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Abstract 

 Extracellular vesicles (EVs) are secreted by all cells into bodily fluids and play an 

important role in intercellular communication through the transfer of proteins and RNA. There is 

evidence that EVs specifically released from mesenchymal stromal cells (MSCs) are potent cell-

free regenerative agents. However, for MSC EVs to be used in therapeutic practices, there must 

be a standardized and reproducible method for their characterization. The detection and 
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characterization of EVs is a challenge due to their nanoscale size as well as their molecular 

heterogeneity. To address this challenge, we have fabricated gold nanohole arrays of varying size 

and shape by electron beam lithography. These platforms have the dual purpose of trapping single 

EVs and enhancing their vibrational signature in surface-enhanced Raman spectroscopy (SERS). 

In this paper, we report SERS spectra for MSC EVs derived from pancreatic tissue (Panc-MSC) 

and bone marrow (BM-MSC). Using principal component analysis (PCA), we determined that the 

main compositional differences between these two groups are found at 1236, 761, and 1528 cm-1, 

corresponding to amide III, tryptophan, and an in-plane -C=C- vibration, respectively. We 

additionally explored several machine learning approaches to distinguish between BM- and Panc-

MSC EVs and achieved 89 % accuracy, 89 % sensitivity, and 88 % specificity using logistic 

regression. 
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Introduction 

 Extracellular vesicles (EVs) are a highly complex group of membrane-bound vesicles 

released by all cells into bodily fluids such as saliva, plasma, milk, and urine [1]. EVs are divided 

into three sub-classes based on their size, biogenesis, and differences in molecular content [2]. 

Apoptotic bodies, ranging in diameter from 1 – 5 μm, are formed during the late stages of apoptosis  

and typically contain cytoplasmic organelles and genetic material [3, 4]. Smaller vesicles, 

exosomes and microvesicles (diameter ranging from 30 – 150 nm and 100 – 1000 nm, 

respectively), are of particular interest to researchers due to their involvement in intercellular 

signalling and communication through the transfer of proteins and RNA [5, 6]. Researchers aiming 

to develop methods for non-invasive and early stage disease detection, primarily in cancer 

research, have focused their attention on EVs as they contain biomarkers reflective of their parent 

cell [7, 8]. Not as extensively researched, however, are the regenerative and therapeutic 

applications of EVs [9, 10]. 

Mesenchymal stromal cells (MSCs) have been shown to induce cellular changes in nearby 

cells through the release of chemical messengers, known as paracrine signalling, particularly via 

their secreted EVs [11]. EVs released from MSCs are potent cell-free regenerative and restorative 

agents that are effective in neural [12, 13, 14], myocardial [15, 16, 17], hepatic [18, 19], renal [20, 

21, 22], cutaneous [23, 24, 25], skeletal [26, 27], cartilage [28, 29], and muscular regeneration [30, 

31]. In particular, MSCs derived from bone marrow (BM-MSC) have been widely studied due to 

the regenerative potential of their secreted EVs. For example, BM-MSC EVs have been shown to 

reduce neuroinflammation in traumatic brain injuries [32], promote survival of retinal ganglion 

cells and the regeneration of their axons [33], suppress inflammation response in acute myocardial 

infarction [34], and promote proliferation of cisplatin-damaged proximal tubular epithelial cells 
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[35]. However, to be used in therapeutic and regenerative practices, sensitive and reproducible 

characterization protocols must be established. The characterization of EVs is challenged by their 

nanoscale size (30 – 150 nm for exosomes and 100 – 1000 nm for microvesicles) and heterogeneity 

in terms of size range, morphology, molecular composition, and biogenic mechanisms [3, 36, 37]. 

Plasmon-enhanced spectroscopies are promising techniques for the detection and 

characterization of nanoscale biological samples such as EVs. Surface-enhanced Raman 

spectroscopy (SERS) is a plasmon-based, non-destructive, and label-free technique capable of 

single-molecule detection [38, 39]. The same chemical information is gathered as in traditional 

Raman spectroscopy, but with greatly enhanced signal. There are two general methods of EV 

capture for SERS analysis: immunoaffinity-based methods and size-based methods [40]. In the 

immunoaffinity-based approach, EVs are specifically captured based on the surface proteins they 

are known to express, either by antibody-functionalized SERS probes [41, 42] or antibody arrays 

[43, 44]. The largest disadvantage to this method is the suppression of some EV signals in a given 

sample since EVs are known to be molecularly heterogeneous, as shown by Kim et al [45]. To 

work around this, the authors instead functionalized their SERS substrates with varying types of 

self-assembled monolayers. A simpler approach to capturing EVs without eliminating some of 

their signals is the size-based capture method, which aims to trap single EVs. Smaller EVs 

(typically < 1000 nm in diameter) are targeted while larger particles are excluded. Examples of 

such SERS substrates include nanobowls [46], nanorods [47], and nanopyramids [48]. 

  In this proof-of-concept study, we have investigated EVs derived BM-MSCs as well as 

MSCs derived from pancreatic tissue (Panc-MSC) by SERS. While SERS has been extensively 

used in the characterization of tumour-derived EVs, its application in the characterization of MSC 

EVs has been largely underexplored. Although BM-MSC EVs have been characterized by Raman 
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spectroscopy, none to date to our knowledge have been characterized using SERS [49, 50]. 

Previous preliminary work reported from our group has demonstrated the feasibility of using these 

platforms for SERS characterization of Panc-MSC EVs, but a small sample size was reported [51]. 

Herein, we have built on these concepts and further explored the capacity of these nanohole arrays 

to trap, detect, and differentiate EVs from these two sources. We have fabricated plasmonically 

active gold nanohole arrays of varying size (100 – 1000 nm) and shape (circles, squares, and 

triangles) by electron-beam lithography (EBL) that are capable of EV trapping and signal 

enhancement for SERS. This paper reports spectral fingerprints associated with both EV sources, 

and is the first to report SERS spectra of BM-MSC EVs. Additionally, we have determined the 

main compositional differences between Panc-MSC and BM-MSC EVs using principal 

component analysis (PCA) and employed machine learning algorithms to differentiate the two 

groups with high accuracy, sensitivity, and specificity. 

   

Experimental 

Electron-beam lithography (EBL) 

Nanohole arrays were fabricated using the protocol established by Kaufman et al [51]. A negative-

tone resist, ma-N 2405 (Microchem), was spin-coated onto reactive O2-cleaned glass coverslips at 

3000 rpm for 45 seconds, corresponding to a thickness of approximately 500 ± 50 nm, then baked 

at 90 °C for 90 seconds. AquaSAVETM conductive polymer (Sigma-Aldrich) was then spin coated 

at 1000 rpm for 45 seconds and baked at 90 °C for 45 seconds. EBL and scanning electron 

microscopy (SEM) imaging were performed using a LEO 1530 scanning electron microscope 

(Zeiss) with a 30.0 kV EHT voltage, 10.0 μm aperture, and 30.0 – 50.0 pA current. Arrays of 

varying shape (square, circle, and triangle) and size (0.1 – 1.0 μm in 0.1 μm increments, 1.0 μm 
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width between holes) were written using ELPHY Quantum software (Raith Nanofabrication). All 

patches measured 50 × 50 μm2. Following beam exposure, substrates were soaked in DI water to 

remove the conductive layer. Samples were developed in MF-319 (MicroChem) for 40 seconds, 

soaked in DI water, and air dried to avoid collapsing the nanopillars. Samples were subjected to 

an O2 plasma descum process (Trion Technology) for 60 seconds to remove residual resist 

surrounding the nanopillars. A 3 nm adhesion layer of titanium was then deposited onto the 

samples followed by 30 nm of gold by electron beam evaporation (Angstrom Engineering). For 

lift-off, samples were exposed to Remover-PG (MicroChem) heated to 80 °C for 2 hours. 

Remover-PG was removed from the samples by soaking in a 1:3 solution of methyl isobutyl ketone 

(MIBK) and isopropanol (IPA). Samples were then rinsed with IPA and dried under N2. For final 

cleaning, samples were immersed in Nano-Strip® (Cyantek) heated to 80 °C for 30 minutes, then 

DI water for 15 minutes, and dried under N2. Finally, samples were again subjected to O2 plasma 

for 5 minutes to remove any remaining resist from the holes. 

Visible-near infrared (Vis-NIR) absorption measurements 

Absorption spectra of gold nanohole arrays were obtained with a homebuilt setup consisting of an 

HL-2000 halogen lamp (Ocean Optics), which covers a spectral range of about 400 – 1000 nm, 

coupled to an inverted optical microscope by a 100 μm optical fibre. The source beam was first 

expanded by a 10 × objective (N.A. = 0.25), recollimated using 20 × objective (N.A. = 0.40), and 

finally collected by a 20 × objective (N.A. = 0.50). The resulting spot sizes were approximately 

50 μm in diameter, covering the surface of a single array. Scattered light was then analysed with a 

USB 4000-Vis-NIR-ES spectrometer (Ocean Optics). 

Cell culturing 
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Human bone marrow aspirates were obtained from healthy donors with informed consent from the 

London Health Sciences Centre (London, ON). BM-MSCs were established and cultured in 

AmnioMax-C100TM media with AmnioMaxTM C100 supplement (Life Technologies) as 

previously described by Sherman et al [52]. Ricordi-chamber isolated human islets were obtained 

through the Integrated Islet Distribution Program (USA) for the establishment of Panc-MSCs as 

previously described by Cooper et al [53]. 200 islet equivalents were plated in RPMI 1640 + 10% 

fetal bovine serum (FBS) for up to 7 days. Between 5 – 7 days, adherent fibroblast-like cells were 

separated from non-adherent islets by media aspiration followed by trypzination and filtration 

using a 40 μm cell strainer. Single cell suspensions were subsequently reseeded on tissue culture 

plastic at 4000 cells/cm2 and expanded in Amniomax-C100TM with AmnioMaxTM E100 

supplement (Life Technologies). 

Extracellular vesicle (EV) isolation 

EVs were isolated by ultrafiltration as previously described by Cooper et al [54]. Conditioned 

media (CM) was generated by culturing BM-MSC and Panc-MSC to ~80% confluency, rinsed 3 

times with pre-warmed phosphate buffer solution (PBS), and switched to basal AmnioMaxTM 

C100 media (Life Technologies) without supplement. Media was collected after 24 hours of cell 

culture. Cell debris were removed by centrifugation for 10 minutes at 600 × g. Cell-free CM was 

concentrated by centrifugation in 100 kDa centrifuge filter units for 20 minutes at 2800 × g. 20 

mL was concentrated in a single unit, requiring two centrifugations, producing a final volume of 

120 μL. After the second centrifugation, 10 mL of 0.22 μm-filtered PBS was used to wash out 

residual phenols, proteins, and salts. EV samples were collected and placed into Eppendorf tubes 

and stored at -20 °C for up to 1 month. 

Atomic force microscopy (AFM) 
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Purified EV solutions were diluted (1:20) in Milli-Q water. 10 μL of the dilute EV samples were 

drop-casted onto chemically cleaned glass coverslips (22 mm × 22 mm × 0.15 mm) and dried 

overnight in a biological safety cabinet. Scans were obtained using a BioScope Catalyst atomic 

force microscope (Bruker). NCLR-50 Silicon probes (Nanoworld) with a force constant of 48 N/m 

and a resonance frequency of 190 kHz were employed under tapping mode. Height images were 

recorded at 256 × 256 pixels and a scan rate of 0.50 Hz. Imaging processing was subsequently 

performed using Gwyddion software. 

Surface-enhanced Raman spectroscopy (SERS) 

Concentrated EV samples were diluted 1:20 with Milli-Q water. 10 – 20 μL of dilute EV samples 

were drop-cast onto nanohole arrays. EV-water solution was removed from the array using 

cohesive properties allowed by a Kimwipe absorbent paper (Kimberly-Clark Inc.). The edge of the 

absorbent paper was placed on the corner of the solution droplet, allowing solution removal via 

capillary action. This capillary flow also induces EVs to locate and stay in the nanoholes. Lastly, 

EV solutions were allowed to dry for 15 – 30 minutes prior to SERS measurements.  SERS spectra 

presented in Fig. 4 were acquired with a LabRAM HR spectrometer (Horiba Scientific) using a 

632.8 nm excitation laser source, 600 grooves/mm grating, 100 × objective (N.A. = 0.9), and 200 

μm pinhole. Laser power was set to 2.5 mW with an acquisition time of 60 seconds per spectrum. 

SERS spectra presented in Fig. 5 and Fig. S2 were extracted from SERS maps that were acquired 

with an XploRATM PLUS spectrometer (Horiba Scientific) using a 785 nm excitation laser source, 

600 grooves/mm grating, 100 × objective (N.A. = 0.9), and 100 μm pinhole. Laser power was set 

to 5 mW with an acquisition time of 4 seconds per spectrum. 

Statistical analysis and machine learning 
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Principal component analysis (PCA) was performed to reduce the dimensionality of the spectral 

data and to determine the peaks responsible for the most variance between the two EV sources. 

All spectra were normalized prior to PCA. The first 19 principal components (PCs) were selected 

to explain 98% of variance among spectra. After score plots were constructed, 95% confidence 

ellipses were fitted around each cluster type. The first 19 PCs were then used as input data for five 

different machine learning algorithms: logistic regression, support vector machine, random forest, 

Naïve Bayes, and CN2 rule induction. In each machine learning case, models were tested using 

leave-one-out cross validation. PCA and machine learning were performed using Orange software 

(version 3.27.1). 

 

Results and discussion 

Nanohole array fabrication and characterization 

 Electron-beam lithography (EBL) is a nanofabrication technique used to create 

nanostructures with 20 nm spatial resolution. Nanostructures are fabricated by scanning a focused 

beam of electrons from an SEM microscope onto an electron-sensitive photoresist, which 

undergoes chemical changes in exposed areas. The EBL nanofabrication process is illustrated in 

Fig. 1A. Some substrates, such as the glass coverslips used here, additionally require the 

application of a conductive layer on top of the resist to prevent charging on the substrate surface 

during the inscription of the pattern, which minimizes the loss of resolution when the substrate is 

exposed to the electron beam. Following exposure, the substrate is developed in a chemical bath 

to remove some of the resist and reveal the desired pattern. For the purpose of fabricating nanohole 

arrays, a negative-tone resist is desired, and ma-N 2405 was used. Negative-tone resists undergo 

cross-linking in exposed areas, and non-exposed regions are removed during development, thus 
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producing the reverse or “negative” image of the final pattern. For nanohole arrays, this “negative” 

image translates to nanopillar arrays (Fig. 1B). Since the objective of the work is to use the 

nanohole arrays in SERS sensing, metals must be deposited onto the developed substrate for the 

propagation of plasmons. Gold was selected for these experiments due to its greater stability in air 

compared to other common SERS-active metals such as silver and copper. Finally, the metallic 

substrate is placed into a chemical bath to remove any remaining resist and reveal the final 

nanoholes in a process called lift-off (Fig. 1C). 

 

Fig. 1 Schematic illustration of nanohole array fabrication by EBL using a negative-tone resist 

(A), with example SEM images of 700 nm circular arrays before lift-off (B) and after lift-off (C) 

(scale bars = 2 μm) 

 Gold nanohole arrays of varying size (100 – 1000 nm) and shape were fabricated by EBL, 

imaged by SEM, and characterized by vis-NIR spectroscopy. Shapes explored for these arrays 

consisted of triangles (Fig. 2A, D), squares (Fig. 2B, E), and circles (Fig. 2C, F). Fallen 

nanopillars or nanocaps are visible on the smaller-sized arrays (Fig. 2D-F) and not on the larger-

sized arrays (Fig. 2A-C) since negative resists become increasingly difficult to remove as hole size 
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decreases. Nevertheless, smaller arrays are still suitable for EV capture if the nanocaps do not 

collapse directly into the holes. Absorption measurements were subsequently performed to 

determine the position of their plasmonic resonances, as shown on the triangular arrays (Fig. 2G, 

S1). Two resonance wavelengths are observed: one around 650 – 690 nm, and another around 750 

– 780 nm. Similar results were observed with the circular and square arrays, and is consistent with 

the results previously reported [51]. When the excitation wavelength matches their resonance 

wavelengths (i.e., 633 and 785 nm), the conduction electrons at the metal surface of the arrays are 

driven to collective oscillation at a frequency referred to as the localized surface plasmon 

resonance (LSPR) [55]. The higher energy band around 650 – 690 nm is generally referred to as 

the quadrupolar resonance, while the lower energy band around 750 – 780 nm is referred to as the 

dipolar resonance. Consequently, large enhancements of the local electromagnetic fields of 

radiation are confined at the vicinity of the nanoholes. Since the EVs are smaller in diameter 

compared to the hole sizes, we expect EVs to be captured by the nanoholes and their Raman signals 

to be enhanced as a result. 

The trapping capabilities of these nanohole arrays has been previously published by our 

group, both by polystyrene beads as proof-of-concept, as well as with EVs themselves [51]. 

Trapping of the EVs is enabled by the flow of the EV-containing solution and the size match 

between the EVs and the nanohole cusps. However, trapping of small EVs cannot be observed 

optically due to the diffraction limited spatial resolution of our optical measurement. Therefore, 

blind SERS mapping over large areas of the nanohole arrays is necessary to reveal which holes are 

filled with one or more EVs (areas with signal) and which holes are empty (areas without signal). 

SERS mapping experiments showed that approximately 12 % of the holes were occupied by one 

or more EVs (Fig. S2). For SERS of EVs, the circular arrays were the least preferential due to a 
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lower throughput from the EBL process compared to the triangular and square arrays. This lower 

throughput could potentially be due to the fact that the corners of the triangles and squares provided 

more anchoring points for the pillars with three and four points, respectively. Conversely, the 

highest throughput of arrays was achieved with the square arrays, allowing more opportunity for 

the square arrays to capture EVs. Therefore, square arrays were generally preferred for SERS 

experiments. By utilizing these SERS platforms in conjunction with lasers of excitation 

wavelengths that match their LSPRs, we are able to study samples with inherently weak Raman 

signals without the need to increase laser power or accumulation time, which is likely to burn the 

samples, or the need to use a higher energy laser wavelength (i.e., green laser), which is likely to 

induce high background fluorescence [56]. 

 

Fig. 2 SEM images of 1000 nm triangular (A), square (B), and circular arrays (C), and 500 nm  

triangular (D), square (E), and circular arrays (F) (scale bars = 1 μm); background-corrected 

absorption spectra of 500 – 1000 nm triangular arrays (G). Original absorption spectra are 

presented in Fig. S1 

EV characterization 
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 AFM was employed for EV imaging and height quantification since it causes minimal 

deformations to the soft EV surface when scanning in tapping mode. For AFM imaging, dilute 

solutions of EVs were drop-casted on clean glass coverslips and allowed to dry. AFM scans of 

EVs isolated from both Panc-MSC (Fig. 3A) and BM-MSC (Fig. 3C) revealed small, quasi-

spherical objects on the substrate surface. A cross-section of one of these features is shown in Fig. 

3B. The average height of the adhered EVs from the Panc-MSC samples measured over 106 

individual EVs was 210 ± 40 nm, with the size distribution ranging from 110 – 330 nm (Fig. 3D). 

Similarly, the average height of the adhered EVs from the BM-MSC samples was 190 ± 50 nm, 

with a size distribution of 50 – 300 nm. Recalling that microvesicles range in diameter from 100 

– 1000 nm, these distributions are well within the accepted EV size range. 

 

Fig. 3 (5 × 5) μm2 AFM scan of Panc-MSC EVs on a bare glass coverslip (A) and the cross-section 

of a single EV (B), as indicated by the white line in (A); (1 × 1) μm2 AFM scan of an individual 
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BM-MSC EV on a bare glass coverslip (C); histogram representing the height distribution of a 

Panc-MSC sample containing 106 EVs (D) 

 Initial SERS characterization of EVs from the Panc-MSC sample was conducted with an 

excitation wavelength set at 632.8 nm, which utilizes the quadrupolar resonance of the nanohole 

arrays. Spectra were acquired by focusing a 632.8 nm laser with a 100 × objective (N.A. = 0.90) 

on holes presumably containing EVs, and a background spectrum was recorded by focusing the 

same laser off the array on flat gold. The resulting spectra of three individual EVs reveal an 

abundance of  peaks in the 700 – 1800 cm-1 fingerprint region, as expected since this is a significant 

Raman spectral window for biological samples, whereas none are visible in the background 

spectrum (Fig. 4). Since the LSPR decays exponentially away from the platform surface, the 

effective sensing zone of the plasmonic arrays is confined within the first 10 – 20 nm away from 

the metal surface [57]. Since plasma membranes are typically about 5 nm thick, we expect to detect 

not only the SERS signals of the surface content of the EVs (i.e., surface proteins and lipids), but 

also the SERS signals of their cargo (i.e., proteins and genetic material). The analysis of the 

collected spectra showed that some Raman modes are common among the three EVs, which are 

summarized in Table 1. Protein peaks are observed at 1052 cm-1 and 1242 cm-1 which can be 

assigned to C-O/C-N stretching and amide III, respectively. Additionally, amino acid peaks are 

present at 1210 cm-1, which are attributed to tyrosine and phenylalanine and 1580 cm-1, 

corresponding to phenylalanine. Nucleic acid peaks are present at 791 cm-1 and 1509 cm-1, 

corresponding to pyrimidines and adenine/cytosine, respectively. The peak present at 1308 cm-1 

can be attributed to the CH2/CH3 twisting, bending, or wagging in lipids or collagen. Although 

these peaks are found in common by a couple of spectra, there is still variety in the spectra in terms 

of peak positions and intensities, which can be attributed to the molecular heterogeneity of EVs. 
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Fig. 4 Three SERS spectra of Panc-MSC EVs acquired with a 632.8 nm laser with a background 

spectrum for comparison and common peaks highlighted in blue 

 

Table 1 Assignments of common peaks shared among Panc-MSC EV spectra from Fig. 4 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

791 Pyrimidine 791 [58] 

1052 C-O/C-N stretch in proteins 1053 [58] 

1193 Ring stretch, CH bend, CH2 twist 1194 [59] 

1210 C-C6H5 stretch in tyrosine and phenylalanine 1210 [58] 

1242 Amide III 1243 [58, 60] 

1308 CH2/CH3 twisting, bending, and wagging in 

lipids or collagen 

1308 [58] 

1413 Ring stretch 1412 [58] 

1509 Ring breathing mode of adenine and cytosine 1510 [58] 

1580 C-C stretch and C=C bend of phenylalanine 1580 [58] 
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 While we were able to collect spectra for the Panc-MSC EVs at 632.8 nm, the spectral 

acquisition for the BM-MSC EVs was unsuccessful at the same wavelength due to the presence of 

a fluorescence background. To mitigate the background fluorescence, we switched to a 785 nm 

laser, thus exploiting the dipolar resonance of the nanohole arrays. Data sets for Panc-MSC and 

BM-MSC EVs comprised of 25 and 19 SERS spectra, respectively, were obtained with a 785 nm 

excitation laser source. Since EVs of this size are not visible with an optical microscope, we located 

EVs on the nanohole arrays by mapping areas approximately (10 × 10) μm2 in size. Similarly to 

the Panc-MSC results obtained with the 632.8 nm laser, the spectra corresponding to Panc-MSC 

(Fig. 5A) and BM-MSC (Fig. 5B) EVs vary considerably, but common peaks within each data set 

can still be identified. These common peaks are summarized in Table 2. Regarding the SERS 

spectra of the Panc-MSC EVs (Fig. 5A), protein peaks are identifiable at 813 cm-1 and 1151 cm-1, 

corresponding to C-C and C-N stretching, respectively. Additionally, the peak at 1274 cm-1 

belongs to amide III. Many amino acid peaks are located at 761 cm-1 (tryptophan), 873 cm-1 

(hydroxyproline, tryptophan), 1206 cm-1 (hydroxyproline, tyrosine), and 1364 cm-1 (tryptophan). 

Lastly, the peak at 1334 cm-1 can be attributed to CH2/CH3 twisting, bending, or wagging in  

collagen or nucleic acids. Interestingly, there are far less peaks attributable to nucleic acids for the 

Panc-MSC EV spectra obtained with the 785 nm laser compared to those obtained with the 632.8 

nm laser, and far more attributable to proteins and amino acids. The spectral differences between 

Panc-MSC EVs acquired with the 632.8 nm and 785 nm lasers could be explained by EV rupturing 

due to differences in laser energy, since the 632.8 nm excitation wavelength used to collect the 

spectra in Fig. 4 is higher in energy compared to the 785 nm excitation wavelength used to collect 

the spectra in Fig. 5A. Additionally, the spectra presented in Fig. 4 were gathered with longer 

acquisition times than the spectra presented in Fig. 5A, at 60 and 4 seconds, respectively. Although 
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not specific to EVs, targeted laser-induced cell lysis, or the breakdown of the cell membrane, has 

been demonstrated, and a similar process could be unfolding here [61, 62]. Since genetic material 

carried in EVs is contained by a membrane typically decorated with surface proteins, we might 

expect to see more protein signals compared to nucleic acid signals when the membrane is intact. 

Regarding the SERS spectra of the BM-MSC EV (Fig. 5B), many protein peaks are also visible at 

866 cm-1, 1158 cm-1, 1236 cm-1, 1265 cm-1, and 1658 cm-1. A few nucleic acid peaks can be 

additionally seen at 803 cm-1 (uracil), 1480 cm-1 (guanine and adenine), and 1612 cm-1 (cytosine). 

A lipid peak can also be found at 1077 cm-1, corresponding to a C-C/C-O stretch. 
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Fig. 5 SERS spectra of Panc-MSC EVs (A) and BM-MSC EVs (B) acquired with a 785 nm laser, 

where individual spectra are represented by lighter lines, average spectra are represented by darker 

lines, and common spectral peaks are highlighted in yellow 
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Table 2 Assignments of common peaks shared among BM-MSC and Panc-MSC EV spectra from 

Fig. 5 

Peak (cm-1) BM Panc Presumed Origin Ref. Peak (cm-1) Ref. 

761  x Ring breathing in tryptophan 760 [58] 

803 x  Ring breathing mode in uracil 802 [58] 

813  x C-C stretch in collagen 813 [58] 

836  x Deformative vibrations of amine 

groups 

838 [58] 

866 x  C-C stretch in collagen 868 [59] 

873  x Hydroxyproline, tryptophan 873 [58] 

920  x C-C stretch of proline 

ring/glucose/lactic acid; collagen 

assignment 

920 [58] 

998 x  C-O in ribose, C-C 996 [49, 58] 

1061 x  C-C in-plane bending; C-N 

stretching 

1053 [58] 

1077 x  C-C or C-O stretch in lipids 1078 [63] 

1151  x C-N stretch in proteins 1152 [58, 63] 

1158 x  C-C/C-N stretch in proteins 1158 [58] 

1206  x Hydroxyproline, tyrosine (collagen 

assignment) 

1206 [58] 

1236 x  Amide III 1235 [58] 

1265 x  Amide III (collagen assignment) 1265 [63] 

1274  x Amide III 1275 [58] 

1334  x CH2CH3 twisting and wagging in 

collagen and nucleic acids 

1335 [58, 63] 

1364  x Tryptophan 1365 [58] 

1400 x  N-H in-plane deformation 1400 [58] 

1480 x  Ring breathing mode in guanine 

and adenine 

1485 [58] 
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1500  x N-H bending 1506 [58] 

1528  x In-plane vibrations of -C=C- 1528 [60] 

1612 x  Cytosine (NH2) 1610 [58] 

1658 x  Amide I (α-helix) 1658 [58] 

 

Statistical analysis and machine learning 

 Principal component analysis (PCA) was employed to reduce the dimensionality of the 

spectral data sets and to determine the main compositional differences between the Panc-MSC and 

BM-MSC EVs. In PCA, complex data sets can be transformed to smaller data sets, or principal 

components (PCs), that contain most of the information of the original data. Maximum 

information, or explained variance, is put into the first PC, and each subsequent PC accounts for 

less explained variance until 100 % of the original data is accounted for. With respect to the spectra 

presented in Fig. 5, the first principal component (PC1) that explains 50.7% of variance 

corresponds to a protein peak at 1236 cm-1, which belongs to amide III. The second principal 

component (PC2) that explains 15.5% of variance corresponds to an amino acid peak at 761 cm-1, 

which corresponds to tryptophan. However, plotting PC1 versus PC2 reveals a large overlap in 

data between the two groups, limiting the ability to separate the two EV types (Fig. 6A). We 

additionally plotted PC1 versus the third principal component (PC3), which accounts for 7.7% of 

variance and corresponds to a peak at 1528 cm-1 (in-plane -C=C- vibrations). In the second score 

plot, both data sets are clustered more tightly compared to the first score plot, as evidenced by the 

smaller confidence ellipses surrounding the former compared to the latter (Fig. 6B). However, 

there was still a great amount of overlap between the two ellipses, and we could only classify the 

two EV groups with 82% accuracy, 74 % sensitivity, and 84 % specificity. It is not uncommon for 

PCA to perform poorly in terms of classification tasks since PCA ignores class labels while 
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attempting to maximize variance, and often PCA is used in conjugation with other classification 

techniques to improve class separability [64]. To mitigate this problem, we used the PC scores as 

classifiers in various machine learning algorithms. Machine learning is a powerful and automatized 

technique that can be used to make predictions about data without being explicitly programmed 

for these tasks. Treating spectral data sets with PCA is favoured when exploring classification 

techniques by machine learning since smaller data sets are less computationally demanding for 

machine learning algorithms, and therefore faster. Furthermore, feeding raw spectral data to a 

machine learning algorithm can lead to overfitting due to the high dimensionality of the data [65]. 

Machine learning algorithms in conjunction with the PCA data obtained were thus explored to 

increase class separation between the BM- and Panc-MSC EV spectral data as well as 

classification accuracy.  

Five different machine learning algorithms were employed: random forest (RF), support 

vector machine (SVM), Naïve Bayes (NB), CN2 induction (CN2), and logistic regression (LR). 

RF is a technique that includes an ensemble of decision trees, in which data are modeled in 

hierarchical structures by a series of if/else statements [66, 67]. SVM creates an optimal separating 

line for the classification of all the input data into different classes, while NB is a statistical method 

that computes the probability of an input’s relevance to a pre-defined class [67]. In rule induction 

systems such as CN2, rules are created that fit the example cases, and solutions are found by 

linking rules to known facts (i.e., the data set) [68]. Lastly, LR calculates the probability of class 

membership based on the sigmoid or logistic function [69]. Each model was tested using leave-

one-out cross validation (LOOCV) to minimize bias that could occur when training with a small 

sample size. In the LOOCV procedure, one spectrum is held as a test sample while the remaining 

43 spectra are used to train the model, until each spectrum as been used as a test sample once. By 
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visualizing the output scores, we observed that RF could not significantly separate the two groups 

of EVs, while NB and LR performed the best in terms of class separation (Fig. 6C). To further 

assess the models, we plotted receiver operating characteristic (ROC) curves and determined the 

area under the curves (AUCs). While all five models had high, AUC values, NB, RF, and LR 

outperformed CN2 and SVM with AUC values of 0.901, 0.921, and 0.926, respectively, compared 

to 0.866 and 0.891 (Fig. 6D). Since AUC values are quite close together, it is necessary to also 

compare the models in terms of classification accuracy, sensitivity, and specificity (Table 3). CN2 

had an unfavourable accuracy of 80 %, which was even lower than the accuracy achieved using 

PCA only. SVM, RF, and NB performed marginally better than PCA only with accuracies of 84 

% each. LR was able to achieve a high accuracy of 89 %, as well as a high sensitivity and 

specificity of 89 and 88 %, respectively. While all five machine learning algorithms performed 

well in terms of differentiating the Panc- and BM-MSC EVs, LR is the most favourable approach 

for this data set, considering the high AUC, accuracy, sensitivity, and specificity achieved 

compared to the four other algorithms. 
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Fig. 6 PCA score plots of Panc-MSC and BM-MSC clusters constructed with the first and second 

PCs (A) and the first and third PCs (B), where one data point corresponds to one SERS spectrum; 

comparison of final output scores of data given by PCA only (PC1 vs. PC3) and five machine 

learning algorithms (C), where one data point corresponds to one SERS spectrum; ROC curves 

comparing various machine learning algorithms (D) 

 

Table 3 Comparison of abilities of PCA and various machine learning algorithms to discriminate 

BM-MSC and Panc-MSC EVs based on SERS spectra 

Model Sensitivity Specificity Accuracy 

PCA Only (PC1 vs. PC3) 74 % 84 % 82 % 
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Logistic Regression 89 % 88 % 89 % 

Support Vector Machine 89 % 80 % 84 % 

Random Forest 84 % 84 % 84 % 

Naïve Bayes 95 % 76 % 84 % 

CN2 Rule Induction 79 % 80 % 80 % 

  

 In terms of differentiating MSC-derived EVs from different sources, our model works 

comparatively well with respect to other published studies. Gualerzi et al. previously differentiated 

BM-MSC EVs from adipose tissue-derived MSC EVs and EVs released by dermal fibroblasts by 

conventional Raman spectroscopy [49]. In this study, PCA in conjunction with linear discriminant 

analysis (LDA) was used for EV classification, and an accuracy of 93.7 % was achieved. Although 

this accuracy is higher than that achieved by our PCA-LR model, it is important to note that the 

spectra collected by Gualerzi et al. had to undergo significant treatment prior to data analysis to 

remove autofluorescence and background induced by their 532 nm laser. The use of a SERS 

platform and a lower energy excitation wavelength (i.e., 785 nm) usually removes the need for 

significant data treatment for better peak resolution, as demonstrated by the spectra we obtained 

in this study (Fig. 5) and highly simplifies the data analysis.  

 

Conclusion 

 Plasmonically active nanohole arrays were used to trap single EVs isolated from Panc- and 

BM-MSCs, which were subsequently analyzed by SERS. Although the nanohole arrays are 

plasmonically active in the red and near-infrared wavelength regions, we determined that the near-

infrared (785 nm) laser was the most suitable for probing these biological samples. By irradiating 

both Panc-MSC and BM-MSC EVs with the 785 nm laser, we found that the SERS spectra for 

both groups contained predominantly protein peaks, as we would expect to find on EV membrane 
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surfaces, as well as some nucleic acid peaks. PCA was employed to determine the main 

compositional differences between these two EV sources. We determined that the peaks 

responsible for most variance were located at 1236 cm-1, corresponding to amide III, 761 cm-1, 

belonging to tryptophan, and 1528 cm-1, corresponding to in-plane -C=C- vibrations. PC scores 

were then used as simple classifiers in training machine learning algorithms to separate the Panc- 

and BM-MSC EVs. Using simpler classifiers instead of entire spectral data sets lower the 

computational demand and time required to complete this classification task. With a logistic 

regression machine learning algorithm, we were able to distinguish between the two EV types with 

89 % accuracy, 89 % sensitivity, and 88 % specificity. In future work, we would like to challenge 

these platforms with cancer-derived EVs to explore their feasibility as a tool in disease detection 

and diagnosis. 
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