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Abstract
This thesis focuses on control and inverse problems for the wave equation on finite metric graphs. The first part deals with the control problem for the wave equation on tree graphs. We propose new constructive algorithms for solving initial boundary value problems on general graphs and boundary control problems on tree graphs. We demonstrate that the wave equation on a tree is exactly controllable if and only if controls are applied at all or all but one of the boundary vertices. We find the minimal controllability time and prove that our result is optimal in the general case. The second part deals with the inverse problem for the wave equation on tree graphs. We describe the dynamical Leaf Peeling (LP) method. The main step of the method is recalculating the response operator from the original tree to a peeled tree. The LP method allows us to recover the connectivity, potential function on a tree graph and the lengths of its edges from the response operator given on a finite time interval. In the third part we consider the control problem for the wave equation on graphs with cycles. Among all vertices and edges we choose certain active vertices and edges, and give a constructive proof that the wave equation on the graph is exactly controllable if Neumann controllers are placed at the active vertices and Dirichlet controllers are placed at the active edges. The control time for this construction is determined by the chosen orientation and path decomposition of the graph. We indicate the optimal time that guarantees the exact controllability for all systems of a described class on a given graph. While the choice of the active vertices and edges is not unique, we find the minimum number of controllers to guarantee the exact controllability as a graph invariant.
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Chapter 1: General Introduction
This thesis addresses some control and inverse problems for the wave equation on metric graphs. A graph is called a metric graph if every edge is identified with an interval with a positive length. A quantum graph is a metric graph equipped with differential operators and differential equations satisfying appropriate vertex conditions [Berkolaiko and Kuch- ment , 2013]. Many problems of applied science and engineering depend on detailed models of partial differential equations on network-like structures. For example, gas propagation in networks and traffic flow can be modelled by first order hyperbolic equation systems [Steinbach, 2007; Herty et al., 2010; Garavello and Piccoli , 2006]; groundwater movement can be described by convection-diffusion models [Oppenheimer, 2000; García et al., 2015]; The behaviour of carbon nano-structure can be described by diffusion models [Kuchment and 

Post, 2006]; Diffusion equations on graphs are also used to compute voltage phase angles and voltage frequencies in power networks [Cheng and Scherpen, 2018]. The propagation of electric signals in a cable transmission lines [Alam et al., 2022] are computed through the telegrapher's equations; quantum mechanical behavior of materials at atomic scale can be modelled by the Schrodinger equation defined on a graph [Duca, 2021]. Wave equations are used to describe mechanical systems constituted by coupled flexible or elastic elements as strings, beams, and membranes [Diager and Zuazua, 2006].Control problems of differential equations on graphs tune input parameters or boundary conditions to obtain a desired behaviour of the system at specific times. Examples of such control problems on graphs include [Gugat et al., 2011; Zlotnik et al., 2015; Alam et al., 2021]. Controllability properties of the wave equation is a fundamental topic in the control theory for partial differential equations. Various methods have being used by different researchers to investigate the controllability of the wave equation system on tree graphs: the energy estimates together with the Hilbert uniqueness method in [Daiger and Zuazua, 2006; 
Lagnese et al., 1994]; the methods of moments and the theory of vector valued exponen
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tials in [Avdonin and Ivanov , 1995], the propagation of singularities in the wave equation in [Belishev and Vakulenko , 2006]. In these works it was proved that the system is exactly controllable if the control functions act at all or at all but one of its boundary vertices. However, none of the known work in this direction contained algorithms solving control problems for differential equations on graphs.Very little was known about controllability of the wave equation (or any other partial differential equation) on graphs with cycles. It was only proved (see, e.g. [Avdonin and Ivanov , 1995; Avdonin et al., 2009, 2010a]) that the wave equation on graphs with cycles is never exactly controllable from the boundary. It may be spectrally controllable (a weaker formation than exact controllable) from the boundary, but this property is very unstable with respect to small perturbations of the system parameters.The inverse problem on quantum graphs is to recover the unknown coefficients of differential equations on the edges from spectral or dynamical Dirichlet to Neumann (DtN) data at the boundary. There are deep connections between the controllability and identifiability of a dynamical system with distributed parameters. It was shown that inverse spectral and scattering problems for differential equations on graphs with cycles do not have in general a unique solution [Gutkin and Smilansky, 2001; Kurasov and Nowaczyk , 2005]. Current positive uniqueness results concerning boundary inverse problems are mainly on tree graphs [Brown and Weikard , 2005; Yurko, 2005; Freiling and Yurko, 2007; Belishev, 2004, 2006]. The Leaf Peeling (LP) method was proposed in [Avdonin and Kurasov , 2008] and developed in [Avdonin et al., 2017a] to recover the graph topology, edge lengths, and potentials for tree graphs from their spectral or dynamical DtN data. Both versions have recursive procedures. In each step, one recalculates the DtN data on the smaller tree obtained by removing boundary edges (except for the root edge) from the original tree. The paper [Avdonin et al., 2017a] however, did not describe and justify all steps of the dynamical version in all details.In this thesis, the second chapter addresses controllability of the wave equation system on tree graphs. We give constructive algorithms to solve the exact shape, velocity and exact 
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control problems on a tree graph. We show the time required to guarantee for an arbitrary tree to reach any arbitrary terminal shape or velocity is less than all the minimum control times described in the literature (see for example, [Dager and Zuazua, 2006; Lagnese et al., 2012; Belishev and Vakul enko , 2006]).In the third chapter we give a complete and rigorous presentation of the dynamical LP method. To our best knowledge it was the first solution of the inverse problem for general tree graphs by pure dynamical methods. The method is based on the powerful boundary control (BC) method in inverse theory, which was proposed in [Belishev, 1987] using DtN data to recover distributed parameters in the wave equation in a given domain. Its main property is locality, which allows one to recover the topology and other parameters of a subset only from data related to that subset instead of the entire domain. In [Avdonin 
and Zhao, 2021a] algorithms solving forward and control problems for the wave equation on graphs were proposed, which significantly simplifies the presentation of the dynamical LP version and solution of the inverse problem. The dynamical version of the LP method is much more complicated for theoretical justification than the spectral one. However, it combines the strength from both the BC method and the simplicity of the algorithm in [Avdonin and Zhao, 2021a], therefore has great potentials to serve as a basis for developing effective numerical algorithms solving inverse problems on quantum graphs.The fourth chapter addresses controllability of the wave equation system on a general graph with cycles. We generalize the idea of controllability on trees in [Avdonin and Zhao, 2021a]. While the choice of control functions is not unique, we find the minimum number of controllers to guarantee the exact controllability as a graph invariant.The main results of the thesis were published at [Avdonin and Zhao, 2021a], [Avdonin 
and Zhao, 2021b], and [Avdonin and Zhao, 2022]. In the first paper, my independent results are the folding ruler formulae and the constructive proof of the shape controllability of the wave equation on tree graphs. In the second paper, I used the folding ruler formulae to present a rigorous proof of the dynamical version of the leaf peeling theorem. In the last 
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paper, the main result of controllabiliy of the wave equation on graphs with cycles are joint results with Dr. Avdonin. Based on the examples of control problems in [Avdonin , 2019] and the shape controllability result in [Avdonin and Zhao , 2021a], I developed a general approach to construction shape control functions on a general undirected graph. I further characterised the minimum number of controllers to guarantee the exact controllability as a graph invariant.
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Chapter 2: Control Problems for the Wave Equation on Metric Tree Graphs
2.1 Introduction

Control problems for the wave equation on trees have important applications in science and engineering and were studied in many papers (see the monographs [Avdonin and Ivanov , 1995]; [Dager and Zuazua, 2006]; [Lagnese et al., 1994]; the surveys [Avdonin, 2008]; [Zuazua, 2013]; and references therein). They also have deep connection with inverse problem on trees, see, e.g. [Avdonin and Kurasov, 2008], [Belishev and Vakulenko, 2006]. In this chapter we consider exact controllability for the wave equation
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on trees with boundary controls. The so-called Kirchhoff-Neumann (KN) conditions are assumed at all internal vertices. This problem was studied, e.g. in [Belishev and Vakulenko, 2006], [Daager and Zuazua, 2006], [Lagnese et al., 1994], (in those papers the problem was stated in slightly different forms). It was proved that the system is exactly controllable if the control functions act at all or at all but one of the boundary vertices.Unfortunately, none of the known work in this direction contained algorithms solving control problems for differential equations on graphs. Numerical solutions of control and even forward problems on graphs are very difficult (see, e.g. [Arioli and Benzi, 2017])We give constructive algorithms to solve the exact shape, velocity and full control problems on a tree graph Ω. Let U be a union of disjoint paths (except for the end points) on Ω. Each path P starts from a controlled boundary vertex and ends anywhere on Ω, and ∪p∈uP = Ω. We construct shape/velocity control functions by controlling the terminal shape/velocity on one path at a time. The full control function is constructed by combining the shape and velocity control functions via the moment method. We show the minimal



guaranteed time to reach any arbitrary terminal shape or velocity for an arbitrary tree is

6

The minimum time required for the full controllability is 2Ts .This chapter is organized as follows. Section 2.2 introduces the forward and control problems for the wave equation on quantum graphs. Section 2.3 solves the forward and control problems on a finite interval. For the solution of the forward problem, we extend the well known D'Alembert's formula to the case with variable potential coefficients. This representation is a useful tool for solving the forward, control, and inverse problems on graphs. Section 2.4 uses the KN condition and the result from Section 2.3 to solve the forward and control problems on a star-shaped neighborhood subgraph, which consists of an internal vertex and its incident edges and adjacent vertices. Section 2.5 proposes an algorithm to solve the forward problem on a general graph. Section 2.6 gives constructive proofs for the exact shape, velocity, and full controllability of the wave equation on finite metric tree graphs using boundary control functions.
2.2 Preliminaries

Let Ω = (V, E) be a metric graph with finitely many vertices and edges, where V and E are the sets of vertices and edges respectively. Every edge ej ∈ E is identified with an interval of finite length on the real line. We denote the set of boundary vertices (the vertices with degree one) by Γ(Ω) or just Γ; V \ Γ is the set of internal vertices.The graph Ω naturally determines the Hilbert space of square integrable functions

in which ∣∣ϕ∣∣H = Σe∈E ∣∣ϕ∣∣l2(e) < ∞∙ The space H1 consists of continuous functions ϕ on Ω such that ϕ|e belongs to the Sobolev space H 1(e) for each edge e and ϕ|γ = 0. The space



H-1 is defined as the dual space of H1 .Let Γ1 and Γ0 be two disjoint subsets of Γ such that Γ1 ∪ Γ0 = Γ. We now associate thefollowing initial boundary value problem (IBVP) for the wave equation to the graph Ω:

7

In (2.2) ∂ju(v, t) means the derivative of u taken at v along the edge ej in the direction outward of v and the sum is taken over all edges incident to v. The notation ej∙ ~ vj∙ means the edge ej is incident to the vertex v. The vertex conditions in (2.2) are called the Kirchhoff- Neumann (KN) conditions. We agree to extend the functions u and f to negative time by 0, and it is convenient to present the initial conditions u(x, 0) = ut(x, 0) = 0 as u∣t≤0 = 0 in (2.4). This forward problem is well defined, as stated in Proposition 2.1 below. For different conditions on the potential q the proof of this proposition can be found in [Ali Mehmeti , 1994], [Ali Mehmeti and Meister, 1989], [Avdonin and Nicaise, 2015], [Ddger and Zuazua, 2006], and [Lagnese et al., 1994].
Proposition 2.1. Let m := ∣Γi∣, f ∈ Ft := L2([0,T]; Rm) and q ∈ L1 (Ω). There exists a 
unique solution u = uf (x,t) to the IBVP (2.1)-(2.4) (understood in a weak sense) and



that is, u(∙, t) ∈ H, ut(∙, t) ∈ H-1 for all t ∈ [0, T], and both u(∙, t) and ut(∙, t) are continuous 
with respect to t in corresponding norms. If f ∈ C2([0,T];Rm), f (0) = fz(0) = 0 and q(x) ∈ C(Ω), the IBVP (2.1)-(2.4) has a unique classical solution.

In what follows we assume f ∈ Fτ. The solution for (2.1)-(2.4) on Ω is denoted as uf,rι (∙, t). In the case when Γ1 only contains one boundary vertex γ, we denote the solution of (2.1)-(2.4) as uf,γ(∙,t). When f (t) = (f1(t), f2(t),..., fm(t)), by the superposition principle

8

Let G be a subgraph of Ω containing all actively controlled boundary vertices of Ω. We denote the solution of (2.1)-(2.4) on graph G as u£(-,t). Note that uG(∙,t) is not the same as uf(∙,t)∣G, which is uf(∙,t) on Ω restricted to G. The reason for that is the boundary conditions are different for ufG(∙,t) and uf(∙,t)|G. When we solve (2.1)-(2.4) on G, all boundary vertices in Γ0(G) are assumed to be fixed, however some of the boundary vertices in Γ0(G) are internal vertices on Ω. We denote u∣ej, the solution of (2.1)-(2.4) on Ω restricted to an edge ej as uj .The exact controllability for the system (2.1)-(2.4) in this chapter is defined as following:
Definition 2.2. Let T > 0. We say that the system (2.1)-(2.4) is:

1. exactly shape controllable in time T if for any y ∈ H, there exists f ∈ Fτ such that ufrι (∙,T)= y(∙);
2. exactly velocity controllable in time T if for any z ∈ H-1, there exists f ∈ Fτ such 

that uf,γi(∙,T) = z(∙);
3. exactly controllable in time T if for any y ∈ H and z ∈ H-1, there exists f ∈ Fτ such 

that uf,γi(∙,T) = y(∙) and uf,γi(∙,T) = z(∙).
There are other types of controllability on graphs such as the spectral controllability and approximate controllability. We refer to [Avdonin, 2008] for their definitions.
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2.3 The forward and control problems for the wave equation on a finite length interval
In this section we consider the IVBP (2.1)-(2.4) on a graph consisting of one edge (v1 , v2 ), of length l. We identify (v1 , v2 ) with the interval [0, l], where v1 is identified with x = 0, and v2 is identified with x = l. We consider two cases where an active control function is placed at v1 or v2 respectively, and give algorithms to compute uf,v1(x, t) or uf,v2(x, t) respectively. In the first case, (2.1)-(2.4) becomes

When T ≤ l and f ∈ L2(0, T ), it is well known that the system (2.7) has a unique generalized solution uf,v1 presented in the form

Here w(x, t) is a solution to the Goursat problem

that can be found by standard iteration method (see, e.g., [Tikhonov and Samarskii , 2013] for smooth q and [Avdonin and Mikhaylov , 2010] for q ∈ L1(0, l)).We now solve (2.7) for T > l. We extend the potential q (x) to the semi-axis x > 0 by the rule q (2nl ± x) = q (x) for all n ∈ N (See Figure 2.1). Let w be a solution to the Goursat problem (2.9) with such an extended potential q. By direct substitution one can prove the following proposition.



Proposition 2.3. For q ∈ L1(0, l) and f ∈ L2(0, T), the system (2.7) has a unique gener

alized solution uf,v1 ∈ C([0, T]; L2(0, l)). When 0 ≤ t ≤ x, uf,v1 (x , t) = 0. When t > x, 

where [∙J is the floor function.

Figure 2.1: Extend q(x) on a finite interval like a folding ruler. When the ruler is folded, the overlapping points have the same potential value. That is, q(2nl ± x) = q(x).
Next we consider the IVBP on [0, l] with the control function f(t) applied at the right

10



endpoint:

We refer to (2.10) and (2.13) as Folding Ruler Formulae.The classical results on exact controllability of the system (2.7) are summarized in the following proposition. They will be used in solving control problems in Section 2.6.
11

We construct p(x) = q(l - x) and extend p by letting p(2nl ± x) = p(x). Let k (x, t) be the solution to the Goursat problem associated with the extended p(x):

By changing the coordinates in (2.10) one can prove the following proposition.
Proposition 2.4. For q ∈ L1(0,l) and f ∈ L2(0, T ), the IBVP (2.11) has a unique generalized solution uf,v2 ∈ C([0,T];L2(0,l)). When 0 ≤ t ≤ l -x, uf,v2(x,t) = 0. When t > l -x the solution for (2.11) is



Proposition 2.5. Let q ∈ L1 (0, l) and T ≥ l,
1. For any function φ ∈ H, there exists a control f ∈ L2(0,T) such that uf,vι (x,T) = φ(x). 

If T = l then f is unique.

2. For any function ψ ∈ H-1, there exists a control f ∈ L2(0, T) such that utf,v1 (x, T) = ψ(x).

3. For any φ ∈ H and any ψ ∈ H-1 there exists a control f ∈ L2(0, 2T) such that 
uf,v (x, 2T) = φ(x), uf,vι (x, 2T) = ψ(x).

Proof. This proposition can be proved using various methods. However since it is a part of a constructive proof of the controllability on tree graphs, we give the proof of Part 1 and 2 through a dynamical approach.For Part 1, let f(t), 0 ≤ t ≤ l, be the unique solution to the Volterra integral equation of the second kind:

then

solves the control problem
For Part 2, We first show the mapping

12



is a continuous mapping from L2(0, T) × (0, T] to H-1(0, l). First assume f ∈ C2. Since 

for any g ∈ H01(0, l),

The right side of (2.14) extends to a continuous mapping from L2(0, T) × (0, T] to H-1(0,l), and serves as a definition of the action of ut(∙,t) on H0(0,l).Similar to the proof of Part 1, to show velocity controllability at time T ≥ l, we will find a control function f(t), 0 ≤ t ≤ l, such that

13



Then

is a solution to the control problem

To find f(t), by (2.14)

Supposethat z∈ H-1(0, l). Then by Riesz Representation, there exists Z ∈ H01(0, l) such

Let f (t) be the solution to the Volterra integral equation 

then uf,vι (∙,l) = z(∙).Part 3 is a classical result in control theory. For example, in [Avdonin and Edward , 2018] and [Avdonin and Edward , 2019], the full controllability at T ≥ 2l is deduced from the 
14



shape and velocity controllability at T ≥ l. We will use the same principle to prove the full controllability on tree graphs in Section 2.6.
□

2.4 The forward and control problems in a star-shaped neighborhood graph of an internal vertex
Let u be the solution for (2.1)-(2.4). Section 2.3 suggests, if the trace of u on vertices u|V is known, one can use (2.10) and (2.13) and the superposition principle to compute u. Since u|r is given in (2.3), it remains to find u|V∖γ. In this section we state and solve the forward problem and a control problem on the neighborhood graph of an internal vertex v (denoted as Nω(v)), which consist of v and all of its adjacent vertices and incident edges. Note that if Ω is a star graph and v is the internal vertex, we have Nω(v) = Ω. The algorithm to find the trace of u on the entire V \ Γ is presented in section 2.5.

Figure 2.2: The neighborhood graph of v
Let v be an internal vertex of Ω. Label all vertices in Nω (v) \ {v} by a1,..., am, and each edge (v, aj) by ej1, see Figure 2.2. Let lj be the length of ej. We identify each ej with the interval [0, lj], where v is identified with 0 and aj is identified with lj. Let qj be real valued L1(0, lj) functions and T > 0. We put uj := u|ej, j = 1, 2, . . . , m and consider the following

1In a tree graph there is only one edge between v and aj . The case where there are multiple edges between 
two vertices can be solved in the same way.

15



IBVP on Nv (Ω):

In the forward problem (2.16)-(2.20) we assume all fj (t) are known. We solve the forward problem by finding the common value g(t) := uj(0, t) first. The initial condition (2.20) indicates g (0) = 0. According to the superposition principle, for every j = 1, 2, . . . , m

and

16

Using the Folding Ruler Formulae (2.10) and (2.13) for j = 1, 2, . . . , m, we get



Substituting (2.21) to the KN condition (2.17) we obtain

where
and

Equation (2.22) can be transformed into a delay Volterra integral equation with respect

17



to g'(t). We make the transformation

where
So (2.22) becomes

The right hand side of equation (2.27) contains terms of g and g' with delayed arguments. So (2.27) can be solved in steps. Let us consider a simple example of Ω consist of three edges. We assume l1 > l2 > l3 > l-22, and f2(t) = f3(t) = 0. When t < l1, g(t)=0. When l1 ≤ t ≤ l1 + 2l3, (2.27) becomes

Solving the above equation gives g'(t) for t ≤ l1 + 2l3 and since g(0) = 0, g(t) = J0t g'(ξ) dξ.On the next time interval l1 + 2l3 < t ≤ l2 + 2l2, (2.27) becomes

The right hand side includes values of g' (t) and g(t) for l1 < t ≤ l1 + 2l2 — 2l3, which is known from previous calculations. Once we compute g'(t) and g(t) for this time interval, we 
18



can compute g(t) on the next time interval.The above steps to compute g(t) are generalized in the following proposition.
Proposition 2.6. Suppose that fj(t) ∈ L2,loc(0, ∞) for j = 1, 2, . . . , m in the IBVP (2.16)(2.19), then g(t) can be computed from (2.27), and g ∈ L 2,loc (0 , ∞).
Proof. Let lmin = min lj. If g(s) for 0 ≤ s ≤ t - 2lmin is known, F (s) for 0 ≤ s ≤ t is j= 1,2,...,mknown. Then g'(s) for s ∈ [t — 2lmin,t] can be calculated by solving equation (2.27) as an integral Volterra equation of the second kind (IVSK equation). Since the initial value of g(t) known to be zero, g(t) can be obtained by integrating g'(t). We can therefore calculate g(t) in steps. □

Next we consider a problem concerning the controllability of g(t) from one adjacent vertex.
Proposition 2.7. On Nω(v), suppose m — 1 of the m boundary condition (all fj's for j = 1, . . . ,i - 1,i + 1, .. . , m) are known and each fj ∈ L2,loc(0, ∞). Then for any target g ∈ L2(li, T), there is a unique fi ∈ L2(0, T — li) such that the KN conditions (2.22) at v is 
satisfied and U(v, t) = g(t), t ∈ [li, T]. In other words, g(t) can be controlled through fi(t).
Proof. One can transform (2.22) into a delay Volterra Second Kind integral equation with respect to fi(t):

19



For any given time t0, the right hand side of (2.28) depends on fi(t) for 0 ≤ t ≤ t0 — 2li. So if fi(t) for 0 ≤ t ≤ t0 — 2li is already known, f-(t) for t ∈ [t0 — 2li, t0] can be calculated by solving equation (2.28) as a Volterra integral equation of the second kind. We can therefore calculate fi(t) chronologically in time step ∆t = 2li. □
2.5 Solving the forward problem for wave equations on general graphs

Suppose a finite metric graph Ω contains M vertices and N edges. As mentioned in the beginning of Section 2.4, solving the forward problem (2.1)-(2.4) on Ω can be reduced to finding the trace u|V . Let gi(t) = u(vi, t) for each vi ∈ V and let g(t) = [g1(t), g2(t), . . . , gM(t)]T. The values of g(t) on Γ are given as boundary conditions in (2.3). What's left to compute is g(t) on V \ Γ. In this section we use the KN condition to derive a system of ∣ V∣ — ∣Γ∣ delay Voterra integral equations with respect to gl(t) on V \ Γ, which can be solved in steps. This algorithm is a generalization of the algorithm given in Proposition 2.6.Let ek = (vi, Vj) be an edge in Ω which is identified with the interval [0, l]. Suppose vi is identified with 0 and vj is identified with l (we say ek goes from vi to vj). Define operators
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where ufk,vi and ufk,vj are obtained using (2.10) and (2.13) respectively.Operators ∂- and ∂+ on C([0, T]; L2([0, l]) are defined for taking derivative of the wave function along an edge outward of its vertices: ∂-(u) = ∂xu(0, ∙) and ∂+(u) = —∂xu(l, ∙). We have four combinations of ∂± and Wk± on ek:
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We next define an N × M matrix operator U, such that U has one column for each vertex and one row for each edge. The entries of U are defined in analogy to the entries in the incident matrix of Ω: if there is an edge ek from vi to vj∙, then Uk,i = Wk- and Ukjj- = Wk+. All other entries in U are zeros. As one can see, Ug gives us a column vector, where the kth entry equals to uk(x, t) on the edge ek. If g(t) is known then Ug represents the solution for (2.1)-(2.4).Operator K is defined as an M × N matrix operator. Its entries are defined in analogy to the transpose of the incident matrix of Ω: if there is an edge ek from vertex vi to vj∙, then Kik = ∂- and Kjk = ∂+. All other entries in K are zeros. Now KUg is a column vector of M entries. The ith entry represents the derivative sum of u at a vertex vi (over all incident edges, outwards of vi).Since the KN conditions (2.2) hold only at the internal vertices, we use an M × M diagonal matrix D to pick out the interior vertices. Let Dij = 1 if i = j and vi ∈ V \ Γ,
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Dij = 0 otherwise. So the KN conditions on V \ Γ can be represented by

Equation (2.33) is a system of |V∣ — ∣Γ∣ equations similar to Equation (2.22). With a transformation similar to (2.25), we have ∣V∣ — ∣Γ∣ delay Volterra integral equations of theform
where for all i = 1,..., ∣ V∣ — ∣Γ∣, Hi(s, t) is known and Fi(t) depends on the vector function 
g with arguments delayed by at least ∆ := min (li). So if g on [0, t — ∆] is known, we cani=1,...,Ncalculate gl on [t — ∆,t] using (2.33). Since g(0) = 0, g on V \ Γ can be calculated in steps.
2.6 Controllability on a tree graph

In this section let Ω be a finite metric tree. We prove exact shape, velocity, and full controllability for the system (2.1)-(2.4) on Ω by constructing the corresponding boundary control functions. Shape and velocity boundary control functions are constructed using pure dynamical method. The boundary control functions for full controllability are constructed using combined dynamical and moment method approach. First we state that for exact controllability the number of controlled boundary vertices cannot be less than ∣ Γ∣ — 1.
Proposition 2.8. If ∣Γ1∣ < ∣Γ∣ — 1, the system (2.1)-(2.4) is not exactly shape, velocity 
controllable or exactly controllable in any time T .

Proof. If the number of boundary control functions is less than ∣Γ∣ — 1, there is a path connecting two boundary vertices with zero Dirichlet boundary conditons. The proposition follows from the fact that the system of serially connected strings:
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is not exactly controllable in any time interval [0, T ]. The proof of this fact for the full controllability is presented in [Avdonin and Ivanov, 1995] Section 7.2 and [Dager and Zuazua, 2006] Section 6.3 for the case qj = 0 for all j, but it can be easily extended to the case of nontrivial potentials and to the case of the shape or velocity controllability. □
For tree graphs with at least ∣Γ∣ — 1 actively controlled boundary vertices, we control the terminal shape/velocity one path at a time.

Definition 2.9. Path: The definition of a path on a metric graph is similar to the defini

tion of a path on a combinatorial graph, it is an alternating sequence of vertices and edges (vn, en, vn-1, en-1, . . . , v1, e1, a) with no repeated edges or vertices. The main difference is in 
our definition, the last point a is not necessarily a vertex, it can be any point in the graph 
(in which case e1 = (v1, a) is a section of an edge). Since two points on a tree uniquely 
determine a path, we denote the path (vn,en,vn-1,en-1,... , v1, e1,a) as P (vn, a).

We represent Ω with a union of disjoint paths (except for the end points). The starting point of each path must have an active control function. We first show such path union representations exist if ∣Γ1∣ ≥ ∣Γ∣ — 1.
Lemma 2.10. A tree graph Ω has a union representation U,
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of disjoint (except the end points) paths (they are referred to as U-paths) if and only if ∣Γ1∣ = ∣Γ∣ or ∣Γ1∣ = ∣Γ∣ — 1.



Proof. Whether ∣Γ1∣ = ∣Γ∣ or ∣Γ1,∣ = |r| — 1, the existence of a path union representation of Ω can be proved by induction on the number of edges. Suppose Ω contains one edge e and two vertices γ1 and γ2. If Γ1 = {γ1, γ2}, one path union representation is Ω = P(γ1, a) ∪ P(γ2, a), where a is a point in the interior of e; two other path union representations are Ω = P(γ1, γ2) and Ω = P(γ2,γ1). If Γ1 contains only γ1, then the only path union representation is 
ω = p (Y1,Y2).Assume path union representations exist for all trees of up to N — 1 edges and ∣Γ11 ≥ ∣Γ^ 1 (N ≥ 2). Suppose Ω contains N edges and ∣Γ1∣ ≥ ∣Γ∣ — 1, then Γ1 contains at least one boundary vertex γ1. Let v be the interior vertex adjacent to γ1, then Ω = P(γ1 ,v) ∪ (Ω \ P(γ1, v)), where Ω \ P(γ1, v) is a tree graph with at most N — 1 edges, and has a path union representation by the induction hypothesis. Thus Ω has a path union representation. Note that we did not assume our tree graphs to be series-reduced (a series reduced tree is a tree graph that contains no vertices of degree two, see [Bergeron et al., 1998]).Now suppose there are at least two boundary vertices γ1, γ2 ∈ Γ0 in Ω and a path union representation exist for Ω, then γ1 and γ2 are the end vertices of some U-paths P(γ3,γ1) and P(γ4,γ2). Since P(γ3,γ1) and P(γ4,γ2) are disjoint but Ω is connected, there is a path P(v1, v2) from P(γ3, γ1) to P(γ4, γ2). Since v1, v2 are interior points, P(v1, v2) ∈/ U. The path P(v1, v2) cannot be a segment of a U-path since it intersects both P(γ3, γ1) and P(γ4, γ2). Neither can P(v1, v2) contain the end point of two U-paths, since if both U-paths start at some boundary vertices, and end on some point on P(v1, v2), at least one path intersects P(γ2, γ1) or P(γ4, γ3) at a vertex that is not its end point. So such a U-path union representation of Ω does not exist. □
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Definition 2.11. Watershed and Tributary: Let U be a path union representation of Ω

If P(γ1,v) ∩ P(γ2,a) = {v} and v = a, then path P(γ1,v) is called a tributary of pathP(γ2, a). We call a path that is not a tributary to another path a level-1 path or mainstream.

A tributary oflevel i paths is called a level i+1 path forall i ≥ 1.

We call the union of P(γ2,a), its tributaries, and tributaries of tributaries of all levels 
the watershed of path P(γ2, a), or W(P(γ2, a)).

In the following lemma, we show that the terminal shape of one path can be controlled from its beginning boundary vertex. This gives the possibility of controlling the terminal shape of the whole graph one path at a time.
Lemma 2.12. Let P = (vn, en, vn-1, en-1,..., v1, e1, a) be a path in Ω where vn ∈ Γ1 and 
a ∈ Ω.2 Let li be the length of ei for each i and lP = Vi' ∣ li (See Figure 2.3.) Suppose all 
vertices in Γ \ {vn} are fixed. That is, f (t)∣γ = 0 for γ = vn. Then for any φ ∈ L2(P), there 
exists a unique function f ∈ L2(0,1p) such that uf,vn(∙,lp)∣p = ϕ(∙)∣p.

2 Although vn is a boundary vertex, we label it vn instead of γn , so we can refer to vertices on P as vi 's 
together.

Figure 2.3: Control on path P(vr, a)

26



Proof. Denote u∣eii(x,t) = Ui(x,t), ϕ|e.(x) = φi(x), u(a,t) = go(t), u(vi,t) = gi(t) for i =1, . . . , n, and let f(t) = gn(t). Note that only f(t) is a boundary control and all gi(t) fort = 0, . . . ,n — 1 are viewed as virtual controls. The plan is to choose appropriate f(t) so that through KN conditions at each vi, uf,vn (vi , t) = gi(t), and for each i = 1, . . . , n,

Since the wave propagates on P at the unit speed, the minimal time it takes for the wave generated by f to reach a is lP. So the shape controllability is not achievable in a time less than lP. We will show f is uniquely determined if we require f to vanish outside [0, lP].The construction of f is by constructing gi's in the ascending order of i. Since we require supp(f) = [0, lP], and all gi's are the results of wave propagation generated by f,supp(gi) = (∑‰+1 ιj ,ip for i = 0, . . . , n — 1. It follows immediately g0(t) = 0. BynProposition 2.5 (1), there is a unique square integrable g1(t) : supp(g1) = (∑j=2 j,lp suchthat
Since we cannot place g1(t) at v1 directly, we have to construct g2(t) at v2 such thatg2(t) controls g1(t) through Proposition 2.7. Another constraint for g2 is the terminal shapeon e2. We label all vertices in Nω(v1) \ {v2,v1,a} from a1 to am and set hj(t) = u(aj, t).For j = 1, . . . , m, pick γj ∈ Γ such that aj ∈ P(γj, v1), and denote Gj the watershed ofP (γj , v1 ). Note that on each watershed Gj, the vertex v1 is the only boundary vertex with an active input function, and all other boundary vertices are fixed. So hj(t) = ugG1,v1(aj, t), which can be computed using the method described in Section 2.5. On Nω(v1), now wehave g0 = 0, g1 and h1, . . . hm are all known, by Proposition 2.7, there is a unique squareintegrable function g21(t) : supp(g21) = jn=3 lj, lP — l2 such that the KN condition at v1 issatisfied and u(v1, t) = g1(t).To satisfy the second constraint, we construct another component g22(t) of g2. Since g21(t) 
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generates g1(t) and g1(t) controls the terminal shape of e1, g22(t) should not have an impact to g1(t), therefore g22(t) = 0 for t < lP — l2. By Proposition 2.5 (1), there is a unique square integrable g22(t) : supp(g22) = (lP — l2, lP ] such that

Let g2(t) = g21(t) + g22(t), so g2(t) ∈ L2 jn=3 lj , lP . Since the two components of g2(t) are supported on disjoint intervals, and each is uniquely determined on its support, g2(t) is the unique function satisfying both constraints imposed by g1(t) and ϕ>\2(∙)∙Similarly, we will find g3(t) = g31(t) + g⅜(t) ∈ L2 (∑n=4 lj,T^ , such that supp(g31) =
2and g31 generates g2; supp(gg) = (lP — l3,lp] and ug3,v3(∙,lp) = ϕ3(∙) —ug3,v3(∙,lp) — ug2,v2(∙,lp). Repeat this process until f = gn ∈ L2(0,1p) is found, such that uf,vn (∙,T)|p = φ(∙)|p. From the construction process we conclude f is uniquely determined.

(∑j=4 lj ,lP - l3

□

extends from a continuous mapping from C2(0,T) × (0,T] to H-1 to a continuous mapping from L2 (0, T ) × (0, T ] to H-1 . Proof of this Corollary is then similar to the proof of Lemma 2.12. Instead of using Proposition 2.5 (1) and Proposition 2.7 to obtain the shape control, we use Proposition 2.5 (2) and Proposition 2.7 to obtain the velocity control. □
We now use Lemma 2.12 (respectively Corollary 2.13) to prove shape (respectively velocity) controllability on tree graphs, one path at a time.
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Corollary 2.13. Let P be a path in Ω as defined in Lemma 2.12. For any ψ ∈ H 1, There 
exists a function f ∈ L2(0, lP) such that uf,vn(∙, lP)∣p = ψ(∙)∣p.
Proof. Similar to Proposition 2.5 Part 2, the map (f,t) → uf,vn(∙,t), where



Theorem 2.14. Let Ω be a tree graph where ∣Γ11 ≥ ∣Γ∣ — 1. Let U be a path union repre

sentation of Ω 

of disjoint (except the end points) paths P(γ, a). Let T = maxP ∈U length P(γ, a). Then
1. For any ϕ ∈H, there exists a boundary control f ∈ Fτ such that uf,ri(u∖∙,T) = φ(∙).

2. For any ψ ∈ H-1, there exists a boundary control f ∈ Fτ such that uf,ri(U) (∙, T) = ψ(·).
3. Let the minimal time for both shape and velocity controllability be Ts, then

Proof. Part 1: We first control the shape on mainstreams, then on higher level paths successively. Let the set of mainstreams in the union U be {P (γi , ai )}, where i = 1, . . . , m. For each i, let lPi = length(P (γi, ai)), and denote the watersheds of P(γi, ai) as Wi. All Wi's are disjoint except for the endpoint of the mainstreams, and ∪mWi = Ω. By Lemma 2.12, for each i = 1, . . . , m, we can find a unique function fi ∈ L2(T - lPi, T ) such that
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Since the time for the wave generated by fi to propagate to ai is lPi, u(ai, T ) = 0, and fi has no impact on watersheds different from Wi. That is,

So the shape control on level-1 paths P(γi, ai) is obtained through fi for i = 1,. . .,m.



The same method is then used to obtain the shape control on level-2 paths. For instance, suppose P(γj, aj) is a tributary of a mainstream P(γi, ai). Then W (P (γj , aj )) ⊂ W (P (γi, ai)). By Lemma 2.12 we can findfj(t) ∈ L2(T - Tj, T ) such that

Part 2: The proof for velocity controllability is similar to the proof of the shape controllability in Part 1. Using Corollary 2.13 we first obtain the velocity on mainstreams, then on higher level paths successively.
Part 3: Let Umin be the union representation such that

By Part 1 and Part 2 we can construct boundary control functions to have shape or velocity controllability at T = maxP ∈Umin length P (γ, a). On the other hand, ifT < maxP ∈Umin length P (γ, a) one can easily construct examples of the graphs which are not shape or velocity controllable at that T . We can consider, for example, an interval with one or two boundary controls, a star graph with equal length edges and controls at all boundary vertices.Therefore
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Again fj has no impact on Ω \ W (P (γj∙, αj∙)).Since there are a finite number of paths in the union U , repeat this process we have the final shape control on paths of all levels within time T .

gives the minimal shape/velocity controllability time guaranteed for all trees.



Remark 1. The statement in Part 3 of Theorem 2.14 is a general statement for all tree 
graphs. In some particular cases, one can have shape controllability at a time less than maxP∈Umin lengthP(γ, a).

For example, consider a tree graph as shown in Figure 2.4, where the lengths of edges e0, e1, e2 are l0 = 1, l1 = 1, and l2 = 4 (the common point v is identified as 0). Assume γ0 is 
fixed and all three edges have zero potentials. Let the target functions be Φo(x),Φi (x), Φ2(x)

on e0, e1, e2 respectively. Let 

be placed at γ1 , 

be placed at γ2 , then at time T = 3 the tree graph has shape controllability on all three edges and
In Figure 2.4, the section of the graph filled by wave propagated from γ1 is dashed, the section 
filled by wave propagated from γ2 is dotted, and the section filled by wave propagated from 
both γ1 and γ2 is solid.
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Figure 2.4: Shape controllability at T = 3
Remark 2. Let Tf be the least time it takes for the propagation of waves generated at the controlled boundary vertices to fill Ω. From the geometry one can easily derive the 
inequalities: 
which are valid for any tree graph. The example from Figure 2.4 is also an example where 
the inequalities in (2.35) are strict.

We still assume the lengths of edges e0, e1, e2 are l0 = 1, l1 = 1, and l2 = 4, and γ0 is 
fixed. In the control function f = (f1, f2), f1(t) is placed at γ1, f2 is placed at γ2. One can 
see that Tf = 2.5. Indeed, in Figure 2.5, we dash the section of the graph filled by wave 
propagated from γ1, and dot the section filled by wave propagated from γ2. Since the optimal 
path union is {γ1,e1,v,e0,γ0}∪{γ2,e2,v}, maxP∈Umin lengthP(γ,a) = 4. On the other hand diameter(Ω) = l0 + l2 = 5. So, we have the strict inequalities

Figure 2.5: Tf = 2.5 
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Theorem 2.15. Suppose the system (2.1)-(2.4) has both shape and velocity controllability 
within time T. Then for any (φ,ψ) ∈ H × H-1, there exists a boundary control f ∈ F2 

such that uf, γi (∙, 2T) = φ(∙) and uf, γi (∙, 2T) = ψ(∙).

Proof. To prove the full controllability of the system (2.1)-(2.4) we combine the dynamical approach used for proving the shape and velocity controllability with the spectral methods. 
We consider the following eigenvalue problem on the graph Ω:
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It is known that the spectrum {ωn}n∈N of this problem is purely discrete and the eigenfunctions {ϕn}n∈N form an orthonormal basis in H. The solution u(∙,t) of (2.1)-(2.4) can be represented in a form of a series with respect to {ϕn} (see, for example, [Avdonin and 
Nicaise, 2015], [Avdonin and Ivanov, 1995], [Belishev and Vakulenko, 2006]).Control problems are reduced to moment problems using the Fourier method. The shape controllability is equivalent to the solvability of the moment problem (see [Avdonin and 
Ivanov, 1995], Chapter 3)

Solvability means that for any {an} ∈ l2, there exists f ∈ FT satisfying (2.36). For simplicity we assume here that ωn = 0. If ωn = 0 we use t to replace sιnJωnt in the expression of (2.36).The velocity controllability in time T is equivalent to the solvability of the moment



problem

Denote by f-(t) the odd extension of f(t) from [0, T] to [—T, T] and by g+(t) the even extension of g(t). We observe that the function 

solves both moment problems 

where Fτ := L2([—T, T]; Rm). It means that the moment problem (2.38) is solvable for any sequences {an}, {bn} ∈ l2. Therefore, the system (2.1)-(2.4) is fully controllable in the time interval [—T, T]. Since the system is linear with time independent coefficients, it is also fully controllable in the time interval [0, 2T]. □
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Chapter 3: Inverse Problem for the Wave Equation on Graphs
3.1 Introduction

Quantum graphs or differential equation networks (DENs) are metric graphs with differential equations defined on the edges coupled by matching conditions at the vertices. DENs play a fundamental role in many problems of science and engineering and give rise to challenging problems in various areas of mathematics from combinatoric graph theory to PDE and spectral theory. Inverse theory of DENs constitutes an important part of the rapidly developing area of applied mathematics — analysis on graphs. Inverse spectral and scattering problems for quantum graphs (almost exclusively, for trees - graphs without cycles) were considered in many papers (see, e.g., [Gerasimenko and Pavlov , 1988; Berkolaiko and 
Kuchment, 2013; Carlson, 1999; Pivovarchik, 1999; Belishev, 2004; Yurko, 2005; Brown and 
Weikard, 2005] and references therein).In [Avdonin and Kurasov , 2008] inverse dynamical, spectral and scattering problems for the Schroodinger equation on quantum trees were studied and the leaf peeling (LP) was proposed. This method was extended to boundary inverse problems for various types of PDEs on trees and various matching conditions in a series of subsequent papers ( [Avdonin 
et al., 2010b,c; Avdonin and Bell, 2015; Avdonin et al., 2015, 2017b, 2019]). The LP method allows one to recover not only coefficients in the equations on the graphs edges but also the lengths of the edges and topology (connectivity) of the graph.There are two versions of the method: spectral, where the Titchmarsh-Weyl (TW) matrix function serves as inverse data, and dynamical with the response operator as inverse data. Both identification procedures are recursive — they allow recalculating the TW-function (or response operator) from the original tree to the smaller trees, “pruning” leaves step by step up to the rooted edge. The dynamical version of the LP method is much more complicated for theoretical justification than the spectral one, but the main steps of the dynamical algorithm contain only Volterra type equations of the second kind and triangular matrix equations. 
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Therefore, this version may serve as a basis for developing effective numerical algorithms solving inverse problems on quantum graphs. The most comprehensive exposition of the LP method is presented in [Avdonin et al., 2017a], but even there not all steps of the dynamical version are described and justified in all details. The first main goal of this chapter is to give a complete and rigorous presentation of this version.Using the LP method we solve the dynamical boundary inverse problem for the wave equation on a tree graph, i.e. recover the topology of the graph, lengths of the edges and coefficients in the equations on the edges by the given boundary Dirichlet-to-Neumann map (response operator). We do not use any spectral methods at any step of our solution. To our best knowledge it is the first solution for the inverse problem for general tree graphs by pure dynamical methods. We present the algorithm solving the problem and indicate the time required for this procedure.The LP method is based on the powerful boundary control method in inverse theory, which uses deep connections between controllability and identifiability of dynamical systems. In the current chapter we use our recent results presented in [Avdonin and Zhao, 2021a], where new algorithms solving forward and control problems for the wave equation on graphs were proposed. These results allow us to significantly simplify the presentation of the dynamical LP version and solution of the inverse problem.This chapter is organized as follows. Section 3.2 introduces a finite compact metric tree graph Ω and the wave equation associated with Ω. Section 3.3 presents several useful formulae for solving the forward initial boundary value problem on the graph and Duhamel's principle. Section 3.4 introduces the response function and the dynamical inverse problem. In Section 3.5 we present our main result, the Leaf Peeling theorem, and complete the solution of the dynamical inverse problem.
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3.2 Preliminaries
Let Ω be a finite compact rooted tree graph with edges E = {e1,..., eN} and vertices V = {v1 , . . . , vN+1 }; every edge ej is identified with a real interval (0, lj ) where lj is referred to as the length of ej. On each ej, we identify the further vertex from the root vertex as x = 0, and the closer vertex to the root vertex as x = lj . The set of boundary (pendant) vertices Γ = {γ1, . . . , γm} is a subset of V consisting of vertices with degree 1. The root vertex is labelled as γm. The other pendant vertices {γ1, . . . , γm-1} are called leaf vertices. We put Γ0 := {γm} and Γ1 := {γ1, . . . , γm-1}. The edges incident to the leaf (respectively root) vertices are called the leaf (respectively root) edges. For v1, v2 ∈ V , we denote the path length between v1 and v2 as dist(v1, v2), which is well defined since there is a unique path between any two vertices on a tree graph.The graph Ω naturally determines the Hilbert space of square integrable functions
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The space H1 consists of continuous functions ϕ on Ω such that φ|e belongs to the Sobolev space H 1(e) for each edge e and ϕ|γ = 0. The space H-1 is defined as the dual space of H1.For convenience we label u∖ej and q∖ej as uj and qj. Let ∂uj(v) be the derivative of u at the vertex v taken along the edge ej in the direction outward of v. For γ ∈ Γ, since there is only one edge incident to γ, we denote the derivative of u outward of γ as ∂u(γ). By E(v) we denote the set of edges incident to v. We associate the following initial boundary value problem (IBVP) on the graph Ω with the potential function q such qj∙ ∈ C[0, lj∙] ∀j:



Here T > 0 and f ∈ FT := L2([0, T); Rm-1). There is a unique generalized solution to the problem (3.1)-(3.4) (the forward problem). Under different conditions on q it was proved (see, e.g. [Ali Mehmeti and Meister, 1989; Ali Mehmeti, 1994; Lagnese et al., 1994; Daager 
and Zuazua, 2006; Avdonin and Nicaise, 2015]) that
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3.3 The forward problem and the Duhamel's principle
In Propositions 3.16 and 3.17 below we cite our results from [Avdonin and Zhao , 2021a] that are used in the present chapter. Proposition 3.16 contains several useful formulae regarding solutions and end point responses of the forward problem for the equation (3.1) on the simplest graph - interval [0, l].

Proposition 3.16. Let w(x, t) be the solution to the Goursat problem

in which the q(x) is an extension of the potential function q(x) in (3.1) from [0, l] to [0, ∞), fol lowing the rule q(2nl ± x) = q(x). Let k(x, t) be the solution to the Goursat problem



in which p(x) is an extension of the potential function q(x) in (3.1) from [0, l] to [0, ∞), 
following the rule p(2nl ± x) = q(l — x) for 0 ≤ x ≤ l.

Let uf,- be the solution to the equation (3.1) on the interval [0, l] with the initial con

dition (3.2), boundary conditions u(0, t) = f(t) and u(l, t) = 0; let uf,+ be the solution to 
the equation (3.1) on the interval [0, l] with the initial condition (3.2), boundary conditions u(0, t) = 0 and u(l, t) = f(t). Then: uf,- and uf,+ can be expressed in terms of w and k :

and

We notice that if q ∈ C[0, l], then the kernels w and k are continuously differentiable [Avdonin and Mikhaylov, 2010]. Furthermore, from (3.7) and (3.8) we obtain the following formulae for responses at end points of the interval (these formulae will be discussed in Sections 3.4 and 3.5):

39



40



The next proposition uses formulas (3.9)-(3.12), and the Kirchhoff-Neumann (KN) condition (3.3) at an internal vertex of Ω. It was proved in [Avdonin and Zhao, 2021a].
Proposition 3.17. Let of (t) := (uf ∣v∖r) (t) be the vector function of the trace of uf on 
the interior vertices of Ω. Let oi(t) = (uf ∣vJ (t) for some vi ∈ V \ Γ, and hj∙(t) for j = 1, . . . , deg(vi) be the trace functions of u on the adjacent vertices of vi (depending on the 
location of vi, some of its adjacent vertices may be boundary vertices, some of them may 
be interior vertices). For each edge incident to vi, we identify the edge with an interval of 
its length (0, li), where vi is identified with 0, and the other vertex is identified with li (see 
Figure 3.1).

Figure 3.1: The neighborhood of vi

Then we can express the relationship ofthe trace functions oi(t) and hj(t) (j = 1, . . . , deg(vi)) 
in the form of the integro-differential equation:

41



where

and

Here wj are kj are solutions to (3.5) and (3.6) on each incident edge of vi.

Remark 3. Since (3.13) holds for every entry ofof, we have a system of∖V \ Γ∖ equations 
for each component of of. In [Avdonin and Zhao, 2021a] we proved that the system can be 
solved in steps for any positive time T, and each component of of belongs to L2(0, T). Once 
we know of, together with the given boundary conditions, we can find ujf for j = 1, . . . , ∖E∖ 
with the help of formulas (3.7) and (3.8).
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The above remark gives an algorithm to solve the forward problem (3.1)-(3.4). ByDuhamel's principle, the solution uf admits the representation
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where * stands for the convolution with respect to t, and ui(x,t) is the solution to the problem (3.1)-(3.3) with boundary conditions

where δ(t) is the Dirac delta function.Denote oi(t) = (oi1,... ,θ∣v∖r∣) := ui∣v∖r. Since oi(t) is the result of propagation of the wave generated by δ(t) on Ω, we have the following statement regarding the type and location of discontinuities on each entry of oi(t).
Proposition 3.18. For every fixed i = 1,..., ∣Γ∣ and j = 1,..., ∣V|, let {ξi,j,r}∞=1 be the 
set of all distinct lengths of all walks on Ω from γi to vj∙. Then all discontinuities of oj (t) 
are located on {ξi,j,r}r∞=1. The discontinuities have the forms of either δ function (spikes) or 
jumps. That is, we can represent oij in the following form:

where θi,j(t) is a piecewise continuous function with possible jump discontinuities at {ξi,j,r}r∞=1, 
and ai,j,r ∈ R.

Proof. To obtain equation (3.17), we track the propagation of the waves generated by the δ(t) from γi to vj at the unit speed. Due to the unit speed of wave propagation, the set {ξi,j,r}r∞=1 can be viewed as the set of time points when a new wavefront arrives at vj.We will illustrate this fact by solving (3.13)-(3.15) on V \ Γ for a few steps. We first arrange the set of time points when the wavefronts arrive at all internal vertices Ξi :=



∪vj∈v∖γ ∪r ξi,j,r in ascending order, then solve (3.13)-(3.15) on the intervals defined by the first terms of Ξi.The explicit expressions of first terms in Ξi is determined by the connectivity and edge lengths of Ω, so we have to make some assumptions here, while noting that the steps solving (3.13)-(3.15) hold the same for other assumptions. Since the Dirac delta function is placed at γi, we denote the vertex adjacent to γi as v1 and let l1 := dist(γi, v1). We next denote the closest interior vertex to v1 as v2, the second closest interior vertex to v1 as v3. Note that v3 may be connected to either v1 or v2, as illustrated in Figure 3.2. Let l2 := dist(v1, v2) and l3 := dist(v1, v3). For simplicity we assume l3 > 2l2, thus the first few terms of Ξi are l1, l1 + l2, l1 + 2l2, l1 + l3, . . . . We will show below the steps of solving (3.1)-(3.4) on the time intervals [0, l1), [l1, l1 + l2), [l1 + l2, l1 + 2l2), and [l1 + 2l2, l1 + l3).

Figure 3.2: The propagation of δ(t) from γi. Vertex v3 may be adjacent to either v1 or v2.
When t ∈ [0,l1]), oij = 0 for all j = 1, . .. , ∣V \ Γ∣. When t ∈ [l1, l1 + l2), we applyProposition 3.17 and obtain the equation for oi1(t) at v1:
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We recall that for continuous qj, the integral kernels G1, ∂xk1 are continuous functions, see [Avdonin and Mikhaylov, 2010]. The right hand side contains three kinds of discontinuities: δ' (the dipoles), δ (the spikes) and jumps, all are located at (2n + 1)l1 for n ≥ 0. Thus the left hand side must contain all discontinuities at the same locations. Moreover, the term deg(v1)(oi1)'(t) must contain all the δ' dipoles and δ spikes. Thus oi1(t) contains δ terms and jump discontinuities at (2n + 1)l1 for n ≥ 0. The other entries o2,..., o∣v∖r∣ are all zeros.
When t ∈ [l1 + l2, l1 + 2l2), o1 still satisfies (3.18) and o2 satisfies

During this time oi1(t) is piecewise continuous, with spikes and jumps at {(2n + 1)l1| n ≥ 0}; oi2(t) is piecewise continuous, with spikes and jumps at {{(2n + 1)l1 + (2k + 1)l2|n, k ≥ 0}. The other entries O3,..., o∣v∖r∣ are all zeros.
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When t ∈ [l1 + 2l2, l1 + l3), oi1 satisfies 

and oi2(t) still satisfies (3.19). Therefore oi1(t) is piecewise continuous, with spikes and jumps at {{(2n + 1)l1 + 2kl2| n, k ≥ 0}; oi2(t) is piecewise continuous, with spikes and jumps at {{(2n + 1)l1 + (2k + 1)l2| n, k ≥ 0}∙ The other entries oi3, ∙ ∙ ∙, o∣v∖γ∣ are all zeros.
With this process, we solve each oij in each time interval. As we add more locations of discontinuities for each oij as time goes on, eventually every oij are piecewise continuous, with spikes and jumps on {ξi,j,r}r≥1. □

Remark 4. In the expression of oij in equation (3.17), we separate out the δ spike discon

tinuity but not the jump discontinuity. This is driven by the need in Section 3.5 and wil l 
become clear in that section.
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3.4 The response function and the inverse problem
We now introduce the dynamical response operator for system (3.1)-(3.4) by the rule

where R(t) is a m × m matrix valued response function with entries Rij∙ (t) = ∂ui(γj∙ ,t).Using Propositions 3.17, 3.18 and equations (3.9)-(3.12) we conclude that each Rij has a representation 

where θij is a piecewise continuous function, ai,j,r, bi,j,r ∈ R, and {ξi,j,r}r∞=1 is the set of distinct lengths of all walks from γi to γj. We call R(t) := { Rij }im,j-=11 the reduced response matrix function.The dynamical inverse problem for the Schrodinger operator on Ω is to recover the connectivity, lengths of edges, and potential on Ω from R(t). When Ω is an interval of length l, R(t) contains only one entry R11(t). It is proved in [Avdonin et al., 1992] that if R11(t) for 0 ≤ t ≤ 2l is known, one can use the Boundary Control (BC) method to recover q(x) for 0 ≤ x ≤ l. For a tree graph, the following Proposition first appeared in [Avdonin and 
Kurasov, 2008]:
Proposition 3.19. Let Ω be a metric tree graph and R(t) on Ω for t ≥ 2lm is known (lm 

is the maximum length of the leaf edges), then one can recover the lengths and potentials of 
all its leaf edges. One can separate the leaf edges into groups, where all leaf edges in one 
group are incident to the same internal vertex. Moreover, we can find the degrees for those 
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The response operator can be expressed through convolution



internal vertices.

Proof. Denote the length of the edge incident to γj as lj. Since R(t) is given and its each entry has the expression of (3.21), for each j we have li = ξ'2"'. Once the length is known, one can use the BC method described in [Avdonin et al., 1992] to recover the potential functions on all leaf edges.The grouping of leaf edges based on their internal vertex can be done by the following method: if ξi,j,1 = ξj,i,1 = 2(li + lj) then ei and ej are incident to the same internal vertex.From (3.13) we deduce that bi,i,1 in (3.21) equals to 2/3i, where mi is the degree of the internal vertex that the boundary vertex vi is adjacent to. □
The lengths and potentials of the non-leaf edges and connectivity of the graph will be recovered through the LP method described in Section 3.5.

3.5 Leaf peeling method on a rooted tree
In this section we start with a rooted tree graph Ω and its reduced response matrix 

R, remove (peel) all leaf edges from a sheaf on Ω (see definition below), and calculate the reduced response matrix for the peeled tree.
Definition 3.20. We call a star shaped subgraph of a tree graph a sheaf if it contains all 
edges of the graph incident to some internal vertex and if all but one of its edges are leaf 
edges. The center vertex of the star is called the abscission vertex of the sheaf. The 
one edge that is not a leaf edge is called the stem edge of the sheaf. An example is shown 
in Figure 3.3. The statement below is a slightly modified version of a similar result from 
[Avdonin et al., 2015].

Lemma 3.21. A tree graph contains at least one sheaf.

Proof. Let Ω be a tree graph. If Ω contains only one internal vertex, it is a star graph. All edges except for the root edge are leaf edges, therefore Ω is a sheaf. If Ω contains more than
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Figure 3.3: A sheaf on a tree graph rooted at γm (the sheaf is in solid lines), in which v0 is the abscission vertex and e0 is the stem edge.
one internal vertices, let v,v' be the two internal vertices such that the path length between v and v' is the maximum distance between any two internal vertices. Since Ω is a tree graph, there is a unique path P between v and v'. Neither v nor v' can be adjacent to another internal vertex that is not on P. Indeed, without loss of generality, say v' is adjacent to an internal vertex v'' and v'' is not on P, then the distance between v and v'' is greater than the distance between v and v', which contradicts the assumption. On the other hand, at least one of v, v' is not adjacent to the root vertex, say v. Then all but one of the incident edges of v are leaf edges. Thus v and its incident edges is a sheaf of Ω. □

Without loss of generality we assume that γ1 belongs to a sheaf S of Ω, and e1 is incident to γ1. and let Ω be the new tree graph formed by removing the leaf edges of S from Ω, thus the stem edge of S (denoted by e0) becomes a new leaf edge in Ω. We label the abscission vertex of S (which becomes a new leaf vertex of Ω) as γ0 and the stem edge as e0. Let 
R(t) be the reduced response function of Ω. For consistency we keep the indices of the “unpeeled” leaf vertices from Ω the same in Ω. Therefore Γ(Ω) = {γ0} ∪ ({γ1,..., γm} \ S), and the entries of R are denoted as Rij, where i, j ∈ I := {0,... ,m — 1∣ γi, γj∙ ∈ S}. (As a comparison, the entries of R are Rij, where i, j ∈ I := {1, . . . , m - 1}.)For each i ∈ I, denote gi(t) := oi0 = ui(γ0, t) and Ai(t) := ∂ui0(γ0, t). We recall that ui is 
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defined in (3.16). For each j ∈ I , we set

The matrix (ρij∙')i∈1 j∈ι is an intermediate step between R and R: it contains the responses at all leaf vertices of the peeled tree Ω to the boundary input (3.16) on Ω.
Lemma 3.22. For each i ∈ I and j ∈ I, one can deduce gi(t) and (ρij) from the reduced 
response matrix R on Ω.

Proof. Using Rii , for each i ∈ I, we first recover li according to Proposition 3.19 and qi(x) using the BC method as described in [Avdonin et al., 1992]. Denote the boundary condition 
u(γ1,t) as h(t). Ifi =1, h(t) =δ(t), otherwise h(t) =0. By the superposition principle,

Using (3.9) and (3.11) in equation (3.22), we
drespect to — gi, which can be solved in steps. dt

get a delay Volterra integral equation withSince the initial value of gi is zero, we cancompute gi.When gi is known, Ai(t) can be obtained by using (3.10) and (3.12) in (3.3):

Since all other entries of (ρij) are known, it follows we now have the complete matrix (ρij). □
Since we will peel off the leaves of S and γ1 ∈ S, without loss of generality, we use g1(t) and ρ1j to compute R0j for j ∈ I, and then use gi and ρij to compute Rij for i ∈ I \ {0} and j ∈ I (thus we have all entries of R). The following combinatorial/connectivity properties on Ω and Ω will be used in the peeling process.
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Let {μr}∞=1 be the set of distinct lengths of all walks on Ω from γ1 to γ0; For every j ∈ j, let {νj,r}∞=1 be the set of distinct lengths of all walks on Ω from γ1 to γj∙. let {λj,r}∞=1 be theset of distinct lengths of all walks on Ω from γ0 to γj∙ (when j = 0, such walks are closed). In contrast to {λj,r}∞=1, let {λj,r}∞=1 be the set of distinct lengths of all walks on Ω from γ0to γj. All sets {μr }∞=1, {νj,r}∞=1, {λj,r}∞=1, and {Aj∙,r}∞=1 are sorted in ascending orders. 
Lemma 3.23. The sets {μr }∞=1, {νj,r}r∞=1, {λj,r}∞,r=1, and {λj,r}∞=1 have the following rela-

tionships:

Proof. Equation (3.23) is obvious since every walk from γ0 to γj∙ on Ω is a walk from γ0 to Yj on Ω but the converse is not true.Since γ0 is on every walk from γ1 to γj, a walk from γ1 to γj can be partitioned into a walk from γ1 to γ0 and a walk from γ0 to γj, so

Since all {μr}, {νj∙,r }, {λj,r} are in ascending order, we have (3.24).Furthermore, since γ0 is the second vertex on every walk from γ1 to γj, every walk from γ1 to γj can be partitioned into the path (γ1, γ0) and a walk from γ0 to γj, so
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Since both {νj,r} and {λj,r} are in ascending order, we have (3.25).
We now prove the Leaf Peeling theorem.

Theorem 3.24. (Leaf Peeling Theorem) The reduced response matrix function R(t) on Ω can be computed from R(t) on Ω.
Proof. With R(t) given, we will first compute R0j for all j ∈ I, then Rij for all i ∈ I \ {0} and j ∈ I. Thus we will get all entries of R(t).For R0j (j ∈ I), we first compute g1(t) and ρ1j∙(t) through Lemma 3.22. By (3.17), 

and by (3.17), (3.9) and (3.11) 

where αr, aj∙,r,bj,r ∈ R, ψ(t),ϕj(t) are piecewise continuous.Let U0 be the solution of (3.1)-(3.3) on Ω with the boundary conditions u(γ0,t) = δ(t)and u(γi, t) = 0 for γi ∈/ S. Then by (3.21) the unknown function R0j has the form 

for some cj,r, dj,r, ∈ R and piecewise continuous χj(t).Due to (3.23), instead of using Equation (3.29), we can represent Roj(t) as

Equation (3.30) has all terms from (3.29) and some extra zero terms: if λj,r ∈/ {λj,r}, then
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By Duhamel's principle

We plug (3.27), (3.28) and (3.30) into (3.31): 

where {cj∙,r}∞=1, {dj∙,r}∞=1 and χj∙(t) are unknown. Since ϕj(t),δ(t),δ'(t) vanish for t < 0, at any finite t, all series in (3.32) contain finitely many nonzero terms.We collect the terms containing δ from (3.32) to obtain

Let N be the largest integer such that νj,N ≤ t and M be an integer greater than N . By(3.24), t < Vj,M ≤ μ m + λj∙,r and t < Vj,M ≤ μr + λjM for any r ≥ 1. Thus 

for any M > N and r ≥ 1. Equation (3.33) then becomes 

which can be represented by a matrix equation
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where d = [dj∙,1,..., dj,N]t; b = [bj∙,1,..., bj,N]t; The entries of M are determined row by row: for every r = 1,..., N, Mrs = αm if μm + λj,s = Vj,r for some m ≥ 1, otherwise Mrs = 0. By (3.25), all diagonal entries Mrr are equal to α1. For all s > r, Mrs = 0. In fact, since λj,s > λj,r, if there is some μm such that 

μm must be less than μ1, which is impossible. Therefore M is lower triangular with nonzero diagonal entries, thus invertible. We can find all dj,s for s ≤ N for any N < ∞.The next step is to collect the terms in (3.32) containing δ. Since ψ(t) is piecewise continuous, ψ, may contain terms of impulse functions, so

By (3.26), {μr + λj,s}r,s≥1 = {νj∙,r}r≥1, so {ξr} ⊂ {νj∙,r}, therefore (3.35) can be written as 

for some known aj,r ∈ R. We can convert (3.36) to a matrix equation similar to (3.34),
Mc = a,

and find cj,r.
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where Ψ(t) is piecewise continuous and βr, ξr ∈ R. So from (3.32) we have



The piecewise continuous terms in (3.32) forms an integral equation with respect to χj which can be solved in steps:

Thus we have found the entries RR0j- (t). What is left to compute are the entries Rij- (t), where i ∈ I \ {0} and j ∈ I. Again by Duhamel's principle,

where ρij and gi(t) are computed in Lemma 3.22, and R0j was computed in the previous step. Substituting ρij∙ and gi(t) into (3.38) we obtain Rij∙. □
Corollary 3.25. One can recover the edge lengths, connectivity, and potential of a finite 
metric tree graph Ω from R(t) for a finite time interval t ∈ (0,T) with T > 2L, where L is 
the length ofthe longest path from a leaf vertex to the root vertex.

Proof. For the new tree Ω, the connectivity and geometry of the sheaves that does not include e0 is already recovered from Ω using Proposition 3.19. To recover the connectivity and geometry of the sheaf on Ω including e0, one needs to obtain λ0,2 (note that λ0,1 = 0) and λj∙,1 for j ∈ I \ {0}.Since M is a lower triangular matrix, equation (3.34) becomes: 

in which α1 = —, where m0 is the degree of v0.
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Suppose λΩ0,2 = λ0,K for some K ≥ 2 (K > 2 indicates some of the leaf edges on S are shorter than e0), one can obtain that b0,k = —αk for 1 ≤ k < K, and b0,κ = —ακ. Thus the above triangular system indicates d0,1 = —1, d0,k = 0 for 1 < k < K, and d0,κ = 0. Thus λΩ0,2 (which is the same as λ0,K), is explicitly included in the expression of RΩ00.Let the path between v0 and γj contain K vertices and denote the degree of each vertex as Ω K-1 2mk for k = 1,..., K. Since Ω is a tree graph, it is easy to see λj∙,1 = λj∙,1, and bj∙,1 = 2 I I —.k=1 mkTherefore dj,1 = 0, and λΩj,1 is explicitly included in RΩ0j.Using λΩ0,0, λΩj,1, and Proposition 3.19, we can identify the geometry and connectivity of the sheaf e0 is on on Ω. Repeat this procedures and Theorem 3.24 one can solve the dynamical inverse problem for the Schrodinger operator on Ω. Since a time interval of length 2li is needed to recover the potential function on any edge ei, overall we need a time interval of length T, T > 2L to recover the potential, connectivity of the whole tree, and the lengths of the edges. □
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Chapter 4: Control Problems for the Wave Equations on Graphs with Cycles
4.1 Introduction

Controllability properties of the wave equation is a fundamental topic in the control theory for partial differential equations. Many powerful methods were used to prove controllability of the wave equation in various spatial domains under the action of various types of controls (see, e.g. [Lasiecka and Triggiani, 2000; Lions, 1988; Russell, 1978; Zuazua, 2007] and references therein). Control problems for the wave equation on graphs have important applications in science and engineering and were studied in many papers (see the monographs 
[Avdonin and Ivanov, 1995; Dager and Zuazua, 2006; Lagnese et al., 2012]; the surveys [Av
donin, 2008; Zuazua, 2013]; and references therein). They also have deep connection with inverse problem on graphs, see, e.g. [Avdonin and Kurasov, 2008; Belishev and Vakulenko, 2006] for tree graph examples. In this chapter we consider the exact controllability problem for the equation utt — uxx + qu = 0
on metric graphs with the Kirchhoff-Neumann matching conditions. For graphs without cycles (trees) this problem was studied (in slightly different but essentially equivalent forms) in, e.g. [Avdonin and Mikhaylov, 2008; Belishev and Vakulenko, 2006; Daager and Zuazua, 2006; Lagnese et al., 1994, 2012]. It was proved that the system is exactly controllable if Dirichlet controllers act at all or at all but one of the boundary vertices. In [Avdonin and 
Zhao, 2021a] a constructive proof for controllability ofthe wave equation on a tree graph was proposed, in which the graph was represented as a union of disjoint paths with each path started from a controlled boundary vertex. The sharp controllability time was also indicated in that paper. Similar construction for control functions can be made in other hyperbolic systems, see [Alam et al., 2021] for an example.Very little was known about controllability of the wave equation (or any other partial differential equation) on graphs with cycles. It was only proved that the wave equation on 
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graphs with cycles is never exactly boundary controllable [Avdonin and Ivanov, 1995]; it may be spectrally (boundary) controllable, but this property is very unstable with respect to small perturbations of the system parameters (see, e.g. [Avdonin et al., 2009, 2010a]).Historically, the first work on controllability of the wave equation on graphs was the paper by S. Rolewicz [Rolevicz, 1970]. He considered the case ofDirichlet conditions at all boundary and internal vertices, i.e. the system consisted of separate strings connected by common controls at the internal vertices. Mathematically it means that instead of the conditions (4.11), (4.12) (see Sec. 2 below) he considered the condition uj(vi, t) = fi(t), j ∈ J(vi), i ∈ I. Rolewicz proved the exact controllability of such a system in the case when a graph has no cycles and lack of the exact controllability in the case when a graph has more than one cycle. His statement about controllability when a graph has one cycle and the optical lengths of the edges are commensurable is incorrect: such a system is not exactly controllable for any lengths of the edges. Complete solution of the problem of exact and spectral controllability for the system of strings with Dirichlet controls at all vertices was obtained in [Avdonin and 
Ivanov, 1995].In this chapter we give a constructive proof for the controllability of the wave equation on a general graph with the Kirchhoff-Neumann matching conditions. Our construction here generalizes the idea of controllability on trees in [Avdonin and Zhao, 2021a]. However, to prove controllability of systems on graphs with cycles we need to use not only boundary but also internal controls, as was proposed in [Avdonin, 2019]. Given an undirected graph, we first give it an acyclic orientation. We then construct an active set of vertices and edge directions based on the chosen orientation, such that the active vertices include all source vertices specific to the orientation; the active edge directions include all but one of the outgoing directions at every vertex. Then Neumann controllers are placed at the active vertices, and Dirichlet controllers are placed at the active edge directions. The shape and velocity controllability are proved using constructive dynamical method. The exact controllability is proved by combining the shape and velocity control functions via the method 
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of moments.This chapter is organized as follows. Section 4.2 introduces the quantum graph, the orientation of the graph, the observation and control problems for the wave equation on the quantum graph, the solutions to the forward problem for the wave equation with Dirichlet and Neumann conditions on an interval and on general graphs. Section 4.3 proposes an algorithm solving the control problem on a general graph, discusses the control time and the minimal number of controllers as an invariant independent of the graph orientation, and links this invariant to the maximal multiplicity of the spectrum of the Schrödinger operator on the graph obtained in [Kac and Pivovarchik, 2011].
4.2 Preliminaries
4.2.1 Metric graphs and Hilbert spaces on graphs

Let Ω(V, E) be a finite, undirected, connected graph, where V, E are the sets of vertices and edges of Ω respectively. Each edge in E is associated with two vertices in V called its endpoints. Here we require both V = {v∣ : i ∈ I} and E = {ej : j ∈ J} to be nonempty; and the two endpoints of an edge to be distinct. That is, our graphs contain no loops; we will use this assumption in Section 4.3 when introduce acyclic orientations on graphs. This assumption is not restrictive. Since we admit multiple edges between two vertices, a loop can be considered as two edges between two vertices. In this chapter it is convenient to consider I and J the disjoint subsets of N.An undirected edge ej between v∣ and vk is denoted as ej(v∣vk). The set of indices ofthe edges incident to vi is denoted by J(vi). The set, Γ = {vi ∈ V : ∣J(vi)∣ = 1}, plays the role of the graph boundary. Here we use ∣ ∙ ∣ to denote the cardinality of a set of features on a graph. Figure 4.1 shows a finite undirected graph Ω. In which we have I = {1,..., 13} and J= {14,...,34}.
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Figure 4.1: An example graph Ω.
We recall that a graph is called a metric graph if every edge ej ∈ E is identified with an interval (0, j) of the real line with a positive length j. The graph Ω determines naturally the Hilbert space of square integrable functions H = L2(Ω). We define the space H1 of continuous functions y on Ω such that yj∙ := y∖e. ∈ H 1(ej∙) for every j ∈ J. Let H-1 be the dual space of H1. We further introduce the space H2 of continuous functions y on Ω such that yj ∈ H2(ej) for every j ∈ J, and for every i ∈ I, the equality
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holds. Here (and everywhere later on) ∂yj(vi) denotes the derivative of y at the vertex vi taken along the edge ej in the direction outwards the vertex. Vertex conditions (4.1) (together with continuity at v) are called the standard or Kirchhoff-Neumann (KN) conditions for the internal vertices. For the boundary vertices they are just Neumann conditions.Let q be a real valued function (potential) such that q∖ej ∈ C[0, lj]. We define the Schrödinger operator on the graph Ω as the operator L = — -dχ2 + q in H with the domain H2.



4.2.2 Observation and control problems of the wave equation
Consider the following initial boundary value problem (IBVP):

Here T > 0, W0 ∈ H, W1 ∈ H-1. Note that (4.4) includes the boundary condition, ∂W∣Γ = 0. Using the Fourier method, one can show, similarly to [Avdonin and Nicaise, 2015], that this IBVP has a unique generalized solution such that for any i ∈ I, j ∈ J,
w ∈ C([0,T]; H), Wt ∈ C([0,T]; H-1), w(vi, ∙) ∈ L2(0,T), ∂Wj(vi, ∙) ∈ H-1(0,T) (4.6)
To formulate the observation problem for the system (4.2)-(4.5) we define a set of active vertices V* = {vi : i ∈ I*} as a subset of V, where we put observers for the trace w(v, ∙). The set V* may include some boundary vertices and we put Γ* = V* ∩ Γ. For each vertex vi we define a set of active edges, where we put observers for directional derivatives ∂wj∙(vi, ∙), j ∈ J*(vi). Here J*(vi) is the index set of the active edges of vi. Note that J*(vi) may be empty for a vertex vi. On the other hand, due to (4.4), we may assume the set Jc(vi) := J(vi)\J*(vi) contains at least one index for every i ∈ I. Therefore if vi ∈ Γ, J(vi) = Jc(vi) and J*(vi) = 0. In this chapter, we assume that one edge has only one observer from one of its two ends. That is, for an edge ej(vivk), either j ∈ J*(vi) or j ∈ J*(vk) but not both. This assumption is for notation convenience only, it is not restrictive. Since we do not exclude vertices of degree two, if there are two observers at the two ends of an edge, we just add a vertex at 
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the middle of the edge. Let J* := {j : j ∈ J*(vi),i ∈ I}. We call {I*, ,J*} the active set. We say that the system (4.2)-(4.5) with the active set {I*, J*} is observable in time T if there is a positive constant C , independent of w0, w1, such that

Substituting wj(x, T — t) and uj(x, t) into the identity
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for every w0 ∈ H, w1 ∈ H-1. The observation problem is to find {I*, J*} and T which make the system observable.Now we derive the control problem as the dual to the observation problem. Let w0 and w1 be smooth functions on Ω, so w is a classical solution to the IBVP (4.2)-(4.5), and for every j, uj be a smooth function in [0, lj] × [0, T] such that



and integrating by parts, we get

Taking into account the KN conditions (4.3), (4.4), this equality can be written in theform
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where w(vi, t) is the common value of wj(vi, t), j ∈ J (vi), k is an arbitrary index from J(vi) and u is a function on Ω × [0,T] such that uj∙ = u∣ej.The control system dual to (4.2)-(4.5) with the active set {I*,J*} can be written as follows:



In (4.11) the notation fi(t) is used for convenience, it means the derivative of fi(t). In this chapter we assume that fi ∈ H1(0, T), fi(0) = 0 for all i ∈ I. The same assumption is extended also to functions fj, j ∈ J, from the conditions (4.12).Integral identity (4.9) can now be written as

If we assume that in (4.11) and (4.12) fj ∈ Ho1(0, T) and fi ∈ L2(0, T) ∀i, j, then using the inclusions (4.6) this identity can be extended to the broader classes of functions:

Here (∙, ∙)h means the pairing H-1 — H1, (∙, ∙)h - scalar product in H, (∙, ∙)h1 - the pairing H-1(0,T) — Hθ(0,T), and (∙, ∙}l2 - scalar product in L2(0,T).Initial boundary value problems like (4.10)-(4.13) were studied by many authors (see, e.g. [Ali Mehmeti , 1994; Ali Mehmeti and Meister , 1989; Avdonin and Nicaise, 2015; Avdonin and 
Zhao, 2021a; Dager and Zuazua, 2006; Lagnese et al., 1994]) mostly with L2-controls acting only on the boundary. It was proved that such a problem is well defined and the solution has the following regularity: for the Dirichlet L2-controls, u ∈ C([0, T]; H) ∩ C1([0, T]; H-1) and
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for the Neumann L2-controls, u ∈ C([0, T ]; H1) ∩ C([0,T];H). (For the Dirichlet problem the definition of H1 includes the condition u∣r = 0.) The case of the Dirichlet L2 internal controls was considered in [Avdonin and Nicaise, 2015] using the Fourier method.In this chapter we consider H1 Dirichlet internal controls and L2 Neumann boundary and internal controls. In Section 4.2.5 we demonstrate that
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Here HC is the space of of functions y on Ω such that yj∙ ∈ H1 (ej∙) for every j ∈ J, and for every i ∈ I, yj(vi) = yk(vi) if j,k ∈ Jc(vi).
It is convenient to extend f(t) and f'i(t) by 0 to t ≤ 0 and define the following spaces:

Let f be a vector function with all controls in IBVP (4.10)-(4.13) as the entries. We assume f ∈ FT and refer to the corresponding solution as uf . The main results of this chapter concern controllability of the system (4.10)-(4.13). In Section 4.3 we obtain the conditions for the shape, velocity and exact controllability of the system.



Definition 4.26. Let T > 0. We say that the system (4.10)-(4.13) is:

1. Shape controllable in time T if for any y ∈ H1, there exists f ∈ F0f such that uf (∙, T) =y.
2. Velocity controllable in time T if for any z ∈ H, there exists f ∈ Ft such that uf (∙,T) =z.
3. Exactly controllable in time T if for any y ∈ H1 and z ∈ H, there exists f ∈ F0T such 

that uf (∙,T) = y and uf (∙, T) = z.
Observability of the system (4.2)-(4.5) defined in (4.7) follows from the exact controllability of the system (4.10)-(4.13) and the duality between two systems expressed by the identity (4.15).

4.2.3 Directed acyclic graphs and linear ordering of vertices
Let Ω = (V, E) be a directed graph obtained by orienting edges in Ω. We denote a directed edge ej from v∣ to vk as ej(v∣,vk). When ej(v∣, vk) is identified with the interval (0, lj), v∣ is identified with x = 0 and vk is identified with x = lj. We denote the sets ofindices for all outgoing edges of v∣ by J+(v∣) and for all incoming edges by J-(v∣). Since orienting Ω does not add or delete vertices or edges to/from the graph, we refer to the vertices and edges in Ω by the same names as in Ω.

Lemma 4.27. There is a directed acyclic graph (DAG), Ω = (V,E) based on Ω.

Proof. Assign a distinct positive integer to each vertex in V, then direct each edge from the vertex with larger assigned number to the vertex with smaller assigned number. Such an orientation clearly contains no cycles. □
For the rest of the text we assume all directed graphs are acyclic. See Figure 4.2 for a DAG graph Ω based on Ω in Figure 4.1.
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Figure 4.2: A DAG Ω based on Ω.
In a directed graph Ω, a source is a vertex without incoming edges; a sink is a vertex without outgoing edges. We denote the sets of sources and sinks by Ω+ and Ω- respectively. The following lemma ensures a linear ordering of vertices that is consistent with edge directions exists. Such a linear ordering is critical in solving the control problem.

Lemma 4.28. The DAG Ω has at least one linear ordering W (V, <) of the set V such that 
for every directed path from vi to vk, vk < vi in the ordering.

Proof. Since Ω is finite and acyclic, it has at least one sink, v1. Let v1 be the first element in W. Let Ω \ {v1} be the graph formed by deleting v1 and its incident edges from Ω. Clearly Ω \ {v1} is acyclic and has at least one sink, say v2. Let v2 be the second element in W and repeat this process. We will have a linear ordering W such that for every directed path from vi to vk, vk < vi in the ordering. □
For less complicated graphs, one can identify a linear ordering without explicit algorithms. For example, in Figure 4.2, a natural linear ordering of all vertices is W = (V, <), where v1 < ∙ ∙ ∙ < v13, such that the edges are directed from vertices with higher orders to vertices with lower orders. For more complex graphs, readers are referred to [Knuth, 1997] Section2.2.3 for algorithms to find such a linear orderings.
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4.2.4 The forward problem on an interval
In this section we discuss several IBVP problems of the wave equation on an interval [0, l] with Dirichlet or Neumann boundary conditions. The solutions will be used in solving forward and control problems on general graphs later. We first consider the following problem:

We will refer to f as the Dirichlet control function or simply, Dirichlet control. For f ∈
H*(0,T), the system (4.16) has a unique solution uf,DD ∈ C([0,T]; H 1(0,l)). This solution can be presented by the so-called folding ruler formula [Avdonin and Zhao, 2021a]:



where [∙J is the floor function; ω(x,t) is a solution to the Goursat problem

When Dirichlet control functions f(t) and g(t) from H*1(0, T) are applied at x = 0 and x = l respectively, the solution to for the wave equation (4.10) on e with zero initial condition is denoted as uf,DD,g. By the superposition principle, uf,DD,g(t) = uf,DD(t) + uDD,g(t).
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in which the potential q (x) is extended to the semi-axis x > 0 by the rule q (2nl ± x) = q(x) for all n ∈ N.The folding ruler formula gives convenient presentations of the solution with various boundary conditions and will be used in many constructions of this chapter. More details about this formula can be found in [Avdonin and Zhao , 2021a]. When the Dirichlet control function f ∈ H*1(0,T) is applied at x = l, the IBVP

can be solved by changing of variables in (4.16). We put p(x) = q(l - x) and extend p by letting p(2nl ± x) = p(x). Let ω(x,t) be the solution to the Goursat problem (4.18) where q(x) is replaced with p(x), then



Next we present the folding ruler formula for the following IBVP:

For f '(t) ∈ L2* (0,T), the system (4.16) has a unique solution uf,NN ∈ C ([0,T ]; H 1(0,l)). Let 
f (t) := /o f'(s) ds, then 

where μ(x,t) is a solution to the Goursat problem

Here q(x) is extended to the semi-axis x > 0 by the same rule as in (4.18).For uf,ND, uf,DN, we omit expressing their corresponding IBVP problems and just give 
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the solutions. By direct substitution one can verify that

The solutions uNN,f', uND,f, and uDN,f' can be computed by changing variables. The solutions uf ,NN’g', uf',ND,g, uf,DN,g' can be found using the superposition principle. In all these problems we assume that the Dirichlet control functions belong to H*1(0, T), and all Neumann control functions belong to L2(0,T). The solutions are in the space C([0,T]; H 1(0,l)).
4.2.5 Solution to the forward problem on a general graph

In this section, we discuss the solution of the problem (4.10)-(4.13) under the action of control f placed on the active set {I*, J*}. Here we consider a general case of arbitrary active set. In Section 4.3, we discuss a more specific case of the active set {I*, J*}. The scheme of our solution is similar to the presented in [Avdonin and Zhao, 2021a], but there 
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we considered only Dirichlet controls that were placed only on the boundary edges.
Theorem 4.29. Let Ω be a connected DAG with more than one edge. There is a unique 
solution uf to the IBVP (4.10)-(4.13) and
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Proof. Let g be a vector function, such that for any vi ∈ V \ Γ, gi(t) = uj(vi, t), j ∈ Jc(vi). 
We find g by using the KN condition (4.11) on V\Γ to derive and solve a system of |V∣ — ∣Γ∣ Volterra integral equations with respect to each entry of gz(t). The details are explained below.Extend f to all nonactive boundary vertices vertices by 0, i.e., if vi ∈ Γ\ V*, let f-(t) = 0. Let g be a vector function of ∣V∣ entries, where g'i(t) = f-(t) for vi ∈ Γ, and gi(t) = gi(t) for vi ∈/ Γ. For vi ∈/ Γ, let

On each edge ej∙(vi,vk), define operators Wj± from H*(0,T) to C([0,T]; H 1(0,lj)), where

and

We next define the operator ∂±: C([0, T]; H1([0, l]) → L2(0, T) to take the derivative



along an edge outward of its starting/finishing vertex. Depending on the control function and where it is located, we can express all four operators ∂±Wj± explicitly. For example, if Wj+gi = uhji,DD, then

We next define an | E| × | V | matrix operator U, such that U has one column for each vertex and one row for each edge. The entries of U are defined in analogue to the entries in the incident matrix of Ω: if there is an edge ej∙ from vi to vk, then Uj∙,i = Wj+ and Uj∙,k = W-. All other entries in U are zeros. As one can see, Ug gives us a column vector of |E| entries, where each entry is a function in C([0, T]; H1([0, lj]).Operator K is defined as an |V | × |E| matrix operator. Its entries are defined in analogue to the transpose of the incident matrix of Ω: if there is an edge ej∙ from vertex vi to vk, then Kij = ∂+ and Kkj∙ = ∂-. All other entries in K are zeros. Now KUg is a column vector of | V | entries. The ith entry represents the sum of derivatives of u in the directions outward of the vertex vi.We use an |V | × |V | diagonal matrix D to pick out the interior vertices. Let Dij = 1 if i = j and vi ∈ V \ Γ, Dij = 0 otherwise. So the KN conditions on V \ Γ can be represented by

where z(t) is a column vector with the components defined in the RHS of (4.11). Expression 
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(4.30) is a column of ∖V∖ — ∖Γ∖ equations. Each equation can be written in the form

where Vi ∈ V \ Γ and the form of Gi(s) depends on the incident edges of Vi. For example, if none of the incident edges of Vi is a boundary edge,

Equations (4.31) can be transformed into

with the transformation

where
Readers are referred to the Section 4 of [Avdonin and Zhao, 2021a] for the example of deriving equations (4.33) on a star graph. Although in [Avdonin and Zhao , 2021a] we considered the system with Dirichlet control functions, the process of deriving equations (4.33) is the same in both [Avdonin and Zhao , 2021a] and here.The expression of Fi (t) depends on the incoming edges of vi. For example, assumevi ∈ V*, J*(vi) is empty, and none of the incident edges of vi is a boundary edge. In the following expression, for convenience, yj(t) denotes hjk where ej(vi,vk) or ej(vk, vi) is an
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incident edge of vi :

In other cases, where J*(vi) is not empty, and/or some boundary vertices are adjacent to vi, the process of deriving the expressions for Fi(t) is similar. Equation (4.36) shows that Fi(t) depends on the vector function g with arguments delayed by at least ∆ := min (li).i=1,...,NSo if g on [0,t — ∆] is known, we can calculate g'(t) on [t — ∆,t] using equations (4.31) or (4.33). First, since g(t) = 0 for t ≤ 0, we can calculate g'(t) on [0, ∆]. At this step, Fi ∈ L*2(0, T) since fi(t), hj,i(t) ∈ L*2(0, T) for all i ∈ I, j ∈ J, and all other terms in Fi(t) are more regular. Thus, for t ∈ [0, ∆], gi ∈ L*2(0, ∆) for all i ∈ I. Then we increase t and calculate all entries of g'(t) for the next time interval. At each step, Fi ∈ L*(0,T), each 
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computed portion of g,(t) belongs to the space L2(0,t — ∆) and all other terms in Fi(t) are more regular. Thus g, ∈ L2(0, T) for all i ∈ I. The vector function g can be found integrating g, and, for all i ∈ I, gi ∈ Hjt1(0,T).We now define a function u on Ω such that its restriction on each edge ej∙(vi,vk) is computed by

By construction, u satisfies all equations (4.10)-(4.13).
A more detailed discussion of this construction for a specific active set {I*, J*} is pre-sented in Section 4.36.

4.3 The forward and control problems on a DAG with controllers placed on a single-track active set
4.3.1 The tangle-free path union and single-track active set of a DAG

In [Avdonin and Zhao, 2021a] shape/velocity controllability on a tree graph with Dirichlet boundary control was proved by representing a tree graph with a union of paths, and controlling the final shape/velocity on one path at a time. Controllability problem on a general graph can also be approached by representing the graph as a union of paths.
Definition 4.30. Let Ω be a DAG ofΩ. Let U be a union of directed paths. We say U is a 
tangle-free (TF) path union of if U satisfies the conditions:

1. The direction ofall edges are the same as the direction of all paths they are on.

2. All paths are disjoint except for the starting and finishing vertices.
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3. If a finishing vertex v of a path is the starting vertex of another path, there must be an 
incoming edge of v that is not a finishing edge, and an outgoing edge ofv that is not a 
starting edge.

4. ω = ∪P∈UP.
Definition 4.31. We say is I* is the single-track (ST) active set of vertex indices 
of ω if

I * = {i : Vi ∈ Ω+}, (4.38)
J* is a ST active set of edge indices if

J*(vi) = all but one elements of J+(vi), i ∈ I. (4.39)
The set {I*, J*} is then called a ST active set.

For a DAG, its ST active set of vertices is uniquely determined by its set of sources. 
However, there is more than one way to determine its ST active set of edge indices. Indeed, 
suppose a vertex v has n outgoing edges, then there are n ways to determine which n — 1 of 
the outgoing edges of v are in J*.

Suppose {I*, J*} is a ST active set, we define the following closure of J*,

J* := (∪i∈ι* J(Vi)) ∪ J*, (4.40)
The ST active sets of edge indices are considered to be in the same equivalence class if they 
have the same closure.

Lemma 4.32. Let Ω be a DAG and V * be its ST active set of vertices, then each TF path 
union U corresponds to a ST active set of edge indices J* (up to the equivalence class J*). 
That is, for every path in U, the index of its starting edge is in J*. Conversely, every ST 
active set of edge indices J* corresponds to a TF path union U, such that for every j ∈ J*, ej is the starting edge of a path in U. 77



Proof. Let U be a TF path union of Ω, and S be the set of all starting edges of paths in U. By Definition 4.30 conditions (1) and (4), S includes all incident (outgoing) edges of source vertices; by Definition 4.30 conditions (2) and (3), S includes all but one of the outgoing edges of non-source vertices. Let J* include the indices of all but one of the outgoing edges of source vertices that are in S, and all outgoing edges of non-source vertices that are in S, then J* contains the indices of all but one outgoing edge at every vertex in V. Equation(4.39) is satisfied. The closure of J*, defined by (4.40), is precisely S.Conversely, let J* be a ST active set of edge indices, and J* be its closure defined by (4.40). Denote (J*)c as the complement of J* in J on Ω. We construct a union of paths U according to the rules in (1), where J* are indices of the starting edges and (J*)c are indices of the non-starting edges. Starting from n = 1, suppose we already constructed n — 1 paths. The next step is to construct Pn. The edges in the constructed P1, . . . , Pn-1 are referred to as “used”. We pick an unused edge e1(v1, v2) whose index is in J* as the starting edge of Pn (If at this point all J* indices are used, our construction is finished and our union has n — 1 paths). If v2 has no unused outgoing edge indexed in (J*)c, v2 is the last vertex of Pn. If v2 has an unused outgoing edge e3(v2,v3) indexed in (J*)c, we add e2 to Pn. We continue adding edges indexed in (J*)c to Pn until there are no unused edge indexed in (J*)c outgoing from the last vertex. Now we have Pn. Once we complete Pn we move on to construct Pn+1. We keep constructing paths until all indices in J* are used. We will show at this point all 
(J*)c indices are used. Suppose there are several (J*)c indices that are not used. Due to the finiteness of the graph we can find an edge e(v1,v2) indexed in (J*)c such that all incoming edges of v1 are used in different paths (by (4.40) v1 is not a source, so it has incoming edges). By (4.39), e is the only outgoing edge of v1 that is not a starting edge. It should be added to one of the paths the incoming edges of v1 are on. This contradicts the assumption that e is not used. Therefore the paths we constructed cover the entire graph. That is, condition (4) in Definition 4.30 is satisfied. Condition (2) and (3) are satisfied since each vertex has at most one outgoing edge indexed in (J*)c, the edge can be added as a subsequent edge of one 
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path. All other incoming edges are finishing edges and all other outgoing edges are indexed in J* and can only be used as starting edges of paths. So U is a TF path union constructed from {I., J.}.
□

Corollary 4.33. Let Ω be a DAG, {I*, J*} be a ST active set, U be a TF path union 
determined from {I., J.}, then the number of paths in U is |V .| + |J.|.
Proof. By Lemma 4.32, the number of paths equals to | J* |. Since for each i ∈ I*, there is only one element in J(vi) that is not in J*, | J*| = |I*| + | J*|. □
Example 4.34. For the DAG Ω in Figure 4.2, a ST active set is V* = {v8,v1o , v12,v13}, J*(V1) = 0, J*(v2) = {15}, J*(v3) = 0, J*(v4) = 0, J*(V5) = {19}, J*(V6) = {18,21}, J*(V7) = {23}, J*(V8) = {25, 26}, J*(v9) = 0, J*(v10) = {32}, J*(v∏) = {29, 30}, J*(v12) = 0, J*(v13) = 0. See Figure 4.3.

One STpath union associated with {I*, J*} is then P1 = (v8, e24, v6, e17, v3, e16, v2, e14, v1), P2 = (v8, e26, v6), P3 = (v8, e25, v6), P4 = (v6, e18, v3), P5 = (v5, e19, v3), P6 = (v2, e15, v1), P7 = (v10, e31, v9, e27, v6), P8 = (v10, e32, v9), P9 = (v12, e33, v11, e28, v7, e22, v6), P10 = (v13, e34, v11), P11 = (v11, e29, v7), P12 = (v11, e30, v7), P13 = (v6, e21, v5, e20, v4), P14 = (v7, e23, v5).

Note that |U| = |V*| + |J*| = 14.
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Figure 4.3: Ω with ST active vertices and edges emphasized. The set J* includes all edge indices in J* and 10,18, 20, 21.
Definition 4.35. Let U be a TF path union of a DAG Ω. We define depth of an edge 
ej(vi,vk) in Ω,U, recursively as

Depth of an edge depends on the choice of orientation and TF path union. When multiple orientations and TF path unions are mentioned we write depth(ej) as depth(ej, Ω,U) to emphasis this dependency.Intuitively, the depths of an edge can be viewed as the maximum length of the direct paths starting from the edge in the forest graph obtained from Ω, by disconnecting every path in U at its finishing vertex. See Figure 4.4 for example, where the depth of e17 is max(l17 + l16 + l15, l17 + l16 + l14). The depth of e24 is max(l24 + l18, l24 + l17 + l16 + l15, l24 + l17 + l16 + l14, l24 + l21 + l19, l24 + l21 + l20).
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Figure 4.4: The forest graph obtained from Ω by disconnecting every path in U at its finishing vertex.
Everywhere in Sections 4.36-4.43, ω is assumed to be a DAG, {I*, J*} is assumed to be a ST active set, and U is assumed to be the TF-path union U corresponding to {I*, J*}.

4.3.2 The forward problem when {I*, J*} is a ST active set
When {I*, J*} is a ST active set, Theorem 4.29 can restated as:

Theorem 4.36. Let ω be a DAG, and {I*,J*} be an ST active set associated with ω. 
Let T > 0, then for any f ∈ Ft the system (4.10)-(4.13) has a unique solution uf(∙,t) ∈ C([0, T]; Hc1) ∩C1([0, T]; H).

We give below more explicit expressions of equations (4.33) when {I*, J*} is a ST active set, and when all potential functions qj = 0. The expressions for nonzero potentials are are presented in the Section 4.4 Appendix. Those explicit equations will be used in the next section for solving the control problem.Consider an edge ej(vi, vk) on . Depending on whether vi or vk is a boundary vertex, there are four combinations. Case 1: vi ∈ Γ*, vk ∈ Γ. In this case the graph contains only81



one edge, therefore uj(x, t) can be computed from

Case 2: Vi ∈/ Γ, Vk ∈ Γ, then
where

Case 3, Vi, Vk ∈/ Γ,
where hj(t) is defined in (4.44) and

Case 4, Vi ∈ Γ*, Vk ∈/ Γ,

Once we have the presentation of uj(x, t) for every j ∈ J, we can write explicit expressions for equations (4.31) for all Vi ∈ V \ Γ. In what follows we denote by J+(Γ*) and J-(Γ) the set of indices of the outgoing and incoming edges of the boundary vertices.Every Vi ∈ V* \ Γ has only outgoing edges. For all j ∈ J+(Vi) ∩ J-(Γ), uj(x, t) = ujhj,DN. For all j ∈ J+(Vi) \ J-(Γ), uj(x, t) = ujhj,DD,gk(j), where k(j) is the finishing vertex of ej. Therefore
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Every vi ∈ (V \ V*) \ Γ has incoming edges and possible outgoing edges. For all j ∈ 
J-(vi) ∩ J+(Γ*), Uj(x,t) = ufk,ND,gi, where vk is the starting vertex of ej∙. For all j ∈ J-(vi) \ J+(Γ*), Uj(x,t) = uhj,DD,gi. If vi has outgoing edges, for all j ∈ J+(vi) ∩ J-(Γ), uj(x, t) = ujhj,DN. For all j ∈ J+(vi) \ J-(Γ), uj(x, t) = ujhj,DD,gk(j). Therefore
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For given control function f (t), each of ∣V∣ — ∣Γ∣ equations (4.31) is in the form of either (4.48) or (4.49). This system of equations can be solved in steps to obtain g(t). Substituting 
g(t) into (4.42)-(4.47) we obtain the solution to the forward problem on all edges.
4.3.3 Shape and velocity controllability on an interval

In this section we discuss and compare the shape and velocity control problems for the IBVP (4.16) and the IBVP (4.21). Let T* = l.
Proposition 4.37. 1. For any T ≥ T* and any ϕ ∈ H 1(0,l) such that φ(l) = 0, there

exists a control function f ∈ H1* (0, T) such that the solution to (4.16) satisfies the 
relationship uf,DD (x,T) = ϕ(x).

2. For any T ≥ T* and ψ ∈ L2(0,l), there exists a control function g ∈ Hl*(0,T) such 
that utg,DD(x, T) = ψ(x).
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Proof. It is sufficient to prove the case where T = T* for both parts. For Part 1, one can solve the following Volterra integral equation of the second kind to find f (t).
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For Part 2, one can solve the following Volterra integral equation of the second kind to find g'(t), and obtain g(t) through integration, since g(0) = 0.

Now we consider the control problem for (4.21). The target shape function ϕ is in H1(0, l). If φ(1) = 0, then φ is not achievable in time T = T*, since uf,NN(T,T) = 0 for all T ≤ T* and all f1 ∈ L2(0, T).
Proposition 4.38. 1. For any T > T* and any function φ ∈ H 1(0,l), there exists a

control function f' ∈ L2(0,T) such that the solution to (4.21) satisfies the relationship 
ufNN (x,T) = φ(x).

2. For any T ≥ T* and any function ψ ∈ L2(0,l), there exists a control function g' ∈ L2(0,T) such that ug,NN (x,T ) = ψ(x).
Proof. For Part 1, it is sufficient to prove the case where T < T < T* +1. Denote ϵ := T — T*. We first construct a control function r(t) such that ur',NN(1,T) = ϕ(1). Let d(t) be a continuous function defined on [0,T] such that it support is on (0, 2e), and d(e) = 1. Since the wave propagation speed is 1, ud,NN(l,T) = 0. Let c = ϕ(l)/ud,NN(1,T), and r(t) = c∙d(t), then ur,NN(l, T) = φ(l).Let b(t) = 0 for t ≤ e. Let the portion of b(t) on the time interval e ≤ t ≤ T be the unique solution to the Volterra integral equation of the second kind:



then f '(t) = r'(t) + b'(t) solves the control problem

The support of f'(t) is on (0, 2e) ∪ (ϵ,T) = (0,T). Since r(t) is continuous, and b'(t) is square integrable, f'(t) ∈ L2(0,T).For Part 2, it is sufficient to prove the case where T = T*. One can solve the followingVolterra integral equation of the second kind to find g'(t).

A similar result in a slightly different problem was proved in [Avdonin et al., 2022].
4.3.4 Shape and velocity controllability on graphs

In this section we prove the shape and velocity controllability on general graphs. For readability, the proof and examples are given for the case of zero potentials. The corresponding equations for nonzero potentials are presented in the Section 4.4 Appendix. We show that it is possible to find a control function f(t) such that the equations (4.48) or (4.49) are satisfied at every Vi ∈ V \ Γ, and the final shape or velocity of the solution computed by the folding ruler formulae equals to the target functions.In Proposition 4.38, the wave equation system cannot attain the shape controllability at the minimum necessary time for the velocity controllability. This is true for many graphs. Although for many other graphs, shape controllability and velocity controllability take the same time.
86



Theorem 4.39. Let Ω be a DAG of Ω, {I*, J*} be a ST active set, and U be the associated 
path union. Let

1. For any ϕ ∈ H1 and T > T*, there exists f ∈ Ft on {I*, J*}, such that uj(x,T) =
ϕj (x), where uj∙ := uf∣ ej and ϕj(x) := ϕ∣ejj (x) for all j ∈ J and x ∈ [0, lj∙].

2.

3.

For any ψ ∈ H and T ≥ T*, there exists f ∈ FT such that (uj)t(x, T) = ψj(x), where uj := uf∣ej and ψj(x) := ψ∣ej(x) for all j ∈ J and x ∈ [0,lj].

Let the greatest lower bound for both shape and velocity Controllabilty on Ω be Tinf ,

then

Proof. Part 1.Let g and hj be computed from f as in Theorem 4.36. We show f (t) ∈ F0T can be constructed in such a way that if the four rules listed below are followed, f (t) is a solution to the shape control problem (4.10)-(4.13).For every vi ∈ Ω-, we pick one incoming edge em(i) such that lm(i) = minj∙∈j-(vi) lj∙, and refer to em(i) as the controlling edge of vi. Note that for vi ∈ Γ ∩ Ω-, its controlling edge is its the incoming edge of this vertex; for vi ∈ Ω- \ Γ, the pick of its controlling edge is not unique. Let
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The four rules for constructing shape control functions are:1. If vi is a sink with degree 1, let ej(vk, vi) be its only incoming edge, then hj(t) = 0 when t is outside of [T — lj∙ — e, T].
2. If vi is a sink with degree more than 1, then gi(t) is a continuous function whose support is on (T — ϵ,T], and gi(T) = ϕ(vi). Let em(i) be its controlling edge, then h(m(i)(t) = 0



when t is outside of [T — lm(i) — e, T]. For all other incoming edges ej∙, hj(t) = 0 when t is outside of [T — lj, T].
3. If vi is not a sink, there is only one incoming edge (also denoted as em(i)) that is not a finishing edge of a path in U. For all incoming edges ej(vk, vi) that are not finishing edges of paths in U, hj(t) = 0 when t is outside of [T — lj, T]. Thus from all incoming edges of vi, only hm(i)(t) has impact on gi(t).
4. On every ej(vk, vi) that vk ∈ Γ*, vi ∈ Γ (in this case a graph has only one edge)

uj∙(x,T) = uhj,NN(x,T) = ϕj(x), x ∈ [0,lj]∙ (4.52)
On every ej(vk, vi) that vk ∈/ Γ*, vi ∈ Γ,

Uj(x,T) = uhj,dn(x,T) = ϕj(x), x ∈ [0,lj]∙ (4.53)
On every ej(vk, vi) that vk ∈/ Γ*, vi ∈/ Γ,

Uj(x,T) = uhj,DD,gi(χ,T) = ϕj(x), x ∈ [0,lj]∙ (4.54)
On every ej(vk, vi) that vk ∈ Γ*, vi ∈/ Γ

Uj(x,T) = Ufk,ND,gi (x,T) = ϕj(x), x ∈ [0,lj]∙ (4.55)
Suppose the graph contains more than one edge. We now construct hj(t) for all j ∈ J, and derive entries off(t) and g(t) from hj(t), following the linear ordering ofV. Let v1, ∙ ∙ ∙ , vn be a linear ordering of V by Lemma 4.28. At every vi, we calculate fj(t) for j ∈ J*(vi) and fi(t) if i ∈ I* based on the known hj(t) for j ∈ J-(vl) for all vl < vi. Then we construct hj(t) for j ∈ J-(vi). The detailed steps are described below.
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The first vertex, v1, is a sink. If v1 ∈ Γ, suppose J -(vi) = {j}. Similar to the process in Proposition 4.38 Part 1, we construct a function hj∙ (t) supported on (T — lj∙ — ϵ, T] such that uhj ,dn (x,T) = ϕj (x).Now suppose v1 is not a boundary vertex. Since it is a sink, we set the target g1(T) = ϕ(v1). This target is controlled from its controlling edge em(1). Since g1 (t) is supported on [T — ϵ,T], (4.49) becomes

Extend all hj(t) to the negative axis by 0. Now we make the induction assumption that up to some i ∈ {2, . . . , n}, for every vl < vi and all its incoming edge ej(vk, vl), we have constructed hj(t), such that 

where
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Solve (4.56) to get hm(i)(t) for t ∈ (T — lm(i) — ϵ,T — lm(i)). Since the initial value of 
hlm(i)(t) is 0, one can integrate to find hm(i)(t) on [T — lm(i) — ϵ,T — lm(i)]. The portion of hm(i)(t) on (T — lm(i), T) is computed through

hm(i)(T — x) — hm(i)(T — 2m(i) + x) + gι(T — lm(i) + x) = ϕm(i) (x). (4.57)
For every other incoming edge ej∙, j = m(i), hj∙(t) is supported on [T — lj∙, T]. It can be computed through



One can prove from (4.41) and (4.60) and by induction for any j ∈ J,

Thus by (4.50), (4.51), and (4.61),

Moreover, as a part of the induction assumption, we assume for all vl < vi (when i = 2,the case is trivial), we have computed fj(t) for all j ∈ J*(vl) and f(t) if vl ∈ V*, and 

where
By (4.61) and (4.63),

There are three cases at vi:Case 1, vi is a sink. We compute hj(t) for all j ∈ J-(vi) in the same way we compute hj(t) for all j ∈ J-(v1).Case 2, vi is neither a sink nor a source. We first compute fj(t) for j ∈ J*(vi). At this 
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point we have computed hj(t) for all j ∈ J+(Vi), since each j ∈ J+(Vi) is in some J-(Vl) for some Vl < Vi. Since there is only one path in U through Vi, let the incoming edge of Vi on U be em(i), and the outgoing edge of Vi in U be er(i). By (4.12),

For all j ∈ J*(vi),

Since each hs(t) = 0 for t ≤ T — depth* (es) for all s ∈ J+(Vi), fj(t) = 0 for t ≤ T — D*(Vi).Moreover, since ϕ(∙) is continuous at vi, hj(T) = gi(T) = ϕ(vi). Thus fj∙(T) = 0. So

Now we calculate the boundary conditions at the starting vertices of the incoming edges of Vi. We first discuss em(i). Let Vk(m(i)) be its starting vertex of em(i). For 0 ≤ t ≤ T, if Vk(m(i)) ∈ V*, (4.49) becomes

in which vkj is the vertex of ej∙ other than vi. If vk ∈ V*, (4.49) becomes
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In (4.66), the only unknown function is f'(k(m(i))(t). By the induction assumption, each hj(t) ∈ H*[T — depth*(ej∙),T], thus the third and fourth lines of (4.66) together is in the space L*[T — maxj∈j+(vi) (depth* (ej)) , T].For the fifth line of (4.66), since gk(j∙)(t) ∈ L2*[T — depth*(el),T] for some l ∈ J+(vk(j)), Thus the entire fifth line is in the space L2*[T — maxj∈J+(vi) (depth*(ej)) , T]. Therefore the fk(m(i))(t) obtained from (4.66) is in the following space:

By similar argument, if vk(m(i)) ∈/ V *, we use (4.49) to obtain hm(i)(t) in the space L2*[T— depth*(em(i)), T— lm(i)]. We integrate it to get hm(i)(t) in the space H*1[T— depth*(em(i)), T— 
l m(i) ] .The portion of fk(m(i))(t), or hm(i)(t) on the interval [T— lm(i), T) controls the final shape of em(i) similar to (4.57). Therefore, to solve the control problem, if vk(m(i)) ∈ V *, we solve
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If vk(m(i)) ∈/ V*, we solve
Now we have
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or
For all other j ∈ J (vi), where j = m(i), let vkj be the starting vertex of ej∙. If j ∈ J*, we find fk(j)(t) by solving

If j ∈/ J*, we find hj(t) by solving

Since by Principle 3, fkj)(t) or hj∙(t) are supported on [T — lj∙, T], the solution to either fk(j)(t) or hj (t) on the interval [T — j , T] is unique.Case 3, vi is a source, i.e., i ∈ I*. Since all hj(t) for j ∈ J+(vi) are known, we compute 
fj(t) for j ∈ J*(vi) similar to Case 2, and fj∙(t) ∈ H0(T — D*(vi),T). We compute f-(t) ∈ L2(T — D*(vi), T) from (4.48). We move on to the next vertex in order.We continue this process until we are done with vn. Then we obtain all entries of f(t), where f-(t) ∈ L**(T — D*(vi),T) and fj∙(t) ∈ H01 (T — D*(vi),T), in which vi is the starting vertex of ej. By (4.62) and (4.64), f ∈ F0T.

Part 2. The proof for the velocity controllability is parallel to the proof for the shape controllability, and is left to the reader. Since the target function is in H instead of H1, there is no need to control the final velocity at the sinks. Therefore the control time is T* instead of T*, as in Proposition 4.38.



Part 3. Let Ωmin, Umin be the orientation and path union on the orientation such that

By Part 1 and Part 2 we can construct control functions to have shape or velocity controllability at any T > Tinf. On the other hand, if T < Tinf, one can easily construct examples of the graphs which are not shape or velocity controllable at that T. We can consider, for example, an interval with one Neumann control, as described in Proposition 4.38, or the star graph examples below, or the laso graph example in [Avdonin et al., 2022].Therefore

Although not always possible, in many cases we can achieve shape controllability atT = T*. See examples 4.40 and 4.41. Similar comparisons on a lasso graph can be found in [Avdonin et al., 2022].
Example 4.40. In the star graph in Figure 4.5, let all edges be directed away from v1 . 
Let I * = {1}, and J * = {6}. The TF path union associated with {I *, J *} is then U = {(v1,e5,v4,e7,v3), (v4,e6,v2)}. So f = {f1 ,f6}, and T* = l5 + max{l6,l7}.

If l6 = l7, T* = l5 +16. Let f ∈ Fτ, f1 = (fl, 0) and f6 = (0,f6). Simple calculations show uf1 (vi , T*) = 0 for i = 2, 3, and uf6(v2, T*) = -2uf6(v3, T*). By the superposition principle, uf(v2, T*) = -2uf (v3 , T*), hence the system is not shape controllable at time T*.
If l6 = l7, the system is shape controllable at T*. Let 0 < e < min {l5, - ∣l6 — 17∣j>. We 

first construct a vector function f = {f'1 ,f6}, such that f = 0, f6 is a smooth function 
supported on (T* — l6 — e,T* — l6 + e) ∪ (T* — l7 — e,T* — l7 + e), and uf(vi, T*) = ϕ(vi) for 
i = 2, 3. Let ϕ(∙) := ϕ(∙) — uf(vi, T*).

We then construct the second vector function f = {f,f6}, such that uf(∙,T*) = ϕ(∙). 
Using the process described in Part 1 of Theorem 4.39, we first construct g ∈ H*(T* —94



l7,T*),f6 ∈ H*(T* — l6,T*), such that

for 0 ≤ t ≤ T*. Here the expansion of the term ∂ufl,ND,g(t)(v4, t) depends on l5,l6, and l7, 
which are not specified. Suppose, say, l5 > max{l6,l7}, then ∂ufl,ND,g(t)(v4, t) = -2f1 (t — l) — g'(t). No matter how many reflections there are, this portion of f1 is in L2*(T* — l5,T*). 
We then solve the equation

Figure 4.5: A star graph
Example 4.41. We direct all edges in Figure 4.5 towards v3. Let I* = {1, 2}, and J* = 0, 
then f = {f1, f2}. Similar to Example 4.40, one can show the system is shape controllable at T* if l6 < l5 or l6 > l5 + l7, but not shape controllable at T* if l5 ≤ l6 ≤ l5 + l7.

4.3.5 Exact controllability on graphs
, 95

We next find the portion of f such that

Since g and the portion of f on (T* — l5,T*) are known, we can uniquely obtain f'1 on the 
time interval (0, l5). Let f = f + f, then uf (∙,T*) = ϕ(∙).



The proof of the full controllability of our system uses the spectral representation of the solution uf. Let {(ωn2, φn) : n ≥ 1} be the eigenvalues and normalized eigenfunctions of the operator L, i.e. φn solves the following eigenvalue problem: 

with some positive constants c and C independent of n. The associated unit norm eigenfunc

tions satisfy the relations 

with some positive constants c1, c2 independent of n, j, v.
Theorem 4.43. Let Ω be a DAG of , and {I*, J*} be a ST active set. For any φ ∈ H1, ψ ∈ H, and T > T*, there exists f ∈ F02T such that uj(x, 2T) = φj(x), (uj)t(x, 2T) = ψj(x) 
where uj := uf∣ej, φj(x) := φ∣ej(x) , and ψj(x) := ψ∣ej(x) for all j ∈ J and x ∈ [0, lj].
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where (φn)j is the restriction of φn to edge ej .The following properties of this spectral problem are well known, see, e.g. [Berkolaikoand Kuchment , 2013], [Avdonin and Nicaise, 2015].
Lemma 4.42. The eigenvalues {ωn2 }1∞ associated to (4.68)-(4.70), satisfy the relations



Proof. The solution of the IBVP (4.10)-(4.13) can be presented in a form of series

To find the coefficients an, let w(x,t) = μ(t)φn(x) in the integral identity (4.14), where μ is an arbitrary test function in C20 [0, T]. We obtain the initial value problem

where vk(j) is the starting vertex of ej. By variation of parameters, we get

We assume here that ωn > 0∙ If ωn = 0, instead ofput we put T — t, and if ωn < 0, we
Integrating by parts the term with fj and using that fj ∈ H1(0, T), we rewrite (4.72) inthe form

Next, we differentiate (4.72) with respect to T, and then integrate by parts the term with fj(t) using that fj ∈ H*1(0, T)∙ We obtain

By the classical relations between the Fourier method, the moment problem, and controltheory (see, e.g. [Avdonin and Ivanov, 1995]), Part 1 of Theorem 4.39 is equivalent to:
• For any sequence {anωn} ∈ I2, there exist f0 ∈ Ft such that the following equation97



holds.

Part 2 of Theorem 4.39 is equivalent to:
• For any sequence {bn} ∈ I2, there exist f1 ∈ Ft such that the following equation holds

We extend the functions f0, f1 from the interval [0, T] to [0, 2T] such that for t ∈ [0, T] we have for all i ∈ I* and for j ∈ J* ,

and put
One can check that

and
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Solvability of the moment problem (4.77), (4.78) is equivalent to solvability of anothermoment problem:

for any sequences {cn}, {dn} ∈ I2 and the same spaces of functions fi(t),fj(t) ∈ L2(0, 2T), for all i ∈ I*, j ∈ J*. Clearly, in these equalities one can change T to 2T in the arguments of the exponentials. Finally, from exp{±iωn(2T — t)} we can switch back to sinωn(2T —t), cos ωn(2T — t). This allows us to claim solvability of the moment problem

and
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For every j ∈ J*, we put fj(t) = 0t fj,(s) ds and check that 

hence fj ∈ H01(0, 2T). Also, evidently, fi,(t) ∈ L2(0, 2T) for every i ∈ I*. Now integrating by parts, we can rewrite (4.81), (4.82) in the form

and

Thus for arbitrary sequences {anωn}, {bn} ∈ I2, there exist fi, ∈ L2(0,2T), fj∙ ∈H01(0, 2T) for all i ∈ I* and j ∈ J* satisfying equalities (4.83), (4.84). This is equivalent to the exact controllability of the IBVP (4.10)-(4.13). □
We remark in passing that Lemma 4.42 guarantees the appropriate regularity for the solution u defined by (4.71), (4.72).The method proving Theorem 4.43 was used in [Avdonin and Zhao, 2021a] for tree graphs with boundary Dirichlet control, in [Avdonin et al., 2022] for a lasso graph with mixed boundary and internal controls, and in [Avdonin and Edward, 2018] for a string with attached point masses.

4.3.6 Connectivity of the graph
Graph connectivity will be used to discuss the minimal number of controllers. We use the definitions concerning connectivity from [West, 2001] Section 4: a cut-vertex is a vertex whose deletion increases the number of connected components of a graph. The block-cut 100



graph of a graph Ω is a graph whose vertices can be divided into two disjoint sets, one set consists of all cut-vertices of Ω, and the other set has one vertex for each block of Ω.Furthermore, every edge connects a vertex in the first set to a vertex in the second set.When Ω is connected, its block-cut graph is a tree graph, (see [Harary, 1969] Theorem 4.4 or [West, 2001] Exercise 4.1.34). It is therefore referred to as the block-cut tree (BC tree) of Ω. Figure 4.6 shows all blocks and cut-vertexs of Ω and Figure 4.7 shows the BC tree forΩ in Figure 4.1.

Figure 4.6: Cutpoints separate Ω into blocks.

Figure 4.7: The BC-tree of Ω.
We denote the blocks sharing only one cut-vertex with its complement as pendant 

blocks. For examples, Ω in Figure 4.1 has six pendant blocks. They are B1, B3, B5, B8, B9, 101



and B10 , as marked in Figure 4.6. Each pendant block corresponds to a boundary vertex in the BC tree. The set of pendant blocks is denoted as BΓ .
4.3.7 The number of controllers

In this section we discuss the smallest number of controllers needed in solving the control problem of the wave equation system (4.10)-(4.13) as described in Section 4.3.4, and compare this number with the maximum multiplicity of the spectrum of the operator L obtained in [Kac and Pivovarchik , 2011].
Theorem 4.44. Let Ω be an undirected graph. Let κ(Ω) be the smallest number of Dirichlet 
and Neumann controllers used in the method described in Theorem 4.39, of all possible 
orientations of Ω and ST active set {I*,J*} of that orientation. Then
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Before proving the above Theorem, we introduce the following lemma [Szwarcfiter et al., 1985].
Lemma 4.45. Let G be a block of Ω and v,vl be any two vertices on G, then there is a 
bipolar orientation of G with respect to v,v', that is, an acyclic orientation on G such that 
v is the only source and v' is the only sink of G.

Indeed, if G is a single edge, it certainly has a bipolar orientation with respect to its two end vertices. If G is not a single edge, [Szwarcfiter et al., 1985] contains an algorithm to find a bipolar orientation with respect to any two arbitrary vertices.
Proof ofTheorem 4.44:To solve the control problem using the method described in Section 4.3.4, one needs |I*| Neumann controllers and | J*| Dirichlet controllers. Let Ω be a DAG and {I*, J*} be a ST



active set based on Ω. By (4.38) and (4.39), the total number of controllers is:
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Here ∣E ∣ and ∣V∣ are independent of the orientation of Ω, and ∣Ω +∣ + ∣Ω ∣ depends on the orientation. We next show

Suppose Ω contains only one block. Any acyclic orientation of Ω contains at least one source and one sink (distinct from the source). By Lemma 4.45 such a bipolar orientation is possible. So the minimal total number of sources and sinks is 2.Now suppose Ω contains two or more blocks. In any orientation of Ω, for each block, if its source/sink is not its cut-vertex, the source/sink of the block is then the source/sink of Ω. Thus, to minimize the number of sources and sinks on Ω, one should make the sources/sinks of each block its cut-vertex whenever possible and make the cut-vertices not sources/sinks of the entire graph. On the other hand, there is at least one source or one sink on each pendant block, since it has only one cut-vertex.We show below that it is possible to have an orientation of Ω such that all source and sinks are located on pendant blocks, and each pendant block has precisely one source or one sink (not both).Let S be the BC tree of Ω. We denote the vertex in S that corresponds to a block G as vG, denote the vertex in S that corresponds to a cut-vertex c as vc. There is a one to one correspondence between the boundary vertices of S and pendant blocks of Ω. Let S be an orientation of S such that all sources and sinks are at its boundary vertices (such an orientation is possible since we can direct all edges towards one boundary vertex to form a rooted tree). Then each vertex corresponding to a cut-vertex in Ω has both incoming and



outgoing edges.Suppose G is a pendant block and c is the only cut-vertex on G. Lemma 4.45 guarantees a bipolar orientation exists for any pair of vertices of G. We orient G such that c is the source of G if vG is a sink in SΩ, and c is the sink of G if vG is a source in SΩ. We pick another point s on G as the sink/source of G if c is the source/sink. Since s is not a cut-vertex of G, it is a sink/source of .Now suppose G is a block with two or more cut-vertices. Then vG has both incoming edges and outgoing edges on S'. We pick two cut-vertices c, cC on G such that there is an edge from vc to vG and an edge from vG to vc in SΩ. We then construct a bipolar orientation of G such that c is its source and cC is its sink.We orient all blocks on as described above, and thus obtain an orientation Ω. Ω is acyclic since the orientations on each block are acyclic and all blocks are connected through cut-vertices. No cut-vertex is a sink/source of Ω. Indeed, if c is a cut-vertex of , vc on SΩ has at least one incoming edge e(vG, vc) and one outgoing edge e(vc, vG ). By our orientation method, c is possibly the sink of G and/or the source of G'. If c is both the sink of G and the source of G', it has incoming edges from G and outgoing edges from G'. If c is not the sink of G, it has both incoming and outgoing edges in G. Similarly, if c is not the source of 
G', it has both incoming and outgoing edges in G'. In all cases, c is not a source or sink of . Therefore in Ω, all sources and sinks are located on pendant blocks, and each pendant block contains precisely one source or one sink. The smallest number of sources and sinks possible for an orientation of Ω is then ∣Br∣. □
Example 4.46. Orienting a graph to obtain the minimal number of sources and 

sinks. Let be the undirected graph in Figure 4.1 and S be its BC tree as shown in Figure 
4.7. Let SΩ be an orientation of S such that all its sinks and sources are at its boundary 
vertices (see Figure 4.8). Then Ω in Figure 4.2 is orientated consistently with SΩ, where each 
block has a bipolar orientation that can be shown on SΩ.

Indeed, block B1 has v2 as the source and v1 as the sink; B2 has v3 as the source and v2 
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as the sink; B3 has V5 as the source and V4 as the sink; B4 has V7 as the source and V3 as the 
sink; B5 has V8 as the source and V6 as the sink; B6 has V9 as the source and V6 as the sink;B7 has V11 as the source and V7 as the sink; B8 has V10 as the source and V9 as the sink; B9 
has V12 as the source and V11 as the sink; B10 has V13 as the source and V11 as the sink.

None of the cut-vertices are source and sinks of Ω. Therefore Ω has as many sources and 
sinks as the number of boundary vertices of S, which is ∖Bγ∖ =6.

Figure 4.8: Orientation S.
A cyclically connected graph, as defined [Kac and Pivovarchik, 2011], means for each pair of vertices vi, vk ∈ Ω, a finite set of cycles C1, C2,..., Cn exist such that vi ∈ C1, vk ∈ Cn and each neighboring pair of cycles possesses at least one common vertex. For example, Ω in Figure 4.1 has three maximal cyclically connected subgraphs: the first one is B1 in Figure 4.6. The second one is the union of B4, B5, and B7. The third one is B8.Let μ = ∖E∖ — ∖V∖ + 1 be the cyclomatic number of an undirected graph. Let pTΓ be the numbers of boundary vertices for the tree obtained by contracting all the cycles of the graph into vertices. This tree graph is denoted as St of the original graph. The St of Ω in Figure 4.1 is shown in Figure 4.9.
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Figure 4.9: The St of Ω. A vertex from each contracted component is shown.
Denote by σ(Ω,q) the maximal multiplicity of an eigenvalue of the operator L on a quantum graph {Ω,q}. Changing q we change the operator L and, therefore, its spectrum. The maximal possible multiplicity of an eigenvalue of L is denoted by σ(Ω). In [Kac and 

Pivovarchik , 2011] it is shown that

We notice that each boundary vertex in ST either corresponds to a boundary vertex or a cyclically connected component in Ω. If every such cyclically connected component contains precisely one pendant block, and all pendant blocks in Ω contract to boundary vertices in 
St, ∣Bγ∣ = pTΓ. Otherwise ∣Br∣ > pTΓ. The theorem follows immediately from this notice and formulas (4.88), (4.89). □

Theorem 4.47 shows, whether σ(Ω) = κ(Ω) or σ(Ω) < κ(Ω) depends on the locations of the cyclically connected pendant blocks. See Example 4.48 below.106

Theorem 4.47. For a general graph Ω, σ(Ω) ≤ κ(Ω). The equality takes place if Ω is 
cyclically connected and \BΓ\ ≤ 2 or if Ω is not cyclically connected and \BΓ\ = pTΓ.
Proof. Formula (4.85) can be rewritten in the form



Example 4.48. In Figure 4.10, the graphs A, B, C, and D are not cyclically connected. The ST ofA, B, C, D are shown in Figure 4.11.

• For graph A, |Br| = 2 = pTΓ. Thus σ(Ω) = κ(Ω) = 5.
• For graph B, |Br| = 3, but pTΓ = 2. There is one pendant block (the middle loop) 

contracts into an interior vertex in Sτ. Thus 2 = σ(Ω) < κ(Ω) = 3.
• For graph C, |Br| = 4, but pTΓ = 2. There are two pendant blocks contracts into an 

interior vertex in Sτ. Thus 4 = σ(Ω) < κ(Ω) = 6.
• For graph D, |Br| = 3, but pTΓ = 2. There are two pendant blocks contracts into the 

same boundary vertex in Sτ. Thus 4 = σ(Ω) < κ(Ω) = 5.
The graphs E,F,G, and H are cyclically connected.

• Graph E has 2 pendant blocks, and σ(Ω) = κ(Ω) = 3.
• Graph F has 2 pendant blocks, and σ(Ω) = κ(Ω) = 4.
• Graph G has 3 pendant blocks, and 4 = σ(Ω) < κ(Ω) = 5.
• Graph H has 4 pendant blocks, and 6 = σ(Ω) < κ(Ω) = 8.

Figure 4.10: Several graph examples
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Figure 4.11: ST of A, B,C, D.
We have proved that if the total number of Neumann and Dirichlet controllers, N := |I*| + |J*| in the system (4.10)-(4.13) is greater than or equal to κ(Ω), then we can place the controllers in such a way that the system is exactly controllable in time greater than T independently of the potential q and lengths of the edges. On the other hand, σ(Ω) can serve as a lower bound for the necessary number of controllers. More exactly, the following statement is valid.

Proposition 4.49. If the total number, N, of Neumann and Dirichlet control lers in the 
system (4.10)-(4.13) is less than σ(Ω), there exists a potential q such that the corresponding 
system is not approximately controllable for any finite T > 0.
Proof. In Theorem 4.43 we reduced the controllability problem for the system (4.10)-(4.13) to the moment problem with respect to the family of vector functions
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and
in the space L2(0, 2T, RN) (see (4.81) and (4.82)). Let q be a potential such that the multiplicity of the corresponding operator L is σ(Ω). If N < σ(Ω), the families (4.90) and (4.91) are clearly linear dependent L2(0, 2T, RN). Therefore, the system (4.10)-(4.13) is not approximately controllable for any finite T > 0 (see [Avdonin and Ivanov, 1995] Theorem III.3.10).



Remark 5. If N < σ(Ω), there are some cases in which the system may be spectrally 
controllable and even exactly controllable. Let us consider the wave equation with q = 0 on a 3-star graph with equal edge lengths lj = l and one boundary (Dirichlet or Neumann) control. 
For this graph, σ(Ω) = κ(Ω) = 2. We assume zero Dirichlet condition at one uncontrolled 
boundary vertex and zero Neumann condition at another. It is easy to prove that this system 
is shape and velocity controllable for T ≥ 3l and therefore, it is exactly controllable for T ≥ 6l. However, controllability (exact and spectral) breaks down if we change a little the 
length of one of the uncontrolled edges.

We conjecture that if N < σ(Ω), there is no system that is spectrally controllable and 
its spectral controllability is stable with respect to small pertubation of the system parame

ters (lengths of edges and potential). Similarly, if σ(Ω) ≤ N < κ(Ω), we conjecture there 
is no system that is exactly controllable and its exact controllability is stable with respect 
to small pertubation of the system parameters. These conjectures are confirmed by several 
examples from [Dager and Zuazua, 2006] and [Avdonin et al., 2022]. The authors know: 
only one general result of this type: the wave equation on a tree with all Dirichlet (or all 
Neumann) boundary conditions and boundary controls is not exactly controllable if the num

ber of controllers is less than ∣Γ∣ — 1 [Avdonin and Zhao, 2021a]. We recall that for trees, σ(Ω) = κ(Ω) = ∣Γ∣ — 1.
4.4 Appendix

We give equations in Sections 4.3.4 and 4.36 for nonzero potentials. The solution to the forward problem for nonzero potentials are in parallel to the zero potentials case in Section 4.36, with equation (4.48) replaced by
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(4.49) replaced by
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(4.57) replaced by
111

The solution to the shape/velocity control problems for nonzero potentials are in parallel to the zero potentials case in Section 4.3.4, with equation (4.56) replaced by



(4.58) replaced by

(4.66) replaced by
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(4.67) replaced by
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Chapter 5: Conclusions
In this study we investigated control and inverse problem for the wave equation on metric graphs. In Chapter 2, we developed a novel approach to solve the wave equation with distributed parameters on graphs, and based on this approach, we give a constructive proof for the shape or velocity controllability of the wave equation on tree graphs. The full controllability is proved using shape and velocity controllablity via the moment method.In Chapter 3, we utilized the algorithm presented in the first two chapters for the forward problem of the wave equation on graphs, gave the dynamical LP method to solve the inverse problem of the wave equation on tree graphs. Compared to the spectral version, the dynamical LP method is more practical, since it can recover the portion of the topology and distributed parameters of a subset of the system from only the data related to that subset, and doesn't need the whole set of data.In Chapter 4, we extended the controllability results on tree graphs to a general graph with cycles. On graphs with cycles we need to use not only boundary but also internal controls.Since our proofs of both controllability and identifiability are constructive, they provide good foundations for developing numerical algorithms to solve the control, inverse problems (and the forward problem) for the wave equation and other equations on graphs. Research on the numerical methods for solving the forward and control problems of the wave equation and Telegrapher's equation on graphs based on our theoretical foundations include [Alam, 2022].Due to the connection between controllability and identifiability, our controllability result of the wave equation system on graphs with cycles can be extended to inverse problems on graphs with cycles. The wave equation system on a graph with cycles is never exactly controllable from a set of vertices. Correspondingly, the identification problem from the the traditional Dirichlet to Neumann map generally does not have a unique solution. The 
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controllability from mixed use of Dirichlet and Neumann controls on a selected active set of vertices and edges suggests a mixed use of Dirichlet to Neumann and Neumann to Dirichlet map at selected edges and vertices should be used to uniquely solve the inverse problem. A natural next step is to solve the spectral and dynamical inverse problem of the Schrodinger operator on general graphs with cycles and prove necessary conditions for unique solution.
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