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ABSTRACT 

Photogrammetry has become increasingly available as a tool for re-constructing the 3D model of 

real-world objects and terrain, which is referred to as the structure from motion (SFM) solution. 

The re-constructed model has three-dimensional colorized surfaces.  Integration of geo-

referenced data into SFM allows for precise geo-registration, scaling and orienting of the object. 

Today, industrial users of SFM typically acquire imagery from unmanned aerial vehicles 

(UAVs). UAV-based SFM relies on having a large number of ground control points that were 

surveyed ahead of time as the main source of geo-referenced data. The deployment and survey of 

ground control points are time consuming, and sometimes infeasible due to environmental 

constraints. A better solution is to gather location and/or orientation data of the camera in flight. 

A capable navigation device can record the precise location and orientation of the camera at the 

exact moment at which every image was taken. With that information, few or no ground control 

points are needed for geo-registration. However, the commercially available solutions of UAV-

based SFM with an on-board navigator tend to be bulky and expensive. A low-cost, compact 

solution with open interfaces will be proposed in this work.  
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Chapter 1 INTRODUCTION 

Photogrammetry refers to the technology of measuring real-world objects via imagery [1]. 

Photogrammetry can be used for two-dimensional or three-dimensional estimation of 

topographical features, point cloud recreation of objects, or top-down maps of large areas. 

Different methods exist to digitally recreate these features.  

In this work, the focus is on the photogrammetry methods that can be used to integrate multiple 

images together to form a three-dimensional (3D) model. In these methods, multiple images are 

typically related to each other by using point features that are common to these images. 

Furthermore, if the points in a known 3D model can be geo-referenced, this process is referred to 

as geo-registration in photogrammetry [2]. There are multiple algorithms available for geo-

registration. The optimum choice of a target application depends on the number of cameras 

available, referencing method, number of images, and calculation time allowed [3]. 

Today, structure from motion (SFM) is the most commonly used technique for reconstructing 3D 

models in photogrammetry. SFM makes use of a large number of images of the same scene or 

objects, taken at different angles and distances. The images are geometrically related to each 

other by correlating common point features. Based on the observations of these common point 

features in the images, an estimator can be used to compute the camera pose (location and 

orientation) for each image, as well as the 3D location of the point features [4]. During this 

process, the camera is expected to move around a fixed object or scene, and the 3D model of the 

object or the scene can be reconstructed as a point cloud, which includes a large number of 3D 

point features.  
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SFM is widely used by research communities, various industries and government users. It only 

uses a single camera, as opposed to a stereo-vision system that requires two cameras. To 

properly acquire the images needed for SFM over a large area, it requires the ability to quickly 

move the camera and take pictures at various angles and distances. Therefore, a camera system 

based on unmanned ariel vehicle (UAV) has become the dominant choice for SFM by many 

users. Modern small UAVs are easy to control and maneuver and can carry high-quality onboard 

cameras. The UAV camera systems are considered low-cost in a lot of industrial settings [5]. 

Although there have been many regulations regarding the safe operations and airspace 

restrictions of hospitals, airports, and military bases, small UAV can still be operated to meet the 

needs of most users [6].   

However, the 3D model and the camera pose estimated in SFM are all relative, since they are 

referenced in a scaleless coordinate system defined relative to the camera itself. Therefore, the 

3D model cannot be directly placed in a real-world coordinate system. 

Pre-surveyed ground control points (GCPs) or precise pose information of the camera can be 

used to provide the link between SFM and a world coordinate [5]. If part of the point features 

used in SFM are captured from known objects at pre-surveyed locations in a world coordinate 

system, they will be identified as geo-referenced markers. These markers can be used to estimate 

the location of all the 3D points from SFM in the same world coordinate system. 

On the other hand, the precise pose the camera recorded in a world coordinate system can be 

used to estimate a geo-registered 3D model as well. Precise camera location can be achieved 

using the global navigation satellite systems (GNSS), which can achieve centimeter-level 

accuracy using real time kinematics (RTK) technologies. While generally considered expensive, 

newer technologies are reducing the cost of RTK systems [5]. Orientation of a camera can be 
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sensed using an inertial measurement unit (IMU) that is typically integrated with a satellite 

navigation system on a small UAV. Precise camera position and orientation are crucial to proper 

scaling, orientation and geo-registration of the 3D model in the world frame. However, even if 

the orientation measurement is not available to small UAVs, geo-registration can still benefit 

from precise positioning alone.   

There are multiple software options that automatically perform SFM with GCPs and/or camera 

pose, including commercial and open-source libraries. Some of the more common commercial 

solutions include Agisoft Metashape, use-specific software from PIX4D [7], and 3DF Zephyr 

[8]. MultiView Environment, (MVE), MicMac, and OpenMVG are all free software capable of 

SFM [9].  

The GNSS receivers on small UAVs are typically used for navigation and control. The accuracy 

of these GNSS receivers is not always sufficient for SFM. If they were to be used in SFM, the 

position errors will directly impact the accuracy of geo-registration. A GNSS RTK solution 

offers centimeter-accuracy, which is ideal for geo-registration in most applications. However, a 

complete UAV-based geo-registration system would require tight coupling and precise 

synchronization between the RTK system and the camera system. As a result, there exists few 

complete geo-registration solutions that make use of precise camera pose in the UAV-

photogrammetry industry today. The available systems typically use closed proprietary data 

interfaces and cannot interchange data with other systems. These systems can be very expensive. 

However, much of the work developed by the photogrammetry research community has become 

open-source or free. They can be used to integrate SFM with precise camera pose. In addition, 

low-cost GNSS RTK systems have also become available [10]. 
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Therefore, it is now feasible to construct a low-cost standalone SFM system, which includes a 

commercial off-the-shelf GNSS receiver with a low-cost yet high-resolution camera. It could be 

attached to any small UAV that is capable of carrying the payload, and the data can be processed 

in free SFM software. There will be open data interfaces between the GNSS RTK, camera and 

the SFM software. It will not be dependent on specific manufacturer for each of the components, 

including the UAV. Instead, users can customize the system based on specific needs. For 

example, most of the SFM solutions are computed in post-processing software. As a result, the 

real-time GNSS solution is not always necessary. A post-processed RTK solution can be more 

accurate and can be better integrated with SFM. It does not require a live data link during 

operation, which makes it more robust. The design and implementation of an affordable, 

standalone geo-registration system that uses independent UAV, camera, RTK and SFM modules 

will be investigated in the work. 

An open-source solution for SFM modeling could be used as a cost-effective research tool for 

academic, government, or personal recreations of three-dimensional features. Prior to hardware 

selection, some key questions must be answered about the performance capabilities required. In 

an open-source, open-interface solution where the components are not tightly coupled, it may be 

more challenging to achieve the expected accuracy in SFM. The performance requirement for 

each of the components will be defined based on the expected accuracy and the open nature of 

this solution. 

Prior to selecting a cost-effective camera, the capture frame rate must be sufficient to properly 

capture images and tie those images as closely as possible to the pose data received by the GNSS 

real time kinematic solution. It is because a low-cost camera that is not tightly coupled with the 

GNSS device may need to be synchronized to GNSS via a high frame rate, instead of an internal 
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triggering mechanism. However, faster frame rates in a camera generally indicate an increase in 

price. What is the frame rate required to properly capture images while maintaining the 

minimization of cost requirement? 

After selecting the camera, it must then be able to accurately coordinate images to RTK GNSS 

data. The image captured must be as close as possible to the instant the positional data is valid in 

order to minimize propagating errors in the model. How can the RTK GNSS positional data be 

properly tied to the correct image in a standalone system and properly recorded for post 

processing? 

The geo-registration system requires capturing and recording of positional data received from 

GNSS. While a real time solution is not necessary, the data must be recorded rapidly as it occurs 

in order to ensure data integrity for later processing. Data from a ground reference receiver must 

be used during post processing for the post processed kinematic (PPK) solution. While similar to 

the system used in the onboard photogrammetry module, it must be free standing and capture and 

record positional data as well. How can the positional data be captured and recorded rapidly for 

post processing into an PPK solution? 

A standalone system must be able to supply power to itself, and not rely on any outside source. If 

attached to an UAV, battery weight will also be a design concern. The system may require 

different voltages for the various systems as well. What voltages are required and how much 

storage capacity is required for a sufficient recording time to capture the necessary datapoints? 

How will this be routed to the various systems? Can the UAV properly support the added weight 

while in flight?  
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SFM has multiple well-established software solutions. The ideal SFM software will have the 

ability to incorporate GNSS/RTK data, the lever arm between camera and the GNSS antenna, 

GNSS coordinates of ground control points. In addition, it should be able to calibrate different 

camera lenses on the fly. What software options can satisfy the outlined requirements?  

In order to assess the quality of the SFM solution, ground objects with pre-surveyed coordinates 

will be used. How to design and deploy these objects, such that the SFM precision and accuracy 

can be correctly assessed? How is performance of this system compared to other geo-registration 

solutions, such as GCP-based SFM or laser-based 3D imaging?  

A standalone open-interface photogrammetry module improves over current market offerings in 

several important ways. A photogrammetry module that is not tied to any specific brand of UAV 

can be attached to any airframe that is capable of carrying an additional payload within the range 

of the module. An open-source, open-interface design bears significantly lower cost compared to 

the complete solution offered by main UAV manufacturers (such as DJI). Finally, components 

can be changed, modified and upgraded with the open-interface system,  as SFM technology 

advances.  

Compared against traditional ground-based survey techniques, UAV-based photogrammetry has 

been identified as a much more efficient method. Furthermore, since this system reduces the 

dependency on GCPs, it provides a unique advantage in scenarios where on GNSS challenged 

locations, or for locations where GCP’s cannot physically be placed in the area of interest. The 

PPK solution provides higher accuracy in three-dimensional position than standalone GNSS or 

RTK. It does not rely on a live data link like RTK and other real-time GNSS systems. It is less 

expensive and more reliable. 
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Since this system has open interfaces and relies only on commercially available components, 

there will be additional data format conversion steps needed. Data from GNSS receivers and 

camera will be converted into standard format, and the relative timing between both data sources 

has to be precisely represented in the converted data. The converted data are post processed in 

GNSS and SFM software, which means that the results are not available for real-time viewing. 

The system may serve as a starting point for a validated SFM system onto which future engineers 

may build.  



 

Chapter 2 LITERATURE REVIEW 

Photogrammetry has been used successfully across many different fields from archeology to 

agriculture and even forensics. A coral reef study performed underwater used photogrammetry to 

create detailed surface maps of living coral environments for further study and is recognized as a 

cost-efficient tool for ecological surveys [11]. 

 Construction projects have been estimated using photogrammetry as well.  While construction 

progress is monitored, data entry is costly in time and resources. Digitally modeling the current 

phase of the project of interest offers a visual representation of the structure progress. 

Additionally, the same UAVs could then be used for safety inspections as well [13]. Law 

enforcement has attempted to use photogrammetry in evidence analysis using images of shoe 

imprints in soft surfaces. The image collection process is complicated for some users and could 

lead to inaccurate models due to poor technical training. However, the ability to use images 

captured via smartphone with approximately the same quality as evidence collection cameras 

made the effort to properly train users in evidence collection worthwhile [14]. Archeology has 

greatly benefited from photogrammetry with SFM to recreate models of artifacts such as statues 

or jugs for dissemination to the archeological community. The recreations used RGB data 

mapped to the model for a more accurate representation of the original artifact [15].  Apple 

orchards are monitored with photogrammetry as well. Tree heights are estimated for informed 

decisions on watering, pruning and application of fertilizers. Using photogrammetry for 

agriculture applications greatly reduced the workload on farming communities [16]. 

Photogrammetry is typically divided into either terrestrial (close range) or aerial [17]. However, 

the development of photogrammetry in the last decade is mainly because of smaller and cheaper 
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UAVs [18]. While UAVs were originally created for military applications, the consumer market 

saw a surge in hobbyist and professional applications starting from the early 2000’s [18].The 

photogrammetry system designed in this work is also focused on UAV-based SFM.  

Best practices for photogrammetry when using UAVs to capture images are reasonably 

straightforward. The camera may either be placed vertically (nadir) or at an angle (oblique) [19]. 

Flight may either be controlled autonomously or manually such that there is sufficient overlap 

among the images and the entire area of interest is covered [19]. Image overlap is recommended 

to be greater than 80 percent between images [20]. Wind conditions and flight speed must be 

considered as well. It is generally recommended that flights take place with minimal shadowing 

for proper color information and while the sun is directly overhead.  

SFM evolved from the combination of algorithms used for photogrammetry alongside computer 

vision methods [18]. As an initial step in a classic SFM algorithm, a sparse point cloud is created 

using point features captured across multiple images. For proper feature association, it is 

recommended that each image have approximately 80-90 percent overlap with the previous 

image. More images are integrated until a sparse point cloud of the 3D model can be estimated. 

Understandably, this will result in a large amount of images relative to the object being 

estimated, which requires significant processing time [18]. 

The sparse point cloud is then scanned for outliers, which are immediately removed. At this 

stage, there is no absolute location or scaling attributed to the model. The coordinate system in 

which the 3D model and the camera poses are estimated in can be completely arbitrary [18], 

although in practice, it may be related to specific camera pose(s). Therefore, neither the camera 

pose nor the 3D model is linked to a real-world frame.  
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Additional geo-referenced data is required for tying the model to an applicable coordinate 

system. There are two forms of georeferencing data. Indirect georeferencing is gathered during 

the survey by knowing the precise locations of a point feature present in the area being surveyed. 

These locations are used as GCPs[18]. Direct geo-referencing is performed by integrating the 

poses of the camera during the flight into SFM. With GCPs and/or camera poses, geo- 

referencing of the 3D model is accomplished via an adjustment process to correlate the sparse 

point cloud to a real-world coordinate system [18].  

Finally, the geo-referenced point cloud is reconstructed using spatial intersections, gradient and 

energy minimization algorithms. Based on that, a 3D model with dense point cloud can be 

created. An optional texture map could also be created by colorizing surface of the model using 

pixel data extracted from the different images to [18].  

Various manufactures and software developers have produced photogrammetry software 

packages, and some of them are accompanied with small UAVs and sensor packages dedicated 

to SFM. Popular photogrammetry software applications include Agisoft Metashape, Pix4D, and 

MicMac [18]. In general, these software packages assume that the user has procured valid, geo-

referenced data, with GCPs and/or camera poses, with enough images for sufficient overlap.  

There are numerous applications where the placement and survey of GCPs are infeasible or 

inconvenient [21]. In those cases, SFM relies on the camera pose information for geo-

referencing. A camera pose includes both the position and orientation of the camera. It was 

found that precise position alone can greatly help even if the orientation data is not available 

[22]. As afore mentioned, precise orientation of a camera relies on a high-quality IMU, which is 

not always available on small UAVs due to constraints in cost and payload. On the other hand, 
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the equipment needed for precise positioning can be low-cost and low-profile, which will be the 

main focus of this work. 

Some work has been done with RTK combined with photogrammetry to produce rapidly mapped 

models. Accuracy of the RTK solution as a geo-referenced data point is paramount to the success 

of the overall solution. Direct referencing allows the system to not rely on pre-arranged and pre-

surveyed GCPs. An adjustment must be made for the distance between the camera and receivers 

to properly use the geo-referenced data [23].  

Much work has been done on improving the accuracy of camera position used in SFM, and 

increasing the accuracy of 3D models as a result [24]. Some preliminary results show that the 

horizontal accuracy of 1.5 centimeters and vertical accuracy 2.3 centimeters [25]. A minimum of 

four satellites are required for GNSS solutions, but it is recommended to have at least eight. The 

redundancy of satellites allows for better accuracy and the mitigation of signal degradation due 

to faulty data as caused by interferences or other intermittent issues[24]. One of the challenges 

come from GNSS-challenged environment, which refers to locations with heavy tree cover, 

significant obstructions and multipath from buildings or signal interference. These locations can 

have an adverse effect on the overall quality of data and should be avoided if possible [24]. 

Furthermore, it is more convenient to improve the position accuracy in PPK than in RTK, mainly 

because satellites with signal degradation can be more reliably detected and removed in post 

processing.  

Another challenge is the synchronization between GNSS and camera. GNSS data and solution 

(including RTK and PPK) are recorded with respect to the receiver clock or the GNSS clock. In a 

tightly coupled system, the GNSS receiver and a camera may share the same timing mechanism. 

In that case, GNSS clock or the receiver clock may be used as a timing source to trigger a 
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camera, such that every image from the camera has a GNSS-synchronized time tag. However, in 

an open-interface system such as the one discussed in this work, the GNSS receiver may be 

independent from the timing mechanism of the camera. In other words, the images from the 

camera are not directly recorded with a GNSS time stamp. Without the time stamp, it would be 

very difficult to find the camera position at the very moment at which an image is taken. 

Therefore, without a synchronization mechanism, SFM cannot benefit from the accuracy 

positioning data. Research has determined that if an unknown time delay between the camera 

image capture and satellite timing exists, the resulting 3D model will have large errors in geo-

registration. For example, it was found in [23] that after three trials, errors were recorded ranging 

from 0.3 meters to 1.12 meters. These errors were directly attributed to the time delay between 

image capture and satellite data recording and insufficient adjustment of the focal length and 

lever arm. Fazeli et. al. discuss that the future improvements could be made by having a faster 

frame rate taken by the UAV, and reduction of the sensor time synchronization delays [25].  

Proprietary systems typically use tightly coupled RTK and camera systems, which guarantees 

synchronization accuracy. However, these systems do not offer open and interoperable interfaces 

between RTK/GNSS and the camera. Neither the RTK or the camera can be replaced or 

upgraded by the user. As a result, the cost of the commercial RTK-camera systems remains very 

high. 

On the other hand, open-source software libraries are now available for live RTK and PPK. 

RTKlib is a freeware GNSS solution for accurate positioning of outdoor objects. Using a ‘rover’ 

and ‘base’ receiver, RTKlib can provide real-time and post-processed solutions. It is compatible 

with a range of GNSS receivers, including low-cost, low-profile receivers such as the U-blox 

C099-F9P.  
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For example, Figure 1 displays the computed location of the rover station in reference to a 

designated base station. The rover is stationary. Without PPK, the computed solution may appear 

as if it is around in a larger area (shown in yellow path). It corresponds to meter-level accuracy. 

With PPK, the path converged into a small area (green), which indicates centimeter-level 

accuracy. Both the rover and base are using U-blox C099-F9P receivers.  

 

 

Figure 1: Sample RINEX data analyzed by RTKPLOT in post processing. 

 



 

Chapter 3 METHOD 
 

A block diagram that includes all the hardware components in the proposed SFM system can be 

found in Figure 2 and Figure 3. The “rover” is the subsystem that is onboard a small UAV, 

which includes the GNSS receiver (U-Blox C099-F9P), camera, onboard data recording 

computer (Raspberry Pi 3B), batteries and the communication circuitry, as shown in Figure 2. 

The U-Blox C099-F9P receiver uses a small GNSS antenna (in purple) and is powered by a 3.7 

V Lithium Polymer battery with no voltage converter required. A PPS LED is connected to the 

receiver (in green) for use in post processing to synchronize images to GPS time. The GNSS data 

traffic is passed to the Raspberry Pi 3B computer via a logic level converter. The computer is 

powered by another 3.7 V Lithium Polymer battery, which requires a voltage converter. The 

computer has a LED output to indicate the starting time and a pushbutton to initialize the starting 

time (both in green). The starting LED is used to illustrate to the camera a starting image to be 

used as the initial image to begin synchronizing positional data to. The camera is an isolated 

component with a built-in power supply and recording solution and is not directly connected to 

other components.  
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Figure 2: Hardware components of a rover assembly used in SFM. 

 

As a second subsystem, the base station is similar to the rover as shown in Figure 3. The base 

station will record ground reference data used later for a PPK solution. It also uses a U-Blox 

C099-F9P including an antenna. Since there is no camera on the base station, no PPS LED is 

necessary. The receiver is powered by a 3.7 V Lithium Polymer battery as well. The GNSS data 

traffic is also passed to the Raspberry Pi 3B computer via a logic level converter.   
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Figure 3: A base station used for ground reference in a SFM solution. 

 

After every flight, the recorded GNSS data and images are post-processed. Therefore, there is no 

need for the rover and the base station to maintain communications during flight. The GNSS data 

from both the rover and base station are exported to RTKlib to compute a PPK solution, which 

precisely measures the relative location of both antennas during the data collection. Naturally, 

PPK solutions are synchronized to GPS time. In order to integrate them with images, the images 

also have to be synchronized and time tagged with GPS time. The “start recording” and PPS 

LEDs are recorded in the images. During synchronization in post processing, images with lit 

LEDs are identified, which can be precisely time tagged. Based on the time tag and the PPK 
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solution, a reference file is created that associates each time tagged image with a position and 

accuracy. The images and the reference file are imported into Agisoft Metashape which uses the 

SFM process to create a three-dimensional model. This model is then validated for accuracy and 

precision. An overview of this process is shown in Figure 4. 
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Figure 4: Overview of the SFM model creation workflow as used in this work. 
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3.1 Camera  

In this proposed open-interface system, the camera is required to capture images at a frame rate 

sufficiently high, such that the time stamp of every image can be precisely matched to the 

GNSS-based timing of precise position solution. The images must be clear (low blurriness) with 

a sufficient pixel resolution. The camera is expected to operate on a battery and save images on 

an internal memory, which can support image capturing at least during a whole flight. Camera 

images are expected to overlap, as afore mentioned. Therefore, a camera with a fisheye lens is 

desired for the ability to capture larger areas in an image when compared with standard frame 

lenses.  

The cameras under consideration included the Firefly SplitCam 4k fisheye camera, the GoPro 

Hero 6 and Hero 7. The Firefly camera was excluded due to an overheating issue, which would 

have required a cooling system to properly capture at the required frame rate. The GoPro Hero 6 

was not selected because of a variable exposure feature and an image stabilization feature that 

could not be disabled at lower resolution settings. Image stabilization caused the LEDs used for 

time tagging to vary in position from one image to another, which makes automated 

synchronization difficult. A GoPro Hero 7 was chosen for this project. It can continuously record 

for half an hour, at a frame rate of 240 frames per second (fps). The Hero 7 also has the 

capability of locking the shutter speed and disabling the adaptive exposure. A constant shutter 

speed is desired such that the time delay of images due to exposure time is constant. Adaptive 

exposure also causes uncertainty in timing. With that feature, the camera would record a 

staggering of images in groups of eight to ten images, with a pause in between each image group 

for recording the images to a memory card. It would also make timing unnecessarily 

complicated.  
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With these settings disabled, the GoPro Hero 7 camera can record evenly at 240 fps with a 

constant interval between images. It can be verified using a bank of LEDs. As shown in Figure 5, 

sixteen LEDs were organized in a row and controlled with an Arduino Mega 2560.  

 

 

Figure 5: LED pattern used to validate camera capture rate. 

 

An Arduino program was developed to display a binary representation of decimal numbers with 

these LEDs. The number to be displayed was increased from one to one thousand, with a 

millisecond between each step. An oscilloscope was used to verify that the accuracy of timing in 

the LEDs for each step.  

A separate Python program was developed to retrieve the number in the images based on the 

brightness of LEDs. The number was then compared across a series of images to determine 

whether the timing of images was evenly distributed at the specified frame rate.  
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However, during the initial testing, it was discovered that due to the transition between LED 

status, the number could not always be corrected decoded from images. As shown in Figure 6, 

the millisecond number did not increase linearly as expected. 

 

 

Figure 6: Counting errors present when using binary counting. 

 

As a result, a direct binary representation of decimal numbers cannot be used in this test. Instead, 

‘Gray Coding’, or inverse binary, was implemented. Gray coding is a method of representing a 

numeric value with only a single LED changing states from any one value to the next higher 

value [27]. 
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Figure 7: Proper sequential counting after modification to use ‘Gray Coding’. 

 

After the system was updated to display and decode decimal numbers with gray coding, the 

numbers retrieved from continuous images appear in a linearly incrementing pattern, as shown in 

Figure 7. It is further verified that there is an approximately four-millisecond interval between 

consecutive images in a zoomed in view in Figure 8. Therefore, it was concluded that the images 

are consistently and evenly timed at 240 FPS with the Hero 7 camera.  
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Figure 8: Consistent spacing between frames with no recording lag present. 
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3.2 GNSS Receiver 

The U-blox F9P is a low-cost GNSS receiver chip that is capable of RTK and data recording, 

which is selected in this project. It was embedded on the U-blox C099-F9P development board, 

which allows easy access to multiple GNSS data streams, and the configuration of data rate, 

message types, formats, and other relevant settings. The C099-F9P allows for the message length 

to be shortened by filtering out unnecessary packets and adjusting the data transfer speeds to be 

the maximum allowed by the recording device. This reduces transmission time and allows time 

for the recording device to save the inbound message traffic before the next set of message 

packets arrives. In this project, the C099-F9P board is configured as a standalone receiver which 

relays the message packets to two separate data ports, either of which are acceptable for use by 

the recording device.  

 

To verify RTK-compatibility, two separate receivers are configured and attached to a Windows 

PC via USB. Raw GNSS data were recorded from both receivers in the U-Blox proprietary data 

format. Both data files are then processed with RTKLib, creating a PPK solution of the 

designated ‘rover’ referenced to the designated ‘base’, which can be observed in Figure 9.  
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Figure 9: Resulting RTK solution from positional data recorded. 

 

Similar to the sample shown in Figure 1, the part of the solution shown in green is from a PPK 

solution, which reaches centimeter-level accuracy.  
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3.3 Data Recording  

Data recording during a flight test could not rely on a large Windows computer. Instead, a 

compact recording system was developed. Although the U-blox C099-F9P has an on-board 

hardware interface for a micro-SD memory card, there is no software interface provided by the 

manufacturer to enable recording locally. Therefore, the data had to be recorded off board in this 

project. 

 

 

Figure 10: Testing of various display and recording methods of positional data. 

 

Simple serial data loggers and microcontrollers seen in Figure 10 could not support the 

maximum data speed required. Instead, a Raspberry Pi 3B computer is able to receive the data 

serially at 115200 baud, and still has sufficient processing power to pre-process the messages. It 

is relatively small, low power and cost effective. A Python code was developed for this computer 
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to manage the serial connection, receive, decode and record the data from the C099-F9P 

receiver. It records in both binary and text formats. Figure 11 provides an example of raw data 

recorded in Raspberry Pi 3B, converted into text. The binary data files follow the Ublox 

proprietary format, and can be directly used in RTKlib. 

 

 

Figure 11: Sample positional data recorded by the Raspberry Pi 3B in plain text. 

 

Logic for recording positional data and post-processing was written in Python 3. Recording 

positional data was saved as scripts on Raspberry Pi 3Bs and initialized via run commands 

embedded in the rc.local file. Post processing code was run via the PyCharm integrated 

development environment (IDE). All code has been included in the referenced appendices.  

The code used in the rover handles GNSS data recording and activates the indicator LEDs. After 

initializing the required libraries and variables, an attached LED indicates that the rover is 

recording GNSS data by blinking four times. The rover will standby in a looped recording 

pattern until the attached button is pressed. When the button is pressed, the rover will then create 
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timestamped files used in post processing to indicate when the GNSS data related to the images 

begins.  

The logic in the base station records GNSS data and controls indicators displayed to the user. 

After initialization, the base station logic opens log files in binary and text format and begins to 

record GNSS data from the U-blox C099-F9P. A logic level converter is used similar to the rover 

to adjust logic level voltages. The attached recording LED indicator alternates states from lit to 

unlit with each GNSS data packet. This serves as an easy indicator of correct operation by the 

base station while recording. The GNSS data packets are counted and after each set of ten the 

base station will close and reopen the files in append mode. This prevents data loss during 

recording when the base station is powered down.  
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3.4 Power Supply 

The proposed photogrammetry system is a standalone module that can be attached to an arbitrary 

airframe. Therefore, it cannot rely on any external power supply, including UAV batteries. 

Furthermore, the GNSS receiver, camera and onboard computers all require different DC voltage 

levels. The Raspberry Pi 3B requires 5.2V DC and the U-blox C099-F9P development board 

accepts a JST connection supplied with 3.7V.  Two methods were considered to solve this 

problem. A 12V Lithium Polymer battery could be used, which can be stepped down to lower 

voltage, such as 5.2V and 3.7V needed by the computer and GNSS respectively, via DC-DC 

voltage converters. Alternatively, two 3.7V Lithium Polymer batteries may be used, and one of 

them can be stepped up to provide the 5.2V required by the computer. The second solution also 

has the benefit of having much less weight because of the smaller batteries. It is selected for this 

system, together with an Adafruit Powerboost 1000c voltage step up converter.  

The power supply system was verified. The system was able to continuously run for a half hour 

with no significant drain on the batteries. The flight time required for a complete scan of a set of 

targets is estimated around ten minutes of flight time. Therefore, the designed power supply 

system is more than capable of supporting these flights. If additional flights are needed that 

exceed the power capabilities of two batteries, it is very convenient to replace the batteries before 

each flight.  

  



30 
 

3.5 Timing Synchronization 

With an open interface between the camera and the GNSS receiver, the image time tag cannot be 

directly recorded as in a closed proprietary system. Instead, approaches to reflect time tag into 

images are explored. The first option considered in this project was to display the GPS time in 

plain text with an OLED matrix screen, which will be captured by the camera directly. Although 

it could clearly provide a GPS time tag for every image, it raises challenges in post processing. 

Since the text appears blurred in the images, it was difficult to read the time tag.  

Alternatively, a bank of LEDs can be used to display binary time. For a six-digit time tag, 17 

LEDs would be required. This was achieved with a curved bar placed underneath the camera, as 

shown in Figure 12 with the LEDs protruding into the visible range of the camera. 

 

 

Figure 12: Original method to display timing information within captured images. 
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Because of the fisheye lens, the LED bar was curved so that it would appear to be straight along 

the bottom of the image. An additional LED is required to synchronize the time seen with the 

instant that the C099-F9P receiver obtained the GNSS data. An additional Arduino Mega 2560 

was used to control the conversion from GPS time seen on the C099-F9P to a binary 

representation. However, it was noticed after initial testing that the LEDs were crowded in a 

proximity, which could cause false positive readings when a LED reflects light from neighbors. 

Therefore, this option was not feasible for UAV flight. 

A much simplified solution is implemented. It consists of only two LEDs. One LED is connected 

to the C099-F9P and outputs a time pulse, or pulse per second (PPS). This LED is triggered by 

the beginning of a GPS second, and remains high for one hundred milliseconds. It will be a logic 

low for the subsequent 900 milliseconds until the next second. With the LED installed in a 

constant position, the transition between low and high can be easily monitored during post 

processing. The first image captured with a high indicates the closest known instant to the 

beginning of a GPS second. With images at 240 fps, this approach will only introduce a small 

timing error.  

The secondary LED is connected to a General Purpose Input/Output (GPIO) port on the 

Raspberry Pi 3B. A pushbutton is connected to a separate GPIO port as well. When recording is 

ready to begin, the user presses and holds the button until the secondary LED lights up. After 

two seconds the LED will extinguish. The LED will light up again when the next GNSS data 

packet is received. The presence of the lit LED for the second time after the pushbutton is 

pressed indicates that the next GNSS packet will begin the recording process. The time 

corresponding to that next GNSS packet is written to a separate file and is used during the image 

selection process. After the following GNSS packet is received, the LED extinguishes, and is no 
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longer used in the data collection process. The LEDs used in this work are seen in Figure 13 

through Figure 15. 

 

 

Figure 13: Original LED for PPS and Start Recording states as seen by camera. 

 

After initial trials, it was observed when rotating the photogrammetry module during data 

capture caused a reflection of sunlight to be captured on the dome of the LEDs. To correct this 

issue, the dome-style LEDs originally used were replaced with flat surface mounted LEDs. 

 

 

Figure 14: Flat surface mounted LEDs used to reduce reflected light errors. 

 

While the surface mounted LEDs minimized the glare, there was still enough sunlight reflecting 

to occasionally cause false positive lit conditions during post processing. At this stage, additional 

domes were manufactured with a 3D printer with slits facing the camera lens were created.  
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Figure 15: Dome coverings isolating the status LEDs from light interference. 

 

The domes blocked the majority of the sunlight from reaching the LED surface yet still allowed 

the camera to clearly observe the LED in a static position. The LED dome installation prevented 

further false positive high indications from appearing during post processing.       

Python 3 code was developed to handle the synchronization phase of post processing. This 

alleviated the tedious task and substantial amount of time required to validate the positional data, 

format the files, select the images, and log each image with a positional datapoint. For the initial 

verification of the PPK solution, the code in Appendix C is used. A flow diagram of the process 

used for verification of the PPK solution is shown in Figure 16. Flow verification scans the PPK 

solution for missing entries (indicating lost data or GNSS challenged environments) and inserts 

blank entries with the correct timestamp into the log. This ensures the correct GNSS data is 

assigned to the correct image in post processing. 



34 
 

 

Figure 16: Flow of record validation for the PPK solution. 
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The synchronization step ties GNSS data to images that are taken closest to the instant that the 

GNSS data was received by the U-Blox C099-F9P receiver. It begins during data collection, in 

which the PPS LED illuminates within the field of view of the camera whenever new GNSS data 

is received. After the initial bootup phase of the photogrammetry module, a button is pressed 

indicating that the operator is ready to begin data collection. The start recording LED is lit 

briefly, acknowledging the start recording command, then flashes once more to indicate the first 

GNSS data packet that recording begins with. The PPS LED continues to flash when new data is 

received for the duration of data collection. During post processing, the first image in which the 

PPS LED is lit after the start recording LED has been lit is copied to a separate folder, along with 

each subsequent image in which the PPS LED is first detected as being lit. A log is created with 

the name of these images, and by stepping through the verified PPK solution, GNSS data is 

added to the log for each image. This synchronizes images in which the GNSS data was received 

to the location of the UAV in that instant. The synchronization process is summarized by Figure 

17.  
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Figure 17: The synchronization step as handled during data collection and post processing. 



37 
 

The synchronization step is verified by checking the timestamps of the recording and by 

graphing the LED status of all of the images gathered during the data collection phase. The PPK 

solution should span for a period of time greater than that of the time taken to complete one data 

collection event. If the timespan is significantly shorter, then substantial data loss has occurred, 

and the synchronization step is unable to be completed.  

The status of the LEDs used in data collection also is an indicator of the success of the 

synchronization phase. If the LED status is graphed, a clear repeating pattern of the state of the 

recording and PPS LEDs is displayed. Distortion of this pattern indicates either errors in LED 

status detection or light interference detected by the camera in the general location of the LEDs. 

By scanning the graph visually, pattern distortion is easily detected and the corresponding data 

points may be referenced to indicate the time of recording in which the errors occurred. The LED 

detection thresholds  may then be modified in the Python code, or the data collection even may 

be repeated if the errors cannot be mitigated. 
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3.6 SFM Software 

The main focus of this thesis is on system design and hardware implementation. Although there 

are open source and free software for SFM functionalities, Agisoft Metashape was selected since 

an educational license was available in the college. It may be replaced with open source SFM in 

the future. Agisoft possesses the ability to take images and use external geo-reference sources to 

tie a variety of formatted positional data to images. The images are then used to create point 

clouds and mesh a model of the feature. While processing intensive, the workflow and batch 

processing available allows the different stages of model creation to be scheduled and ran 

automatically without intervention. Pix4D is an alternative capable of geo-referenced source 

importing. 

An early calibration step of the SFM process uses a chessboard displayed by the Agisoft 

Metashape program. The images captured of a calibration chessboard can be sorted into a chunk 

separate from the images captured during flight. The lens calibration can be completed to 

accommodate any distortions caused by the fisheye lens [28]. The results of the calibration of the 

fisheye lens used in the Hero 7 camera may be shown in Figure 18. 
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Figure 18: Lens calibration as indicated by Agisoft Metashape Software. 

 

Test subjects were created using painted boxes to test the functionality of the software. These 

boxes were painted with grids of different sizes. 3D models of these subjects were successfully 

created and verified against the actual dimensions. A texturized model of the painted box used 

for initial testing is shown in Figure 19. 
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Figure 19: Initial test subject for system operation tests: a cardboard box with a painted grid. 

 

However, subjects with glass or severely reflective materials on the surface were more prone to 

errors in SFM. 

 

Figure 20: Model recreation errors displayed when using SFM on transparent material. 
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A test model of a windowed minivan showed significant error where the glass met the metal 

frame. As such, it is not suggested to use this work on reflective or transparent materials. 
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3.7 Enclosures and Airframe 

 

The airframe selected for this work is the DJI Inspire Pro 2. While many drones have already 

been acquired for use in research projects, the Inspire Pro 2 was chosen for best matching the 

application of SFM model creation. the total takeoff weight is 9.37 lbs and the airframe weight is 

7.58 lbs, which means that the photogrammetry module (weighing less than a pound) is well 

within the total carrying capacity of the DJI. The photogrammetry module is small enough that it 

can be attached below the Inspire 2 with ground clearance. This allows the Inspire 2 to land 

without concern of damaging the rover enclosure. The mounting frame for a digital camera used 

by the Inspire 2 is attached below the UAV, and it is this location that the rover module is 

attached to. The design of the attachment point on the rover allows for normal operation of the 

UAV without blocking landing sensors or affecting the landing gear. The antenna used for the U-

Blox C099-F9P is mounted above the nose of the UAV.  The Inspire 2 is small enough to easily 

fit in a car for portability, especially when compared to larger drones like the DJI S-1000 or DJI 

M600 Pro. It requires little effort preparing for data collection flights.  

Two enclosures are necessary for the photogrammetry system. The photogrammetry module 

attached to the drone has a custom fitted housing to attach to the DJI Inspire Pro 2. The 

attachment point can be modified to accept different models of UAVs if the drone can safely 

carry the required payload. The camera is carried in a downward facing attachment on the front 

face with two internal trays housing batteries and the Raspberry Pi 3B and C099-F9P. Small 

domes are in the lower front corners of the rover module which contain the LED indicators and 

shield them from excess sunlight which prevents post processing errors during LED state 

analysis. The model for the rover assembly can be seen in Figure 21. 
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Figure 21: Rover enclosure used to house required hardware for SFM. 

 

The module is printed from Polyethylene terephthalate glycol (PETG) filament with various 

sizes of machine screws for attachment points. The housing for both enclosures were printed 

using a Prusa MK3 fused deposition modeling (FDM) three-dimensional printer. The enclosures 

were modeled using SolidWorks 2018 via a university obtained license. The photogrammetry 

module installed onto an Inspire 2 Pro can be viewed in Figure 22. 
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Figure 22: Final design of rover module as attached to DJI Inspire 2 Pro UAV. 

 

The base station module has a similar housing to the rover module as shown in Figure 23.  
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Figure 23: Enclosure used to contain required hardware for base station GCP. 

 

While there is no camera mounting for the base station, there is an adapted holder for the C099-

F9P antenna while not in use. During data collection this antenna will be placed on a tripod 

approximately six feet in elevation for improved reception of positional data. The base station 

also has four legs to hold the module away from grass or other debris on the ground. A separate 

tray for batteries and voltage converter is used above a tray holding the Raspberry Pi 3B and U-

blox C099-F9P. A small LED holder is attached to the right front edge to display recording 

status of the base station. The printed base station as used in data collection is displayed in 

Figure 24. 
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Figure 24: Final design of base station for use as GCP during SFM data collection. 



 

Chapter 4 DATA COLLECTION AND PROCESSING 
 

The goal of the data collection phase is to demonstrate the feasibility of the system as designed 

in a real-world application. The requirements for a successful data collection flight include: 

1) The SFM module must be able to accurately decode and record GNSS data while 

attached to a UAV in flight.  

2) The ground reference must be able to record GNSS data.  

3) The camera must be able to capture non-blurry images while moving in flight, and the 

vibration of the module must remain at a low enough threshold as to not introduce large 

errors into the SFM model.  

4) Finally, there must sufficient GNSS data and images captured for 3D modeling. 

The requirements for post processing include: 

1) PPK solution must be created.  

2) Individual images must be extracted from videos/ 

3) Time tags for the extracted images must be computed based on LEDs. 

4) The PPK solution for each image time tag must be extracted  
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4.1 Data Collection 

In order to verify the requirements for data collection, two canvas targets were constructed with 

tent-like shapes. Both targets are placed a short distance from one another. They are identified 

with different colors, one in black and one in blue, and are displayed in Figure 26. The pattern 

applied to each tent includes a lot of corners, which are used as point features to recreate SFM 

models. The location, physical dimensions and patterns (corners) of both targets will be carefully 

measured and used as a truth reference. Based on that, the performance of the point cloud, 

including accuracy and precision will be evaluated.  

The proposed system will also be compared against previously validated technologies. In 

addition to the proposed SFM system, a UAV-based Light Detection and Ranging (LiDAR) is 

also used to collect a point cloud. This LiDAR system based on a SICKLD-MRS420201 LiDAR 

and a DJI Matrice 600 Pro UAV. The LiDAR ranging noise is approximately 0.04 m 1 sigma . 

The performance of the LiDAR point cloud will be compared against that of SFM. Furthermore, 

the LiDAR point cloud are geo-referenced, which means it can be used to extract GCPs for the 

SFM point cloud.  

During the flight, the Inspire 2 Pro is flown in circular patterns at various heights above the 

targets while recording for approximately ten minutes as seen in Figure 27. After landing, the 

data is checked for integrity and the session is concluded to be followed by the later post 

processing stages. The base station antenna attached to the top of a tripod, shown in Figure 25. A 

more in-depth explanation of the data collection process follows. The process for data collection 

is shown in a flow diagram in Figure 28. 
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Figure 25: Base station GCP in use with antenna tripod during data collection. 
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Figure 26: Rover preparing to begin data collection process of featured targets. 

 

 

Figure 27: Targets as seen by rover during data collection. 
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Figure 28: The method of data collection used to ensure data completeness and integrity. 
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4.2 Post Processing 

As explained in Chapter 3, the images and GNSS data are synchronized prior to model creation. 

An example of the data found in the reference file created during synchronization is seen in 

Table 1. 

 

Table 1: Sample positional data related to image in created geo-reference file. 

GX010013_001280.jpg 35.63296 -77.4851 -17.6324 0.03 0.03 0.06 

GX010013_001520.jpg 35.63296 -77.4851 -17.6614 0.03 0.03 0.06 

GX010013_001760.jpg 35.63296 -77.4851 -17.6642 0.03 0.03 0.06 

GX010013_001999.jpg 35.63296 -77.4851 -17.663 0.03 0.03 0.06 

GX010013_002239.jpg 35.63296 -77.4851 -17.6699 0.03 0.03 0.06 

GX010013_002479.jpg 35.63296 -77.4851 -17.6748 0.03 0.03 0.06 

GX010013_002719.jpg 35.63296 -77.4851 -17.6651 0.03 0.03 0.06 

GX010013_002959.jpg 35.63296 -77.4851 -17.6405 0.03 0.03 0.06 

GX010013_003198.jpg 35.63296 -77.4851 -17.6491 0.03 0.03 0.06 

GX010013_003438.jpg 35.63296 -77.4851 -17.6503 0.03 0.03 0.06 

GX010013_003678.jpg 35.63296 -77.4851 -17.6481 0.03 0.03 0.06 

GX010013_003918.jpg 35.63296 -77.4851 -17.653 0.03 0.03 0.06 
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4.3 Model Creation 

The images selected are imported into a separate chunk from the calibration images. The geo-

reference file from the same folder is imported after the images. During reference import, the 

coordinate system and file organization is selected for proper interpretation by Agisoft 

Metashape. The images (referred to as cameras by the program) are then aligned, then the 

alignment is optimized. 

 

 

Figure 29: Camera alignment performed by Agisoft Metashape. 

 

Alignment determines the position and orientation of the camera at image capture. This is used to 

make a sparse point cloud [28]. 
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Figure 30: Sparse point cloud created by Agisoft Metashape. 

 

The dense cloud is then created from the cameras and estimated depth for the cameras. The 

dense cloud can either be used to build a mesh or exported for further analysis [28]. 
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Figure 31: Dense point cloud created by Agisoft Metashape. 

 

The mesh creates the rough model from the point clouds created earlier. A texture can be created 

and color balanced to properly show an accurate representation of the appearance of the features 

captured [28]. 
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Figure 32: Mesh model created by Agisoft Metashape. 

 

If the model is representing an exceedingly large area then a tile model is suggested for scalable 

model display. Digital Elevation Model (DEM) can be used to show elevations, cross sections, or 

various measurements of an uneven surface feature [28]. The targets used for this work are not 

large enough to require elevation or tiled models. If high resolution images are necessary from 

the model then an Orthomosaic model can be extracted. Orthomosaic export is a tool used for 

survey processing of ariel captures or agricultural representations [28]. 

 

  



 

Chapter 5 RESULTS AND FINDINGS 

A three-dimensional model of the scanned area was recreated in Agisoft Metashape using point 

clouds derived from the images and positional data gathered.  

 

 

Figure 33: Two targets captured during SFM data collection. 

 

Point features from each individual target were evaluated for precision against manually-

measured truth reference.  
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Figure 34: Target one (side A) points selected for measurement analysis. 

 

As shown in Figure 34, points from Target one (side A) were selected where the corners of the 

shapes were clearly defined and could be clicked accurately within the Agisoft Metashape 

workspace. The distance between two points was then compared with manual measurements of 

the actual targets. The average error is 4.99 mm with a standard deviation of 3.97 mm, shown in 

Table 2.   
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Table 2: Target one (side A) Measurements 

Points Length (m) Actual (m) Error (m) Error ABS (m) STDEV 

point 1_point 2 0.294498832 0.308 0.013501168 0.013501168 0.003974819 

point 1_point 3 0.273345788 0.276 0.002654212 0.002654212 

 
point 2_point 4 0.262243697 0.26 -0.002243697 0.002243697 

 
point 3_point 4 0.305712611 0.305 -0.000712611 0.000712611 

 
point 5_point 6 0.205831182 0.202 -0.003831182 0.003831182 

 
point 5_point 7 0.231472785 0.233 0.001527215 0.001527215 

 
point 6_point 8 0.239649694 0.231 -0.008649694 0.008649694 

 
point 7_point 8 0.195995471 0.201 0.005004529 0.005004529 

 
point 9_point 10 0.196675302 0.193 -0.003675302 0.003675302 

 
point 9_point 11 0.271252559 0.275 0.003747441 0.003747441 

 
point 10_point 12 0.267715995 0.271 0.003284005 0.003284005 

 
point 11_point 12 0.193084828 0.182 -0.011084828 0.011084828 
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Figure 35: Target one (side B) selected for measurement analysis. 

 

The opposing face (side B) of target one has a similar range of target points taken and examined 

for accuracy against manual measurements. The average error is 9.09 mm with a standard 

deviation of 6.46 mm. Measurements may be viewed in Table 3. 
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Table 3: Target one (side B) Measurements 

Points Length (m) Length Actual (m) Error (m) Error ABS (m) STDEV 

point 1_point 2 0.169739605 0.17 0.000260395 0.000260395 0.006458 

point 1_point 3 0.268863691 0.28 0.011136309 0.011136309 

 
point 2_point 4 0.257462245 0.272 0.014537755 0.014537755 

 
point 3_point 4 0.181203474 0.176 -0.005203474 0.005203474 

 
point 5_point 6 0.187313446 0.191 0.003686554 0.003686554 

 
point 5_point 7 0.08676942 0.088 0.00123058 0.00123058 

 
point 6_point 8 0.081998202 0.093 0.011001798 0.011001798 

 
point 7_point 8 0.179538094 0.19 0.010461906 0.010461906 

 
point 9_point 10 0.175819755 0.191 0.015180245 0.015180245 

 
point 9_point 11 0.204901009 0.217 0.012098991 0.012098991 

 
point 10_point 12 0.203093282 0.212 0.008906718 0.008906718 

 
point 11_point 12 0.17707746 0.193 0.01592254 0.01592254 

 
point 13_point 14 0.167470813 0.192 0.024529187 0.024529187 

 
point 13_point 15 0.189149696 0.177 -0.012149696 0.012149696 

 
point 14_point 16 0.198209845 0.186 -0.012209845 0.012209845 

 
point 15_point 16 0.192393606 0.19 -0.002393606 0.002393606 

 
point 17_point 18 0.114852662 0.102 -0.012852662 0.012852662 

 
point 17_point 19 0.106341186 0.106 -0.000341186 0.000341186 

 
point 18_point 20 0.106905621 0.107 9.43786E-05 9.43786E-05 

 
point 19_point 20 0.108622621 0.101 -0.007622621 0.007622621 
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Figure 36: Target two (side A) selected for measurement analysis. 

 

Target two (side A) was analyzed with point measurements compared to manual measurements. 

The average difference was 15.36 mm with a standard deviation of 7.95 mm, as shown in Table 

4. The opposing face of target two had insufficient images for feature representation and was 

interpolated by Agisoft Metashape. The result was not applicable for point selection.  
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Table 4: Target two (side A) Measurements 

Points Length (m) Actual Length (m) Error (m) Error ABS (m) STDEV 

point 1_point 2 0.29680038 0.307 0.0102 0.01019962 0.007947 

point 1_point 4 0.203354787 0.226 0.022645 0.022645213  

point 2_point 3 0.198398381 0.216 0.017602 0.017601619  

point 3_point 4 0.298862329 0.316 0.017138 0.017137671  

point 5_point 6 0.27939182 0.32 0.040608 0.04060818  

point 5_point 7 0.20291326 0.222 0.019087 0.01908674  

point 6_point 8 0.217788332 0.236 0.018212 0.018211668  

point 7_point 8 0.304943161 0.321 0.016057 0.016056839  

point 9_point 10 0.235596942 0.25 0.014403 0.014403058  

point 9_point 11 0.166172381 0.169 0.002828 0.002827619  

point 10_point 12 0.177141197 0.184 0.006859 0.006858803  

point 11_point 12 0.242337932 0.261 0.018662 0.018662068  

point 13_point 14 0.242753413 0.26 0.017247 0.017246587  

point 13_point 15 0.170768098 0.185 0.014232 0.014231902  

point 14_point 16 0.158823378 0.172 0.013177 0.013176622  

point 15_point 16 0.246765991 0.268 0.021234 0.021234009  

point 17_point 18 0.309568814 0.317 0.007431 0.007431186  

point 17_point 19 0.249699198 0.26 0.010301 0.010300802  

point 18_point 20 0.262518676 0.26 -0.00252 0.002518676  

point 19_point 20 0.311158934 0.325 0.013841 0.013841066  

point 21_point 22 0.306176678 0.327 0.020823 0.020823322  

point 21_point 23 0.082472747 0.09 0.007527 0.007527253  

point 22_point 24 0.088403719 0.101 0.012596 0.012596281  

point 23_point 24 0.302585235 0.326 0.023415 0.023414765  
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The dense point cloud created of the targets was also compared to a LiDAR point cloud of the 

same targets during the data collection event. The point clouds were both imported into 

MATLAB. The SFM point cloud was rotated manually first, to achieve a rough alignment with 

LiDAR. After that, it can be registered to the LiDAR point cloud automatically in MATLAB, 

which results in an accurate rotation of the SFM model in the world frame. The SFM model can 

now be registered to the LiDAR model, and indirectly to the world frame. Therefore, the LiDAR 

points are effectively used as GCPs. It can be repeated for both targets individually, and the 

registration error has been computed in MATLAB.   

 

Figure 37: Courtesy of Dr. Zhen Zhu, East Carolina University (2022) 
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Individually, the geo-registration error for a target has a standard deviation of approximately 

0.04 m, which is close to the LiDAR ranging noise level. There is strong agreement between 

SFM and LiDAR models for each target after geo-registration.  

However, if both targets are used simultaneously as GCPs, the comparison shows a drift between 

both targets in the SFM point cloud. One of the targets will have a bias of approximately 0.1 m 

in geo-registration.   

The distance between point features evaluates the relative precision of the models created in this 

work. The distance measurements from both targets have milli-meter accuracy, which is 

adequate for SFM and comparable to other UAV-based SFM technologies. Similar UAV SFM 

approaches have resolutions of centimeter accuracy [4], error ranges from 16.4 to 23.5 cm for 

geo-referencing accuracy of large terrain [23], and RMSE of approximately one cm [21]. With a 

standard deviation of three to eight millimeters, the valid target measurements appear to be at or 

below the general accuracy found in literature when observing single targets individually. 

The resolution of the SFM point cloud is sufficiently high for imagery representation in the 3D 

model. For example, it shows much higher resolution when compared to LiDAR point clouds as 

seen in Figure 37.  

The definition of absolute accuracy of SFM, however, is more ambiguous. In theory, it can be 

evaluated by comparing the orientation and location of the same targets in the point cloud from 

SFM and LiDAR. However, the absolute accuracy of SFM primarily depends on the accuracy of 

GCPs. As afore mentioned, without known GCPs in the SFM model, geo-registration of the 

model is still problematic even with PPK. The SFM model has an unknown rotation with respect 

to the world frame, which makes a direct comparison meaningless.  
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The addition of few GCPs during data collection could assist in fixing the SFM orientation 

problem. GCPs can be pre-surveyed targets, or extracted objects from the LiDAR point cloud. 

Unlike SFM, the LiDAR point cloud has the benefit of orientation and position measurements. 

When the LiDAR point cloud of each target is used as GCP for SFM, LiDAR and SFM showed a 

good agreement, with 0.04 m absolute accuracy. It is primarily due to combined relative error 

from SFM and LiDAR. However, it is interesting to observe that when both targets were used as 

GCP simultaneously, there appears to be a greater absolute error (0.1 m bias).  

It appears that one of the targets may be incorrectly located and/or oriented relative to the other 

in the SFM model. Since both targets were separately placed on a grass field with a long distance 

between them, it could indicate that the grass field between them were not correctly modeled in 

SFM. While the precision of each target is adequate, the absolute accuracy of the SFM could be 

further improved. For example, the addition of GCPs between the targets may alleviate some of 

the problem, improving the accuracy of the work.  

 

  



 

Chapter 6 CONCLUSIONS AND FUTURE WORK 
 

An open-interface SFM system is based on a small UAV has been presented in this work. In this 

system, a GoPro Hero 7 camera was used to capture video at 239.75 fps. For a PPK solution, the 

U-Blox C099-F9P receiver captured and relayed GNSS data to a Raspberry Pi 3B for recording. 

3.7-volt Lithium Polymer batteries powered all the components in the system, which is 

independent of the UAV power. The performance of this system has been successfully 

demonstrated in a flight test, in which 3D point cloud models were created and validated. The 

precision of this point cloud is similar to what has been reported in the literature. The errors 

assessed with two calibration targets have 1 sigma values of 3-8mm.  

The main focus of this work is on the open-interfaces for data collection and open-source post 

processing solutions. The data and synchronization interfaces between the camera and GNSS are 

open and interchangeable, which means either component could be independently replaced or 

upgraded. An open-source GNSS post processing library was used, which can handle GNSS data 

in a large variety of formats. For the sake of convenience, Agisoft Metashape is used create 3D 

point cloud models in this work. Although it is not open-source software, it can be easily 

replaced by open-source options in the future. 

The performance was made possible by an open-interface timing mechanism, which is one of the 

original contributions of this work. The images captured by the video camera are properly 

synchronized to GNSS data via a LED-based timing circuitry and open-source post processing 

software. With proper timing, the proposed low-cost system functions as well as the proprietary 

solutions. 
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A system for gathering images and positional data in order to build a three-dimensional model is 

described in this work. The position of the drone is captured in flight and used to determine the 

position of the camera. The images captured are paired with positional data, and from these 

pairings, a three-dimensional model is created. The process is completed with individual 

hardware components, available off-the-shelf and for a low cost. The preparation for the 

modeling program is done with open-source programs, which are freely made available. The 

models created are recreations of the original object within a centimeter, assuming only one 

object is recreated at a time. The outcome is a readily available, cheaper option for creating 

three-dimensional models of real-world objects. 

Below are comments and recommendations regarding each subsystem. 

  



69 
 

6.1 Data Collection 
While the models created were enough for an initial analysis of the validity of the 

photogrammetry results, there are still areas to be improved upon. The area being captured by the 

Hero 7 was difficult to estimate while the drone was in flight. Therefore, instead of a circling 

pattern when capturing target data, it is suggested that a grid like pattern is adopted instead. This 

would reduce errors like those seen on the second side of target two in Figure 38.  

 

 

Figure 38: Target two (side B) was invalid due to insufficient image coverage. 

 

Use of a circling pattern caused an oversight in area coverage, requiring Agisoft Metashape to 

instead attempt to interpolate the pattern present on target two. This attempt invalidated the 

results and caused significant error to the modeling of target two. A grid like pattern may help to 
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alleviate the modeling issue caused by insufficient coverage of the targets if used in a slowly 

incremental pattern.  

When copying the positional data from the rover and base station it is recommended to use the 

copy function instead of the cut function. Data loss was observed when using the cutting function 

to migrate positional data from the Micro-SD cards to the laptop resulting in lost time while data 

collection was repeated. By copying the data first, there is a file size present that can be observed 

from the original file which can be used to verify data integrity of the copy. The original file may 

then be deleted after verification is complete.  

Geo-registered SFM models has higher resolution and precision than LiDAR, although it needs 

help from GCPs or LiDAR. A combination of the two solutions could be best for both an 

increase in accuracy and a method of validation without requiring manual measurements of real-

world objects.  

For LiDAR comparison it is recommended to also capture the GCPs used for both the SFM 

process and the LiDAR scan as well. This will allow for easier alignment of the models by 

giving anchor points by which to align the models. Without the LiDAR GCPs present in the 

photogrammetry model, alignment becomes significantly more time consuming. 

The three-dimensional models created had results of properly surveyed targets with accuracy 

averaging at less than a centimeter error. Compared to the accuracy seen in current products and 

other methods seen in the literature, the photogrammetry system designed functions at an 

acceptable level of performance for single targets. Biasing errors are present when comparing 

multiple targets at the same time. The bias error is easiest to observe when comparing the model 

created with SFM methods to the models created at the same event using LiDAR technology. 
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While the SFM used in this model is precise, it can only be stated that it is sufficient when 

concerned with a single target at a time. If multiple targets were scanned with no GCP in 

between them, one of the targets is slightly off position. A standard deviation of 5 cm was seen 

in the position of the second observed target if compared to the position of the first target in the 

same model. Regardless of which target the LiDAR model was calibrated to the SFM model, the 

secondary target was slightly out of orientation. The cause may be a scaling error from the SFM 

process. Investigations using GCPs placed between multiple targets are recommended to 

determine if the error is originating from the SFM process.    
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6.2 Enclosure 

The enclosure for the rover and base station in the photogrammetry system showed that 3D 

SolidWorks modeling and printing are excellent tools for designing and testing new systems. 

While multiple versions of the final product were created and refined, the ability to print models 

rapidly and accurately on site without the need to wait for parts to be shipped simplified the 

design process immeasurably. Material limitations were present, however. The models used were 

printed in PETG for the slight flexibility and light weight material. This material worked well for 

initial versions but for a more permanent installation onto a drone it is suggested to use a slightly 

stiffer material such as those outlined in the future work section. PETG rover casings required a 

slight redesign to account for vibrations shaking the rover module in flight and moving the 

camera in relation to the C099-F9P receiver. This may contribute to errors seen in the final 

models. Stiffer materials will not be required for the base station as it is not subjected to the same 

level of vibrations as the rover module.    

Single connector wire harnesses are not recommended in future work. Vibrations during 

transport and during flight cause intermittent connectivity which results in potential positional 

data loss. While LED indicators (indicating message traffic) mitigate this issue, it is instead 

suggested that single headers with multiple pin inputs be used instead for a more secure 

connection. 

The enclosure features a cage for the Hero 7 which uses screws to ensure it remains closed 

during flight. A latching system may simplify data retrieval after flight by removing the need to 

manipulate screws requiring specific tools in the field.  

The rover enclosure suffered from shaking during data collection flights. Stiffer material should 

be used, perhaps carbon reinforced nylon. There was significant shaking of the camera in the 



73 
 

enclosure during windy conditions. This caused an oscillation in the measurement between the 

camera and C099-F9P antenna and introduced error into the final model. Temporary measures 

for the PETG based enclosure were taken by adding reinforcements from the cage to the drone, 

requiring more attachment points being used on the drone and further complicating module 

removal.  

It is the hope of this author that this work will be used to further refine open-source methods of 

data collection for modeling purposes. It is with gratitude to Dr. Zhen Zhu for his guidance and 

contributions that this body of work was created and the current level of open-source solutions 

for modeling real world features is furthered. 
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APPENDIX A: ROVER RASPBERRY PI 3B RECORDING AND LED CONTROL 
import serial 

import datetime 

import RPi.GPIO as GPIO 

import time 

import os 

GPIO.setmode(GPIO.BCM) 

ButtonPin=17 

HighForButton=6 

LED=26 

GPIO.setup(LED, GPIO.OUT) 

GPIO.output(LED,GPIO.LOW) 

GPIO.setup(ButtonPin, GPIO.IN) 

#FireCamera=13 

#GPIO.setup(FireCamera, GPIO.OUT) 

 

LastReading=0 

StartRecording = 0 

StartTime=-55 

InBetweenMessagePacketsCounter=0 

WaitForEnd=0 

NeedHeader=1 

RecordingData=0 

 

GPIO.output(LED, 1) 

time.sleep(1) 

GPIO.output(LED, 0) 

time.sleep(1) 

GPIO.output(LED, 1) 

time.sleep(1) 

GPIO.output(LED, 0) 

time.sleep(1) 

GPIO.output(LED, 1) 

time.sleep(1) 

GPIO.output(LED, 0) 

time.sleep(1) 

GPIO.output(LED, 1) 

time.sleep(1) 

GPIO.output(LED, 0) 

time.sleep(1) 

 

savepath='/home/pi/GPSLogs' 

filedated = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S') 

binfile = os.path.join(savepath, filedated) 

binfile += '.bin' 

logfile = os.path.join(savepath, filedated) 

logfile += '.txt' 

startfile='Rover.txt' 

startfile=os.path.join(savepath, startfile) 

file1=open(logfile,"w") 

file2=open(binfile,"w") 

file3=open(startfile,"w") 

print('Files created') 

ser = serial.Serial('/dev/serial0', 115200, timeout = 2, 

parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, 

bytesize=serial.EIGHTBITS) 
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print("USB Connection Made") 

ser.flush() 

print("FLUSHED") 

FetchStart=0 

 

while StartRecording==0: 

  

 if (GPIO.input(ButtonPin) and (LastReading==0)): 

  print('Button Pressed') 

  GPIO.output(LED, 1) 

  #GPIO.output(FireCamera,1) 

  StartRecording=1 

  time.sleep(.1) 

  GPIO.output(LED,0) 

   

 else: 

  print('Not Pressed') 

  GPIO.output(LED, 0) 

 LastReading=GPIO.input(ButtonPin) 

 line=ser.readline() 

 file1.write(line) 

 file2.write(line) 

#sync start times 

 

 

 

while FetchStart==0: 

# if ser.in_waiting > 0: 

 line = ser.readline()#ser.readline()#ser.readline().decode('utf-

8').rstrip() 

 file1.write(line) 

 file2.write(line) 

 #if(line.find('GNGLL')): 

 # print(line) 

 #print(line) 

 location=line.find('GNGLL') 

 if(location>=0): 

  print(line) 

  StartTime= int(line[(location+33):(location+39)]) 

  StartTime=(StartTime+1) 

  if(StartTime>=1): 

    

    

   FetchStart=1 

  #print(StartTime 

   

  #print(type(StartTime)) 

while WaitForEnd ==0: 

 line=ser.readline() 

 GPIO.output(LED,1) 

 #file3.write("LED ON") 

 #file3.write(line) 

 location=line.find('GNGLL') 

 if(NeedHeader==1): 

  StartTimestr=str(StartTime) 

   

  file3.write("*** START TIME " + StartTimestr +" *** \n") 
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  file1.write("*** START TIME " + StartTimestr +" *** \n") 

   

  NeedHeader=0 

 file1.write(line) 

 file2.write(line) 

 if(location>=0): 

  print(line) 

  GPIO.output(LED, 0) 

  #file3.write(line) 

  #file3.write("LED OFF") 

  file3.close 

  WaitForEnd=1 

print(StartTime) 

print('Recording data stream to files') 

counterforclose=0 

while WaitForEnd==1: 

 line=ser.readline() 

 file1.write(line) 

 file2.write(line) 

 counterforclose=counterforclose+1 

 if counterforclose>10: 

   

  file1.close() 

  file2.close() 

  file1=open(logfile,"a") 

  file2=open(binfile,"a") 

  counterforclose= 

 



 

APPENDIX B: BASE STATION RASPBERRY PI 3B RECORDING 
import serial 

import datetime 

import os 

import RPi.GPIO as GPIO 

GPIO.setmode(GPIO.BCM) 

LED=26 

LEDstatus=0 

GPIO.setup(LED,GPIO.OUT) 

GPIO.output(LED,GPIO.LOW) 

print("check serial connection") 

if __name__ == '__main__': 

 print("found main") 

 filedated = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S') 

 savepath='/home/pi/GPSLogs' 

 binfile = os.path.join(savepath,filedated) 

 binfile += '.bin' 

 logfile = os.path.join(savepath,filedated) 

 logfile += '.log' 

 ser = serial.Serial('/dev/serial0', 115200, timeout = 1, 

parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, 

bytesize=serial.EIGHTBITS) 

 print("USB Connection Made") 

 ser.flush() 

 print("FLUSHED") 

 file1=open(logfile,"w") 

 file2=open(binfile,"w") 

 counterforclosing=0 

 counter = 0; 

 stopwriting = False 

 while stopwriting == False: 

  if ser.in_waiting > 0: 

   #print("Serial Comms Waiting transmission") 

   line = 

ser.read(2048)#ser.readline()#ser.readline().decode('utf-8').rstrip() 

   #print("got line") 

   print(line) 

   file1.write(line) 

   file2.write(line) 

   GPIO.output(LED, LEDstatus) 

   if LEDstatus ==1: 

    LEDstatus=0 

   else: 

    LEDstatus=1 

   counterforclosing=counterforclosing+1  

   if counterforclosing>10: 

    file1.close() 

    file2.close() 

    file1=open(logfile,"a") 

    file2=open(binfile,"a") 

    counterforclosing=0 



 

APPENDIX C: CONSISTENT RECORD VALIDATION CODE 
import cv2 

import numpy as np 

import os 

import csv 

import shutil 

 

logDirectory = "J:/Video Files/15MAR22/VLog" 

errorTracker=0 

 

 

solutionfile='RTKRoverOrig' 

corrSol='RTKRover' 

correctedSolution=os.path.join(logDirectory,corrSol) 

solname=os.path.join(logDirectory,solutionfile) 

solf=open(solname, 'r', encoding='utf-8',errors='replace') 

writer=open(correctedSolution,'w',newline='') 

solfileread=solf.read().splitlines() 

counterHour=0 

counterMin=0 

counterSec=0 

timeHour=0 

timeMin=0 

timeSec=0 

 

print(solfileread) 

for idx,lines in enumerate(solfileread): 

    print(idx, lines) 

    individualLines=lines.split() 

    if idx<25: 

        writer.write(lines+'\n') 

 

    if idx==25: 

        timecapture = individualLines[1] 

        timeForCounter = int(timecapture[0:2] + timecapture[3:5] + 

timecapture[6:8]) 

        print(timeForCounter) 

        counterHour = int(timecapture[0:2]) 

 

        counterMin = int(timecapture[3:5]) 

 

        counterSec = int(timecapture[6:8]) 

 

    if (idx>24): 

        print(individualLines[1]) 

        timecapture=individualLines[1] 

        timeInt=int(timecapture[0:2]+timecapture[3:5]+timecapture[6:8]) 

        print(timeInt) 

        timeHour=int(timecapture[0:2]) 

        print(timeHour) 

        print(counterHour) 

        timeMin=int(timecapture[3:5]) 

        print(timeMin) 

        print(counterMin) 

        timeSec=int(timecapture[6:8]) 

        print(timeSec) 
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        print(counterSec) 

 

        if(counterHour != timeHour or counterMin != timeMin or counterSec 

!=timeSec): 

            print('ERROR') 

            spacerNeeded=1 

            errorTracker=errorTracker+1 

        if(counterHour == timeHour and counterMin == timeMin and counterSec 

==timeSec): 

            print('CORRECT') 

            spacerNeeded=0 

            writer.write(lines + '\n') 

 

 

        if(spacerNeeded==0): 

            if(counterSec==59): 

                counterSec=0 

                counterMin=counterMin+1 

            else: 

                counterSec=counterSec+1 

            if(counterMin==60): 

               counterMin=0 

               counterHour=counterHour+1 

            if(counterHour==24): 

                counterHour=0 

        if(spacerNeeded==1): 

            #write the counter time to the file, increase counter, check the 

log time again, rinse lather repeat. 

            #Stopped here for the night 

            print(counterHour) 

            correctionRequired=1 

            while(correctionRequired==1): 

                writer.write(str(individualLines[0])+' '+ 

str(counterHour)+':'+str(counterMin)+':'+str(counterSec)+'.000'+'                                    

'+ '\n') 

                if (counterSec == 59): 

                    counterSec = 0 

                    counterMin = counterMin + 1 

                else: 

                    counterSec = counterSec + 1 

                if (counterMin == 60): 

                    counterMin = 0 

                    counterHour = counterHour + 1 

                if (counterHour == 24): 

                    counterHour = 0 

                if (counterHour != timeHour or counterMin != timeMin or 

counterSec != timeSec): 

                    print('ERROR after correction') 

                    correctionRequired = 1 

                if (counterHour == timeHour and counterMin == timeMin and 

counterSec == timeSec): 

                    print('CORRECT after correction') 

                    correctionRequired = 0 

                    writer.write(lines+ '\n') 

                    if (counterSec == 59): 

                        counterSec = 0 

                        counterMin = counterMin + 1 
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                    else: 

                        counterSec = counterSec + 1 

                    if (counterMin == 60): 

                        counterMin = 0 

                        counterHour = counterHour + 1 

                    if (counterHour == 24): 

                        counterHour = 0 

print("Total Number of Errors Found and accounted for:") 

print(errorTracker) 
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The logic for record validation in Appendix C checks the RTK solution before use in model 

creation for consistent logs and replaces any missing datapoints with a correct time stamp and 

blank positional entry. After initializing the libraries and variables used, the log file storing the 

post-processed RTK solution is accessed. Each line of the file is scanned and checked for the 

satellite time for each positional packet. The informational header of the file is skipped over and 

is not needed for this step. The satellite times in each line are verified to be in numerical order, 

with no lost data segments present. If a missing positional packet is discovered, the code will 

create a timestamp for the missing data and inject a line item with blank positional data fields. 

This step is important for ensuring that each image chosen in the image syncing stage is properly 

assigned to the correct timestamp and positional data. Missing logs would cause the images to be 

assigned to incorrect timestamps and as a result the positional data tagged to each image would 

be flawed. After the missing positional data is accounted for with a blank entry the code moves 

on to the next line and checks it for continuity. The logic will operate in a loop until the entire 

RTK solution has been validated for integrity. An error tracker is output at the end of the file to 

display the total number of errors corrected. 



 

APPENDIX D: IMAGE SORTING, SELECTION, LED LOGGING, POST PROCESSING 
import cv2 

import numpy as np 

import os 

import csv 

import shutil 

ppsvalidation=240 

b=0 

g=0 

r=0 

directory = "J:/Video Files/15MAR22/images" 

logDirectory = "J:/Video Files/15MAR22/VLog" 

exportdirectory = "J:/Video Files/15MAR22/AgisoftExport" 

csvname='Log.csv' 

correlationfilename='CoordinatedImagesTimesAndPositionsOfCamera.csv' 

correlationpathname=os.path.join(logDirectory,correlationfilename) 

FramesBetweenPPS=0 

framestr="" 

avgFrames=0 

logname=os.path.join(logDirectory,csvname) 

roverfile='Rover.txt' 

rovername=os.path.join(logDirectory,roverfile) 

trimmedRTKname='TimeClippedRTKSolution.txt' 

trimmedRTKNamePath=os.path.join(logDirectory,trimmedRTKname) 

trimmedRTK=open(trimmedRTKNamePath,'w',newline='') 

trimmedRTKWriter=csv.writer(trimmedRTK) 

correlationfile=open(correlationpathname,'w',newline='') 

correlationfilewriter=csv.writer(correlationfile) 

imagepositonnumber=0 

RTKReadCounter=0 

altLocation=9 

 

 

import numpy as np 

filenumber =0 

#f=open(logname,'w',newline='') 

solutionfile='RTKRover' 

solname=os.path.join(logDirectory,solutionfile) 

solf=open(solname, 'r', encoding='utf-8',errors='replace') 

roverf=open(rovername, 'r',encoding='utf-8',errors='replace') 

startRecordingTimestamp=roverf.readline() 

print(startRecordingTimestamp) 

tempTimeStorage=startRecordingTimestamp[15:21] 

formatedStartTimeSearch=tempTimeStorage[:2]+':'+tempTimeStorage[2:4]+':'+temp

TimeStorage[4:]+'.000' 

print(formatedStartTimeSearch) 

solfileread=solf.read().splitlines() 

 

print(solfileread) 

for idx,lines in enumerate(solfileread): 

    print(idx, lines) 

    if formatedStartTimeSearch in lines: 

        print("Start Time Found In RTK Solution") 

        RTKStartLocation=idx 

        break 

 



87 
 

for lines in solfileread[RTKStartLocation:]: 

    trimmedRTKWriter.writerow([lines]) 

trimmedRTK.close() 

 

 

RTKData=open(trimmedRTKNamePath,'r',encoding='utf-8',errors='replace') 

RTKRead=RTKData.read().splitlines() 

 

 

PPSFrames=0 

fivemsLED=0 

startRecordingLED=0 

writer=csv.writer(open(logname,'w',newline='')) 

bufferBetween=0 

LEDLitCounter = int(0) 

LEDTrackingFramesBetween=0 

ppsCounting = 0 

startRecCounting = 0 

LEDValues=[] 

binarystr=[] 

timesBlinked=0 

startingTimeSatImage="Void Right Now" 

writer.writerow(["filename", "filenumber", "LEDValues", "pps","StartLED"]) 

#This will display all the available mouse click events 

 

def flip_num(my_nu): 

   return '1' if(my_nu == '0') else '0'; 

 

def gray_to_binary(gray): 

   binary_code = "" 

   binary_code += gray[0] 

   for i in range(1, len(gray)): 

 

      if (gray[i] == '0'): 

         binary_code += binary_code[i - 1] 

      else: 

         binary_code += flip_num(binary_code[i - 1]) 

 

   return binary_code 

events = [i for i in dir(cv2) if 'EVENT' in i] 

print(events) 

 

#This variable we use to store the pixel location 

refPt = [] 

numTimesClicked = 0 

clickedLocationArray = [] 

#click event function 

def click_event(event, x, y, flags, param): 

    if event == cv2.EVENT_LBUTTONDOWN: 

        global numTimesClicked 

        global clickedLocationArray 

        print(x,",",y) 

        refPt.append([x,y]) 

        font = cv2.FONT_HERSHEY_SIMPLEX 

        strXY = str(x)+", "+str(y) 

        cv2.putText(img, strXY, (x,y), font, 0.5, (255,255,0), 2) 

        cv2.imshow("image", img) 
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        print("The clicked button is hit ", numTimesClicked) 

        numTimesClicked=numTimesClicked+1 

        clickedLocationArray.append([x,y]) 

 

    if event == cv2.EVENT_RBUTTONDOWN: 

        blue = img[y, x, 0] 

        green = img[y, x, 1] 

        red = img[y, x, 2] 

        font = cv2.FONT_HERSHEY_SIMPLEX 

        strBGR = str(blue)+", "+str(green)+","+str(red) 

        cv2.putText(img, strBGR, (x,y), font, 0.5, (0,255,255), 2) 

        cv2.imshow("image", img) 

 

 

#Here, you need to change the image name and it's path according to your 

directory 

img = cv2.imread("J:/Video Files/15MAR22/TestMask/TestMask.jpg") 

img = cv2.resize(img, (1950, 1080)) 

cv2.imshow("image", img) 

 

#calling the mouse click event 

cv2.setMouseCallback("image", click_event) 

 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

print("Location Values Recorded are ") 

print(clickedLocationArray) 

currentSecondImage = "filename" 

currentRecImage = "filename" 

#start of second set of code 

 

for filename in os.listdir(directory): 

    tempname=os.path.join(directory,filename) 

    #print(tempname) 

    try: 

        image = cv2.imread(tempname) 

        print("New Image Successfully Read ") 

    except: 

        print("The image wasn't there") 

    image = cv2.resize(image, (1950, 1080)) 

    try: 

        LEDNumber=0 

        LEDCount=0 

        LEDValues=[""] 

        for LED in clickedLocationArray: 

 

            x=LED[0] 

            y=LED[1] 

            b=image[y,x,0] 

            g = image[y, x, 1] 

            r = image[y, x, 2] 

            RGBVal = [r, g, b] 

           # print("RGB Values for LED Number {}, picture number 

{}".format(LEDNumber, filename )) 

            #print([RGBVal]) 

            if LEDCount==0: 

                LEDValues[0]=RGBVal 
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            if LEDCount>0: 

                LEDValues.append(RGBVal) 

            LEDNumber=(LEDNumber+1) 

            LEDCount=LEDCount+1 

    except: 

        print("Whoops pixel snag failed.") 

 

 

    LEDCount=len(LEDValues) 

    print("There are this many LEDS: ", LEDCount, " for this file: 

",filename) 

    print(LEDValues) 

    binarystr = [0,0] 

    bintest=0 

    LEDRGBCount=0 

    ppsLEDValue=0 

    startRecord=0 

 

 

    for LEDRGB in LEDValues: 

        print("This is the value being evaluated", LEDRGB) 

        if LEDRGBCount==0: 

            print("Checking Results of Start Recording LED") 

            if LEDRGB[0] < 100 and LEDRGB[1] > 150 and LEDRGB[2] > 150: 

                if startRecCounting == 0: 

                    startRecCounting = startRecCounting+1 

                    currentRecImage = filename 

                    timesBlinked=timesBlinked+1 

                    if timesBlinked ==2: 

                        startingTimeSatImage=currentSecondImage 

                        positionalRTKLine=RTKRead[0].split(" ") 

                        print(positionalRTKLine) 

                        if positionalRTKLine[10]=='': 

                            altLocation=9 

                        if positionalRTKLine[10]!='': 

                            altLocation=10 

                        if positionalRTKLine[9]=='' and 

positionalRTKLine[10]=='': 

                            altLocation=11 

 

                        

#correlationfilewriter.writerow([currentSecondImage,positionalRTKLine[4],posi

tionalRTKLine[6],positionalRTKLine[11],'#'+str(positionalRTKLine[:2])]) 

                        correlationfilewriter.writerow([currentSecondImage, 

positionalRTKLine[4], positionalRTKLine[6], positionalRTKLine[altLocation], 

'0.03', '0.03', '0.06']) 

                        RTKReadCounter=RTKReadCounter+1 

                        copyfrom = os.path.join(directory, 

currentSecondImage) 

                        copyto= os.path.join(exportdirectory, 

currentSecondImage) 

                        shutil.copy(copyfrom,copyto) 

                else: 

                    startRecCounting = startRecCounting+1 

                startRecord = 1 

                print("it was high") 
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            else: 

                startRecord=0 

                print("It was low") 

                startRecCounting = 0 

        elif LEDRGBCount == (len(LEDValues)-1): 

            print("Checking PPS Value ", LEDRGBCount) 

            if LEDRGB[0] > 200 and LEDRGB[1] > 200 and LEDRGB[2] <250: 

                if ppsCounting == 0: 

                    ppsCounting = ppsCounting + 1 

                    currentSecondImage = filename 

 

                    if timesBlinked > 1 and ppsvalidation>200: 

                        ppsvalidation=0 

                        positionalRTKLine = RTKRead[RTKReadCounter].split(" 

") 

                        RTKReadCounter=RTKReadCounter+1 

                        print(positionalRTKLine) 

                        if positionalRTKLine[10]=='': 

                            altLocation=9 

                        if positionalRTKLine[10]!='': 

                            altLocation=10 

                        if positionalRTKLine[9]=='' and 

positionalRTKLine[10]=='': 

                            altLocation=11 

                        correlationfilewriter.writerow([currentSecondImage, 

positionalRTKLine[4], positionalRTKLine[6], positionalRTKLine[altLocation], 

'0.03', '0.03', '0.06']) 

                        copyfrom = os.path.join(directory, 

currentSecondImage) 

                        copyto= os.path.join(exportdirectory, 

currentSecondImage) 

                        shutil.copy(copyfrom,copyto) 

                        correlationfile.close() 

                        correlationfile = open(correlationpathname, 'a', 

newline='') 

                        correlationfilewriter = csv.writer(correlationfile) 

                else: 

                    ppsCounting = startRecCounting + 1 

 

                ppsLEDValue=1 

                print("it was high") 

 

            else: 

                LEDLogic = 0 

                ppsLEDValue=0 

                print("It was low") 

                ppsCounting = 0 

                ppsvalidation = ppsvalidation + 1 

        else: 

            print(LEDRGBCount) 

            print("Nothing fit") 

        LEDRGBCount = LEDRGBCount + 1 

 

 

    pps=ppsLEDValue 

    startRecordingLED=startRecord 
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    print(pps) 

    print(startRecordingLED) 

    writer.writerow([filename, filenumber, LEDValues, pps, 

startRecordingLED,currentSecondImage, currentRecImage,startingTimeSatImage, 

ppsvalidation]) 

    filenumber=filenumber+1 

 

correlationfile.close() 

copyfrom = os.path.join(logDirectory, correlationfilename) 

copyto = os.path.join(exportdirectory, correlationfilename) 

shutil.copy(copyfrom, copyto) 
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The logic in Appendix D handles a critical stage of the process. The coordination of images to 

proper positional data as close to the instant that the positional message was received is 

accomplished with this code. Video recorded during data capture is segmented out into 

individual images representing each frame of the video beforehand. The images are scanned 

sequentially the states of the indicator LEDs showing PPS and recording status are logged. The 

image closest to the instant new positional data was received is selected and sorted into a 

separate folder. A log of the position at the instant the data was received is coordinated to these 

images. This final log is used for geo-referencing the selected images in the Agisoft Metashape 

program.  

After initialization, the image directory, log storage locations and the RTK solution file are 

accessed. The file created during data recording on the rover indicating the starting time of the 

RTK data that relates to the images is accessed and the starting time is stored for later use. The 

RTK solution is scanned until the starting time is found. This will be the time and positional data 

matched to the image showing when the positional data was received. A new logfile is created to 

store the coordinated filenames, timestamps, latitude, longitude, and altitude for geo-referencing. 

Next, the test image will be examined. A test image is selected manually from the images 

beforehand which shows the start recording and PPS LEDs lit simultaneously. The test image is 

displayed on the screen, and location recordings are made of mouse clicks entered by the user. 

The first mouse click designates the center of the start recording LED. The second mouse click 

represents the center of the PPS LED. These locations are saved for scanning images for LED 

status. For validation by the user, the number of LEDs as input by mouse clicks is displayed. 

Each image is then examined at the defined LED locations and using a threshold value, is 

defined in terms of illumination. Each image is logged with the LED values with the first 
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detected PPS image of each second moved to a separate folder. Each moved image is also tied to 

a positional data entry and logged. Finally, the completed geo-referencing file is copied to the 

image directory as well. These images and log file will be used by Agisoft Metashape for geo-

referencing.  

 



 
 

 

 


