
SPECIES DISTRIBUTION MODELING OF NORTHERN SEA OTTERS (ENHYDRA LUTRIS

KENYONI) IN A DATA-LIMITED ECOSYSTEM

By

Elizabeth L. Hasan, B.A.

A Thesis Submitted in Partial Fulfillment of the Requirements 

for the Degree of

Master of Science 

in

Marine Biology

University of Alaska Fairbanks

December 2022

APPROVED:

Brenda Konar, Committee Chair
Kristen Gorman, Committee Member 
Heather Coletti, Committee Member 
Lara Horstmann, Chair

Department of Marine Biology
Bradley Moran, Dean

College of Fisheries and Ocean Sciences
Richard Collins, Director of the Graduate School





Abstract

Species distribution models are used to map and predict geographic distributions of 

animals based on environmental covariates. However, species distribution models often require 

high resolution habitat data and time-series data on animal locations. In data-limited regions with 

little animal survey data or habitat information, modeling is more challenging and often ignores 

important environmental attributes. For sea otters (Enhydra lutris), a federally protected 

keystone species with variable population trends across their range, predictive modeling of 

distributions has been successfully conducted in areas with an abundance of sea otter and habitat 

data. Here, we used open-access data across a single time step and leveraged a presence-only 

model, Maximum Entropy (MaxEnt), to investigate subtidal habitat associations (substrate and 

algal cover, bathymetry, and rugosity) of northern sea otters (E. lutris kenyoni) in a data-limited 

ecosystem, Kachemak Bay, Alaska. These habitat associations corroborated previous findings 

regarding the importance of bathymetry and understory kelp as predictors of sea otter presence.

Novel associations were detected, as filamentous algae and shell litter were positively and 

negatively associated with sea otter presence, respectively. This study provides a quantitative 

framework for conducting species distribution modeling with limited temporal and spatial animal 

distribution and abundance data and utilized drop camera information as a novel approach to 

better understand habitat requirements of a stable sea otter population.
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Introduction

Quantifying habitat associations and predictive modeling of animal distributions are 

commonly conducted using species distribution models (SDMs). Typically, SDMs rely on 

known locations of species occurrences and spatially-explicit environmental information to 

construct mathematical relationships among these variables (i.e., model) to predict species' use 

of habitat across a landscape (Buckland & Elston, 1993; Drake et al., 2006; Elith et al., 2006; 

Guisan et al., 2002; Leathwick et al., 2006; Pearce & Boyce, 2006). There are various types of 

SDMs, including classical methods based on generalized linear models, generalized additive 

models, or Bayesian statistics, as well as more recently developed approaches based on machine 

learning methods, such as random forests, boosted regression trees, support vector machines, and 

maximum entropy. A variety of ecological questions can be addressed with SDMs, many of 

which have important implications for resource management. For example, SDMs can be used to 

guide the designation of Marine Protected Areas (MPAs), where an understanding of spatial 

habitat use by key species is critical for meeting MPA goals (Hameed et al., 2017). Additionally, 

SDMs can be used for modeling habitat suitability for invasive species (Srivastava et al., 2019), 

predicting species' range shifts under climate change (Zhang et al., 2020), and understanding the 

spatial ecology of infectious diseases (Slatculescu et al., 2020). Further, SDMs can be used to 

anticipate areas where wildlife might have an increased risk of human interactions due to 

industrial development or vessel activity (Blondin et al., 2020). Many of these models require 

presence/absence data. To predict potential species distributions, SDMs have been shown to 

perform better for modeling probability of occurrence than abundance (Lee-Yaw et al., 2022).

On land, Laser imaging, Detection, and Ranging (LiDAR) data and satellite imagery can 

be used for SDM habitat characterization (Koma et al., 2022). Multiple products are available on 
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global land cover and habitat classification (Jung et al., 2020). For marine systems, multibeam 

sonar data are ideal for SDMs due to their continuous spatial coverage and systematic 

characterization of substrate and algal cover (Monk et al., 2010). However, for many remote 

regions of the ocean, multibeam data are often not available due to accessibility and technical 

challenges. For example, Alaska's coastline makes up approximately 50% of the national 

coastline for the United States, but as of 2021 only 31% of Alaska's coastal waters have been 

mapped with single or multibeam sonar for bathymetry (Alaska Coastal Mapping Strategy 

Implementation Plan 2020-2030, 2022). Thus, habitat characterization of Alaska's coastal 

regions is particularly challenging. In the absence of sonar data, systematic drop camera surveys 

can serve as a replacement. Drop cameras have been widely used as non-invasive tools for 

measuring underwater habitat and organismal distributions when multibeam sonar data are not 

available (Bethoney & Stokesbury, 2018; Easton et al., 2015).

In addition to habitat data, modeling relationships between habitat and species presence 

across space and time (Elith & Leathwick, 2009) requires known locations for the species of 

interest. Often, animals are equipped with Global Positioning Systems (GPS) tags or collars to 

track movements to determine their locations in time and space. Advances in animal telemetry 

technology now allow for high resolution GPS tracking of marine and terrestrial animals (e.g., 

Hart et al., 2020; Kuhn et al., 2009). Sea otters (Enhydra lutris), the species of interest for this 

study, are a challenge for tracking, because GPS tags cannot be affixed to the pelage due to risk 

of hypothermia, if their fur is disturbed by GPS attachment (Davis et al., 2019). Very High 

Frequency (VHF) radio tags have been deployed in sea otters, but this method requires surgery to 

implant the device, does not upload data and therefore must be collected in the field, and is cost­

limiting (Davis et al., 2019; Garshelis & Siniff, 1983). The current method for estimating sea 
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otter population abundance entails aerial surveys, where an observer marks locations and 

abundance of observed animals (Bodkin & Udevitz, 1999), which can be used in place of GPS 

locations.

Understanding habitat associations for current sea otter distributions and potential future 

distributions is important for a variety of reasons. First, sea otters are a keystone species, as they 

play a critical role in coastal ecosystem structure and function (Estes & Palmisano, 1974). For 

example, sea otters function as an ecosystem engineer across the North Pacific, including rocky 

(Estes et al., 1998), soft-sediment (Kvitek et al., 1992), and seagrass (Foster et al., 2021; Hughes 

et al., 2013) communities. Second, changes in the presence or absence of sea otters may impact 

local resource availability both for commercial and subsistence purposes (Carswell et al., 2015; 

Hoyt, 2015). Commercial and personal use fisheries and mariculture can be impacted by sea otter 

presence (Bodkin et al., 2002; Carswell et al., 2015). Lastly, federal and state permitting of 

anthropogenic activities, such as oil and gas development, require consideration of impacts to 

marine mammals, including sea otters. Thus, it is important to accurately predict how ecosystems 

may change under future climate scenarios, industrial development, or other anthropogenic 

stressors in the context of sea otter presence in an ecosystem. Predicting ecosystem change 

requires an understanding of habitat associations and current and future species distribution. Sea 

otters use nearshore waters that are associated with canopy-forming kelp, shallow depths, or 

preferred benthic prey (i.e., clams, crabs, etc.) (Gilkinson et al., 2011; Kenyon, 1969; Miller, 

1974; Ribic, 1982; Rotterman & Simon-Jackson, 1988), but finer scale subtidal habitat use, such 

as subtidal algal cover, substrate composition, or bathymetric complexity, has not been fully 

explored for sea otter habitat associations. Finer scale habitat attributes, such as these, may 

increase predictability of sea otter species distribution models.
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While sea otters were historically abundant across their range, their populations were 

severely depleted due to commercial hunting in the mid 1700's to early 1900's (Kenyon, 1969). 

Sea otters were protected in 1911 by the International Fur Seal Treaty, which allowed sea otter 

populations to begin the recovery process (Kenyon, 1969), and they have since been protected by 

the Endangered Species Act (Endangered Species Act, 1973) and the Marine Mammal Protection 

Act (The Marine Mammal Protection Act, 1972). As sea otter populations continue to change 

over time (through recovery, expansion into new territory, translocation, and contraction), there 

is a growing need to better understand the species' foraging and resting habitat requirements to 

manage this federally protected species and its associated ecosystems (Davis et al., 2019).

Northern sea otter (E. lutris kenyoni) distributions have been previously modeled in 

Prince William Sound, Alaska (Coletti, 2006), southeast Alaska (Eisaguirre et al., 2021; Lu et 

al., 2020; Tinker et al., 2019; Williams et al., 2019), Washington state (Hale et al., 2022; Laidre 

et al., 2002), and California (Tinker et al., 2021). These modeling efforts have employed 

Bayesian state-space models (Hale et al., 2022; Tinker et al., 2019) and diffusion models 

(Eisaguirre et al., 2021; Lu et al., 2020; Williams et al., 2019), frameworks that are possible due 

to the high resolution of sea otter abundance time-series data. Calculating population dynamics 

requires annual estimates of changes in abundance and range (Eisaguirre et al., 2021; Hale et al., 

2022; Lu et al., 2020; Tinker et al., 2019, 2021; Williams et al., 2019), because sea otter 

populations are structured on small scales (Davis et al., 2019). Additionally, animal movement 

patterns, collected via telemetry, are necessary for modeling dispersal (Hale et al., 2022; Tinker 

et al., 2019, 2021). However, not all sea otter populations have been surveyed with such frequent 

temporal coverage. For example, some populations, such as Cook Inlet, Alaska, have only been 

surveyed once in over a decade (Garlich-Miller et al., 2018)
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For minimally surveyed populations, the Maximum Entropy (MaxEnt) model (Elith et al.,

2011; Phillips et al., 2006; Phillips & Dudík, 2008) may be ideal, because MaxEnt uniquely uses 

presence-only data compared to other common species distribution model methods (e.g., 

generalized additive models, Guisan et al. (2002), support vector machines, Drake et al. (2006), 

and random forests, Evans et al. (2011)). MaxEnt also performs better than other SDMs in its 

predictive ability and robustness to overfitting (Elith et al., 2006; Valavi et al., 2022), handling of 

small sample sizes (Kaky et al., 2020; Kaky & Gilbert, 2016; Wisz et al., 2008), and modeling 

complex relationships between the response and predictor variables (Elith et al., 2006). We 

examined the role of specific substrate and algal habitat attributes, including ones that have yet to 

be tested, so robustness to model complexity due to many model covariates was critical in this 

exploratory study. Other than MaxEnt, SDMs often assume that species occurrences across the 

region of interest are representative of prevalence, but this is not always the case (Elith et al., 

2011). Because sea otters are highly mobile and forage underwater, it cannot be assumed that 

locations without sea otter observations are true absences. However, modeling presence-only in a 

colonized area still retains the signal of absence, because if a habitat is unsuitable for an animal, 

there will be no presence records (Elith et al., 2011). The MaxEnt model instead uses 

pseudoabsences (i.e., available space) along with occurrences to model habitat use.

To predict the potential expansion of sea otter populations, it is important to understand 

the species' associations with subtidal habitat types. The extent to which this can be done for a 

spatial and temporal data-limited ecosystem is not well resolved. Here, we evaluated whether the 

distribution of sea otters in Kachemak Bay, Alaska can be modeled with two years of habitat 

information and one year of sea otter occurrence information using MaxEnt. We also compared 

sea otter habitat associations in this data-limited ecosystem with other regions that are data-rich 
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to better understand possible generalizations between sea otters and their habitat attributes. The 

sea otter population of Kachemak Bay is an important model system, as this population is 

considered to be at carrying capacity and stable (H. Coletti pers. comm.). It is important to use a 

stable population for model development to understand if other uncolonized regions are suitable 

to support a future stable population. This study notably leverages open-access data to 

demonstrate how the MaxEnt framework may be applied to other ecosystems, and the 

ecologically relevant questions we can answer with data that are publicly available.

Methods

Study site

This research was conducted in Kachemak Bay, Alaska (Figs. 1 and 2), a highly 

productive, estuarine ecosystem located in southcentral Alaska that connects to Cook Inlet at the 

eastern coastline and supports significant macroalgal, invertebrate, fish, and marine mammal 

populations. Northern sea otters have inhabited Kachemak Bay since the 1970's, and the current 

population is thought to be stable at an estimated ~6,000 adults (Esslinger et al., 2021; Garlich- 

Miller et al., 2018). The distribution of sea otters has expanded from Kachemak Bay into Cook 

Inlet and is expanding northward further into Cook Inlet (Fig. 1) (Esslinger et al., 2021; Garlich- 

Miller et al., 2018).

Model components

The subtidal habitat data used in this study are publicly available through the National 

Oceanic and Atmospheric Administration (NOAA) (Field et al., 2020). In 2016 and 2017, 

NOAA collected 518 subtidal habitat videos in Kachemak Bay via a drop camera. The drop 

camera consisted of two cameras, one low-resolution (720 pixels) camera (Sartek Industries, 

Inc.) and one high-resolution (1080p) GoPro camera, and two lights for visibility at depth. Only 
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high-resolution camera data were characterized for this study. Instruments were mounted on a 

stainless-steel tripod frame. The drop camera was lowered to depths between 0-170 m with a 

tether and passed over the benthos for various durations of time (~2-10 minutes), while recording 

continuous video. Point locations of each survey were marked with a GPS device.

To obtain fine-scale habitat information for each high-resolution video, average percent 

cover (0-100%) of each substrate type and algal group was visually determined. Substrate 

utilized a modified Wentworth scale consisting of boulder, cobble, pebble, gravel, shell, sand, 

and mud (Wentworth, 1922). Algae consisted of understory kelp (Order: Laminariales), 

macroalgae (all macroalgae, not including Laminariales), filamentous/microalgae, and coralline 

algae. Raster surfaces for each habitat category were produced using kriging in ArcGIS (ArcGIS, 

2012) to obtain continuous percent cover of each habitat attribute throughout the survey region. 

Raster surfaces have a cell resolution of 131 x 131 m. Bathymetry data were collected by NOAA 

in 2008 and 2009 (Field et al., 2020). Rugosity was derived from bathymetry using the rugosity 

tool in ArcGIS (ArcGIS, 2012). Multicollinearity among habitat data was assessed using a 

stepwise variance inflation factor method via the vif function (Naimi et al., 2014). 

Multicollinearity analysis was conducted using the R language environment (R Core Team, 

2022).

Sea otter abundance data used in this analysis were collected by the United States Fish 

and Wildlife Service in 2017 (Esslinger et al., 2021; Garlich-Miller et al., 2018) via aerial 

abundance surveys flown using the method described by Bodkin & Udevitz (1999). Four 

replicate surveys consisting of a series of 400 m wide strip transects were flown during May 

2017 in the north-south direction across Kachemak Bay, starting and ending at the 0 m tide line. 

Starting points were randomly selected and subsequent transects were flown every 4 km for each 

7



replicate. These strip transects in Kachemak Bay cumulatively covered 40% of the total area of 

Kachemak Bay (Garlich-Miller et al., 2018). Observations from eastern Cook Inlet surveys that 

fell within NOAA's habitat study area were also included in the analysis. For the eastern Cook 

Inlet surveys, a series of 400 m wide strip transects were flown in the east-west direction from 

the 0-40 m depth contour. These surveys were flown 7 km apart and replicated three times 

during May 2017, resulting in a 15% coverage of the total area. Data were represented with sea 

otter counts at each observation point recorded as geographic coordinates (Garlich-Miller et al., 

2018).

Counts were not corrected based on the intensive search unit correction factor, as 

described in Garlich-Miller et al. (2018), because locations alone, not counts, were used in this 

analysis. Replicate surveys were combined for this study to represent all observed sea otter 

locations in Kachemak Bay during the 2017 survey. Only on-transect sea otter observations were 

used for this analysis; off-transect sea otter observations were discarded, as they were 

opportunistic and extended beyond the 400 m transect band. Duplicate observations at any single 

coordinate were not included in the model, as MaxEnt will only allow one observation per grid 

cell to avoid pseudoreplication. Only adult sea otter locations were used, as pups are dependent 

on female sea otters. Polygons of sea otter survey transects were produced by creating polylines 

from transect start and end points (Esslinger et al., 2021). Sea otter data were constrained to the 

extent of habitat data.

MaxEnt model

A MaxEnt model (Elith et al., 2011; Phillips et al., 2006; Phillips & Dudík, 2008) was 

produced to determine subtidal habitat associations of sea otters and to provide a framework for 

predictive modeling of sea otter population expansion given spatial and temporal data limitations 
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imposed on this study. For this, we used the MaxEnt algorithm (Elith et al., 2011; Phillips et al., 

2006; Phillips & Dudík, 2008) through the ENMeval package (Kass et al., 2021) in R (R Core 

Team, 2022). Sea otter observations collected during the 2017 USFWS sea otter aerial 

abundance survey (Garlich-Miller et al., 2018; Esslinger et al., 2021) were used as presence 

locations in the model with only one observation retained per grid cell. A total of 391 sea otter 

presence locations and 10,000 background points were used. Background points were randomly 

selected from strip transect polygons (Fig. 2), as this was considered available space of the 

surveyed extent. Training and testing data were separated using random k-fold partitioning with 

five folds or groups. Cross validation is conducted by leaving out one group at a time and 

calculating the out of sample predictive performance as the area under the receiver operating 

characteristic curve (AUC). The AUC values for training and testing are averaged over the five 

runs of cross validation.

Model settings were determined through model tuning in the ENMeval package, as 

described by Kass et al. (2021). Default MaxEnt version 3.4.3 settings were used, except for 

permissible types of feature classes and the regularization multiplier. Twenty models were 

created with varying types of feature classes (i.e., linear, hinge, and combinations of linear and 

quadratic, and linear, quadratic, and hinge) and regularization multipliers from 1-5. Feature class 

type dictates the shape of the relationship of covariates to response (Bohl et al., 2019). The 

regularization multiplier dictates the penalty for model complexity with a high regularization 

multiplier corresponding to a large penalty (Elith et al., 2011; Merow et al., 2013; Phillips & 

Dudík, 2008). Together, these settings influence model complexity. Model selection was 

conducted with two methods: a sequential method for cross-validation that favors the lowest 

average test omission rate and the highest average AUC (Kass et al., 2021; Radosavljevic &
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Anderson, 2014), and information-theoretic methods (Akaike's Information Criterion corrected 

for small sample sizes, AICc; Burnham & Anderson, 2004). Sequentially selected models were 

compared to AICc selected models for final optimal model selection (Velasco & Gonzalez- 

Salazar, 2019; Warren & Seifert, 2011).

Once the most parsimonious model was selected, model performance was evaluated by 

comparing results to a null model distribution. This allowed for testing the success of modeling 

species distributions for our data-limited system. Some applications of MaxEnt models report 

model estimates, but there is no way to evaluate performance within the algorithm. Bohl et al. 

(2019) developed a framework for evaluating model performance by comparing the empirical 

model to a null model distribution. The novelty of this approach is a null model simulation that is 

validated with randomly selected points, which simulate occurrences, against the same testing 

dataset and background points used in the empirical model. This allows for more direct 

comparison on model performance than in previous evaluation frameworks. As a non-parametric 

method, it is critical to employ an evaluation method to properly estimate effect size and model 

significance.

Null models were constructed over 1,000 iterations by calibrating with a random sample 

of points within the strip transect polygons and the same background points from the empirical 

model. Null models were validated with the same testing dataset as the empirical model, so that 

performance measures were directly comparable (Bohl et al., 2019). Model performance of the 

empirical and null models was evaluated with the AUC for the training (AUCtrain) and testing 

(AUCval) datasets, the difference between AUCval and AUCtrain (AUCdiff), and omission error rate 

(OR) with a threshold that leads to 10% omission of calibration records (Liu et al., 2005). 

AUCval and AUCtrain are measures of discriminatory ability and AUCdiff and OR are measures of 
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overfitting (Bohl et al., 2019). Standardized effect sizes (Ulrich & Gotelli, 2010) and p-values 

were calculated to test whether the empirical model performed better than the null model 

distribution (Bohl et al., 2019). Covariate percent contribution was gathered from the MaxEnt 

model output to determine the importance of habitat attributes in predicting sea otter presence. 

The empirical model was then applied to all grid cells in the study area (i.e., full extent of habitat 

raster layers) to predict the probability of sea otter occurrence based on relationships with habitat 

covariates and demonstrate capability for out of sample prediction. Sea otter survey results, 

including abundance of adult sea otters at each observed point (Garlich-Miller et al., 2018), were 

superimposed on the map of predicted probability of occurrence to visually assess model 

performance.

Results

Model components

Analysis of drop camera data revealed variation in percent cover of substrate and algal 

habitat attributes throughout Kachemak Bay (Fig. 3). Percent cover of larger sediment grain sizes 

(i.e., boulder and cobble) was higher on the south side of the bay than the north side. Percent 

cover of mud was higher in the inner bay, while cover of pebble, gravel, shell, and sand was 

lower in the outer bay. Mud was the most consistently observed habitat attribute throughout 

Kachemak Bay. Algal cover was found primarily in shallower waters at the edges of the bay. 

Understory kelp was found primarily on the south side of the bay, while macroalgae and 

filamentous algae were variable throughout the bay. Percent cover of coralline algae was higher 

in the outer bay than the inner bay.

Sea otter aerial abundance survey results are summarized in Garlich-Miller et al. (2018). 

Briefly, there are an estimated 6,000 adult sea otters inhabiting Kachemak Bay with an estimated 
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population density of 6.37 sea otters/km2, not including the section of the eastern Cook Inlet 

survey that overlapped with the NOAA habitat study area. Sea otter abundance observations of 

adults and pups were variable throughout Kachemak Bay (Garlich-Miller et al., 2018).

Model performance

The evaluation of model settings with the sequential method resulted in selection of 

features set to linear and the regularization multiplier set to one as optimal settings (Fig. 4). The 

sequentially selected model resulted in an omission rate of 0.0996 and an AUCval of 0.681. The 

AICc model selection method suggested features set to linear and quadratic and a regularization 

multiplier set to one, resulting in a more complex model than the sequentially selected model due 

to additional feature types. Comparatively, the omission rate of the AICc selected model was 

0.110 and the AUCval was 0.676, demonstrating a model that is more overfit than the sequentially 

selected model with a slightly lower discriminatory ability. The sequentially selected model with 

features set to linear and the regularization multiplier set to one was deemed to be optimal and is 

the empirical model referred to hereafter.

The null model distribution was used to evaluate multiple model metrics against the 

empirical model. Discriminatory metrics, AUCtrain and AUCval for the empirical model were 

0.686 and 0.681, respectively, and 0.545 and 0.524 for the null model distribution, respectively. 

The p-values from a one-sided test evaluating whether the AUCtrain and AUCval were larger for 

the empirical model than the null model distribution were p < 0.001 and p < 0.001, respectively 

(Table 1). Empirical AUCtrain and AUCval fall outside of the 99th quantile of the null model 

distribution, showing significantly better (α = 0.05) model performance than models with 

randomly generated presence locations in the survey area (Fig. 5). Metrics of overfitting, AUCdiff 

and omission rate, for the empirical model were 0.0226 and 0.0996, respectively, and 0.0599 and 
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0.137 for the null model distribution, respectively. The p-values from a one-sided test evaluating 

whether the AUCdiff and omission rate were smaller for the empirical model than the null model 

distribution, p < 0.01 and p < 0.05, respectively (Table 1). Empirical AUCdiff and omission rate 

demonstrated significantly different degrees of overfitting (α = 0.05) from null models with 

randomly generated presence locations in the survey area (Fig. 5, Table 1). The out of sample 

prediction for Kachemak Bay had 68.1% (AUCval) predictive accuracy with a standard deviation 

of 2.61% (Table 1).

Habitat associations

The optimal model resulted in bathymetry, shell, and filamentous algae as the three most 

influential habitat attributes predicting current probability of sea otter occurrence in Kachemak 

Bay, Alaska, with 43.0%, 18.2%, and 18.0% contribution, respectively (Table 2). Shallower 

depths and increasing percent cover of filamentous algae had positive relationships with 

probability of sea otter occurrence. Increasing percent cover of shell had a negative relationship 

with probability of sea otter occurrence (Table 2). Understory kelp was the next most important 

habitat attribute at 6.20% contribution and had a positive relationship with probability of sea 

otter occurrence, though there was a substantial decrease in percent contribution between 

filamentous algae and understory kelp (Table 2). Rugosity, boulder, and sand had no predictive 

value for sea otter occurrence. Gravel, pebble, coralline algae, cobble, and macroalgae (in order 

of importance) had low (< 6%) contributions for predicting sea otter occurrence (Table 2). 

Permutational importance over 120 iterations also followed these trends, except for pebble, 

macroalgae, and sand, which had zero permutational importance (Table 2). Mud was excluded 

from the analysis, as it was highly correlated with other environmental covariates. The empirical 

model was used to predict probability of sea otter occurrence throughout Kachemak Bay based 
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on substrate, algae, and bathymetry (Fig. 6A). These results reveal hotspots (i.e., high use areas) 

with high probability of sea otter occurrence in Kachemak Bay. Based on subtidal habitat 

associations, sea otters are likely to occur in the northwest, northeast, south-southwest, and 

southwest areas of Kachemak Bay; however, there are variable hotspots throughout the bay (Fig. 

6A). These hotspots visually follow patterns of sea otter observations (Fig. 6B) (Garlich-Miller 

et al., 2018; Esslinger et al., 2021).

Discussion

Model performance

This study importantly leveraged open access data and demonstrated that sea otter species 

distribution modeling is feasible with temporally and spatially limited data. The MaxEnt model 

was quantitatively evaluated to perform better than random using the methods described by Bohl 

et al. (2019). Further, the ecological relevance of the detected habitat associations was 

qualitatively assessed by comparing our results with other sea otter modeling studies, as well as 

comparing the MaxEnt-predicted occurrence probabilities to known sea otter abundance 

observations. Results reported here confirm previously known sea otter habitat associations, such 

as an association with shallow depth (Bodkin et al., 2004; Coletti, 2006; Eisaguirre et al., 2021; 

Gilkinson et al., 2011; Williams et al., 2019; Yeates et al., 2007), and a positive association with 

understory kelp (Estes & Duggins, 1995; Foster & Schiel, 1988). We also found novel 

associations, such as a positive association with filamentous algae and a negative association 

with shell cover. Notably, areas within the study region that were predicted to have a higher 

probability of sea otter occurrence based on habitat associations also visually corresponded to 

areas with observations of greater sea otter abundance (Garlich-Miller et al., 2018). This result 

would not be expected, if the modeled habitat associations were not relevant to true sea otter 
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distributions. Sea otter species distribution modeling, including variables, such as depth, rocky 

substrate, canopy kelp, and other environmental variables, has been conducted for California 

southern sea otters (Enhydra lutris nereis) using a model that required continuous habitat data 

and multiple years of sea otter abundance survey data (Tinker et al., 2021). Such extensive 

spatial and temporal data are rarely available for modeling. Hence, our approach serves as a way 

forward for systems with more limited data.

In this exercise, model performance was evaluated to ensure that the model settings were 

the most appropriate. The optimal empirical model was selected from a suite of candidate models 

by testing various evaluation metrics using two evaluation methods: sequential selection and 

AICc selection (Burnham & Anderson, 2004; Kass et al., 2021; Radosavljevic & Anderson, 

2014). The final MaxEnt model that was selected had linear features and a regularization 

multiplier of one. A lower regularization multiplier corresponds to a weaker penalty on the 

model for complexity, resulting in a more complex framework (Merow et al., 2013). When 

comparing the AUC scores for both final candidate MaxEnt models, they both performed 

similarly in predictive accuracy with AUCval=0.681 for the sequentially selected model and 

AUCval=0.676 for the AICc selected model. However, the omission rate of 0.0996 for the 

sequentially selected model and 0.110 for the AICc selected model indicates a difference in 

overfitting. An omission rate higher than the given threshold (10%) indicates overfitting 

(Radosavljevic & Anderson, 2014). The sequentially selected model does not indicate 

overfitting, while the AICc selected model does. This comparison demonstrates the improved 

ability of the sequential method in limiting overfit models over the commonly used AICc 

method, which corroborates previous findings (Bohl et al., 2019; Kass et al., 2021; Radosavljevic 

& Anderson, 2014). The sequentially selected model is the model referred to hereafter. The 
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model AUCval score of 0.681 indicates prediction that deviates from random (AUC = 0.5) but is 

between “poor” and “fair” performance (Swets, 1988).

The results of the empirical to null model distribution comparison demonstrate that the 

discriminatory ability and the degree of overfitting of the empirical model are significantly better 

than the null model distribution at α=0.05. This result conveys that the model can predict the 

probability of sea otter occurrence based on the observed locations better than a model based on 

randomly selected data and is less overfit than a model based on randomly selected data. 

Additional explanatory covariates, such as prey availability (Davis et al., 2019), distance from 

shore (Coletti, 2006), presence of canopy kelp (Tinker et al., 2021), and demography (Laidre et 

al., 2009; Tinker et al., 2008) may also increase the predictive power of the model, which would 

be demonstrated by an increase in AUC score above the 0.70 threshold of “fair” into the “good” 

range (Swets, 1988) and may further decrease the degree of overfitting by reducing complex 

relationships with less important covariates. However, this study demonstrates that the MaxEnt 

model produced here is quantitatively effective for species distribution modeling based on two 

years of open-access environmental data and one year of species observation data and identified 

the importance of subtidal substrate and algal composition for predicting the probability of sea 

otter occurrence.

Habitat associations

Similar to other studies (Bodkin et al., 2004; Coletti, 2006; Eisaguirre et al., 2021; 

Gilkinson et al., 2011; Williams et al., 2019; Yeates et al., 2007), bathymetry was found to be the 

most influential habitat attribute for predicting the probability of sea otter occurrence. 

Bathymetry had a positive relationship with probability of sea otter occurrence, such that sea 

otters are most likely to be present in shallower waters. Sea otters use shallower water depths (0- 
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40 m) potentially due to a higher abundance of available prey compared to deeper waters 

(Bodkin et al., 2004; Gilkinson et al., 2011) and lower energetic costs of shallower dives (Yeates 

et al., 2007). Other studies have assumed that abundance and carrying capacity estimates can be 

applied to areas with similar habitat; however, similar habitat has previously been defined 

predominantly with depth alone (0-40 m; Laidre et al., 2002; Burn et al., 2003; Garlich-Miller et 

al., 2018). Depth may represent access to prey with minimal physiological diving stress and 

thermoregulatory cost (Yeates et al., 2007), but infaunal and epifaunal prey are variable in 

distribution and density across similar habitats (Barber et al., 2012; Cates, 2022; Eggleston et al., 

1992; Seitz et al., 2001; Sponaugle & Lawton, 1990; Turner et al., 1997). Hence, this may result 

in over- or under-estimation of equilibrium density and abundance, if habitat is more or less 

suitable in modeled areas based on variables other than depth.

Although sea otters forage on clams and deposit empty shells on the benthos, shell litter 

has not been mentioned in other habitat association studies. Here, shell litter was the second most 

important attribute in predicting probability of sea otter occurrence. Shell had a negative 

relationship with probability of sea otter occurrence, such that an increase in percent cover of 

shell litter corresponded to a decrease in probability of sea otter occurrence. This relationship 

may indicate that areas with high shell cover no longer have an abundance of available bivalve 

prey. Areas with high shell cover may have limited remaining large live clams, thus causing sea 

otters to prey switch or forage in new locations, as has been observed when preferred prey stocks 

are depleted (Ostfeld, 1982).

Filamentous algae have not been considered in other sea otter habitat studies but were 

detected as the third most important attribute in predicting probability of sea otter presence in 

this study. Filamentous algae had a positive relationship with probability of sea otter occurrence, 
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such that an increase in percent cover of filamentous algae corresponded to an increase in 

probability of sea otter occurrence. This association may be due to a positive feedback loop, 

where sea otters modify substrate and increase settlement of algal spores (Fletcher & Callow, 

1992). Sea otters often feed in consolidated substrate habitat, where filamentous algae may 

recruit well and have low competition with larger/perennial algae (Stewart & Konar, 2012). 

Another hypothesis is that filamentous algae may be serving as a proxy for another factor that 

may be affecting sea otters more directly, such as prey abundance. Sea otters prey on 

herbivorous invertebrates (e.g., sea urchins) that may be feeding on filamentous algae (Dethier & 

Duggins, 1988; Vadas, 1977). In addition, filamentous algae may increase the amount of 

particulate organic carbon in the water column for filter-feeding prey items (e.g., bivalves) to 

take up (Page, 1997; Riera & Richard, 1996). Additional covariates, such as invertebrate 

abundance and particulate organic carbon, would help distinguish the driving factor of the 

observed filamentous algal relationship but were not collected in this study.

Some, but not all, of the remaining covariates in the model only contributed minimally 

when predicting the probability of sea otter occurrence. Understory kelp was the fourth most 

influential attribute predicting sea otter occurrence, but only at 6.20% contribution, which 

supports findings from other studies of sea otters associating with understory kelp (Estes & 

Duggins, 1995; Foster & Schiel, 1988). Previous modeling studies have found canopy forming 

kelp associations with sea otters (Estes et al., 2010; Tinker et al., 2021), however, the current 

study only used non-canopy forming algae, so results are not directly comparable. Of the 

remaining habitat attributes, gravel, pebble, and cobble only have minimal and negative 

relationships with probability of sea otter occurrence at 5.30%, 3.40% and 2.30% contribution, 

respectively, and coralline algae has a minimal positive relationship with probability of sea otter 
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presence at 2.90% contribution. Although percent contribution was < 6% for these habitat 

attributes, this result demonstrates the prominence of habitat complexity in ecological 

relationships. Macroalgae, boulder, rugosity, and sand did not contribute to predicting 

probability of sea otter presence indicating that Kachemak Bay, Alaska, does not appear to 

function as a rocky ecosystem based on substrate composition (Stewart et al., 2014).

Additional studies using habitat data have included substrate and distance to other known 

important features (e.g., distance to shore and distance to closest protected shoreline) as 

covariates in estimating density and distribution (Coletti, 2006; DeMaster et al., 1996; Eisaguirre 

et al., 2021; Laidre et al., 2002; Lu et al., 2020; Tinker et al., 2021; Williams et al., 2019). 

Specifically, distance to shore and distance to the closest protected shoreline have inverse 

relationships with sea otter density (Coletti, 2006). In addition, rocky, sandy, and mixed substrate 

types have been associated with varying degrees of sea otter carrying capacity (DeMaster et al., 

1996; Laidre et al., 2001), though substrate, other than shell litter, was not a strong driving factor 

for predicting probability of sea otter occurrence in this study. Other sea otter distribution 

modeling studies have relied on population growth dynamics, which requires many consecutive 

years of sea otter surveys (Eisaguirre et al., 2021; Hale et al., 2022; Lu et al., 2020; Tinker et al., 

2019; Williams et al., 2019).

Variation in results between this study and others may be due to survey method and data 

types. The use of drop cameras instead of multibeam sonar might lead to a discrepancy in scale. 

Drop camera data allow for a fine-scale characterization of habitat and may provide benefits for 

studies emphasizing environmental complexity. In addition, leveraging technology, such as drop 

cameras, allows for increased survey extent without an increase in field effort, such as in situ 

survey methods, i.e., SCUBA diving, due to ease of use. Increasing the spatial extent of habitat 
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data would broaden our range for predictions of animal distributions. The habitat associations in 

this study are based on a single summer season during one year of sea otter aerial abundance 

surveys, which is a snapshot in time for habitat use and does not capture seasonal or inter-annual 

habitat use. Because the MaxEnt algorithm uses available space as background points for 

comparison, the resulting associations are still robust estimates of preferential habitat use. 

However, these associations are being drawn from data on both resting and foraging animals; 

these two behaviors might result in variable use of habitat types (Finerty et al., 2009). Tracking 

information would provide more detailed estimates of sea otter habitat use to correlate known 

behaviors and movement across space and time, though these data are challenging to collect for 

sea otters, especially in remote locations (Davis et al., 2019).

This study is a step forward in exploring additional habitat features that may be important 

for estimating northern sea otter carrying capacity in southcentral Alaska, as has been done in 

California with southern sea otters (Tinker et al., 2021). However, a component necessary for 

carrying capacity estimates is prey availability data, which influences equilibrium densities of 

sea otters (Davis et al., 2021; Dean et al., 2002). Despite large efforts to model carrying capacity 

in other regions, many studies (Eisaguirre et al., 2021; Hale et al., 2022; Lu et al., 2020; Tinker 

et al., 2019, 2021; Williams et al., 2019), including the one presented here, have not incorporated 

sea otter prey information directly, which is recommended for future modeling efforts (Davis et 

al., 2019). An important linkage is the association of subtidal habitat, specifically substrate and 

algal cover, with sea otter prey. Including estimates of available prey energy are also critical for 

accurately estimating equilibrium density of sea otters. Regions with stable sea otter populations 

have been found to increase in abundance after being considered standards for equilibrium 

densities, pointing to prey availability as a more reliable metric (Davis et al., 2021; Hale et al.,
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2019, 2022). We recommend combining a suite of known sea otter-associated metrics in future 

studies. Additional advancements in survey technology, including remote and autonomous 

survey platforms, may improve access to information in data-limited systems. Much can be 

learned about the function of ecosystems by including physical habitat variables (Pittman, 2017).

Identifying habitat requirements is important for species management and conservation.

As this study has shown, it is promising that modeling species distributions and habitat 

associations is possible in data-limited ecosystems. Much is still unknown about our oceans, and 

the ability to answer questions with open access data can help fill key information gaps. Beyond 

sea otters, this framework can be beneficial for species distribution modeling of other mobile 

marine megafauna. Specifically, understanding the habitat requirements of protected species and 

predicting distributions can mitigate future conflicts of resource competition or disturbance. The 

minimal data requirements of animal presence and dispersed habitat data over an area of interest 

can lead to significant gains in knowledge for management and conservation by using MaxEnt 

for species distribution modeling in data-limited ecosystems.
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Tables

Table 1: MaxEnt model evaluation metrics for the empirical model and null model distribution 
for sea otter habitat suitability in Kachemak Bay, Alaska, using data from 2016 and 2017. Z 
scores and p-values compare the empirical model to the null model distribution with a one-sided 
test. NA stands for not applicable, AUC stands for the area under the receiver operator curve and 
is evaluated for training data, testing data, and the difference between training and testing, and 
OR stands for the omission rate.

Statistic AUCtrain AUCval AUCdiff OR
Empirical mean 0.686 0.681 0.0226 0.0996
Empirical standard deviation NA 0.0226 0.0195 0.0548
Null mean 0.545 0.524 0.0599 0.137
Null standard deviation 0.0107 0.0151 0.0130 0.0168
Z score 13.2 10.5 -2.86 -2.23
p-value 5.14x10-40 5.13x10-26 0.00211 0.0129
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Table 2: Percent contribution, permutational importance, and relationship direction of habitat 
attributes in predicting sea otter presence. NA stands for not applicable.

Variable Percent 
contribution

Permutation 
importance

Relationship 
direction

Bathymetry 43.0 25.2 Positive
Shell 18.2 23.4 Negative
Filamentous algae 18.0 11.9 Positive
Understory kelp 6.20 8.40 Positive
Gravel 5.30 5.80 Negative
Pebble 3.40 0 Negative
Coralline algae 2.90 13.1 Positive
Cobble 2.30 11.9 Negative
Macroalgae 0.600 0 Positive
Boulder 0 0.200 NA
Rugosity 0 0.200 NA
Sand 0 0 NA
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Figures

Figure 1: Map of Cook Inlet, located in southcentral, Alaska. Kachemak Bay is located on the 
eastern side of Cook Inlet.
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Figure 2: Map of the Kachemak Bay, Alaska, study site. The thin black line represents the 
outline of Kachemak Bay. The thick black lines indicate surveyed areas for sea otter abundance 
in 2017. Red circles (o) indicate northern sea otter sightings and blue crosses (x) indicate drop 
camera sites.
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Figure 3: Raster surfaces for each substrate (boulder, cobble, pebble, gravel, shell, sand, and 
mud) and algal (understory kelp, macroalgae, filamentous algae, and coralline algae) attribute 
throughout the survey region in Kachemak Bay, Alaska. Darker colors represent higher percent 
cover and lighter colors represent lower percent cover.
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Figure 4: Line graphs of candidate model settings for model tuning. Lines are colored by feature 
settings (H: hinge, L: linear, LQ: linear and quadratic, LQH: linear, quadratic, and hinge). The x- 
axis indicates the regularization multiplier (1-5), and the y-axis indicates the evaluation metric 
value with omission rate on the top panel and AUCval (area under the receiver operator curve for 
the test dataset) on the bottom panel.
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Figure 5: Null model distribution histograms for evaluation of MaxEnt model performance. The 
red line indicates evaluation metric values for the empirical model. Dashed blue lines indicate 
the 0.05 and 0.95 quantiles, purple indicates the 0.01 and 0.99 quantiles, and the solid blue line 
indicates the median of the null model distribution. The x-axis of each panel corresponds to the 
AUCdiff, AUCtrain, AUCval (i.e., the area under the receiver operator curve for the training data, 
testing data, and the difference between training and testing), and omission rate value from top to 
bottom, respectively. The y-axis indicates frequency.
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Figure 6: (A) Map of the probability of sea otter presence in Kachemak Bay based on MaxEnt model 
predictions. Probability ranges 0-100% from white to red. (B) Map of probability of sea otter 
presence in Kachemak Bay based on model predictions with sea otter survey results superimposed. 
Points represent adult sea otter observations and point size represents relative abundance with the 
point in the bottom legend representing 40 sea otters (Garlich-Miller et al., 2018).
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