
Genetic Algorithm Stream Cipher Key Generation Using NIST Functions

By

Hunter Leggett

December, 2022

Director of Thesis: Dr. Te-Shun Chou

Major Department: Department of Technology Systems

Abstract

Stream ciphers are beneficial because of their efficiency, speed, and low resource utilization.

However, stream ciphers are vulnerable to many attacks if they do not use strong keys for

encryption and decryption. Thus, one way to increase the security of stream ciphers is to improve

the key generation algorithm. This study sought to evaluate the keys produced by a genetic

algorithm stream cipher when individual and combinations of fitness functions are used.

Furthermore, this study identified which fitness function is the best for a specific scenario. For

the genetic algorithm, the fitness tests are thirteen of the tests defined in NIST SP 800-22rla. The

thirteen different fitness functions were inputted into the genetic algorithm stream cipher one at a

time. Next, 50 total keys of varying bit sizes were generated. These keys were evaluated by using

the Hamming distance between the keys and time that it took for key generation. After each

individual fitness function was evaluated, two combinations of five tests were created and used

as a single fitness function. The two combinations were the best performing NIST functions for

Hamming distance and time for 256-bit keys. Sensitivity analysis was then performed to find the

best possible combination of the NIST functions. Based on the results, using different individual

functions or a combination of functions as a fitness functions changed the Hamming distance

between the keys and the time that it takes to generate a key. Furthermore, using sensitivity

analysis results for the top two, three, four, and five combinations for Hamming distance and

time, prediction equations were created and used to predict values for other combinations and

key sizes.

Keywords: Cryptography, genetic algorithm, Hamming distance, cybersecurity, stream cipher

Genetic Algorithm Stream Cipher Key Generation Using NIST Functions

A Thesis

Presented to the Faculty of the Department of Technology Systems

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master’s of Science in Network Technology with a Concentration in Information Security

By

Hunter W. Leggett

December, 2022

Director of Thesis: Te-Shun Chou, PhD

Thesis Committee Members:

Rui Wu, PhD

Biwu Yang, PhD

© Hunter Leggett, 2022

Genetic Algorithm Stream Cipher Key Generation Using NIST Functions

By

Hunter Leggett

APPROVED BY:

Director of Thesis

 Te-Shun Chou, PhD

Committee Member

 Rui Wu, PhD

Committee Member

 Biwu Yang, PhD

Chair of the Department of Technology Systems

 Tijjani (TJ) Mohammed, PhD

Interim Dean of the Graduate School

 Kathleen T Cox, PhD

Table of Contents

TITLE PAGE ... i

COPYRIGHT PAGE .. ii

SIGNATURE PAGE ... iii

TABLE OF CONTENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1. INTRODUCTION ... 1

1.1. Statement of the Problem ... 3

1.2. Research Questions and Hypotheses .. 3

1.3. Research Objectives ... 4

1.4. Significance of the Study ... 4

1.5. Assumptions ... 4

1.6. Limitations ... 5

1.7. Terminology ... 5

CHAPTER 2. REVIEW OF LITERATURE .. 8

2.1. Machine Learning .. 8

2.2. Stream Ciphers ... 11

2.3. Machine Learning and Stream Ciphers .. 13

CHAPTER 3. METHODOLOGY .. 17

3.1. Fitness Functions.. 17

3.2. Experimental Environment .. 19

3.3. Individual Fitness Function Testing ... 20

3.4. Sensitivity Analysis .. 24

3.5. Prediction ... 29

CHAPTER 4. RESULTS AND DISCUSSION .. 30

4.1. Individual Fitness Functions .. 30

4.2. Best Performing Individual Fitness Functions ... 34

4.3. Combinations of Fitness Functions .. 38

4.4. Prediction ... 40

4.4.1. Prediction based on number of functions ... 40

4.4.2. Prediction based on key size .. 45

CHAPTER 5. CONCLUSION .. 50

REFERENCES ... 52

APPENDIX A – NIST SP 800-22r1a Tests .. 58

A.1. Frequency (Monobit) .. 58

A.2. Frequency Test Within a Block ... 58

A.3. Runs Test ... 58

A.4. Test for the Longest Run of Ones in a Block .. 58

A.5. Binary Matrix Rank Test ... 59

A.6. Discrete Fourier Transform (Spectral) Test .. 62

A.7. Non-overlapping Template Matching Test ... 62

A.8. Maurer's "Universal Statistical" Test .. 64

A.9. Serial Test.. 65

A.10. Approximate Entropy Test .. 66

A.11. Cumulative Sums (Cusum) Test ... 67

A.12. Random Excursions Test ... 68

A.13. Random Excursions Variant Test .. 69

APPENDIX B – Genetic Algorithms .. 70

B.1. Frequency (Monobit) Genetic Algorithm .. 70

B.2. Frequency Test Within a Block Genetic Algorithm .. 70

B.3. Runs Test Genetic Algorithm .. 71

B.4. Test for the Longest Run of Ones in a Block Genetic Algorithm ... 72

B.5. Binary Matrix Rank Test Genetic Algorithm .. 73

B.6. Discrete Fourier Transform (Spectral) Test Genetic Algorithm ... 73

B.7. Non-overlapping Template Matching Test Genetic Algorithm .. 74

B.8. Maurer's "Universal Statistical" Test Genetic Algorithm .. 75

B.9. Serial Test Genetic Algorithm ... 76

B.10. Approximate Entropy Test Genetic Algorithm ... 76

B.11. Cumulative Sums (Cusum) Test Genetic Algorithm ... 77

B.12. Random Excursions Test Genetic Algorithm .. 78

B.13. Random Excursions Variant Test Genetic Algorithm ... 79

APPENDIX C – Evaluation Tests .. 80

C.1. Timer ... 80

C.2. Hamming Distance .. 80

C.3. Average P-value .. 81

APPENDIX D – Sensitivity Analysis ... 82

D.1. Top Two Hamming Distance Performers for 256-bit Key Generation Sensitive Analysis 82

D.2. Top Two Time Performers for 256-bit Key Generation Sensitive Analysis 83

D.3. Top Three Hamming Distance Performers for 256-bit Key Generation Sensitive Analysis 85

D.4. Top Three Time Performers for 256-bit Key Generation Sensitive Analysis 86

D.5. Top Four Hamming Distance Performers for 256-bit Key Generation Sensitive Analysis 88

D.6. Top Four Time Performers for 256-bit Key Generation Sensitive Analysis 89

D.7. Top Five Hamming Distance Performers for 256-bit Key Generation Sensitive Analysis............. 91

D.8. Top Five Time Performers for 256-bit Key Generation Sensitive Analysis 93

List of Tables

Estimated Sensitivity Analysis Times for 13 NIST Functions and Various Weights 25

Estimated Sensitivity Analysis Times for 5 NIST Functions and Various Weights 25

Statistics for Fitness Functions ... 30

Average Hamming Distance Rankings ... 35

Average Time Rankings ... 36

Top Five Hamming Distance Performers for 256-bit Key Generation ... 38

Top Five Time Performers for 256-bit Key Generation ... 38

Prediction Using Top 5 Average Time Fitness Functions .. 40

Prediction Using Top 5 Hamming Distance Fitness Functions .. 43

Prediction Using Key Size for Top Two Average Time Fitness Functions .. 45

Prediction Using Key Size for Top Two Hamming Distance Fitness Functions .. 47

List of Figures

Frequency (Monobit) Graph for Convergence .. 21

Key Generation Process .. 23

Sensitivity Analysis Flow Chart ... 28

Key Size vs. Hamming Distance... 33

Key Size vs. Time ... 34

Predicted vs. Actual Hamming Distance for Top 5 Average Time Fitness Functions 41

Predicted vs. Actual Average Time for Top 5 Average Time Fitness Functions 42

Predicted vs. Actual Hamming Distance for Top 5 Hamming Distance Fitness Functions 43

Predicted vs. Actual Average Time for Top 5 Hamming Distance Fitness Functions 44

Predicted vs. Actual Hamming Distance for Key Size for Top 2 Average Time Fitness Functions 45

Predicted vs. Actual Average Time for Key Size for Top 2 Average Time Fitness Functions 46

Predicted vs. Actual Hamming Distance for Key Size for Top 2 Hamming Distance Fitness Functions .. 47

Predicted vs. Actual Average Time for Key Size for Top 2 Hamming Distance Fitness Functions 48

Chapter 1. Introduction

 Cryptography is the use of techniques to secure data in rest and transit. The two main

cryptographic techniques are asymmetric encryption and symmetric encryption. Symmetric

encryption first appeared in the 1970s and uses a single key for the encryption and decryption of

plaintext (Stallings, 2017). Symmetric encryption uses block ciphers, stream ciphers, or a

combination of a block and stream cipher to perform the encryption process.

Block ciphers encrypt the plaintext one block of plaintext at a time. On the other hand, a

stream cipher uses a generator to generate a keystream that the original text will XOR against

(Lalar & Nahta, 2016). Stream ciphers offer many benefits over the use of block ciphers. For

example, stream ciphers tend to be faster and more suited for data stream encryption than block

ciphers (Stallings, 2017). Furthermore, stream ciphers tend to use fewer resources than block

ciphers.

Unfortunately, many attacks are very successful at breaking stream ciphers. These attacks

use various techniques to find the key used by the stream cipher and recover the plaintext

whether it is at rest, in use, or in transit (Jiao et al., 2020). One proposed way to prevent these

attacks is to combine stream ciphers with machine learning.

Machine learning allows computers to learn a process that they were not originally

designed to do. Even though machine learning has been around since the 1960s, the use of

machine learning with symmetric encryption is relatively recent. Several articles have been

written to describe potential machine learning block and stream ciphers (Ali, 2013; Ding et al.,

2021; Fadil et al., 2014; Goyat, 2012; Guo et al., 1999; Krishna et al., 2018; Kumar &

Chatterjee, 2016; Lian, 2009; Long, 2012; Nazeer et al., 2018; Noura et al., 2015; Sakr et al.,

2022; Sindhuja & Pramela, 2014; Som et al., 2011; Sudeepa et al., 2020; Tsai & Chou, 2021).

2

One of the primary machine learning algorithms used for these ciphers is genetic

algorithms. Genetic algorithms use the theory of natural selection to select the best solution for a

given problem. For example, for a stream cipher, the genetic algorithm can be used to get the

best possible key to XOR with the plaintext (Krishna et al., 2018; Kumar & Chatterjee, 2016).

 Stream ciphers are still predominantly used because of their low resource requirement

and efficiency. Therefore, increasing the security of stream ciphers will increase data security

now and in the future. A way to increase their security is to increase the security of the key

generation algorithm. A more secure key generation algorithm would heighten the difficulty that

it takes for an attacker to break the key. This surge in difficulty could very well act as a deterrent

for attackers attempting to use attacks against the cipher.

Even though, there have been advancements in making a cryptographically strong genetic

algorithm stream cipher. The vast majority of the current genetic algorithm stream ciphers use

coefficients of correlation and Shannon’s entropy for fitness functions. Unfortunately, flaws have

been discovered in these functions (Tsai & Chou, 2021). Therefore, different fitness functions

need to be tested to determine their effect on a genetic algorithm stream cipher.

The desired genetic algorithm stream cipher would use a genetic algorithm to generate a

random key stream. The fitness function for this genetic algorithm would choose the key stream

that had the most randomness. The most random key stream is chosen because it would be the

most cryptographically secure. The chosen keystream would be used to encrypt and decrypt the

data. Overall, this genetic algorithm stream cipher should optimize efficiency and security.

Unfortunately, the current genetic algorithm stream ciphers tend to use fitness functions for key

selection that are shown to have flaws (Tsai & Cho, 2021). Finding a better fitness function will

be paramount to the success of future genetic algorithm stream ciphers.

3

1.1. Statement of the Problem

The problem of this research was to determine how different individual fitness functions

and combinations of fitness functions affect the key generation for a genetic algorithm stream

cipher as well as to predict the Hamming distance and average time for key generation for

sensitivity analysis.

1.2. Research Questions and Hypotheses

• RQ: What effect do certain fitness function functions have on the performance of a

genetic algorithm stream cipher?

o HO1: Certain fitness functions will cause the genetic algorithm stream cipher to

generate more random keys than other fitness functions.

o HO2: Certain fitness functions will cause the genetic algorithm stream cipher to

generate keys faster than other fitness functions.

• RQ: What effect does combining fitness functions have on the performance of a genetic

algorithm stream cipher?

o HO1: The combination of multiple functions as a single fitness function will

improve the keys that are generated by the genetic algorithm stream cipher.

o HO2: Certain combinations of functions as fitness functions will generate more

random keys than other combinations of functions.

o HO3: Certain combinations of functions as fitness functions will generate keys

faster than other combinations of functions.

• RQ: Could the Hamming distance and time results for the sensitivity analysis of the top x

Hamming distance and time performers be predicted?

4

o HO1: The Hamming distance and average time results for different amounts of

functions in a combination could be accurately predicted using regression.

• RQ: Could the Hamming distance and time results for the sensitivity analysis of the top

two Hamming distance and time performers be predicted for each key size?

o HO1: The Hamming distance and average time results for differing key sizes for

the top two functions in terms of average Hamming distance and average time for

256-bit keys could be accurately predicted using regression.

1.3. Research Objectives

The objective of this study was five-fold: (a) To evaluate the keys produced by each

genetic algorithm stream cipher, (b) To evaluate how combinations of fitness functions affect the

genetic algorithm stream cipher, (c) To identify which fitness function or combination of fitness

functions is the best for a given scenario, (d) To predict the Hamming distance and time results

for the sensitivity analysis if a certain number of functions are used in the combination, and (e)

To predict the Hamming distance and time results for the sensitivity analysis if a certain key size

is used.

1.4. Significance of the Study

This research provided more insight into how different fitness functions affect the key

generation for the genetic algorithm stream cipher to create a more cryptographically secure

stream cipher.

1.5. Assumptions

The following assumptions were made when experimenting: (a) The NIST SP 800-22r1a

tests would work if minimum bit recommendations in the guidelines were ignored, as long as,

the mathematical requirements were met for the tests, (b) The genetic algorithm used for the

5

stream cipher works properly, (c) Plotting the key sizes with hamming distances and time would

be linear for each fitness function, (d) Using combinations of the top functions in terms of

Hamming distance and time will perform better than randomly selecting the functions for the

combinations, (e) The top five functions for time for the 256-bit key size would not conflict with

each other when combined, this also applies for the top five hamming distance function

combination, and (f) Using the top two, three, four, and five functions would perform better then

using a random group of functions.

1.6. Limitations

 The limitations of this experiment were: (a) Only one computer was used to test the

algorithms, (b) Parallel computing was not used for the sensitivity analysis, (c) The sensitivity

analysis was only run once for each weight combination, (d) Only four weights were used for the

sensitivity analysis, and (e) Only five fitness functions were used for the sensitivity analysis. All

of these limitations were attributed to the resource constraints of the experiment.

1.7. Terminology

• Ciphertext: the encrypted plaintext.

• Combination: a grouping of NIST functions.

• Crossover: a process where an existing solution passes on its characteristics to a new

solution.

• Elite Ratio: the number of elites in each population.

• Exclusive or: also known as XOR, a logical operator that is true when one of the

operands is true and false when both operands are true or false.

• Fitness Function: an objective function that is used as the selection criteria for the best

solution in the genetic algorithm.

6

• Genetic Algorithm: a machine learning algorithm that is based on the theory of natural

selection.

• Hamming Distance: the number of bits that are different between two binary strings.

• Iterations: the number of populations generated for testing by the genetic algorithm. The

populations are each generated one after another.

• Key Size: the length of the key.

• Key Stream: the continuous generation of keys to encrypt the total length of the plaintext.

• Key: the generated string that is used by the stream cipher to encrypt the plaintext.

• Machine Learning: a field of study where computers learn to do tasks that they were not

originally programmed to do.

• Mutation: a process in the genetic algorithm where one bit is randomly replaced by a

random value.

• NIST SP 800-22r1a: NIST Special Publication 800-22 revision 1a is a technical

document that describes a statistical test suite for random and pseudorandom number

generators.

• Plaintext: the original unencrypted text

• Population Size: the number of solutions in each iteration.

• Pseudorandom Number Generator: a generator that appears to be random.

• P-value: the probability that an outcome occurs by chance. This value is used to

determine if the null hypothesis is rejected or not rejected.

• Random Number Generator: a generator that creates truly random strings.

• Sensitivity Analysis: a methodology that evaluates how different inputs can affect the

output of an algorithm to determine with inputs can give the best output.

7

• Stream Cipher: a cipher that encrypts the plaintext one bit at a time through the Exclusive

or process.

• Symmetric Cryptography: a form of encryption that uses a single key to encrypt and

decrypt plaintext.

Chapter 2. Literature Review

 The section is organized as follows. The first section details articles about machine

learning. The second section details articles about stream ciphers. The third section details

articles about both stream ciphers and machine learning. Finally, the fourth section will discuss

the gaps in the research and how this study will fill those gaps.

2.1. Machine Learning

 Several articles detail the complicated history of machine learning. Fradkov (2020)

details the history of modern-day machine learning. The origin of the current form of machine

learning is commonly associated with psychologist Frank Rosenblatt and his work on a machine

that could recognize the letters of the alphabet (Fradkov, 2020). After Rosenblatt, machine

learning started to gain steam in the 1960s with deterministic and stochastic approaches

(Fradkov, 2020). However, after this, not much work was achieved in machine learning until the

twenty-first century due to the limitations that computers faced.

On the other hand, Plasek (2016) details how difficult it is to write a comprehensive

history of machine learning. Regardless, Alzubi et al. (2018) gave further details on the history

of machine learning. According to Alzubi et al. (2018), the origin of machine learning can be

traced back further to Alan Turning and the Turning Test in the early 1950s. Additionally,

Alzubi et al. (2018) described the generic model of machine learning. This model has six phases

which can be classified as: collection and preparation of data, feature selection, choice of

algorithm, selection of models and parameters, training, and performance evaluation (Alzubi et

al., 2018). From this generic model, several types of machine learning algorithms have been

created to accomplish various tasks. Each of these algorithms is trained through one of the types

of learning.

9

According to Sah (2020), the types of learning include supervised learning, unsupervised

learning, semi-supervised learning, reinforcement learning, self-supervised learning, self-taught

learning, multi-task learning, active learning, online learning, transfer learning, federated

learning, ensemble learning, adversarial learning, meta learning, targeted learning, concept

learning, Bayesian learning, analytical learning, multi-modal learning, deep learning, and

curriculum learning.

Mahesh (2020) and Pandy et al. (2019) take a deeper look into the types of machine

learning algorithms. Mahesh (2020) provides a review of the algorithms classified by the types

of learning that they use. According to Mahesh (2020), a few algorithms that use supervised

learning include the Decision tree and Naive Bayes. Moreover, some algorithms that use

unsupervised learning include K-Means clustering and Principal component analysis. Mahesh

(2020) continues to describe a few more algorithms before discussing neural networks. Pandey et

al. (2019) describe algorithms that use supervised learning, unsupervised learning, and

reinforcement learning. According to Pandey et al. (2019), algorithms that use supervised

learning can be classified further into classification and regression methods. Classification

methods are used to solve discrete-value problems, on the other hand, regression methods are

used to make decisions (Pandey et al., 2019).

 Jordan & Mitchell (2015) analyze the current trends, perspectives, and prospects in

machine learning. According to the article, machine learning has become a multi-disciplinary

field of study that has had many advances in recent years. The most common form of machine

learning methods that have been used are supervised learning methods. In supervised learning

methods, one of the areas where a lot of progress has been attained is deep learning. Even with

all of the progress in machine learning, there is still a lot of room for growth and opportunity.

10

Sarker (2021) agrees with this in discussing the real-world applications of different types of

machine learning, as well as directions for the research of machine learning. However, Sarker

(2021) details that a lot of this growth depends on data that is “good” and diverse learning

algorithms. Good data is defined as data that is representative, high quality, relevant, and can be

sufficiently trained (Sarker, 2021).

 One of the first overviews of genetic algorithms came in 1988 (De Jong, 1988). This

article details many of the early advancements in genetic algorithms and refers to it as an area

worth studying. The article discusses that genetic algorithms are good for specific situations;

however, they do need a lot of data, between 500-1000 samples to truly be effective (De Jong,

1988). According to Katoch et al. (2021), the classic genetic algorithm was designed as an

optimization algorithm inspired by natural selection. The algorithm divides a population into

chromosomes randomly. The fitness of each chromosome is calculated by the fitness function.

Two chromosomes are chosen, and they undergo crossover and mutation until they produce an

offspring that meets the best solution given (Katoch et a., 2021). In this process, several

operators are used. The four operators are selection, encoding, crossover, and mutation (Katoch

et al., 2021). Genetic algorithms are classified as either binary or real depending upon the data

being entered into them.

Nierhaus (2009) provides further details on the construction of genetic algorithms in the

chapter “Genetic Algorithms”. In this chapter, the history of genetic algorithms is covered as

well as the creation of genetic algorithms. This chapter also details some of the limitations that

genetic algorithms face. According to the chapter, if the algorithm is not set up carefully, then

the genetic algorithm may not yield correct results because it could undertake a generation task,

11

instead of an evaluation task. Furthermore, if more than one fitness function is used, then the

functions could end up hurting each other in trying to determine which is the best solution.

Finally, Verma & Kumar (2014) provide another analysis of genetic algorithms. The

article provides a short background on genetic algorithms as well as pseudo-code for a simple

genetic algorithm. Furthermore, the article provides examples of problems that can be solved

with genetic algorithms along with an example of a genetic algorithm solving the Knapsack

Problem (Verma & Kumar, 2014).

2.2. Stream Ciphers

 In cryptography, the two main forms of algorithms are symmetric key algorithms and

asymmetric key algorithms. Chandra et al. (2014b) provided an analysis of the differences

between symmetric and asymmetric cryptography. In symmetric key algorithms, the sender and

receiver share a single secret key (Chandra et al., 2014b). In asymmetric key algorithms, two

keys are used: a public key and a private key (Chandra et al., 2014b). Chandra et al. (2014a)

provide further information about symmetric algorithms. This article gives a short description of

common symmetric algorithms, such as AES, RC4, and Blowfish, and proposed symmetric

methods. Additionally, the book Cryptography and Network Security provides a more thorough

analysis of asymmetric and symmetric algorithms. This book also provides examples of the code

for algorithms such as RC4 and discusses the number theory behind the creation of the

algorithms.

Stream ciphers are encryption algorithms that belong to the family of symmetric key

algorithms. Lalar & Nahta (2016) provides an analysis of the stream cipher methodology as well

as two attacks that can be used on stream ciphers. They describe stream ciphers that use a

random number generator, one-time pad, and shift register. Gorbenko et al. (2017) analyze the

12

currently used stream ciphers. Another form of stream ciphers is lightweight stream ciphers.

These stream ciphers are designed to work with embedded devices or devices that do not have a

lot of resources (Manifavas et al., 2016). Manifavas et al. (2016) provide a survey of the current

trends with these types of stream ciphers.

Jiao et al. (2020) provide an analysis of past and current stream cipher designs. Their

article describes stream ciphers by the structure that they use along with the cryptanalysis of the

ciphers (Jiao et al., 2020). The common cryptanalysis methods that are listed are exhaustive

search, time-memory trade-off, algebraic, correlation and linear, guess and determine,

resynchronization, differential, cube, and fault attacks (Jiao et al., 2020, p. 22). Exhaustive

search, or brute force, attacks try every key to guess the correct key. Time-memory trade-off

attacks are two-phase exhaustive search attacks, where a table of keys is generated by using the

general structure of the stream cipher, and then the keys are used on real data (Jiao et al., 2020, p.

23). Algebraic and correlation attacks are specifically used on linear-feedback shift register

stream ciphers. Linear attacks rely on linear relations in the keystream (Jiao et al., 2020, p. 23).

Guess-and-determine attacks determine the state elements of the cipher by guessing some of the

elements. Differential attacks use the biased distribution of keys generated by a specific

initialization vector. Resynchronization attacks are similar to differential attacks. Cube attacks

use a "low degree polynomial representation of a single output bit" to determine the key (Jiao et

al., 2020, p. 23). Fault attacks use bit flipping faults to decrypt the message. Today, stream

ciphers are much more powerful, efficient, and resistant to attacks.

Pseudo-random number generators produce a seemingly random string that can be used

to generate a secret key for a stream cipher. Many pseudo-random number generators are

available, as shown by Deng & Bowman (2017) and Zeng et al. (1991). However, to be

13

considered secure, they must meet three criteria: the keystream must be able to accommodate all

of the plaintexts, the keystream must be easy to generate, and the keystream must be hard to

predict (Zeng et al., 1991). To test the security of these generators, fifteen tests were developed

by the National Institute of Standards and Technologies (Bassam III et al., 2010). Each of these

tests evaluates certain aspects of the keystreams generated by the pseudo-random number

generators. Furthermore, another test that can be used is the Hamming distance between the

streams, which is the binary bits that differ between the two keystreams (Black, 2006).

2.3. Machine Learning and Stream Ciphers

 Many approaches have been used to combine machine learning and symmetric

encryption. One approach to combining machine learning and symmetric encryption is through

the use of neural networks. One of the first neural network stream ciphers was discussed by Guo

et al. (1999). They propose a symmetric cipher based using an Over-storage Hopfield Neural

Network (OHNN). The proposed cipher scheme randomly selects a permutation matrix and a

coding matrix. These matrices will be used as the secret key pairs and sent to the other user using

public-key cryptography. Then a new synaptic matrix and attracts are generated using the

permutation matrix. Next, the coding matrix and attractors will map the plaintext into a coded

plaintext. Finally, a pseudorandom number generator will generate a random amount of 0s and 1s

which will be the initial state for the OHNN process (Guo et al., 1999). To decrypt, the received

permutation matrix would be used to generate the synaptic matrix. Then the coded plaintext

would be regenerated and decoded into the plaintext.

This work led to the development of another cipher by Long (2012). This article used a

Hopfield Neural Network (HNN) and works in three steps. In the first step, a randomly selected

matrix and secret keys are selected by a linear feedback shift register (LFSR) random number

14

generator. In the second step, the LFSR output is inputted into the HNN, then the input will

converge to one of the network attractors (Long, 2012). In the final step, the attractors are sorted

into groups with varying amounts of 1's and 0's and one of the LFSR outputs is chosen based on

the attractors (Long, 2012).

Furthermore, chaotic neural networks (CNNs) and artificial neural networks (ANNs)

have been used. Lian (2009) suggests a CNN-based block cipher. To encrypt data, the plaintext

is entered into the chaotic neuron layer and then transferred to the linear neuron layer. This is

repeated until the data is secure. To decrypt the data, the matrices and functions are inverted with

similar parameters to the encryption function (Lian, 2009). Unfortunately, this cipher is not the

most efficient. Another CNN cipher was developed by Fadil et al. (2014). This cipher uses

discrete cosine transform (DCT) with a CNN to encrypt. However, this cipher was only

developed for use with video transmissions.

Another example of an ANN cipher was developed by Noura et al. (2015). The cipher

takes in an original message and a secret key that can be 128, 256, or 512 bits and is created

through dynamic key generation (Noura et al., 2015). Another cipher that was developed for

image encryption was developed by Ding et al. (2021). Their cipher uses deep learning to form a

key generation network to develop a key that is XORed against the image. The key for the

proposed system has a strength of (28)196608 (Ding et al., 2021). Furthermore, because of the

randomness, the system would not generate the same key twice.

An alternate approach to combining machine learning and symmetric encryption is

through the use of genetic algorithms. To help show how this could be done an article by Ali

(2013) details a simplistic form of a genetic algorithm. Furthermore, Goyat (2012) provides an

analysis of some of the current methods that apply genetic algorithms to symmetric encryption.

15

Some novel approaches to symmetric encryption have been proposed using genetic algorithms.

For example, Nazeer et al. (2018) propose an encryption algorithm that works in three phases. In

the first phase, key generation, random keys are entered into the function and crossovered and

mutated. The best key is chosen by using Shannon entropy. In the second phase, the original text

is diffused by using crossover and mutation. In the third and final phase, the key is XORed with

the diffused text.

Another novel approach was proposed by Som et al. (2011). The proposed cipher would

first XOR the plaintext with user input or two random numbers. Next, the new text would

undergo transformation. This transformed text would be XORed again by a key created by

choosing two index positions randomly from 8-bit blocks made from the transformed text. This

level 1 cipher text is entered into the genetic algorithm. Once within the algorithm a single-point

crossover function. The fitness is determined by which child is most different from the parents.

One chromosome is chosen and reversed and added to the final cipher text until all are produced.

The key is created using the crossover points, block amount, and length of blocks. A third novel

approach was proposed by Sindhuja & Pramela (2014). In their approach, both the plaintext and

a key are inputted into the cipher. The plaintext and key will then undergo matrix addition,

substitution, and crossover before the ciphertext is outputted.

Additionally, articles have used genetic algorithms to improve current symmetric ciphers.

For example, Tsai & Chou (2021) propose a new variation of the data encryption algorithm

(DES) referred to as GADES. The proposed cipher would generate keys using a normalized

linear programming model for the fitness function. This function will choose the key with the

greatest distance from the plaintext that generates it. The cipher uses two main steps. In step one,

the plaintext and seven keys are entered into the algorithm. The algorithm would run and choose

16

the key based on the fitness function. The chosen key and plaintext are then XORed to get the

ciphertext.

Sakr et al. (2022) proposed a genetic algorithm cipher for amino acid encryption. The

proposed cipher uses three phases. In the first phase, the initial population is generated by an

RNG that chooses a 1 or 0. Next, the fitness function, the run test of randomness, is calculated on

the initial input. If it fails the test, then it undergoes crossover and mutation until it passes the

test. The selected key that passes the test is inputted into the Needleman-Wunsch (NW)

algorithm. The NW algorithm calculates a key using the similarities between the chosen key and

all of the keys from the last generation. Finally, the Playfair cipher is used to encrypt the data.

Furthermore, genetic algorithms have been applied to key generators and stream ciphers.

For key generation, one approach by Krishna et al. (2018) uses a mutated Huffman tree coding

algorithm. The key is generated using Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

in the bi-objective optimization framework and Improved Modified Harmony Search +

Differential Evolution (IMHS+DE) in the single objective framework. The mutated Huffman tree

coding algorithm is then used to encode the plaintext. Another approach to key generation is

proposed by Sudeepa et al. (2020). The focus of their work was to increase the length of linear

feedback shift registers (LSFRs) by using a genetic algorithm.

Moving forward, a stream cipher using a genetic algorithm was proposed by Kumar &

Chatterjee (2016). For this algorithm, random keys are generated. The random keys are put into

the genetic algorithm to start creating populations. Two parents are selected from the random

keys; they are crossed over and then the threshold is checked. After the crossover, the child is

changed by the mutation function. The fitness of the mutated key is found using Shannon

entropy, chi-square, and the coefficient of autocorrelation.

Chapter 3. Methodology

 To determine how different fitness functions affect a genetic algorithm stream cipher, a

group of fitness functions had to be selected. The selected functions are the statistical testing

functions defined in NIST SP 800-22r1a. These functions were chosen because they evaluate the

randomness of a given binary sequence (Bassam et al., 2010). The given binary sequence is

evaluated on a scale of 0 to 1, where 0 is not random and 1 is perfect randomness. This value

between 0 and 1 is referred to as the P-value, or tail probability.

3.1. Fitness Functions

Thirteen of the fifteen tests were used in the experiment. The two excluded tests were the

linear complexity test and the overlapping template matching test. The linear complexity test was

not used because it only applies to linear feedback shift registers. The overlapping template

matching test was not used because all of the mathematical requirements could not be met for

smaller input sizes without getting very small P-values. The thirteen used tests are frequency

(monobit) test, frequency test within a block, runs test, test for the longest run of ones in a block,

binary matrix rank test, discrete Fourier transform (spectral) test, non-overlapping template

matching test, Maurer's "Universal Statistical" test, serial test, approximate entropy test,

cumulative sums (Cusum) test, random excursions test, and random excursions variant test.

Bassam et al. (2010) define these thirteen tests as follows:

• The frequency (monobit) test evaluates the proportion of zeros and ones in the given

binary string. If the number of zeros and ones is about the same, then the binary string

would pass the test.

18

• The frequency test within a block test evaluates the frequency of ones in a block of a

certain length. If the numbers of ones are approximately the length of the block divided

by two, then the binary string would pass the test.

• The runs test evaluates the runs of ones and zeros. To pass the test, the binary string

cannot have too little and/or too many bits before it switches between ones and zeros.

• The test for the longest run of ones in a block determines if the longest run of ones in a

block is what should be expected in a random sequence. If there are too many clusters of

ones in the blocks, then the binary string would fail the test.

• The binary matrix rank test evaluates the rank of disjoint sub-matrices of a sequence. If

the linear dependences of the matrices deviate too much from the theoretical value, then

the binary string fails the test.

• The discrete Fourier transform (spectral) test determines if the repetitive patterns that are

close to each other deviate from an assumption of randomness. This is tested by seeing if

the number of peaks that exceed the 95% threshold is more or less than 5%. If the number

is different from 5%, then the binary string would fail the test.

• The non-overlapping template matching test determines if there are too many

appearances of a certain pattern. If there are too many appearances, then the binary string

fails the test.

• Maurer’s “Universal Statistical” test evaluates the number of bits between matching

patterns. The number of bits between matching patterns relates to the length of a

compressed sequence. If the sequence is too compressible, then the binary string fails the

test.

19

• The serial test determines if the number of occurrences of the 2m m-bit overlapping

patterns is as expected in uniformity. If the overlapping patterns do not appear uniformly,

then the binary string fails the test.

• The approximate entropy test evaluates the frequency of all overlapping m-bit patterns. If

the frequency of consecutive overlapping m-bit blocks deviates too much from what is

expected, then the binary string fails the test.

• The cumulative sums (Cusum) test determines if the cumulative sum of partial sequences

in a test sequence is too large or small relative to what is expected. If the number of

excursions from the cumulative sum is not close to zero, then the binary string fails the

test.

• The random excursions test evaluates the number of cycles having a certain number of

visits to a state in a cumulative sum walk to see if it is as expected. If the number of visits

to a state deviate from the expected value, then the binary string fails the test.

• The random excursions variant test determines the number of times that a state occurs in

a cumulative sum walk. Similar to the random excursions test, if the number of visits to a

state deviate from the expected value, then the binary string fails the test. The difference

between this test and random excursions is that this test consists of 18 tests rather than 8

tests.

3.2. Experimental Environment

The Python genetic algorithm that was used for this experiment was developed by Solgi

(2020). Unfortunately, the original NIST tests were written in the programming language C. For

the tests to work best with the genetic algorithm, they had to be converted to the programming

language Python. The tests were each converted to Python by using the original C code. The

20

code developed by Pasqualini (2021) was used as a reference to ensure that the tests were

correctly translated. The tests were modeled as closely to the original C tests as possible. The

constants for each test were chosen by using the mathematical constraints and formulas given in

NIST SP 800-22r1a. Each of the thirteen tests used for this experiment can be viewed in

Appendix A.

Additionally, a Windows 10 desktop computer was used to perform the tests. This

computer had 16 gigabytes of RAM, a 2 terabyte hybrid hard drive, a 3.70 gigahertz i7-8700k

Intel processor, and a NIVIDA GeForce GTX 1080Ti graphics card. The tests were run using an

Ubuntu Linux terminal through the Windows Subsystems for Linux (WSL). While the tests were

running, only the Excel file used to record the data was open.

3.3. Individual Fitness Function Testing

Once the tests were converted into Python, they were inserted into the Python genetic

algorithm one at a time as the fitness function. For the tests, the genetic algorithm ran for 500

iterations and used a population size of 17. 500 iterations were determined to be enough time for

each of the tests to converge. Convergence can be visualized on a graph as shown in Figure 1.

21

Figure 1. Frequency (Monobit) Graph for Convergence

In Figure 1, convergence can be seen be the line no longer decreasing after 0. This means

that the test was could not find a better solution over the next several iterations with the fitness

function. Since the suggested population size for the algorithm was 1/30th of the suggested

number of iterations, the same logic was applied for the testing, therefore 1/30th of 500 is about

17. Each member of the population was a randomly generated string of either 1 or 0s. The length

of each member of the population was determined by the key size. For example, if the key size

was 256-bits, then each member of the population would be 256 1s and 0s.

For the population, the parents portion parameter was set to 3/17 (17.647%), the mutation

probability parameter was set to 0.05 (5%), the elite ratio parameter was set to 1/17 (5.882%),

and the crossover probability parameter was set to 0.25 (25%). The mutation probability and

22

crossover probability are half of the default values because a smaller population size was used.

While the elite ratio was set to 1/17 to allow for one elite in each population. Furthermore, the

parent’s portion was set to 3/17 so that three members of the next generation are from the

previous generation. Three parents were chosen so that the percentage of parents in the

population was close to half of the default value. The type of crossover used for the tests was a

two-point crossover. In a two-point crossover, two points of the parents, existing solutions are

chosen, then the bits around these points would be exchanged to form the children, new

solutions.

According to Solgi (2020), the parents portion parameter controls how much of the next

generation is from the previous generation. For the parent’s portion, the members that move to

the next generation are randomly chosen. The mutation probability parameter controls the

probability that any of the individuals in a population could have a random bit change within it.

The elite ratio parameter controls the percent of elites in each population. The crossover

probability parameter controls the probability that a parent, or existing solution, in the population

would pass on its characteristics to a child, or new solution.

The genetic algorithm was run 10 times with these settings to produce ten different keys

of five different sizes. Running the genetic algorithm 10 times for each key size ensured that

more accurate results were achieved. This resulted in 50 total keys generated for each of the

thirteen tests. The key sizes that were used for the tests are 256-bit, 512-bit, 1024-bit, 2048-bit,

and 4096-bit. These key sizes were chosen for two main reasons: (a) so that smaller and larger

keys were tested, and (b) these are common key sizes that are used by stream ciphers. The

process that was used to generate the keys can be seen in Figure 2.

23

Figure 2. Key Generation Process

Figure 2 shows the key generation process. This process begins with the first generation

of 17 random strings of 1s and 0s being entered into the genetic algorithm. These strings are

made using Booleans so that each value can only be a one or a zero. The length of the strings

depends on the key size entered into the genetic algorithm. Once the strings are entered into the

algorithm each string is inputted into the fitness function to get its fitness value. Next, the string

has a 25% chance to undergo crossover with another string and a 5% chance to be mutated to

make new string for the next generation. Once, the crossovers and mutations complete, the next

iteration will contain 13 new strings in addition to three strings from the previous generation and

one elite string. This creates a total of 17 strings. This process continuous for 500 iterations.

Once all of the iterations are finished running, the best string is chosen from the last iteration.

The chosen string is the string with the highest fitness value.

After the keys were generated, the key size in bits, the average p-value, the average

Hamming distance between each key in bits, and the time that it took to generate each key in

String of 1s and

0s

Genetic

Algorithm

(Crossover and

Mutation)

Fitness function

selects the best

string

String of 1s and

0s (Key)

24

seconds, were inputted into an Excel file for each algorithm. As previously stated, the Hamming

distance between each key is the number of differing bits between the keys. Therefore, if each

key has a lot of differing bits from the next key, a high Hamming distance, then the keys would

be more random. The average Hamming distance was found by calculating the Hamming

distance between each of the keys, adding these values together, and dividing by one hundred.

One hundred was used because that was the total number of Hamming distances found between

each of the keys. Furthermore, the amount of time key generation takes dictates how quickly the

genetic algorithm can encrypt or decrypt data. This value was found by adding the times for the

generation of each of the ten keys and then dividing by ten. For each test, two separate graphs

were created to compare the performance of the algorithms. The first graph plots the key size and

the average Hamming distance between each key. The second graph plots the key size and the

time that it took to generate the keys.

3.4. Sensitivity Analysis

 After the individual tests were completed, two combinations of five tests were created to

each serve as a single fitness function for the genetic algorithm. The reason that only five fitness

functions were used is due to the amount of time that the sensitivity analysis would take. Table 1

shows the amount of time that it takes for the sensitivity analysis for all thirteen fitness functions

with various amounts of weights. For example, if the thirteen functions are used with 4 weights,

then it would take over one hundred years since it takes an average of ninety seconds to generate

two keys. Whereas, as shown in Table 2, if five functions are used with four weights, it would

only take around five hours to complete the sensitivity analysis since it only takes an average of

eighteen seconds to generate two keys. The average of eighteen seconds was based upon a

random group of five functions being used.

25

Table 1. Estimated Sensitivity Analysis Times for 13 NIST Functions and Various Weights

Amount

of

Weights

Number

of NIST

Functions

Average

Time to

Generate

Two Keys

(Seconds)

Total

Seconds

Total

Minutes

Total

Hours

Total

Days

Total

Years

2 13 90 7.37E+05 1.23E+04 2.05E+02 8.53E+00

3 13 90 1.43E+08 2.39E+06 3.99E+04 1.66E+03 4.55E+00

4 13 90 6.04E+09 1.01E+08 1.68E+06 6.99E+04 1.92E+02

5 13 90 1.10E+11 1.83E+09 3.05E+07 1.27E+06 3.48E+03

6 13 90 1.18E+12 1.96E+10 3.27E+08 1.36E+07 3.73E+04

7 13 90 8.72E+12 1.45E+11 2.42E+09 1.01E+08 2.77E+05

8 13 90 4.95E+13 8.25E+11 1.37E+10 5.73E+08 1.57E+06

9 13 90 2.29E+14 3.81E+12 6.35E+10 2.65E+09 7.25E+06

10 13 90 9.00E+14 1.50E+13 2.50E+11 1.04E+10 2.85E+07

11 13 90 3.11E+15 5.18E+13 8.63E+11 3.60E+10 9.85E+07

Table 2. Estimated Sensitivity Analysis Times for 5 NIST Functions and Various Weights

Amount

of

Weights

Number

of NIST

Functions

Average

Time to

Generate

Two

Keys

(Seconds)

Total

Seconds

Total

Minutes

Total

Hours

Total

Days

Total

Years

2 5 18 5.76E+02 9.60E+00 1.60E-01 6.67E-04

3 5 18 4.37E+03 7.29E+01 1.22E+00 5.06E-02 1.39E-04

4 5 18 1.84E+04 3.07E+02 5.12E+00 2.13E-01 5.84E-04

5 5 18 5.63E+04 9.38E+02 1.56E+01 6.51E-01 1.78E-03

6 5 18 1.40E+05 2.33E+03 3.89E+01 1.62E+00 4.44E-03

7 5 18 3.03E+05 5.04E+03 8.40E+01 3.50E+00 9.59E-03

8 5 18 5.90E+05 9.83E+03 1.64E+02 6.83E+00 1.87E-02

9 5 18 1.06E+06 1.77E+04 2.95E+02 1.23E+01 3.37E-02

10 5 18 1.80E+06 3.00E+04 5.00E+02 2.08E+01 5.71E-02

11 5 18 2.90E+06 4.83E+04 8.05E+02 3.36E+01 9.19E-02

The combinations were created by using the five NIST functions that had the fastest

average time and the five functions that had the largest average Hamming distance. The purpose

of the combinations is to evaluate how the best performers from each evaluation function

perform in a group as the fitness function. Sensitivity analysis was then performed on this

26

combination to determine how the functions impacted the average time and average Hamming

distance of the generated key.

To conduct the sensitivity analysis, weights were applied to each fitness function. The

weights that were applied started at 0.0 and were incremented by 1/3. This resulted in four total

weights: 0.0, 1/3, 2/3, and 1.0. The weight of 0.0 was applied to test whether the combination

would perform better if one or more of the functions did not have an impact on the generated

key. The reason that four weights were used with the two combinations was due to time

constraints. Table 2 shows how different weight amounts affect the time that it takes to complete

the sensitivity analysis with various amounts of weights. For example, the difference in time that

the sensitivity analysis takes for four and five weights is over ten hours.

 Figure 3 shows a flow chart that described the sensitivity analysis:

1. The first combination was made of the top five NIST functions that had the highest

Hamming distances for 256-bit keys. While the second combination was made of the top

five fastest NIST functions for 256-bit keys.

2. For each combination the four weights, 0.0, 1/3, 2/3, and 1.0, were applied to each

function using five for loops. Each iteration of the for loops would give a set of five

weights.

3. The weights and NIST functions were inputted into the fitness function for the genetic

algorithm as weights 1 through 5 and functions 1 through 5. The weights and functions

were used to create an equation were weight 1 was multiplied to function 1, weight 2 was

multiplied to function 2, weight 3 was multiplied to function 3, weight 4 was multiplied

to function 4, and weight 5 was multiplied to function 5. The products were then added

27

together to produce a single value. The key that made this value the highest was then

chosen as the best key.

4. The genetic algorithm generated two 256-bit keys. This key size was chosen because it

required the shortest amount of time to create the key. These two keys were the keys that

resulted in the highest fitness function value.

5. The Hamming distance between the two keys and the average time that it took to

generate the two keys were recorded.

6. Once the keys were generated, the evaluation metric, or formula used to determine which

chosen key had the best combination of Hamming distance and time, was calculated

using the formula:

 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑡𝑟𝑖𝑐 = 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +
1

𝑇𝑖𝑚𝑒
 (1)

The reason that
1

𝑇𝑖𝑚𝑒
 is used is to allow a smaller time value to result in a larger value.

For example, 1/2 , or 0.5, is larger than 1/3, or 0.33.

7. The resulting evaluation metric was compared to the previous best combination of

average Hamming distance and time.

a. If the new evaluation metric was higher than the previous, then the weights,

average Hamming distance, average time, and average p-value were stored.

b. If the new evaluation metric was not higher than the previous, then the weights,

average Hamming distance, average time, and average p-value were not stored.

 Steps 2 through 7 were repeated until all NIST functions in the combination were used with

each weight. At the end, the weights, Hamming distance, time, and p-value that resulted in the

highest evaluation metric were inputted into the Excel file that was used for the individual tests.

28

7a. The weights, average Hamming

distance, average time, and average

p-value were stored

7b. The weights, average Hamming

distance, average time, and average

p-value were not stored

5. The Hamming distance between

the keys and average time to

generate the keys are recorded

6. The evaluation metric is

calculated

3. The weights and functions are inputted

and used as the fitness function for the

genetic algorithm

Fitness function → w1*f1 + w2*f2 + …

4. Two keys were generated

by the genetic algorithm

2. For loops are used to get the

weights for each function (w1,

w2, w3, w4, w5)

1. Each combination is

comprised of five functions

(f1, f2, f3, f4, f5)

7. Is evaluation

metric higher than

the previous

evaluation metric?

No

Yes

29

Figure 3. Sensitivity Analysis Flow Chart

3.5 Prediction

 After the initial sensitivity analysis was run for the top five functions, the sensitivity

analysis was run for the top two, three, and four combinations for Hamming distance and time.

The results from these sensitivity analyses were documented in the Excel file and used with the

top 5 to generate four prediction equations. Three of the equations were generated through linear

regression and one was generated through polynomial regression. Both the linear regressions and

polynomial regression were conducted by using data analysis in Excel.

 Next, sensitivity analysis was conducted on the combinations of the top two NIST

functions for Hamming distance and time for 256-bit keys. This time the variable that was

changed was the key size. The key sizes that were used were 512-bit, 1024-bit, and 2048-bit. The

results from these sensitivity analyses were recorded in the Excel file and used to generate four

prediction equations through linear regression. As with the regressions from the other prediction,

these linear regressions were conducted by using data analysis in Excel.

Chapter 4. Results and Discussion

4.1. Individual Fitness Functions

 To evaluate how the thirteen NIST functions each performed individually for each of the

five key sizes the average hamming distance, time, and p-value for the keys generated were

recorded. Table 3 displayed these statistics for each fitness function.

Table 3. Statistics for Fitness Functions

NIST Functions

Key

Size

(bits)

Average Hamming

Distance (bits)

Average Time

(seconds)

Average

P-value

Frequency (Monobit)

256 114.880 2.286 1.000

512 233.800 3.601 1.000

1024 457.560 6.169 1.000

2048 922.800 11.261 1.000

4096 1838.760 21.612 1.000

Frequency Test Within a

Block

256 113.740 2.048 1.000

512 233.000 3.194 1.000

1024 457.820 5.552 0.999

2048 923.180 10.253 0.999

4096 1840.700 21.924 1.000

Runs Test

256 116.840 2.319 1.000

512 233.840 3.624 1.000

1024 456.080 6.241 1.000

2048 921.960 11.660 1.000

4096 1840.400 21.623 0.999

Test for the Longest Run of

Ones in a Block

256 114.260 2.450 0.999

512 228.520 3.916 0.999

1024 460.020 6.761 0.999

2048 912.420 12.552 1.000

4096 1844.020 23.611 1.000

Binary Matrix Rank Test

256 114.960 6.948 1.000

512 229.520 10.777 0.970

1024 464.000 20.018 0.999

2048 923.020 41.244 0.984

4096 1844.540 94.655 0.981

Discrete Fourier Transform

(Spectral) Test

256 114.640 3.207 0.819

512 229.380 5.317 0.935

1024 461.540 9.641 0.909

2048 922.280 17.769 0.968

4096 1841.340 34.885 0.954

31

Non-overlapping Template

Matching Test

256 114.200 7.993 0.999

512 231.680 17.067 0.999

1024 461.180 35.202 0.986

2048 922.640 72.609 0.868

4096 1842.340 144.852 0.999

Maurer's "Universal

Statistical" Test

256 115.920 2.839 0.999

512 229.440 4.867 0.999

1024 459.740 8.794 0.999

2048 920.500 16.527 0.999

4096 1840.540 32.110 0.999

Serial Test

256 115.240 4.075 2.000

512 232.480 7.340 2.000

1024 458.720 13.507 2.000

2048 919.480 26.534 2.000

4096 1840.600 53.912 2.000

Approximate Entropy Test

256 116.240 4.452 1.000

512 227.740 8.008 0.999

1024 459.100 14.907 0.999

2048 920.440 29.131 0.999

4096 1837.040 59.146 0.999

Cumulative Sums (Cusum)

Test

256 116.640 2.836 1.999

512 228.720 4.614 1.999

1024 463.660 7.999 1.999

2048 925.420 14.400 1.999

4096 1842.800 27.124 1.999

Random Excursions Test

256 115.180 3.978 7.528

512 230.540 6.022 7.473

1024 460.420 9.338 7.500

2048 921.780 16.522 7.550

4096 1844.300 31.544 7.495

Random Excursions Variant

Test

256 115.180 3.371 16.871

512 230.600 6.143 16.867

1024 461.260 11.244 16.568

2048 919.000 21.836 16.249

4096 1847.400 43.070 16.314

Based on the results shown on Table 3, the average time between the tests varied greater

than the average Hamming distance. For example, the average Hamming distance for 256-bit

keys varied by roughly two bits, while the time varied by roughly five seconds. Additionally, for

the majority of the NIST functions, the average p-value cannot be above 1. However, for the

32

serial, cumulative sums (cusum), random excursions, and random excursions variant tests the

average p-values are above one. This is due to these tests using multiple p-values to determine if

a string passes the test. This can be seen in the functions code in Appendix A.

When the thirteen NIST functions were used as individual fitness functions, patterns

started to emerge in the keys. One pattern is that the average Hamming distance for each key size

was almost half of the key size. For example, for 256-bit keys, the average Hamming distance

was between 113.740 and 116.840. The reason that this occurs is most likely due to the

randomness of the keys. An average Hamming distance of half the key size meant that, on

average, each key was only about fifty percent similar to the next. Which, in turn, means that, on

average, fifty percent of each key had no relationship with the next key.

Furthermore, the average Hamming distance for a higher key size was closer to double

the average Hamming distance for the previous key size. For example, the average Hamming

distance for the runs test for 256-bit keys was 116.840. For 512-bit keys, the average Hamming

distance for the runs test was 233.840, which is 2.001 times larger than 116.840. This supports

the idea that the key size and Hamming distance variables were in a linear relationship.

Additionally, a similar pattern appeared in the average time that it took to generate a key

where the times were almost doubled when the key size increased. This pattern was not as

apparent between 256-bit and 512-bit keys, however, as the key size got above 1024-bits, this

became more evident. For example, for the frequency test within a block, the time needed for

512-bit key generation is 1.560 times than the time needed for 256-bit key generation. However,

the time needed for 2048-bit key generation is 1.848 times larger than the time needed for 1024-

bit key generation. Similar to Hamming distance, this doubling pattern was most likely due to the

33

linear relationship between key size and time. For example, 512 is double the value of 256, 1024

is double the value of 512, and so on.

 Furthermore, to better understand how each of the thirteen individual NIST functions

compared to each other two figures were created. Figure 4 is a graph of average hamming

distance for each key size for the thirteen NIST functions. Figure 5 is a graph of the average time

that it took to generate each key for each key size for the thirteen NIST functions.

Figure 4. Key Size vs. Hamming Distance

34

Figure 5. Key Size vs. Time

The results in Figure 4 show that each of the NIST functions had little variance in terms

of average hamming distance. This is conveyed by the graph appearing to only have one or two

lines on it. This is different from Figure 5 where all of the lines are viewed easily. The reason for

that the lines can be viewed in Figure 5 is because there was a higher variance in the average

time values. Therefore, speed would be considered as more of a deciding factor when it comes to

choosing which NIST function to use individually as a fitness function.

4.2. Best Performing Individual Fitness Functions

 To conduct the sensitivity analysis, the average Hamming distances and time of the

thirteen NIST functions were ranked in terms of the key sizes. Table 4 showed the comparison in

terms of average hamming distance between keys. The best average hamming distance

represented the NIST function that had the highest average hamming distance. Table 5 showed

35

the rankings in terms of average time to generate a key for each key size. The best average time

was the NIST function that took the least amount of time to generate a key.

Table 4. Average Hamming Distance Rankings
NIST 256 Hamming 512 Hamming 1024 Hamming 2048 Hamming 4096 Hamming

Function bits Distance bits Distance bits Distance bits Distance bits Distance

 (bits) (bits) (bits) (bits) (bits)

Frequency

(Monobit)
9 114.880 2 233.800 12 457.560 4 922.800 12 1838.760

Frequency

Test within a

Block

13 113.740 3 233.000 11 457.820 2 923.180 8 1840.700

Runs Test 1 116.840 1 233.840 13 456.080 7 921.960 11 1840.400

Test for the

Longest Run

of Ones in a

Block

11 114.260 12 228.520 7 460.020 13 912.420 4 1844.020

Binary

Matrix Rank

Test

8 114.960 8 229.520 1 464.000 3 923.020 2 1844.540

Discrete

Fourier

Transform

(Spectral)

Test

10 114.640 10 229.380 3 461.540 6 922.280 7 1841.340

Non-

overlapping

Template

Matching

Test

12 114.200 5 231.680 5 461.180 5 922.640 6 1842.340

Maurer's

"Universal

Statistical"

Test

4 115.920 9 229.440 8 459.740 9 920.500 10 1840.540

Serial Test 5 115.240 4 232.480 10 458.720 11 919.480 9 1840.600

Approximate

Entropy Test
3 116.240 13 227.740 9 459.100 10 920.440 13 1837.040

Cumulative

Sums

(Cusum)

Test

2 116.640 11 228.720 2 463.660 1 925.420 5 1842.800

Random

Excursions

Test

6 115.180 7 230.540 6 460.420 8 921.780 3 1844.300

Random

Excursions

Variant Test

7 115.180 6 230.600 4 461.260 12 919.000 1 1847.400

From the results on Table 4, the best, number one, performing test for average Hamming

distance is not the same for each key size. The best performing function for average Hamming

36

distance for 256-bit and 512-bit keys was the Runs Test. Whereas, the best performing tests for

1024-bit, 2048-bit, and 4096-bit keys were the binary matrix rank test, cumulative sums (cusum)

test, and random excursions variant test. Furthermore, this lack of consistency could be seen

throughout the table by many functions drastically changing ranking.

Table 5. Average Time Rankings
NIST 256 Time 512 Time 1024 Time 2048 Time 4096 Time

Function bits (seconds) bits (seconds) bits (seconds) bits (seconds) bits (seconds)

Frequency

(Monobit)
1 2.286 1 3.601 1 6.169 1 11.261 1 21.612

Frequency

Test within a

Block

2 2.048 2 3.194 2 5.552 2 10.253 3 21.924

Runs Test 3 2.319 3 3.624 3 6.241 3 11.660 2 21.623

Test for the

Longest Run

of Ones in a

Block

4 2.450 4 3.916 4 6.761 4 12.552 4 23.611

Binary

Matrix Rank

Test

12 6.948 12 10.777 12 20.018 12 41.244 12 94.655

Discrete

Fourier

Transform

(Spectral)

Test

7 3.207 7 5.317 8 9.641 8 17.769 8 34.885

Non-

overlapping

Template

Matching

Test

13 7.993 13 17.067 13 35.202 13 72.609 13 144.852

Maurer's

"Universal

Statistical"

Test

6 2.839 6 4.867 6 8.794 7 16.527 7 32.110

Serial Test 10 4.075 10 7.340 10 13.507 10 26.534 10 53.912

Approximate

Entropy Test
11 4.452 11 8.008 11 14.907 11 29.131 11 59.146

Cumulative

Sums

(Cusum)

Test

5 2.836 5 4.614 5 7.999 5 14.400 5 27.124

Random

Excursions

Test

9 3.978 8 6.022 7 9.338 6 16.522 6 31.544

Random

Excursions

Variant Test

8 3.371 9 6.143 9 11.244 9 21.836 9 43.070

37

 Based on the results on Table 5, the performance of the NIST functions for average time

was much more consistent. In fact, there was only one change in the top five performing

functions for each key size. This change occurred when the runs test outperformed the frequency

test within a block for 4096-bit keys. Additionally, outside of the top five, there was few NIST

functions that changed position as the key size changed.

Moving forward, Tables 4 and 5 further exhibited that there was more variance between time

then Hamming distance. For example, for 256-bit keys, the average Hamming distance ranged

from 113.740 to 116.840, while the average times ranged from 2.048 to 7.993. Additionally,

these tables show that the best performer for either evaluation function for each key size was not

always the same. For example, the runs test had the highest Hamming distance for 256-bit and

512-bit keys, however the binary matrix rank test, cumulative sums (cusum) test, and the random

excursions variant test had the highest average Hamming distance for 1024-bit, 2048-bit, and

4096-bit keys respectively.

Furthermore, the complexity of the NIST functions had an impact on the time that the genetic

algorithm stream cipher took to generate a key. For example, simpler NIST functions, like

frequency monobit and frequency test within a block, had a shorter time to generate keys, than

more complex tests, like the binary matrix rank test. Furthermore, the design of the NIST tests

potentially had an impact on the average Hamming distance. For example, some of the NIST

tests were designed for large bit sizes, like the random excursion test and random excursion

variant tests. These two tests had two of the top three Hamming distances values for the largest

key size.

Regardless, the average Hamming distance and time values were different for each NIST

function. Furthermore, the order of the best performing NIST functions for average Hamming

38

distance for each key size was different than the order of the best performing NIST functions for

average time. Thus, the following hypotheses are not rejected:

• Certain fitness functions will cause the genetic algorithm stream cipher to generate more

random keys than other fitness functions.

• Certain fitness functions will cause the genetic algorithm stream cipher to generate keys

faster than other fitness functions.

4.3. Combinations of Fitness Functions

 To evaluate how a combination of NIST functions perform as a single fitness function,

the top five performs in terms of average hamming distance and average time for 256-bit key

generation were put into two combinations. This key size was chosen because it required the

shortest amount of time to create the key. The first combination contained the top five average

hamming distance performers, and the second combination contained the top five average time

performers. Sensitivity analysis was then conducted on each combination and the results are

recorded in Tables 6 and 7. These tables include the weights that were applied to each fitness

function as well as the average hamming distance, time, and p-value.

Table 6. Top Five Hamming Distance Performers for 256-bit Key Generation

Fitness Function Weight Evaluation Function Value

Runs Test 1.000 Hamming Distance (bits) 154.000

Cumulative Sums (Cusum) Test 0.000 Average Time (seconds) 8.520

Approximate Entropy Test 0.333 Average P-value 2.667

Maurer's "Universal Statistical" Test 0.000

Serial Test 0.667

Table 7. Top Five Time Performers for 256-bit Key Generation

Fitness Function Weight Evaluation Function Value

Frequency Test within a Block 0.000 Hamming Distance (bits) 152.000

Frequency (Monobit) 0.333 Average Time (seconds) 4.134

Runs Test 1.000 Average P-value 2.332

Test for the Longest Run of Ones in a Block 0.333

39

Cumulative Sums (Cusum) Test 0.333

 Based on the results in Tables 6 and 7, the best performing combination canceled out at

least one of the functions. In the first combination, the top five Hamming distance performers,

the cumulative sums (cusum) and Maurer’s “Universal Statistical” test were canceled out. While

in the second combination, the top five time performers, the frequency test within a block was

canceled out. As expected, the top five Hamming distance performers combination had a higher

Hamming distance than the top five time performers combination. Whereas the top five time

performers had a quicker time than the top five Hamming distance performers. However, the

Hamming distance difference was only two bits, while the difference in average time between

the two combinations was about four seconds. Additionally, the average p-value for each of the

combinations was between 2 and 3.

In regard to the individual tests, both combinations had a much higher Hamming distance for

256-bit keys. However, neither had a better time than the individual best performing NIST

function for 256-bit keys. Although, if the same evaluation metric, Equation 1, that was used to

select the best combination in the sensitivity analysis was applied to the individual NIST tests,

then both the combinations would have a higher evaluation metric than any of the individual

NIST tests. When looking at the average Hamming distance and time for the two combinations,

the average time still has a bigger difference then the average Hamming distance. Since the

evaluation metric is higher for the combinations, and both the combinations have different

average Hamming distance and time values the following hypotheses are not rejected:

• The combination of multiple functions as a single fitness function will improve the keys

that are generated by the genetic algorithm stream cipher.

40

• Certain combinations of functions as fitness functions will generate more random keys

than other combinations of functions.

• Certain combinations of functions as fitness functions will generate keys faster than other

combinations of functions.

4.4 Prediction

4.4.1. Prediction based on number of functions.

 The prediction equations to predict the Hamming distance and average time according to

the amount of NIST functions were created using the results from the top two through five

combinations of NIST functions. The NIST functions in the combinations were chosen in respect

to their individual average time performance for 256-bit keys in Table 5. Equation 2 was created

through linear regression and Equation 3 was created through polynomial regression.

 𝑦 = 0.5815𝑥 + 1.039 (2)

 𝑦 = 2.8333𝑥3 − 31𝑥2 + 110.17𝑥 + 22 (3)

The reason that polynomial regression was used for Equation 5 instead of linear regression was

because polynomial regression resulted in an R2 of 1. This means that the equation perfectly fits

the actual data. Furthermore, linear regression was used for Equation 2 because the R2 value was

above 0.9. These prediction equations were used to predict the Hamming distance and average

time values for the top 2 functions to all 13 functions. The predicted Hamming distance and

average time values for the top 2 to 5 combinations were then compared with the actual values in

Table 8 and Figures 6 and 7.

Table 8. Prediction Using Top 5 Average Time Fitness Functions

Number

of

functions

Actual Hamming

Distance (bits)

Predicted

Hamming Distance

(bits)

Actual Average

Time (seconds)

Predicted Average

Time (seconds)

2 141.000 141.006 2.353 2.202

3 150.000 150.009 2.669 2.784

41

4 148.000 148.011 3.141 3.365

5 152.000 152.013 4.134 3.947

6 179.013 4.528

7 246.012 5.110

8 370.010 5.691

9 568.006 6.273

10 857.000 6.854

11 1253.992 7.436

12 1775.982 8.017

13 2439.970 8.599

Figure 6. Predicted vs. Actual Hamming Distance for Top 5 Average Time Fitness Functions

42

Figure 7. Predicted vs. Actual Average Time for Top 5 Average Time Fitness Functions

Based on the results, the predicted values for Hamming distance on Table 8 were very

close to the actual values. This was most likely due to the R2 value for the polynomial regression

being 1, which means that the equation, Equation 3, perfectly fits the actual data. However, due

to the way that Hamming distance is calculated, the Hamming distance cannot be above the key

size. This means that at the tested key length 256-bits, the Hamming distance cannot exceed 256

bits. Therefore, it is believed that the predicted Hamming distance values that are above 256 bits

mean that the keys would have a Hamming distance of 256 bit indicating the keys are completely

dissimilar from all other keys produced. Further research can be done to support this theory. The

line of best fit represented by Equation 3 further support the close fit of the equation to the data

as shown in Figure 6. Furthermore, the predicted average time values were within two tenths of

the actual values, which was within the standard error of 0.40. Again, this was most likely due to

the R2 of Equation 2 being above 0.93.

43

The prediction equations to predict the Hamming distance and average time according to

the amount of NIST functions were created using the results from the top two through five

combinations of NIST functions. The NIST functions in the combinations were chosen in respect

to their individual Hamming distance performance for 256-bit keys in Table 4. The prediction

equations, Equations 4 and 5, were created through linear regression.

 𝑦 = 1.668𝑥 + 0.1595 (4)

 𝑦 = 5.8𝑥 + 126.2 (5)

Linear regression was used because it resulted in R2 values above 0.99. The prediction equations

were used to predict the Hamming distance and average time values for the top 2 functions to all

13 functions. The predicted Hamming distance and average time values for the top 2 to 5

combinations were then compared with the actual values in Table 9 and Figures 8 and 9.

Table 9. Prediction Using Top 5 Hamming Distance Fitness Functions

Number of

functions

Actual Hamming

Distance (bits)

Predicted Hamming

Distance (bits)

Actual Average

Time (seconds)

Predicted Average

Time (seconds)

2 136.000 137.800 3.231 3.496

3 146.000 143.600 5.713 5.164

4 150.000 149.400 6.526 6.832

5 154.000 155.200 8.520 8.500

6 161.000 10.168

7 166.800 11.836

8 172.600 13.504

9 178.400 15.172

10 184.200 16.840

11 190.000 18.508

12 195.800 20.176

13 201.600 21.844

44

Figure 8. Predicted vs. Actual Hamming Distance for Top 5 Hamming Distance Fitness

Functions

Figure 9. Predicted vs. Actual Average Time for Top 5 Hamming Distance Fitness Functions

45

 Based on the results, the predictions made for Hamming distance in Table 9 were not as

close to the actual values as the predicted Hamming distance values in Table 8. The higher

inaccuracy of the predictions is due to the lower R2 value for Equation 5. The R2 for equation 5

was 0.94, whereas the R2 for Equation 3 was 1. The average time predictions in Table 9 became

closer to the actual values as the number of functions increased. Regardless, all of the predicted

values were within the standard error of 0.79 when compared to the actual values.

 4.4.2. Prediction based on key size.

The first two prediction equations to predict the Hamming distance and average time

according to the size of the key were created using the results from sensitivity analyses

conducted on the combination of the top two performing NIST functions in terms of average

time for 256-bit keys. The equations were created through linear regression.

 𝑦 = 0.0059𝑥 + 0.7593 (6)

 𝑦 = 0.5216𝑥 + 13.478 (7)

Equations 6, for time, and 7, for Hamming distance, were used to predict the values for 256-bit,

512-bit, 1024-bit, 2048-bit, and 4096-bit keys. The predicted Hamming distance and time values

for 256-bit, 512-bit, 1024-bit, and 2048-bit keys were compared with the actual values in Table

10 and Figures 10 and 11.

Table 10. Prediction Using Key Size for Top Two Average Time Fitness Functions

Key

Size

(bits)

Actual Hamming

Distance (bits)

Predicted

Hamming Distance

(bits)

Actual Average

Time (seconds)

Predicted Average

Time (seconds)

256 141.000 147.008 2.353 2.270

512 282.000 280.537 3.776 3.780

1024 556.000 547.596 6.716 6.801

2048 1078.000 1081.715 12.942 12.843

4096 2149.952 24.926

46

Figure 10. Predicted vs. Actual Hamming Distance for Key Size for Top 2 Average Time

Fitness Functions

Figure 11. Predicted vs. Actual Average Time for Key Size for Top 2 Average Time Fitness

Functions

47

From the results, the predicted values on Table 10 were relatively close to the actual

values for Hamming distance and average time. All of the predicted values for Hamming

distance fell within the standard error of 8.08 except for the predicted value for 1024-bit keys.

For the average time predictions, all of the predicted values fell within the standard error of 0.17.

Figures 10 and 11 exhibit this by how much overlap occurs between the predicted values line and

actual values line.

The other two prediction equations to predict the Hamming distance and average time

according to the size of the key were created using the results from sensitivity analyses

conducted on the combination of the top two performing NIST functions in terms of Hamming

distance for 256-bit keys. The equations were created through linear regression.

 𝑦 = 0.0072𝑥 + 1.5585 (8)

 𝑦 = 0.531𝑥 − 1.5217 (9)

Equations 8, for time, and 9, for Hamming distance, were used to predict the values for 256-bit,

512-bit, 1024-bit, 2048-bit, and 4096-bit keys. The predicted Hamming distance and time values

for 256-bit, 512-bit, 1024-bit, and 2048-bit keys were compared with the actual values in Table

11 and Figures 12 and 13.

Table 11. Prediction Using Key Size for Top Two Hamming Distance Fitness Functions

Key

Size

(bits)

Actual Hamming

Distance (bits)

Predicted

Hamming Distance

(bits)

Actual Average

Time (seconds)

Predicted Average

Time (seconds)

256 136.000 134.409 3.231 3.402

512 276.000 270.345 5.335 5.245

1024 531.000 542.217 9.111 8.931

2048 1090.000 1085.961 16.233 16.304

4096 2173.449 31.050

48

Figure 12. Predicted vs. Actual Hamming Distance for Key Size for Top 2 Hamming Distance

Fitness Functions

Figure 13. Predicted vs. Actual Average Time for Key Size for Top 2 Hamming Distance

Fitness Functions

49

 The predicted values in Table 11 were also relatively close to the actual values for

Hamming distance and time. Similar to the predicted Hamming distance values in Table 10, the

predicted value for 1024-bit keys fell outside of the standard error of 6.73 for Equation 9. In

regard to the average time predictions in Table 11, all of the values fell outside the standard error

of 0.08 for Equation 8. This means that these values fall more than one standard deviation from

the mean. However, the values do fall within two standard deviations from the mean. Figures 12

and 13 further showed that the values were still close by the overlap between the two lines.

Additionally, the R2 values for Equations 6 through 9 were above 0.99, which explains the

closeness of the predicted values.

Due to the closeness of the predicted results in Tables 8 to 11 and the R2 values for the

equations, the following hypotheses are not rejected:

• The Hamming distance and time results could be accurately predicted using regression.

• The Hamming distance and time results for 256-bit keys for the top two functions could

be accurately predicted using regression.

Chapter 5. Conclusion

The goal of this research was to identify the effect that fitness functions, either used

individually or in a combination, have on a genetic algorithm stream cipher and to predict the

Hamming distance and average time through the results of the sensitivity analyses. To conduct

this experiment thirteen individual NIST functions and two combinations of NIST functions

were used as the fitness function for the genetic algorithm. The reason that only two

combinations were used was due to time constraints. However, the two combinations that were

tested produced differing results. Furthermore, each of the individual tests performed differently

in terms of Hamming distance and time to generate a key. Additionally, prediction equations

were found to closely predict the Hamming distance and average time values depending on the

number of functions used or key size. Overall, this research showed that the randomness of the

keys and the time that it takes to generate a key depend upon the individual fitness function or

combination of fitness functions used.

Due to resource limitations, the evaluation of how combinations of fitness functions

affect the genetic algorithm stream cipher and the identification of which stream cipher is the

best for a given scenario were not completed. In future research, researchers should apply

parallel computing to test all possible combinations of the thirteen NIST functions. Examples of

parallel computing include CUDA and virtual machine clusters. Parallel computing will reduce

the amount of time that it takes to generate the keys for each combination. This reduction of time

will allow for each combination to be tested faster.

Additionally, this will allow for researchers to use each combination to generate more

keys which will help account for randomness in the calculation of the Equation 1 to evaluate the

combinations of functions. The analysis of all combinations will show how each combination

51

affects the genetic algorithm stream cipher. Furthermore, since all combinations will be tested

the combinations can be compared with the individual tests to identify when stream cipher is the

best for a given scenario.

Future researchers could perform additional sensitivity analysis with more data points

and different key sizes to produce more accurate prediction formulas that address a variety of

possible function and key size combinations. Furthermore, multivariable analysis would allow

researches to investigate the relationship and potential influence of multiple factors on Hamming

distance and/or average time. These factors can include key size, weights, number of functions,

combination of functions, or factors not addressed in this research.

References

Ali, A. M. (2013). Randomly encryption using genetic algorithm. Int. J. Appl. Innov. Eng.

Manage., 2(8), 242-246.

Alzubi, J., Nayyar, A., & Kumar, A. (2018, November). Machine learning from theory to

algorithms: an overview. Journal of physics: conference series 1142(1). IOP Publishing.

https://doi.org/10.1088/1742-6596/1142/1/012012

Bassham III, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Barker, E. B., ... & Vo,

S. (2010). SP 800-22 rev. 1a. a statistical test suite for random and pseudorandom number

generators for cryptographic applications. NIST.

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

Black, P. E. (2006, May 31). Hamming distance. Dictionary of Algorithms and Data Structures.

https://www.nist.gov/dads/HTML/HammingDistance.html

Chandra, S., Bhattacharyya, S., Paira, S., & Alam, S. S. (2014a). A study and analysis on

symmetric cryptography. Paper presented at the 2014 International Conference on

Science Engineering and Management Research (ICSEMR) (pp. 1-8).

https://doi.org/10.1109/ICSEMR.2014.7043664

Chandra, S., Paira, S., Alam, S. S., & Sanyal, G. (2014b). A comparative survey of symmetric

and asymmetric key cryptography. Paper presented at the 2014 international conference

on electronics, communication and computational engineering (ICECCE) (pp. 83-93).

https://doi.org/10.1109/ICECCE.2014.7086640

De Jong, K. (1988). Learning with genetic algorithms: An overview. Machine learning, 3(2),

121-138. https://doi.org/10.1007/BF00113894

https://doi.org/10.1088/1742-6596/1142/1/012012
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://www.nist.gov/dads/HTML/HammingDistance.html
https://doi.org/10.1109/ICSEMR.2014.7043664
https://doi.org/10.1109/ICECCE.2014.7086640
https://doi.org/10.1007/BF00113894

53

Deng, L. Y., & Bowman, D. (2017). Developments in pseudo‐random number generators. Wiley

Interdisciplinary Reviews: Computational Statistics, 9:e1404.

https://doi.org/10.1002/wics.1404

Ding, Y., Tan, F., Qin, Z., Cao, M., Choo, K.-K. R., & Qin, Z. (2021). DeepKeyGen: A Deep

Learning-Based Stream Cipher Generator for Medical Image Encryption and Decryption.

IEEE Transactions on Neural Networks and Learning Systems, 1-15.

doi:10.1109/TNNLS.2021.3062754

Fadil, T. A., Yaakob, S. N., & Ahmad, B. (2014). A hybrid chaos and neural network cipher

encryption algorithm for compressed video signal transmission over wireless channel.

2014 2nd International Conference on Electronic Design (ICED). Penang, Malaysia.

doi:10.1109/ICED.2014.7015772

Fradkov, A. L. (2020). Early history of machine learning. IFAC-PapersOnLine, 53(2), 1385-

1390. https://doi.org/10.1016/j.ifacol.2020.12.1888

Gorbenko, I., Kuznetsov, A., Lutsenko, M., & Ivanenko, D. (2017). The research of modern

stream ciphers. Paper presented at the 2017 4th International Scientific-Practical

Conference Problems of Infocommunications. Science and Technology (PIC S&T) (pp.

207-210). https://doi.org/10.1109/INFOCOMMST.2017.8246381

Goyat, S. (2012). Cryptography Using Genetic Algorithms (GAs). OSR Journal of Computer

Engineering (IOSRJCE), 1(5), 06–08. www.iosrjournals.org

Guo, D., Cheng, L. M., & Cheng, L. L. (1999). A New Symmetric Probabilistic Encryption

Scheme Based on Chaotic Attractors of Neural Networks. Applied Intelligence, 10, 71-

84. doi:10.1023/A:1008337631906

https://doi.org/10.1002/wics.1404
https://doi.org/10.1016/j.ifacol.2020.12.1888
https://doi.org/10.1109/INFOCOMMST.2017.8246381

54

Hjelle, G. A. (2022, March 21). Python Timer Functions: Three Ways to Monitor Your Code.

Real Python. https://realpython.com/python-timer/

Jiao, L., Hao, Y., & Feng, D. (2020). Stream cipher designs: a review. Science China

Information Sciences, 63(3), 1-25. https://doi.org/10.1007/s11432-018-9929-x

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349(6245), 255-260. https://doi.org/0.1126/science.aac4520

Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present,

and future. Multimedia Tools and Applications, 80(5), 8091-8126.

https://doi.org/10.1007/s11042-020-10139-6

Krishna, G. J., Ravi, V., & Bhattu, S. N. (2018). Key generation for plain text in stream cipher

via bi-objective evolutionary computing. Applied Soft Computing, 70, 301–317.

https://doi.org/10.1016/j.asoc.2018.05.025

Kumar, A., & Chatterjee, K. (2016). An efficient stream cipher using genetic algorithm. In 2016

International Conference on Wireless Communications, Signal Processing and

Networking (WiSPNET) (pp. 2322-2326). IEEE. https://doi.org/

10.1109/WiSPNET.2016.7566557

Lalar, D., & Nahta, R. (2016). Stream cipher. International Journal of Advanced Research in

Computer Science, 7(7). https://www.proquest.com/scholarly-journals/stream-

cipher/docview/1871594708/se-2

Lian, S. (2009). A block cipher based on chaotic neural networks. Neurocomputing, 72(4-6),

1296-1301. doi:10.1016/j.neucom.2008.11.005

https://doi.org/10.1007/s11432-018-9929-x
https://doi.org/0.1126/science.aac4520
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1016/j.asoc.2018.05.025
https://doi.org/10.1109/WiSPNET.2016.7566557
https://www.proquest.com/scholarly-journals/stream-cipher/docview/1871594708/se-2
https://www.proquest.com/scholarly-journals/stream-cipher/docview/1871594708/se-2

55

Long, H. (2012). Stream Cipher Method Based on Neural Network. National Conference on

Information Technology and Computer Science (CITCS 2021), (pp. 414-417). Dongguan,

China. Retrieved from https://www.atlantis-press.com/article/3111.pdf

Mahesh, B. (2020). Machine learning algorithms: A Review. International Journal of Science

and Research (IJSR). 9, 381-386.

Manifavas, C., Hatzivasilis, G., Fysarakis, K., & Papaefstathiou, Y. (2016). A survey of

lightweight stream ciphers for embedded systems. Security and Communication

Networks, 9(10), 1226-1246. https://doi.org/10.1002/sec.1399

Nazeer, M. I., Mallah, G. A., Shaikh, N. A., Bhatra, R., Memon, R. A., & Mangrio, M. I. (2018).

Implication of genetic algorithm in cryptography to enhance security. International

Journal of Advanced Computer Science and Applications, 9(6), 375-379.

Nierhaus, G. (2009) Genetic Algorithms. Algorithmic Composition. Springer, Vienna.

https://doi.org/10.1007/978-3-211-75540-2_7

Noura, H., Samhat, A. E., Harkouss, Y., & Yahiya, T. A. (2015). Design and realization of a new

neural block cipher. 2015 International Conference on Applied Research in Computer

Science and Engineering (ICAR), (pp. 1-6). Beiriut, Lebanon.

doi:10.1109/ARCSE.2015.7338131

Pandey, D., Niwaria, K., & Chourasia, B. (2019). Machine Learning Algorithms: A Review.

International Research Journal of Engineering and Technology (IRJET) , 6(2), 916–922.

www.irjet.net

Plasek, A. (2016). On the cruelty of really writing a history of machine learning. IEEE Annals of

the History of Computing, 38(4), 6-8. https://doi.org/10.1109/MAHC.2016.43

Pasqualini, L. (2021). Nistrng (Version 1.2.3). PyPI. https://pypi.org/project/nistrng/

https://doi.org/10.1002/sec.1399
https://doi.org/10.1007/978-3-211-75540-2_7
http://www.irjet.net/
https://doi.org/10.1109/MAHC.2016.43
https://pypi.org/project/nistrng/

56

S. Sakr, A., Y. Shams, M., Mahmoud, A., & Zidan, M. (2022). Amino acid encryption method

using genetic algorithm for key generation. Computers, Materials & Continua, 70(1),

123-134. https://doi.org/10.32604/cmc.2022.019455

Sah, S. (2020). Machine learning: A review of learning types. Preprints.

https://doi.org/10.20944/preprints202007.0230.v1

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research

directions. SN Computer Science, 2(3), 1-21. https://doi.org/10.1007/s42979-021-00592-x

Sindhuja, K., & Devi, S. P. (2014). A symmetric key encryption technique using genetic

algorithm. International journal of computer science and information technologies, 5(1),

414-416.

Solgi, M. (2020). geneticalgorithm (Version 1.0.2). PyPI.

https://pypi.org/project/geneticalgorithm/

Som, S., Chatterjee, N. S., & Mandal, J. K. (2011). Key based bit level genetic cryptographic

technique (KBGCT). Paper presented at the 240-245.

https://doi.org/10.1109/ISIAS.2011.6122826

Stallings, W. (2017). Cryptography and Network Security. Pearson Education, Inc.

Sudeepa, K. B., Aithal, G., Rajinikanth, V., & Satapathy, S. C. (2020). Genetic algorithm based

key sequence generation for cipher system. Pattern Recognition Letters, 133, 341–348.

https://doi.org/10.1016/j.patrec.2020.03.015

Tsai, M., & Cho, H. (2021). A high security symmetric key generation by using genetic

algorithm based on a novel similarity model. Mobile Networks and Applications, 26(3),

1386-1396. https://doi.org/10.1007/s11036-021-01753-1

https://doi.org/10.32604/cmc.2022.019455
https://doi.org/10.20944/preprints202007.0230.v1
https://doi.org/10.1007/s42979-021-00592-x
https://pypi.org/project/geneticalgorithm/
https://doi.org/10.1109/ISIAS.2011.6122826
https://doi.org/10.1007/s11036-021-01753-1

57

Verma, V. K., & Kumar, B. (2014). Genetic algorithm: an overview and its application.

International Journal of Advanced Studies in Computers, Science and Engineering, 3(2),

21. www.ijascse.org

Zeng, K., Yang, C. H., Wei, D. Y., & Rao, T. R. N. (1991). Pseudorandom bit generators in

stream-cipher cryptography. Computer, 24(2), 8-17. https://doi.org/10.1109/2.67207

http://www.ijascse.org/
https://doi.org/10.1109/2.67207

Appendix A – NIST SP 800-22r1a Tests

 This appendix contains the python code for the thirteen tests. This code was structured to

be as similar as possible to the original C code developed by NIST in NIST SP 800-22r1a.

A.1. Frequency (Monobit)

import math
def freq_monobit(ga_array):
 n = len(ga_array)
 sum = 0.0
 for i in range(n):
 sum += 2*int(ga_array[i])-1
 s_obs = abs(sum) / math.sqrt(n)
 f = s_obs / math.sqrt(2)
 p_value = math.erfc(f)
 return p_value

A.2. Frequency Test Within a Block

import scipy.special
def block_freq(ga_array):
 block_len = 64
 num_block = len(ga_array) // block_len
 sum = 0
 for i in range(num_block):
 block_sum = 0
 for j in range(num_block):
 block_sum += int(ga_array[j+i*num_block])
 pi = block_sum / num_block
 v = pi - 0.5
 sum += v * v
 chi_squared = 4.0 * block_len * sum
 p_value = scipy.special.gammaincc((num_block/2.0), (chi_squared/2.0))
 return p_value

A.3. Runs Test

import math
def runs(ga_array):
 n = len(ga_array)
 array = [int(x) for x in ga_array]
 S = array.count(1)
 pi = float(S) / n
 if abs(pi - 0.5) > (2.0 / math.sqrt(n)):
 p_value = 0.0
 else:
 V = 1
 for k in range(1, n):
 if array[k] != array[k-1]:
 V += 1
 erfc_arg = abs(V - 2.0 * n * pi * (1 - pi)) / (2.0 * pi * (1 - pi) *

math.sqrt(2 * n))
 p_value = math.erfc(erfc_arg)
 return p_value

A.4. Test for the Longest Run of Ones in a Block

import scipy.special

59

def longestrunofones(ga_array):
 n = len(ga_array)
 assert n >= 128
 if n < 6272:
 K = 3
 M = 8
 V = [1, 2, 3, 4]
 pi = [0.21484375, 0.3671875, 0.23046875, 0.1875]
 elif 6272 < n < 750000:
 K = 5
 M = 128
 V = [4, 5, 6, 7, 8, 9]
 pi = [0.1174035788, 0.242955959, 0.249363483, 0.17517706,

0.102701071, 0.112398847]
 else:
 K = 6
 M = 10000
 V = [10, 11, 12, 13, 14, 15, 16]
 pi = [0.0882, 0.2092, 0.2483, 0.1933, 0.1208, 0.0675, 0.0727]

 N = n // M
 nu = [0] * (K + 1)
 for i in range(N):
 v_n_obs = 0
 run = 0
 for j in range(M):
 if int(ga_array[i*M+j]) == 1:
 run += 1
 if run > v_n_obs:
 v_n_obs = run
 else:
 run = 0
 if v_n_obs < V[0]:
 nu[0] += 1
 for j in range(K+1):
 if v_n_obs == V[j]:
 nu[j] += 1
 if v_n_obs > V[K]:
 nu[K] += 1

 chi2 = 0.0
 for i in range(K+1):
 chi2 += ((nu[i] - N * pi[i]) * (nu[i] - N * pi[i])) / (N * pi[i])

 p_value = scipy.special.gammaincc(float(K/2.0), (chi2 / 2.0))
 return p_value

A.5. Binary Matrix Rank Test

import math
import numpy
import nistmatrixdefinitions as nmatrix
def binary_matrix_rank(ga_array):
 n = len(ga_array)
 M = int(math.sqrt(n / 38))
 Q = int(math.sqrt(n / 38))
 N = n // (M * Q)

 if N == 0:
 p_value = 0.0
 else:
 r = M
 product = 1
 for i in range(r):

60

 product *= float(((1.0 - (2 ** (i - Q))) * (1.0 - (2 ** (i -
M)))) / (1.0 - (2 ** (i - r))))

 p_32 = float(2 ** (r * (Q + M - r) - (M * Q))) * product

 r = M - 1
 product = 1
 for i in range(r):
 product *= float(((1.0 - (2 ** (i - Q))) * (1.0 - (2 ** (i -

M)))) / (1.0 - (2 ** (i - r))))
 p_31 = float(2 ** (r * (Q + M - r) - (M * Q))) * product

 p_30 = 1 - (p_32 + p_31)

 F_32 = 0
 F_31 = 0
 for k in range(N):
 matrix = nmatrix.BinaryMatrix(ga_array, M, Q, k)
 R = matrix.compute_rank()
 if R == M:
 F_32 += 1
 if R == M - 1:
 F_31 += 1
 F_30 = (N - (F_32 + F_31))
 chi_squared_F_32 = ((F_32 - (N * p_32)) ** 2) / (N * p_32)
 chi_squared_F_31 = ((F_31 - (N * p_31)) ** 2) / (N * p_31)
 chi_squared_F_30 = ((F_30 - (N * p_30)) ** 2) / (N * p_30)
 chi_squared = chi_squared_F_32 + chi_squared_F_31 + chi_squared_F_30
 arg1 = -chi_squared/2.0
 p_value = math.e ** arg1
 return p_value

Matrix Creation (nistmatrixdefinitions) Code:

import numpy

class BinaryMatrix():
 def __init__(self, bitstring, M, Q, k):
 self.rows = M
 self.columns = Q
 self.matrix = self.def_matrix(bitstring, k)
 self.base_rank = min(M, Q)

 def perform_row_operations(self, i, forward_elimination):
 if forward_elimination == 1:
 j = i + 1
 while j < self.rows:
 if self.matrix[j, i] == 1:
 for k in range(self.columns):
 self.matrix[j, k] = (self.matrix[j, k] +

self.matrix[i, k]) % 2
 j += 1

 else:
 j = i - 1
 while j >= 0:
 if self.matrix[j, i] == 1:
 for k in range(self.columns):
 self.matrix[j, k] = (self.matrix[j, k] +

self.matrix[i, k]) % 2
 j -= 1

 def find_unit_element_and_swap(self, i, forward_elimination):
 row_op = 0

61

 if forward_elimination == 1:
 index = i + 1
 while index < self.rows and self.matrix[index, i] == 0:
 index += 1
 if index < self.rows:
 row_op = self.swap_rows(i, index)
 else:

 index = i - 1
 while index >= 0 and self.matrix[index, i] == 0:
 index -= 1
 if index >= 0:
 row_op = self.swap_rows(i, index)

 return row_op

 def swap_rows(self, i, index):
 temp = copy.copy(self.matrix[i, :])
 self.matrix[i, :] = self.matrix[index, :]
 self.matrix[index, :] = temp
 return 1

 def determine_rank(self):
 rank = self.base_rank
 for i in range(self.rows):
 allzeroes = 1
 for j in range(self.columns):
 if self.matrix[i, j] == 1:
 allzeroes = 0
 break

 if allzeroes == 1:
 rank -= 1
 return rank

 def compute_rank(self):
 i = 0
 while i < (self.base_rank - 1):
 if self.matrix[i, i] == 1:
 self.perform_row_operations(i, 1)
 else:
 if self.find_unit_element_and_swap(i, 1) == 1:
 self.perform_row_operations(i, 1)
 i += 1

 i = self.base_rank - 1
 while i > 0:
 if self.matrix[i, i] == 1:
 self.perform_row_operations(i, 0)
 else:
 if self.find_unit_element_and_swap(i, 0) == 1:
 self.perform_row_operations(i, 0)
 i -= 1

 return self.determine_rank()

 def def_matrix(self, bitstring, k):
 matrix = numpy.ndarray(shape=(self.rows, self.columns), dtype=int)
 for i in range(self.rows):
 for j in range(self.columns):
 matrix[i, j] = int(bitstring[k * (self.rows * self.columns) +

j + i * self.rows])
 return matrix

62

A.6. Discrete Fourier Transform (Spectral) Test

import math
import scipy.fftpack
def discrete_fourier_transform(ga_array):
 n = len(ga_array)
 X = [0] * n
 m = [0] * (n // 2)
 for i in range(n):
 X[i] = 2 * int(ga_array[i]) - 1

 dft = scipy.fftpack.rfft(X, n=n)

 m[0] = math.sqrt(dft[0] * dft[0])

 i = 0
 while i < (n // 2) - 1:
 m[i + 1] = math.sqrt((dft[2*i+1] ** 2) + (dft[2*i+2] ** 2))
 i += 1

 count = 0
 upperbound = math.sqrt(math.log(1.0/0.05) * n)
 for i in range(n // 2):
 if m[i] < upperbound:
 count += 1

 percentile = count / (n / 2) * 100
 N_1 = count
 N_0 = 0.95 * n / 2.0
 d = (N_1 - N_0) / math.sqrt(n / 4.0 * 0.95 * 0.05)
 p_value = math.erfc(abs(d) / math.sqrt(2.0))
 return p_value

A.7. Non-overlapping Template Matching Test

import scipy.special
from random import choice
def nonOverlappingTemplateMatchings(ga_array):
 n = len(ga_array)
 maxnumberOfTemplates = 148
 K = 5
 m = 9

 templates_m9 = [[0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1],

[0, 0, 0, 0, 0, 0, 1, 0, 1],
 [0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 1, 0, 0, 1],

[0, 0, 0, 0, 0, 1, 0, 1, 1],
 [0, 0, 0, 0, 0, 1, 1, 0, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1],

[0, 0, 0, 0, 1, 0, 0, 0, 1],
 [0, 0, 0, 0, 1, 0, 0, 1, 1], [0, 0, 0, 0, 1, 0, 1, 0, 1],

[0, 0, 0, 0, 1, 0, 1, 1, 1],
 [0, 0, 0, 0, 1, 1, 0, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 1],

[0, 0, 0, 0, 1, 1, 1, 0, 1],
 [0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0, 0, 1, 1],

[0, 0, 0, 1, 0, 0, 1, 0, 1],
 [0, 0, 0, 1, 0, 0, 1, 1, 1], [0, 0, 0, 1, 0, 1, 0, 0, 1],

[0, 0, 0, 1, 0, 1, 0, 1, 1],
 [0, 0, 0, 1, 0, 1, 1, 0, 1], [0, 0, 0, 1, 0, 1, 1, 1, 1],

[0, 0, 0, 1, 1, 0, 0, 1, 1],
 [0, 0, 0, 1, 1, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0, 1, 1, 1],

[0, 0, 0, 1, 1, 1, 0, 0, 1],
 [0, 0, 0, 1, 1, 1, 0, 1, 1], [0, 0, 0, 1, 1, 1, 1, 0, 1],

[0, 0, 0, 1, 1, 1, 1, 1, 1],

63

 [0, 0, 1, 0, 0, 0, 0, 1, 1], [0, 0, 1, 0, 0, 0, 1, 0, 1],
[0, 0, 1, 0, 0, 0, 1, 1, 1],

 [0, 0, 1, 0, 0, 1, 0, 1, 1], [0, 0, 1, 0, 0, 1, 1, 0, 1],
[0, 0, 1, 0, 0, 1, 1, 1, 1],

 [0, 0, 1, 0, 1, 0, 0, 1, 1], [0, 0, 1, 0, 1, 0, 1, 0, 1],
[0, 0, 1, 0, 1, 0, 1, 1, 1],

 [0, 0, 1, 0, 1, 1, 0, 1, 1], [0, 0, 1, 0, 1, 1, 1, 0, 1],
[0, 0, 1, 0, 1, 1, 1, 1, 1],

 [0, 0, 1, 1, 0, 0, 1, 0, 1], [0, 0, 1, 1, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 0, 1, 0, 1, 1],

 [0, 0, 1, 1, 0, 1, 1, 0, 1], [0, 0, 1, 1, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 0, 1, 0, 1],

 [0, 0, 1, 1, 1, 0, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1],
[0, 0, 1, 1, 1, 1, 1, 0, 1],

 [0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0, 0, 1, 1],
[0, 1, 0, 0, 0, 0, 1, 1, 1],

 [0, 1, 0, 0, 0, 1, 0, 1, 1], [0, 1, 0, 0, 0, 1, 1, 1, 1],
[0, 1, 0, 0, 1, 0, 0, 1, 1],

 [0, 1, 0, 0, 1, 0, 1, 1, 1], [0, 1, 0, 0, 1, 1, 0, 1, 1],
[0, 1, 0, 0, 1, 1, 1, 1, 1],

 [0, 1, 0, 1, 0, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0, 1, 1, 1],
[0, 1, 0, 1, 0, 1, 0, 1, 1],

 [0, 1, 0, 1, 0, 1, 1, 1, 1], [0, 1, 0, 1, 1, 0, 0, 1, 1],
[0, 1, 0, 1, 1, 0, 1, 1, 1],

 [0, 1, 0, 1, 1, 1, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 0, 0, 0, 1, 1, 1],

 [0, 1, 1, 0, 0, 1, 1, 1, 1], [0, 1, 1, 0, 1, 0, 1, 1, 1],
[0, 1, 1, 0, 1, 1, 1, 1, 1],

 [0, 1, 1, 1, 0, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0],

 [1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 1, 0, 1, 0, 0, 0],

 [1, 0, 0, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0, 0, 0],

 [1, 0, 1, 0, 0, 0, 1, 0, 0], [1, 0, 1, 0, 0, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 1, 1, 0, 0],

 [1, 0, 1, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 1, 0, 1, 0, 0],
[1, 0, 1, 0, 1, 1, 0, 0, 0],

 [1, 0, 1, 0, 1, 1, 1, 0, 0], [1, 0, 1, 1, 0, 0, 0, 0, 0],
[1, 0, 1, 1, 0, 0, 1, 0, 0],

 [1, 0, 1, 1, 0, 1, 0, 0, 0], [1, 0, 1, 1, 0, 1, 1, 0, 0],
[1, 0, 1, 1, 1, 0, 0, 0, 0],

 [1, 0, 1, 1, 1, 0, 1, 0, 0], [1, 0, 1, 1, 1, 1, 0, 0, 0],
[1, 0, 1, 1, 1, 1, 1, 0, 0],

 [1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 1, 0],
[1, 1, 0, 0, 0, 0, 1, 0, 0],

 [1, 1, 0, 0, 0, 1, 0, 0, 0], [1, 1, 0, 0, 0, 1, 0, 1, 0],
[1, 1, 0, 0, 1, 0, 0, 0, 0],

 [1, 1, 0, 0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 0, 1, 0, 0],
[1, 1, 0, 0, 1, 1, 0, 0, 0],

 [1, 1, 0, 0, 1, 1, 0, 1, 0], [1, 1, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 0, 0, 0, 1, 0],

 [1, 1, 0, 1, 0, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1, 0, 0, 0],
[1, 1, 0, 1, 0, 1, 0, 1, 0],

 [1, 1, 0, 1, 0, 1, 1, 0, 0], [1, 1, 0, 1, 1, 0, 0, 0, 0],
[1, 1, 0, 1, 1, 0, 0, 1, 0],

 [1, 1, 0, 1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 1, 1, 0, 0, 0],
[1, 1, 0, 1, 1, 1, 0, 1, 0],

 [1, 1, 0, 1, 1, 1, 1, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 1, 0],

 [1, 1, 1, 0, 0, 0, 1, 0, 0], [1, 1, 1, 0, 0, 0, 1, 1, 0],
[1, 1, 1, 0, 0, 1, 0, 0, 0],

 [1, 1, 1, 0, 0, 1, 0, 1, 0], [1, 1, 1, 0, 0, 1, 1, 0, 0],
[1, 1, 1, 0, 1, 0, 0, 0, 0],

64

 [1, 1, 1, 0, 1, 0, 0, 1, 0], [1, 1, 1, 0, 1, 0, 1, 0, 0],
[1, 1, 1, 0, 1, 0, 1, 1, 0],

 [1, 1, 1, 0, 1, 1, 0, 0, 0], [1, 1, 1, 0, 1, 1, 0, 1, 0],
[1, 1, 1, 0, 1, 1, 1, 0, 0],

 [1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 1, 0],
[1, 1, 1, 1, 0, 0, 1, 0, 0],

 [1, 1, 1, 1, 0, 0, 1, 1, 0], [1, 1, 1, 1, 0, 1, 0, 0, 0],
[1, 1, 1, 1, 0, 1, 0, 1, 0],

 [1, 1, 1, 1, 0, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0, 0, 0, 0],

 [1, 1, 1, 1, 1, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0, 1, 0, 0],
[1, 1, 1, 1, 1, 0, 1, 1, 0],

 [1, 1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 0, 0],

 [1, 1, 1, 1, 1, 1, 1, 1, 0]]

 N = 8
 M = n // N

 mu = (M - m + 1) / (2 ** m)
 varWj = M * ((1.0 / (2 ** m)) - ((2.0 * m - 1.0) / (2.0 ** (2.0 * m))))

 sequence = choice(templates_m9)
 for jj in range(min(maxnumberOfTemplates, len(sequence))):
 j = 0
 Wj = [0] * N
 nu = [0] * (K + 1)
 for k in range(K + 1):
 nu[k] = 0
 for i in range(N):
 W_obs = 0
 for j in range(M - m + 1):
 match = 1
 for k in range(m):
 if sequence[k] != int(ga_array[i * M + j + k]):
 match = 0
 break

 if match == 1:
 W_obs += 1

 Wj[i] = W_obs

 j += m - 1

 chi2 = 0.0
 for i in range(N):
 chi2 += ((Wj[i] - mu) / (varWj ** 0.5)) ** 2
 p_value = scipy.special.gammaincc(N / 2.0, chi2 / 2.0)

 return p_value

A.8. Maurer's "Universal Statistical" Test

import math
def universal(ga_array):
 n = len(ga_array)
 L = 2
 # Q = 4
 Q = 10 * 2 ** L
 K = n // L - Q

65

 expected_value = [0, 0.73264948, 1.5374383, 2.40160681, 3.31122472,
4.25342659, 5.2177052, 6.1962507, 7.1836656,

 8.1764248, 9.1723243, 10.170032, 11.168765, 2.168070,
13.167693, 14.167488, 15.167379]

 variance = [0, 0.690, 1.338, 1.901, 2.358, 2.705, 2.954, 3.125, 3.238,
3.311, 3.356, 3.384, 3.401,

 3.410, 3.416, 3.419, 3.421]

 p = 2 ** L
 c = 0.7 - 0.8 / L + (4 + 32 / L) * K ** (-3 / L) / 15
 sigma = c * math.sqrt(variance[L]/K)
 sqrt2 = math.sqrt(2)
 phi_sum = 0.0
 T = [0] * (Q)
 for i in range(p):
 T[i] = 0
 for i in range(Q + 1):
 decRep = 0
 for j in range(L):
 decRep += int(ga_array[(i - 1) * L + j]) * 2 ** (L - 1 - j)
 T[decRep] = i

 i = Q + 1
 while i <= (Q + K):
 decRep = 0
 for j in range(L):
 decRep += int(ga_array[(i - 1) * L + j]) * 2 ** (L - 1 - j)
 phi_sum += math.log(i - T[decRep]) / math.log(2)
 T[decRep] = i
 i += 1

 phi = phi_sum / K
 arg = abs(phi - expected_value[L]) / (sqrt2 * sigma)
 p_value = math.erfc(arg)
 return p_value

A.9. Serial Test

import scipy.special
def serial(ga_array):
 m = 2
 n = len(ga_array)

 def psi2(m, n):
 if m == 0 or m == -1:
 return 0.0
 nblocks = n
 powLen = 2 ** (m+1) - 1
 P = [0] * powLen

 i = 1
 while i < (powLen - 1):
 P[i] = 0
 i += 1

 for i in range(nblocks):
 k = 1
 for j in range(m):
 if int(ga_array[(i+j)%n]) == 0:
 k *= 2
 elif int(ga_array[(i+j)%n]) == 1:
 k = 2*k+1

66

 P[k-1] += 1

 psi2_sum = 0
 i = 2 ** m - 1
 while i < (2 ** (m+1) - 1):
 psi2_sum += P[i] ** 2
 i += 1
 psi2_sum = ((psi2_sum * 2 ** m) / n) - n
 return psi2_sum

 psim0 = psi2(m,n)
 psim1 = psi2(m-1,n)
 psim2 = psi2(m-2, n)
 del1 = psim0 - psim1
 del2 = psim0 - 2.0*psim1 + psim2
 p_value1 = scipy.special.gammaincc(2 ** (m-1)/2, del1/2.0)
 p_value2 = scipy.special.gammaincc(2 ** (m-2)/2, del2/2.0)
 return p_value1, p_value2

A.10. Approximate Entropy Test

import math
import scipy.special
def approximate_entrophy(ga_array):
 #m = 1 for 64 and 128, 2 otherwise
 m = 2
 n = len(ga_array)

 ApEn = [0] * 2
 r = 0
 blocksize = m
 while blocksize <= (m+1):
 if blocksize == 0:
 ApEn[0] = 0.00
 r += 1
 else:
 nblocks = n
 powLen = 2 ** (blocksize + 1) - 1
 P = [0] * powLen
 i = 1
 while i < (powLen - 1):
 P[i] = 0
 i += 1
 for i in range(nblocks):
 k = 1
 for j in range(blocksize):
 k <<= 1
 if int(ga_array[(i+j)%n]) == 1:
 k += 1
 P[k-1] += 1

 apen_sum = 0
 index = 2 ** blocksize - 1
 for i in range(2 ** blocksize):
 if P[index] > 0:
 apen_sum += P[index] * math.log(P[index]/nblocks)
 index += 1

 apen_sum /= nblocks
 ApEn[r] = apen_sum
 r += 1
 blocksize += 1

 apen = ApEn[0] - ApEn[1]

67

 chi_2 = 2.0 * n * (math.log(2) - apen)
 p_value = scipy.special.gammaincc(2 ** (m-1), chi_2/2.0)
 return p_value

A.11. Cumulative Sums (Cusum) Test

import math
def cumulative_sums(ga_array):
 n = len(ga_array)
 S = 0
 sup = 0
 inf = 0

 def cephes_normal(x):
 if x > 0:
 arg = x / math.sqrt(2)
 result = 0.5 * (1 + math.erf(arg))
 else:
 arg = -x / math.sqrt(2)
 result = 0.5 * (1 - math.erf(arg))
 return result

 for k in range(n):
 S = S + 1 if int(ga_array[k]) else S - 1
 if S > sup:
 sup += 1
 if S < inf:
 inf -= 1
 z = sup if sup > -inf else -inf
 zrev = sup - S if sup - S > S - inf else S - inf

 sumf1 = 0.0
 k = (-n / z + 1) // 4
 while k <= ((n / z) - 1) // 4:
 sumf1 += cephes_normal(((4 * k + 1)*z)/math.sqrt(n))
 sumf1 -= cephes_normal(((4 * k - 1)*z)/math.sqrt(n))
 k += 1

 sumf2 = 0.0
 k = (-n / z - 3) // 4
 while k <= ((n/z)-1) // 4:
 sumf2 += cephes_normal(((4 * k+ 3)* z)/math.sqrt(n))
 sumf2 -= cephes_normal(((4 * k + 1)* z)/math.sqrt(n))
 k += 1

 sumb1 = 0.0
 k = (-n / zrev + 1) // 4
 while k <= (n / zrev - 1) // 4:
 sumb1 += cephes_normal(((4 * k + 1) * zrev) / math.sqrt(n))
 sumb1 -= cephes_normal(((4 * k - 1) * zrev) / math.sqrt(n))
 k += 1

 sumb2 = 0.0
 k = (-n / zrev - 3) // 4
 while k <= (n / zrev - 1) // 4:
 sumb2 += cephes_normal(((4 * k + 3) * zrev) / math.sqrt(n))
 sumb2 -= cephes_normal(((4 * k + 1) * zrev) / math.sqrt(n))
 k += 1

 p_valuef = 1.0 - sumf1 + sumf2
 p_valueb = 1.0 - sumb1 + sumb2
 return p_valuef, p_valueb

68

A.12. Random Excursions Test

import numpy
import scipy.special
def random_excursions(ga_array):
 n = len(ga_array)
 J = 0
 S_k = [0] * n
 cycle = [0] * n
 nu = numpy.ndarray(shape=(6, 8), dtype=int)
 pi = [[0.0000000000, 0.00000000000, 0.00000000000, 0.00000000000,

0.00000000000, 0.0000000000],
 [0.5000000000, 0.25000000000, 0.12500000000, 0.06250000000,

0.03125000000, 0.0312500000],
 [0.7500000000, 0.06250000000, 0.04687500000, 0.03515625000,

0.02636718750, 0.0791015625],
 [0.8333333333, 0.02777777778, 0.02314814815, 0.01929012346,

0.01607510288, 0.0803755143],
 [0.8750000000, 0.01562500000, 0.01367187500, 0.01196289063,

0.01046752930, 0.0732727051]]
 stateX = [-4, -3, -2, -1, 1, 2, 3, 4]
 counter = [0, 0, 0, 0, 0, 0, 0, 0]

 S_k[0] = 2 * int(ga_array[0]) - 1
 i = 1
 while i < n:
 S_k[i] = S_k[i - 1] + 2 * int(ga_array[i]) - 1
 if S_k[i] == 0:
 J += 1
 cycle[J] = i
 i += 1

 if S_k[n - 1] != 0:
 J += 1
 cycle[J] = n

 cycleStart = 0
 cycleStop = cycle[1]
 for k in range(6):
 for i in range(8):
 nu[k, i] = 0
 j = 1
 while j <= J:
 for i in range(8):
 counter[i] = 0
 i = cycleStart
 while i < cycleStop:
 if (S_k[i] >= 1 and S_k[i] <= 4) or (S_k[i] >= -4 and S_k[i] <= -

1):
 if S_k[i] < 0:
 b = 4
 else:
 b = 3
 counter[S_k[i] + b] += 1
 i += 1

 cycleStart = cycle[j] + 1
 if j < J:
 cycleStop = cycle[j + 1]

 for i in range(8):
 if counter[i] >= 0 and counter[i] <= 4:
 nu[counter[i], i] += 1
 elif counter[i] >= 5:

69

 nu[5, i] += 1
 j += 1

 p_list = [0.0] * 8
 for i in range(8):
 x = stateX[i]
 chi2 = 0.0
 for k in range(6):
 chi2 += (nu[k, i] - J * pi[abs(x)][k]) ** 2 / (J * pi[abs(x)][k])
 p_list[i] = scipy.special.gammaincc(2.5, chi2/2.0)

 p_value_sum = 0.0
 for x in p_list:
 if x < 0.01:
 p_value_sum = 0.0
 break
 else:
 p_value_sum += x

 return p_value_sum

A.13. Random Excursions Variant Test

import math
def random_excursions_variant(ga_array):
 n = len(ga_array)
 stateX = [-9, -8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 J = 0
 S_k = [0] * n
 S_k[0] = 2 * int(ga_array[0]) - 1
 i = 1
 while i < n:
 S_k[i] = S_k[i - 1] + 2 * int(ga_array[i]) - 1
 if S_k[i] == 0:
 J += 1
 i += 1

 if S_k[n - 1] != 0:
 J += 1

 p_list = [0] * 18
 for p in range(18):
 x = stateX[p]
 count = 0
 for i in range(n):
 if S_k[i] == x:
 count += 1
 p_list[p] = math.erfc(abs(count-J)/(math.sqrt(2.0 * J * (4.0 * abs(x)

- 2))))

 p_value_sum = 0.0
 for x in p_list:
 if x < 0.01:
 p_value_sum = 0.0
 break
 else:
 p_value_sum += x

 return p_value_sum

Appendix B – Genetic Algorithms

 This is the code for the genetic algorithms. The code creates the keys and then stores the

best-found key as well as the time it takes to run the genetic algorithm in a file.

B.1. Frequency (Monobit) Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
import pickle
import timer
from nistsp80022tests import freq_monobit

def f(ga_array):
 freq_monobit_p_value = freq_monobit(ga_array)
 return -freq_monobit_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 0.15,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("freq_monobit_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.2. Frequency Test Within a Block Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
import pickle
import timer
from nistsp80022tests import block_freq

def f(ga_array):

71

 block_freq_p_value = block_freq(ga_array)
 return -block_freq_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 0.15,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("freq_block_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.3. Runs Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
import pickle
import timer
from nistsp80022tests import runs

def f(ga_array):
 runs_p_value = runs(ga_array)
 return -runs_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,

72

 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("runs_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.4. Test for the Longest Run of Ones in a Block Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
import pickle
import timer
from nistsp80022tests import longestrunofones

def f(ga_array):
 lroo_p_value = longestrunofones(ga_array)
 return -lroo_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

73

 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("lroo_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.5. Binary Matrix Rank Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import binary_matrix_rank
import pickle
import timer

def f(ga_array):
 binary_matrix_rank_p_value = binary_matrix_rank(ga_array)
 return -binary_matrix_rank_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("bmr_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.6. Discrete Fourier Transform (Spectral) Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import discrete_fourier_transform
import pickle
import timer

def f(ga_array):
 discrete_fourier_transform_p_value = discrete_fourier_transform(ga_array)
 return -discrete_fourier_transform_p_value

74

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("dft_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.7. Non-overlapping Template Matching Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import nonOverlappingTemplateMatchings
import pickle
import timer

def f(ga_array):
 nonOverlappingTemplateMatchings_p_value =
nonOverlappingTemplateMatchings(ga_array)
 return -nonOverlappingTemplateMatchings_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,

75

 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("notm_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.8. Maurer's "Universal Statistical" Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import universal
import pickle
import timer

def f(ga_array):
 universal_p_value = universal(ga_array)
 return -universal_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())

76

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("universal_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.9. Serial Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import serial
import pickle
import timer

def f(ga_array):
 serial_p_value1, serial_p_value2 = serial(ga_array)
 return -(serial_p_value1 + serial_p_value2)

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("serial_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.10. Approximate Entropy Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import approximate_entrophy
import pickle
import timer

def f(ga_array):

77

 approximate_entrophy_p_value = approximate_entrophy(ga_array)
 return -approximate_entrophy_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("aent_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.11. Cumulative Sums (Cusum) Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import cumulative_sums
import pickle
import timer

def f(ga_array):
 cusum_p_value1, cusum_p_value2 = cumulative_sums(ga_array)
 return -(cusum_p_value1 + cusum_p_value2)

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(

78

 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("cusum_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.12. Random Excursions Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import random_excursions
import pickle
import timer

def f(ga_array):
 random_excursions_p_value = random_excursions(ga_array)
 return -random_excursions_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())

79

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("ranexc_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

B.13. Random Excursions Variant Test Genetic Algorithm

from geneticalgorithm import geneticalgorithm as ga
from nistsp80022tests import random_excursions_variant
import pickle
import timer

def f(ga_array):
 random_excursions_variant_p_value = random_excursions_variant(ga_array)
 return -random_excursions_variant_p_value

algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1/17,
 'crossover_probability': 0.25,
 'parents_portion': 3/17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

model=ga(
 function=f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

model.run()
output_dict_key = {}
output_dict_p_value= {}
time_lst = []
t = timer.Timer()
for x in range(1, 11):
 t.start()
 model.run()
 time_lst.append(t.stop())
 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))
 output_dict_key[x] = output_key
 output_dict_p_value[x] = model.output_dict["function"]

with open("ranexcvar_bin.txt", "wb") as f1:
 pickle.dump([output_dict_key, output_dict_p_value, time_lst], f1)

Appendix C – Evaluation Tests

 This appendix contains the code for the timer and the functions to find the Hamming

distance between keys and the average p-value of the keys.

C.1. Timer

import time

class Timer():
 def __init__(self):
 self.start_time = None

 def start(self):
 assert self.start_time == None
 self.start_time = time.perf_counter()

 def stop(self):
 assert self.start_time != None
 tot_time = time.perf_counter() - self.start_time
 self.start_time = None
 return (f"{tot_time:0.3f}")

C.2. Hamming Distance

def hamming_dist(x, y):
 assert len(x) == len(y)

 hamming = 0
 for i in range(len(x)):
 char_xor = ord(x[i]) ^ ord(y[i])
 hamming += bin(char_xor).count("1")

 return hamming
def hamming_test_binary(input):
 ham_list_1 = []
 ham_list_2 = []
 ham_list_3 = []
 ham_list_4 = []
 ham_list_5 = []
 ham_list_6 = []
 ham_list_7 = []
 ham_list_8 = []
 ham_list_9 = []
 ham_list_10 = []

 for x in range(1, 11):
 if x == 1:
 for i in range(1, 11):
 ham_list_1.append(hamming_dist(input.get(x), input.get(i)))

 if x == 2:
 for i in range(1, 11):
 ham_list_2.append(hamming_dist(input.get(x), input.get(i)))

 if x == 3:
 for i in range(1, 11):
 ham_list_3.append(hamming_dist(input.get(x), input.get(i)))

 if x == 4:

81

 for i in range(1, 11):
 ham_list_4.append(hamming_dist(input.get(x), input.get(i)))

 if x == 5:
 for i in range(1, 11):
 ham_list_5.append(hamming_dist(input.get(x), input.get(i)))

 if x == 6:
 for i in range(1, 11):
 ham_list_6.append(hamming_dist(input.get(x), input.get(i)))

 if x == 7:
 for i in range(1, 11):
 ham_list_7.append(hamming_dist(input.get(x), input.get(i)))

 if x == 8:
 for i in range(1, 11):
 ham_list_8.append(hamming_dist(input.get(x), input.get(i)))

 if x == 9:
 for i in range(1, 11):
 ham_list_9.append(hamming_dist(input.get(x), input.get(i)))

 if x == 10:
 for i in range(1, 11):
 ham_list_10.append(hamming_dist(input.get(x), input.get(i)))

 sum_list = [ham_list_1, ham_list_2, ham_list_3, ham_list_4, ham_list_5,
ham_list_6,
 ham_list_7, ham_list_8, ham_list_9, ham_list_10]

 avg_list = []
 for x in sum_list:
 average = sum(i for i in x)
 avg_list.append(average)

 return sum(avg_list) / 100

C.3. Average P-value

def avg_pvalue(x):
 return sum(x.values()) / len(x)

Appendix D – Sensitive Analysis

 This appendix contains the scripts that were used to conduct the sensitive analyses.

D.1. Top Two Hamming Distance Performers for 256-bit Key Generation Sensitive

Analysis

from nistsp80022tests import runs, cumulative_sums
from geneticalgorithm import geneticalgorithm as ga
from hammingtest import hamming_dist
from numpy import arange
import timer

class Sensitivity_Analysis():
 def __init__(self, fitness_functions, w1, w2):
 self.fitness_functions = fitness_functions
 self.w1 = w1
 self.w2 = w2

 def f(self, ga_array):
 p_value_list = []
 for fitness_function in self.fitness_functions:
 p_value_list.append(fitness_function(ga_array))

 total_p_value = (self.w1 * p_value_list[0]) + (self.w2 *
(p_value_list[1][0] + p_value_list[1][1]))
 return -total_p_value

 def genetic_algorithm(self):
 algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1 / 17,
 'crossover_probability': 0.25,
 'parents_portion': 3 / 17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

 model = ga(
 function=self.f,
 dimension=2048,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

 t = timer.Timer()

 t.start()
 model.run()
 output_time = t.stop()

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

 output_p_value = model.output_dict["function"]

83

 return {"key": output_key, "time": output_time, "p_value":
output_p_value}

 def evaluation(self):
 keys = []
 times = []
 p_values = []
 for i in range(2):
 ga_output = self.genetic_algorithm()
 keys.append(ga_output["key"])
 times.append(ga_output["time"])
 p_values.append(ga_output["p_value"])

 hamming_distance = hamming_dist(keys[0], keys[1])
 avg_time = sum([float(x) for x in times]) / 2
 avg_p_value = sum(p_values) / 2

 eval_value = hamming_distance + (1/avg_time)

 return {"eval_value": eval_value, "hamming_distance":
hamming_distance,
 "avg_time": avg_time, "avg_p_value": avg_p_value}

if __name__ == "__main__":

 best_eval_value = 0.0
 for w1 in arange(0.0, 4/3, 1/3):
 for w2 in arange(0.0, 4/3, 1/3):
 sa = Sensitivity_Analysis([runs, cumulative_sums],
 w1, w2)
 eval_output = sa.evaluation()
 if eval_output["eval_value"] > best_eval_value:
 best_weights = {"w1": w1, "w2": w2}
 best_hamming_distance = eval_output["hamming_distance"]
 best_avg_time = eval_output["avg_time"]
 best_avg_p_value = eval_output["avg_p_value"]
 best_eval_value = eval_output["eval_value"]

 print(f"\n\nBest Values:\nWeights: {best_weights}\nHamming Distance:
{best_hamming_distance}\n"
 f"Time: {best_avg_time}\nP_value: {best_avg_p_value}")

D.2. Top Two Time Performers for 256-bit Key Generation Sensitive Analysis

from nistsp80022tests import block_freq, freq_monobit
from geneticalgorithm import geneticalgorithm as ga
from hammingtest import hamming_dist
from numpy import arange
import timer

class Sensitivity_Analysis():
 def __init__(self, fitness_functions, w1, w2):
 self.fitness_functions = fitness_functions
 self.w1 = w1
 self.w2 = w2

 def f(self, ga_array):
 p_value_list = []
 for fitness_function in self.fitness_functions:
 p_value_list.append(fitness_function(ga_array))

 total_p_value = (self.w1 * p_value_list[0]) + (self.w2 *
p_value_list[1])
 return -total_p_value

84

 def genetic_algorithm(self):
 algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1 / 17,
 'crossover_probability': 0.25,
 'parents_portion': 3 / 17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

 model = ga(
 function=self.f,
 dimension=2048,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

 t = timer.Timer()

 t.start()
 model.run()
 output_time = t.stop()

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

 output_p_value = model.output_dict["function"]

 return {"key": output_key, "time": output_time, "p_value":
output_p_value}

 def evaluation(self):
 keys = []
 times = []
 p_values = []
 for i in range(2):
 ga_output = self.genetic_algorithm()
 keys.append(ga_output["key"])
 times.append(ga_output["time"])
 p_values.append(ga_output["p_value"])

 hamming_distance = hamming_dist(keys[0], keys[1])
 avg_time = sum([float(x) for x in times]) / 2
 avg_p_value = sum(p_values) / 2

 eval_value = hamming_distance + (1/avg_time)

 return {"eval_value": eval_value, "hamming_distance":
hamming_distance,
 "avg_time": avg_time, "avg_p_value": avg_p_value}

if __name__ == "__main__":

 best_eval_value = 0.0
 for w1 in arange(0.0, 4/3, 1/3):
 for w2 in arange(0.0, 4/3, 1/3):
 sa = Sensitivity_Analysis([block_freq, freq_monobit],
 w1, w2)
 eval_output = sa.evaluation()
 if eval_output["eval_value"] > best_eval_value:
 best_weights = {"w1": w1, "w2": w2}

85

 best_hamming_distance = eval_output["hamming_distance"]
 best_avg_time = eval_output["avg_time"]
 best_avg_p_value = eval_output["avg_p_value"]
 best_eval_value = eval_output["eval_value"]

 print(f"\n\nBest Values:\nWeights: {best_weights}\nHamming Distance:
{best_hamming_distance}\n"
 f"Time: {best_avg_time}\nP_value: {best_avg_p_value}")

D.3. Top Three Hamming Distance Performers for 256-bit Key Generation Sensitive

Analysis

from nistsp80022tests import runs, cumulative_sums, approximate_entrophy
from geneticalgorithm import geneticalgorithm as ga
from hammingtest import hamming_dist
from numpy import arange
import timer

class Sensitivity_Analysis():
 def __init__(self, fitness_functions, w1, w2, w3):
 self.fitness_functions = fitness_functions
 self.w1 = w1
 self.w2 = w2
 self.w3 = w3

 def f(self, ga_array):
 p_value_list = []
 for fitness_function in self.fitness_functions:
 p_value_list.append(fitness_function(ga_array))

 total_p_value = (self.w1 * p_value_list[0]) + (self.w2 *
(p_value_list[1][0] + p_value_list[1][1])) + \
 (self.w3 * p_value_list[2])
 return -total_p_value

 def genetic_algorithm(self):
 algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1 / 17,
 'crossover_probability': 0.25,
 'parents_portion': 3 / 17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

 model = ga(
 function=self.f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

 t = timer.Timer()

 t.start()
 model.run()
 output_time = t.stop()

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

86

 output_p_value = model.output_dict["function"]

 return {"key": output_key, "time": output_time, "p_value":
output_p_value}

 def evaluation(self):
 keys = []
 times = []
 p_values = []
 for i in range(2):
 ga_output = self.genetic_algorithm()
 keys.append(ga_output["key"])
 times.append(ga_output["time"])
 p_values.append(ga_output["p_value"])

 hamming_distance = hamming_dist(keys[0], keys[1])
 avg_time = sum([float(x) for x in times]) / 2
 avg_p_value = sum(p_values) / 2

 eval_value = hamming_distance + (1/avg_time)

 return {"eval_value": eval_value, "hamming_distance":
hamming_distance,
 "avg_time": avg_time, "avg_p_value": avg_p_value}

if __name__ == "__main__":

 best_eval_value = 0.0
 for w1 in arange(0.0, 4/3, 1/3):
 for w2 in arange(0.0, 4/3, 1/3):
 for w3 in arange(0.0, 4/3, 1/3):
 sa = Sensitivity_Analysis([runs, cumulative_sums,
approximate_entrophy],
 w1, w2, w3)
 eval_output = sa.evaluation()
 if eval_output["eval_value"] > best_eval_value:
 best_weights = {"w1": w1, "w2": w2, "w3": w3}
 best_hamming_distance = eval_output["hamming_distance"]
 best_avg_time = eval_output["avg_time"]
 best_avg_p_value = eval_output["avg_p_value"]
 best_eval_value = eval_output["eval_value"]

 print(f"\n\nBest Values:\nWeights: {best_weights}\nHamming Distance:
{best_hamming_distance}\n"
 f"Time: {best_avg_time}\nP_value: {best_avg_p_value}")

D.4. Top Three Time Performers for 256-bit Key Generation Sensitive Analysis

from nistsp80022tests import block_freq, freq_monobit, runs
from geneticalgorithm import geneticalgorithm as ga
from hammingtest import hamming_dist
from numpy import arange
import timer

class Sensitivity_Analysis():
 def __init__(self, fitness_functions, w1, w2, w3):
 self.fitness_functions = fitness_functions
 self.w1 = w1
 self.w2 = w2
 self.w3 = w3

 def f(self, ga_array):
 p_value_list = []

87

 for fitness_function in self.fitness_functions:
 p_value_list.append(fitness_function(ga_array))

 total_p_value = (self.w1 * p_value_list[0]) + (self.w2 *
p_value_list[1]) + (self.w3 * p_value_list[2])

 return -total_p_value

 def genetic_algorithm(self):
 algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1 / 17,
 'crossover_probability': 0.25,
 'parents_portion': 3 / 17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

 model = ga(
 function=self.f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

 t = timer.Timer()

 t.start()
 model.run()
 output_time = t.stop()

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

 output_p_value = model.output_dict["function"]

 return {"key": output_key, "time": output_time, "p_value":
output_p_value}

 def evaluation(self):
 keys = []
 times = []
 p_values = []
 for i in range(2):
 ga_output = self.genetic_algorithm()
 keys.append(ga_output["key"])
 times.append(ga_output["time"])
 p_values.append(ga_output["p_value"])

 hamming_distance = hamming_dist(keys[0], keys[1])
 avg_time = sum([float(x) for x in times]) / 2
 avg_p_value = sum(p_values) / 2

 eval_value = hamming_distance + (1/avg_time)

 return {"eval_value": eval_value, "hamming_distance":
hamming_distance,
 "avg_time": avg_time, "avg_p_value": avg_p_value}

if __name__ == "__main__":

 best_eval_value = 0.0

88

 for w1 in arange(0.0, 4/3, 1/3):
 for w2 in arange(0.0, 4/3, 1/3):
 for w3 in arange(0.0, 4/3, 1/3):
 sa = Sensitivity_Analysis([block_freq, freq_monobit, runs],
 w1, w2, w3)
 eval_output = sa.evaluation()
 if eval_output["eval_value"] > best_eval_value:
 best_weights = {"w1": w1, "w2": w2, "w3": w3}
 best_hamming_distance = eval_output["hamming_distance"]
 best_avg_time = eval_output["avg_time"]
 best_avg_p_value = eval_output["avg_p_value"]
 best_eval_value = eval_output["eval_value"]

 print(f"\n\nBest Values:\nWeights: {best_weights}\nHamming Distance:
{best_hamming_distance}\n"
 f"Time: {best_avg_time}\nP_value: {best_avg_p_value}")

D.5. Top Four Hamming Distance Performers for 256-bit Key Generation Sensitive

Analysis

from nistsp80022tests import runs, cumulative_sums, approximate_entrophy,
universal
from geneticalgorithm import geneticalgorithm as ga
from hammingtest import hamming_dist
from numpy import arange
import timer

class Sensitivity_Analysis():
 def __init__(self, fitness_functions, w1, w2, w3, w4):
 self.fitness_functions = fitness_functions
 self.w1 = w1
 self.w2 = w2
 self.w3 = w3
 self.w4 = w4

 def f(self, ga_array):
 p_value_list = []
 for fitness_function in self.fitness_functions:
 p_value_list.append(fitness_function(ga_array))

 total_p_value = (self.w1 * p_value_list[0]) + (self.w2 *
(p_value_list[1][0] + p_value_list[1][1])) + \
 (self.w3 * p_value_list[2]) + (self.w4 *
p_value_list[3])

 return -total_p_value

 def genetic_algorithm(self):
 algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1 / 17,
 'crossover_probability': 0.25,
 'parents_portion': 3 / 17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

 model = ga(
 function=self.f,
 dimension=256,
 variable_type='bool',

89

 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

 t = timer.Timer()

 t.start()
 model.run()
 output_time = t.stop()

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

 output_p_value = model.output_dict["function"]

 return {"key": output_key, "time": output_time, "p_value":
output_p_value}

 def evaluation(self):
 keys = []
 times = []
 p_values = []
 for i in range(2):
 ga_output = self.genetic_algorithm()
 keys.append(ga_output["key"])
 times.append(ga_output["time"])
 p_values.append(ga_output["p_value"])

 hamming_distance = hamming_dist(keys[0], keys[1])
 avg_time = sum([float(x) for x in times]) / 2
 avg_p_value = sum(p_values) / 2

 eval_value = hamming_distance + (1/avg_time)

 return {"eval_value": eval_value, "hamming_distance":
hamming_distance,
 "avg_time": avg_time, "avg_p_value": avg_p_value}

if __name__ == "__main__":

 best_eval_value = 0.0
 for w1 in arange(0.0, 4/3, 1/3):
 for w2 in arange(0.0, 4/3, 1/3):
 for w3 in arange(0.0, 4/3, 1/3):
 for w4 in arange(0.0, 4/3, 1/3):
 sa = Sensitivity_Analysis([runs, cumulative_sums,
approximate_entrophy, universal],
 w1, w2, w3, w4)
 eval_output = sa.evaluation()
 if eval_output["eval_value"] > best_eval_value:
 best_weights = {"w1": w1, "w2": w2, "w3": w3, "w4":
w4}
 best_hamming_distance =
eval_output["hamming_distance"]
 best_avg_time = eval_output["avg_time"]
 best_avg_p_value = eval_output["avg_p_value"]
 best_eval_value = eval_output["eval_value"]

 print(f"\n\nBest Values:\nWeights: {best_weights}\nHamming Distance:
{best_hamming_distance}\n"
 f"Time: {best_avg_time}\nP_value: {best_avg_p_value}"

D.6. Top Four Time Performers for 256-bit Key Generation Sensitive Analysis

90

from nistsp80022tests import block_freq, freq_monobit, runs, longestrunofones
from geneticalgorithm import geneticalgorithm as ga
from hammingtest import hamming_dist
from numpy import arange
import timer

class Sensitivity_Analysis():
 def __init__(self, fitness_functions, w1, w2, w3, w4):
 self.fitness_functions = fitness_functions
 self.w1 = w1
 self.w2 = w2
 self.w3 = w3
 self.w4 = w4

 def f(self, ga_array):
 p_value_list = []
 for fitness_function in self.fitness_functions:
 p_value_list.append(fitness_function(ga_array))

 total_p_value = (self.w1 * p_value_list[0]) + (self.w2 *
p_value_list[1]) + (self.w3 * p_value_list[2]) +\
 (self.w4 * p_value_list[3])
 return -total_p_value

 def genetic_algorithm(self):
 algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1 / 17,
 'crossover_probability': 0.25,
 'parents_portion': 3 / 17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

 model = ga(
 function=self.f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

 t = timer.Timer()

 t.start()
 model.run()
 output_time = t.stop()

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

 output_p_value = model.output_dict["function"]

 return {"key": output_key, "time": output_time, "p_value":
output_p_value}

 def evaluation(self):
 keys = []
 times = []
 p_values = []
 for i in range(2):
 ga_output = self.genetic_algorithm()
 keys.append(ga_output["key"])

91

 times.append(ga_output["time"])
 p_values.append(ga_output["p_value"])

 hamming_distance = hamming_dist(keys[0], keys[1])
 avg_time = sum([float(x) for x in times]) / 2
 avg_p_value = sum(p_values) / 2

 eval_value = hamming_distance + (1/avg_time)

 return {"eval_value": eval_value, "hamming_distance":
hamming_distance,
 "avg_time": avg_time, "avg_p_value": avg_p_value}

if __name__ == "__main__":

 best_eval_value = 0.0
 for w1 in arange(0.0, 4/3, 1/3):
 for w2 in arange(0.0, 4/3, 1/3):
 for w3 in arange(0.0, 4/3, 1/3):
 for w4 in arange(0.0, 4/3, 1/3):
 sa = Sensitivity_Analysis([block_freq, freq_monobit,
runs, longestrunofones],
 w1, w2, w3, w4)
 eval_output = sa.evaluation()
 if eval_output["eval_value"] > best_eval_value:
 best_weights = {"w1": w1, "w2": w2, "w3": w3, "w4":
w4}
 best_hamming_distance =
eval_output["hamming_distance"]
 best_avg_time = eval_output["avg_time"]
 best_avg_p_value = eval_output["avg_p_value"]
 best_eval_value = eval_output["eval_value"]

 print(f"\n\nBest Values:\nWeights: {best_weights}\nHamming Distance:
{best_hamming_distance}\n"
 f"Time: {best_avg_time}\nP_value: {best_avg_p_value}")

D.7. Top Five Hamming Distance Performers for 256-bit Key Generation Sensitive

Analysis

from nistsp80022tests import runs, cumulative_sums, approximate_entrophy,
universal, serial
from geneticalgorithm import geneticalgorithm as ga
from hammingtest import hamming_dist
from numpy import arange
import timer

class Sensitivity_Analysis():
 def __init__(self, fitness_functions, w1, w2, w3, w4, w5):
 self.fitness_functions = fitness_functions
 self.w1 = w1
 self.w2 = w2
 self.w3 = w3
 self.w4 = w4
 self.w5 = w5

 def f(self, ga_array):
 p_value_list = []
 for fitness_function in self.fitness_functions:
 p_value_list.append(fitness_function(ga_array))

92

 total_p_value = (self.w1 * p_value_list[0]) + (self.w2 *
(p_value_list[1][0] + p_value_list[1][1])) + \
 (self.w3 * p_value_list[2]) + (self.w4 *
p_value_list[3]) + \
 (self.w5 * (p_value_list[4][0] + p_value_list[4][1]))
 return -total_p_value

 def genetic_algorithm(self):
 algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1 / 17,
 'crossover_probability': 0.25,
 'parents_portion': 3 / 17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

 model = ga(
 function=self.f,
 dimension=256,
 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

 t = timer.Timer()

 t.start()
 model.run()
 output_time = t.stop()

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

 output_p_value = model.output_dict["function"]

 return {"key": output_key, "time": output_time, "p_value":
output_p_value}

 def evaluation(self):
 keys = []
 times = []
 p_values = []
 for i in range(2):
 ga_output = self.genetic_algorithm()
 keys.append(ga_output["key"])
 times.append(ga_output["time"])
 p_values.append(ga_output["p_value"])

 hamming_distance = hamming_dist(keys[0], keys[1])
 avg_time = sum([float(x) for x in times]) / 2
 avg_p_value = sum(p_values) / 2

 eval_value = hamming_distance + (1/avg_time)

 return {"eval_value": eval_value, "hamming_distance":
hamming_distance,
 "avg_time": avg_time, "avg_p_value": avg_p_value}

if __name__ == "__main__":

 best_eval_value = 0.0
 for w1 in arange(0.0, 4/3, 1/3):

93

 for w2 in arange(0.0, 4/3, 1/3):
 for w3 in arange(0.0, 4/3, 1/3):
 for w4 in arange(0.0, 4/3, 1/3):
 for w5 in arange(0.0, 4/3, 1/3):
 sa = Sensitivity_Analysis([runs, cumulative_sums,
approximate_entrophy, universal, serial],
 w1, w2, w3, w4, w5)
 eval_output = sa.evaluation()
 if eval_output["eval_value"] > best_eval_value:
 best_weights = {"w1": w1, "w2": w2, "w3": w3,
"w4": w4, "w5": w5}
 best_hamming_distance =
eval_output["hamming_distance"]
 best_avg_time = eval_output["avg_time"]
 best_avg_p_value = eval_output["avg_p_value"]
 best_eval_value = eval_output["eval_value"]

 print(f"\n\nBest Values:\nWeights: {best_weights}\nHamming Distance:
{best_hamming_distance}\n"
 f"Time: {best_avg_time}\nP_value: {best_avg_p_value}")

D.8. Top Five Time Performers for 256-bit Key Generation Sensitive Analysis

from nistsp80022tests import block_freq, freq_monobit, runs,
longestrunofones, cumulative_sums
from geneticalgorithm import geneticalgorithm as ga
from hammingtest import hamming_dist
from numpy import arange
import timer

class Sensitivity_Analysis():
 def __init__(self, fitness_functions, w1, w2, w3, w4, w5):
 self.fitness_functions = fitness_functions
 self.w1 = w1
 self.w2 = w2
 self.w3 = w3
 self.w4 = w4
 self.w5 = w5

 def f(self, ga_array):
 p_value_list = []
 for fitness_function in self.fitness_functions:
 p_value_list.append(fitness_function(ga_array))

 total_p_value = (self.w1 * p_value_list[0]) + (self.w2 *
p_value_list[1]) + (self.w3 * p_value_list[2]) +\
 (self.w4 * p_value_list[3]) + (self.w5 *
(p_value_list[4][0] + p_value_list[4][1]))
 return -total_p_value

 def genetic_algorithm(self):
 algorithm_param = {
 'max_num_iteration': 500,
 'population_size': 17,
 'mutation_probability': 0.05,
 'elit_ratio': 1 / 17,
 'crossover_probability': 0.25,
 'parents_portion': 3 / 17,
 'crossover_type': 'two_point',
 'max_iteration_without_improv': None}

 model = ga(
 function=self.f,
 dimension=256,

94

 variable_type='bool',
 algorithm_parameters=algorithm_param,
 convergence_curve=False
)

 t = timer.Timer()

 t.start()
 model.run()
 output_time = t.stop()

 output_key = "".join(str(x) for x in
model.output_dict["variable"].astype("int"))

 output_p_value = model.output_dict["function"]

 return {"key": output_key, "time": output_time, "p_value":
output_p_value}

 def evaluation(self):
 keys = []
 times = []
 p_values = []
 for i in range(2):
 ga_output = self.genetic_algorithm()
 keys.append(ga_output["key"])
 times.append(ga_output["time"])
 p_values.append(ga_output["p_value"])

 hamming_distance = hamming_dist(keys[0], keys[1])
 avg_time = sum([float(x) for x in times]) / 2
 avg_p_value = sum(p_values) / 2

 eval_value = hamming_distance + (1/avg_time)

 return {"eval_value": eval_value, "hamming_distance":
hamming_distance,
 "avg_time": avg_time, "avg_p_value": avg_p_value}

if __name__ == "__main__":

 best_eval_value = 0.0
 for w1 in arange(0.0, 4/3, 1/3):
 for w2 in arange(0.0, 4/3, 1/3):
 for w3 in arange(0.0, 4/3, 1/3):
 for w4 in arange(0.0, 4/3, 1/3):
 for w5 in arange(0.0, 4/3, 1/3):
 sa = Sensitivity_Analysis([block_freq, freq_monobit,
runs, longestrunofones, cumulative_sums],
 w1, w2, w3, w4, w5)
 eval_output = sa.evaluation()
 if eval_output["eval_value"] > best_eval_value:
 best_weights = {"w1": w1, "w2": w2, "w3": w3,
"w4": w4, "w5": w5}
 best_hamming_distance =
eval_output["hamming_distance"]
 best_avg_time = eval_output["avg_time"]
 best_avg_p_value = eval_output["avg_p_value"]
 best_eval_value = eval_output["eval_value"]

 print(f"\n\nBest Values:\nWeights: {best_weights}\nHamming Distance:
{best_hamming_distance}\n"
 f"Time: {best_avg_time}\nP_value: {best_avg_p_value}")

