are both sufficient
for intra-modality registration were used for rigid, affine, and
SyN registration algorithms.

The FLIRT linear image registration was performed using
the command line tool with the DOF (degree of freedom)
option set at 12. The ANTs linear image registration (12

2 http://itksnap.org
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FIGURE 2

Fetal brain segmentation. Row (A) includes the volumetrically reconstructed fetal brains in three planes. The red areas are the manually
segmented fetal brain binary masks. Row (B) includes the orientation-corrected and skull-stripped (using the binary masks in red) fetal brain
volumes in three planes.

FIGURE 3

The average 36-week GA fetal brain atlas, including cerebellum
and thalamus labels. The axial, sagittal, coronal, and 3D
rendered views of the age-appropriate fetal brain atlas whereby
deep brain tissues are color-coded.

DOF) was performed using the antsRegistration command
line tool by defining the rigid and affine transformations. The
ANTs nonlinear registration (millions of DOF) algorithm
using the MI metric was performed using the default
antsRegistraionSyNQuick.sh script. Keeping every other
parameter the same as the antsRegistraionSyNQuick.sh script,
the ANTs nonlinear registration using the CC metric was also
performed using the antsRegistration command line tool by

TABLE 1 Maternal ages and fetal gestational ages.

Characteristic Total (n = 26)

Maternal ages, median years (IQR) 33.5 (29.3–36)

Fetal gestational age, median weeks (IQR) 34.8 (30.9–36.6)

Ages of the mothers (years) and fetuses (weeks’ gestation), IQR, interquartile range
(25%ile–75%ile).

adding the SyN transformation definition upon the linear
registration parameters. To apply the transformation matrices
to the atlas masks, the FLIRT command line tool was defined
with the applyxfm option, and the ANTs command line tool was
antsApplyTransformations. The whole fetal brain, cerebellum,
and thalamus volumes were computed from the skull-stripped
fetal brain masks and subcortical masks.

Manual subcortical segmentation protocol
Anonymized with respect to GA, the left and right thalamus

and cerebellum were delineated in all reconstructed T2-
weighted images. The 3D reconstructed T2-weighted images
were visualized and segmented using ITK SNAP. The displays
provided simultaneous coronal, sagittal and axial views of the
brain and created a 3D image of the thalamus and cerebellum.
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FIGURE 4

A segmented and volumetrically reconstructed fetal brain image
using NiftyMIC. The original 2D slices of fetal MR images were
automatically segmented and manually adjusted for fetal brain
2D masks. Then the 2D slices and 2D brain masks were
reconstructed into 3D volumes and 3D masks with motion
correction. This figure shows an example of the skull-stripped,
orientation-adjusted 3D fetal brain volumes in axial, sagittal,
coronal, and 3D-rendered views.

TABLE 2 Fetal brain volumes.

Characteristic Total (n = 25)

Cerebellum, median volumes mm3 (IQR) 13,365 (10,167–17,783)

Thalamus, median volumes mm3 (IQR) 3,850 (2,714–8,381)

Whole brain, median volumes mm3 (IQR) 373,186 (285,450–405,289)

GA, median weeks (IQR) 34.6 (30.9–36.4)

GA, Gestational age (weeks), IQR, interquartile range (25%ile–75%ile).

Bilateral thalamus and cerebellum masks were created through
the visual identification and tracing of these brain regions in
each slice. A three-step segmentation protocol was applied
to each image to segment the cerebellum and thalamus. The
thalamus was segmented first, followed by the cerebellum. In
each scan, the thalamus was present in approximately 40 slices,
whereas the cerebellum was present in approximately 50 slices.
Segmentations were based on the intensity differences between
white and gray matter.

Step 1: Segmentation of the cerebellum and thalamus.
Dependent on the participants and the resolution of
the images, the rater segmenting the images manually
composed segmentations through all three viewpoints
(sagittal, coronal, and axial) to ensure that the masks
were accurate in all viewpoints. The initially completed
segmentations were verified in the other views, and any
incorrectly identified areas were omitted and revised.

Step 2: Inspection of the 3D surface. The segmented
cerebellum and thalamus masks were represented in a 3D
display through ITK-SNAP. The surface of the cerebellum
and thalamus is expected to be smooth throughout, so
any areas on the masks that protruded excessively were
trimmed through a smoothing feature on ITK-SNAP.
Step 3: Segmentation of left and right hemispheres. Once
complete, cerebellum and thalamus masks were segmented
into left and right hemispheres. Each mask was segmented
and split into the left and right hemispheres by identifying
the brain’s midline. These segmentations were verified
across all three viewpoints to ensure accuracy and to revise
the original segmentations.

Protocol reliability testing

Three fetal MR images were randomly selected and
re-segmented by the same rater to assess the reliability
of the three-step manual segmentation protocol. The re-
segmentations of the left and right thalamus and cerebellum
in the fetal MR images were performed 6 months after the
original segmentations to ensure that the rater’s memory
would not unduly influence the results. This type of test-
retest metric, intra-rater reliability, can be used as an upper
bound metric to assess the accuracy of the segmentations of
the thalamus and cerebellum. The protocol’s reliability was
measured using the Dice similarity metric, which evaluates
the spatial and volumetric overlap of the original and re-
segmented label volumes.

Manually adjusting automatically
generated masks from NiftyMIC

Anonymized with respect to GA, whole brain masks were
manually segmented in all 25 fetal brain scans. A three-step
segmentation protocol (described below) was applied to each
image to segment the whole brain masks. The whole brain
appeared in approximately 90 slices.

Step 1: Automatic segmentation. Whole brain masks
were generated automatically for each subject using
NiftyMIC software.
Step 2: Manual segmentation. Brain masks generated
automatically through NiftyMIC were contrasted against
the original brain scan for each subject on ITK-SNAP.
Each mask was manually edited to ensure that the mask
fit the image. Dependent on the subject and the clarity of
the image, the individual segmenting the images manually
worked through all three viewpoints (sagittal, coronal,
and axial) to ensure that the masks were accurate in all
viewpoints. The initially completed segmentations were
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FIGURE 5

Fetal subcortical volumes (y-axis) plotted in relation to gestational age (x-axis). Fetal thalamus (top, left), whole brain (top, right) and
cerebellum (bottom, left) volumes were plotted in relation to gestational age in weeks. The cerebellum, thalamus and total cerebral volumes
showed a positive linear association with gestational age (all, p < 0.05). (Bottom, right) The color-coded fetal atlas overlaid on a atlas MRI
demonstrates the location of the thalamus (orange/purple) and the cerebellum (gray).

verified in the other views, and any incorrectly identified
areas were omitted and revised. Any area of the mask
that protruded excessively outside the brain region was
removed. Additionally, any areas of the brain that were not
covered by the mask were filled in appropriately.
Step 3: Segmentation of left and right hemispheres. Once the
segmentations were complete, the whole brain masks were
segmented into left and right hemispheres. Each mask was
segmented and split into the corresponding hemisphere by
identifying the midline of the brain. These segmentations
were verified across all three viewpoints to ensure accuracy
and to revise the original segmentations.

Software installation and operating
system decency

The computer used in this study was built with the
10th generation of intel i7 CPU (central processing unit)
with 8 cores and 16 threads, 32 GB of RAM (random
access memory). The operating system used for this study
was Ubuntu 18.04. ITK-SNAP (version 3.6.0), AFNI (version
20.3.01), convert3d package (version 1.0.0), FSL package
(version 6.0.4) including FLIRT was installed locally from
source. ANTs was provided by and installed on the SciNet
supercomputer center at the University of Toronto (i.e., Digital

Research Alliance of Canada). NiftyMIC was installed with the
provided Docker image.

Statistical analysis

The robustness of the entire automatic fetal deep
brain structure segmentation workflow was tested by
comparing the automatically segmented masks and
manually segmented masks by calculating the DSCs of
the common areas covered. The DSC, which computes
the ratio of two times the common area to the sum of
both areas, was calculated using the formula D = 2(A∩B)

A+B ,
where A and B represent the automatic and manual
masks. The masks for the left and right thalamus and
cerebellum were combined.

Statistical analyses were performed using SPSS (version 27,
Armonk, NY, USA). The resulting DSCs were non-normally
distributed, based on Shapiro–Wilk’s tests (all, p < 0.02).
Therefore, a nonparametric Friedman’s test for repeated
measures data was applied to the DSCs. We had a single
hypothesis regarding deformable registration methods, so the
alpha level was set at p < 0.05. The DSCs range from 0,
indicating no spatial overlap between the binary segmentation
results calculated automatically versus gold-standard manual
segmentations, to 1, indicating complete overlap (Cohen, 1960).
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Moderate overlap occurs when DSCs are 0.5–0.6, while very
good overlap occurs at >0.7.

To calculate the DSCs, four regions of interest (ROI):
the right cerebellum, left cerebellum, right thalamus, and left
thalamus, were extracted from the registration-based subcortical
masks using the combination of 3dcalc and 3dcluster command
line tools from AFNI. The reason for this step is that the
manually drawn subcortical masks of one participant were
traced separately for the four ROIs described above. The DSCs
were then calculated by overlaying the automatically extracted
ROIs from the five different registration methods with the
corresponding manual ROIs using the c3d-overlay command
line tool of the convert3d package from ITK-SNAP. The c3d
command line tool produced the DSCs and redirected the
output numbers to print into text files. An in-house Python
script was developed to read and write the DSCs from the text
files into CSV format.

Results

Participants

A total of 21 pregnant adult women participated in the
MRI study. Five women returned for a second scan (median
time between scans = 3.5 weeks). This resulted in a total
of 26 scans that were subsequently used for the analysis.
The majority of scans were acquired during the women’s
third trimester of pregnancy (n = 24, 92%), with the other
scans occurring in the near third trimester (range: 27.6–
39 weeks of GA). The median GA for all 26 scans was
34.8 weeks (Table 1).

Two-dimensional fetal brain
segmentation and 3D volumetric
reconstruction

The 2D fetal brain masks of the stacks of the original
fetal brain MR images were automatically segmented using
NiftyMIC in the axial, coronal, and sagittal image planes. For
the NiftyMIC volumetric reconstruction algorithm to perform
optimally, the 2D auto-masks were manually adjusted using
ITK-SNAP for the over- and under-estimations of fetal brain
tissue by the NiftyMIC segmentation algorithm. The volumetric
reconstruction process was performed on all 26 scans from
the 21 total participants. On a total of 25 scans from 20
participants were 2D masks (96%) successfully reconstructed
into 3D space (Figure 4). One participant’s data, from the total
of 21 participants, was excluded due to a complete failure of the
fetal brain segmentation and volumetric reconstruction routine.
Once reconstructed, the image dimensions were X = 122,
Y = 127, Z = 103 and the voxel size was 1 mm3.

TABLE 3 Intra-reliability test – Dice similarity coefficients.

Dice similarity coefficients

Cerebellum 0.78 (0.7–0.8)

Thalamus 0.6 (0.5–0.7)

Overall 0.7 (0.5–0.7)

The median Dice similarity coefficients for cerebellar and thalamic segmentations, and
both segmentations combined. IQR, interquartile range (25%ile–75%ile).

Skull stripping and orientation tags correction were
successfully applied to the reconstructed 3D volumes. Based
on the skull-stripped automatically reconstructed 3D fetal
brain MR images, manual segmentations of the thalamus and
cerebellum on both left and right sides were successfully
performed. The median volumes of the subcortical ROI and
whole brain volumes are presented in Table 2, along with
the interquartile ranges (IQR). Left and right volumes were
combined.

Of the 25 scans, the majority (n = 21) were completed
on a 3T MRI and 4 were completed at 1.5T. None of the
manually segmented volumes for the thalamus, cerebellum or
total cerebral volumes differed based on the Tesla strength of
the magnets when adjusting for gestational age (all, p > 0.05).
The averaged left and right thalamus and cerebellum volumes
were plotted against gestational age (Figure 5). All regions, the
cerebellum (r = 0.74, p < 0.001), thalamus (r = 0.7, p < 0.001)
and the total cerebral volumes (r = 0.8, p< 0.001) were positively
associated with gestational age, indicative of larger volumes at
older gestational ages.

Manual segmentation protocol
validation: Intra-reliability test

The thalamus and cerebellum were re-segmented by a
single rater (MM) to assess the consistency of the three-step
manual segmentation protocol. Re-segmentations of both the
left and right thalamus and cerebellum in these images were
performed at least 6 months after the original segmentations
were performed to minimize memory effects in the rater. The
intra-reliability test results are listed in Table 3. The IQR of the
median DSCs of cerebellar and thalamic segmentations were
0.78 and 0.6, respectively. The overall median DSC was 0.7.

Registration-based segmentation
reliability test: Comparisons of dice
similarity coefficients

The ANTs- (5–10 h/dataset) and FLIRT-based
(10 min/dataset) registrations of the 36-week GA fetal
brain atlas into the native spaces of the individual fetal MR
images were successfully processed in all participants. The
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FIGURE 6

Cerebellar masks: registration-based segmentation (red) versus
manual segmentation (yellow). The masks are shown in axial,
coronal, and sagittal planes from left to right. Row (A) ANTs
linear registration (MI); (B) ANTs linear registration (CC); (C) ANTs
nonlinear registration (CC); (D) ANTs nonlinear registration (MI);
and (E) FLIRT linear registration.

median DSCs comparing the five image registration methods
to the manual segmentation method were: (1) FLIRT linear
registration (affine) using the correlation ratio similarity
metric, (2) ANTs linear registration (rigid and affine) using
the MI similarity metric (ANTs Lin MI), (3) ANTs linear
registration using the CC similarity metric (ANTs Lin CC),
(4) ANTs nonlinear registration (rigid, affine, and SyN)
using the MI similarity metric (ANTs NL MI), and (5)
ANTs nonlinear registration using the CC similarity metric
(ANTs NL CC) for left and right cerebellum and thalamus
segmentations. The cerebellar masks produced by the five
registration methods using different similarity metrics are
shown in Figure 6.

The median DSCs of the five registration methods for
the cerebellum segmentations, thalamus segmentations, and
both segmentations are listed in Table 4. Overall, the FLIRT
linear registration resulted in non-optimal estimation with
gross misalignment of the masks on the fetal MR image. The
ANTs nonlinear registration (CC) had the highest median Dice
similarity index. The ANTs non linear registration (MI) also
demonstrated a very good performance.

The median DSCs of both subcortical segmentations
revealed that ANTs NL CC and ANTS NL MI were high
with the linear registrations being comparable, while

TABLE 4 Median Dice similarity coefficients.

Registration
method

Both Cerebellum Thalamus

FLIRT 0.54 (0.44–0.63) 0.62 (0.46–0.73) 0.52 (0.39–0.66)

ANTs Lin MI 0.70 (0.58–0.74) 0.80 (0.73–0.83) 0.59 (0.48–0.7)

ANTs Lin CC 0.72 (0.59–0.75) 0.80 (0.74–0.83) 0.61 (0.48–0.71)

ANTs NL MI 0.72 (0.63–0.76) 0.79 (0.75–0.83) 0.62 (0.49–0.68)

ANTs NL CC 0.74 (0.65–0.76) 0.79 (0.76–0.82) 0.65 (0.52–0.71)

The median Dice similarity coefficients and the interquartile ranges of the cerebellum,
thalamus, and both subcortical segmentations using five registration methods compared
to manual segmentations.

TABLE 5 Post hoc comparisons of mean ranks: fetal cerebellar
segmentations.

Sample 1–sample 2 Standard test statistic P-value*

FLIRT – ANTs NL CC 6.77 <0.001

FLIRT – ANTs Lin MI 7.65 <0.001

FLIRT – ANTs NL MI 8.41 <0.001

FLIRT – ANTs Lin −8.48 <0.001

ANTs NL CC – ANTs Lin MI 0.89 0.9

ANTs NL CC – ANTs NL MI 1.64 0.9

ANTs NL CC – ANTs Lin −1.71 0.88

ANTs Lin MI – ANTs NL MI 0.76 0.9

ANTs Lin MI – ANTs Lin CC −0.82 0.9

ANTs NL MI – ANTs Lin CC −0.06 0.9

Results of a Dunn’s pairwise post hoc tests on the mean ranks. *Bonferroni corrected for
multiple comparisons. Significant values are in bold.

those produced by FLIRT were the lowest. The DSCs
for the linear (i.e., ANTs rigid and affine, and FLIRT
affine) and nonlinear (i.e., ANTs nonlinear with MI and
CC similarity metrics) methods for the thalamus and
cerebellum segmentations were compared using Friedman’s
Repeated Measure Analysis of Variance by Ranks. Upon
comparison of the left and right cerebellar DSCs (n = 50),
the calculated mean ranks were significantly different from
one another (df = 4, test statistic = 100.84, p < 0.001). Post
hoc pairwise comparisons revealed that the mean ranks
were significantly different for the FLIRT-based registrations
compared to the ANTs linear and nonlinear methods (all,
p < 0.001; Table 5). Additionally, none of the mean ranks
differed for any of the ANTs based registration methods (all
p > 0.88).

Subsequently, the DSCs produced by the linear and
nonlinear registrations algorithms compared to the
manual segmentations were examined for the left and
right thalamic segmentations and were also significantly
different (n = 50, df = 4, test statistic = 47.36, p < 0.001).
Pairwise comparisons indicated slightly different results than
seen for the cerebellar segmentations, whereby FLIRT-
based registrations were associated with significantly
different mean ranks compared to the ANTs-based
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TABLE 6 Post hoc comparisons for mean ranks: fetal
thalamic segmentations.

Standard test statistic P-value*

FLIRT – ANTs Lin MI 2.15 0.32

FLIRT – ANTs Lin CC −3.67 0.002

FLIRT – ANTs NL MI 4.49 <0.001

FLIRT – ANTs NL CC 6.45 <0.001

ANTs Lin MI – ANTs Lin CC −1.52 0.9

ANTs Lin MI – ANTs NL MI 2.34 0.19

ANTs Lin MI – ANTs NL CC −4.30 <0.001

ANTs Lin CC – ANTs NL MI 0.82 0.1

ANTs Lin CC – ANTs NL CC 2.78 0.05

ANTs NL MI – ANTs NL CC −1.96 0.5

Results of a Dunn’s pairwise post hoc tests on the mean ranks. *Bonferroni corrected for
multiple comparisons. Significant values are in bold.

nonlinear registration methods, including ANTs NL
MI and NL CC, but also the ANTs Lin CC method (all
p < 0.002; Table 6).

Comparison of the mean ranks indicated that ANTs NL CC
performed significantly better than ANTs Lin MI (p < 0.001).

We further compared the volumes extracted by
the 5 registration methods relative to the manually
segmented volumes. The extracted volumes for the
cerebellum and thalamus based on the FLIRT and ANTs-
based methods were subtracted from the manually
segmented volumes. The differences in the volumes
were then divided by the manually segmented volumes
and the resulting values were converted to percentages
(Figure 7). Overall, the cerebellar segmentations were
more likely to be underestimated by ANTs-based
methods. FLIRT-based registration of the thalamus
and the cerebellum resulted in overestimation of
the volumes.

Discussion

Fetal MRI represents one of the next frontiers in clinical,
translational and basic science research, not only to improve
our understanding of the developing fetal brain, but to
aid in early diagnosis, particularly for fetuses at-risk for
adverse neurodevelopmental outcomes (Andescavage et al.,
2017; Mufti et al., 2021; Rajagopalan et al., 2021). The
study of the brain and other organs in the fetus has
been limited to primarily non-invasive ultrasound technology.
While ultrasound offers many advantages due to its low
cost and ease of use in hospital settings, it is limited
in terms of its spatial resolution to study fetal brain
structure. MRI of the fetal brain offers superior 3D image
resolution and can be used to study brain volumetric
development.

FIGURE 7

Comparisons of thalamic and cerebellar volumes produced by
FLIRT- or ANTs-based methods relative to manually segmented
volumes. The overlap (positive values indicate overestimation,
negative values indicate underestimation) is displayed according
to the registration methods from top to bottom. Top to
bottom: ANTs nonlinear registration (CC, cross-correlation);
ANTs nonlinear registration (MI, mutual information); ANTs linear
registration (CC); ANTs linear registration (MI); and FLIRT linear
registration.

This work aimed to develop a semi-automatic pipeline
to segment fetal brain volumes acquired in third-trimester
images. A recently developed deep learning algorithm
was employed to mask the fetal brain and reconstruct
MR images in second-trimester fetuses. Analyzing fetal
MR images using brain segmentation toolkits designed
for adult populations is impractical due to the presence
of motion artifacts from fetal movements. This study
aimed to overcome this obstacle in fetal MRI by applying
segmentation, volumetric reconstruction, and image
normalization toolkits to build a semi-automated process
for fetal brain subcortical segmentation in T2-weighted
fetal MR images that were acquired during the third
trimester of pregnancy.

The fetal brain was masked in three anatomical 2D
planes (axial, sagittal, and coronal) in the first step. Then the
segmented 2D fetal brains and brain masks in three planes were
reconstructed into 3D brain volumes and masks. After skull-
stripping and orientation tag correction, linear and nonlinear
image registration methods were evaluated in terms of their
accuracy in segmenting cortical and subcortical structures by
applying an age-appropriate MRI atlas. In turn, the subcortical
labels of the chosen atlas were aligned with the individual
fetal MR images using two different image registration toolkits
(ANTs and FLIRT) using linear (ANTs Lin MI/CC and FLIRT)
and nonlinear registration methods (ANTs NL MI/CC). The
optimal cortical and subcortical segmentation performance was
determined by applying and comparing two image registration
toolkits for both nonlinear and linear image registration
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algorithms with different configurations of similarity metrics.
The aligned subcortical labels were then compared with
manually segmented thalamus and cerebellum subcortical
masks. The manually labeled masks were considered ground
truth for later comparison with the atlas-based registration.
The nonlinear registration methods within ANTs provided
improved results compared to a linear transformation (FLIRT)
for the cerebellum segmentations as well as in comparison to
the linear methods within ANTs, primarily for the thalamic
segmentations. The ANTs MI and CC similarity metrics are
optimized in terms of translation, rotation, scaling, and shearing
during the registration of the images. Nonlinear registration
methods, while computationally more intensive, may be more
suitable for small samples of fetal brain images acquired during
the third trimester to have higher quality results. Overall,
our findings indicated that ANTs-based nonlinear registration
methods using the MI and CC similarity metric performed
adequately and may be more practical for processing larger
datasets but with additional computational processing time.

Semi-automatic registration-based
fetal subcortical segmentation

This research utilized a machine learning-based
segmentation algorithm from the NiftyMIC toolkit (Ebner
et al., 2020) to significantly mitigate motion artifacts, segment
the fetal brain images acquired during the third trimester in 2D,
and reconstruct 2D images in three planes into 3D volumes. The
NiftyMIC toolkit (Ebner et al., 2020) is open-source, Python-
based software for research within the Guided Instrumentation
for Fetal Therapy and Surgery (GIFT-Surg) project, which is
an international research consortium focused on developing
technology, tools and training to facilitate fetal surgery (Joyeux
et al., 2018). The software can reconstruct an isotropic, high-
resolution brain volume from multiple low-resolution 2D image
slices acquired in fetuses. The NiftyMIC 2D segmentation was
originally trained and developed for second-trimester fetal
MR images. This masking step is essential for the remaining
workflow steps. In the current work, each fetal mask required
visual inspection and manual editing to aid the performance
of the automatically generated labels. With the adequate 2D
fetal brain masks serving as input, the NiftyMIC volumetric
reconstruction process performed smoothly. Overall, NiftyMIC
performed well on most images, and the performance was
comparable to what was published in second-trimester images.

Machine learning algorithms are known to theoretically
perform well to learn and predict data patterns when the
process is trained with enough data (Cardenas et al., 2019).
This performance depends on the problem’s complexity and the
sophistication of the machine learning algorithm. The NiftyMIC
2D brain segmentation of third-trimester fetal MR images
did not always perform reliably on the third-trimester MRI

data. The NiftyMIC (niftymic_segment_fetal_brains) machine
learning algorithm was originally trained with MR images of
second-trimester healthy fetuses and fetuses diagnosed with
spina bifida. Exponential growth of the fetal brain from the
second to the third trimester results in significant cortical and
subcortical morphology changes.

Additionally, during the third trimester, the fetal brain
becomes increasingly myelinated (Dubois et al., 2008a,b, 2014;
Wilson et al., 2021). Structural MR images weighted by T1 or
T2 relaxation times will be influenced by different water and fat
contents in the fetal brain compared to that seen in adults. This
difference results in different signal intensities in the voxels of
MR images of the fetal brain, which can vary in fetuses even
compared to 6-month-old infants due to the rapid changes in
overall growth and myelination (Dubois et al., 2014). Less is
known about tissue intensity changes between second-trimester
and third-trimester fetuses; however, in relation to the current
work, the image intensity of the voxels of the gray and white
matter tissues of the training data used for NiftyMIC may have
been quite different from that of our third-trimester data. These
factors could have notably influenced the machine learning
algorithm’s performance.

The linear and nonlinear registration algorithms paired with
various similarity metrics were successfully applied to register
the labeled atlas into native space for cortical and subcortical
segmentation of the MRI scans acquired in third-trimester
fetuses. The use of different similarity metrics applied to fetal
deep-brain segmentation was explored. The registered thalamic
and cerebellar masks were compared to manually segmented
masks. The ANTs nonlinear registration tool (Avants et al.,
2008) reliably segmented deep brain structures of fetal brains
on MR images for both the cerebellum and thalamus. The
DSCs of ANTs Lin CC indicated a good agreement between
the atlas-based and manual segmentations. The ANTs Lin MI
registration had similar DSCs for both thalamic and cerebellar
segmentations. According to the guidelines for interpreting
DSCs (Cohen, 1960), the median DSCs of ANTs Lin MI and
CC indicated a substantial agreement between the registration-
based semi-automatic segmentation and manual segmentation
for estimating fetal deep brain structures. However, there was a
notable performance difference between thalamic and cerebellar
segmentations using all five registration methods. The median
DSCs of the thalamic segmentations were lower than that of the
cerebellar segmentations, which indicated very good agreement
(>0.7) and only moderate agreement (0.5–0.6) between the
registration-based and manual thalamic segmentations using
ANTs Lin MI and CC. Findings indicated that ANTs-based
nonlinear image registration did not outperform ANTs-
based linear image registration for segmenting the cerebellar
structures. The CC similarity metric, suitable for intra-modality
MR image normalization, was sufficient for our fetal MRI
data. The additional calculations involving histogram matching
from the MI metric did not substantially improve the image
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registration quality. Therefore, using the CC metric, which
requires less computation time to register the data, is sufficient
for processing datasets, particularly those with larger sample
sizes.

This semi-automatic fetal subcortical segmentation
method may be very beneficial for future studies of fetal
neurodevelopment. The in utero origin of neurodevelopmental
delay reflected in smaller cortical and subcortical volumes can
be studied by applying this methodology to a larger fetal MR
image dataset that has the potential for significant savings in
terms of time and labor devoted to manual segmentations.
The whole brain volume and deep brain structures such as the
hippocampus are important for learning and memory processes
and can be segmented from the MR images for comparison,
analysis and developmental outcome prediction (Eichenbaum,
1997; Bird and Burgess, 2008; Milivojevic and Doeller, 2013).
The proposed methodology could also be utilized to study
second-trimester fetal volumetric development. From the
second to the third trimester, fetal neurodevelopment could be
monitored by segmenting and calculating subcortical and brain
growth in high-risk groups. This method could potentially
reveal when the variations in brain morphology occur to aid
in the early diagnosis of fetal brain abnormalities in clinical
settings.

The ANTs-based nonlinear image registration performed
slightly better than the ANTS-based linear image registration
for aligning the fetal brain atlas to our dataset’s native MR
image space. However, this difference was not strongly evident
statistically. The amount of deformation of the image when
warping the atlas might have been minimal, given that the
difference in the shape of the fetal brain of the atlas and our
acquired fetal MR images was comparable in terms of the
anatomy. Linear mislocalization of the fetal brains between
the atlas image and the target image may have contributed to
spatial differences. The ANTs-based nonlinear registration is
more time-consuming than linear registration, with a higher
requirement of computation abilities while providing reliable
subcortical segmentation performance.

Conclusion

Antenatal development of the fetal cortex and subcortical
structures is a complex neurophysiological process. The
development of the nervous occurs through genetically
predetermined events, including cellular proliferation, neuronal
migration, and differentiation of cells into specialized subtypes,
followed by synaptogenesis, which provides the formation of
cortical and subcortical circuitry. Environmental influences
such as maternal diet and even stress can alter these processes
and, in more severe cases, can lead to growth restriction
of the fetus. The study of fetal brain development using
volumetric MRI provides a window into the development of

the cortex and subcortical structures in typical and atypically
developing fetuses. This work developed and evaluated a semi-
automatic pipeline to segment the cortex and subcortical
structures in third-trimester images. A novel deep learning-
based algorithm was used to segment and reconstruct 3D MR
images of the entire fetal brain. An atlas to segment cortical and
subcortical structures was aligned to the fetal brain images. Five
registration algorithms were compared to gold-standard manual
segmentations of subcortical structures. Overall a deformable
registration method, ANTs using a CC metric provided optimal
performance to segment the cortical structures, and may
be favorable for large datasets or for use in high-resource
settings without access to high throughput computational
facilities. Future work, using deep-learning methods for image
registration and segmentation may facilitate more automated
methods for cortical and subcortical parcellation in the fetus.
Larger datasets with wider gestational age ranges would aid
in facilitating artificial intelligent approaches to fetal brain
development. Additionally, applying this atlas-based method
to study deep-brain macrostructural development in high-
risk fetuses would be a future step. Fetal brain growth
is a key marker for developmental outcomes. Methods to
characterize subcortical development in typically and atypically
fetuses could aid in the detection of potential biomarkers
associated with delayed or arrested growth. Utilizing multi-
modal MR methods may also further facilitate fetal brain
tissue extraction.
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